Climate change in fish: effects of respiratory constraints on optimal life history and behaviour.
Holt, Rebecca E; Jørgensen, Christian
2015-02-01
The difference between maximum metabolic rate and standard metabolic rate is referred to as aerobic scope, and because it constrains performance it is suggested to constitute a key limiting process prescribing how fish may cope with or adapt to climate warming. We use an evolutionary bioenergetics model for Atlantic cod (Gadus morhua) to predict optimal life histories and behaviours at different temperatures. The model assumes common trade-offs and predicts that optimal temperatures for growth and fitness lie below that for aerobic scope; aerobic scope is thus a poor predictor of fitness at high temperatures. Initially, warming expands aerobic scope, allowing for faster growth and increased reproduction. Beyond the optimal temperature for fitness, increased metabolic requirements intensify foraging and reduce survival; oxygen budgeting conflicts thus constrain successful completion of the life cycle. The model illustrates how physiological adaptations are part of a suite of traits that have coevolved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Yan, Lawrence K Q; Fung, Ka Y; Ng, Ka M
2018-06-01
In this study, the capability of using aerobic granules to undergo simultaneous anaerobic decolorization and aerobic aromatic amines degradation was demonstrated for azo dye wastewater treatment. An integrated acclimation-granulation process was devised, with Mordant Orange 1 as the model pollutant. Performance tests were carried out in a batch column reactor to evaluate the effect of various operating parameters. The optimal condition was to use 1.0-1.7 mm (1.51 ± 0.33 mm) granules, 5 g/L biomass, and 4000 mg/L organics as nutrient; and supplement the wastewater with 1 mg/L dissolved oxygen. This led to a dye mineralization of 61 ± 2%, an anaerobic dye removal of 88 ± 1%, and an aerobic aromatic amines removal of 70 ± 3% within 48 h. This study showed that simultaneous anaerobic/aerobic process by aerobic granules could be a possible alternative to the conventional activated sludge process.
Temperature effects on the aerobic metabolism of glycogen-accumulating organisms.
Lopez-Vazquez, Carlos M; Song, Young-Il; Hooijmans, Christine M; Brdjanovic, Damir; Moussa, Moustafa S; Gijzen, Huub J; van Loosdrecht, Mark C M
2008-10-01
Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes.
State of the art of aerobic granulation in continuous flow bioreactors.
Kent, Timothy R; Bott, Charles B; Wang, Zhi-Wu
In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of granule activity, improvement of long-term granule stability, and a better understanding of aerobic granulation mechanisms in CFRs, especially in full-scale applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Sludge stabilization through aerobic digestion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, R.B.; Smith, D.G.; Bennett, E.R.
1979-10-01
The aerobic digestion process with certain modifications is evaluated as an alternative for sludge processing capable of developing a product with characteristics required for land application. Environmental conditions, including temperature, solids concentration, and digestion time, that affect the aerobic digestion of a mixed primary sludge-trickling filter humus are investigated. Variations in these parameters that influence the characteristics of digested sludge are determined, and the parameters are optimized to: provide the maximum rate of volatile solids reduction; develop a stable, nonodorous product sludge; and provide the maximum rate of oxidation of the nitrogenous material present in the feed sludge. (3 diagrams,more » 9 graphs, 15 references, 3 tables)« less
Anaerobic digestion of dairy cattle manure autoheated by aerobic pretreatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achkari-Begdouri, A.
1989-01-01
A novel way to heat anaerobic digesters was investigated. Dairy cattle manure was autoheated by an aerobic pretreatment process and then fed to the anaerobic digester. Important physical properties of the dairy cattle manure were determined. These included bulk density, specific heat, thermal conductivity and the rheological properties; consistency coefficient, behavior index and apparent viscosity. These parameters were used to calculate the overall heat transfer coefficients, and to estimate the heat losses from the aerobic reactor to the outside environment. The total energy balance of the aerobic treatment system was then established. An optimization study of the main parameters influencingmore » the autoheating process showed that the total solids, the air flow rate and the stirring speed for operation of the aerobic pretreatment should be approximately 7%, 70 L/H and 1,400 rpm respectively. Temperatures as high as 65C were reached in 40 hours of aerobic treatment. At the above recommended levels of total solids, the air flow rate and the stirring speed, there was little difference in the energy requirements for heating the influent by aeration and heating the influent by a conventional heating system. In addition to the temperature increase, the aerobic pretreatment assisted in balancing the anaerobic digestion process and increased the methanogenesis of the dairy cattle manure. Despite the 8% decomposition of organic matter that occurred during the aerobic pretreatment process, methane production of the digester started with the aerobically heated manure was significantly higher (at least 20% higher) than of the digester started with conventionally heated manure. The aerobic system successfully autoheated the dairy cattle manure with an energy cost equal to that of conventionally heated influent.« less
Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab
2016-11-01
Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kassotaki, Elissavet; Pijuan, Maite; Joss, Adriano; Borrego, Carles M; Rodriguez-Roda, Ignasi; Buttiglieri, Gianluigi
2018-05-15
In the past few years, anaerobic ammonium oxidation-based processes have attracted a lot of attention for their implementation at the mainstream line of wastewater treatment plants, due to the possibility of leading to energy autarky if combined with anaerobic digestion. However, little is known about the potential degradation of micropollutants by the microbial groups responsible of these processes and the few results available are inconclusive. This study aimed to assess the degradation capability of biomass withdrawn from a combined nitritation/anaerobic ammonium oxidation (combined N/A) pilot plant towards five pharmaceutically active compounds (ibuprofen, sulfamethoxazole, metoprolol, venlafaxine and carbamazepine). Batch experiments were performed under different conditions by selectively activating or inhibiting different microbial groups: i) regular combined N/A operation, ii) aerobic (optimal for nitrifying bacteria), iii) aerobic with allylthiourea (an inhibitor of ammonia monooxygenase, enzyme of ammonia oxidizing bacteria), iv) anoxic (optimal for anaerobic ammonium oxidizing bacteria), v) aerobic with acetate (optimal for heterotrophic bacteria) and vi) anoxic with acetate (optimal for heterotrophic denitrifying bacteria). Ibuprofen was the most biodegradable compound being significantly degraded (49-100%) under any condition except heterotrophic denitrification. Sulfamethoxazole, exhibited the highest removal (70%) under optimal conditions for nitrifying bacteria but in the rest of the experiments anoxic conditions were found to be slightly more favorable (up to 58%). For metoprolol the highest performance was obtained under anoxic conditions favoring anammox bacteria (62%). Finally, carbamazepine and venlafaxine were hardly removed (≤10% in the majority of cases). Taken together, these results suggest the specificity of different microbial groups that in combination with alternating operational parameters can lead to enhanced removal of some micropollutants. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Jia-Heng; Zhang, Zhi-Ming; Zhao, Hang; Yu, Hai-Tian; Alvarez, Pedro J J; Xu, Xiang-Yang; Zhu, Liang
2016-09-01
A novel funnel-shaped internals was proposed to enhance the stability and pollutant removal performance of an aerobic granular process by optimizing granule size distribution. Results showed up to 68.3±1.4% of granules in novel reactor (R1) were situated in optimal size range (700-1900μm) compared to less than 29.7±1.1% in conventional reactor (R2), and overgrowth of large granules was effectively suppressed without requiring additional energy. Consequently, higher total nitrogen (TN) removal (81.6±2.1%) achieved in R1 than in R2 (48.1±2.7%). Hydraulic analysis revealed the existence of selectively assigning hydraulic pressure in R1. The total shear rate (τtotal) on large granules was 3.07±0.14 times higher than that of R2, while τtotal of small granules in R1 was 70.7±4.6% in R2. Furthermore, large granules in R1 with intact extracellular polymeric substances (EPS) outer layer structure entrapped hydroxyapatite at center, which formed a core structure and further enhanced the stability of aerobic granules. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ramin, Pedram; Libonati Brock, Andreas; Polesel, Fabio; Causanilles, Ana; Emke, Erik; de Voogt, Pim; Plósz, Benedek Gy
2016-12-20
Sewer pipelines, although primarily designed for sewage transport, can also be considered as bioreactors. In-sewer processes may lead to significant variations of chemical loadings from source release points to the treatment plant influent. In this study, we assessed in-sewer utilization of growth substrates (primary metabolic processes) and transformation of illicit drug biomarkers (secondary metabolic processes) by suspended biomass. Sixteen drug biomarkers were targeted, including mephedrone, methadone, cocaine, heroin, codeine, and tetrahydrocannabinol (THC) and their major human metabolites. Batch experiments were performed under aerobic and anaerobic conditions using raw wastewater. Abiotic biomarker transformation and partitioning to suspended solids and reactor wall were separately investigated under both redox conditions. A process model was identified by combining and extending the Wastewater Aerobic/anaerobic Transformations in Sewers (WATS) model and Activated Sludge Model for Xenobiotics (ASM-X). Kinetic and stoichiometric model parameters were estimated using experimental data via the Bayesian optimization method DREAM (ZS) . Results suggest that biomarker transformation significantly differs from aerobic to anaerobic conditions, and abiotic conversion is the dominant mechanism for many of the selected substances. Notably, an explicit description of biomass growth during batch experiments was crucial to avoid significant overestimation (up to 385%) of aerobic biotransformation rate constants. Predictions of in-sewer transformation provided here can reduce the uncertainty in the estimation of drug consumption as part of wastewater-based epidemiological studies.
NASA Astrophysics Data System (ADS)
Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi
2018-03-01
Redundant excess sludge production and considerable non-standard wastewater discharge from existing activated sludge processes are facing more and more challenges. The investigations on lower sludge production and higher sewage treatment efficiency are urgently needed. In this study, an anaerobic/anoxic/micro-aerobic/oxic-MBR combining a micro-aerobic starvation sludge holding tank (A2MMBR-M) system is developed. Batch tests on the optimization of the staged dissolved oxygen (DO) in the micro-aerobic, the first oxic, and the second oxic tanks were carried out by a 3-factor and 3-level Box-Behnken design (BBD). The optimal actual values of X1 , X2 , and X3 were DO1 of 0.3-0.5 mg/L, DO2 of 3.5-4.5 mg/L, and DO3 of 3-4 mg/L. After the optimization tests, continuous-flow experiments of anaerobic/anoxic/oxic (AAO) and A2MMBR-M systems were further conducted. Compared to AAO system, a 37.45% reduction in discharged excess sludge in A2MMBR-M system was achieved. The COD, TN, and TP removal efficiencies in A2MMBR-M system were respective 4.06%, 2.68%, and 4.04% higher than AAO system. The A2MMBR-M system is proved a promising wastewater treatment technology possessing enhanced in-situ sludge reduction and improved effluent quality. The staged optimized DO concentrations are the key controlling parameters for the realization of simultaneous in-situ sludge reduction and nutrient removal.
Aerobic Exercise for Reducing Migraine Burden: Mechanisms, Markers, and Models of Change Processes
Irby, Megan B.; Bond, Dale S.; Lipton, Richard B.; Nicklas, Barbara; Houle, Timothy T.; Penzien, Donald B.
2016-01-01
Background Engagement in regular exercise routinely is recommended as an intervention for managing and preventing migraine, and yet empirical support is far from definitive. We possess at best a weak understanding of how aerobic exercise and resulting change in aerobic capacity influence migraine, let alone the optimal parameters for exercise regimens as migraine therapy (eg, who will benefit, when to prescribe, optimal types, and doses/intensities of exercise, level of anticipated benefit). These fundamental knowledge gaps critically limit our capacity to deploy exercise as an intervention for migraine. Overview Clear articulation of the markers and mechanisms through which aerobic exercise confers benefits for migraine would prove invaluable and could yield insights on migraine pathophysiology. Neurovascular and neuroinflammatory pathways, including an effect on obesity or adiposity, are obvious candidates for study given their role both in migraine as well as the changes known to accrue with regular exercise. In addition to these biological pathways, improvements in aerobic fitness and migraine alike also are mediated by changes in psychological and sociocognitive factors. Indeed a number of specific mechanisms and pathways likely are operational in the relationship between exercise and migraine improvement, and it remains to be established whether these pathways operate in parallel or synergistically. As heuristics that might conceptually benefit our research programs here forward, we: (1) provide an extensive listing of potential mechanisms and markers that could account for the effects of aerobic exercise on migraine and are worthy of empirical exploration and (2) present two exemplar conceptual models depicting pathways through which exercise may serve to reduce the burden of migraine. Conclusion Should the promise of aerobic exercise as a feasible and effective migraine therapy be realized, this line of endeavor stands to benefit migraineurs (including the many who presently remain suboptimally treated) by providing a new therapeutic avenue as an alternative or augmentative compliment to established interventions for migraine. PMID:26643584
Aerobic Exercise for Reducing Migraine Burden: Mechanisms, Markers, and Models of Change Processes.
Irby, Megan B; Bond, Dale S; Lipton, Richard B; Nicklas, Barbara; Houle, Timothy T; Penzien, Donald B
2016-02-01
Engagement in regular exercise routinely is recommended as an intervention for managing and preventing migraine, and yet empirical support is far from definitive. We possess at best a weak understanding of how aerobic exercise and resulting change in aerobic capacity influence migraine, let alone the optimal parameters for exercise regimens as migraine therapy (eg, who will benefit, when to prescribe, optimal types, and doses/intensities of exercise, level of anticipated benefit). These fundamental knowledge gaps critically limit our capacity to deploy exercise as an intervention for migraine. Clear articulation of the markers and mechanisms through which aerobic exercise confers benefits for migraine would prove invaluable and could yield insights on migraine pathophysiology. Neurovascular and neuroinflammatory pathways, including an effect on obesity or adiposity, are obvious candidates for study given their role both in migraine as well as the changes known to accrue with regular exercise. In addition to these biological pathways, improvements in aerobic fitness and migraine alike also are mediated by changes in psychological and sociocognitive factors. Indeed a number of specific mechanisms and pathways likely are operational in the relationship between exercise and migraine improvement, and it remains to be established whether these pathways operate in parallel or synergistically. As heuristics that might conceptually benefit our research programs here forward, we: (1) provide an extensive listing of potential mechanisms and markers that could account for the effects of aerobic exercise on migraine and are worthy of empirical exploration and (2) present two exemplar conceptual models depicting pathways through which exercise may serve to reduce the burden of migraine. Should the promise of aerobic exercise as a feasible and effective migraine therapy be realized, this line of endeavor stands to benefit migraineurs (including the many who presently remain suboptimally treated) by providing a new therapeutic avenue as an alternative or augmentative compliment to established interventions for migraine. © 2015 American Headache Society.
Pronk, M; Abbas, B; Kleerebezem, R; van Loosdrecht, M C M
2015-01-01
The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes. PMID:26059251
Evaluation and Optimization of MTBE Biodegradation in Aquifers, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Legler, T; Balser, L; Koester, C
This study was focused on meeting the following objectives concerning the process of methyl tertiary butyl ether (MTBE) biodegradation, with the goal of optimizing this process in situ: 1. Assess whether intrinsic bioattenuation of MTBE is feasible under aerobic conditions across several contaminated sites. 2. Determine the effect of co-contaminants, specifically water-soluble gasoline components (most notably benzene, toluene, ethylbenzene and xylenes [BTEX]) on MTBE biodegradation. 3. Determine whether microbial and/or chemical factors contribute to different MTBE degradative activities. 4. Isolate and characterize MTBE-degrading microorganisms from sediments in which MTBE biodegradation was observed.
Mang, Cameron S.; Campbell, Kristin L.; Ross, Colin J.D.
2013-01-01
Recovery of motor function after stroke involves relearning motor skills and is mediated by neuroplasticity. Recent research has focused on developing rehabilitation strategies that facilitate such neuroplasticity to maximize functional outcome poststroke. Although many molecular signaling pathways are involved, brain-derived neurotrophic factor (BDNF) has emerged as a key facilitator of neuroplasticity involved in motor learning and rehabilitation after stroke. Thus, rehabilitation strategies that optimize BDNF effects on neuroplasticity may be especially effective for improving motor function poststroke. Two potential poststroke rehabilitation strategies that consider the importance of BDNF are the use of aerobic exercise to enhance brain function and the incorporation of genetic information to individualize therapy. Converging evidence demonstrates that aerobic exercise increases BDNF production and consequently enhances learning and memory processes. Nevertheless, a common genetic variant reduces activity-dependent secretion of the BDNF protein. Thus, BDNF gene variation may affect response to motor rehabilitation training and potentially modulate the effects of aerobic exercise on neuroplasticity. This perspective article discusses evidence that aerobic exercise promotes neuroplasticity by increasing BDNF production and considers how aerobic exercise may facilitate the acquisition and retention of motor skills for poststroke rehabilitation. Next, the impact of the BDNF gene val66met polymorphism on motor learning and response to rehabilitation is explored. It is concluded that the effects of aerobic exercise on BDNF and motor learning may be better exploited if aerobic exercise is paired more closely in time with motor training. Additionally, information about BDNF genotype could provide insight into the type and magnitude of effects that aerobic exercise may have across individuals and potentially help guide an individualized prescription of aerobic exercise to enhance motor rehabilitation poststroke. PMID:23907078
Gvoždík, Lumír; Kristín, Peter
2017-03-15
Temperature is an important factor determining distribution and abundance of organisms. Predicting the impact of warming climate on ectotherm populations requires information about species' thermal requirements, i.e. their so-called 'thermal niche'. The characterization of thermal niche remains a complicated task. We compared the applicability of two indirect approaches, based on reaction norm (aerobic scope curve) and optimality (preferred body temperature) concepts, for indirect estimation of thermal niche while using newts, Ichthyosaura alpestris , as a study system. If the two approaches are linked, then digesting newts should keep their body temperatures close to values maximizing aerobic scope for digestion. After feeding, newts maintained their body temperatures within a narrower range than did hungry individuals. The range of preferred body temperatures was well below the temperature maximizing aerobic scope for digestion. Optimal temperatures for factorial aerobic scope fell within the preferred body temperature range of digesting individuals. We conclude that digesting newts prefer body temperatures that are optimal for the maximum aerobic performance but relative to the maintenance costs. What might be termed the 'economic' thermoregulatory response explains the mismatch between thermal physiology and behaviour in this system. © 2017. Published by The Company of Biologists Ltd.
He, Xueqin; Han, Lujia; Ge, Jinyi; Huang, Guangqun
2018-04-01
This study establishes an optimal mathematical modelling to rationally describe the dynamic changes and spatial distribution of temperature and oxygen concentration in the aerobic composting process using coupling mass-heat-momentum transfer based on the microbial mechanism. Two different conditional composting experiments, namely continuous aeration and intermittent aeration, were performed to verify the proposed model. The results show that the model accurately predicted the dynamic changes in temperature (case I: R 2 = 0.93, RMSE = 1.95 K; case II: R 2 = 0.86, RMSE = 4.69 K) and oxygen concentration (case I: R 2 = 0.90, RMSE = 1.26%; case II: R 2 = 0.75, RMSE = 2.93%) in the central point of compost substrates. It also systematically simulated fluctuations in oxygen concentration caused by boundary conditions and the spatial distribution of the actual temperature and oxygen concentration. The proposed model exhibits good applicability in simulating the actual working conditions of aerobic composting process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes.
Sheng, Shixiong; Liu, Bo; Hou, Xiangyu; Wu, Bing; Yao, Fang; Ding, Xinchun; Huang, Lin
2017-12-26
This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7) to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH₃-N, SO₄ 2- together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater.
Performance of sequential anaerobic/aerobic digestion applied to municipal sewage sludge.
Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe
2011-07-01
A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhu, Liang; Zhou, Jiaheng; Yu, Haitian; Xu, Xiangyang
2015-01-01
The hydraulic shear acts as an important selection pressure in aerobic sludge granulation. The effects of the hydraulic shear rate and reactor configuration on structural characteristics of aerobic granule in view of the hydromechanics. The hydraulic shear analysis was proposed to overcome the limitation of using superficial gas velocity (SGV) to express the hydraulic shear stress. Results showed that the stronger hydraulic shear stress with SGV above 2.4 cm s(-1) promoted the microbial aggregation, and favoured the structural stability of the granular sludge. According to the hydraulic shear analysis, the total shear rate reached (0.56-2.31)×10(5) s(-1) in the granular reactor with a larger ratio of height to diameter (H/D), and was higher than that in the reactor with smaller H/D, where the sequencing airlift bioreactor with smaller H/D had a high total shear rate under the same SGV. Results demonstrated that the granular reactor could provide a stronger hydraulic shear stress which promotes the formation and structural stability of aerobic granules.
Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation.
Wang, Qilin; Song, Kang; Hao, Xiaodi; Wei, Jing; Pijuan, Maite; van Loosdrecht, Mark C M; Zhao, Huijun
2018-06-01
The decreased activity (i.e. decay) of anaerobic ammonium oxidation (Anammox) bacteria during starvation can be attributed to death (i.e. decrease in the amount of viable bacteria) and activity decay (i.e. decrease in the specific activity of viable bacteria). Although they are crucial for the operation of the Anammox process, they have never been comprehensively investigated. This study for the first time experimentally assessed death and activity decay of the Anammox bacteria during 84 days' starvation stress based on ammonium removal rate, Live/Dead staining and fluorescence in-situ hybridization. The anaerobic and aerobic decay rates of Anammox bacteria were determined as 0.015 ± 0.001 d -1 and 0.028 ± 0.001 d -1 , respectively, indicating Anammox bacteria would lose their activity more quickly in the aerobic starvation than in the anaerobic starvation. The anaerobic and aerobic death rates of Anammox bacteria were measured at 0.011 ± 0.001 d -1 and 0.025 ± 0.001 d -1 , respectively, while their anaerobic and aerobic activity decay rates were determined at 0.004 ± 0.001 d -1 and 0.003 ± 0.001 d -1 , respectively. Further analysis revealed that death accounted for 73 ± 4% and 89 ± 5% of the decreased activity of Anammox bacteria during anaerobic and aerobic starvations, and activity decay was only responsible for 27 ± 4% and 11 ± 5% of the decreased Anammox activity, respectively, over the same starvation periods. These deeply shed light on the response of Anammox bacteria to the starvation stress, which would facilitate operation and optimization of the Anammox process. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Smet, Erik; Van Langenhove, Herman; De Bo, Inge
Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH 3 and H 2S during the aerobic composting process was 742 g ton -1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton -1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of its 17 times lower overall emission of the volatiles mentioned.
ERIC Educational Resources Information Center
Antunes, Amanda H.; Alberton, Cristine L.; Finatto, Paula; Pinto, Stephanie S.; Cadore, Eduardo L.; Zaffari, Paula; Kruel, Luiz F. M.
2015-01-01
Purpose: Maximal tests conducted on land are not suitable for the prescription of aquatic exercises, which makes it difficult to optimize the intensity of water aerobics classes. The aim of the present study was to evaluate the maximal and anaerobic threshold cardiorespiratory responses to 6 water aerobics exercises. Volunteers performed 3 of the…
Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes
Sheng, Shixiong; Liu, Bo; Hou, Xiangyu; Wu, Bing; Yao, Fang; Ding, Xinchun; Huang, Lin
2017-01-01
This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7) to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH3-N, SO42− together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater. PMID:29278390
Xie, Wen-Ming; Zeng, Raymond J; Li, Wen-Wei; Wang, Guo-Xiang; Zhang, Li-Min
2018-05-31
Reversed A 2 O process (anoxic-anaerobic-aerobic) and conventional A 2 O process (anaerobic-anoxic-aerobic) are widely used in many wastewater treatment plants (WWTPs) in Asia. However, at present, there are still no consistent results to figure out which process has better total phosphorous (TP) removal performance and the mechanism for this difference was not clear yet. In this study, the treatment performances of both processes were compared in the same full-scale WWTP and the TP removal dynamics was analyzed by a modeling method. The treatment performance of full-scale WWTP showed the TP removal efficiency of the reversed A 2 O process was more efficient than in the conventional A 2 O process. The modeling results further reveal that the TP removal depends highly on the concentration and composition of influent COD. It had more efficient TP removal than the conventional A 2 O process only under conditions of sufficient influent COD and high fermentation products content. This study may lay a foundation for appropriate selection and optimization of treatment processes to suit practical wastewater properties.
Li, Jianhua; Sun, Shanshan; Yan, Ping; Fang, Li; Yu, Yang; Xiang, Yangdong; Wang, Di; Gong, Yejing; Gong, Yanjun; Zhang, Zhongzhi
2017-08-01
Microbial communities in the functional areas of biofilm reactors with large height-diameter ratio using the anaerobic-aerobic (A/O) reflux process was investigated to treat heavy oil refinery wastewater without pretreatment. In the process, chemical oxygen demand (COD) and total nitrogen (TN) removal reached 93.2% and 82.8%, and the anaerobic biofilm reactor was responsible for 95% and 99%, respectively. Areas for hydrolysis acidification and acetic acid production, methane production, and COD recovery were obvious in the anaerobic reactor. Among all areas, area for hydrolysis acidification and acetic acid production was the key factor to improve COD removal efficiency. High throughput sequencing of 16S rDNA gene showed that the native community was mainly composed of functional groups for hydrocarbon degradation, syntrophic bacteria union body, methanogenesis, nitrification, denitrification, and sulfate reduction. The deviations between predicted values and actual COD and TN removal were less than 5% in the optimal prediction model. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Li, Jin
2016-02-15
A heterotrophic nitrification-aerobic denitrification strain named y5 was isolated from marine environment by traditional microbial isolation method using seawater as medium. It was identified as Klebsiella sp. based on the morphological, physiological and 16S rRNA sequence analysis. The experiment results showed that the optimal carbon resource was sodium citrate; the optimal pH was 7.0; and the optimal C/N was 17. The strain could use NH4Cl, NaNO2 and KNO3 as sole nitrogen source, and the removal efficiencies were77.07%, 64.14% and 100% after 36 hours, respectively. The removal efficiency reached 100% after 36 hours in the coexistence of NH4Cl, NaNO2 and KNO3. The results showed that the strain y5 had independent and efficient heterotrophic nitrification and aerobic denitrification activities in high salt wastewater.
Chiavola, Agostina; D'Amato, Emilio; Gori, Riccardo; Lubello, Claudio; Sirini, Piero
2013-04-01
This paper deals with the application of the ozone-oxidation in a full scale aerobic sludge digester. Ozonation was applied continuously to a fraction of the biological sludge extracted from the digestion unit; the ozonated sludge was then recirculated to the same digester. Three different ozone flow rates were tested (60,500 and 670g O3 h(-1)) and their effects evaluated in terms of variation of the total and soluble fractions of COD, nitrogen and phosphorous, of total and volatile suspended solids concentrations and Sludge Volume Index in the aerobic digestion unit. During the 7-month operation of the ozonation process, it was observed an appreciable improvement of the aerobic digestion efficiency (up to about 20% under the optimal conditions) and of the sludge settleability properties. These results determined an average reduction of about 60% in the biological sludge extracted from the plant and delivered to final disposal. A thorough economic analysis showed that this reduction allowed to achieve a significant cost saving for the plant with respect to the previous years operated without ozonation. Furthermore, it was determined the threshold disposal cost above which implementation of the ozone oxidation in the aerobic digestion units of similar WWTPs becomes economically convenient (about 60€t(-1) of sludge). Copyright © 2013 Elsevier Ltd. All rights reserved.
Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R; Cook, Gregory M
2014-08-05
Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD(+)/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments.
Optimizing Cardiovascular Benefits of Exercise: A Review of Rodent Models
Davis, Brittany; Moriguchi, Takeshi; Sumpio, Bauer
2013-01-01
Although research unanimously maintains that exercise can ward off cardiovascular disease (CVD), the optimal type, duration, intensity, and combination of forms are yet not clear. In our review of existing rodent-based studies on exercise and cardiovascular health, we attempt to find the optimal forms, intensities, and durations of exercise. Using Scopus and Medline, a literature review of English language comparative journal studies of cardiovascular benefits and exercise was performed. This review examines the existing literature on rodent models of aerobic, anaerobic, and power exercise and compares the benefits of various training forms, intensities, and durations. The rodent studies reviewed in this article correlate with reports on human subjects that suggest regular aerobic exercise can improve cardiac and vascular structure and function, as well as lipid profiles, and reduce the risk of CVD. Findings demonstrate an abundance of rodent-based aerobic studies, but a lack of anaerobic and power forms of exercise, as well as comparisons of these three components of exercise. Thus, further studies must be conducted to determine a truly optimal regimen for cardiovascular health. PMID:24436579
A single aerobic exercise session accelerates movement execution but not central processing.
Beyer, Kit B; Sage, Michael D; Staines, W Richard; Middleton, Laura E; McIlroy, William E
2017-03-27
Previous research has demonstrated that aerobic exercise has disparate effects on speed of processing and movement execution. In simple and choice reaction tasks, aerobic exercise appears to increase speed of movement execution while speed of processing is unaffected. In the flanker task, aerobic exercise has been shown to reduce response time on incongruent trials more than congruent trials, purportedly reflecting a selective influence on speed of processing related to cognitive control. However, it is unclear how changes in speed of processing and movement execution contribute to these exercise-induced changes in response time during the flanker task. This study examined how a single session of aerobic exercise influences speed of processing and movement execution during a flanker task using electromyography to partition response time into reaction time and movement time, respectively. Movement time decreased during aerobic exercise regardless of flanker congruence but returned to pre-exercise levels immediately after exercise. Reaction time during incongruent flanker trials decreased over time in both an aerobic exercise and non-exercise control condition indicating it was not specifically influenced by exercise. This disparate influence of aerobic exercise on movement time and reaction time indicates the importance of partitioning response time when examining the influence of aerobic exercise on speed of processing. The decrease in reaction time over time independent of aerobic exercise indicates that interpreting pre-to-post exercise changes in behavior requires caution. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie
2015-01-01
New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429
Yang, Wei-qiang; Wang, Dong-bo; Li, Xiao-ming; Yang, Qi; Xu, Qiu-xiang; Zhang, Zhi-bei; Li, Zhi-jun; Xiang, Hai-hong; Wang, Ya-li; Sun, Jian
2016-04-15
This paper explored the method of resolving insufficient carbon source in urban sewage by comparing and analyzing denitrification and phosphorus removal (NPR) effect between modified two-sludge system and traditional anaerobic-aerobic-anoxic process under the condition of low carbon source wastewater. The modified two-sludge system was the experimental reactor, which was optimized by adding two stages of micro-aeration (aeration rate 0.5 L · mm⁻¹) in the anoxic period of the original two-sludge system, and multi-stage anaerobic-aerobic-anoxic SBR was the control reactor. When the influent COD, ammonia nitrogen, SOP concentration were respectively 200, 35, 10 mg · L⁻¹, the NPR effect of the experimental reactor was hetter than that of thecontrol reactor with the removal efficiency of TN being 94.8% vs 60.9%, and TP removal being 96.5% vs 75%, respectively. The effluent SOP, ammonia, TN concentration of the experimental reactor were 0.35, 0.50, 1.82 mg · L⁻¹, respectively, which could fully meet the first class of A standard of the Pollutants Emission Standard of Urban Wastewater Treatment Firm (GB 18918-2002). Using the optimized treatment process, the largest amounts of nitrogen and phosphorus removal per unit carbon source (as COD) were 0.17 g · g⁻¹ and 0.048 g · g⁻¹ respectively, which could furthest solve the lower carbon concentration in current municipal wastewater.
de Godos, I; Vargas, V A; Guzmán, H O; Soto, R; García, B; García, P A; Muñoz, R
2014-09-15
The carbon and nitrogen removal potential of an innovative anoxic-aerobic photobioreactor configuration operated with both internal and external recyclings was evaluated under different cyanobacterial-bacterial sludge residence times (9-31 days) during the treatment of wastewaters with low C/N ratios. Under optimal operating conditions, the two-stage photobioreactor was capable of providing organic carbon and nitrogen removals over 95% and 90%, respectively. The continuous biomass recycling from the settler resulted in the enrichment and predominance of rapidly-settling cyanobacterial-bacterial flocs and effluent suspended solid concentrations lower than 35 mg VSS L(-1). These flocs exhibited sedimentation rates of 0.28-0.42 m h(-1) but sludge volumetric indexes of 333-430 ml/g. The decoupling between the hydraulic retention time and sludge retention time mediated by the external recycling also avoided the washout of nitrifying bacteria and supported process operation at biomass concentrations of 1000-1500 mg VSS L(-1). The addition of additional NaHCO3 to the process overcame the CO2 limitation resulting from the intense competition for inorganic carbon between cyanobacteria and nitrifying bacteria in the photobioreactor, which supported the successful implementation of a nitrification-denitrification process. Unexpectedly, this nitrification-denitrification process occurred both simultaneously in the photobioreactor alone (as a result of the negligible dissolved oxygen concentrations) and sequentially in the two-stage anoxic-aerobic configuration with internal NO3(-)/NO2(-) recycling. Copyright © 2014 Elsevier Ltd. All rights reserved.
An integrated reactor system has been developed to remediate pentachlorophenol (PCP) containing wastes using sequential anaerobic and aerobic biodegradation. Anaerobically, PCP was degraded to approximately equimolar concentrations (>99%) of chlorophenol (CP) in a granular activa...
Oxygen Transfer in Moving Bed Biofilm Reactor and Integrated Fixed Film Activated Sludge Processes.
2017-11-17
A demonstrated approach to design the, so-called, medium-bubble air diffusion network for oxygen transfer into the aerobic zone(s) of moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) processes is described in this paper. Operational full-scale biological water resource recovery systems treating municipal sewerage demonstrate that medium-bubble air diffusion networks designed using the method presented here provide reliable service. Further improvement is possible, however, as knowledge gaps prevent more rational process designs. Filling such knowledge gaps can potentially result in higher performing and more economical systems. Small-scale system testing demonstrates significant enhancement of oxygen transfer capacity due to the presence of media, but quantification of such effects in full-scale systems is lacking, and is needed. Establishment of the relationship between diffuser submergence, aeration rate, and biofilm carrier fill fraction will enhance MBBR and IFAS aerobic process design, cost, and performance. Limited testing of full-scale systems is available to allow computation of alpha valuess. As with clean water testing of full-scale systems, further full-scale testing under actual operating conditions is required to more fully quantify MBBR and IFAS system oxygen transfer performance under a wide range of operating conditions. Control of MBBR and IFAS aerobic zone oxygen transfer systems can be optimized by recognizing that varying residual dissolved oxygen (DO) concentrations are needed, depending on operating conditions. For example, the DO concentration in the aerobic zone of nitrifying IFAS processes can be lowered during warm weather conditions when greater suspended growth nitrification can occur, resulting in the need for reduced nitrification by the biofilm compartment. Further application of oxygen transfer control approaches used in activated sludge systems to MBBR and IFAS systems, such as ammonia-based oxygen transfer system control, has been demonstrated to further improve MBBR and IFAS system energy-efficiency.
Sun, Xuemei; Li, Qiufen; Zhang, Yan; Liu, Huaide; Zhao, Jun; Qu, Keming
2012-06-04
We determined the phylogenetic position of a heterotrophic nitrifying-aerobic denitrifying bacterium X3, and detected its nitrogen removal characteristics for providing evidence to explain the principle of heterotrophic nitrification-aerobic denitrification and to improve the process in purification of marine-culture wastewater. The evolutionary position of the strain was determined based on its morphological, physiological, biochemical characteristics and 16SrRNA gene sequence. The nitrification-denitrification ability of this strain was detected by detecting its nitrogen removal efficiency and growth on different inorganic nitrogen source. Strain X3 was identified as Halomonas sp. It grew optimally at salinity 3%, pH 8.5, C:N 10:1 at 28 degrees C, and it could still survive at 15% salinity. The removal of NH4+ -N, NO2(-) -N and NO3(-) -N was 98.29%, 99.07%, 96.48% respectively within 24 h. When three inorganic nitrogen existed simultaneously, it always utilized ammonia firstly, and the total inorganic nitrogen removal was higher than with only one nitrogen, suggesting that strain X3 has the ability of simultaneous nitrification and denitrification and completing the whole nitrogen removing process. Strain X3 belonged to the genus of Halomonas. It had strong simultaneous nitrification and denitrification capability and could live in high-salinity environment.
Wang, Lin; Li, Yongmei; He, Guodong
2014-01-01
N-nitrosodimethylamine (NDMA) is an emerging disinfection byproduct. Removal of its potential precursors is considered as an effective method to control NDMA. In this study, four typical NDMA precursors (dimethylamine (DMA), trimethylamine (TMA), dimethylformamide (DMFA) and dimethylaminobenzene (DMAB)) were selected, and their removal capacities by activated sludge were investigated. Batch experiments indicated that removal of NDMA precursors was better under aerobic condition than anoxic condition; and their specific degradation rates follow the order of DMA > TMA > DMFA > DMAB. In anoxic-aerobic (AO) activated sludge system, the optimal hydraulic retention time and sludge retention time were 10 h and 20 d, respectively, for the removal of both NDMA precursors (four selected NDMA precursors and NDMA formation potential (NDMA FP)) and nutrients. Our results also suggested that there was a positive correlation between NDMA FP and dissolved organic nitrogen (DON) in wastewater. The removal efficiency of NDMA FP was in the range of 46.8-72.5% in the four surveyed wastewater treatment plants except the one which adopted chemically enhanced primary process. The results revealed that the AO system had the advantage of removing NDMA FP. Our results are helpful for the knowledge of the removals of NDMA precursors during activated sludge treatment processes.
Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł
2017-02-01
The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhao, Lanmei; Bao, Mutai; Yan, Miao; Lu, Jinren
2016-09-01
Kinetics and thermodynamics of hydrolyzed polyacrylamide (HPAM) biodegradation in anaerobic and aerobic activated sludge biochemical treatment systems were explored to determine the maximum rate and feasibility of HPAM biodegradation. The optimal nutrient proportions for HPAM biodegradation were determined to be 0.08g·L(-1) C6H12O6, 1.00g·L(-1) NH4Cl, 0.36g·L(-1) NaH2PO4 and 3.00g·L(-1) K2HPO4 using response surface methodology (RSM). Based on the kinetics, the maximum HPAM biodegradation rates were 16.43385mg·L(-1)·d(-1) and 2.463mg·L(-1)·d(-1) in aerobic and anaerobic conditions, respectively. The activation energy (Ea) of the aerobic biodegradation was 48.9897kJ·mol(-1). Entropy changes (ΔS) of biochemical treatment system decreased from 216.21J·K(-1) to 2.39J·K(-1). Thermodynamic windows of opportunity for HPAM biodegradation were drawn. And it demonstrated HPAM was biodegraded into acetic acid and CO2 under laboratory conditions. Growth-process equations for functional bacteria anaerobically grown on polyacrylic acid were constructed and it confirmed electron equivalence between substrate and product. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham
2007-10-01
Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.
An assay of optimal cytochrome c oxidase activity in fish gills.
Hu, Yau-Chung; Chung, Meng-Han; Lee, Tsung-Han
2018-07-15
Cytochrome c oxidase (COX) catalyzes the terminal oxidation reaction in the electron transport chain (ETC) of aerobic respiratory systems. COX activity is an important indicator for the evaluation of energy production by aerobic respiration in various tissues. On the basis of the respiratory characteristics of muscle, we established an optimal method for the measurement of maximal COX activity. To validate the measurement of cytochrome c absorbance, different ionic buffer concentrations and tissue homogenate protein concentrations were used to investigate COX activity. The results showed that optimal COX activity is achieved when using 50-100 μg fish gill homogenate in conjunction with 75-100 mM potassium phosphate buffer. Furthermore, we compared branchial COX activities among three species of euryhaline teleost (Chanos chanos, Oreochromis mossambicus, and Oryzias dancena) to investigate differences in aerobic respiration of osmoregulatory organs. COX activities in the gills of these three euryhaline species were compared with COX subunit 4 (COX4) protein levels. COX4 protein abundance and COX activity patterns in the three species occurring in environments with various salinities increased when fish encountered salinity challenges. This COX activity assay therefore provides an effective and accurate means of assessing aerobic metabolism in fish. Copyright © 2018 Elsevier Inc. All rights reserved.
[Cognitive training combined with aerobic exercises in multiple sclerosis patients: a pilot study].
Jimenez-Morales, R M; Herrera-Jimenez, L F; Macias-Delgado, Y; Perez-Medinilla, Y T; Diaz-Diaz, S M; Forn, C
2017-06-01
The scientific evidences associated to the effectiveness of different techniques of cognitive rehabilitation are still contradictory. To compare a program of combined training (physical and cognitive) in front of a program of physical training and to observe their effectiveness about the optimization of the cognitive functions in patients with multiple sclerosis (MS). It was carried out an experimental study in 32 patients with MS. The patients were distributed in two groups: 16 to the experimental group (combined cognitive training with aerobic exercises) and 16 patients to the control group (aerobic exercises). The intervention was planned for six weeks combining cognitive tasks by means of a game of dynamic board of cubes and signs (TaDiCS ®) and a program of aerobic exercises. The Brief Repeatable Battery of Neuropsychological Test and the Stroop Test were applied to evaluate the cognitive yield. Also, the Beck Depression Inventory was administered. There were found significant differences in the intergrupal analysis after the intervention in the variable learning and visuoespacial long term memory (p = 0.000), attention (p = 0.026) and inhibitory control (p = 0.007). Also, in the intragroup analysis there were found significant differences in these variables and information processing speed in the group that received the combined training. These patients also showed a significant improvement in the emotional state (p = 0.043). The cognitive training combined with the aerobic exercises is effective to improve the cognitive performance.
Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R.; Cook, Gregory M.
2014-01-01
Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD+/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments. PMID:25049411
Koziel, Jacek A; Nguyen, Lam T; Glanville, Thomas D; Ahn, Heekwon; Frana, Timothy S; Hans van Leeuwen, J
2017-10-01
A passive sampling method, using retracted solid-phase microextraction (SPME) - gas chromatography-mass spectrometry and time-weighted averaging, was developed and validated for tracking marker volatile organic compounds (VOCs) emitted during aerobic digestion of biohazardous animal tissue. The retracted SPME configuration protects the fragile fiber from buffeting by the process gas stream, and it requires less equipment and is potentially more biosecure than conventional active sampling methods. VOC concentrations predicted via a model based on Fick's first law of diffusion were within 6.6-12.3% of experimentally controlled values after accounting for VOC adsorption to the SPME fiber housing. Method detection limits for five marker VOCs ranged from 0.70 to 8.44ppbv and were statistically equivalent (p>0.05) to those for active sorbent-tube-based sampling. The sampling time of 30min and fiber retraction of 5mm were found to be optimal for the tissue digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Grey water treatment in a series anaerobic--aerobic system for irrigation.
Abu Ghunmi, Lina; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B
2010-01-01
This study aims at treatment of grey water for irrigation, focusing on a treatment technology that is robust, simple to operate and with minimum energy consumption. The result is an optimized system consisting of an anaerobic unit operated in upflow mode, with a 1 day operational cycle, a constant effluent flow rate and varying liquid volume. Subsequent aerobic step is equipped with mechanical aeration and the system is insulated for sustaining winter conditions. The COD removal achieved by the anaerobic and aerobic units in summer and winter are 45%, 39% and 53%, 64%, respectively. Sludge in the anaerobic and aerobic reactor has a concentration of 168 and 8 mg VSL(-1), respectively. Stability of sludge in the anaerobic and aerobic reactors is 80% and 93%, respectively, based on COD. Aerobic effluent quality, except for pathogens, agrees with the proposed irrigation water quality guidelines for reclaimed water in Jordan.
Forced Aerobic Exercise Preceding Task Practice Improves Motor Recovery Poststroke.
Linder, Susan M; Rosenfeldt, Anson B; Dey, Tanujit; Alberts, Jay L
To understand how two types of aerobic exercise affect upper-extremity motor recovery post-stroke. Our aims were to (1) evaluate the feasibility of having people who had a stroke complete an aerobic exercise intervention and (2) determine whether forced or voluntary exercise differentially facilitates upper-extremity recovery when paired with task practice. Seventeen participants with chronic stroke completed twenty-four 90-min sessions over 8 wk. Aerobic exercise was immediately followed by task practice. Participants were randomized to forced or voluntary aerobic exercise groups or to task practice only. Improvement on the Fugl-Meyer Assessment exceeded the minimal clinically important difference: 12.3, 4.8, and 4.4 for the forced exercise, voluntary exercise, and repetitive task practice-only groups, respectively. Only the forced exercise group exhibited a statistically significant improvement. People with chronic stroke can safely complete intensive aerobic exercise. Forced aerobic exercise may be optimal in facilitating motor recovery associated with task practice. Copyright © 2017 by the American Occupational Therapy Association, Inc.
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process.
Hashimoto, S; Fujita, M; Terai, K
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.
Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor
NASA Technical Reports Server (NTRS)
Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.
1995-01-01
Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.
Application of grey system theory on the influencing parameters of aerobic granulation in SBR.
Bindhu, B K; Madhu, G
2017-09-01
Aerobic granulation is a promising technology for wastewater treatment. Four operational parameters were selected as influencing factors for this study. Aerobic granulation was experimented with three different values of organic loading rate (3, 6 and 9 kg COD m -3 d -1 ), superficial upflow air velocity (SUAV) (2, 3 and 4 cm s -1 ), settling time (3, 5 and 10 min) and volume exchange ratio (25%, 50% and 75%) in sequencing batch reactor in nine trials for the optimal performance of aerobic granulation. The influence of compared parameters on five reference parameters (sludge volume index (SVI), time taken for the appearance of granules, size and specific gravity of granules and chemical oxygen demand (COD) removal) was analyzed using grey system theory. The grey relational coefficients and grey entropy relational grade of each parameter were calculated. Hydrodynamic shear force in terms of SUAV was found to have the greatest influence on granule appearance, specific gravity of granules and COD removal efficiency. SVI is greatly affected by settling time. The optimal scopes of all the compared parameters were found.
Adegboye, Amanda R A; Anderssen, Sigmund A; Froberg, Karsten; Sardinha, Luis B; Heitmann, Berit L; Steene-Johannessen, Jostein; Kolle, Elin; Andersen, Lars B
2011-07-01
To define the optimal cut-off for low aerobic fitness and to evaluate its accuracy to predict clustering of risk factors for cardiovascular disease in children and adolescents. Study of diagnostic accuracy using a cross-sectional database. European Youth Heart Study including Denmark, Portugal, Estonia and Norway. 4500 schoolchildren aged 9 or 15 years. Aerobic fitness was expressed as peak oxygen consumption relative to bodyweight (mlO(2)/min/kg). Risk factors included in the composite risk score (mean of z-scores) were systolic blood pressure, triglyceride, total cholesterol/HDL-cholesterol ratio, insulin resistance and sum of four skinfolds. 14.5% of the sample, with a risk score above one SD, were defined as being at risk. Receiver operating characteristic analysis was used to define the optimal cut-off for sex and age-specific distribution. In girls, the optimal cut-offs for identifying individuals at risk were: 37.4 mlO(2)/min/kg (9-year-old) and 33.0 mlO(2)/min/kg (15-year-old). In boys, the optimal cut-offs were 43.6 mlO(2)/min/kg (9-year-old) and 46.0 mlO(2)/min/kg (15-year-old). Specificity (range 79.3-86.4%) was markedly higher than sensitivity (range 29.7-55.6%) for all cut-offs. Positive predictive values ranged from 19% to 41% and negative predictive values ranged from 88% to 90%. The diagnostic accuracy for identifying children at risk, measured by the area under the curve (AUC), was significantly higher than what would be expected by chance (AUC >0.5) for all cut-offs. Aerobic fitness is easy to measure, and is an accurate tool for screening children with clustering of cardiovascular risk factors. Promoting physical activity in children with aerobic fitness level lower than the suggested cut-points might improve their health.
Foster B Sc, Evan; Fraser, Julia E; Inness PhD, Elizabeth L; Munce, Sarah; Biasin, Louis; Poon, Vivien; Bayley, Mark
2018-04-03
To determine the frequency of physiotherapist-administered aerobic exercise testing/training, the proportion of physiotherapists who administer this testing/training, and the barriers that currently exist across different practice environments. A secondary objective is to identify the learning needs of physiotherapists for the development of an education curriculum in aerobic exercise testing and training with electrocardiograph (ECG) administration and interpretation. National, cross-sectional survey. Registered physiotherapists practicing in Canada. Out of 137 participants, most (75%) physiotherapists prescribed aerobic exercise on a regular basis (weekly); however, 65% had never conducted an aerobic exercise test. There were no significant differences in frequency of aerobic exercise testing across different practice environments or across years of physiotherapy experience. Physiotherapists perceived the main barriers to aerobic exercise testing as being a lack of equipment/space (78%), time (65%), and knowledge (56%). Although most (82%) were uncomfortable administering 12-lead ECG-monitored aerobic exercise tests, 60% stated they would be interested in learning more about ECG interpretation. This study found that physiotherapists are regularly implementing aerobic exercise. This exercise was infrequently guided by formal aerobic exercise testing, which could increase access to safe and effective exercise within the optimal aerobic training zone. As well, this could facilitate training in patients with cardiovascular diagnoses that require additional testing for medical clearance. Increased ECG training and access to equipment for physiotherapists may augment pre-screening aerobic exercise testing. This training should include learning the key arrhythmias for aerobic exercise test termination as defined by the American College of Sports Medicine.
Stabilization of waste-activated sludge through the anoxic-aerobic digestion process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, S.; Fujita, M.; Terai, K.
1982-08-01
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludgemore » continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q /SUB r/ /Q /SUB s/ ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q /SUB r/ /Q /SUB s/ ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.« less
Kim, Han S; Weber, Walter J
2005-04-01
The effects of mechanical mixing on rates of polycyclic aromatic hydrocarbon (PAH) biodegradation in dense geosorbent slurry (67% solids content, w/w) systems were evaluated using laboratory-scale intermittently mixed batch bioreactors. A PAH-contaminated soil and a phenanthrene-sorbed mineral sorbent (alpha-Al2O3) were respectively employed as slurry solids in aerobic and anaerobic biodegradation studies. Both slurries exhibited a characteristic behavior of pseudoplastic non-Newtonian fluids, and the impeller revolution rate and its diameter had dramatic impacts on power and torque requirements in their laminar flow mixing. Rates of phenanthrene biodegradation were markedly enhanced by relatively low-level auger mixing under both aerobic and anaerobic (denitrifying) conditions. Parameters for empirical models correlating biodegradation rate coefficient (k(b)) values to the degree of mixing were similar to those for correlations between mass transfer (desorption) rate coefficient (k(r)) values for rapidly desorbing fractions of soil organic matter and degree of mixing reported in a companion study, supporting a conclusion that performance-efficient and cost-effective enhancements of PAH mass transfer (desorption) and its biodegradation processes can be achieved by the introduction of optimal levels of reactor-scale mechanical mixing.
Cai, Minmin; Yao, Jun; Yang, Huaijun; Wang, Ruixia; Masakorala, Kanaji
2013-09-01
Aerobic biodegradation of crude oil and its pathways were investigated via in vitro culture and GC-MS analysis in water flooding wells of Dagang oil field. The in vitro aerobic culture lasted 90 days when 99.0% of n-alkanes and 43.03-99.9% of PAHs were degraded and the biomarkers and their ratios were changed. The spectra of components in the residual oil showed the similar biodegradation between aerobic process of 90 days and degradation in reservoir which may last for some millions years, and the potential of serious aerobic biodegradation of petroleum in reservoir. 24 Metabolites compounds were separated and identified from aerobic culture, including fatty acid, naphthenic acid, aromatic carboxylic acid, unsaturated acid, alcohols, ketones and aldehydes. The pathways of alkanes and aromatics were proposed, which suggests that oxidation of hydrocarbon to organic acid is an important process in the aerobic biodegradation of petroleum. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aerobic exercise deconditioning and countermeasures during bed rest.
Lee, Stuart M C; Moore, Alan D; Everett, Meghan E; Stenger, Michael B; Platts, Steven H
2010-01-01
Bed rest is a well-accepted model for spaceflight in which the physiologic adaptations, particularly in the cardiovascular system, are studied and potential countermeasures can be tested. Bed rest without countermeasures results in reduced aerobic capacity and altered submaximal exercise responses. Aerobic endurance and factors which may impact prolonged exercise, however, have not been well studied. The initial loss of aerobic capacity is rapid, occurring in parallel with the loss of plasma volume. Thereafter, the reduction in maximal aerobic capacity proceeds more slowly and is influenced by central and peripheral adaptation. Exercise capacity can be maintained during bed rest and may be improved during recovery with appropriate countermeasures. Plasma volume restoration, resistive exercise, orthostatic stress, aerobic exercise, and aerobic exercise plus orthostatic stress all have been tested with varying levels of success. However, the optimal combination of elements-exercise modality, intensity, duration, muscle groups exercised and frequency of aerobic exercise, orthostatic stress, and supplementary resistive or anaerobic exercise training-has not been systematically evaluated. Currently, frequent (at least 3 days per week) bouts of intense exercise (interval-style and near maximal) with orthostatic stress appears to be the most efficacious method to protect aerobic capacity during bed rest. Further refinement of protocols and countermeasure hardware may be necessary to insure the success of countermeasures in the unique environment of space.
Manley, Dana; Cowan, Patricia; Graff, Carolyn; Perlow, Michael; Rice, Pamela; Richey, Phyllis; Sanchez, Zoila
2014-01-01
Physical activity in children has been associated with a number of health benefits. Unfortunately, physical inactivity continues to increase. The purpose of this study was to examine the relationships among self-efficacy levels, physical activity, aerobic fitness, and body composition (relative body mass index [RBMI]) and to determine whether a school-based pedometer intervention program would improve those variables. The sample consisted of 116 rural 11- to 13-year-old students. Weakly positive correlations between self-efficacy, physical activity, and aerobic fitness and weakly correlated inverse relationships between self-efficacy, physical activity, aerobic fitness and RBMI were found. There was no statistical significance between the intervention and control group when analyzing outcome variables. These findings suggest that those with optimal RBMI levels have higher self-efficacy, physical activity and aerobic fitness levels. Although not statistically significant, the intervention group had greater improvements in mean self-efficacy scores, aerobic fitness levels, and RBMI. © 2014.
Membrane thickening aerobic digestion processes.
Woo, Bryen
2014-01-01
Sludge management accounts for approximately 60% of the total wastewater treatment plant expenditure and laws for sludge disposal are becoming increasingly stringent, therefore much consideration is required when designing a solids handling process. A membrane thickening aerobic digestion process integrates a controlled aerobic digestion process with pre-thickening waste activated sludge using membrane technology. This process typically features an anoxic tank, an aerated membrane thickener operating in loop with a first-stage digester followed by second-stage digestion. Membrane thickening aerobic digestion processes can handle sludge from any liquid treatment process and is best for facilities obligated to meet low total phosphorus and nitrogen discharge limits. Membrane thickening aerobic digestion processes offer many advantages including: producing a reusable quality permeate with minimal levels of total phosphorus and nitrogen that can be recycled to the head works of a plant, protecting the performance of a biological nutrient removal liquid treatment process without requiring chemical addition, providing reliable thickening up to 4% solids concentration without the use of polymers or attention to decanting, increasing sludge storage capacities in existing tanks, minimizing the footprint of new tanks, reducing disposal costs, and providing Class B stabilization.
Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen
2014-01-01
Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline. PMID:24857922
Li, Yan; Li, Bing; Wang, Cui-Ping; Fan, Jun-Zhao; Sun, Hong-Wen
2014-05-22
Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26×10⁷ cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline.
2017-01-01
Summary The present study was done to optimize the power ultrasound processing for maximizing diastase activity of and minimizing hydroxymethylfurfural (HMF) content in honey using response surface methodology. Experimental design with treatment time (1-15 min), amplitude (20-100%) and volume (40-80 mL) as independent variables under controlled temperature conditions was studied and it was concluded that treatment time of 8 min, amplitude of 60% and volume of 60 mL give optimal diastase activity and HMF content, i.e. 32.07 Schade units and 30.14 mg/kg, respectively. Further thermal profile analyses were done with initial heating temperatures of 65, 75, 85 and 95 ºC until temperature of honey reached up to 65 ºC followed by holding time of 25 min at 65 ºC, and the results were compared with thermal profile of honey treated with optimized power ultrasound. The quality characteristics like moisture, pH, diastase activity, HMF content, colour parameters and total colour difference were least affected by optimized power ultrasound treatment. Microbiological analysis also showed lower counts of aerobic mesophilic bacteria and in ultrasonically treated honey than in thermally processed honey samples complete destruction of coliforms, yeasts and moulds. Thus, it was concluded that power ultrasound under suggested operating conditions is an alternative nonthermal processing technique for honey. PMID:29540991
Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.
Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw
2015-09-01
In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The optimal exercise modality for reductions of abdominal obesity and risk factors for type 2 diabetes in youth is unknown. We examined the effects of aerobic exercise (AE) versus resistance exercise (RE) without caloric restriction on abdominal adiposity, ectopic fat, and insulin sensitivity and se...
Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.
Qin, Yan; Zhang, Long; Lv, Jian; Luo, Sanzhong; Cheng, Jin-Pei
2015-03-20
A simple bioinspired ortho-quinone catalyst for the aerobic oxidative dehydrogenation of amines to imines is reported. Without any metal cocatalysts, the identified optimal ortho-quinone catalyst enables the oxidations of α-branched primary amines and cyclic secondary amines. Mechanistic studies have disclosed the origins of different performances of ortho-quinone vs para-quinone in biomimetic amine oxidations.
Shuo, Liu; Baozhen, Wang; Hongjun, Han; Yanping, Liu
2008-01-01
A pilot-scale hybrid membrane bioreactor using a submerged flat panel membrane was designed and applied for advanced treatment of domestic wastewater. The new process adapted to the hybrid membrane bioreactor exhibits substantial decrease in membrane fouling and much easier cleaning. In this study, the new process configurations including the addition of anoxic/anaerobic zones, the package of synthetic fibrous fabric carrier for biofilm attached growth, activated sludge recycling and modified dosage of polished diatomite with high activity and multi-functions were investigated to select the optimal operational parameters for the hybrid membrane bioreactor system. The carrier package in the aerobic zone contributed 3.65 g/L (maximum) of fixed biomass to the system, thus reducing the suspended biomass, and has decreased the membrane cleaning cycle remarkably. The operation performance at the sludge recycle rate 0, 100%, 200% and 300% showed that, the trans-membrane pressure of flat panel membrane declined sharply with the increase of sludge recycling rate within a certain range, and 200% was decided to be optimal for in the membrane bioreactor system. EPS concentration in each sludge recycling rate was 135 mg/L, 92 mg/L, 68 mg/L and 55 mg/L respectively. The addition of anoxic and anaerobic zones degraded some large molecular organic compounds, which facilitated the biodegradation and removal of organic substances in aerobic zone. The modified dosage of polished diatomite has played a major important role for both preventing of membrane from fouling and its much easier cleaning when it formed. Copyright (c) IWA Publishing 2008.
Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano
2014-05-01
Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tacklemore » the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.« less
Mazzoleni, Stefano; Landi, Carmine; Cartenì, Fabrizio; de Alteriis, Elisabetta; Giannino, Francesco; Paciello, Lucia; Parascandola, Palma
2015-07-30
Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimilation (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory compounds other than ethanol. The presented results clarify the dynamics of microbial growth under different feeding conditions and highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densities achieved in a bioreactor.
Jaziri, Kais; Casellas, Magali; Dagot, Christophe
2012-06-01
The objectives of this work were to compare and investigate the effect of three activated sludge disintegration processes before aerobic sludge digestion on 1) aerobic biodegradability enhancement and 2) microbial community evolution using the polymerase chain reaction-denaturant gel gradient electrophoresis (PCR-DGGE) technique. The comparison of three disintegration processes: thermal treatment (95 degrees C, 2h), sonication (100,000 kJ/kgTS) and ozonation (0.108 g O3/gTS) showed that the disintegration processes acted differently according to the composition of the soluble phase and to the DNA damage. Thermal treatment led to significant protein solubilization and to DNA modification. Sonication and ozonation resulted in similar soluble phase compositions and did not lead to any DNA modifications. During activated sludge aerobic digestion, intrinsic biodegradability enhancement was observed for thermal and ozone activated sludge pre-treatments. The analysis of the DGGE patterns at the end of aerobic digestion showed that population diversity was affected by both the aerobic digestion and the pre-treatment. The dissimilarity percentages measured at the end of aerobic digestion in the control sample and in the treated sludge were equal to 22, 25 and 20% for thermal treatment, sonication and ozonation respectively. This study indicated that PCR-DGGE could be a useful tool for the comparison of disintegration processes before and after aerobic digestion.
Reddy, M Venkateswar; Mohan, S Venkata
2012-01-01
The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina
2016-03-01
Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion. Copyright © 2015 Elsevier B.V. All rights reserved.
Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay
2015-01-01
Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic process completely detoxified all the selected textile azo dyes, further efforts should be made to implement such methods for large scale dye wastewater treatment technologies. PMID:26417357
Chen, Kai; Jian, Shanshan; Huang, Linglong; Ruan, Zhepu; Li, Shunpeng; Jiang, Jiandong
2015-12-01
To confirm the reductive dehalogenation ability of the aerobic strain of Delftia sp. EOB-17, finding more evidences to support the hypothesis that reductive dehalogenation may occur extensively in aerobic bacteria. Delftia sp. EOB-17, isolated from terrestrial soil contaminated with halogenated aromatic compounds, completely degraded 0.2 mM DBHB in 28 h and released two equivalents of bromides under aerobic conditions in the presence of sodium succinate. LC-MS analysis revealed that DBHB was transformed to 4-hydroxybenzoate via 3-bromo-4-hydroxybenzoate by successive reductive dehalogenation. Highly conserved DBHB-degrading genes, including reductive dehalogenase gene (bhbA3) and the extra-cytoplasmic binding receptor gene (bhbB3), were also found in strain EOB-17 by genome sequencing. The optimal temperature and pH for DBHB reductive dehalogenation activity are 30 °C and 8, respectively, and 0.1 mM Cd(2+), Cu(2+), Hg(2+) and Zn(2+) strongly inhibited dehalogenation activity. The aerobic strain of Delftia sp. EOB-17 was confirmed to reductively dehalogenate DBHB under aerobic conditions, providing another evidence to support the hypothesis that reductive dehalogenation occurs extensively in aerobic bacteria.
Vallerand, James R; Rhodes, Ryan E; Walker, Gordon J; Courneya, Kerry S
2017-03-28
Most previous research on the correlates of physical activity has examined the aerobic or strength exercise guidelines separately. Such an approach does not allow an examination of the correlates of meeting the combined guidelines versus a single guideline, or one guideline versus the other. Here, we report the prevalence and correlates of meeting the combined and independent exercise guidelines in hematologic cancer survivors (HCS). In a population-based, cross-sectional survey of 606 HCS from Alberta, Canada using a mailed questionnaire, we obtained separate assessments of aerobic and strength exercise behaviors, as well as separate assessments for motivations, regulations, and reflective processes using the multi-process action control framework (M-PAC). Overall, 22% of HCS met the combined exercise guideline, 22% met aerobic-only, 10% met strength-only, and 46% met neither exercise guideline. HCS were more likely to meet the combined guideline over the aerobic-only guideline if they had no children living at home, and over both the aerobic and strength-only guidelines if they had completed university. As hypothesized, those meeting the combined guideline also had a more favorable strength-specific M-PAC profile (i.e., motivations, regulations, and reflective processes) than those meeting the aerobic-only guideline, and a more favorable aerobic-specific M-PAC profile than those meeting the strength-only guideline. Interestingly and unexpectedly, HCS meeting the combined guidelines also reported significantly greater aerobic-specific perceived control, planning, and obligation/regret than those meeting the aerobic-only guideline, and greater strength-specific perceived control, planning, and obligation/regret than those meeting the strength-only guideline. Few HCS are meeting the combined exercise guidelines. M-PAC based variables are strong correlates of meeting the combined guidelines compared to aerobic or strength only guidelines. Strategies to help HCS meet the combined guidelines may need to promote more favorable behavioral regulations and reflective processes for both types of exercise rather than just the type of exercise in which HCS are deficient.
Androulakis-Korakakis, Patroklos; Langdown, Louis; Lewis, Adam; Fisher, James P; Gentil, Paulo; Paoli, Antonio; Steele, James
2018-02-01
Androulakis-Korakakis, P, Langdown, L, Lewis, A, Fisher, JP, Gentil, P, Paoli, A, and Steele, J. Effects of exercise modality during additional "high-intensity interval training" on aerobic fitness and strength in powerlifting and strongman athletes. J Strength Cond Res 32(2): 450-457, 2018-Powerlifters and strongman athletes have a necessity for optimal levels of muscular strength while maintaining sufficient aerobic capacity to perform and recover between events. High-intensity interval training (HIIT) has been popularized for its efficacy in improving both aerobic fitness and strength but never assessed within the aforementioned population group. This study looked to compare the effect of exercise modality, e.g., a traditional aerobic mode (AM) and strength mode (SM), during HIIT on aerobic fitness and strength. Sixteen well resistance-trained male participants, currently competing in powerlifting and strongman events, completed 8 weeks of approximately effort- and volume-matched HIIT in 2 groups: AM (cycling, n = 8) and SM (resistance training, n = 8). Aerobic fitness was measured as predicted V[Combining Dot Above]O2max using the YMCA 3 minutes step test and strength as predicted 1 repetition maximum from a 4-6RM test using a leg extension. Both groups showed significant improvements in both strength and aerobic fitness. There was a significant between-group difference for aerobic fitness improvements favoring the AM group (p ≤ 0.05). There was no between-group difference for change in strength. Magnitude of change using within-group effect size for aerobic fitness and strength was considered large for each group (aerobic fitness, AM = 2.6, SM = 2.0; strength, AM = 1.9, SM = 1.9). In conclusion, our results support enhanced strength and aerobic fitness irrespective of exercise modality (e.g., traditional aerobic and resistance training). However, powerlifters and strongman athletes wishing to enhance their aerobic fitness should consider HIIT using an aerobic HIIT mode.
[Temperature-switched high-efficiency D-lactate production from glycerol].
Tian, Kangming; Zhou, Li; Chen, Xianzhong; Shen, Wei; Shi, Guiyang; Singh, Suren; Lu, Fuping; Wang, Zhengxiang
2013-01-01
Glycerol from oil hydrolysis industry is being considered as one of the abundent raw materials for fermentation industry. In present study, the aerobic and anaerobic metabolism and growth properties on glycerol by Esherichia coli CICIM B0013-070, a D-lactate over-producing strain constructed previously, at different temperatures were investigated, followed by a novel fermentation process, named temperature-switched process, was established for D-lactate production from glycerol. Under the optimal condition, lactate yield was increased from 64.0% to 82.6%. Subsequently, the yield of D-lactate from glycerol was reached up to 88.9% while a thermo-inducible promoter was used to regulate D-lactate dehydrogenase transcription.
Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed
2016-11-01
Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3-O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.
Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Xu, Guang-yao; Li, Jin
2016-03-15
A heterotrophic nitrification--aerobic denitrification bacterium named y3 was isolated from the sludge of Jiaozhou Bay using the enrichment medium with seawater as the matrix. It was identified as Pseudomonas sp. based on the morphological observation, physiological experiments and sequence analysis of 16S rRNA. The experiment results showed that the optimal carbon resource was sodium citrate, the optimal pH was 7.0, and the optimal C/N was 13. The strain could use NH₄Cl, NaNO₂ and KNO₃ as sole nitrogen source, and the removal efficiencies were 98.69%, 78.38% and 72.95% within 20 hours, respectively. There was no nitrate and nitrite accumulation during the heterotrophic nitrification process. Within 20 hours, the nitrogen removal efficiencies were 99.56%, 99.75% and 99.41%, respectively, in the mixed system with NO₃⁻-N: NO²⁻-N of 2:1, 1:1 and 1:2. When the NH₄⁺-N: NO₃⁻-N ratios were 2: 1 , 1: 1 , 1: 2, the nitrogen removal efficiencies were all 100% . When the NH₄⁺-N:NO₂⁻-N ratios were 2:1,1:1,1:2, the nitrogen removal efficiencies were 90.43%, 92.79% and 99.96%, respectively. They were higher than those with single nitrogen source. As a result, strain y3 had good nitrogen removal performance in high saline wastewater treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Y.; Kawase, Y.
2006-07-01
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less
A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes.
Chen, Chih-Yu; Chen, Tzu-Yu; Chung, Ying-Chien
2014-01-01
Microbial fuel cells (MFCs) can, besides running on wastewater, also derive energy directly from certain aquatic plants. However, few studies have focussed on electricity generation using aerobic anodes. This study presents a comparison of the MFC performances of an anaerobic-anode MFC (ana-MFC) and an aerobic-anode MFC (aa-MFC), and shows their individual conditions for optimal operation. Results show that the maximum power density of 7.07 +/- 0.45 mW/m2 for the ana-MFC occurred at 500 omega, whereas the aa-MFC had a maximum power density of 2.34 +/- 0.16 mW/m2 at 2200 omega. The ana-MFC generally achieved high electricity generation, and the aa-MFC achieved relatively high electricity generation when fed with a diluted substrate. In the ana-MFC, the optimal substrate for electricity generation was glucose (fermentable substrate); however, glucose and acetic acid (non-fermentable substrate) were both suitable substrates for the aa-MFC. The optimal gas retention times of the ana-MFC and the aa-MFC were 9 and 120 s, respectively. This retention time is an important limiting factor of electricity generation for the ana-MFC. The aa-MFCs fed with different substrates exhibited non-significant differences between bacterial communities. We observed the relative diversities of bacterial communities in the ana-MFC fed with various substrates. The results of denaturing gradient gel electrophoresis analysis suggest that Ochrobactrum intermedium, Delftia acidovorans, and Citrobacterfreundii may be potential electrogenic bacteria. To our knowledge, this is the first study comparing the MFC performances of anaerobic and aerobic anodes.
[Aerobic vaginitis--diagnostic problems and treatment].
Romanik, Małgorzata; Wojciechowska-Wieja, Anna; Martirosian, Gayane
2007-06-01
The diagnostic criteria and treatment of aerobic vaginitis--AV--have been summarized in this review. An expansion of mixed aerobic microflora, especially Group B Streptococcus--GBS, Escherichia coli--E. coli, Enterococcus spp., and the development of inflammation of the vaginal mucous membrane due to a decreasing amount of Lactobacillus spp., have been observed in women with AV. Disruptions of the vaginal ecosystem during AV cause an increase in pH to >6, a decrease in lactates concentration and an increase in proinflammatory cytokines concentration in vaginal discharge. An optimal treatment scheme for AV, which includes antibacterial agents and simultaneously normalizes the vaginal ecosystem, has not been established until today.
Beltrame, Thomas; Amelard, Robert; Wong, Alexander; Hughson, Richard L
2018-02-01
Physical activity levels are related through algorithms to the energetic demand, with no information regarding the integrity of the multiple physiological systems involved in the energetic supply. Longitudinal analysis of the oxygen uptake (V̇o 2 ) by wearable sensors in realistic settings might permit development of a practical tool for the study of the longitudinal aerobic system dynamics (i.e., V̇o 2 kinetics). This study evaluated aerobic system dynamics based on predicted V̇o 2 data obtained from wearable sensors during unsupervised activities of daily living (μADL). Thirteen healthy men performed a laboratory-controlled moderate exercise protocol and were monitored for ≈6 h/day for 4 days (μADL data). Variables derived from hip accelerometer (ACC HIP ), heart rate monitor, and respiratory bands during μADL were extracted and processed by a validated random forest regression model to predict V̇o 2 . The aerobic system analysis was based on the frequency-domain analysis of ACC HIP and predicted V̇o 2 data obtained during μADL. Optimal samples for frequency domain analysis (constrained to ≤0.01 Hz) were selected when ACC HIP was higher than 0.05 g at a given frequency (i.e., participants were active). The temporal characteristics of predicted V̇o 2 data during μADL correlated with the temporal characteristics of measured V̇o 2 data during laboratory-controlled protocol ([Formula: see text] = 0.82, P < 0.001, n = 13). In conclusion, aerobic system dynamics can be investigated during unsupervised activities of daily living by wearable sensors. Although speculative, these algorithms have the potential to be incorporated into wearable systems for early detection of changes in health status in realistic environments by detecting changes in aerobic response dynamics. NEW & NOTEWORTHY The early detection of subclinical aerobic system impairments might be indicative of impaired physiological reserves that impact the capacity for physical activity. This study is the first to use wearable sensors in unsupervised activities of daily living in combination with novel machine learning algorithms to investigate the aerobic system dynamics with the potential to contribute to models of functional health status and guide future individualized health care in the normal population.
NASA Astrophysics Data System (ADS)
Boniecki, P.; Nowakowski, K.; Slosarz, P.; Dach, J.; Pilarski, K.
2012-04-01
The purpose of the project was to identify the degree of organic matter decomposition by means of a neural model based on graphical information derived from image analysis. Empirical data (photographs of compost content at various stages of maturation) were used to generate an optimal neural classifier (Boniecki et al. 2009, Nowakowski et al. 2009). The best classification properties were found in an RBF (Radial Basis Function) artificial neural network, which demonstrates that the process is non-linear.
Zeng, Qingling; Li, Yongmei; Yang, Shijia
2013-01-01
Abstract Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic–anoxic–oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10–25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%–81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%–80.1% was biodegraded; 18.9%–34.7% was released in effluent; and 0.88%–3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892
Huang, Fei; Pan, Luqing; Lv, Na; Tang, Xianming
2017-11-01
The development of an intensive aquaculture industry has been accompanied by increasing environmental impacts, especially nitrogen pollution. In this study, a novel halophilic bacterium capable of heterotrophic nitrification and aerobic denitrification was isolated from mariculture water and identified as Bacillus litoralis N31. The efficiency of ammonium, nitrite and nitrate removal by N31 were 86.3%, 89.3% and 89.4%, respectively, after a 48-h cultivation in sole N-source medium with initial nitrogen approximately 20 mg/L. However, ammonium was removed preferentially, and no obvious nitrite accumulated during the simultaneous nitrification and denitrification process in mixed N-source media. The existence of hao, napA and nirS genes further proved the heterotrophic nitrification-aerobic denitrification capability of N31. The optimal conditions for ammonium removal were 30°C, initial pH 7.5-8.5, C/N ratio 5-20 and salinity 30-40‰, and the nitrification rate of N31 increased with increasing initial [Formula: see text] from 10 to 250 mg/L. Biosecurity assessment with shrimp indicated that strain N31 could be applied in the marine aquaculture industry safely for culture water remediation and effluent treatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Abiri, Fardin; Fallah, Narges; Bonakdarpour, Babak
2017-03-01
In the present study the feasibility of the use of a bacterial batch sequential anaerobic-aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic-aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic-aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.
do Prado, Danilo Marcelo Leite; Rocco, Enéas Antônio
2017-01-01
Heart failure with preserved ejection fraction (HFpEF) is defined as an inability of the ventricles to optimally accept blood from atria with blunted end- diastolic volume response by limiting the stroke volume and cardiac output. The HEpEF prevalence is higher in elderly and women and may be associated to hypertension, diabetes mellitus and atrial fibrillation. Severe exercise intolerance, manifested by dyspnea and fatigue during physical effort is the important chronic symptom in HFpEF patients, in which is the major determinant of their reduced quality of life. In this sense, several studies demonstrated reduced aerobic capacity in terms of lower peak oxygen consumption (peak VO 2 ) in patients with HFpEF. In addition, the lower aerobic capacity observed in HFpEF may be due to impaired both convective and diffusive O 2 transport (i.e. reduced cardiac output and arteriovenous oxygen difference, respectively).Exercise training program can help restore physiological function in order to increase aerobic capacity and improve the quality of life in HFpEF patients. Therefore, the primary purpose of this chapter was to clarify the physiological mechanisms associated with reduced aerobic capacity in HFpEF patients. Secondly, special focus was devoted to show how aerobic exercise training can improve aerobic capacity and quality of life in HFpEF patients.
Ploughman, Michelle; Kelly, Liam P
2016-12-01
Converging evidence from animal models of stroke and clinical trials suggests that aerobic exercise has effects across multiple targets. The subacute phase is characterized by a period of heightened neuroplasticity when aerobic exercise has the potential to optimize recovery. In animals, low intensity aerobic exercise shrinks lesion size and reduces cell death and inflammation, beginning 24 h poststroke. Also in animals, aerobic exercise upregulates brain-derived neurotrophic factor near the lesion and improves learning. In terms of neuroplastic effects, clinical trial results are less convincing and have only examined effects in chronic stroke. Stroke patients demonstrate cardiorespiratory fitness levels below the threshold required to carry out daily activities. This may contribute to a 'neurorehabilitation ceiling' that limits capacity to practice at a high enough frequency and intensity to promote recovery. Aerobic exercise when delivered 2-5 days per week at moderate to high intensity beginning as early as 5 days poststroke improves cardiorespiratory fitness, dyslipidemia, and glucose tolerance. Based on the evidence discussed and applying principles of periodization commonly used to prepare athletes for competition, we have created a model of aerobic training in subacute stroke in which training is delivered in density blocks (duration × intensity) matched to recovery phases.
Performance Evaluation of Existing Wedgewater and Vacuum-Assisted Bed Dewatering Systems
1992-01-01
prior to dewatering by the wedgewater method. Of the 20 satisfied users, 11 preferred aerobic digestion , two employed anaerobic digestion, and seven...did not further process their sludge. Of the seven dissatisfied users, four used aerobic digestion and three employed anaerobic digestion. A meelic...queried, 11 employed aerobic digestion , two employed anaerobic digestion, and three did not process their sludge. Eight dissatisfied users employed
Filamentous bacteria existence in aerobic granular reactors.
Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A
2015-05-01
Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.
Treatment of HMX-production wastewater in an aerobic granular reactor.
Zhang, Jin-Hua; Wang, Min-Hui; Zhu, Xiao-Meng
2013-04-01
Aerobic granules were applied to the treatment of HMX-production wastewater using a gradual domestication method in a SBR. During the process, the granules showed a good settling ability, a high biomass retention rate, and high biological activity. After 40 days of stable operation, aerobic granular sludge performed very effectively in the removal of carbon and nitrogen compounds from HMX-production wastewater. Organic matter removal rates up to 97.57% and nitrogen removal efficiencies up to 80% were achieved during the process. Researchers conclude that using aerobic granules to treat explosive wastewater has good prospects for success.
Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua
2017-01-01
To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hailei, Wang; Ping, Li; Qianlong, Jin; Ge, Qin
2014-03-01
Aerobic granules were firstly developed in a completely mixed tank reactor (CMTR) by seeding micro-mycelial pellets (MMPs) of Phanerochaete chrysosporium. During phenol wastewater treatment, sludge granulation rate reached 67 % after 15-day operation. The granules in CMTR are different from aerobic granules described in literature in morphology, and a majority of them are rod-shaped or rodlike sludge besides spherical granules. The polymorphic granules, having no essential difference with aerobic granules previously reported, achieve advantages over conventional activated sludge in settling ability, biomass concentration, density, integrity coefficient and removal ability to phenol wastewater. The optimized parameters for sludge granulation in CMTR including temperature, inoculum quantity, rotary speed and superficial air upflow velocity are 30 °C, 5–7 g/l, 150 rpm, and 0.5 cm/s, respectively. Analysis on sludge granulation mechanism indicates that MMPs not only result in the formation of aerobic granules containing MMPs as nuclei, but also induce the formation of biogranules which do not have MMP at their cores. The work challenges the general belief that the homogenous circular flow pattern of microbial aggregates is necessary for aerobic sludge granulation.
Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Quiñones-Bolaños, Edgar
2014-02-15
The objective of this study is to evaluate the operating costs of treating slaughterhouse wastewater (SWW) using combined biological and advanced oxidation processes (AOPs). This study compares the performance and the treatment capability of an anaerobic baffled reactor (ABR), an aerated completely mixed activated sludge reactor (AS), and a UV/H2O2 process, as well as their combination for the removal of the total organic carbon (TOC). Overall efficiencies are found to be up to 75.22, 89.47, 94.53, 96.10, 96.36, and 99.98% for the UV/H2O2, ABR, AS, combined AS-ABR, combined ABR-AS, and combined ABR-AS-UV/H2O2 processes, respectively. Due to the consumption of electrical energy and reagents, operating costs are calculated at optimal conditions of each process. A cost-effectiveness analysis (CEA) is performed at optimal conditions for the SWW treatment by optimizing the total electricity cost, H2O2 consumption, and hydraulic retention time (HRT). The combined ABR-AS-UV/H2O2 processes have an optimal TOC removal of 92.46% at an HRT of 41 h, a cost of $1.25/kg of TOC removed, and $11.60/m(3) of treated SWW. This process reaches a maximum TOC removal of 99% in 76.5 h with an estimated cost of $2.19/kg TOC removal and $21.65/m(3) treated SWW, equivalent to $6.79/m(3) day. Copyright © 2014 Elsevier Ltd. All rights reserved.
Decreasing effect and mechanism of moisture content of sludge biomass by granulation process.
Zhao, Xia; Xu, Hao; Shen, Jimin; Yu, Bo; Wang, Xiaochun
2016-01-01
Disposal of a high volume of sludge significantly raises water treatment costs. A method for cultivating aerobic granules in a sequencing batch airlift bioreactor to significantly produce lower moisture content is described. Results indicate that optimization of settling time and control of the shear stresses acted on the granules. The diameter of the granule was within the range of 1.0-4.0 mm, and its sludge volume index was stabilized at 40-50 mL g(-1). Its specific gravity was increased by a factor of 0.0392, and specific oxygen uptake rate reached 60.126 mg h(-1) g(-1). Moreover, the percentage of its moisture content in the reactor ranged from 96.73% to 97.67%, and sludge volume was reduced to approximately 60%, greatly due to the presence of extracellular polymeric substances in the granules, as well as changes in their hydrophobic protein content. The removal rate of chemical oxygen demand and [Formula: see text] reaches up to 92.6% and 98%, respectively. The removal rates of total phosphorus is over 85%. Therefore, aerobic granular sludge process illustrates a good biological activity.
Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes.
Yan, Xu; Li, Lin; Liu, Junxin
2014-02-01
Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A2O) and anaerobic/anoxic/aerobic (A2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A2O process had the highest CO2 emission factor of 319.3 g CO2/kg COD(removed), and the highest CH4 and N2O emission factors of 3.3 g CH4/kg COD(removed) and 3.6 g N2O/kg TN(removed) were observed in the Orbal oxidation ditch process.
Yuan, Hao; Yoo, Woo-Jin; Miyamura, Hiroyuki; Kobayashi, Shū
2012-08-29
We have discovered a new class of cooperative catalytic system, consisting of heterogeneous polymer-immobilized bimetallic Pt/Ir alloyed nanoclusters (NCs) and 4-tert-butylcatechol, for the aerobic oxidation of amines to imines under ambient conditions. After optimization, the desired imines were obtained in good to excellent yields with broad substrate scope. The reaction rate was determined to be first-order with respect to the substrate and catechol and zero-order for the alloyed Pt/Ir NC catalyst. Control studies revealed that both the heterogeneous NC catalyst and 4-tert-butylcatechol are essential and act cooperatively to facilitate the aerobic oxidation under mild conditions.
Quantitative and Qualitative Study of Intestinal Flora in Neonates
Sharma, Nidhi; Chaudhry, Rama; Panigrahi, Pinaki
2012-01-01
Background: In the neonatal period the developing intestinal barrier function provides a sub-optimal mucosal defense against infection. Establishment of the normal commensal micro-flora plays a vital role in this process. Aims: To determine aerobic and anaerobic bacteria by quantitative and qualitative methods from faecal samples of neonates. Settings and Design: A prospective study was carried out in two groups in a tertiary care hospital, Group A-comprised preterm infant and in group B-full term infants. Materials and Methods: Sixty two preterm infants with the weight < 1500 gm and gestation age < 34 weeks and twenty nine full term infants with 4 weeks of age were included. Quantitation of bacterial load was done by ten-fold serial dilutions on respective media. Statistical Analysis: The data were analyzed by using EPIINFO-Ver 6.04. Results and Conclusions: The predominant aerobic bacterium was Klebsiella pneumoniae. In pre term infants aerobic bacteria were colonized with an average of 2.1 and anaerobic bacteria 0.1. Quantitation showed faecal bacterial colony count ranging from 104-1013 CFU/gms. Gram negative and gram positive bacteria increased gradually over an interval of 2 to 3 weeks. Mean log CFU of gram negative bacteria and gram positive bacteria were statistically insignificant from day 3 to day 14 (P > 0.05). On day 21 there was a significant change in colonization of both bacterial sp (P < 0.05). Potential pathogenic aerobic bacteria dominate the intestinal flora of premature babies nursed in neonatal unit. There is a need to investigate interventions to offset this imbalance in gut micro-ecology of premature babies. PMID:23326075
Choi, Sol; Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup
2016-11-01
To address climate change and environmental problems, it is becoming increasingly important to establish biorefineries for the production of chemicals from renewable non-food biomass. Here we report the development of Escherichia coli strains capable of overproducing a four-carbon platform chemical 4-hybroxybutyric acid (4-HB). Because 4-HB production is significantly affected by aeration level, genome-scale metabolic model-based engineering strategies were designed under aerobic and microaerobic conditions with emphasis on oxidative/reductive TCA branches and glyoxylate shunt. Several different metabolic engineering strategies were employed to develop strains suitable for fermentation both under aerobic and microaerobic conditions. It was found that microaerobic condition was more efficient than aerobic condition in achieving higher titer and productivity of 4-HB. The final engineered strain produced 103.4g/L of 4-HB by microaerobic fed-batch fermentation using glycerol. The aeration-dependent optimization strategy of TCA cycle will be useful for developing microbial strains producing other reduced derivative chemicals of TCA cycle intermediates. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Biochemical Process Development and Integration | Bioenergy | NREL
Process Development We develop and scale fermentation processes that produce fuels and chemicals from guide experimental designs. Our newly updated fermentation laboratory houses 38 bench-scale fermentors current projects cover the fermentation spectrum including anaerobic, micro-aerobic, aerobic, and gas-to
Chen, Qingcai; Li, Zebing; Hua, Xiaoyu
2018-05-01
The control measures for estrogens in the aquatic environment are topics of growing concern. It is a meaningful issue to finding optimal process parameters for efficient removal of estrogens with the purpose of efficient total nitrogen (TN) or total phosphorus (TP) removal in sewage treatment plants. The present paper is concerned with the relationships between the estrogen removal and TN or TP removal in a pilot-scale three-stage anoxic/oxic (A/O) system treating real municipal wastewater. The total removal efficiency for estrone (E1) and 17β-estradiol (E2) and their sulfate and glucuronide conjugates were on average 87% in the pilot-scale system. The concentrations of the sulfate and glucuronide conjugates of estrogens (E1 and E2) in the system were much lower than the estrogens, which might be caused by the rapid degradation of conjugates in the pilot-scale system. The average removal efficiencies of E1 and E2 and their sulfate and glucuronide conjugates were significantly lower under high TP removal conditions than those under high TN removal conditions that suggested that the ammonia oxidation promotes estrogen degradation. When the system achieved efficient TN removal, the concentrations of both E1 and E2 were generally lower in the aerobic zones than those in the anoxic zones. Instead, when the system achieved efficient TP removal conditions, the estrogen concentrations were higher in the aerobic zones than in the anoxic zones. However, it was thought that the variation of the concentrations of the estrogen conjugates had weak influence on concentrations of the free estrogens. The increase of the free estrogens in the aerobic zones could be attributed to the release of the estrogens adsorbed on the sludge. The variation of estrogens in a three-stage A/O system can be properly estimated and measured by a binary linear regression model with the variables of TP and TON (NO 2 - -N and NO 3 - -N), which is probably the important information for the improvement and optimization of wastewater treatment processes to obtain higher removal efficiency for estrogens.
Energy Conservation at the West Dover, Vermont, Water Pollution Control Facility.
1982-11-01
chlorination of oxidation ditch effluent ---- 8 Discontinue aerobic digestion --------------------------- 8 Discharge contents of holding pond into...Immediate Discontinue aerobic digestion Instead of aerobically digesting the waste activated sludge, it may be possible to mix it directly with pond...elimi- nated by replacing the oxidation ditches with facultative ponds. Also, this would eliminate the need for aerobic digestion , in-plant process water
Hu, Wenyong; Zhou, Yu; Min, Xiaobo; Liu, Jingyi; Li, Xinyu; Luo, Lin; Zhang, Jiachao; Mao, Qiming; Chai, Liyuan; Zhou, YaoYu
2017-06-29
In this study, a combined aerobic-Fenton-anoxic/aerobic system was designed for the remediation of raw landfill leachate in a pilot-scale experiment. This system included (i) a granular sludge biological oxidation procedure that achieves the accumulation of nitrite nitrogen ([Formula: see text]) under aerobic conditions; (ii) a Fenton process that improves the biodegradability of the biotreated leachate and (iii) an activated sludge biological oxidation component under anoxic and aerobic conditions. Additionally, a shortcut nitrification and denitrification pathway was achieved. The effects of free ammonia, temperature and pH on nitrite accumulation were discussed. The change in the biochemical oxygen demand/chemical oxygen demand ratio of the effluent after shortcut nitrification was also analysed. The microbial community in the reactor were also investigated. The problem of the lack of carbon source in the denitrification process can be solved by the Fenton reagent method. Moreover, it was beneficial to achieving nitrogen removal as well as the more extensive removal of organic matter. The treatment strategy employed in this study exhibited good results and provided the potential practical application for treating landfill leachate.
2017-01-01
Introduction Walking is of high priority for people with multiple sclerosis (PwMS). It remains unclear whether aerobic exercise can improve walking ability and upregulate neurotrophins. This review aims to consolidate evidence to develop optimal aerobic training parameters to enhance walking outcomes and neuroplasticity in PwMS. Methods Clinical studies examining aerobic exercise for ≥3 weeks, having outcomes on walking with or without neurotrophic markers, were included. Studies utilizing animal models of MS were included if they employed aerobic exercise with outcomes on neurological recovery and neurotrophins. From a total of 1783 articles, 12 clinical and 5 animal studies were included. Results Eleven clinical studies reported improvements in walking ability. Only two clinical studies evaluated both walking and neurotrophins, and neither found an increase in neurotrophins despite improvements in walking. Patients with significant walking impairments were underrepresented. Long-term follow-up revealed mixed results. Two animal studies reported a positive change in both neurological recovery and neurotrophins. Conclusion Aerobic exercise improves walking ability in PwMS. Gains are not consistently maintained at 2- to 9-month follow-up. Studies examining levels of neurotrophins are inconclusive, necessitating further research. Aerobic exercise enhances both neurological recovery and neurotrophins in animal studies when started 2 weeks before induction of MS. PMID:29181199
The impact of nanoparticles on aerobic degradation of municipal solid waste.
Yazici Guvenc, Senem; Alan, Burcu; Adar, Elanur; Bilgili, Mehmet Sinan
2017-04-01
The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO 2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO 2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg -1 of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min -1 kg -1 aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO 2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl - ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO 2 and Ag nanoparticles at concentrations of 100 mg kg -1 of solid waste do not have significant impacts on aerobic biological processes and waste management systems.
Carbon, nitrogen and phosphorus removal mechanisms of aerobic granules.
Sarma, Saurabh Jyoti; Tay, Joo-Hwa
2018-04-10
Aerobic granules are the potential tools to develop modern wastewater treatment technologies with improved nutrient removal efficiency. These granules have several promising advantages over conventional activated sludge-based wastewater treatment processes. This technology has the potential of reducing the infrastructure and operation costs of wastewater treatment by 25%, energy requirement by 30%, and space requirement by 75%. The nutrient removal mechanisms of aerobic granules are slightly different from that of the activated sludge. For instance, unlike activated sludge process, according to some reports, as high as 70% of the total phosphorus removed by aerobic granules were attributed to precipitation within the granules. Similarly, aerobic granule-based technology reduces the total amount of sludge produced during wastewater treatment. However, the reason behind this observation is unknown and it needs further explanations based on carbon and nitrogen removal mechanisms. Thus, as a part of the present review, a set of new hypotheses have been proposed to explain the peculiar nutrient removal mechanisms of the aerobic granules.
Lahti, Marja; Oikari, Aimo
2011-08-01
Although biotransformation is generally considered to be the main process by which to remove pharmaceuticals, both in sewage treatment plants and in aquatic environments, quantitative information on specific compounds is scarce. In this study, the transformations of diclofenac (DCF), naproxen (NPX), and bisoprolol (BSP) were studied under aerobic and anaerobic conditions using inocula taken from activated and digested sludge processes, respectively. Whereas concentration decays were monitored by LC-tandem mass spectrometry, oxygen consumption and methane production were used for the evaluation of the performance of overall conditions. DCF was recalcitrant against both aerobic and anaerobic biotransformation. More than one third of the BSP disappeared under aerobic conditions, whereas only 14% was anaerobically biotransformed in 161 days. Under aerobic conditions, complete removal of NPX was evident within 14 days, but anaerobic transformation was also efficient. Formation of 6-O-desmethylnaproxen, a previously reported aerobic metabolite, was also detected under anaerobic conditions and persisted for 161 days.
Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangimbulude, Jubhar C.; Straalen, Nico M. van; Roeling, Wilfred F.M., E-mail: wilfred.roling@falw.vu.nl
2012-01-15
Highlights: Black-Right-Pointing-Pointer Microbial nitrogen transformations can alleviate toxic ammonium discharge. Black-Right-Pointing-Pointer Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. Black-Right-Pointing-Pointer Organic nitrogen ammonification was most dominant. Black-Right-Pointing-Pointer Anaerobic nitrate reduction and ammonium oxidation potential were also high. Black-Right-Pointing-Pointer A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L{sup -1}. The objective of this study was to determine seasonal variation in themore » potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L{sup -1} h{sup -1}) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paap, Scott M.; West, Todd H.; Manley, Dawn Kataoka
2013-01-01
In the current study, processes to produce either ethanol or a representative fatty acid ethyl ester (FAEE) via the fermentation of sugars liberated from lignocellulosic materials pretreated in acid or alkaline environments are analyzed in terms of economic and environmental metrics. Simplified process models are introduced and employed to estimate process performance, and Monte Carlo analyses were carried out to identify key sources of uncertainty and variability. We find that the near-term performance of processes to produce FAEE is significantly worse than that of ethanol production processes for all metrics considered, primarily due to poor fermentation yields and higher electricitymore » demands for aerobic fermentation. In the longer term, the reduced cost and energy requirements of FAEE separation processes will be at least partially offset by inherent limitations in the relevant metabolic pathways that constrain the maximum yield potential of FAEE from biomass-derived sugars.« less
Dumas, C; Perez, S; Paul, E; Lefebvre, X
2010-04-01
The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. Copyright 2009 Elsevier Ltd. All rights reserved.
Zhang, Dong-Qing; He, Pin-Jing; Jin, Tai-Feng; Shao, Li-Ming
2008-12-01
To improve the water content reduction of municipal solid waste with high water content, the operations of supplementing a hydrolytic stage prior to aerobic degradation and inoculating the bio-drying products were conducted. A 'bio-drying index' was used to evaluate the bio-drying performance. For the aerobic processes, the inoculation accelerated organics degradation, enhanced the lignocelluloses degradation rate by 10.4%, and lowered water content by 7.0%. For the combined hydrolytic-aerobic processes, the inoculum addition had almost no positive effect on the bio-drying efficiency, but it enhanced the lignocelluloses degradation rate by 9.6% and strengthened the acidogenesis in the hydrolytic stage. Compared with the aerobic processes, the combined processes had a higher bio-drying index (4.20 for non-inoculated and 3.67 for the inoculated trials). Moreover, the lowest final water content occurred in the combined process without inoculation (50.5% decreased from an initial 72.0%).
Chen, Yuan; Wang, Li; Ma, Fang; Yang, Ji-xian; Qiu, Shan
2014-01-01
The process of simultaneous nitrification and denitrification (SND) of immobilized microorganisms in polyurethane form is discussed. The effect of different positions within the polyurethane carrier on microbial community response for the SND process is investigated by a combination of denaturing gradient gel electrophoresis profiles of the 16S rRNA gene V3 region and scanning electron microscopy. Results show that polyurethane, which consists of a unique porous structure, is an ideal platform for biofilm stratification of aerobe, anaerobe and facultative microorganisms in regard to the SND process. The community structure diversity response to different positions was distinct. The distributions of various functional microbes, detected from the surface aerobic stratification to the interior anaerobic stratification of polyurethane, were mainly nitrifying and denitrifying bacteria. Meanwhile aerobic denitrifying bacteria such as Paracoccus sp., Agrobacterium rubi and Ochrobactrum sp. were also adhered to the interior and surface of polyurethane. The SND process occurring on polyurethane foam was carried out by two independent processes: nitrogen removal and aerobic denitrification.
Tomei, M Concetta; Rita, Sara; Mininni, Giuseppe
2011-12-15
Sequential anaerobic-aerobic digestion was applied to waste activated sludge (WAS) of a full scale wastewater treatment plant. The study was performed with the objective of testing the sequential digestion process on WAS, which is characterized by worse digestibility in comparison with the mixed sludge. Process performance was evaluated in terms of biogas production, volatile solids (VS) and COD reduction, and patterns of biopolymers (proteins and polysaccharides) in the subsequent digestion stages. VS removal efficiency of 40%, in the anaerobic phase, and an additional removal of 26%, in the aerobic one, were observed. For total COD removal efficiencies of 35% and 25% for anaerobic and aerobic stage respectively, were obtained. Kinetics of VS degradation process was analyzed by assuming a first order equation with respect to VS concentration. Evaluated kinetic parameters were 0.44 ± 0.20 d(-1) and 0.25 ± 0.15 d(-1) for the anaerobic stage and aerobic stage, respectively. With regard to biopolymers, in the anaerobic phase the content of proteins and polysaccharides increased to 50% and 69%, respectively, whereas in the subsequent aerobic phase, a decrease of 71% for proteins and 67% for polysaccharides was observed. The average specific biogas production 0.74 m(3)/(kg VS destroyed), was in the range of values reported in the specialized literature for conventional anaerobic mesophilic WAS digestion. Copyright © 2011 Elsevier B.V. All rights reserved.
Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S
2016-05-15
This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided. Copyright © 2016 Elsevier B.V. All rights reserved.
[Biosynthesis of the bioprotectant ectoin by aerobic methylotrophic bacteria from methanol].
Doronina, N V; Ezhov, V A; Beschastnyĭ, A P; Trotsenko, Iu A
2010-01-01
It is shown that neutrophilic methylobacteria Methylophaga thalassica and M. marina have higher rates of growth and ectoin accumulation compared to the haloalkaliphilic species M. alcalica and M. natronia and methanotrophs Methylomicrobium alcaliphilum and M. kenyense. The conditions of M. thalassica cultivation in methanol-containing medium were optimized. The yield of this process reached 60 g/l of absolutely dry biomass containing 15-19% (9-11 g/l) ectoine. The scheme of ectoin isolation from the biomass by extraction and subsequent purification, which allowed obtaining preparations of different degree of purity, was developed.
Li, Zhe; Qu, Hongnan; Li, Chun; Zhou, Xiaohong
2013-12-01
In this study, four engineered Saccharomyces cerevisiae carrying xylanase, β-xylosidase and xylose reductase genes by different transcriptional regulations were constructed to directly convert xylan to xylitol. According to the results, the high-copy number plasmid required a rigid selection for promoter characteristics, on the contrast, the selection of promoters could be more flexible for low-copy number plasmid. For cell growth and xylitol production, glucose and galactose were found more efficient than other sugars. The semi-aerobic condition and feeding of co-substrates were taken to improve the yield of xylitol. It was found that the strain containing high-copy number plasmid had the highest xylitol yield, but it was sensitive to the change of fermentation. However, the strain carrying low-copy number plasmid was more adaptable to different processes. By optimization of the transcriptional regulation and fermentation processes, the xylitol concentration could be increased of 1.7 folds and the yield was 0.71 g xylitol/g xylan. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide.
ERIC Educational Resources Information Center
Klopping, Paul H.
This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…
Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site
Essaid, Hedeff I.; Bekins, Barbara A.; Godsy, E. Michael; Warren, Ean; Baedecker, Mary Jo; Cozzarelli, Isabelle M.
1995-01-01
A two-dimensional, multispecies reactive solute transport model with sequential aerobic and anaerobic degradation processes was developed and tested. The model was used to study the field-scale solute transport and degradation processes at the Bemidji, Minnesota, crude oil spill site. The simulations included the biodegradation of volatile and nonvolatile fractions of dissolved organic carbon by aerobic processes, manganese and iron reduction, and methanogenesis. Model parameter estimates were constrained by published Monod kinetic parameters, theoretical yield estimates, and field biomass measurements. Despite the considerable uncertainty in the model parameter estimates, results of simulations reproduced the general features of the observed groundwater plume and the measured bacterial concentrations. In the simulation, 46% of the total dissolved organic carbon (TDOC) introduced into the aquifer was degraded. Aerobic degradation accounted for 40% of the TDOC degraded. Anaerobic processes accounted for the remaining 60% of degradation of TDOC: 5% by Mn reduction, 19% by Fe reduction, and 36% by methanogenesis. Thus anaerobic processes account for more than half of the removal of DOC at this site.
Aerobic Digestion. Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Klopping, Paul H.
This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…
Survival rates of parasite eggs in sludge during aerobic and anaerobic digestion.
Black, M I; Scarpino, P V; O'Donnell, C J; Meyer, K B; Jones, J V; Kaneshiro, E S
1982-01-01
The effects of mesothermic anaerobic or aerobic sludge digestion on survival of eggs from the roundworms Ascaris suum, toxocara canis, Trichuris vulpis, and Trichuris suis and from the rat tapeworm Hymenolepis diminuta were studied. Destruction of eggs throughout a 15-day treatment period, as well as their viabilities after reisolation, was analyzed. The laboratory model digesters used in this study were maintained at a 15-day retention schedule, partially simulating a continuously operating system. Ascaris eggs were destroyed in the anaerobic (23%) or aerobic (38%) digesters, and 11% Trichuris eggs were destroyed in the aerobic digesters. Trichuris eggs in anaerobic digesters and Toxocara eggs in either anaerobic or aerobic digesters were not destroyed. Destruction of eggs in digesters was correlated with the state of the eggs before subjection to the treatment processes; i.e., some Ascaris and Trichuris eggs were already embryonated in host intestinal contents or feces and hence past their most resistant stage. The viabilities of Ascaris and Toxocara eggs that survived the digestion processes were greater in anaerobically treated than in aerobically treated material. Eggs from Hymenolepis were nonviable before use in the experiments. However, they were more effectively destroyed in aerobic digesters than in anaerobic digesters. PMID:6891199
Vincent, Julie; Forquet, Nicolas; Molle, Pascal; Wisniewski, Christelle
2012-07-01
This work was designed to study the hydraulic properties of sludge deposit, focusing on the impact of operating conditions (i.e. loads and feeding frequencies) on air entrance (aerobic mineralization optimization) into the sludge deposit. The studied sludge deposits came from six 2m(2) pilot-scale SDRBs that had been in operation for 50 months with three different loads of 30, 50, and 70 kg of SSm(-2) y(-1). Two influents were assessed (i.e. activated sludge and septage) presenting different characteristics (i.e. pollutant contents, physical properties...). Two experimental approaches were employed based on establishing the water retention curve (capillary pressure versus volumetric water content) and the hydrotextural diagram to determine the hydraulic properties of sludge deposit. The study obtained valuable information for optimizing operating conditions, specifically for efficient management of loading frequency to optimize aerobic conditions within the sludge deposit. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pang, Long; Ge, Liming; Yang, Peijie; He, Han; Zhang, Hongzhong
2018-05-01
In this study, the degradation of organophosphate esters (OPEs) in sewage sludge with aerobic composting and anaerobic digestion was investigated. The total concentrations of six OPEs (ΣOPEs) in the whole treatment process reduced in the order of anaerobic digestion combined with pig manure (T3) > aerobic composting combined with pig manure (T1) > aerobic composting (T2) > anaerobic digestion (T4). The addition of pig manure significantly enhanced the removal rate of OPEs in both aerobic and anaerobic treatments. The abundance and diversity of bacterial community reduced after the treatment process. Shannon index, principal component analysis, network analysis, and heat map further confirmed the variation of bacterial community compositions among different treatments. Five genera (i.e., Flavobacterium, Bacillus, Alcaligene, Pseudomonas, and Bacillus megaterium) might be responsible for the degradation of OPE compounds in sewage sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
2011-01-01
Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. PMID:22196374
The Study of Cognitive Change Process on Depression during Aerobic Exercises.
Sadeghi, Kheirollah; Ahmadi, Seyed Mojtaba; Moghadam, Arash Parsa; Parvizifard, Aliakbar
2017-04-01
Several studies have shown that aerobic exercise is effective in treating the depression and improving the mental health. There are various theories which explains why aerobic exercise is effective in the treatment of depression and improve mental health, but there are limited studies to show how cognitive components and depression improve during aerobic exercises. The current study was carried out to investigate the cognitive change process during aerobic exercises in depressed students. This study was conducted through structural equation modeling; the study sample included 85 depressed students. Participants were selected through purposive sampling method. Beck Depression Inventory (BDI-II), Automatic Negative Thoughts (ATQ), and the Dysfunctional Attitude Scale (DAS) were used as the data collection instruments. The participants received eight sessions of aerobic exercise (three times a week). The obtained data was analysed by AMOS-18 & SPSS 18 software. The results showed that depression (p=0.001), automatic thoughts (ferquency p=0.413, beliefs p=0.676) and dysfunctional assumptions (p=0.219) reduce during aerobic exercise; however, it was only meaningful for the depression. The casual and consequential models were not fit to the data and partially and fully interactive models provided an adequate fit to the data. Fully interactive model provided the best fit of the data. It seems that aerobic exercise reduced cognitive components separately leading to reduce depression.
Aerobic Exercise During Encoding Impairs Hippocampus-Dependent Memory.
Soga, Keishi; Kamijo, Keita; Masaki, Hiroaki
2017-08-01
We investigated how aerobic exercise during encoding affects hippocampus-dependent memory through a source memory task that assessed hippocampus-independent familiarity and hippocampus-dependent recollection processes. Using a within-participants design, young adult participants performed a memory-encoding task while performing a cycling exercise or being seated. The subsequent retrieval phase was conducted while sitting on a chair. We assessed behavioral and event-related brain potential measures of familiarity and recollection processes during the retrieval phase. Results indicated that source accuracy was lower for encoding with exercise than for encoding in the resting condition. Event-related brain potential measures indicated that the parietal old/new effect, which has been linked to recollection processing, was observed in the exercise condition, whereas it was absent in the rest condition, which is indicative of exercise-induced hippocampal activation. These findings suggest that aerobic exercise during encoding impairs hippocampus-dependent memory, which may be attributed to inefficient source encoding during aerobic exercise.
Scudder, Mark R.; Federmeier, Kara D.; Raine, Lauren B.; Direito, Artur; Boyd, Jeremy K.; Hillman, Charles H.
2014-01-01
Event-related brain potentials (ERPs) have been instrumental for discerning the relationship between children’s aerobic fitness and aspects of cognition, yet language processing remains unexplored. ERPs linked to the processing of semantic information (the N400) and the analysis of language structure (the P600) were recorded from higher and lower aerobically fit children as they read normal sentences and those containing semantic or syntactic violations. Results revealed that higher fit children exhibited greater N400 amplitude and shorter latency across all sentence types, and a larger P600 effect for syntactic violations. Such findings suggest that higher fitness may be associated with a richer network of words and their meanings, and a greater ability to detect and/or repair syntactic errors. The current findings extend previous ERP research explicating the cognitive benefits associated with greater aerobic fitness in children and may have important implications for learning and academic performance. PMID:24747513
Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M; Mora, Diego; Compagno, Concetta
2016-08-01
The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis
Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego
2016-01-01
ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432
Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition.
Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong
2010-07-15
The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed. 2010 Elsevier B.V. All rights reserved.
Sewage sludge drying by energy recovery from OFMSW composting: preliminary feasibility evaluation.
Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano; Torretta, Vincenzo
2014-05-01
In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aerobic and strength exercises for youngsters aged 12 to 15: what do parents think?
ten Hoor, Gill A; Sleddens, Ester F C; Kremers, Stef P J; Schols, Annemie M W J; Kok, Gerjo; Plasqui, Guy
2015-09-30
Although strength exercises evidently have both physiological and psychological health benefits across all ages, they are erroneously considered to adversely affect health status in youngsters. The aim of this study was to examine parental attitudes towards their child's physical activity in general, as well as aerobic and strength exercises in particular. In total, 314 parents from an online panel representative of the Dutch population completed an online survey about their own physical activity and that of their child (12-15 years old). The study also explored reasons for non-participation, and attitudes about the parents' own and their child's physical activity level. Parents consistently reported a positive attitude towards aerobic exercises, but a less positive attitude regarding strength exercises. Parents were more likely to indicate that their child was not allowed to participate in strength exercises (29.6 %) than aerobic exercises (4.0 %). They thought that strength exercises could interfere with optimal physical development. This study consistently shows that parents have a positive attitude towards aerobic exercises, but a less positive attitude regarding strength exercises. We suggest testing interventions to increase parental understanding of the advantages of and possibilities for (e.g., facilities) strength training on their child's health.
Effect of aerobic training on inter-arm coordination in highly trained swimmers.
Schnitzler, Christophe; Seifert, Ludovic; Chollet, Didier; Toussaint, Huub
2014-02-01
The effect of three months of aerobic training on spatio-temporal and coordination parameters was examined during a swim trial at maximal aerobic speed. Nine male swimmers swam a 400-m front crawl at maximal speed twice: in trial 1, after summer break, and trial 2, after three months of aerobic training. Video analysis determined the stroke (swimming speed, stroke length, and stroke rate) and coordination (Index of Coordination and propulsive phase duration) parameters for every 50-m segment. All swimmers significantly increased their swimming speed after training. For all swimmers except one, stroke length increased and stroke rate remained constant, whereas the Index of Coordination and the propulsive phase duration decreased (p<.05). This study suggests that aerobic training developed a greater force impulse in the swimmers during the propulsive phases, which allowed them to take advantage of longer non-propulsive phases. In this case, catch-up coordination, if associated with greater stroke length, can be an efficient coordination mode that reflects optimal drag/propulsion adaptation. This finding thus provides new insight into swimmers' adaptations to the middle-distance event. Copyright © 2013 Elsevier B.V. All rights reserved.
Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu
2009-12-01
In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.
Effect of intermittent operation model on the function of soil infiltration system.
Hou, Lizhu; Hu, Bill X; He, Mengmeng; Xu, Xue; Zhang, Wenjing
2018-04-01
To enhance denitrification in a process of solute infiltration through a soil, a two-section mixed-medium soil infiltration system (TMSIS) for urban non-point pollution was developed. The artificial aerobic respiration and nitrification took place in the upper aerobic section (AES), while grass powders and sawdust were mixed in the bottom anaerobic section (ANS) to supply organic carbon source for denitrification bacteria, and the reduction was increased by iron addition in the ANS. Measured resident concentrations from the bottom of each ANS column were assumed to represent mean values averaged over the column cross-sectional area. The TMSIS with hydraulic loading rates (HLR) of 0.32, 0.24, and 0.16 m 3 m -2 day -1 and with wetting-drying ratio (R WD ) of 1.0 showed remarkable removal efficiencies for chemical oxygen demand (COD), NH 4 + -N, and TP, respectively. The hydraulic loading rate of 0.32 m 3 m -2 day -1 was selected as the optimal HLR due to the high contaminated runoff treatment efficiency. When R WD was 1.0, 0.5, or 0.2 with hydraulic loading rate of 0.32 m 3 m -2 day -1 , the TMSIS could treat synthetic urban runoff contaminants very well. The corresponding effluent water met the China's national quality standard for class V surface water. The wetting-drying ratio of 0.5 with hydraulic loading of 0.32 m 3 m -2 day -1 was selected as the optimal operation conditions for the TMSIS. Aerobic respiration and nitrification mainly took place in the upper AES, in which most of the COD and the NH 4 + -N were removed. Mixed sawdust and grass powders used as a carbon source and heterotrophic denitrification were put at the bottom of the ANS. The developed TMSIS has the potential to be applied for urban non-point pollution removal.
Analysis of aerobic granular sludge formation based on grey system theory.
Zhang, Cuiya; Zhang, Hanmin
2013-04-01
Based on grey entropy analysis, the relational grade of operational parameters with aerobic granular sludge's granulation indicators was studied. The former consisted of settling time (ST), aeration time (AT), superficial gas velocity (SGV), height/diameter (H/D) ratio and organic loading rates (OLR), the latter included sludge volume index (SVI) and set-up time. The calculated result showed that for SVI and set-up time, the influence orders and the corresponding grey entropy relational grades (GERG) were: SGV (0.9935) > AT (0.9921) > OLR (0.9894) > ST (0.9876) > H/D (0.9857) and SGV (0.9928) > H/D (0.9914) > AT (0.9909) > OLR (0.9897) > ST (0.9878). The chosen parameters were all key impact factors as each GERG was larger than 0.98. SGV played an important role in improving SVI transformation and facilitating the set-up process. The influence of ST on SVI and set-up time was relatively low due to its dual functions. SVI transformation and rapid set-up demanded different optimal H/D ratio scopes (10-20 and 16-20). Meanwhile, different functions could be obtained through adjusting certain factors' scope.
Perera, Mahamalage Kusumitha; Englehardt, James D; Tchobanoglous, George; Shamskhorzani, Reza
2017-05-15
Denitrifying membrane bioreactors (MBRs) are being found useful in water reuse treatment systems, including net-zero water (nearly closed-loop), non-reverse osmosis-based, direct potable reuse (DPR) systems. In such systems nitrogen may need to be controlled in the MBR to meet the nitrate drinking water standard in the finished water. To achieve efficient nitrification and denitrification, the addition of alkalinity and external carbon may be required, and control of the carbon feed rate is then important. In this work, an onsite, two-chamber aerobic nitrifying/denitrifying MBR, representing one unit process of a net-zero water, non-reverse osmosis-based DPR system, was modeled as a basis for control of the MBR internal recycling rate, aeration rate, and external carbon feed rate. Specifically, a modification of the activated sludge model ASM2dSMP was modified further to represent the rate of recycling between separate aerobic and anoxic chambers, rates of carbon and alkalinity feed, and variable aeration schedule, and was demonstrated versus field data. The optimal aeration pattern for the modeled reactor configuration and influent matrix was found to be 30 min of aeration in a 2 h cycle (104 m 3 air/d per 1 m 3 /d average influent), to ultimately meet the nitrate drinking water standard. Optimal recycling ratios (inter-chamber flow to average daily flow) were found to be 1.5 and 3 during rest and mixing periods, respectively. The model can be used to optimize aeration pattern and recycling ratio in such MBRs, with slight modifications to reflect reactor configuration, influent matrix, and target nitrogen species concentrations, though some recalibration may be required. Copyright © 2017 Elsevier Ltd. All rights reserved.
Current biotechnological developments in Belgium.
Masschelein, C A; Callegari, J P; Laurent, M; Simon, J P; Taeymans, D
1989-01-01
In recent years, actions have been undertaken by the Belgian government to promote process innovation and technical diversification. Research programs are initiated and coordinated by the study committee for biotechnology setup within the Institute for Scientific Research in Industry and Agriculture (IRSIA). As a result of this action, the main areas where biotechnological processes are developed or commercially exploited include plant genetics, protein engineering, hybridoma technology, biopesticides, production by genetic engineering of vaccines and drugs, monoclonal detection of human and animal deseases, process reactors for aerobic and anaerobic wastewater treatment, and genetic modification of yeast and bacteria as a base for biomass and energy. Development research also includes new fermentation technologies principally based on immobilization of microorganisms, reactor design, and optimization of unit operations involved in downstream processing. Food, pharmaceutical, and chemical industries are involved in genetic engineering and biotechnology and each of these sectors is overviewed in this paper.
d'Antonio, Luca; Fabbricino, Massimiliano; Pontoni, Ludovico
2015-01-01
The paper investigates, at a laboratory scale, the applicability of anaerobic digestion for the treatment of pressed-off leachate produced in a biomechanical treatment plant for municipal solid waste. Batch tests show that the anaerobic process proceeds smoothly and produces about 10,000 mL of methane per litre of treated leachate. The process is characterized by a lag phase lasting about 30 days, and is completed in about 2 months. Chemical oxygen demand (COD) and volatile fatty acids monitoring allows studying process kinetics that are modelled through a triple linear expression. Physical and biological treatments are also investigated to reduce the residual organic charge of the produced digestate. The best performances are obtained via aerobic degradation followed by assisted sedimentation. This cycle reduces the residual COD of about 85%, and allows the correct disposal of the final waste stream.
Benitez, F Javier; Acero, Juan L; Gonzalez, Teresa; Garcia, Juan
2002-08-01
The oxidation of the pollutant organic matter present in wastewaters generated during different stages in the black table-olive industry was investigated by using ozone alone or combined with UV radiation; by using aerobic microorganisms; and finally, by aerobic degradation of the previously ozonated wastewaters. In the ozonation processes, the removal of substrate (COD) and aromatic compounds, the decreases in BOD5 and pH, and the ozone consumed in the reaction were evaluated. A kinetic study was conducted that led to the evaluation of the stoichiometric ratio for the chemical reaction, as well as the rate constants for the substrate reduction and ozone disappearance. In the single aerobic degradation treatment, the evolution of substrate and biomass was monitored during the process, and a kinetic study was performed by applying the Contois model to the experimental data, giving the specific biokinetic constant, the cell yield coefficient, and the rate constant for the microorganism death phase. Finally, a combined process was performed, consisting in the aerobic degradation of pre-ozonated wastewaters, and the effect of such chemical pretreatment on the substrate removal and kinetic parameters of the later biological stage is discussed.
Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.
Yang, Xiaoyi
2009-09-30
This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.
Removal of Pesticides and Inorganic Contaminants in Anaerobic and Aerobic Biological Contactors
This presentation contains data on the removal of pesticides (acetochlor, clethodim, dicrotophos), ammonia, nitrate, bromate and perchlorate through aerobic and anaerobic biological treatment processes.
Gholikandi, Gagik Badalians; Kazemirad, Khashayar
2018-03-01
In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe 2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H 2 O 2 concentration and the retention time were 3, 3.2 mA/cm 2 , 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe 2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8-2.5 kWh (kg VSS removed) -1 ) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2-3 kWh (kg VSS removed) -1 ). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe 2+ concentrations into the system and the VSS removal efficiency of the process precisely.
2014-01-01
Cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality in modern societies, and advancing age is the major risk factor for CVD. Arterial dysfunction, characterized by large elastic artery stiffening and endothelial dysfunction, is the key event leading to age-associated CVD. Our work shows that regular aerobic exercise inhibits large elastic artery stiffening with aging (optimizes arterial compliance) and preserves endothelial function. Importantly, among previously sedentary late middle-aged and older adults, aerobic exercise improves arterial stiffness and enhances endothelial function in most groups and, therefore, also can be considered a treatment for age-associated arterial dysfunction. The mechanisms by which regular aerobic exercise destiffens large elastic arteries are incompletely understood, but existing evidence suggests that reductions in oxidative stress associated with decreases in both adventitial collagen (fibrosis) and advanced glycation end-products (structural protein cross-linking molecules), play a key role. Aerobic exercise preserves endothelial function with aging by maintaining nitric oxide bioavailability via suppression of excessive superoxide-associated oxidative stress, and by inhibiting the development of chronic low-grade vascular inflammation. Recent work from our laboratory supports the novel hypothesis that aerobic exercise may exert these beneficial effects by directly inducing protection to aging arteries against multiple adverse factors to which they are chronically exposed. Regular aerobic exercise should be viewed as a “first line” strategy for prevention and treatment of arterial aging and a vital component of a contemporary public health approach for reducing the projected increase in population CVD burden. PMID:24855137
Seals, Douglas R
2014-09-01
Cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality in modern societies, and advancing age is the major risk factor for CVD. Arterial dysfunction, characterized by large elastic artery stiffening and endothelial dysfunction, is the key event leading to age-associated CVD. Our work shows that regular aerobic exercise inhibits large elastic artery stiffening with aging (optimizes arterial compliance) and preserves endothelial function. Importantly, among previously sedentary late middle-aged and older adults, aerobic exercise improves arterial stiffness and enhances endothelial function in most groups and, therefore, also can be considered a treatment for age-associated arterial dysfunction. The mechanisms by which regular aerobic exercise destiffens large elastic arteries are incompletely understood, but existing evidence suggests that reductions in oxidative stress associated with decreases in both adventitial collagen (fibrosis) and advanced glycation end-products (structural protein cross-linking molecules), play a key role. Aerobic exercise preserves endothelial function with aging by maintaining nitric oxide bioavailability via suppression of excessive superoxide-associated oxidative stress, and by inhibiting the development of chronic low-grade vascular inflammation. Recent work from our laboratory supports the novel hypothesis that aerobic exercise may exert these beneficial effects by directly inducing protection to aging arteries against multiple adverse factors to which they are chronically exposed. Regular aerobic exercise should be viewed as a "first line" strategy for prevention and treatment of arterial aging and a vital component of a contemporary public health approach for reducing the projected increase in population CVD burden. Copyright © 2014 the American Physiological Society.
Deutz, Nicolaas E. P.; Bauer, Jurgen M.; Barazzoni, Rocco; Biolo, Gianni; Boirie, Yves; Bosy-Westphal, Anja; Cederholm, Tommy; Cruz-Jentoft, Alfonso; Krznaric, Zeljko; Nair, K. Sreekumaran; Singer, Pierre; Teta, Daniel; Tipton, Kevin; Calder, Philip C.
2014-01-01
The aging process is associated with gradual and progressive loss of muscle mass along with lowered strength and physical endurance. This condition, sarcopenia, has been widely observed with aging in sedentary adults. Regular aerobic and resistance exercise programs have been shown to counteract most aspects of sarcopenia. In addition, good nutrition, especially adequate protein and energy intake, can help limit and treat age-related declines in muscle mass, strength, and functional abilities. Protein nutrition in combination with exercise is considered optimal for maintaining muscle function. With the goal of providing recommendations for health care professionals to help older adults sustain muscle strength and function into older age, the European Society for Clinical Nutrition and Metabolism (ESPEN) hosted a Workshop on Protein Requirements in the Elderly, held in Dubrovnik on November 24 and 25, 2013. Based on the evidence presented and discussed, the following recommendations are made: (1) for healthy older people, the diet should provide at least 1.0 to 1.2 g protein/kg body weight/day (2) for older people who are malnourished or at risk of malnutrition because they have acute or chronic illness, the diet should provide 1.2 to 1.5 g protein/kg body weight/day, with even higher intake for individuals with severe illness or injury, and (3) daily physical activity or exercise (resistance training, aerobic exercise) should be undertaken by all older people, for as long as possible. PMID:24814383
Economic Evaluation of Two Biological Processes for Treatment of Ball Powder Production Wastewater
1989-02-01
Collection and Equalization 2-1 2.2 System 200 - pH and Nutrient Control 2-1 2.3 System 300 - Extended Aeration and Aerobic Digestion 2-4 2.4 System...400 - Sequencing Batch Reactor and Aerobic Digestion 2-4 2.5 System 500 - Sludge Dewatering and Control Building 2-7 1 3.0 COST ESTIMATION AND...Extended Aeration and Aerobic Digestion 2-5 2.4 400 - Sequencing Batch Reactors and Aerobic Digestion 2-6 2.5 500 - Sludge Dewatering 2-8 Artur D Little
Chen, Chuan; Zhang, Ruo-Chen; Xu, Xi-Jun; Fang, Ning; Wang, Ai-Jie; Ren, Nan-Qi; Lee, Duu-Jong
2017-05-01
The success of denitrifying sulfide removal (DSR) processes, which simultaneously degrade sulfide, nitrate and organic carbon in the same reactor, counts on synergetic growths of autotrophic and heterotrophic denitrifiers. Feeding wastewaters at high C/N ratio would stimulate overgrowth of heterotrophic bacteria in the DSR reactor so deteriorating the growth of autotrophic denitrifiers. The DSR tests at C/N=1.26:1, 2:1 or 3:1 and S/N =5:6 or 5:8 under anaerobic (control) or micro-aerobic conditions were conducted. Anaerobic DSR process has <50% sulfide removal with no elemental sulfur transformation. Under micro-aerobic condition to remove <5% sulfide by chemical oxidation pathway, 100% sulfide removal is achieved by the DSR consortia. Continuous-flow tests under micro-aerobic condition have 70% sulfide removal and 55% elemental sulfur recovery. Trace oxygen enhances activity of sulfide-oxidizing, nitrate-reducing bacteria to accommodate properly the wastewater with high C/N ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Removal of oxytetracycline and determining its biosorption properties on aerobic granular sludge.
Mihciokur, Hamdi; Oguz, Merve
2016-09-01
This study investigates biosorption of Oxytetracycline, a broad-spectrum antibiotic, using aerobic granular sludge as an adsorbent in aqueous solutions. A sequencing batch reactor fed by a synthetic wastewater was operated to create aerobic granular sludge. Primarily, the pore structure and surface area of granular sludge, the chemical structure and the molecular sizes of the pharmaceutical, operating conditions, such as pH, stirring rate, initial concentration of Oxytetracycline, during adsorption process was verified. Subsequently, thermodynamic and kinetic aspects of the adsorption were examined and adsorption isotherm studies were carried out. It was shown that the aerobic granular sludge was a good alternative for biosorption of this pharmaceutical. The pharmaceutical was adsorbed better at pH values of 6-8. The adsorption efficiency increased with rising ionic strength. Also, it was seen that the adsorption process was an exothermic process in terms of thermodynamics. The adsorption can be well explained by Langmuir isotherm model. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Yanyan; Xue, Jinkai; Liu, Yang; Gamal El-Din, Mohamed
2018-04-05
Previously, anoxic-aerobic membrane bioreactor (MBR) coupled with mild ozonation pretreatment has been applied to remove toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW). To further improve MBR performance, the optimal operation conditions including hydraulic retention time (HRT) and initial ammonia nitrogen (NH 4 + -N) need to be explored. In this study, the role of ozone pretreatment on MBR optimization was investigated. Compared with MBR treating raw OSPW, MBR treating ozonated OSPW had the same optimal operation conditions (HRT of 12 h and NH 4 + -N concentration of 25 mg/L). Nevertheless, MBR performance benefited from HRT adjustment more after ozone pretreatment. HRT adjustment resulted in NA removal in the range of 33-50% for the treatment of ozonated OSPW whereas NA removal for raw OSPW only fluctuated between 27% and 38%. Compared with the removal of classical NAs, the degradation of oxidized NAs was more sensitive to the adjustment of operation conditions. Adjusting HRT increased the removal of oxidized NAs in ozonated OSPW substantially (from 6% to 35%). It was also noticed that microbial communities in MBR treating ozonated OSPW were more responsive to the adjustment of operation conditions as indicated by the noticeable increase of Shannon index and extended genetic distances. Copyright © 2018 Elsevier B.V. All rights reserved.
Selective medium for growth of Campylobacter in containers incubated aerobically
USDA-ARS?s Scientific Manuscript database
Introduction. Campylobacter are traditionally cultured in primary containers inside of secondary containers filled with microaerobic atmospheres. Recent findings indicated that media supplemented with optimal concentrations of amino acids, organic acids, and bicarbonate support Campylobacter growth ...
Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan
2013-12-01
An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.
Time series analysis of aerobic bacterial flora during Miso fermentation.
Onda, T; Yanagida, F; Tsuji, M; Shinohara, T; Yokotsuka, K
2003-01-01
This article reports a microbiological study of aerobic mesophilic bacteria that are present during the fermentation process of Miso. Aerobic bacteria were enumerated and isolated from Miso during fermentation and divided into nine groups using traditional phenotypic tests. The strains were identified by biochemical analysis and 16S rRNA sequence analysis. They were identified as Bacillus subtilis, B. amyloliquefaciens, Kocuria kristinae, Staphylococcus gallinarum and S. kloosii. All strains were sensitive to the bacteriocins produced by the lactic acid bacteria isolated from Miso. The dominant species among the undesirable species throughout the fermentation process were B. subtilis and B. amyloliquefaciens. It is suggested that bacteriocin-producing lactic acid bacteria are effective in the growth prevention of aerobic bacteria in Miso. This study has provided useful information for controlling of bacterial flora during Miso fermentation.
Role of seagrass photosynthesis in root aerobic processes.
Smith, R D; Dennison, W C; Alberte, R S
1984-04-01
The role of shoot photosynthesis as a means of supporting aerobic respiration in the roots of the seagrass Zostera marina was examined. O(2) was transported rapidly (10-15 minutes) from the shoots to the root-rhizome tissues upon shoot illumination. The highest rates of transport were in shoots possessing the greatest biomass and leaf area. The rates of O(2) transport do not support a simple gas phase diffusion mechanism. O(2) transport to the root-rhizome system supported aerobic root respiration and in many cases exceeded respiratory requirements leading to O(2) release from the subterranean tissue. Release of O(2) can support aerobic processes in reducing sediments typical of Z. marina habitats. Since the root-rhizome respiration is supported primarily under shoot photosynthetic conditions, then the daily period of photosynthesis determines the diurnal period of root aerobiosis.
Fra-Vázquez, A; Morales, N; Figueroa, M; Val Del Río, A; Regueiro, L; Campos, J L; Mosquera-Corral, A
2016-09-01
Aerobic granular sludge represents an interesting approach for simultaneous organic matter and nitrogen removal in wastewater treatment plants. However, the information about microbial communities in aerobic granular systems dealing with industrial wastewater like pig slurry is limited. Herein, bacterial diversity and dynamics were assessed in a pilot scale plant using aerobic granular sludge for organic matter and nitrogen elimination from swine slurry during more than 300 days. Results indicated that bacterial composition evolved throughout the operational period from flocculent activated sludge, used as inoculum, to mature aerobic granules. Bacterial diversity increased at the beginning of the granulation process and then declined due to the application of transient organic matter and nitrogen loads. The operational conditions of the pilot plant and the degree of granulation determined the microbial community of the aerobic granules. Brachymonas, Zoogloea and Thauera were attributed with structural function as they are able to produce extracellular polymeric substances to maintain the granular structure. Nitrogen removal was justified by partial nitrification (Nitrosomonas) and denitrification (Thauera and Zoogloea), while Comamonas was identified as the main organic matter oxidizing bacteria. Overall, clear links between bacterial dynamics and composition with process performance were found and will help to predict their biological functions in wastewater ecosystems improving the future control of the process. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1212-1221, 2016. © 2016 American Institute of Chemical Engineers.
Pörtner, H O
2001-04-01
Recent years have shown a rise in mean global temperatures and a shift in the geographical distribution of ectothermic animals. For a cause and effect analysis the present paper discusses those physiological processes limiting thermal tolerance. The lower heat tolerance in metazoa compared with unicellular eukaryotes and bacteria suggests that a complex systemic rather than molecular process is limiting in metazoa. Whole-animal aerobic scope appears as the first process limited at low and high temperatures, linked to the progressively insufficient capacity of circulation and ventilation. Oxygen levels in body fluids may decrease, reflecting excessive oxygen demand at high temperatures or insufficient aerobic capacity of mitochondria at low temperatures. Aerobic scope falls at temperatures beyond the thermal optimum and vanishes at low or high critical temperatures when transition to an anaerobic mitochondrial metabolism occurs. The adjustment of mitochondrial densities on top of parallel molecular or membrane adjustments appears crucial for maintaining aerobic scope and for shifting thermal tolerance. In conclusion, the capacity of oxygen delivery matches full aerobic scope only within the thermal optimum. At temperatures outside this range, only time-limited survival is supported by residual aerobic scope, then anaerobic metabolism and finally molecular protection by heat shock proteins and antioxidative defence. In a cause and effect hierarchy, the progressive increase in oxygen limitation at extreme temperatures may even enhance oxidative and denaturation stress. As a corollary, capacity limitations at a complex level of organisation, the oxygen delivery system, define thermal tolerance limits before molecular functions become disturbed.
Characteristics of sludge reduction in an integrated pretreatment and aerobic digestion process.
Hwang, S; Jang, H; Lee, M; Song, J; Kim, S
2006-01-01
In this study, integrated pretreatments and aerobic digestion processes were investigated in order to provide a feasible alternative that can achieve effective sludge reduction. An ozone treatment in the presence of ionic manganese, a catalyst, increased the sludge reduction ratio three times higher than that of a single ozonation, presumably due to an increase in OH radical production. The ozone treatment yielded the effective sludge reduction ratio with an increasing ozone dosage, and an effective dosage of the catalyst was found to be 4 mg-Mn/g-TS. When a mechanical pretreatment and an ozone/catalyst were applied in a series, the integrated process, even at a half mechanical intensity and a half level of ozone dosage, showed higher and faster sludge reduction than each single process did. In addition, the integrated pretreatment process showed the highest dewaterability of the treated sludges. A ratio of sludge cake generation, which was newly introduced to quantify overall performance of sludge treatment processes, showed that the integrated pretreatment followed by the aerobic digestion yielded approximately a half of the sludge cake volume compared to the single aerobic digestion. Therefore, the integrated pretreatment can be a feasible method for the effective reduction of total suspended solid and the final volume.
Zhang, Xueyu; Zheng, Shaokui; Zhang, Hangyu; Duan, Shoupeng
2018-04-30
This study clarified the dominant nitrogen (N)-transformation pathway and the key ammonia-oxidizing microbial species at three loading levels during optimization of the anoxic/oxic (A/O) process for sewage treatment. Comprehensive N-transformation activity analysis showed that ammonia oxidization was performed predominantly by aerobic chemolithotrophic and heterotrophic ammonia oxidization, whereas N 2 production was performed primarily by anoxic denitrification in the anoxic unit. The abundances of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria, and anaerobic AOB in activated sludge reflected their activities on the basis of high-throughput sequencing data. AOB amoA gene clone libraries revealed that the predominant AOB species in sludge samples shifted from Nitrosomonas europaea (61% at the normal loading level) to Nitrosomonas oligotropha (58% and 81% at the two higher loading levels). Following isolation and sequencing, the predominant culturable heterotrophic AOB in sludge shifted from Agrobacterium tumefaciens (42% at the normal loading level) to Acinetobacter johnsonii (52% at the highest loading level). Copyright © 2018 Elsevier Ltd. All rights reserved.
Aerobic microbial enhanced oil recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torsvik, T.; Gilje, E.; Sunde, E.
1995-12-31
In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to takemore » place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.« less
Zhang, Yan; Wang, Yong-sheng; Bai, Yu-hua; Chen, Chen; Lü, Jian; Zhang, Jie
2007-10-01
Swimming bed combined with aerobic granular sludge as a novel technology for wastewater treatment was developed, which was on the basis of the biofilm process and activated sludge process, and results demonstrated notable performance of high-efficiency treatment capability and sludge reduction. Even when hydraulic retention time (HRT) was only at 3.2 h with average COD volumetric loading of 2.03 kg/(m3 x d) and NH4(+)-N of 0.52 kg/(m3 X d), 90.9% of average COD removal rate and 98.3% of NH4(+)-N removal rate were achieved. Aerobic granular sludge appeared with spherical or rod shape after 16 days operation. Mixed liquor suspended solid (MLSS) concentrations in the reactor reached 5,640 mg/L at the highest during operation period, and the average ratio of mixed liquor volatile suspended solid (MLVSS) to MLSS reached 0.87. Furthermore, microscopic observation of biofilm and aerobic granules revealed much presence of protozoa and metazoa on the biofilm and suspended sludge, and this long food chain can contribute to the sludge reduction. Only 0. 175 5 of sludge yields (MLSS/ CODremoved) was obtained in the experiment, which was only about 50% of the conventional aerobic processes.
Optimization of microbial detoxification for an aquatic mercury-contaminated environment.
Figueiredo, Neusa L; Canário, João; Serralheiro, Maria Luísa; Carvalho, Cristina
2017-01-01
Mercury (Hg) reduction performed by microorganisms is well recognized as a biological means for remediation of contaminated environment. Recently, studies demonstrated that Hg-resistant microorganisms of Tagus Estuary are involved in metal reduction processes. In the present study, aerobic microbial community isolated from a highly Hg-contaminated area of Tagus Estuary was used to determine the optimization of the reduction process in conditions such as the contaminated ecosystem. Factorial design methodology was employed to examine the influence of glucose, sulfate, iron, and chloride on Hg reduction. In the presence of several concentrations of these elements, microbial community reduced Hg in a range of 37-61% of the initial 0.1 mg/ml Hg 2+ levels. The response prediction through central composite design showed that the increase of sulfate concentration led to an optimal response in Hg reduction by microbial community, while the rise in chloride levels markedly decreased metal reduction. Iron may exert antagonistic effects depending upon the media composition. These results are useful in understanding the persistence of Hg contamination in Tagus Estuary after inactivation of critical industrial units, as well as data might also be beneficial for development of new bioremediation strategies either in Tagus Estuary and/or in other Hg-contaminated aquatic environments.
Liu, Yongjun; Gao, Min; Zhang, Aining; Liu, Zhe
2017-07-01
In order to strengthen the aerobic digestion of residual sludge, shorten the time of sludge stabilization and further reduce operating costs, 3 dominant strains identified as Pseudomonas sp. L3, Acinetobacter sp. L16 and Bacillus sp. L19 were isolated from long-term aerobic digestion sludge. Results showed that the sludge stabilization time were reduced by 3-4days compared with the control when the dominant strains were added to the process of sludge aerobic digestion. The addition of dominant strains accelerated the accumulation of TOC, nitrate nitrogen and ammonia nitrogen in the digestive solution at different levels, and it was beneficial to the dissolution of phosphorus. Controlling DO 3-5mg/L, pH 6.5, the strains of Pseudomonas sp. L3 and Bacillus sp. L19 were combined dosing with the dosage of 2% in the process of sludge aerobic digestion, compared with the control, digestion rates of TOC and MLSS were increased about 19% and 16%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
McDaniel, Mark A.; Binder, Ellen F.; Bugg, Julie M.; Waldum, Emily R.; Dufault, Carolyn; Meyer, Amanda; Johanning, Jennifer; Zheng, Jie; Schechtman, Kenneth B.; Kudelka, Chris
2015-01-01
We investigated the potential benefits of a novel cognitive training protocol and an aerobic exercise intervention, both individually and in concert, on older adults’ performances in laboratory simulations of select real-world tasks. The cognitive training focused on a range of cognitive processes, including attentional coordination, prospective memory, and retrospective-memory retrieval, processes that are likely involved in many everyday tasks, and that decline with age. Primary outcome measures were three laboratory tasks that simulated everyday activities: Cooking Breakfast, Virtual Week, and Memory for Health Information. Two months of cognitive training improved older adults’ performance on prospective memory tasks embedded in Virtual Week. Cognitive training, either alone or in combination with six months of aerobic exercise, did not significantly improve Cooking Breakfast or Memory for Health Information. Although gains in aerobic power were comparable to previous reports, aerobic exercise did not produce improvements for the primary outcome measures. Discussion focuses on the possibility that cognitive training programs that include explicit strategy instruction and varied practice contexts may confer gains to older adults for performance on cognitively challenging everyday tasks. PMID:25244489
Guerra, Paula; Kleywegt, Sonya; Payne, Michael; Svoboda, M Lewina; Lee, Hing-Biu; Reiner, Eric; Kolic, Terry; Metcalfe, Chris; Smyth, Shirley Anne
2015-07-01
Digestion of municipal wastewater biosolids is a necessary prerequisite to their beneficial use in land application, in order to protect public health and the receiving environment. In this study, 13 pharmaceuticals and personal care products (PPCPs), 11 musks, and 17 polybrominated diphenyl ethers were analyzed in 84 samples including primary sludge, waste activated sludge, digested biosolids, dewatered biosolids, and dewatering centrate or filtrate collected from five wastewater treatment plants with aerobic or anaerobic digestion. Aerobic digestion processes were sampled during both warm and cold temperatures to analyze seasonal differences. Among the studied compounds, triclosan, triclocarban, galaxolide, and BDE-209 were the substances most frequently detected under different treatment processes at levels up to 30,000 ng/g dry weight. Comparing aerobic and anaerobic digestion, it was observed that the levels of certain PPCPs and musks were significantly higher in anaerobically digested biosolids, relative to the residues from aerobic digestion. Therefore, aerobic digestion has the potential advantage of reducing levels of PPCPs and musks. On the other hand, anaerobic digestion has the advantage of recovering energy from the biosolids in the form of combustible gases while retaining the nutrient and soil conditioning value of this resource. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu
2015-04-01
The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gill, C O; McGinnis, J C; Badoni, M
1996-08-01
Swab samples were obtained from 3 sites on the surfaces of beef carcasses passing through a high speed dressing process, with 24 samples from each site being obtained at each of 4 points in the process. The aerobic microflora recovered from each swab after incubation at 25 degrees C was enumerated and characterized, and numbers of coliforms and Escherichia coli were determined. The data on aerobic flora indicated that skinning results in similar contamination of all 3 sites, that further deposition of bacteria at the brisket site occurs after skinning, and that trimming and washing achieve modest decontamination of the neck and brisket site, and extensive decontamination of the rump site. Changes in flora compositions during processing were too limited to much affect the assessment based on the aerobic flora total counts alone. The E. coli data indicated that during skinning the rump site was more heavily contaminated with faecal organisms than the other sites, that contamination of the brisket site is little altered between skinning and carcass splitting, although there is an extensive redistribution of E. coli at the neck site and sporadic, limited decontamination of the rump site, and that trimming and washing do not decontaminate the neck or rump sites, but that the rump site is extensively decontaminated by trimming. There was good correlation between E. coli and coliform counts, but weak correlation between E. coli and aerobic, 25 degrees C, counts. The findings suggest that assessments of beef carcass dressing processes for Hazard Analysis: Critical Control Point (HACCP) purposes should be based on enumerations of E. coli, or perhaps coliforms, rather than of the aerobic flora, to avoid important misunderstandings of the hygienic effects of the various operations in a process.
Aerobic biodegradation of trichloroethene without auxiliary substrates.
Schmidt, Kathrin R; Gaza, Sarah; Voropaev, Andrey; Ertl, Siegmund; Tiehm, Andreas
2014-08-01
Trichloroethene (TCE) represents a priority pollutant and is among the most frequently detected contaminants in groundwater. The current bioremediation measures have certain drawbacks like e.g. the need for auxiliary substrates. Here, the aerobic biodegradation of TCE as the sole growth substrate is demonstrated. This new process of metabolic TCE degradation was first detected in groundwater samples. TCE degradation was stable in an enriched mixed bacterial culture in mineral salts medium for over five years and repeated transfers of the culture resulting in a 10(10) times dilution of the original groundwater. Aerobic TCE degradation resulted in stoichiometric chloride formation. Stable carbon isotope fractionation was observed providing a reliable analytical tool to assess this new biodegradation process at field sites. The results suggest that aerobic biodegradation of TCE without auxiliary substrate could be considered as an option for natural attenuation or engineered bioremediation of contaminated sites. Copyright © 2014 Elsevier Ltd. All rights reserved.
von Sperling, M; Oliveira, S C
2009-01-01
This article evaluates and compares the actual behavior of 166 full-scale anaerobic and aerobic wastewater treatment plants in operation in Brazil, providing information on the performance of the processes in terms of the quality of the generated effluent and the removal efficiency achieved. The observed results of effluent concentrations and removal efficiencies of the constituents BOD, COD, TSS (total suspended solids), TN (total nitrogen), TP (total phosphorus) and FC (faecal or thermotolerant coliforms) have been compared with the typical expected performance reported in the literature. The treatment technologies selected for study were: (a) predominantly anaerobic: (i) septic tank + anaerobic filter (ST + AF), (ii) UASB reactor without post-treatment (UASB) and (iii) UASB reactor followed by several post-treatment processes (UASB + POST); (b) predominantly aerobic: (iv) facultative pond (FP), (v) anaerobic pond followed by facultative pond (AP + FP) and (vi) activated sludge (AS). The results, confirmed by statistical tests, showed that, in general, the best performance was achieved by AS, but closely followed by UASB reactor, when operating with any kind of post-treatment. The effluent quality of the anaerobic processes ST + AF and UASB reactor without post-treatment was very similar to the one presented by facultative pond, a simpler aerobic process, regarding organic matter.
Comparison of Leachate Quality from Aerobic and Anaerobic Municipal Solid Waste Bioreactors
NASA Astrophysics Data System (ADS)
Borglin, S. E.; Hazen, T. C.; Oldenburg, C. M.
2002-12-01
Municipal solid waste landfills are becoming a drain on the resources of local municipalities as the requirements for stabilization and containment become increasingly stringent. Current regulations limit the moisture in the landfill to minimize leachate production and lower the potential for release of leachate to the environment. Recent research has shown that addition and recycling of moisture in the waste optimizes the biodegradation of stabilization and also provides a means for leachate treatment. This study compares the characteristics of leachate produced from aerobic and anaerobic laboratory bioreactors, and leachate collected from a full-scale anaerobic bioreactor. The laboratory reactors consisted of 200-liter tanks filled with fresh waste materials with the following conditions: (a) aerobic (air injection with leachate recirculation), (b) anaerobic (leachate recirculation). The leachate from the reactors was monitored for metals, nutrients, organic carbon, and microbiological activity for up to 500 days. Leachate from the aerobic tank had significantly lower concentrations of all potential contaminants, both organic and metal, after only a few weeks of operation. Metals leaching was low throughout the test period for the aerobic tanks, and decreased over time for the anaerobic tanks. Organic carbon as measured by BOD, COD, TOC, and COD were an order of magnitude higher in the leachate from the anaerobic system. Microbiological assessment by lipid analysis, enzyme activity assays, and cell counts showed high biomass and diversity in both the aerobic and anaerobic bioreactors, with higher activity in the anaerobic leachate. Results from the full-scale anaerobic bioreactor were not significantly different from those of the laboratory anaerobic bioreactor. The reduction in noxious odors was a significant advantage of the aerobic system. These results suggest that aerobic management of landfills could reduce or eliminate the need for leachate treatment systems, reduce odor, and reduce the need for extensive containment strategies. This work was supported by Laboratory Directed Research and Development Funds at Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC03-76SF00098.
Influence of substrate surface loading on the kinetic behaviour of aerobic granules.
Liu, Yu; Liu, Yong-Qiang; Wang, Zhi-Wu; Yang, Shu-Fang; Tay, Joo-Hwa
2005-06-01
In the aerobic granular sludge reactor, the substrate loading is related to the size of the aerobic granules cultivated. This study investigated the influence of substrate surface loading on the growth and substrate-utilization kinetics of aerobic granules. Results showed that microbial surface growth rate and surface biodegradation rate are fairly related to the substrate surface loading by the Monod-type equation. In this study, both the theoretical maximum growth yield and the Pirt maintenance coefficient were determined. It was found that the estimated theoretical maximum growth yield of aerobic granules was as low as 0.2 g biomass g(-1) chemical oxygen demand (COD) and 10-40% of input substrate-COD was consumed through the maintenance metabolism, while experimental results further showed that the unit oxygen uptake by aerobic granules was 0.68 g oxygen g(-1) COD, which was much higher than that reported in activated sludge processes. Based on the growth yield and unit oxygen uptake determined, an oxidative assimilation equation of acetate-fed aerobic granules was derived; and this was confirmed by respirometric tests. In aerobic granular culture, about 74% of the input substrate-carbon was converted to carbon dioxide. The growth yield of aerobic granules was three times lower than that of activated sludge. It is likely that high carbon dioxide production is the main cause of the low growth yield of aerobic granules, indicating a possible energy uncoupling in aerobic granular culture.
Effects of temperature and glucose limitation on coal solubilization by Candida ML13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, B.
1991-04-01
Biological processing has received considerable attention in recent years as a technology for the utilization of low-ranked coals. Several fungi and actinomycetes have been shown to liquefy highly oxidized coal in pure culture under aerobic conditions. This report describes the optimization of cultural conditions for coal solubilization by Candida sp. ML13, an organism originally isolated from a naturally weathered coal seam. Coal solubilization by surface cultures of Candida sp. has previously been demonstrated. The author describes here the elicitation of the activity in submerged cultures as well as the effect of carbohydrate concentration, carbon source, temperature, and agitation rate onmore » coal solubilization by this organism.« less
Economically oriented process optimization in waste management.
Maroušek, Josef
2014-06-01
A brief report on the development of novel apparatus is presented. It was verified in a commercial scale that a new concept of anaerobic fermentation followed by continuous pyrolysis is technically and economically feasible to manage previously enzymatically hydrolyzed waste haylage in huge volumes. The design of the concept is thoroughly described, documented in figures, and biochemically analyzed in detail. Assessment of the concept shows that subsequent pyrolysis of the anaerobically fermented residue allows among biogas to produce also high-quality biochar. This significantly improves the overall economy. In addition, it may be assumed that this applied research is consistent with previous theoretical assumptions stating that any kind of aerobic or anaerobic fermentation increases the microporosity of the biochar obtained.
Wang, Xiaodong; Bi, Xuejun; Hem, Lars John; Ratnaweera, Harsha
2018-07-15
Microbial community diversity determines the function of each chamber of multi-stage moving bed biofilm reactor (MBBR) systems. How the microbial community data can be further used to serve wastewater treatment process modelling and optimization has been rarely studied. In this study, a MBBR system was set up to investigate the microbial community diversity of biofilm in each functional chamber. The compositions of microbial community of biofilm from different chambers of MBBR were quantified by high-throughput sequencing. Significantly higher proportion of autotrophs were found in the second aerobic chamber (15.4%), while 4.3% autotrophs were found in the first aerobic chamber. Autotrophs in anoxic chamber were negligible. Moreover, ratios of active heterotrophic biomass and autotrophic biomass (X H /X A ) were obtained by performing respiration tests. By setting heterotroph/autotroph ratios obtained from sequencing analysis equal to X H /X A , a novel approach for kinetic model parameters estimation was developed. This work not only investigated microbial community of MBBR system, but also it provided an approach to make further use of molecular microbiology analysis results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Genet, Chalachew; Kibru, Gebre; Tsegaye, Wondewosen
2011-03-01
Surgical site infection is the second most common health care associated infection. One of the risk factors for such infection is bacterial contamination of operating rooms' and surgical wards' indoor air. In view of that, the microbiological quality of air can be considered as a mirror of the hygienic condition of these rooms. Thus, the objective of this study was to determine the bacterial load and antibiotic susceptibility pattern of isolates in operating rooms' and surgical wards' indoor air of Jimma University Specialized Hospital. A cross sectional study was conducted to measure indoor air microbial quality of operating rooms and surgical wards from October to January 2009/2010 on 108 indoor air samples collected in twelve rounds using purposive sampling technique by Settle Plate Method (Passive Air Sampling following 1/1/1 Schedule). Sample processing and antimicrobial susceptibility testing were done following standard bacteriological techniques. The data was analyzed using SPSS version 16 and interpreted according to scientifically determined baseline values initially suggested by Fisher. The mean aerobic colony counts obtained in OR-1(46cfu/hr) and OR-2(28cfu/hr) was far beyond the set 5-8cfu/hr acceptable standards for passive room. Similarly the highest mean aerobic colony counts of 465cfu/hr and 461cfu/hr were observed in Female room-1 and room-2 respectively when compared to the acceptable range of 250-450cfu/hr. In this study only 3 isolates of S. pyogenes and 48 isolates of S. aureus were identified. Over 66% of S. aureus was identified in Critical Zone of Operating rooms. All isolates of S. aureus showed 100% and 82.8% resistance to methicillin and ampicillin respectively. Higher degree of aerobic bacterial load was measured from operating rooms' and surgical wards' indoor air. Reducing foot trafficking, improving the ventilation system and routine cleaning has to be made to maintain the aerobic bacteria load with in optimal level.
Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz
2015-08-01
Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Association Between Sarcopenia-Related Phenotypes and Aerobic Capacity Indexes of Older Women
de Oliveira, Ricardo Jacó; Bottaro, Martim; Motta, Antonio Marco; Pitanga, Francisco; Guido, Marcelo; Leite, Tailce Kaley Moura; Bezerra, Lídia Mara Aguiar; Lima, Ricardo Moreno
2009-01-01
The purpose of the present study was to examine the association between fat-free mass (FFM), quadriceps strength and sarcopenia with aerobic fitness indexes of elderly women. A total of 189 volunteers (66.7 ± 5.46 years) underwent aerobic capacity measurement through a symptom-limited cardiopulmonary exercise test to determine their individual ventilatory thresholds (VT) and peak oxygen uptake (VO2 peak). Quadriceps muscle strength was assessed using an isokinetic dynamometer. Also, dual energy X-ray absorptiometry was used to assess FFM and cutoff values were used to classify subjects as sarcopenic or nonsarcopenic. Correlations, student t-test and analysis of variance were used to examine the data. Both FFM and quadriceps strength variables were positively and significantly correlated with the measured aerobic capacity indexes. These results were observed for peak exercise as well as for ventilatory thresholds. Individuals classified as sarcopenic presented significantly lower muscle strength and (VO2 peak) when compared to nonsarcopenic. It can be concluded that FFM and quadriceps strength are significantly related to aerobic capacity indexes in older women, and that besides presenting lower quadriceps strength, women classified as sarcopenic have lower peak oxygen consumption. Taken together, the present results indicate that both FFM and strength play a role in the age-related decline of aerobic capacity. Key points Maximal aerobic capacity, generally expressed as peak oxygen consumption (VO2 peak), declines with advancing age and this process is associated with an increased risk for cardiovascular diseases. Also, the aging process is associated with a progressive loss of muscle mass and strength and this phenomenon has been referred to as Sarcopenia. Sarcopenia has been described in both elderly men and women and has been linked to multiple negative clinical outcomes. The present study provide evidence that muscle-related phenotypes are associated with aerobic capacity of older individuals, thus suggesting that sarcopenia explains in part the decline in aerobic fitness observed with advancing age. PMID:24149995
Monkoondee, Sarawut; Kuntiya, Ampin; Chaiyaso, Thanongsak; Leksawasdi, Noppol; Techapun, Charin; Kawee-Ai, Arthitaya; Seesuriyachan, Phisit
2016-07-03
This study aimed to investigate the efficiency of an aerobic sequencing batch reactor (aerobic SBR) in a nonsterile system using the application of an experimental design via central composite design (CCD). The acidic whey obtained from lactic acid fermentation by immobilized Lactobacillus plantarum sp. TISTR 2265 was fed into the bioreactor of the aerobic SBR in an appropriate ratio between acidic whey and cheese whey to produce an acidic environment below 4.5 and then was used to support the growth of Dioszegia sp. TISTR 5792 by inhibiting bacterial contamination. At the optimal condition for a high yield of biomass production, the system was run with a hydraulic retention time (HRT) of 4 days, a solid retention time (SRT) of 8.22 days, and an acidic whey concentration of 80% feeding. The chemical oxygen demand (COD) decreased from 25,230 mg/L to 6,928 mg/L, which represented a COD removal of 72.15%. The yield of biomass production and lactose utilization by Dioszegia sp. TISTR 5792 were 13.14 g/L and 33.36%, respectively, with a long run of up to 180 cycles and the pH values of effluent were rose up to 8.32 without any pH adjustment.
Cardiorespiratory Considerations in Dance: From Classes to Performances.
Rodrigues-Krause, Josianne; Krause, Mauricio; Reischak-Oliveira, Álvaro
2015-09-01
When attempting to ascertain dancers' fitness levels, essential parameters, such as aerobic and anaerobic capacity, muscular power and strength, flexibility, and body composition, must be considered. Dance is characterized as an intermittent type of exercise, demanding energy from different metabolic pathways (aerobic and anaerobic, lactic or alactic). A dancer's maximum aerobic capacity (ranging from 37 to 57 ml·kg(-1)·min(-1)) is related to his or her dance style, gender, level of technical ability, and status in a dance company. However, dancers' cardiorespiratory requirements during dance classes (essentially designed for the development of technical skills) are significantly lower than during dance performances, indicating that there is a divergence between dance training and performance with regard to demands on dancers' physical fitness. It follows that supplementary fitness training is needed in order to optimize dancers' technical and artistic performance and to reduce the incidence of injury. Traditional aerobic and strength training have been proposed to cover dancers' lack of conditioning; however, it seems likely that high-intensity interval training would more properly meet the requirements of today's choreography. Therefore, with an approach that applies basic exercise physiology to dance characteristics, this review covers the following topics: 1. dance as physical exercise; 2. dancers' aerobic capacity; 3. cardiorespiratory demands of dance classes and performances; 4. supplementary fitness training for dancers; and 5. fitness testing and assessment for dancers.
42 CFR 410.47 - Pulmonary rehabilitation program: Conditions for coverage.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-prescribed exercise means physical activity, including aerobic exercise, prescribed and supervised by a... components: (1) Physician-prescribed exercise. This physical activity includes techniques such as exercise... program for COPD and certain other chronic respiratory diseases designed to optimize physical and social...
Hassannejad, Alireza; Khalaj, Alireza; Mansournia, Mohammad Ali; Rajabian Tabesh, Mastaneh; Alizadeh, Zahra
2017-11-01
Although previous studies suggested that bariatric surgery is the most effective and sustainable treatment method for morbid obesity in long term, but without changing in lifestyle, maintaining optimal weight loss is almost impossible. Sixty morbid obese patients (BMI ≥ 35) were evaluated before and after 12 weeks of bariatric surgery in order to compare the impact of two different exercise programs on body composition and functional capacity outcomes. Participants were divided into three groups: aerobic (A), aerobic-strength (AS), and control (C) group. Aerobic capacity was assessed with 12-min walk-run test (12MWRT). One-repetition maximum (1RM) test was performed to evaluation upper limb muscle strength. Lower extremity functional capacity was assessed by sit-to-stand test. Weight, percent body fat (PBF), and fat mass (FM) reduced greater in the trial groups in comparison to the C group (P < 0.05). In the AS group, the reduction of fat-free mass (FFM) was significantly lower than that in the other groups. Mean changes in 12MWRT increased significantly in the intervention groups. The mean change in the sit-to-stand scores was not statistically significant between the three groups. Comparing the intervention groups showed that mean changes in 1RM variables increased in AS group (P = 0.03). The data suggests a positive effect of exercise on weight and PBF decrease after surgery, and it leads to significant improvement on aerobic capacity. Moreover, doing resisted exercise caused greater preserving of lean mass.
Application of a 2-step process for the biological treatment of sulfidic spent caustics.
de Graaff, Marco; Klok, Johannes B M; Bijmans, Martijn F M; Muyzer, Gerard; Janssen, Albert J H
2012-03-01
This research demonstrates the feasibility and advantages of a 2-step process for the biological treatment of sulfidic spent caustics under halo-alkaline conditions (i.e. pH 9.5; Na(+) = 0.8 M). Experiments with synthetically prepared solutions were performed in a continuously fed system consisting of two gas-lift reactors in series operated at aerobic conditions at 35 °C. The detoxification of sulfide to thiosulfate in the first step allowed the successful biological treatment of total-S loading rates up to 33 mmol L(-1) day(-1). In the second, biological step, the remaining sulfide and thiosulfate was completely converted to sulfate by haloalkaliphilic sulfide oxidizing bacteria. Mathematical modeling of the 2-step process shows that under the prevailing conditions an optimal reactor configuration consists of 40% 'abiotic' and 60% 'biological' volume, whilst the total reactor volume is 22% smaller than for the 1-step process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Le, Quang Anh Tuan; Kim, Hee Gon; Kim, Yong Hwan
2018-09-01
The electro-biocatalytic conversion of CO 2 into formic acid using whole-cell and isolated biocatalysts is useful as an alternative route for CO 2 sequestration. In this study, Shewanella oneidensis MR-1 (S. oneidensis MR-1), a facultative aerobic bacterium that has been extensively studied for its utility as biofuel cells as well as for the detoxification of heavy metal oxides (i.e., MnO 2 , uranium), has been applied for the first time as a whole-cell biocatalyst for formic acid synthesis from gaseous CO 2 and electrons supplied from an electrode. S. oneidensis MR-1, when aerobically grown in Luria-Bertani (LB) medium, exhibited its ability as a whole-cell biocatalyst for the conversion of CO 2 into formic acid with moderate productivity of 0.59 mM h -1 for 24 h. In addition, an optimization of growth conditions of S. oneidensis MR-1 resulted in a remarkable increase in productivity. The CO 2 reduction reaction catalyzed by S. oneidensis MR-1, when anaerobically grown in newly optimized LB medium supplemented with fumarate and nitrate, exhibited 3.2-fold higher productivity (1.9 mM h -1 for 72 h) compared to that grown aerobically in only LB medium. Furthermore, the average conversion rate of formic acid synthesis catalyzed by S. oneidensis MR-1 when grown in the optimal medium over a period of 72 h was 3.8 mM h -1 g -1 wet-cell, which is 9.6-fold higher than that catalyzed by Methylobacterium extorquens AM1 whole-cells in our previous study. Copyright © 2018 Elsevier Inc. All rights reserved.
Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon
Eliason, Erika J.; Clark, Timothy D.; Hinch, Scott G.; Farrell, Anthony P.
2013-01-01
Elevated summer river temperatures are associated with high in-river mortality in adult sockeye salmon (Oncorhynchus nerka) during their once-in-a-lifetime spawning migration up the Fraser River (British Columbia, Canada). However, the mechanisms underlying the decrease in whole-animal performance and cardiorespiratory collapse above optimal temperatures for aerobic scope (Topt) remain elusive for aquatic ectotherms. This is in part because all the relevant cardiorespiratory variables have rarely been measured directly and simultaneously during exercise at supra-optimal temperatures. Using the oxygen- and capacity-limited thermal tolerance hypothesis as a framework, this study simultaneously and directly measured oxygen consumption rate (MO2), cardiac output , heart rate (fH), and cardiac stroke volume (Vs), as well as arterial and venous blood oxygen status in adult sockeye salmon swimming at temperatures that bracketed Topt to elucidate possible limitations in oxygen uptake into the blood or internal delivery through the oxygen cascade. Above Topt, the decline in MO2max and aerobic scope was best explained by a cardiac limitation, triggered by reduced scope for fH. The highest test temperatures were characterized by a negative scope for fH, dramatic decreases in maximal and maximal Vs, and cardiac dysrhythmias. In contrast, arterial blood oxygen content and partial pressure were almost insensitive to supra-optimal temperature, suggesting that oxygen delivery to and uptake by the gill were not a limiting factor. We propose that the high-temperature-induced en route mortality in migrating sockeye salmon may be at least partly attributed to physiological limitations in aerobic performance due to cardiac collapse via insufficient scope for fH. Furthermore, this improved mechanistic understanding of cardiorespiratory collapse at high temperature is likely to have broader application to other salmonids and perhaps other aquatic ectotherms. PMID:27293592
Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon.
Eliason, Erika J; Clark, Timothy D; Hinch, Scott G; Farrell, Anthony P
2013-01-01
Elevated summer river temperatures are associated with high in-river mortality in adult sockeye salmon (Oncorhynchus nerka) during their once-in-a-lifetime spawning migration up the Fraser River (British Columbia, Canada). However, the mechanisms underlying the decrease in whole-animal performance and cardiorespiratory collapse above optimal temperatures for aerobic scope (T opt) remain elusive for aquatic ectotherms. This is in part because all the relevant cardiorespiratory variables have rarely been measured directly and simultaneously during exercise at supra-optimal temperatures. Using the oxygen- and capacity-limited thermal tolerance hypothesis as a framework, this study simultaneously and directly measured oxygen consumption rate (MO2), cardiac output [Formula: see text], heart rate (f H), and cardiac stroke volume (V s), as well as arterial and venous blood oxygen status in adult sockeye salmon swimming at temperatures that bracketed T opt to elucidate possible limitations in oxygen uptake into the blood or internal delivery through the oxygen cascade. Above T opt, the decline in MO2max and aerobic scope was best explained by a cardiac limitation, triggered by reduced scope for f H. The highest test temperatures were characterized by a negative scope for f H, dramatic decreases in maximal [Formula: see text] and maximal V s, and cardiac dysrhythmias. In contrast, arterial blood oxygen content and partial pressure were almost insensitive to supra-optimal temperature, suggesting that oxygen delivery to and uptake by the gill were not a limiting factor. We propose that the high-temperature-induced en route mortality in migrating sockeye salmon may be at least partly attributed to physiological limitations in aerobic performance due to cardiac collapse via insufficient scope for f H. Furthermore, this improved mechanistic understanding of cardiorespiratory collapse at high temperature is likely to have broader application to other salmonids and perhaps other aquatic ectotherms.
Effects of composting process on the dissipation of extractable sulfonamides in swine manure.
Liu, Bei; Li, Yanxia; Zhang, Xuelian; Feng, Chenghong; Gao, Min; Shen, Qiu
2015-01-01
Effects of composting on the fate of sulfonamides (SAs) in the manure-straw mixture were explored through a simulation of aerobic composting process. Additionally, factors of temperature and coexistence of heavy metal Cu that might influence the removal efficiency were particularly investigated. As shown in the results, the extractable SAs dissipated rapidly during the composting process. The coexistence of Cu in the composting process might have delayed the decline of SAs, but the drugs could still be completely removed by the end of the composting. In contrast to the thermophilic aerobic composting, extractable SAs in air-temperature-placed mixture dissipated much slower and 1.12-1.56mg/kg could be detected after 35days of incubation. The results confirmed that temperature could influence the dissipation of SAs, which was identified as a more important factor than Cu-coexistence. Hence, thermophilic aerobic composting is an effective process to eliminate VAs before manure land application. Copyright © 2014 Elsevier Ltd. All rights reserved.
2013-01-01
Background Most normal cells in the presence of oxygen utilize glucose for mitochondrial oxidative phosphorylation. In contrast, many cancer cells rapidly convert glucose to lactate in the cytosol, a process termed aerobic glycolysis. This glycolytic phenotype is enabled by lactate dehydrogenase (LDH), which catalyzes the inter-conversion of pyruvate and lactate. The purpose of this study was to identify and characterize potent and selective inhibitors of LDHA. Methods High throughput screening and lead optimization were used to generate inhibitors of LDHA enzymatic activity. Effects of these inhibitors on metabolism were evaluated using cell-based lactate production, oxygen consumption, and 13C NMR spectroscopy assays. Changes in comprehensive metabolic profile, cell proliferation, and apoptosis were assessed upon compound treatment. Results 3-((3-carbamoyl-7-(3,5-dimethylisoxazol-4-yl)-6-methoxyquinolin-4-yl) amino) benzoic acid was identified as an NADH-competitive LDHA inhibitor. Lead optimization yielded molecules with LDHA inhibitory potencies as low as 2 nM and 10 to 80-fold selectivity over LDHB. Molecules in this family rapidly and profoundly inhibited lactate production rates in multiple cancer cell lines including hepatocellular and breast carcinomas. Consistent with selective inhibition of LDHA, the most sensitive breast cancer cell lines to lactate inhibition in hypoxic conditions were cells with low expression of LDHB. Our inhibitors increased rates of oxygen consumption in hepatocellular carcinoma cells at doses up to 3 microM, while higher concentrations directly inhibited mitochondrial function. Analysis of more than 500 metabolites upon LDHA inhibition in Snu398 cells revealed that intracellular concentrations of glycolysis and citric acid cycle intermediates were increased, consistent with enhanced Krebs cycle activity and blockage of cytosolic glycolysis. Treatment with these compounds also potentiated PKM2 activity and promoted apoptosis in Snu398 cells. Conclusions Rapid chemical inhibition of LDHA by these quinoline 3-sulfonamids led to profound metabolic alterations and impaired cell survival in carcinoma cells making it a compelling strategy for treating solid tumors that rely on aerobic glycolysis for survival. PMID:24280423
Bertin, Lorenzo; Colao, Maria Chiara; Ruzzi, Maurizio; Marchetti, Leonardo; Fava, Fabio
2006-01-01
Background Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in the biofilter throughout the treatment. Conclusion The silica-bead packed bed biofilm reactor developed and characterized in this study was able to significantly decontaminate anaerobically digested OMWs. Therefore, the application of an integrated anaerobic-aerobic process resulted in an improved system for valorization and decontamination of OMWs. PMID:16595023
Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei
2016-09-01
The aerobic-anaerobic landfill method (AALM) is a novel approach in solid waste management that could shorten the landfill post-closure period and minimize the environmental loads. In this study, the aerobic-anaerobic landfill method was evaluated by using intermittent aeration. In addition, the nitrification-denitrification process was assessed as a means of reducing the emission of greenhouse gases (GHGs) and improving the leachate quality during the degradation of the organic solid waste. The leachate quality and the gas composition in each of the reactors were measured during the experimental period (408days). The aeration process entailed the injection of air into plexiglass cylinders (200cm height×10 cm diameter), filled with fresh organic solid waste collected from a composting plant. Different aeration routines were applied, namely, continuous aeration (aerobic reactor A), aeration for three days/week (aerobic-anaerobic reactor B), aeration for 6h/day (aerobic-anaerobic reactor C), and no aeration (non-aerated reactor D). It was found that aerobic reactor A produced the best results in terms of reduction of GHGs and improvement of the leachate quality. The aerobic-anaerobic reactor C was found to be more effective than reactor B in respect of both the emission of GHGs and the leachate quality; moreover, compared with aerobic reactor A, energy costs were reduced by operating this reactor. The transition period phenomenon was investigated during an intensive seven-day experiment conducted on the discharged leachate obtained from aerobic-anaerobic reactors B and C. The experiment concerned the differences in the composition of the gas during the aeration and the non-aeration periods. It was found that the transition period between the aeration and non-aeration cycles, which followed the simultaneous nitrification-denitrification had a considerable effect on the leachate quality of both the reactors. The results indicated that AALM has the potential to reduce leachate pollutants and the emission of GHGs. Furthermore, the occurrence of simultaneous nitrification-denitrification presents the prospect that intermittent aeration could reduce landfill aftercare and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Shuo; Yu, Shui-Li; Shi, Wen-Xin; Bao, Rui-Ling; Yi, Xue-Song; Li, Jian-Zheng
2012-04-01
COD decreased obviously in normal molasses wastewater after anaerobic treatment, however, concentrations of nitrogen and phosphorus were still higher in the effluent which seriously damaged the ecological balance. In this study, aerobic granules cultivated in sequencing batch airlift reactor (SBAR) were carried out for treating the effluent; phosphorus removal processes and characteristics were discussed as well. The mean diameter of aerobic granules cultivated by multiple carbon sources (acetate, propionate and butyrate) was 1.7 mm. The average phosphorus removal efficiency was 90.9% and the level of phosphorus in effluent was only 1.3 mg x L(-1); TP released per COD consumed was 0.571 and the specific rate of TP released was 5.73 mg x (g x h)(-1). NO3(-) -N usage of phosphorus accumulating organisms (PAOs) improved during denitrifying process because the concentration of propionate and butyrate increased in multiple carbon sources which means the phosphorus uptake efficiency increased when per NO3(-) -N consumed. Phosphorus content represented a stronger correlation with magnesium, calcium and ferrum contents in aerobic granules and their extracellular polymeric substances (EPS), the phosphorus adsorption by EPS could enhance phosphorus removal. 61.9% of phosphorus accumulating organisms were denitrifying phosphorus accumulating organisms in aerobic granules and TP uptake per NO3(-) -N consumed was 1.14 which was higher than that of aerobic granules only cultivated by acetate.
NASA Astrophysics Data System (ADS)
Assis, Lívia; Tim, Carla; Martignago, Cintia; Gonçalves, Silma Rodrigues; Renno, Ana Claudia Muniz
2018-02-01
Osteoarthritis (OA) is the most common disease of the knee joints in adults throughout the world. Photobiomodulation (PBM) and physical exercise have been studied for clinical treatment of OA, even though the effects and action mechanisms have not yet been clarified. The aim of this study was to evaluate the effects of PBM and aerobic exercise (associated or not) on degenerative modifications and inflammatory mediators in articular cartilage using an experimental model of knee OA. Forty male Wistar rats were randomly divided into 4 groups: OA animals without treatment (OAC); OA plus aerobic exercise training (OAT); OA animals plus PBM treatment (OAP); OA plus aerobic exercise training and PBM treatment (OATP). The exercise training (treadmill; 16m/min; 50 min/day) and the PBM treatment started 4 weeks after the surgery, 3 days/week for 8 weeks. The results showed that all treated groups showed a lower degenerative process measured by OARSI system and higher thickness values. Moreover, aerobic exercise and PBM (associated or not) decreased iNOS expression and increased IL-10 expression in OAT and OATL compared to OAC. Furthermore, a lower TGF-β expression was observed in associated therapies. These results suggest that PBM and aerobic exercise training were effective in modulating inflammatory process and preventing cartilage degeneration in knees in OA rats.
The individual time trial as an optimal control problem
de Jong, Jenny; Fokkink, Robbert; Olsder, Geert Jan; Schwab, AL
2017-01-01
In a cycling time trial, the rider needs to distribute his power output optimally to minimize the time between start and finish. Mathematically, this is an optimal control problem. Even for a straight and flat course, its solution is non-trivial and involves a singular control, which corresponds to a power that is slightly above the aerobic level. The rider must start at full anaerobic power to reach an optimal speed and maintain that speed for the rest of the course. If the course is flat but not straight, then the speed at which the rider can round the bends becomes crucial. PMID:29388631
Relationship between aerobic bacteria, salmonellae and Campylobacter on broiler carcasses.
Cason, J A; Bailey, J S; Stern, N J; Whittemore, A D; Cox, N A
1997-07-01
Broiler carcasses were removed from commercial processing lines immediately after defeathering, before chilling, and after chilling to determine whether any relationship exists between aerobic bacteria and the human enteropathogens salmonellae and Campylobacter. In two experiments, a whole carcass rinse procedure was used to sample 30 carcasses after defeathering, 90 carcasses before chilling, and 90 carcasses after chilling, for a total of 210 different carcasses. Aerobic bacteria and Campylobacter spp. were enumerated and the incidence of salmonellae was determined. Salmonellae and Campylobacter incidences were 20 and 94%, respectively, for all carcasses sampled. After picking, neither salmonellae-positive nor Campylobacter-positive carcasses had mean aerobic most probable number (MPN) values that were different from carcasses negative for those organisms. Immediately before chilling, aerobic and Campylobacter counts were 7.12 and 5.33 log10 cfu per carcass, respectively. Immersion chilling reduced aerobic counts by approximately 1.8 log and Campylobacter by 1.5 log, with no change in salmonellae-positive carcasses. There was no difference in aerobic or Campylobacter counts between carcasses that were positive or negative for salmonellae at any of the sampling locations, nor was any correlation found between levels of aerobic organisms and Campylobacter. Carcasses with aerobic counts above the mean or more than one standard deviation above the mean also failed to show any correlation. Discriminant analysis indicated error rates as high as 50% when numbers of aerobic bacteria were used to predict incidence of salmonellae or Campylobacter on individual carcasses. Aerobic bacteria are not suitable as index organisms for salmonellae or Campylobacter on broiler carcasses.
Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei
2017-09-01
Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.
Tomei, M Concetta; Carozza, Nicola Antonello
2015-05-01
Sequential anaerobic-aerobic digestion has been demonstrated as a promising alternative for enhanced sludge stabilization. In this paper, a feasibility study of the sequential digestion applied to real waste activated sludge (WAS) and mixed sludge is presented. Process performance is evaluated in terms of total solid (TS) and volatile solid (VS) removal, biogas production, and dewaterability trend in the anaerobic and double-stage digested sludge. In the proposed digestion lay out, the aerobic stage was operated with intermittent aeration to reduce the nitrogen load recycled to the wastewater treatment plant (WWTP). Experimental results showed a very good performance of the sequential digestion process for both waste and mixed sludge, even if, given its better digestibility, higher efficiencies are observed for mixed sludge. VS removal efficiencies in the anaerobic stage were 48 and 50% for waste and mixed sludge, respectively, while a significant additional improvement of the VS removal of 25% for WAS and 45% for mixed sludge has been obtained in the aerobic stage. The post-aerobic stage, operated with intermittent aeration, was also efficient in nitrogen removal, providing a significant decrease of the nitrogen content in the supernatant: nitrification efficiencies of 90 and 97% and denitrification efficiencies of 62 and 70% have been obtained for secondary and mixed sludges, respectively. A positive effect due to the aerobic stage was also observed on the sludge dewaterability in both cases. Biogas production, expressed as Nm(3)/(kgVSdestroyed), was 0.54 for waste and 0.82 for mixed sludge and is in the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days.
Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M
2015-01-01
The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.
Research has shown that polychlorinated biphenyls (PCBs) in some cases can be removed from the environment by biodegradation. Aerobic and anaerobic biological processes have been determined in previous research to be capable of degrading PCBs. During the aerobic and anaerobic d...
ERIC Educational Resources Information Center
Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.
Composting is a way of using organic wastes from yards and kitchens to help plants grow. This book discusses how composting happens in nature, the classification of composting methods, and their characteristics. Examples of containers for aerobic/anaerobic decomposition are introduced along with sample activities. The process of aerobic/anaerobic…
High Aerobic Capacity Mitigates Changes in the Plasma Metabolomic Profile Associated with Aging.
Falegan, Oluyemi S; Vogel, Hans J; Hittel, Dustin S; Koch, Lauren G; Britton, Steven L; Hepple, Russ T; Shearer, Jane
2017-02-03
Advancing age is associated with declines in maximal oxygen consumption. Declines in aerobic capacity not only contribute to the aging process but also are an independent risk factor for morbidity, cardiovascular disease, and all-cause mortality. Although statistically convincing, the relationships between aerobic capacity, aging, and disease risk remain largely unresolved. To this end, we employed sensitive, system-based metabolomics approach to determine whether enhanced aerobic capacity could mitigate some of the changes seen in the plasma metabolomic profile associated with aging. Metabolomic profiles of plasma samples obtained from young (13 month) and old (26 month) rats bred for low (LCR) or high (HCR) running capacity using proton nuclear magnetic resonance spectroscopy ( 1 H NMR) were examined. Results demonstrated strong profile separation in old and low aerobic capacity rats, whereas young and high aerobic capacity rat models were less predictive. Significantly differential metabolites between the groups include taurine, acetone, valine, and trimethylamine-N-oxide among other metabolites, specifically citrate, succinate, isovalerate, and proline, were differentially increased in older HCR animals compared with their younger counterparts. When interactions between age and aerobic capacity were examined, results demonstrated that enhanced aerobic capacity could mitigate some but not all age-associated alterations in the metabolomic profile.
Novak, John T; Sadler, Mary E; Murthy, Sudhir N
2003-07-01
Laboratory anaerobic and aerobic digestion studies were conducted using waste activated sludges from two municipal wastewater treatment plants in order to gain insight into the mechanisms of floc destruction that account for changes in sludge conditioning and dewatering properties when sludges undergo anaerobic and aerobic digestion. Batch digestion studies were conducted at 20 degrees C and the dewatering properties, solution biopolymer concentration and conditioning dose requirements measured. The data indicated that release of biopolymer from sludges occurred under both anaerobic and aerobic conditions but that the release was much greater under anaerobic conditions. In particular, the release of protein into solution was 4-5 times higher under anaerobic than under aerobic conditions. Both the dewatering rate, as characterized by the specific resistance to filtration and the amount of polymer conditioning chemicals required was found to depend directly on the amount of biopolymer (protein + polysaccharide) in solution. Little difference in dewatering properties and conditioning doses was seen between the two activated sludges from different plants. Differences in the cations released between anaerobic and aerobic digestion suggest that the digestion mechanisms differ for the two types of processes. Enzyme activity data showed that during aerobic digestion, polysaccharide degradation activity decreased to near zero and this was consistent with the accumulation of polysaccharides in aerobic digesters.
Optimal pacing strategy: from theoretical modelling to reality in 1500-m speed skating.
Hettinga, F J; De Koning, J J; Schmidt, L J I; Wind, N A C; Macintosh, B R; Foster, C
2011-01-01
Athletes are trained to choose the pace which is perceived to be correct during a specific effort, such as the 1500-m speed skating competition. The purpose of the present study was to "override" self-paced (SP) performance by instructing athletes to execute a theoretically optimal pacing profile. Seven national-level speed-skaters performed a SP 1500-m which was analysed by obtaining velocity (every 100 m) and body position (every 200 m) with video to calculate total mechanical power output. Together with gross efficiency and aerobic kinetics, obtained in separate trials, data were used to calculate aerobic and anaerobic power output profiles. An energy flow model was applied to SP, simulating a range of pacing strategies, and a theoretically optimal pacing profile was imposed in a second race (IM). Final time for IM was ∼2 s slower than SP. Total power distribution per lap differed, with a higher power over the first 300 m for IM (637.0 (49.4) vs 612.5 (50.0) W). Anaerobic parameters did not differ. The faster first lap resulted in a higher aerodynamic drag coefficient and perhaps a less effective push-off. Experienced athletes have a well-developed performance template, and changing pacing strategy towards a theoretically optimal fast start protocol had negative consequences on speed-skating technique and did not result in better performance.
Cheng, Jiehong; Ji, Yuehong; Kong, Feng; Chen, Xian
2013-12-01
One-stage autothermal thermophilic aerobic digestion (ATAD) is effective for the reduction of volatile solids (VSs) and pathogen in sewage sludges. A novel process of combining mesophilic (<35 °C) anaerobic digestion with a thermophilic (55 °C) aerobic digestion process (AN/TAD) occurred in a one-stage digester, which was designed for aeration energy savings. The efficiency of sludge degradation and variation of sludge properties by batch experiments were evaluated for the AN/TAD digester with an effective volume of 23 L for 30 days compared with conventional thermophilic aerobic digestion (TAD). The AN/TAD system can efficiently achieve sludge stabilization on the 16th day with a VS removal rate of 38.1 %. The AN/TAD system was operated at lower ORP values in a digestion period with higher contents of total organic compounds, volatile fatty acids, protein, and polysaccharide in the soluble phase than those of the TAD system, which can rapidly decreased and had low values in the late period of digestion for the AN/TAD system. In the AN/TAD system, intracellular substances had lysis because of initial hydrolytic acidification.
Exercise for Breast Cancer Survivors: Research Evidence and Clinical Guidelines.
ERIC Educational Resources Information Center
Courneya, Kerry S.; Mackey, John R.; McKenzie, Donald C.
2002-01-01
Exercise can significantly benefit breast cancer survivors during and after treatment. Moderate intensity aerobic exercise as well as resistance training are important. Psychological health is optimized by enjoyable exercise that develops new skills, incorporates social interaction, and occurs in a stimulating environment. Several conditions…
Mishra, Abha
2006-10-01
This article reports the production of high levels of L-asparaginase from a new isolate of Aspergillus niger in solid state fermentation (SSF) using agro-wastes from three leguminous crops (bran of Cajanus cajan, Phaseolus mungo, and Glycine max). When used as the sole source for growth in SSF, bran of G. max showed maximum enzyme production followed by that of P. mungo and C. cajan. A 96-h fermentation time under aerobic condition with moisture content of 70%, 30 min of cooking time and 1205-1405 micro range of particle size in SSF appeared optimal for enzyme production. Enzyme yield was maximum (40.9 +/- 3.35 U/g of dry substrate) at pH 6.5 and temperature 30 +/- 2 degrees C. The optimum temperature and pH for enzyme activity were 40 degrees C and 6.5, respectively. The study suggests that choosing an appropriate substrate when coupled with process level optimization improves enzyme production markedly. Developing an asparaginase production process based on bran of G. max as a substrate in SSF is economically attractive as it is a cheap and readily available raw material in agriculture-based countries.
Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng
2016-12-01
The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.
Autoheated thermophilic aerobic digestion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deeny, K.; Hahn, H.; Leonhard, D.
1991-10-01
Autothermal thermophilic aerobic digestion (ATAD) is first and foremost a digestion process, the primary purpose of which is to decompose a portion of the waste organic solids generated from wastewater treatment. As a result of the high operating temperature, digestion is expected to occur within a short time period (6 days) and accomplish a high degree of pathogen reduction. ATAD systems are two-stage aerobic digestion processes that operate under thermophilic temperature conditions (40 to 80C) without supplemental heat. Like composting, the systems rely on the conservation of heat released during digestion itself to attain and sustain the desired operating temperature.more » Typical ATAD systems operate at 55C and may reach temperatures of 60 to 65C in the second-stage reactor. Perhaps because of the high operating temperature, this process has been referred to as Liquid Composting.' Major advantages associated with thermophilic operation include high biological reaction rates and a substantial degree of pathogen reduction.« less
Aeration control of thermophilic aerobic digestion using fluorescence monitoring.
Kim, Young-Kee; Oh, Byung-Keun
2009-01-01
The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.
Misic, Mark M; Rosengren, Karl S; Woods, Jeffrey A; Evans, Ellen M
2007-01-01
Muscle mass, strength and fitness play a role in lower-extremity physical function (LEPF) in older adults; however, the relationships remain inadequately characterized. This study aimed to examine the relationships between leg mineral free lean mass (MFLM(LEG)), leg muscle quality (leg strength normalized for MFLM(LEG)), adiposity, aerobic fitness and LEPF in community-dwelling healthy elderly subjects. Fifty-five older adults (69.3 +/- 5.5 years, 36 females, 19 males) were assessed for leg strength using an isokinetic dynamometer, body composition by dual energy X-ray absorptiometry and aerobic fitness via a treadmill maximal oxygen consumption test. LEPF was assessed using computerized dynamic posturography and stair ascent/descent, a timed up-and-go task and a 7-meter walk with and without an obstacle. Muscle strength, muscle quality and aerobic fitness were similarly correlated with static LEPF tests (r range 0.27-0.40, p < 0.05); however, the strength of the independent predictors was not robust with explained variance ranging from 9 to 16%. Muscle quality was the strongest correlate of all dynamic LEPF tests (r range 0.54-0.65, p < 0.001). Using stepwise linear regression analysis, muscle quality was the strongest independent predictor of dynamic physical function explaining 29-42% of the variance (p < 0.001), whereas aerobic fitness or body fat mass explained 5-6% of the variance (p < 0.05) depending on performance measure. Muscle quality is the most important predictor, and aerobic fitness and fat mass are secondary predictors of LEPF in community-dwelling older adults. These findings support the importance of exercise, especially strength training, for optimal body composition, and maintenance of strength and physical function in older adults.
Boyne, Pierce; Buhr, Sarah; Rockwell, Bradley; Khoury, Jane; Carl, Daniel; Gerson, Myron; Kissela, Brett; Dunning, Kari
2015-10-01
Treadmill aerobic exercise improves gait, aerobic capacity, and cardiovascular health after stroke, but a lack of specificity in current guidelines could lead to underdosing or overdosing of aerobic intensity. The ventilatory threshold (VT) has been recommended as an optimal, specific starting point for continuous aerobic exercise. However, VT measurement is not available in clinical stroke settings. Therefore, the purpose of this study was to identify an accurate method to predict heart rate at the VT (HRVT) for use as a surrogate for VT. A cross-sectional design was employed. Using symptom-limited graded exercise test (GXT) data from 17 subjects more than 6 months poststroke, prediction methods for HRVT were derived by traditional target HR calculations (percentage of HRpeak achieved during GXT, percentage of peak HR reserve [HRRpeak], percentage of age-predicted maximal HR, and percentage of age-predicted maximal HR reserve) and by regression analysis. The validity of the prediction methods was then tested among 8 additional subjects. All prediction methods were validated by the second sample, so data were pooled to calculate refined prediction equations. HRVT was accurately predicted by 80% HRpeak (R, 0.62; standard deviation of error [SDerror], 7 bpm), 62% HRRpeak (R, 0.66; SDerror, 7 bpm), and regression models that included HRpeak (R, 0.62-0.75; SDerror, 5-6 bpm). Derived regression equations, 80% HRpeak and 62% HRRpeak, provide a specific target intensity for initial aerobic exercise prescription that should minimize underdosing and overdosing for persons with chronic stroke. The specificity of these methods may lead to more efficient and effective treatment for poststroke deconditioning.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A114).
AIRBORNE MICROORGANISMS IN BROILER PROCESSING PLANTS.
KOTULA, A W; KINNER, J A
1964-05-01
Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft(3) of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed.
Airborne Microorganisms in Broiler Processing Plants
Kotula, Anthony W.; Kinner, Jack A.
1964-01-01
Concentrations of total aerobic bacteria, molds, yeasts, coliforms, enterococci, and psychrophiles were determined in the air of two poultry processing plants with Andersen samplers and a mobile power supply. Total aerobic bacterial counts were highest in the dressing room, with diminishing numbers in the shackling, eviscerating, and holding rooms, when sampling was carried out during plant operation. The average counts per ft3 of air in these four rooms were 2,200; 560; 230; and 62, respectively. (Each value is the average of 36 observations.) The number of organisms increased in the shackling and dressing rooms once processing was begun. Average total aerobic bacterial counts increased from 70 to 870 to 3,000 in the shackling room and from 310 to 4,900 to 7,000 in the dressing room when sampling was carried out at 5:00 am (before plant operations), 9:00 am, and 2:00 pm, respectively. (Each value is the mean of 12 observations.) Airborne molds might originate from a source other than the poultry being processed. Images FIG. 3 PMID:14170951
NASA Astrophysics Data System (ADS)
Chen, Chen; Ouyang, Wukun; Huang, Shan; Peng, Xiaochun
2018-01-01
Traditional domestic wastewater treatments rely on aerobic processes followed by anaerobic processes. The aerobic step in which ammonium and organic carbon are oxidized, calls for large oxygen input, while the anaerobic process often requires extra carbon input. The challenge of synchronizing both processes is to maintain an active nitrifiers sludge under low dissolved oxygen (DO) condition. In this study, a membrane bioreactor was established and operated stable with low DO of 0.1-0.4 mg L-1. Chemical indicators were determined daily, and bacterial community was checked by qPCR and 16S rDNA sequencing every month. After 2 months incubation, the bioreactor reached to a stable removal rate of total nitrogen around 50% and total organic carbon around 90% with the retaining time of 12 h. The sludge showed enrichment of low DO nitrifiers (Nitrosomonadaceae, Chitinophagaceae, and Nitrospiraceae) which were different from sludge in other regular wastewater treatment plants with aerobic and anaerobic cycles.
Characterization, modeling and application of aerobic granular sludge for wastewater treatment.
Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping
2009-01-01
Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.
Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment
NASA Astrophysics Data System (ADS)
Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping
Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.
de Wilt, Arnoud; He, Yujie; Sutton, Nora; Langenhoff, Alette; Rijnaarts, Huub
2018-02-01
This study explored the removal of six pharmaceutically active compounds (PhACs) in lab-scale experiments with sediments under four redox conditions, namely aerobic, nitrate reducing, sulfate reducing, and methanogenic conditions using batch and column set-ups. Redox conditions were found to influence PhAC removal by sorption and biodegradation. The most optimal PhAC removal was observed at the outer ranges of the redox spectrum, i.e. either aerobic or deep anaerobic (sulfate reducing and methanogenic conditions), whereas nitrate reducing conditions were found least effective for PhACs biodegradation and sorption. For instance, sorption coefficient K d values for metoprolol in column experiments were 90, 65, 42 and 11 L/kg for sulfate reducing, methanogenic, aerobic and nitrate reducing conditions, respectively. For the same conditions K d values for propranolol were 101, 94, 55 and 55 L/kg, respectively. As expected, biodegradation efficiencies were highest under aerobic conditions, showing >99% removal of caffeine and naproxen, but no removal for propranolol and carbamazepine. The adaptive capacity of sediment was demonstrated by pre-exposure to PhACs leading to improved PhAC biodegradation. The results of this study indicate the necessity to combine diverse redox conditions, including aerobic conditions, for maximizing PhAC removal by sorption and biodegradation. Furthermore, our findings stress the need for additional treatment measures as recalcitrant PhACs are not effectively removed under any redox condition. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Klopping, Paul H.
This lesson is a basic description of aerobic digestion. Topics presented include a general process overview discussion of a typical digester's components, factors influencing performance, operational controls, and biological considerations for successful operation. The lesson includes an instructor's guide and student workbook. The instructor's…
Validation of the FAST skating protocol to predict aerobic power in ice hockey players.
Petrella, Nicholas J; Montelpare, William J; Nystrom, Murray; Plyley, Michael; Faught, Brent E
2007-08-01
Few studies have reported a sport-specific protocol to measure the aerobic power of ice hockey players using a predictive process. The purpose of our study was to validate an ice hockey aerobic field test on players of varying ages, abilities, and levels. The Faught Aerobic Skating Test (FAST) uses an on-ice continuous skating protocol on a course measuring 160 feet (48.8 m) using a CD to pace the skater with a beep signal to cross the starting line at each end of the course. The FAST incorporates the principle of increasing workload at measured time intervals during a continuous skating exercise. Step-wise multiple regression modelling was used to determine the estimate of aerobic power. Participants completed a maximal aerobic power test using a modified Bruce incremental treadmill protocol, as well as the on-ice FAST. Normative data were collected on 406 ice hockey players (291 males, 115 females) ranging in age from 9 to 25 y. A regression to predict maximum aerobic power was developed using body mass (kg), height (m), age (y), and maximum completed lengths of the FAST as the significant predictors of skating aerobic power (adjusted R2 = 0.387, SEE = 7.25 mL.kg-1.min-1, p < 0.0001). These results support the application of the FAST in estimating aerobic power among male and female competitive ice hockey players between the ages of 9 and 25 years.
Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms
Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.
1999-01-01
Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.
Identifying Cis-Regulatory Changes Involved in the Evolution of Aerobic Fermentation in Yeasts
Lin, Zhenguo; Wang, Tzi-Yuan; Tsai, Bing-Shi; Wu, Fang-Ting; Yu, Fu-Jung; Tseng, Yu-Jung; Sung, Huang-Mo; Li, Wen-Hsiung
2013-01-01
Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution. PMID:23650209
Acute aerobic exercise helps overcome emotion regulation deficits.
Bernstein, Emily E; McNally, Richard J
2017-06-01
Although colloquial wisdom and some studies suggest an association between regular aerobic exercise and emotional well-being, the nature of this link remains poorly understood. We hypothesised that aerobic exercise may change the way people respond to their emotions. Specifically, we tested whether individuals experiencing difficulties with emotion regulation would benefit from a previous session of exercise and show swifter recovery than their counterparts who did not exercise. Participants (N = 80) completed measures of emotion response tendencies, mood, and anxiety, and were randomly assigned to either stretch or jog for 30 minutes. All participants then underwent the same negative and positive mood inductions, and reported their emotional responses. Analyses showed that more perceived difficulty generating regulatory strategies and engaging in goal-directed behaviours after the negative mood induction predicted more intense and persistent negative affect in response to the stressor, as would be expected. Interactions revealed that aerobic exercise attenuated these effects. Moderate aerobic exercise may help attenuate negative emotions for participants initially experiencing regulatory difficulties. This study contributes to the literature on aerobic exercise's therapeutic effects with experimental data, specifically in the realm of emotional processing.
Yong, Xiao-Yu; Yan, Zhi-Ying; Shen, Hai-Bo; Zhou, Jun; Wu, Xia-Yuan; Zhang, Li-Juan; Zheng, Tao; Jiang, Min; Wei, Ping; Jia, Hong-Hua; Yong, Yang-Chun
2017-10-01
Microbial fuel cell (MFC) is a promising device for energy generation and organic waste treatment simultaneously by electrochemically active bacteria (EAB). In this study, an integrated aerobic-anaerobic strategy was developed to improve the performance of P. aeruginosa-inoculated MFC. With an aerobic start-up and following an anaerobic discharge process, the current density of MFC reached a maximum of 99.80µA/cm 2 , which was 91.6% higher than the MFC with conventional constant-anaerobic operation. Cyclic voltammetry and HPLC analysis showed that aerobic start-up significantly increased electron shuttle (pyocyanin) production (76% higher than the constant-anaerobic MFC). Additionally, enhanced anode biofilm formation was also observed in the integrated aerobic-anaerobic MFC. The increased pyocyanin production and biofilm formation promoted extracellular electron transfer from EAB to the anode and were the underlying mechanism for the MFC performance enhancement. This work demonstrated the integrated aerobic-anaerobic strategy would be a practical strategy to enhance the electricity generation of MFC. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Lin; Li, Yu
2012-12-01
Lead (Pb) and its compounds are common pollutants in industrial wastewaters. To develop appropriate Pb2+ treatment technologies, aerobic granules (AG) and bacterial alginates (BA) were studied as alternative biosorbents to remove Pb2+ from aqueous solutions. The biosorption mechanism of AG and BA were further analyzed to determine which functional groups in AG and BA are active in Pb2+ biosorption. In this paper, the Pb2+ biosorption behavior of AG and BA was respectively investigated in batch experiments from the perspectives of the initial pH, contact time, and initial Pb2+ concentration. The results showed that biosorption of Pb2+ by AG and BA occurred within 60min at the initial Pb2+ concentrations (0-150 mg L-1). The actual saturated Pb2+ biosorption capability of AG was 101.97 mg g-1 (dry weight of aerobic granular biomass). When the initial pH was 5, the biosorption capability of AG and BA was highest at the initial Pb2+ concentrations (0-20mg L-1). During the process of Pb2+ biosorption, K+, Ca2+, and Mg2+ were released. The Ion Chromatography (IC) and Fourier Transform Infrared Spectroscopy (FTIR) further highlighted the main role of ion exchange between Ca2+ and Pb2+ and sequestration of Pb2+ with carboxyl (-COO-) of AG and BA. This analogical analysis verifies that BA is responsible for biosorption of Pb2+ by AG. At the same optimal pH, AG cultivated with different carbon source has different Pb2+ biosorption capacity. The Pb2+ biosorption by AG with sodium acetate as the sole carbon source is higher than AG with glucose as carbon source.
Previte, Dana M; O'Connor, Erin C; Novak, Elizabeth A; Martins, Christina P; Mollen, Kevin P; Piganelli, Jon D
2017-01-01
The immune system is necessary for protecting against various pathogens. However, under certain circumstances, self-reactive immune cells can drive autoimmunity, like that exhibited in type 1 diabetes (T1D). CD4+ T cells are major contributors to the immunopathology in T1D, and in order to drive optimal T cell activation, third signal reactive oxygen species (ROS) must be present. However, the role ROS play in mediating this process remains to be further understood. Recently, cellular metabolic programs have been shown to dictate the function and fate of immune cells, including CD4+ T cells. During activation, CD4+ T cells must transition metabolically from oxidative phosphorylation to aerobic glycolysis to support proliferation and effector function. As ROS are capable of modulating cellular metabolism in other models, we sought to understand if blocking ROS also regulates CD4+ T cell activation and effector function by modulating T cell metabolism. To do so, we utilized an ROS scavenging and potent antioxidant manganese metalloporphyrin (MnP). Our results demonstrate that redox modulation during activation regulates the mTOR/AMPK axis by maintaining AMPK activation, resulting in diminished mTOR activation and reduced transition to aerobic glycolysis in diabetogenic splenocytes. These results correlated with decreased Myc and Glut1 upregulation, reduced glucose uptake, and diminished lactate production. In an adoptive transfer model of T1D, animals treated with MnP demonstrated delayed diabetes progression, concurrent with reduced CD4+ T cell activation. Our results demonstrate that ROS are required for driving and sustaining T cell activation-induced metabolic reprogramming, and further support ROS as a target to minimize aberrant immune responses in autoimmunity.
Halabchi, Farzin; Alizadeh, Zahra; Sahraian, Mohammad Ali; Abolhasani, Maryam
2017-09-16
Multiple sclerosis (MS) can result in significant mental and physical symptoms, specially muscle weakness, abnormal walking mechanics, balance problems, spasticity, fatigue, cognitive impairment and depression. Patients with MS frequently decrease physical activity due to the fear from worsening the symptoms and this can result in reconditioning. Physicians now believe that regular exercise training is a potential solution for limiting the reconditioning process and achieving an optimal level of patient activities, functions and many physical and mental symptoms without any concern about triggering the onset or exacerbation of disease symptoms or relapse. Appropriate exercise can cause noteworthy and important improvements in different areas of cardio respiratory fitness (Aerobic fitness), muscle strength, flexibility, balance, fatigue, cognition, quality of life and respiratory function in MS patients. Aerobic exercise training with low to moderate intensity can result in the improvement of aerobic fitness and reduction of fatigue in MS patients affected by mild or moderate disability. MS patients can positively adapt to resistance training which may result in improved fatigue and ambulation. Flexibility exercises such as stretching the muscles may diminish spasticity and prevent future painful contractions. Balance exercises have beneficial effects on fall rates and better balance. Some general guidelines exist for exercise recommendation in the MS population. The individualized exercise program should be designed to address a patient's chief complaint, improve strength, endurance, balance, coordination, fatigue and so on. An exercise staircase model has been proposed for exercise prescription and progression for a broad spectrum of MS patients. Exercise should be considered as a safe and effective means of rehabilitation in MS patients. Existing evidence shows that a supervised and individualized exercise program may improve fitness, functional capacity and quality of life as well as modifiable impairments in MS patients.
Duchesne, C; Lungu, O; Nadeau, A; Robillard, M E; Boré, A; Bobeuf, F; Lafontaine, A L; Gheysen, F; Bherer, L; Doyon, J
2015-10-01
Aerobic exercise training (AET) has been shown to provide health benefits in individuals with Parkinson's disease (PD). However, it is yet unknown to what extent AET also improves cognitive and procedural learning capacities, which ensure an optimal daily functioning. In the current study, we assessed the effects of a 3-month AET program on executive functions (EF), implicit motor sequence learning (MSL) capacity, as well as on different health-related outcome indicators. Twenty healthy controls (HC) and 19 early PD individuals participated in a supervised, high-intensity, stationary recumbent bike-training program (3 times/week for 12 weeks). Exercise prescription started at 20 min (+5 min/week up to 40 min) based on participant's maximal aerobic power. Before and after AET, EF tests assessed participants' inhibition and flexibility functions, whereas implicit MSL capacity was evaluated using a version of the Serial Reaction Time Task. The AET program was effective as indicated by significant improvement in aerobic capacity in all participants. Most importantly, AET improved inhibition but not flexibility, and motor learning skill, in both groups. Our results suggest that AET can be a valuable non-pharmacological intervention to promote physical fitness in early PD, but also better cognitive and procedural functioning. Copyright © 2015 Elsevier Inc. All rights reserved.
Nguyen, Khac Minh Huy; Largeron, Martine
2015-01-01
Aerobic oxidative C–H functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. PMID:26206475
Screening identification of aerobic denitrification bacteria with high soil desalinization capacity
NASA Astrophysics Data System (ADS)
Jin, H.; Chen, H.; Jin, H.; Qian, Y.; Zhang, K.
2017-08-01
In order to study the mechanism of bacteria used in the saline soil remediation process, the aerobic denitrification bacteria were isolated from an agricultural greenhouse soil in a farm in East China’s Zhejiang Province. The identification, nitrogen reducing characteristics and the denitrification effect of bacteria from different soils at various locations were investigated. The results showed that the NO3- removal rate was 91% with bacteria from the greenhouse soil under aerobic conditions in 52 h, and the bacteria were identified as Gram-positive Castellaniella denitrification bacteria.
Gas analysis reveals novel aerobic deammonification in thermophilic aerobic digestion.
Yi, Y S; Kim, S; An, S; Choi, S I; Choi, E; Yun, Z
2003-01-01
A laboratory-scale thermophilic aerobic digester was operated with piggery wastewater. The operating temperature varied from 50-70 degrees C. It has been found that excessive nitrogen removal occurred in the laboratory-scale thermophilic system at various HRTs. Nitrite and nitrate were not observed in the effluent. Gas measurement reveals the presence of significant amount of N2O along with NH3 gas. The rational production of N2O gas in accordance with temperature and HRT suggests that biologically mediated deammonification processes significantly contribute to the N removal. Although further microbiological investigation is required to clarify the exact nitrogen removal mechanism, the large production of N2O gas seems to be a result of the existence of a rapid growing heterotrophic deammonification process in the thermophilic system.
NASA Astrophysics Data System (ADS)
Zhong, Xiao; Sun, Peide; Song, Yingqi; Wang, Ruyi; Fang, Zhiguo
2010-11-01
Based on the fully coupled activated sludge model (FCASM), the novel model Tubificidae -Fully Coupled Activated Sludge Model-hydraulic (T-FCASM-Hydro), has been developed in our previous work. T-FCASM-Hydro not only describe the interactive system between Tubificidae and functional microorganisms for the sludge reduction and nutrient removal simultaneously, but also considere the interaction between biological and hydraulic field, After calibration and validation of T-FCASM-Hydro at Zhuji Feida-hongyu Wastewater treatment plant (WWTP) in Zhejiang province, T-FCASM-Hydro was applied for determining optimal operating condition in the WWTP. Simulation results showed that nitrogen and phosphorus could be removed efficiently, and the efficiency of NH4+-N removal enhanced with increase of DO concentration. At a certain low level of DO concentration in the aerobic stage, shortcut nitrification-denitrification dominated in the process of denitrification in the novel system. However, overhigh agitation (>6 mgṡL-1) could result in the unfavorable feeding behavior of Tubificidae because of the strong flow disturbance, which might lead to low rate of sludge reduction. High sludge reduction rate and high removal rate of nitrogen and phosphorus could be obtained in the new-style oxidation ditch when DO concentration at the aerobic stage with Tubificidae was maintained at 3.6 gṡm-3.
Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater.
Patil, Sayali S; Kumar, Martin S; Ball, Andrew S
2010-06-01
Integrated biosystem is becoming a major aspect of wastewater management practice. Microbial communities in piggery wastewater sampled from anaerobic (thermophilic and mesophilic) and aerobic digesters (algal tanks) during waste remediation were analyzed by culture-independent techniques based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The use of Muyzer's 314F-GC, 518R bacterial primers, and archaeal A934F, 1309R primers followed by partial 16s rDNA sequence analysis of the main bands from DGGE revealed the presence of unknown and as yet uncultured microorganisms but also showed functional and ecologically significant denitrifying, acetogenic bacteria along with autotrophic, hydrogenotrophic, and acetoclastic methanogen archaea. Thermophilic digesters were dominated by gamma-Proteobacteria, Methanothermobacter sp., while mesophilic digesters showed dominance by Firmicutes, uncultured bacteria, Methanosarcina, and Methanoculleus genera. Under aerobic conditions within algal tanks, pH rose from 7.17 to 9.32, with a significant decrease in total ammonia nitrogen, chemical oxygen demand, and soluble phosphorus levels. PCR-DGGE proved a useful tool for investigating the dynamics of microbial community in the bio-processing of piggery wastewater. Knowledge of the microbial communities involved in digestion of piggery wastewater will allow optimization of integrated biosystem by removing the main pollutants like inorganic ammonium-nitrogen, phosphorus, and pathogens from intensive farming system.
Hao, W; Wang, H L; Ning, T T; Yang, F Y; Xu, C C
2015-06-01
The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from 10(7) to 10(10) cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 10(9) cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR.
Hao, W.; Wang, H. L.; Ning, T. T.; Yang, F. Y.; Xu, C. C.
2015-01-01
The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from 107 to 1010 cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 109 cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR. PMID:25925059
Towards sustainable pollution management
NASA Astrophysics Data System (ADS)
Jern, N. G. W.
2017-03-01
It is often overlooked pollution control itself may not be entirely free from adverse impact on the environment if considered from a more holistic perspective. For example mechanised wastewater treatment is energy intensive and so has a carbon footprint because of the need to move air to supply oxygen to the aerobic treatment process. The aerobic treatment process then results in excess bio-sludge which requires disposal and if such is not appropriately performed, then there is risk of surface and groundwater contamination. This presentation explores the changes which have been investigated and are beginning to be implemented in wastewater, sludge, and agro-industrial wastes management which are more environmentally benign. Three examples shall be used to illustrate the discussion. The first example uses the conventional sewage treatment system with a unit process arrangement which converts carbonaceous pollutants from soluble and colloidal forms to particulate forms with an aerobic process before attempting energy recovery with an anaerobic process. Such an arrangement does, however, result in a negative energy balance. This is not withstanding the fact there is potentially more energy in sewage than is required to treat it if that energy can be effectively harvested. The latter can be achieved by removing the carbonaceous pollutants before the aerobic process and thereby using the aerobic process for polishing instead of treating. The carbonaceous pollutants so recovered then becomes the feed for the anaerobic process. Unfortunately conventional anaerobic sludge digestion only removes 35-45% of the organic material fed. Since biogas production (and hence energy recovery) is linked to the amount of organic material which can be degraded anaerobically, the effectiveness of the anaerobic digestion process needs to be improved. Contrary to a commonly held belief wherein methanogenesis is the “bottleneck” in anaerobic processes, hydrolysis is in sludge digestion. Hydrolysis can be enhanced thermally, chemically and biologically. With better anaerobic digestion, the digestate would have more N and P released. The digestate can be blended with organic fertilizers which have been augmented with microbes capable of producing phytohormones. The latter enable crop plants to use inorganic fertilizers more effectively and hence reducing the quantity of inorganic fertilizers required significantly. Use of such organic fertilizers rejuvenates soils which have been subjected to prolonged application of inorganic fertilisers since the latter can result in stagnating or even declining crop yields.
ERIC Educational Resources Information Center
Best, John R.
2010-01-01
Executive function refers to the cognitive processes necessary for goal-directed cognition and behavior, which develop across childhood and adolescence. Recent experimental research indicates that both acute and chronic aerobic exercise promote children's executive function. Furthermore, there is tentative evidence that not all forms of aerobic…
Anttila, Katja; Casselman, Matthew T; Schulte, Patricia M; Farrell, Anthony P
2013-01-01
Temperature affects processes at all levels of biological organization, but it is unclear whether processes at different levels have similar thermal optima (T(opt)). Here, we compare the T(opt) for aerobic scope, a whole-organism measure of performance, with both the Arrhenius breakpoint temperature for maximum heart rate (HR-ABT), a measure of tissue level performance, and the temperature at which AMP-activated protein kinase (AMPK) is phosphorylated in the heart, an indicator of an increase in dependence on anaerobic energy metabolism at the cellular level in juvenile rainbow trout Oncorhynchus mykiss. The T(opt) for aerobic scope was 19°C, with aerobic scope being maintained at ≥90% of maximum (termed a "T(opt) window") from 16.5° to 20.5°C. HR-ABT occurred at [Formula: see text], while the profile of AMPK phosphorylation started to change from baseline at 19°C, suggesting that these processes have similar thermal sensitivities as a fish is warmed to T(opt). The effects of temperature on AMPK phosphorylation were also measured in coho salmon Oncorhynchus kisutch hearts and compared with previously published values for HR-ABT and aerobic scope T(opt). AMPK phosphorylation in coho hearts began to change at temperatures above 17°C, which again is comparable with the published T(opt) for aerobic scope (17°C) and HR-ABT ([Formula: see text]) in these individuals. Thus, the thermal sensitivity of these subcellular, tissue, and whole-organism functions are highly correlated in both rainbow trout and coho salmon and may depend on each other.
Marrero, J; Coto, O; Goldmann, S; Graupner, T; Schippers, A
2015-06-02
Biomining of sulfidic ores has been applied for almost five decades. However, the bioprocessing of oxide ores such as laterites lags commercially behind. Recently, the Ferredox process was proposed to treat limonitic laterite ores by means of anaerobic reductive dissolution (AnRD), which was found to be more effective than aerobic bioleaching by fungi and other bacteria. We show here that the ferric iron reduction mediated by Acidithiobacillus thiooxidans can be applied to an aerobic reductive dissolution (AeRD) of nickel laterite tailings. AeRD using a consortium of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans extracted similar amounts of nickel (53-57%) and cobalt (55-60%) in only 7 days as AnRD using Acidithiobacillus ferrooxidans. The economic and environmental advantages of AeRD for processing of laterite tailings comprise no requirement for an anoxic atmosphere, 1.8-fold less acid consumption than for AnRD, as well as nickel and cobalt recovered in a ferrous-based pregnant leach solution (PLS), facilitating the subsequent metal recovery. In addition, an aerobic acid regeneration stage is proposed. Therefore, AeRD process development can be considered as environmentally friendly for treating laterites with low operational costs and as an attractive alternative to AnRD.
Witt, M.E.; Klecka, G.M.; Lutz, E.J.; Ei, T.A.; Grosso, N.R.; Chapelle, F.H.
2002-01-01
Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally attenuated by a combination of active anaerobic and aerobic biotransformation processes. ?? 2002 Elsevier Science B.V. All rights reserved.
Liu, Lin; Zeng, Zhichao; Bee, Mingyang; Gibson, Valerie; Wei, Lili; Huang, Xu; Liu, Chaoxiang
2018-05-05
The characteristics and performance of algae-bacteria granular consortia which cultivated with aerobic granules and targeted algae (Chlorella and Scenedesmus), and the essential difference between granular consortia and aerobic granules were investigated in this experiment. The result indicated that algae-bacteria granular consortia could be successfully developed, and the algae present in the granular consortia were mainly Chlorella and Scenedesmus. Although the change of chlorophyll composition revealed the occurrence of light limitation for algal growth, the granular consortia could maintain stable granular structure, and even showed better settling property than aerobic granules. Total nitrogen and phosphate in the algal-bacterial granular system showed better removal efficiencies (50.2% and 35.7%) than those in the aerobic granular system (32.8% and 25.6%) within one cycle (6 h). The biodiesel yield of aerobic granules could be significantly improved by algal coupled process, yet methyl linolenate and methyl palmitoleate were the dominant composition of biodiesel obtained from granular consortia and aerobic granules, respectively. Meanwhile, the difference of dominant bacterial communities in the both granules was found at the order level and family level, and alpha diversity indexes revealed the granular consortia had a higher microbial diversity. Copyright © 2018. Published by Elsevier B.V.
Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F
2014-01-01
Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients.
Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment
NASA Astrophysics Data System (ADS)
Zhou, Ruipeng; Yang, Yuanming
2017-05-01
Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.
Marinicella sediminis sp. nov., isolated from marine sediment
USDA-ARS?s Scientific Manuscript database
A novel heterotrophic, Gram-stain-negative, aerobic, rod-shaped, pale yellow, non-motile and non-spore-forming bacterium, designated as strain F2**T, was isolated from the marine sediment collected from Weihai coastal, Shandong Province, PR China. Optimal growth occurred at 33 °C (range 10–37 °C), w...
Ugwuanyi, J Obeta; Harvey, L M; McNeil, B
2007-01-01
Thermophilic Bacillus spp. isolated from thermophilic aerobic digestion (TAD) of model agricultural slurry were screened for ability to secret linamarase activity and degrade linamarin, a cyanogenic glycoside toxin abundant in cassava. Screening was performed by both linamarin - picrate assay and by p-nitrophenyl beta-D-glucoside (PNPG) degradation, and results of both assays were related. Linamarase positive isolates were identified as Bacillus coagulans, Bacillus licheniformis and Bacillus stearothermophilus. Enzyme production was growth related and peak production was reached in 48 h in B. coagulans and 36 h in B. stearothermophilus. B. coagulans produced over 40 times greater activity than B. stearothermophilus. Enzyme productivity in shake flask was not strictly related to screening assay result. Crude enzyme of B. coagulans was optimally active at 75 degrees C while that of B. stearothermophilus was optimally active at 80 degrees C and both had optimum activity at pH 8.0. The thermophilic and neutrophilic- to marginally alkaline activity of the crude enzymes could be very useful in the detoxification and reprocessing of cyanogens containing cassava wastes by TAD for use in animal nutrition.
Eusebi, Anna Laura; Massi, Alessandro; Sablone, Emiliano; Santinelli, Martina; Battistoni, Paolo
2012-01-01
The treatment of industrial liquid wastes is placed in a wide context of technologies and is related to the high variability of the influent physical-chemical characteristics. In this condition, the achievement of satisfactory biological unit efficiency could be complicated. An alternate process (AC) with aerobic and anoxic phases fed in a continuous way was evaluated as an operative solution to optimize the performance of the biological reactor in a platform for the treatment of industrial liquid wastes. The process application has determined a stable quality effluent with an average concentration of 25 mg TN L(-1), according to the law limits. The use of discharged wastewaters as rapid carbon sources to support the anoxic phase of the alternate cycle, realizes a reduction of TN of 95% without impact on the total operative costs. The evaluation of the micro-pollutants behaviour has highlighted a bio-adsorption phenomenon in the first reactor. The implementation of the process defined 31% of energy saving during period 1 and 19% for the periods 2, 3 and 4.
Ahn, K H; Yoo, H; Lee, J W; Maeng, S K; Park, K Y; Song, K G
2001-01-01
Injecting acetate into the sludge layer during the settling and decanting periods was adopted to enhance phosphorus release inside the sludge layer during those periods and phosphorus uptake during the subsequent aeration period in a KIST Intermittently Decanted Extended Aeration (KIDEA) process. The relationship among nitrification, denitrification and phosphorus removal was investigated in detail and analyzed with a qualitative floc model. Dependencies of nitrification on the maximum DO level during the aerobic phase and phosphorus release on residual nitrate concentration during the settling phase were significant. High degree of nitrification resulted that phosphorus release inside the sludge layer was significantly interfered with nitrate due to the limitation of available acetate and the carbon sources from influent. Such limitation was related to the primary utilization of organic substance for denitrification in the outer layer of the floc and the retarded mass transfer into the inner layer of the floc. Nevertheless, effects of acetate injection on both denitrification and phosphorus release during the settling phase were significant. Denitrification rate after acetate injection was two times as high as that before acetate injection, and phosphorus release reached about 14 mg PO4(3-)-P/g MLVSS/hr during the decanting phase after the termination of denitrification inside the sludge layer. Extremely low level of maximum DO (around 0.5 mg/L) during the aerobic phase may inhibited nitrification, considerably, and thus nearly no nitrate was present. However, the absence of nitrate increased when the phosphorus release rate was reached up to 33 mg PO4(3-)-P/g MLVSS/hr during the settling and decanting phase, and nearly all phosphorus was taken up during subsequent aerobic phase. Since the sludge layer could function as a blocking layer, phosphorus concentrations in the supernatant was not influenced by the released phosphorus inside the sludge layer during the settling and decanting period. Phosphorus removal was directly (for uptake) and indirectly (for release) dependent on the median and maximum DO concentration during the aerobic phase, and those optimal values may exist within the range from 0.2 to 0.6 mg/L and 0.4 to 1.2 mg/L, respectively.
Nitzschke, Annika
2018-01-01
The electron transport chain of E. coli contains three different quinone species, ubiquinone (UQ), menaquinone (MK) and demethylmenaquinone (DMK). The content and ratio of the different quinone species vary depending on the external conditions. To study the function of the different quinone species in more detail, strains with deletions preventing UQ synthesis, as well as MK and/or DMK synthesis were cultured under aerobic and anaerobic conditions. The strains were characterized with respect to growth and product synthesis. As quinones are also involved in the control of ArcB/A activity, we analyzed the phosphorylation state of the response regulator as well as the expression of selected genes.The data show reduced aerobic growth coupled to lactate production in the mutants defective in ubiquinone synthesis. This confirms the current assumption that ubiquinone is the main quinone under aerobic growth conditions. In the UQ mutant strains the amount of MK and DMK is significantly elevated. The strain synthesizing only DMK is less affected in growth than the strain synthesizing MK as well as DMK. An inhibitory effect of MK on aerobic growth due to increased oxidative stress is postulated.Under fermentative growth conditions the mutant synthesizing only UQ is severely impaired in growth. Obviously, UQ is not able to replace MK and DMK during anaerobic growth. Mutations affecting quinone synthesis have an impact on ArcA phosphorylation only under anaerobic conditions. ArcA phosphorylation is reduced in strains synthesizing only MK or MK plus DMK. PMID:29614086
Jonasson, Lars S; Nyberg, Lars; Kramer, Arthur F; Lundquist, Anders; Riklund, Katrine; Boraxbekk, Carl-Johan
2016-01-01
Studies have shown that aerobic exercise has the potential to improve cognition and reduce brain atrophy in older adults. However, the literature is equivocal with regards to the specificity or generality of these effects. To this end, we report results on cognitive function and brain structure from a 6-month training intervention with 60 sedentary adults (64-78 years) randomized to either aerobic training or stretching and toning control training. Cognitive functions were assessed with a neuropsychological test battery in which cognitive constructs were measured using several different tests. Freesurfer was used to estimate cortical thickness in frontal regions and hippocampus volume. Results showed that aerobic exercisers, compared to controls, exhibited a broad, rather than specific, improvement in cognition as indexed by a higher "Cognitive score," a composite including episodic memory, processing speed, updating, and executive function tasks ( p = 0.01). There were no group differences in cortical thickness, but additional analyses revealed that aerobic fitness at baseline was specifically related to larger thickness in dorsolateral prefrontal cortex (dlPFC), and hippocampus volume was positively associated with increased aerobic fitness over time. Moreover, "Cognitive score" was related to dlPFC thickness at baseline, but changes in "Cognitive score" and dlPFC thickness were associated over time in the aerobic group only. However, aerobic fitness did not predict dlPFC change, despite the improvement in "Cognitive score" in aerobic exercisers. Our interpretation of these observations is that potential exercise-induced changes in thickness are slow, and may be undetectable within 6-months, in contrast to change in hippocampus volume which in fact was predicted by the change in aerobic fitness. To conclude, our results add to a growing literature suggesting that aerobic exercise has a broad influence on cognitive functioning, which may aid in explaining why studies focusing on a narrower range of functions have sometimes reported mixed results.
Jonasson, Lars S.; Nyberg, Lars; Kramer, Arthur F.; Lundquist, Anders; Riklund, Katrine; Boraxbekk, Carl-Johan
2017-01-01
Studies have shown that aerobic exercise has the potential to improve cognition and reduce brain atrophy in older adults. However, the literature is equivocal with regards to the specificity or generality of these effects. To this end, we report results on cognitive function and brain structure from a 6-month training intervention with 60 sedentary adults (64–78 years) randomized to either aerobic training or stretching and toning control training. Cognitive functions were assessed with a neuropsychological test battery in which cognitive constructs were measured using several different tests. Freesurfer was used to estimate cortical thickness in frontal regions and hippocampus volume. Results showed that aerobic exercisers, compared to controls, exhibited a broad, rather than specific, improvement in cognition as indexed by a higher “Cognitive score,” a composite including episodic memory, processing speed, updating, and executive function tasks (p = 0.01). There were no group differences in cortical thickness, but additional analyses revealed that aerobic fitness at baseline was specifically related to larger thickness in dorsolateral prefrontal cortex (dlPFC), and hippocampus volume was positively associated with increased aerobic fitness over time. Moreover, “Cognitive score” was related to dlPFC thickness at baseline, but changes in “Cognitive score” and dlPFC thickness were associated over time in the aerobic group only. However, aerobic fitness did not predict dlPFC change, despite the improvement in “Cognitive score” in aerobic exercisers. Our interpretation of these observations is that potential exercise-induced changes in thickness are slow, and may be undetectable within 6-months, in contrast to change in hippocampus volume which in fact was predicted by the change in aerobic fitness. To conclude, our results add to a growing literature suggesting that aerobic exercise has a broad influence on cognitive functioning, which may aid in explaining why studies focusing on a narrower range of functions have sometimes reported mixed results. PMID:28149277
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.
Lunt, Sophia Y; Vander Heiden, Matthew G
2011-01-01
Warburg's observation that cancer cells exhibit a high rate of glycolysis even in the presence of oxygen (aerobic glycolysis) sparked debate over the role of glycolysis in normal and cancer cells. Although it has been established that defects in mitochondrial respiration are not the cause of cancer or aerobic glycolysis, the advantages of enhanced glycolysis in cancer remain controversial. Many cells ranging from microbes to lymphocytes use aerobic glycolysis during rapid proliferation, which suggests it may play a fundamental role in supporting cell growth. Here, we review how glycolysis contributes to the metabolic processes of dividing cells. We provide a detailed accounting of the biosynthetic requirements to construct a new cell and illustrate the importance of glycolysis in providing carbons to generate biomass. We argue that the major function of aerobic glycolysis is to maintain high levels of glycolytic intermediates to support anabolic reactions in cells, thus providing an explanation for why increased glucose metabolism is selected for in proliferating cells throughout nature.
Liu, Shugen; Zhu, Nanwen; Li, Loretta Y
2012-01-01
Batch experiment was carried out in a simulated thermophilic aerobic digester to investigate the digestion process of one-stage autothermal thermophilic aerobic digester and to explore the sludge stabilization mechanism. Volatile solids removal was 38.4% at 408 h and 45.0% at 552 h. Chemical oxidation demand, total nitrogen, and ammonia nitrogen in supernatant increased rapidly up to 168 h, and all of them fluctuated moderately after 360 h. Volatile fatty acid (VFA) accumulated rapidly up to 24 to 168 h, then declined sharply, reaching a low concentration after 312 h. Propionic, iso-valeric, and iso-butyric acids, in addition to acetic acids, were also the major components of VFA. As the biochemical metabolic process was inhibited under oxygen-deficiency condition, the digestion system can produce acetic, propionic, butyric acids and other VFA constituents to meet the demand for NAD(+) and maximize ATP generation. The ORP affected the VFA production and depletion as well as sulfate levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C
2014-02-15
The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of process parameters on greenhouse gas generation by wastewater treatment plants.
Yerushalmi, L; Shahabadi, M Bani; Haghighat, F
2011-05-01
The effect of key process parameters on greenhouse gas (GHG) emission by wastewater treatment plants was evaluated, and the governing parameters that exhibited major effects on the overall on- and off-site GHG emissions were identified. This evaluation used aerobic, anaerobic, and hybrid anaerobic/aerobic treatment systems with food processing industry wastewater. The operating temperature of anaerobic sludge digester was identified to have the highest effect on GHG generation in the aerobic treatment system. The total GHG emissions of 2694 kg CO2e/d were increased by 72.5% with the increase of anaerobic sludge digester temperature from 20 to 40 degrees C. The operating temperature of the anaerobic reactor was the dominant controlling parameter in the anaerobic and hybrid treatment systems. Raising the anaerobic reactor's temperature from 25 to 40 degrees C increased the total GHG emissions from 5822 and 6617 kg CO2e/d by 105.6 and 96.5% in the anaerobic and hybrid treatment systems, respectively.
Zhang, Kai; Zhang, Qiaoyang; Jiang, Haifeng; Du, Jiang; Zhou, Chenglin; Yu, Shunying; Hashimoto, Kenji; Zhao, Min
2018-03-17
This study aimed to investigate whether 12-week moderate-intensity aerobic exercise has beneficial effects on oxidative stress markers in blood and on cognitive functions in patients who have methamphetamine dependence. Serum levels of oxidative stress markers, including total anti-oxidation capability, super oxide dismutase (SOD), catalase (CAT), and methane dicarboxylic aldehyde (MDA), were measured at baseline (all participants) and the 12-week follow-up (methamphetamine-dependent patients). Serum levels of CAT and MDA in methamphetamine-dependent patients (n = 68) were higher than those in healthy controls (n = 35) at baseline. Furthermore, the international shopping list (ISL) task scores of methamphetamine-dependent patients were significantly lower than those of the controls, indicating verbal memory deficits in methamphetamine-dependent patients. Although there were no significant interactions for all cognitive function scores, aerobic exercise improved the processing speed in methamphetamine-dependent patients. Of interest, aerobic exercise significantly attenuated a spontaneous increase in serum MDA levels in methamphetamine-dependent patients after 12-weeks of abstinence. In conclusion, this study showed that methamphetamine-dependent patients with verbal learning and memory deficits have higher serum levels of MDA, and that a 12-week aerobic exercise program may have beneficial effects on the processing speed as well as blood lipid peroxidation in methamphetamine-dependent patients. Copyright © 2018. Published by Elsevier B.V.
Li, Kexun; Wang, Yi; Zhang, Zhongpin; Liu, Dongfang
2014-01-01
Batch experiments were conducted to determine the effect of oxidation reduction potential (ORP) on sludge reduction in a bypass micro-aerobic sludge reduction system. The system was composed of a modified oxic-settling-anaerobic process with a sludge holding tank in the sludge recycle loop. The ORPs in the micro-aerobic tanks were set at approximately +350, -90, -150, -200 and -250 mV, by varying the length of aeration time for the tanks. The results show that lower ORP result in greater sludge volume reduction, and the sludge production was reduced by 60% at the lowest ORP. In addition, low ORP caused extracellular polymer substances dissociation and slightly reduced sludge activity. Comparing the sludge backflow characteristics of the micro-aerobic tank's ORP controlled at -250 mV with that of +350 mV, the average soluble chemical oxygen (SCOD), TN and TP increased by 7, 0.4 and 2 times, median particle diameter decreased by 8.5 μm and the specific oxygen uptake rate (SOUR) decreased by 0.0043 milligram O2 per gram suspended solids per minute. For the effluent, SCOD and TN and TP fluctuated around 30, 8.7 and 0.66 mg/L, respectively. Therefore, the effective assignment of ORP in the micro-aerobic tank can remarkably reduce sludge volume and does not affect final effluent quality.
Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles
NASA Astrophysics Data System (ADS)
Shen, Wenjuan; Mu, Yi; Wang, Bingning; Ai, Zhihui; Zhang, Lizhi
2017-01-01
In this study, we demonstrate that the bimetallic iron-nickel nanoparticles (nZVIN) possessed an enhanced performance in comparison with nanoscale zero-valent iron (nZVI) on aerobic degradation of 4-chlorophenol (4-CP). The 4-CP degradation rate constant in the aerobic nZVIN process (nZVIN/Air) was 5 times that in the classic nZVI counterpart system (nZVI/Air). Both reactive oxygen species measurement and inhibition experimental results suggested that hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI, on contrast, superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. High performance liquid chromatography and gas chromatography-mass spectrometer analysis indicated the intermediates of the nZVI/Air system were p-benzoquinone and hydroquinone, which were resulted from the bond cleavage between the chlorine and carbon atom in the benzene ring by hydroxyl radicals. However, the primary intermediates of 4-CP found in the nZVIN/Air system were phenol via the direct dechlorination by superoxide radicals, accompanying with the formation of chloride ions. On the base of experimental results, a superoxide radicals mediated enhancing mechanism was proposed for the aerobic degradation of 4-CP in the nZVIN/Air system. This study provides new insight into the role of bimetallic nickel on enhancing removal of organic pollutants with nZVI.
Recycling crop residues for use in recirculating hydroponic crop production
NASA Technical Reports Server (NTRS)
Mackowiak, C. L.; Garland, J. L.; Sager, J. C.
1996-01-01
As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.
Biodegradation of pulp and paper mill effluent using anaerobic followed by aerobic digestion.
Bishnoi, Narsi R; Khumukcham, R K; Kumar, Rajender
2006-05-01
An experimental study was carried to find out the degradability of black liquor of pulp and paper mill wastewater for biomethanogenesis in continuous stirred tank reactor (CSTR) and followed by activated sludge process (ASP). Continuous stirred tank reactor was used in present study for anaerobic digestion of black liquor, while completely mixed activated sludge system was used for aerobic digestion. A maximum methane production was found up to 430 ml/day, chemical oxygen demand was reduced up to 64% and total volatile fatty acid increased up to 1500 mg/l from 975 mg/l at 7.3 pH, 37 degrees C temperature and 8 days hydraulic retention time during anaerobic digestion. In activated sludge process (aerobic digestion) chemical oxygen demand and biological oxygen demand reduction were 81% and 86% respectively at 72 hr hydraulic retention time.
NASA Astrophysics Data System (ADS)
Kang, Jianxiong; Zhan, Wei; Li, Daosheng; Wang, Xiaocong; Song, Jing; Liu, Dongqi
This study investigated the feasibility of coupling a catalytic wet air oxidation (CWAO), with CuO/Al 2O 3 as catalyst, and an anaerobic/aerobic biological process to treat wastewater from Vitamin B 6 production. Results showed that the CWAO enhanced the biodegradability (BOD 5/COD) from 0.10 to 0.80. The oxidized effluents with COD of 10,000 mg l -1 was subjected to subsequent continuous anaerobic/aerobic oxidation, and 99.3% of total COD removal was achieved. The quality of the effluent obtained met the discharge standards of water pollutants for pharmaceutical industry Chemical Synthesis Products Category (GB21904-2008), and thereby it implies that the integrated CWAO and anaerobic/aerobic biological treatment may offer a promising process to treat wastewater from Vitamin B 6 production.
Altmann, Lori J P; Stegemöller, Elizabeth; Hazamy, Audrey A; Wilson, Jonathan P; Bowers, Dawn; Okun, Michael S; Hass, Chris J
2016-10-01
Parkinson's disease (PD) results in a range of non-motor deficits that can affect mood, cognition, and language, and many of these issues are unresponsive to pharmacological intervention. Aerobic exercise can improve mood and cognition in healthy older adults, although only a few studies have examined exercise effects on these domains in PD. The current study assesses the effects of aerobic exercise on aspects of cognition, mood, and language production in people with PD. This study compares the effects of aerobic exercise to stretch-balance training and a no-contact control group in participants with idiopathic PD. The aerobic and stretch-balance groups trained three times a week for 16 weeks, while controls continued normal activities. Outcome measures included disease severity, mood, cognition (speed of processing, memory, and executive function), and language production (picture descriptions). Cognition and language were assessed in single and dual task conditions. Depressive symptoms increased only in the control group (p<.02). Executive function improved in the aerobic exercise group only in the single task (p=.007) and declined in controls in the dual task. Completeness of picture descriptions improved significantly more in the aerobic group than in the stretch-balance group (p<.02). Aerobic exercise is a viable intervention for PD that can be protective against increased depressive symptoms, and can improve several non-motor domains, including executive dysfunction and related aspects of language production. (JINS, 2016, 22, 878-889).
Association of Physical Activity by Type and Intensity With Digestive System Cancer Risk.
Keum, NaNa; Bao, Ying; Smith-Warner, Stephanie A; Orav, John; Wu, Kana; Fuchs, Charles S; Giovannucci, Edward L
2016-09-01
Accumulating evidence indicates that common carcinogenic pathways may underlie digestive system cancers. Physical activity may influence these pathways. Yet, to our knowledge, no previous study has evaluated the role of physical activity in overall digestive system cancer risk. To examine the association between physical activity and digestive system cancer risk, accounting for amount, type (aerobic vs resistance), and intensity of physical activity. A prospective cohort study followed 43 479 men from the Health Professionals Follow-up Study from 1986 to 2012. At enrollment, the eligible participants were 40 years or older, were free of cancer, and reported physical activity. Follow-up rates exceeded 90% in each 2-year cycle. The amount of total physical activity expressed in metabolic equivalent of task (MET)-hours/week. Incident cancer of the digestive system encompassing the digestive tract (mouth, throat, esophagus, stomach, small intestine, and colorectum) and digestive accessory organs (pancreas, gallbladder, and liver). Over 686 924 person-years, we documented 1370 incident digestive system cancers. Higher levels of physical activity were associated with lower digestive system cancer risk (hazard ratio [HR], 0.74 for ≥63.0 vs ≤8.9 MET-hours/week; 95% CI, 0.59-0.93; P value for trend = .003). The inverse association was more evident with digestive tract cancers (HR, 0.66 for ≥63.0 vs ≤8.9 MET-hours/week; 95% CI, 0.51-0.87) than with digestive accessary organ cancers. Aerobic exercise was particularly beneficial against digestive system cancers, with the optimal benefit observed at approximately 30 MET-hours/week (HR, 0.68; 95% CI, 0.56-0.83; P value for nonlinearity = .02). Moreover, as long as the same level of MET-hour score was achieved from aerobic exercise, the magnitude of risk reduction was similar regardless of intensity of aerobic exercise. Physical activity, as indicated by MET-hours/week, was inversely associated with the risk of digestive system cancers, particularly digestive tract cancers, in men. The optimal benefit was observed through aerobic exercise of any intensity at the equivalent of energy expenditure of approximately 10 hours/week of walking at average pace. Future studies are warranted to confirm our findings and to translate them into clinical and public health recommendation.
van der Kolk, Nicolien M; Overeem, Sebastiaan; de Vries, Nienke M; Kessels, Roy P C; Donders, Rogier; Brouwer, Marc; Berg, Daniela; Post, Bart; Bloem, Bas R
2015-04-16
Parkinson's disease (PD) is a neurodegenerative disorder with a wide range of motor and non-motor symptoms. Despite optimal medical management, PD still results in a high disability rate and secondary complications and many patients lead a sedentary lifestyle, which in turn is also associated with a higher co-morbidity and mortality. Exercise has been explored as a strategy to reduce secondary complications and results suggests that it not only provides general health benefits, but may also provide symptomatic relief. If this holds true exercise would be a very attractive addition to the therapeutic arsenal in PD. The supportive evidence remains incomplete. Here, we describe the design of the Park-in-Shape study, which primarily aims to evaluate whether aerobic exercise affords clinically relevant improvements in motor symptoms in sedentary PD patients. A specific new element is the introduction of gaming to optimize compliance to the exercise intervention. The Park-in-Shape study is a randomized controlled, assessor- and patient-blinded single center study. Two parallel groups will include a total of 130 patients, receiving either aerobic exercise on a home trainer equipped with gaming elements ("exergaming"), or a non-aerobic intervention (stretching, flexibility and relaxation exercises). Both groups are supported by a specifically designed motivational app that uses gaming elements to stimulate patients to exercise and rewards them after having completed the exercise. Both interventions are delivered at home at least 3 times a week for 30-45 minutes during 6 months. Eligible patients are community-dwelling, sedentary patients diagnosed with mild-moderate PD. The primary outcome is the MDS-UPDRS motor score (tested in the off state) after 6 months. Secondary outcomes include various motor and non-motor symptoms, quality of life, physical fitness, and adherence. This Park-in-Shape study is anticipated to answer the question whether high intensity aerobic exercise combined with gaming elements ("exergaming") provides symptomatic relief in PD. Strong elements include the double-blinded randomized controlled trial design, the MDS-UPDRS as valid primary outcome, the large sample size and unique combination of home-based pure aerobic exercise combined with gaming elements and motivational aspects. Dutch trial register NTR4743.
Association of physical activity by type and intensity with digestive system cancer risk
Keum, NaNa; Bao, Ying; Smith-Warner, Stephanie A.; Orav, John; Wu, Kana; Fuchs, Charles S.; Giovannucci, Edward L.
2018-01-01
Importance Accumulating evidence indicates that common carcinogenic pathways may underlie digestive system cancers. Physical activity may influence these pathways, yet no previous study has evaluated the role of physical activity in overall digestive system cancer risk. Objective To examine the association between physical activity and digestive system cancer risk, accounting for amount, type (aerobic versus resistance), and intensity of physical activity. Design A prospective cohort study followed from 1986 to 2012. Setting Male health professionals living in the general community in the US Participants Eligible participants were 40 years or older, were free of cancer, and reported physical activity. Out of 51,529 individuals, 43,479 were followed-up, with follow-up rates exceeding 90% in each 2-year cycle. Exposures The amount of total physical activity expressed in metabolic equivalent of task [MET]-hours/week Main Outcomes and Measures Incident cancer of the digestive system encompassing the digestive tract (mouth, throat, esophagus, stomach, small intestine, and colorectum) and digestive accessory organs (pancreas, gallbladder, and liver). Results Over 686,924 person-years, we documented 1,370 incident digestive system cancers. Higher levels of physical activity were associated with lower digestive system cancer risk (hazard ratio [HR], 0.74 for 63+ versus ≤8.9 MET-hours/week; 95% confidence interval [CI], 0.59-0.93; P for trend, .003). The inverse association was more evident with digestive tract cancers (HR, 0.66 for 63+ versus ≤8.9 MET-hours/week; 95% CI, 0.51-0.87) than with digestive accessary organ cancers. Aerobic exercise was particularly beneficial against digestive system cancers, with the optimal benefit observed at approximately 30 MET-hours/week (HR, 0.68; 95% CI, 0.56-0.83; Pnon-linearity, 0.02). Moreover, as long as the same level of MET-hour score was achieved from aerobic exercise, the magnitude of risk reduction was similar regardless of intensity of aerobic exercise. Conclusion and Relevance Physical activity, as indicated by MET-hours/week, was inversely associated with the risk of digestive system cancers, particularly digestive tract cancers, in men. The optimal benefit was observed through aerobic exercise of any intensity at the equivalent of energy expenditure of approximately 10 hours/week of walking at average pace. Future studies are warranted to confirm our findings and to translate them into clinical and public health recommendation. PMID:27196375
NASA Astrophysics Data System (ADS)
Yi, Xuenong; Wang, Yulin
2017-06-01
A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.
Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui
2017-04-01
A novel cleaner ethanol production process has been developed. Thin stillage is treated initially by anaerobic digestion followed by aerobic digestion and then further treated by chloride anion exchange resin. This allows the fully-digested and resin-treated stillage to be completely recycled for use as process water in the next ethanol fermentation batch, which eliminates wastewater discharges and minimizes consumption of fresh water. The method was evaluated at the laboratory scale. Process parameters were very similar to those found using tap water. Maximal ethanol production rate in the fully-recycled stillage was 0.9g/L/h, which was similar to the 0.9g/L/h found with the tap water control. The consumption of fresh water was reduced from 4.1L/L (fresh water/ethanol) to zero. Compared with anaerobically-aerobically digested stillage which had not been treated with resin, the fermentation time was reduced by 28% (from 72h to 52h) and reached the level achieved with tap water. This novel process can assist in sustainable development of the ethanol industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mantilla-Calderon, David
2017-01-01
ABSTRACT The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic resistance gene was detected in the aerobic sludge by a cultivation method. A subpopulation of persister E. coli cells was also detected in the aerobic sludge. The findings of this study suggest potential areas of concern arising from pathogenic and antibiotic-resistant E. coli during both anaerobic and aerobic sludge treatment processes. PMID:28411227
Mantilla-Calderon, David; Hong, Pei-Ying
2017-07-01
The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic resistance gene was detected in the aerobic sludge by a cultivation method. A subpopulation of persister E. coli cells was also detected in the aerobic sludge. The findings of this study suggest potential areas of concern arising from pathogenic and antibiotic-resistant E. coli during both anaerobic and aerobic sludge treatment processes. Copyright © 2017 Mantilla-Calderon and Hong.
NASA Astrophysics Data System (ADS)
Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid
2018-02-01
The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.
Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions
NASA Astrophysics Data System (ADS)
Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.
2014-12-01
Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the existing animal waste management processes to control manure-borne pathogens.
Dienel, Gerald A; Cruz, Nancy F
2016-07-01
Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain activation. Aerobic glycolysis, the preferential up-regulation of glucose utilization (CMRglc ) compared with oxygen consumption (CMRO2 ) during brain activation, is blocked by propranolol. Epinephrine release from the adrenal gland stimulates vagus nerve signaling to the locus coeruleus, enhancing norepinephrine release in the brain, and regulation of astrocytic and neuronal metabolism to stimulate CMRglc more than CMRO2 . Propranolol suppresses CMRglc more than CMRO2 . © 2016 International Society for Neurochemistry.
Person-Centered, Physical Activity for Patients with Low Back Pain: Piloting Service Delivery
Bloxham, Saul; Barter, Phil; Scragg, Slafka; Peers, Charles; Jane, Ben; Layden, Joe
2016-01-01
Low back pain (LBP) is one of the most common and costly conditions in industrialized countries. Exercise therapy has been used to treat LBP, although typically using only one mode of exercise. This paper describes the method and initial findings of a person-centered, group physical activity programme which featured as part of a multidisciplinary approach to treating LBP. Six participants (aged 50.7 ± 17 years) completed a six-week physical activity programme lasting two hours per week. A multicomponent approach to physical activity was adopted which included aerobic fitness, core activation, muscular strength and endurance, Nordic Walking, flexibility and exercise gaming. In addition, participants were required to use diary sheets to record physical activity completed at home. Results revealed significant (p < 0.05) improvements in back strength (23%), aerobic fitness (23%), negative wellbeing (32%) and disability (16%). Person’s Correlation Coefficient analysis revealed significant (p < 0.05) relationships between improvement in perceived pain and aerobic fitness (r = 0.93). It was concluded that a person-centered, multicomponent approach to physical activity may be optimal for supporting patients who self-manage LBP. PMID:27417616
Chen, X; Fujiwara, T; Ohtoshi, K; Inamori, S; Nakamachi, K; Tsuno, H
2010-01-01
A novel oxidation ditch system using anaerobic tanks and innovative dual dissolved oxygen (DO) control technology is proposed for biological nitrogen and phosphorus removal from domestic sewage. A continuous bench-scale experiment running for more than 300 days was performed to evaluate the system. Monitoring and controlling the airflow and recirculation flow rate independently using DO values at two points along the ditch permitted maintenance of aerobic and anoxic zone ratios of around 0.30 and 0.50, respectively. The ability to optimize aerobic and anoxic zone ratios using the dual DO control technology meant that a total nitrogen removal efficiency of 83.2-92.9% could be maintained. This remarkable nitrogen removal performance minimized the nitrate recycle to anaerobic tanks inhibiting the phosphorus release. Hence, the total phosphorus removal efficiency was also improved and ranged within 72.6-88.0%. These results demonstrated that stabilization of the aerobic and anoxic zone ratio by dual DO control technology not only resulted in a marked improvement of nitrogen removal, but it also enhanced phosphorus removal.
Merrylin, J; Kaliappan, S; Kumar, S Adish; Yeom, Ick-Tae; Banu, J Rajesh
2014-01-01
A protease-secreting bacteria was used to pretreat municipal sewage sludge to enhance aerobic digestion. To enhance the accessibility of the sludge to the enzyme, extracellular polymeric substances were removed using citric acid thereby removing the flocs in the sludge. The conditions for the bacterial pretreatment were optimized using response surface methodology. The results of the bacterial pretreatment indicated that the suspended solids reduction was 18% in sludge treated with citric acid and 10% in sludge not treated with citric acid whereas in raw sludge, suspended solids reduction was 5.3%. Solubilization was 10.9% in the sludge with extracellular polymeric substances removed in contrast to that of the sludge with extracellular polymeric substances, which was 7.2%, and that of the raw sludge, which was just 4.8%. The suspended solids reduction in the aerobic reactor containing pretreated sludge was 52.4% whereas that in the control reactor was 15.3%. Thus, pretreatment with the protease-secreting bacteria after the removal of extracellular polymeric substances is a cost-effective and environmentally friendly method.
Maldonado, Karin; Sabat, Pablo; Piriz, Gabriela; Bogdanovich, José M; Nespolo, Roberto F; Bozinovic, Francisco
2016-01-01
Food availability varies substantially throughout animals' lifespans, thus the ability to profit from high food levels may directly influence animal fitness. Studies exploring the link between basal metabolic rate (BMR), growth, reproduction, and other fitness traits have shown varying relationships in terms of both magnitude and direction. The diversity of results has led to the hypothesis that these relationships are modulated by environmental conditions (e.g., food availability), suggesting that the fitness consequences of a given BMR may be context-dependent. In turn, there is indirect evidence that individuals with an increased capacity for aerobic work also have a high capacity for acquiring energy from food. Surprisingly, very few studies have explored the correlation between maximum rates of energy acquisition and BMR in endotherms, and to the best of our knowledge, none have attempted to elucidate relationships between the former and aerobic capacity [e.g., maximum metabolic rate (MMR), aerobic scope (Factorial aerobic scope, FAS; Net aerobic scope, NAS)]. In this study, we measured BMR, MMR, maximum food intake (recorded under low ambient temperature and ad libitum food conditions; MFI), and estimated aerobic scope in the leaf-eared mouse ( Phyllotis darwini ). We, then, examined correlations among these variables to determine whether metabolic rates and aerobic scope are functionally correlated, and whether an increased aerobic capacity is related to a higher MFI. We found that aerobic capacity measured as NAS is positively correlated with MFI in endotherms, but with neither FAS nor BMR. Therefore, it appears plausible that the capacity for assimilating energy under conditions of abundant resources is determined adaptively by NAS, as animals with higher NAS would be promoted by selection. In theory, FAS is an invariant measurement of the extreme capacity for energy turnover in relation to resting expenditure, whereas NAS represents the maximum capacity for simultaneous aerobic processes above maintenance levels. Accordingly, in our study, FAS and NAS represent different biological variables; FAS, in contrast to NAS, may not constrain food intake. The explanations for these differences are discussed in biological and mathematical terms; further, we encourage the use of NAS rather than FAS when analyzing the aerobic capacity of animals.
Yoshikawa, Miho; Zhang, Ming; Toyota, Koki
2017-01-01
Complete bioremediation of soils containing multiple volatile organic compounds (VOCs) remains a challenge. To explore the possibility of complete bioremediation through integrated anaerobic-aerobic biodegradation, laboratory feasibility tests followed by alternate anaerobic-aerobic and aerobic-anaerobic biodegradation tests were performed. Chlorinated ethylenes, including tetrachloroethylene (PCE), trichloroethylene (TCE), cis -dichloroethylene ( cis -DCE), and vinyl chloride (VC), and dichloromethane (DCM) were used for anaerobic biodegradation, whereas benzene, toluene, and DCM were used for aerobic biodegradation tests. Microbial communities involved in the biodegradation tests were analyzed to characterize the major bacteria that may contribute to biodegradation. The results demonstrated that integrated anaerobic-aerobic biodegradation was capable of completely degrading the seven VOCs with initial concentration of each VOC less than 30 mg/L. Benzene and toluene were degraded within 8 days, and DCM was degraded within 20 to 27 days under aerobic conditions when initial oxygen concentrations in the headspaces of test bottles were set to 5.3% and 21.0%. Dehalococcoides sp., generally considered sensitive to oxygen, survived aerobic conditions for 28 days and was activated during the subsequent anaerobic biodegradation. However, degradation of cis -DCE was suppressed after oxygen exposure for more than 201 days, suggesting the loss of viability of Dehalococcoides sp., as they are the only known anaerobic bacteria that can completely biodegrade chlorinated ethylenes to ethylene. Anaerobic degradation of DCM following previous aerobic degradation was complete, and yet-unknown microbes may be involved in the process. The findings may provide a scientific and practical basis for the complete bioremediation of multiple contaminants in situ and a subject for further exploration.
Ritter, Katrina G; Hussey, Matthew J; Valovich McLeod, Tamara C
2017-09-27
Clinical Scenario: Patients who experience prolonged concussion symptoms can be diagnosed with Post-Concussion Syndrome (PCS) when those symptoms persist past 4 weeks. Aerobic exercise protocols have been shown to be effective in improving physical and mental aspects of health. Emerging research suggests that aerobic exercise maybe useful as a treatment for PCS, where exercise allows patients to feel less isolated and more active during the recovery process. Is aerobic exercise more beneficial in reducing symptoms than current standard care in patients with prolonged symptoms or PCS lasting longer than 4 weeks? Summary of Key Findings: After a thorough literature search, 4 studies were selected relevant to the clinical question. Of the 4 studies, 1 was a randomized control trial and 3 were case series. All 4 studies investigate aerobic exercise protocol as treatment for PCS. 1-4 Three articles demonstrated a greater rate of symptom improvement from baseline assessment to follow-up after a controlled sub-symptomatic aerobic exercise program. 2-4 One study showed a decrease in symptoms in the aerobic exercise group compared to the full body stretching group. 1 Clinical Bottom Line: There is moderate evidence to support sub-symptomatic aerobic exercise as a treatment of PCS, therefore it should be considered as a clinical option for reducing PCS and prolonged concussion symptoms. A previously validated protocol, such as the Buffalo Concussion Treadmill Test, Balke Protocol, or Rating of Perceived Exertion (RPE) as mentioned in this critically appraised topic should be used to measure baseline values and treatment progression. Strength of Recommendation: Level C evidence exists that aerobic exercise protocol is more effective than the current standard of care in treating PCS.
Ou, Hua-Se; Wei, Chao-Hai; Mo, Ce-Hui; Wu, Hai-Zhen; Ren, Yuan; Feng, Chun-Hua
2014-10-01
Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) was applied to investigate the contaminant removal efficiency and fluorescent characteristic variations in a full scale coke wastewater (CWW) treatment plant with a novel anoxic/aerobic(1)/aerobic(2) (A/O(1)/O(2)) process, which combined with internal-loop fluidized-bed reactor. Routine monitoring results indicated that primary contaminants in CWW, such as phenols and free cyanide, were removed efficiently in A/O(1)/O(2) process (removal efficiency reached 99% and 95%, respectively). Three-dimensional excitation-emission matrix fluorescence spectroscopy and PARAFAC identified three fluorescent components, including two humic-like fluorescence components (C1 and C3) and one protein-like component (C2). Principal component analysis revealed that C1 and C2 correlated with COD (correlation coefficient (r)=0.782, p<0.01 and r=0.921, p<0.01), respectively) and phenols (r=0.796, p<0.01 and r=0.914, p<0.01, respectively), suggesting that C1 and C2 might be associated with the predominating aromatic contaminants in CWW. C3 correlated with mixed liquor suspended solids (r=0.863, p<0.01) in fluidized-bed reactors, suggesting that it might represent the biological dissolved organic matter. In A/O(1)/O(2) process, the fluorescence intensities of C1 and C2 consecutively decreased, indicating the degradation of aromatic contaminants. Correspondingly, the fluorescence intensity of C3 increased in aerobic(1) stage, suggesting an increase of biological dissolved organic matter. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xue, Weiqi; Hao, Tianwei; Mackey, Hamish R; Li, Xiling; Chan, Richard C; Chen, Guanghao
2017-11-01
Sulfate-rich wastewaters pose a major threat to mainstream wastewater treatment due to the unpreventable production of sulfide and associated shift in functional bacteria. Aerobic granular sludge could mitigate these challenges in view of its high tolerance and resilience against changes in various environmental conditions. This study aims to confirm the feasibility of aerobic granular sludge in the treatment of sulfate containing wastewater, investigate the impact of sulfate on nutrient removal and granulation, and reveal metabolic relationships in the above processes. Experiments were conducted using five sequencing batch reactors with different sulfate concentrations operated under alternating anoxic/aerobic condition. Results showed that effect of sulfate on chemical oxygen demand (COD) removal is negligible, while phosphate removal was enhanced from 12% to 87% with an increase in sulfate from 0 to 200 mg/L. However, a long acclimatization of the biomass (more than 70 days) is needed at a sulfate concentration of 500 mg/L and a total deterioration of phosphate removal at 1000 mg/L. Batch tests revealed that sulfide promoted volatile fatty acids (VFAs) uptake, producing more energy for phosphate uptake when sulfate concentrations were beneath 200 mg/L. However, sulfide detoxification became energy dominating, leaving insufficient energy for Polyhydroxyalkanoate (PHA) synthesis and phosphate uptake when sulfate content was further increased. Granulation accelerated with increasing sulfate levels by enhanced production of N-Acyl homoserine lactones (AHLs), a kind of quorum sensing (QS) auto-inducer, using S-Adenosyl Methionine (SAM) as primer. The current study demonstrates interactions among sulfate metabolism, nutrients removal and granulation, and confirms the feasibility of using the aerobic granular sludge process for sulfate-laden wastewaters treatment with low to medium sulfate content. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism
Boyd, Eric S.; Costas, Amaya M. Garcia; Hamilton, Trinity L.; Mus, Florence
2015-01-01
ABSTRACT Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and later diversified into aerobes. Here we show that the transition of Nif from anaerobic to aerobic metabolism was accompanied by both gene recruitment and gene loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes is strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protective mechanisms. Rather, gene recruitment was likely a response to more efficiently regulate Nif under oxic conditions that favor protein turnover. PMID:25733617
Assessment of anaerobic blood cultures in pediatric oncology patients.
Monsonís Cabedo, Manuel; Rives Solá, Susana; Noguera-Julian, Antoni; Urrea Ayala, Mireia; Cruz Martinez, Ofelia; Gené Giralt, Amadeu
2017-01-01
The routine use of a single aerobic bottle for blood culture in pediatric patients has become commonplace, as anaerobic bacteria are not frequently involved in clinically significant infections. The aim of this study was to assess the usefulness of routinely performing anaerobic blood cultures in pediatric oncology patients. Prospective study was conducted on pediatric (<18 years) patients affected with febrile syndrome after receiving chemotherapy for hematological or solid malignancies. Samples were inoculated into pediatric aerobic and standard anaerobic bottles (BacT/Alert automatic system). Strains were considered clinically significant, or deemed as contaminants, depending on isolation circumstances and clinical criteria. A total of 876 blood cultures from 228 patients were processed during the 21-month study period (January 2014 to September 2015). Baseline diagnosis included 143 solid tumors and 67/18 cases of leukemia/lymphoma. Bacterial growth was detected in 90 (10.2%) blood cultures for 95 different isolates, of which 62 (7.1%)/63 isolates were considered clinically significant. Among the latter, 38 (60.3%) microorganisms grew in both aerobic and anaerobic bottles, 18 (28.6%) only in aerobic bottles, and 7 (11.1%) only in anaerobic bottles. Gram-negative bacilli (33; 52.4%), mainly from the Enterobacteriaceae family, were the most frequently isolated microorganisms. Overall, only 3 out of 90 isolates (3.3%) were strict anaerobes (Propionibacterium acnes), and all of them were deemed contaminants. Strict anaerobes did not cause significant infections in febrile pediatric oncology patients, and anaerobic blood culture bottles offered no additional advantages over aerobic media. Our results suggest that routine blood cultures should be solely processed in aerobic media in this group of patients. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Update in the understanding of altitude-induced limitations to performance in team-sport athletes
Billaut, François; Aughey, Robert J
2013-01-01
The internationalism of field-based team sports (TS) such as football and rugby requires teams to compete in tournaments held at low to moderate altitude (∼1200–2500 m). In TS, acceleration, speed and aerobic endurance are physical characteristics associated with ball possession and, ultimately, scoring. While these qualities are affected by the development of neuromuscular fatigue at sea level, arterial hypoxaemia induced by exposure to altitude may further hinder the capacity to perform consecutive accelerations (CAC) or sprint endurance and thereby change the outcome of a match. The higher the altitude, the more severe the hypoxaemia, and thus, the larger the expected decline in aerobic endurance, CAC and match running performance. Therefore, it is critical for athletes and coaches to understand how arterial hypoxaemia affects aerobic endurance and CAC and the magnitude of decline they may face at altitude for optimal preparation and increased chances of success. This mini review summarises the effects of acute altitude/hypoxia exposure on aerobic endurance, CAC and activity profiles of TS athletes performing in the laboratory and during matches at natural altitude, and analyses the latest findings about the consequences of arterial hypoxaemia on the relationship between peripheral perturbations, neural adjustments and performance during repeated sprints or CAC. Finally, we briefly discuss how altitude training can potentially help athletes prepare for competition at altitude. PMID:24282202
Update in the understanding of altitude-induced limitations to performance in team-sport athletes.
Billaut, François; Aughey, Robert J
2013-12-01
The internationalism of field-based team sports (TS) such as football and rugby requires teams to compete in tournaments held at low to moderate altitude (∼1200-2500 m). In TS, acceleration, speed and aerobic endurance are physical characteristics associated with ball possession and, ultimately, scoring. While these qualities are affected by the development of neuromuscular fatigue at sea level, arterial hypoxaemia induced by exposure to altitude may further hinder the capacity to perform consecutive accelerations (CAC) or sprint endurance and thereby change the outcome of a match. The higher the altitude, the more severe the hypoxaemia, and thus, the larger the expected decline in aerobic endurance, CAC and match running performance. Therefore, it is critical for athletes and coaches to understand how arterial hypoxaemia affects aerobic endurance and CAC and the magnitude of decline they may face at altitude for optimal preparation and increased chances of success. This mini review summarises the effects of acute altitude/hypoxia exposure on aerobic endurance, CAC and activity profiles of TS athletes performing in the laboratory and during matches at natural altitude, and analyses the latest findings about the consequences of arterial hypoxaemia on the relationship between peripheral perturbations, neural adjustments and performance during repeated sprints or CAC. Finally, we briefly discuss how altitude training can potentially help athletes prepare for competition at altitude.
Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion.
Jin, Yiying; Li, Huan; Mahar, Rasool Bux; Wang, Zhiyu; Nie, Yongfeng
2009-01-01
Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these two methods were investigated. The evaluation was based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the subsequent aerobic digestion. For WAS samples with combined pretreatment, the released COD levels were higher than those with ultrasonic or alkaline pretreatment alone. When combined with the ultrasonic treatment, NaOH treatment was more efficient than Ca(OH)2 for WAS solubilization. The COD levels released in various sequential options of combined NaOH and ultrasonic treatments were in the the following descending order: simultaneous treatment > NaOH treatment followed by ultrasonic treatment > ultrasonic treatment followed by NaOH treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7500 kJ/kg dry solid) were suitable for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with optimal parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than that with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.
Reduced Modulation of Pain in Older Adults After Isometric and Aerobic Exercise.
Naugle, Kelly M; Naugle, Keith E; Riley, Joseph L
2016-06-01
Laboratory-based studies show that acute aerobic and isometric exercise reduces sensitivity to painful stimuli in young healthy individuals, indicative of a hypoalgesic response. However, little is known regarding the effect of aging on exercise-induced hypoalgesia (EIH). The purpose of this study was to examine age differences in EIH after submaximal isometric exercise and moderate and vigorous aerobic exercise. Healthy older and younger adults completed 1 training session and 4 testing sessions consisting of a submaximal isometric handgrip exercise, vigorous or moderate intensity stationary cycling, or quiet rest (control). The following measures were taken before and after exercise/quiet rest: 1) pressure pain thresholds, 2) suprathreshold pressure pain ratings, 3) pain ratings during 30 seconds of prolonged noxious heat stimulation, and 4) temporal summation of heat pain. The results revealed age differences in EIH after isometric and aerobic exercise, with younger adults experiencing greater EIH compared with older adults. The age differences in EIH varied across pain induction techniques and exercise type. These results provide evidence for abnormal pain modulation after acute exercise in older adults. This article enhances our understanding of the influence of a single bout of exercise on pain sensitivity and perception in healthy older compared with younger adults. This knowledge could help clinicians optimize exercise as a method of pain management. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Said, A. A.; Mustafa
2018-02-01
A small proportion of the Palm Oil Mill Effluent (POME) treatment has used its wastewater to converted to methane gas which will then be converted again into electrical energy. However, for Palm Oil Mill whose has a value of Chemical Oxygen Demand in its wastewater is less than 60.000 mg / L this can’t so that the purpose wastewater treatment only to reach the standard that can be safe to dispose into the environment. Wastewater treatment systems that are general applied by Palm Oil Mill especially in North Sumatera are aerobic and anaerobic, this method takes a relatively long time due to very dependent on microbial activity. An alternative method for wastewater treatment offered is membrane technology because the process is much more effective, the time is relatively short, and expected to give more optimal result. The optimum membrane obtained is PSF19%DMFEVA2T75 membrane,while the parameter condition of the permeate analysis produced in the treatment of POME wastewater with membrane PSF19%DMFEVA2T75 obtained at pH = 7.0; TSS = 148 mg / L; BOD = 149 mg / L; And COD = 252 mg / L. The results obtained is accordance with the standard of the quality of POME.
Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana
2012-01-01
An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study.
Rafieenia, Razieh; Girotto, Francesca; Peng, Wei; Cossu, Raffaello; Pivato, Alberto; Raga, Roberto; Lavagnolo, Maria Cristina
2017-01-01
Aerobic pre-treatment was applied prior to two-stage anaerobic digestion process. Three different food wastes samples, namely carbohydrate rich, protein rich and lipid rich, were prepared as substrates. Effect of aerobic pre-treatment on hydrogen and methane production was studied. Pre-aeration of substrates showed no positive impact on hydrogen production in the first stage. All three categories of pre-aerated food wastes produced less hydrogen compared to samples without pre-aeration. In the second stage, methane production increased for aerated protein rich and carbohydrate rich samples. In addition, the lag phase for carbohydrate rich substrate was shorter for aerated samples. Aerated protein rich substrate yielded the best results among substrates for methane production, with a cumulative production of approximately 351ml/gVS. With regard to non-aerated substrates, lipid rich was the best substrate for CH 4 production (263ml/gVS). Pre-aerated P substrate was the best in terms of total energy generation which amounted to 9.64kJ/gVS. This study revealed aerobic pre-treatment to be a promising option for use in achieving enhanced substrate conversion efficiencies and CH 4 production in a two-stage AD process, particularly when the substrate contains high amounts of proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chengkuizengella sediminis gen. nov. sp. nov., isolated from sediment
USDA-ARS?s Scientific Manuscript database
A Gram-strain-positive, aerobic, motile, endospore-forming bacterium, designated strain J15A17T, was isolated from sediment of the South China Sea. The strain was oxidase-positive and catalase-negative. Optimal growth occurred at 33', pH 7.5 and in the presence of 3% (w/v) NaCl. On the basis of 16S ...
Wilén, Britt-Marie; Liébana, Raquel; Persson, Frank; Modin, Oskar; Hermansson, Malte
2018-06-01
Granular activated sludge has gained increasing interest due to its potential in treating wastewater in a compact and efficient way. It is well-established that activated sludge can form granules under certain environmental conditions such as batch-wise operation with feast-famine feeding, high hydrodynamic shear forces, and short settling time which select for dense microbial aggregates. Aerobic granules with stable structure and functionality have been obtained with a range of different wastewaters seeded with different sources of sludge at different operational conditions, but the microbial communities developed differed substantially. In spite of this, granule instability occurs. In this review, the available literature on the mechanisms involved in granulation and how it affects the effluent quality is assessed with special attention given to the microbial interactions involved. To be able to optimize the process further, more knowledge is needed regarding the influence of microbial communities and their metabolism on granule stability and functionality. Studies performed at conditions similar to full-scale such as fluctuation in organic loading rate, hydrodynamic conditions, temperature, incoming particles, and feed water microorganisms need further investigations.
Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.
Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen
2016-02-04
A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.
USDA-ARS?s Scientific Manuscript database
For health reasons, people are consuming fresh juices or minimally processed fruit and vegetable juices, thereby, exposing themselves to the risk of foodborne illness if such juices are contaminated with bacteria pathogens. Behavior of aerobic mesophilic bacteria, Escherichia coli O157:H7 and Salmon...
Li, Xianwei; He, Li; Chen, Huoji; Wu, Wanqing; Jiang, Huanfeng
2013-04-19
A simple, practical, and highly efficient synthesis of pyrazoles and indazoles via copper-catalyzed direct aerobic oxidative C(sp(2))-H amination has been reported herein. This process tolerated a variety of functional groups under mild conditions. Further diversification of pyrazoles was also investigated, which provided its potential for drug discovery.
Beltrán, F J; Alvarez, P M; Rodríguez, E M; García-Araya, J F; Rivas, J
2001-01-01
The performance of integrated aerobic digestion and ozonation for the treatment of high strength distillery wastewater (i.e., cherry stillage) is reported. Experiments were conducted in laboratory batch systems operating in draw and fill mode. For the biological step, activated sludge from a municipal wastewater treatment facility was used as inoculum, showing a high degree of activity to distillery wastewater. Thus, BOD and COD overall conversions of 95% and 82% were achieved, respectively. However, polyphenol content and absorbance at 254 nm (A(254)) could not be reduced more than 35% and 15%, respectively, by means of single biological oxidation. By considering COD as substrate, the aerobic digestion process followed a Contois' model kinetics, from which the maximum specific growth rate of microorganisms (mu(max)) and the inhibition factor, beta, were then evaluated at different conditions of temperature and pH. In the combined process, the effect of a post-ozonation stage was studied. The main goals achieved by the ozonation step were the removal of polyphenols and A(254). Therefore, ozonation was shown to be an appropriate technology to aid aerobic biological oxidation in the treatment of cherry stillage.
Jones, Matthew D; Booth, John; Taylor, Janet L; Barry, Benjamin K
2016-10-01
In healthy individuals and people with chronic pain, an inverse association between physical activity level and pain has been reported. Associations between objectively measured fitness and pain have also been found in people with chronic pain, but it is not clear whether the same relations are apparent in healthy individuals. The purpose of the present study was to examine the relation between aerobic capacity and pain in healthy individuals. Pressure pain threshold, ischemic pain tolerance, and pain ratings during ischemia were assessed and analyzed in relation to aerobic capacity in 35 healthy individuals. Correlation and multiple linear regression were used to analyze the data. Data from previous similar studies in healthy individuals and people with fibromyalgia were extracted and collated by literature review to support interpretation of the experimental data. No relation was found between aerobic capacity and any measure of pain, with the exception of a moderate inverse association between aerobic capacity and lower body pressure pain threshold in males (r = -0.58, P = 0.03) when data from male and female participants were analyzed separately. The limited association between aerobic capacity and quantitative sensory testing of pain was consistent with the data synthesis from previous studies of healthy individuals but differed from studies of people with fibromyalgia. Aerobic capacity is unrelated to pain in healthy young adults. For people with chronic pain, the negative relation between aerobic capacity and pain presumably arises from the underlying pathophysiology and/or associated behaviors of the disease process. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Vieira, L G T; Fazolo, A; Zaiat, M; Foresti, E
2003-01-01
This paper presents the conception and discusses the results obtained from the operation of an integrated biological anaerobic/aerobic/anaerobic system composed of horizontal-flow anaerobic and radial-flow aerobic reactors for domestic sewage treatment. The performance of a horizontal-flow anaerobic immobilized biomass reactor, with five stages,followed by a radial-flow aerobic immobilized biomass reactor was evaluated along 22 weeks. After the 14th week, the last stage of the HAIB reactor was used as a denitrifying unit. Polyurethane foam cubic matrices with 1-cm sides were used as support for biomass immobilization in all the units. The influent domestic sewage presented mean chemical oxygen demand of 365 +/- 71 mg. 1(-1) and the temperature was 23 +/- 3degrees C. The integrated system achieved COD removal efficiency of 90% while the maximum ammonium removal efficiency was 97% in the aerobic post-treatment unit. The nitrification process was found to be better represented by first-order reactions in series model. The apparent first-order kinetic coefficient for nitrate formation was about 50 times higher than that estimated for the nitrite formation. The denitrification process was well represented by a Monod-type kinetic model. The maximum specific denitrifying rate and the half-saturation coefficient were 2.9 x 10(-4) mg NO(3)(-)-N mg(-1) VSS h(-1) and 19.4 mg NO(3)(-)-N 1(-1), respectively.
Dione, N; Khelaifia, S; La Scola, B; Lagier, J C; Raoult, D
2016-01-01
In the mid-19th century, the dichotomy between aerobic and anaerobic bacteria was introduced. Nevertheless, the aerobic growth of strictly anaerobic bacterial species such as Ruminococcus gnavus and Fusobacterium necrophorum, in a culture medium containing antioxidants, was recently demonstrated. We tested aerobically the culture of 623 bacterial strains from 276 bacterial species including 82 strictly anaerobic, 154 facultative anaerobic, 31 aerobic and nine microaerophilic bacterial species as well as ten fungi. The basic culture medium was based on Schaedler agar supplemented with 1 g/L ascorbic acid and 0.1 g/L glutathione (R-medium). We successively optimized this media, adding 0.4 g/L uric acid, using separate autoclaving of the component, or adding haemin 0.1 g/L or α-ketoglutarate 2 g/L. In the basic medium, 237 bacterial species and ten fungal species grew but with no growth of 36 bacterial species, including 22 strict anaerobes. Adding uric acid allowed the growth of 14 further species including eight strict anaerobes, while separate autoclaving allowed the growth of all tested bacterial strains. To extend its potential use for fastidious bacteria, we added haemin for Haemophilus influenzae, Haemophilus parainfluenzae and Eikenella corrodens and α-ketoglutarate for Legionella pneumophila. This medium allowed the growth of all tested strains with the exception of Mycobacterium tuberculosis and Mycobacterium bovis. Testing primoculture and more fastidious species will constitute the main work to be done, but R-medium coupled with a rapid identification method (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) will facilitate the anaerobic culture in clinical microbiology laboratories. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Marsden, Dianne L; Dunn, Ashlee; Callister, Robin; Levi, Christopher R; Spratt, Neil J
2013-01-01
Cardiorespiratory fitness is low after stroke. Improving fitness has the potential to improve function and reduce secondary cardiovascular events. . This review with meta-analysis aims to identify characteristics and determine the effectiveness of interventions to improve cardiorespiratory fitness after stroke. A systematic search and review with meta-analysis was undertaken. Key inclusion criteria were the following: peer-reviewed articles published in English, adult stroke survivors, an intervention with the potential to improve cardiorespiratory fitness, and peak oxygen consumption (VO2peak) assessed preintervention and postintervention via a progressive aerobic exercise test. From 3209 citations identified, 28 studies were included, reporting results for 920 participants. Studies typically included chronic, ambulant participants with mild to moderate deficits; used an aerobic or mixed (with an aerobic component) intervention; and prescribed 3 sessions per week for 30 to 60 minutes per session at a given intensity. Baseline VO2peak values were low (8-23 mL/kg/min). Meta-analysis of the 12 randomized controlled trials demonstrated overall improvements in VO2peak of 2.27 (95% confidence interval = 1.58, 2.95) mL/kg/min postintervention. A similar 10% to 15% improvement occurred with both aerobic and mixed interventions and in shorter (≤ 3 months) and longer (>3 months) length programs. Only 1 study calculated total dose received and only 1 included long-term follow-up. The results demonstrate that interventions with an aerobic component can improve cardiorespiratory fitness poststroke. Further investigation is required to determine effectiveness in those with greater impairment and comorbidities, optimal timing and dose of intervention, whether improvements can be maintained in the longer term, and whether improved fitness results in better function and reduced risk of subsequent cardiovascular events.
Yardley, Jane E; Kenny, Glen P; Perkins, Bruce A; Riddell, Michael C; Goldfield, Gary S; Donovan, Lois; Hadjiyannakis, Stasia; Wells, George A; Phillips, Penny; Sigal, Ronald J
2015-03-01
The Resistance Exercise in Already Active Diabetic Individuals (READI) trial aimed to examine whether adding a 6-month resistance training program would improve glycemic control (as reflected in reduced HbA₁c) in individuals with type 1 diabetes who were already engaged in aerobic exercise compared to aerobic training alone. After a 5-week run-in period including optimization of diabetes care and low-intensity exercise, 131 physically active adults with type 1 diabetes were randomized to two groups for 22weeks: resistance training three times weekly, or waiting-list control. Both groups maintained the same volume, duration and intensity of aerobic exercise throughout the study as they did at baseline. HbA₁c, body composition, frequency of hypoglycemia, lipids, blood pressure, apolipoproteins B and A-1 (ApoB and ApoA1), the ApoB-ApoA1 ratio, urinary albumin excretion, serum C-reactive protein, free fatty acids, total daily insulin dose, health-related quality of life, cardiorespiratory fitness and musculoskeletal fitness were recorded at baseline, 3 (for some variables), and 6 months. To our knowledge, READI is the only trial to date assessing the incremental health-related impact of adding resistance training for individuals with type 1 diabetes who are already aerobically active. Few exercise trials have been completed in this population, and even fewer have assessed resistance exercise. With recent improvements in the quality of diabetes care, the READI study will provide conclusive evidence to support or refute a major clinically relevant effect of exercise type in the recommendations for physical activity in patients with type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.
Nutrition and Supplements for Elite Open-Weight Rowing.
Boegman, Susan; Dziedzic, Christine E
2016-01-01
Competitive rowing events are raced over 2,000 m requiring athletes to have highly developed aerobic and anaerobic systems. Elite rowers therefore undertake training sessions focused on lactate tolerance, strength and power as well as aerobic and anaerobic capacity development, that can amount to a 24-h training week. The training stimuli and consequent metabolic demands of each session in a rowing training program differ depending on type, length, and intensity. Nutrition guidelines for endurance- and power-based sports should be drawn upon; however, individualized and flexible nutrition plans are critical to successfully meet the daily, weekly, and cyclic nutrient requirements of a rower. This review will provide an overview of key nutritional strategies to optimize training and enhance adaptation, and briefly discuss supplement strategies that may support health and enhance performance in elite rowing.
Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz
2013-03-01
Greenhouse gas (GHG) emission in wastewater treatment plants of the pulp-and-paper industry was estimated by using a dynamic mathematical model. Significant variations were shown in the magnitude of GHG generation in response to variations in operating parameters, demonstrating the limited capacity of steady-state models in predicting the time-dependent emissions of these harmful gases. The examined treatment systems used aerobic, anaerobic, and hybrid-anaerobic/aerobic-biological processes along with chemical coagulation/flocculation, anaerobic digester, nitrification and denitrification processes, and biogas recovery. The pertinent operating parameters included the influent substrate concentration, influent flow rate, and temperature. Although the average predictions by the dynamic model were only 10 % different from those of steady-state model during 140 days of operation of the examined systems, the daily variations of GHG emissions were different up to ± 30, ± 19, and ± 17 % in the aerobic, anaerobic, and hybrid systems, respectively. The variations of process variables caused fluctuations in energy generation from biogas recovery by ± 6, ± 7, and ± 4 % in the three examined systems, respectively. The lowest variations were observed in the hybrid system, showing the stability of this particular process design.
McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S
2017-04-26
A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.
Freitas, R; Nero, L A; Carvalho, A F
2009-07-01
Enumeration of mesophilic aerobes (MA) is the main quality and hygiene parameter for raw and pasteurized milk. High levels of these microorganisms indicate poor conditions in production, storage, and processing of milk, and also the presence of pathogens. Fifteen raw and 15 pasteurized milk samples were submitted for MA enumeration by a conventional plating method (using plate count agar) and Petrifilm Aerobic Count plates (3M, St. Paul, MN), followed by incubation according to 3 official protocols: IDF/ISO (incubation at 30 degrees C for 72 h), American Public Health Association (32 degrees C for 48 h), and Brazilian Ministry of Agriculture (36 degrees C for 48 h). The results were compared by linear regression and ANOVA. Considering the results from conventional methodology, good correlation indices and absence of significant differences between mean counts were observed, independent of type of milk sample (raw or pasteurized) and incubation conditions (IDF/ISO, American Public Health Association, or Ministry of Agriculture). Considering the results from Petrifilm Aerobic Count plates, good correlation indices and absence of significant differences were only observed for raw milk samples. The microbiota of pasteurized milk interfered negatively with the performance of Petrifilm Aerobic Count plates, probably because of the presence of microorganisms that poorly reduce the dye indicator of this system.
Karas, Vlad O; Westerlaken, Ilja; Meyer, Anne S
2013-05-31
Oxidative stress is an unavoidable byproduct of aerobic life. Molecular oxygen is essential for terrestrial metabolism, but it also takes part in many damaging reactions within living organisms. The combination of aerobic metabolism and iron, which is another vital compound for life, is enough to produce radicals through Fenton chemistry and degrade cellular components. DNA degradation is arguably the most damaging process involving intracellular radicals, as DNA repair is far from trivial. The assay presented in this article offers a quantitative technique to measure and visualize the effect of molecules and enzymes on radical-mediated DNA damage. The DNA protection assay is a simple, quick, and robust tool for the in vitro characterization of the protective properties of proteins or chemicals. It involves exposing DNA to a damaging oxidative reaction and adding varying concentrations of the compound of interest. The reduction or increase of DNA damage as a function of compound concentration is then visualized using gel electrophoresis. In this article we demonstrate the technique of the DNA protection assay by measuring the protective properties of the DNA-binding protein from starved cells (Dps). Dps is a mini-ferritin that is utilized by more than 300 bacterial species to powerfully combat environmental stressors. Here we present the Dps purification protocol and the optimized assay conditions for evaluating DNA protection by Dps.
Lacombe, Alison; Niemira, Brendan A; Gurtler, Joshua B; Fan, Xuetong; Sites, Joseph; Boyd, Glenn; Chen, Haiqiang
2015-04-01
Cold plasma (CP) is a novel nonthermal technology, potentially useful in food processing settings. Berries were treated with atmospheric CP for 0, 15, 30, 45, 60, 90, or 120 s at a working distance of 7.5 cm with a mixture of 4 cubic feet/minute (cfm) of CP jet and 7 cfm of ambient air. Blueberries were sampled for total aerobic plate count (APC) and yeast/molds immediately after treatment and at 1, 2, and 7 days. Blueberries were also analyzed for compression firmness, surface color, and total anthocyanins immediately after each treatment. All treatments with CP significantly (P < 0.05) reduced APC after exposure, with reductions ranging from 0.8 to 1.6 log CFU/g and 1.5 to 2.0 log CFU/g compared to the control after 1 and 7 days, respectively. Treatments longer than 60s resulted in significant reductions in firmness, although it was demonstrated that collisions between the berries and the container contributed significantly to softening. A significant reduction in anthocyanins was observed after 90 s. The surface color measurements were significantly impacted after 120 s for the L* and a* values and 45 s for the b* values. CP can inactivate microorganisms on blueberries and could be optimized to improve the safety and quality of produce. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Wang, Cuicui; Zhang, Kai; Xie, Jun; Liu, Qigen; Yu, Deguang; Wang, Guangjun; Yu, Ermeng; Gong, Wangbao; Li, Zhifei
2017-10-01
This work evaluates the application potential of a new indigenous aerobic denitrifier, strain Pseudomonas CW-2, isolated from a largemouth bass culture pond. The rate of ammonium-N removal by strain CW-2 was approximately 97% at a DO concentration of 5.2 mg/L. Furthermore, when nitrate and ammonia coexisted, the strain gave priority to assimilating ammonia, and thereafter to denitrification. Under optimal cultivation conditions, citrate and acetate were the carbon resources, C/N was 8, dissolved oxygen was 5.2 mg/L, and pH was 7; the removal rate of ammonium reached nearly 90%. The changing patterns of different bacteria in strain CW-2-treated and the control pond water were also compared. Lower levels of ammonia, nitrite, and phosphates were observed in the treated water as compared with the controls. Meanwhile, phylum-level distributions of the bacterial OTUs revealed that Proteobacteria, Bacteroidetes, Planctomycetes, and Nitrospirae continuously changed their relative abundances in relation to carbon and the addition of strain CW-2; this finding implies that the conventional denitrification process was weakened under the effects of carbon or the presence of strain CW-2. We propose that strain CW-2 is a promising organism for the removal of ammonium in intensive fish culture systems, according to our evaluations of its denitrification performance.
Aerobic granulation in a modified oxidation ditch with an adjustable volume intraclarifier.
Li, Jun; Cai, Ang; Wang, Miao; Ding, Libin; Ni, Yongjiong
2014-04-01
A modified oxidation ditch (MOD) with an adjustable volume intraclarifier was proposed and used to achieve aerobic sludge granulation in continuous flow process. This MOD with working volume of 60L treated onsite wastewater from a town. Excellent aerobic granules with mean diameter of 600μm and sludge volume index (SVI) of 44mL/g were obtained in 120day. Bacterial community analysis revealed that most species from seed sludge were preserved in both MOD and granule SBR (G-SBR) except bacteria (Bacteroidetes) might be easily washed out during granulation. Some different bacterial communities were found in sludges from sequencing batch and continuous flow reactors. Presence of metal ions and inorganics in raw wastewater had positive effect on granule formation, but an adjustable volume intraclarifier for controlling selection pressure and deleting return sludge pump played a key role in aerobic sludge granulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N
2013-01-01
Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation.
Combined treatment of mezcal vinasses by ozonation and activated sludge.
2017-10-18
In Mexico, mezcal production generates huge amounts of vinasses (MV) that cause negative environmental impacts. Thus, MV treatment is necessary before discharge to water bodies. Although there is no information for mezcal vinasses, similar effluents have been treated by biological processes (i.e. anaerobic and aerobic) usually complemented by oxidative chemical pretreatments (ozonation) and physico-chemical methods. In this work MV were first ozonated and followed by batch aerobic biological degradation. In the ozonation stage, organic matter removals were 4.5-11 % as COD, whereas the removal of aromatic compounds and phenols were 16-32 % and 48-83 % respectively. In the aerobic post-treatment, COD depletions up to 85 % were achieved; removals in ozone pre-treated vinasses were higher (80 to 85 %) than that of raw vinasse (69 %). It seems that ozonation preferentially attacked the recalcitrant fraction of organic matter present in the vinasses and increased its aerobic biodegradability.
A community-based approach to trials of aerobic exercise in aging and Alzheimer’s disease
Vidoni, Eric D.; Van Sciver, Angela; Johnson, David K.; He, Jinghua; Honea, Robyn; Haines, Brian; Goodwin, Jami; Laubinger, M. Pat; Anderson, Heather S.; Kluding, Patricia M.; Donnelly, Joseph E.; Billinger, Sandra A.; Burns, Jeffrey M.
2012-01-01
The benefits of exercise for aging have received considerable attention in both the popular and academic press. The putative benefits of exercise for maximizing cognitive function and supporting brain health have great potential for combating Alzheimer’s disease (AD). Aerobic exercise offers a low-cost, low-risk intervention that is widely available and may have disease modifying effects. Demonstrating aerobic exercise alters the AD process would have enormous public health implications. The purpose of this paper is to a report the protocol of a current, community-based pilot study of aerobic exercise for AD to guide future investigation. This manuscript provides 1) an overview of possible benefits of exercise in those with dementia, 2) a rationale and recommendations for implementation of a community-based approach, 3) recommendation for implementation of similar study protocols, 4) unique challenges in conducting an exercise trial in AD. PMID:22903151
Thielen, Jan-Willem; Kärgel, Christian; Müller, Bernhard W.; Rasche, Ina; Genius, Just; Bus, Boudewijn; Maderwald, Stefan; Norris, David G.; Wiltfang, Jens; Tendolkar, Indira
2016-01-01
Cognitive abilities decline over the time course of our life, a process, which may be mediated by brain atrophy and enhanced inflammatory processes. Lifestyle factors, such as regular physical activities have been shown to counteract those noxious processes and are assumed to delay or possibly even prevent pathological states, such as dementing disorders. Whereas the impact of lifestyle and immunological factors and their interactions on cognitive aging have been frequently studied, their effects on neural parameters as brain activation and functional connectivity are less well studied. Therefore, we investigated 32 healthy elderly individuals (60.4 ± 5.0 SD; range 52–71 years) with low or high level of self-reported aerobic physical activity at the time of testing. A higher compared to a lower level in aerobic physical activity was associated with an increased encoding related functional connectivity in an episodic memory network comprising mPFC, thalamus, hippocampus precuneus, and insula. Moreover, encoding related functional connectivity of this network was associated with decreased systemic inflammation, as measured by systemic levels of interleukin 6. PMID:28082894
Musavian, Hanieh S; Butt, Tariq M; Larsen, Annette Baltzer; Krebs, Niels
2015-02-01
Food contact surfaces require rigorous sanitation procedures for decontamination, although these methods very often fail to efficiently clean and disinfect surfaces that are visibly contaminated with food residues and possible biofilms. In this study, the results of a short treatment (1 to 2 s) of combined steam (95°C) and ultrasound (SonoSteam) of industrial fish and meat transportation boxes and live-chicken transportation crates naturally contaminated with food and fecal residues were investigated. Aerobic counts of 5.0 to 6.0 log CFU/24 cm(2) and an Enterobacteriaceae spp. level of 2.0 CFU/24 cm(2) were found on the surfaces prior to the treatment. After 1 s of treatment, the aerobic counts were significantly (P < 0.0001) reduced, and within 2 s, reductions below the detection limit (<10 CFU) were reached. Enterobacteriaceae spp. were reduced to a level below the detection limit with only 1 s of treatment. Two seconds of steam-ultrasound treatment was also applied on two different types of plastic modular conveyor belts with hinge pins and one type of flat flexible rubber belt, all visibly contaminated with food residues. The aerobic counts of 3.0 to 5.0 CFU/50 cm(2) were significantly (P < 0.05) reduced, while Enterobacteriaceae spp. were reduced to a level below the detection limit. Industrial meat knives were contaminated with aerobic counts of 6.0 log CFU/5 cm(2) on the handle and 5.2 log CFU/14 cm(2) on the steel. The level of Enterobacteriaceae spp. contamination was approximately 2.5 log CFU on the handle and steel. Two seconds of steam-ultrasound treatment reduced the aerobic counts and Enterobacteriaceae spp. to levels below the detection limit on both handle and steel. This study shows that the steam-ultrasound treatment may be an effective replacement for disinfection processes and that it can be used for continuous disinfection at fast process lines. However, the treatment may not be able to replace efficient cleaning processes used to remove high loads of debris.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crater, Jason; Galleher, Connor; Lievense, Jeff
NREL is developing an advanced aerobic bubble column model using Aspen Custom Modeler (ACM). The objective of this work is to integrate the new fermentor model with existing techno-economic models in Aspen Plus and Excel to establish a new methodology for guiding process design. To assist this effort, NREL has contracted Genomatica to critique and make recommendations for improving NREL's bioreactor model and large scale aerobic bioreactor design for biologically producing lipids at commercial scale. Genomatica has highlighted a few areas for improving the functionality and effectiveness of the model. Genomatica recommends using a compartment model approach with an integratedmore » black-box kinetic model of the production microbe. We also suggest including calculations for stirred tank reactors to extend the models functionality and adaptability for future process designs. Genomatica also suggests making several modifications to NREL's large-scale lipid production process design. The recommended process modifications are based on Genomatica's internal techno-economic assessment experience and are focused primarily on minimizing capital and operating costs. These recommendations include selecting/engineering a thermotolerant yeast strain with lipid excretion; using bubble column fermentors; increasing the size of production fermentors; reducing the number of vessels; employing semi-continuous operation; and recycling cell mass.« less
Niu, Tianhao; Zhou, Zhen; Shen, Xuelian; Qiao, Weimin; Jiang, Lu-Man; Pan, Wei; Zhou, Jijun
2016-03-01
A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimizing rice yields while minimizing yield-scaled global warming potential.
Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A
2014-05-01
To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Current egg washing practices utilize wash water temperatures averaging 49°C, and have been found to increase internal egg temperature by 6.7 to 7.8°C. These high temperatures create a more optimal environment for bacterial growth, including Salmonella Enteritidis (SE), if it is present. SE is the...
Seebacher, Frank; James, Rob S
2008-03-01
Thermoregulation and thermal sensitivity of performance are thought to have coevolved so that performance is optimized within the selected body temperature range. However, locomotor performance in thermoregulating crocodiles (Crocodylus porosus) is plastic and maxima shift to different selected body temperatures in different thermal environments. Here we test the hypothesis that muscle metabolic and biomechanical parameters are optimized at the body temperatures selected in different thermal environments. Hence, we related indices of anaerobic (lactate dehydrogenase) and aerobic (cytochrome c oxidase) metabolic capacities and myofibrillar ATPase activity to the biomechanics of isometric and work loop caudofemoralis muscle function. Maximal isometric stress (force per muscle cross-sectional area) did not change with thermal acclimation, but muscle work loop power output increased with cold acclimation as a result of shorter activation and relaxation times. The thermal sensitivity of myofibrillar ATPase activity decreased with cold acclimation in caudofemoralis muscle. Neither aerobic nor anaerobic metabolic capacities were directly linked to changes in muscle performance during thermal acclimation, although there was a negative relationship between anaerobic capacity and isometric twitch stress in cold-acclimated animals. We conclude that by combining thermoregulation with plasticity in biomechanical function, crocodiles maximize performance in environments with highly variable thermal properties.
Su, Jun-Feng; Shi, Jing-Xin; Huang, Ting-Lin; Ma, Fang
2016-08-15
A novel aerobic denitrification and biomineralization strain CN86 was isolated from the Qu Jiang artificial lake. Based on phylogenetic characteristics, the isolated strain was identified as Acinetobacter species. Strain CN86 was confirmed to have the ability to perform simultaneous denitrification and biomineralization. Exponential decay equation was used for the matching of kinetic processes on denitrification and biomineralization. A highest nitrate removal rate was achieved at the pH7.0, organic concentration of 1.5g/L and temperature of 30°C. An optimal hardness removal rate was obtained at the pH9.0, organic concentration of 2.0g/L and temperature of 30°C. Strain CN86 is a suitable candidate for the simultaneous removal of nitrate and hardness in groundwater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Continuous-flow synthesis of functionalized phenols by aerobic oxidation of Grignard reagents.
He, Zhi; Jamison, Timothy F
2014-03-24
Phenols are important compounds in chemical industry. An economical and green approach to phenol preparation by the direct oxidation of aryl Grignard reagents using compressed air in continuous gas-liquid segmented flow systems is described. The process tolerates a broad range of functional groups, including oxidation-sensitive functionalities such as alkenes, amines, and thioethers. By integrating a benzyne-mediated in-line generation of arylmagnesium intermediates with the aerobic oxidation, a facile three-step, one-flow process, capable of preparing 2-functionalized phenols in a modular fashion, is established. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Overton, Tim W; Lu, Tiejun; Bains, Narinder; Leeke, Gary A
Current treatment routes are not suitable to reduce and stabilise bacterial content in some dairy process streams such as separator and bactofuge desludges which currently present a major emission problem faced by dairy producers. In this study, a novel method for the processing of desludge was developed. The new method, elevated pressure sonication (EPS), uses a combination of low frequency ultrasound (20 kHz) and elevated CO 2 pressure (50 to 100 bar). Process conditions (pressure, sonicator power, processing time) were optimised for batch and continuous EPS processes to reduce viable numbers of aerobic and lactic acid bacteria in bactofuge desludge by ≥3-log fold. Coagulation of proteins present in the desludge also occurred, causing separation of solid (curd) and liquid (whey) fractions. The proposed process offers a 10-fold reduction in energy compared to high temperature short time (HTST) treatment of milk.
Norin, Tommy; Malte, Hans; Clark, Timothy D
2014-01-15
Climate warming is predicted to negatively impact fish populations through impairment of oxygen transport systems when temperatures exceed those which are optimal for aerobic scope (AS). This concept of oxygen- and capacity-limited thermal tolerance (OCLTT) is rapidly gaining popularity within climate change research and has been applied to several fish species. Here, we evaluated the relevance of aerobic performance of juvenile barramundi (Lates calcarifer) in the context of thermal preference and tolerance by (1) measuring standard and maximum metabolic rates (SMR and MMR, respectively) and AS of fish acclimated to 29°C and acutely exposed to temperatures from 23 to 38°C, (2) allowing the fish to behaviourally select a preferred temperature between 29 and 38°C, and (3) quantifying alterations to AS after 5 weeks of acclimation to 29 and 38°C. SMR and MMR both increased continuously with temperature in acutely exposed fish, but the increase was greater for MMR such that AS was highest at 38°C, a temperature approaching the upper lethal limit (40-41°C). Despite 38°C eliciting maximum AS, when given the opportunity the fish selected a median temperature of 31.7 ± 0.5°C and spent only 10 ± 3% of their time at temperatures >36°C. Following acclimation to 38°C, AS measured at 38°C was decreased to the same level as 29°C-acclimated fish measured at 29°C, suggesting that AS may be dynamically modulated independent of temperature to accommodate the requirements of daily life. Together, these results reveal limited power of the OCLTT hypothesis in predicting optimal temperatures and effects of climate warming on juvenile barramundi.
Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie
2016-04-01
Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications.
Innovative dual-step management of semi-aerobic landfill in a tropical climate.
Lavagnolo, Maria Cristina; Grossule, Valentina; Raga, Roberto
2018-04-01
Despite concerted efforts to innovate the solid waste management (SWM) system, land disposal continues to represent the most widely used technology in the treatment of urban solid waste worldwide. On the other hand, landfilling is an unavoidable step in closing the material cycle, since final residues, although minimized, need to be safely disposed of and confined. In recent years, the implementation of more sustainable landfilling aims to achieve the Final Storage Quality conditions as fast as possible. In particular, semi-aerobic landfill appears to represent an effective solution for use in the poorest economies due to lower management costs and shorter aftercare resulting from aerobic stabilisation of the waste. Nevertheless, the implementation of a semi-aerobic landfill in a tropical climate may affect the correct functioning of the plant: a lack of moisture during the dry season and heavy rainfalls during the wet season could negatively affect performance of both the degradation process, and of leachate and biogas management. This paper illustrates the results obtained through the experimentation of a potential dual-step management of semi-aerobic landfilling in a tropical climate in which composting process was reproduced during the dry season and subsequently flushing (high rainfall rate) during the wet period. Eight bioreactors specifically designed: four operated under anaerobic conditions and four under semi-aerobic conditions; half of the reactors were filled with high organic content waste, half with residual waste obtained following enhanced source segregation. The synergic effect of the subsequent phases (composting and flushing) in the semi-aerobic landfill was evaluated on the basis of both types of waste. Biogas production, leachate composition and waste stabilization were analysed during the trial and at the end of each step, and compared in view of the performance of anaerobic reactors. The results obtained underlined the effectiveness of the dual-step management evidencing how wastes reached a higher degree of stabilization and reference FSQ values for leachate were achieved over a one-year simulation period. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hyder, Fahmeed; Herman, Peter; Bailey, Christopher J; Møller, Arne; Globinsky, Ronen; Fulbright, Robert K; Rothman, Douglas L; Gjedde, Albert
2016-05-01
Regionally variable rates of aerobic glycolysis in brain networks identified by resting-state functional magnetic resonance imaging (R-fMRI) imply regionally variable adenosine triphosphate (ATP) regeneration. When regional glucose utilization is not matched to oxygen delivery, affected regions have correspondingly variable rates of ATP and lactate production. We tested the extent to which aerobic glycolysis and oxidative phosphorylation power R-fMRI networks by measuring quantitative differences between the oxygen to glucose index (OGI) and the oxygen extraction fraction (OEF) as measured by positron emission tomography (PET) in normal human brain (resting awake, eyes closed). Regionally uniform and correlated OEF and OGI estimates prevailed, with network values that matched the gray matter means, regardless of size, location, and origin. The spatial agreement between oxygen delivery (OEF≈0.4) and glucose oxidation (OGI ≈ 5.3) suggests that no specific regions have preferentially high aerobic glycolysis and low oxidative phosphorylation rates, with globally optimal maximum ATP turnover rates (VATP ≈ 9.4 µmol/g/min), in good agreement with (31)P and (13)C magnetic resonance spectroscopy measurements. These results imply that the intrinsic network activity in healthy human brain powers the entire gray matter with ubiquitously high rates of glucose oxidation. Reports of departures from normal brain-wide homogeny of oxygen extraction fraction and oxygen to glucose index may be due to normalization artefacts from relative PET measurements. © The Author(s) 2016.
Robertson, Andrew D; Crane, David E; Rajab, A Saeed; Swardfager, Walter; Marzolini, Susan; Shirzadi, Zahra; Middleton, Laura E; MacIntosh, Bradley J
2015-08-01
The mechanisms supporting functional improvement by aerobic exercise following stroke remain incompletely understood. This study investigated how cycling intensity and aerobic fitness influence cerebral blood flow (CBF) following a single exercise session. Thirteen community-living stroke survivors performed 20 min of semi-recumbent cycling at low and moderate intensities (40-50 and 60-70 % of heart rate reserve, respectively) as determined from an exercise stress test. CBF was quantified by arterial spin labeling MRI at baseline, as well as 30 and 50 min post-exercise. An intensity-dependent effect was observed in the right post-central and supramarginal gyri up to 50 min after exercise (uncorrected p < 0.005, cluster size ≥10). Regional CBF was increased 18 ± 17 % and reduced 8 ± 12 % following moderate- and low-intensity cycling, respectively. In contrast, CBF changes were similar between sessions in the right lentiform nucleus and mid-frontal gyrus, as well as the left temporal and parietal gyri. Aerobic fitness was directly related to posterior cingulate and thalamic CBF, and inversely related to precuneal CBF at rest (R (2) ≥ 0.75); however, no relationship between fitness and the post-exercise change in CBF was observed. Divergent changes in regional CBF were observed in the right parietal cortex following low- and moderate-intensity exercise, which suggests that intensity of prescribed exercise may be useful in optimizing rehabilitation.
FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramin Yazdani; Jeff Kieffer; Heather Akau
2003-08-01
The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.« less
Influences of Aerobic Dance on Cognitive Performance in Adults with Schizophrenia.
Chen, Ming-De; Kuo, Yu-Hsin; Chang, Yen-Ching; Hsu, Su-Ting; Kuo, Chang-Chih; Chang, Jyh-Jong
2016-12-01
Cognitive impairment is one of the core features of schizophrenia. This study examined the influences of an aerobic dance programme on the cognitive functions of people with schizophrenia. A quasi-experimental matched-control design was applied. The experimental group (n = 17) participated in a 60-minute aerobic dance group class three times a week for 3 months. The control group (n = 19) participated in colouring and handwriting activities. Cognitive functions were measured before and after the interventions for both groups. The intervention group experienced significant improvements in processing speed, memory and executive function, whereas no significant changes were noted in any measures in the control group. While there were no significant between-group differences, the data showed approximately medium effect sizes that favoured the intervention group in regard to processing speed (Cohen's d = 0.51), memory (d = 0.35-0.41) and the spontaneity and fluency aspects of executive function (d = 0.51). While the small sample size and lack of randomization were the primary methodological shortcomings, this study provides preliminary results supporting aerobic dance as an adjunct activity-based intervention to improve cognitive functions in people with schizophrenia. More rigorous studies are needed to validate the findings. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Contaminated environments in the subsurface and bioremediation: organic contaminants.
Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F
1997-07-01
Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.
Voorn, Eric L; Koopman, Fieke S; Brehm, Merel A; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H L; Nollet, Frans
2016-01-01
To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. A process evaluation using data from an RCT. Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60-70% heart rate reserve). The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Netherlands National Trial Register NTR1371.
Combined exercise for people with type 2 diabetes mellitus: a systematic review.
Oliveira, César; Simões, Mário; Carvalho, Joana; Ribeiro, José
2012-11-01
Type 2 diabetes mellitus has emerged as a major non-communicable chronic diseases in many countries. The importance of exercise in the prevention and management of this disease is evident. This paper briefly reviews the effects of combining aerobic and resistance exercises on glycemic control, and details the training and characteristics of various interventions in adults with type 2 diabetes mellitus. Literature searches were performed using electronic databases between the 1st of January 1950 and the 15th of September 2011. Of the 403 articles retrieved, 28 studies met our inclusion criteria. Combined exercise protocols seem to improve glycemic control to a greater extent than isolated forms of exercise. Nevertheless, length, duration, intensity, mode, number of exercises, sets and repetitions varied markedly among studies. Supervised training sessions, recommended structured exercises, and splitting aerobic and resistance training in separate sessions may be relevant for best results. Future studies should analyze the effects of different aerobic and resistance training modes, different training and progression methods, and whether one type of exercise is optimal, as these issues are likely to convey greater knowledge on type 2 diabetes mellitus management through combined exercise. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Aerobic fitness and executive control of relational memory in preadolescent children.
Chaddock, Laura; Hillman, Charles H; Buck, Sarah M; Cohen, Neal J
2011-02-01
the neurocognitive benefits of an active lifestyle in childhood have public health and educational implications, especially as children in today's technological society are becoming increasingly overweight, unhealthy, and unfit. Human and animal studies show that aerobic exercise affects both prefrontal executive control and hippocampal function. This investigation attempts to bridge these research threads by using a cognitive task to examine the relationship between aerobic fitness and executive control of relational memory in preadolescent 9- and 10-yr-old children. higher-fit and lower-fit children studied faces and houses under individual item (i.e., nonrelational) and relational encoding conditions, and the children were subsequently tested with recognition memory trials consisting of previously studied pairs and pairs of completely new items. With each subject participating in both item and relational encoding conditions, and with recognition test trials amenable to the use of both item and relational memory cues, this task afforded a challenge to the flexible use of memory, specifically in the use of appropriate encoding and retrieval strategies. Hence, the task provided a test of both executive control and memory processes. lower-fit children showed poorer recognition memory performance than higher-fit children, selectively in the relational encoding condition. No association between aerobic fitness and recognition performance was found for faces and houses studied as individual items (i.e., nonrelationally). the findings implicate childhood aerobic fitness as a factor in the ability to use effective encoding and retrieval executive control processes for relational memory material and, possibly, in the strategic engagement of prefrontal- and hippocampal-dependent systems.
Aerobic exercise interventions for adults living with HIV/AIDS.
O'Brien, Kelly; Nixon, Stephanie; Tynan, Anne-Marie; Glazier, Richard
2010-08-04
Access to combination antiretroviral therapy has turned HIV into a chronic and manageable disease for many. This increased chronicity has been mirrored by increased prevalence of health-related challenges experienced by people living with HIV (Rusch 2004). Exercise is a key strategy for people living with HIV and by rehabilitation professionals to address these disablements; however, knowledge about the effects of exercise among adults living with HIV still is emerging. To examine the safety and effectiveness of aerobic exercise interventions on immunologic and virologic, cardiopulmonary, psychologic outcomes and strength, weight, and body composition in adults living with HIV. Searches of MEDLINE, EMBASE, SCIENCE CITATION INDEX, CINAHL, HEALTHSTAR, PsycINFO, SPORTDISCUS and Cochrane Review Group Databases were conducted between 1980 and June 2009. Searches of published and unpublished abstracts and proceedings from major international and national HIV/AIDS conferences were conducted, as well as a handsearch of reference lists and tables of contents of relevant journals and books. We included studies of randomised controlled trials (RCTs) comparing aerobic exercise interventions with no aerobic exercise interventions or another exercise or treatment modality, performed at least three times per week for at least four weeks among adults (18 years of age or older) living with HIV. Data on study design, participants, interventions, outcomes, and methodological quality were abstracted from included studies by two reviewers. Meta-analyses, using RevMan 5 computer software, were performed on outcomes when possible. A total of 14 studies met inclusion criteria for this review and 30 meta-analyses over several updates were performed. Main results indicated that performing constant or interval aerobic exercise, or a combination of constant aerobic exercise and progressive resistive exercise for at least 20 minutes at least three times per week for at least five weeks appears to be safe and may lead to significant improvements in selected outcomes of cardiopulmonary fitness (maximum oxygen consumption), body composition (leg muscle area, percent body fat), and psychological status (depression-dejection symptoms). These findings are limited to participants who continued to exercise and for whom there were adequate follow-up data. Aerobic exercise appears to be safe and may be beneficial for adults living with HIV. These findings are limited by the small sample sizes and large withdrawal rates described in the studies. Future research would benefit from participant follow-up and intention-to-treat analysis. Further research is required to determine the optimal parameters in which aerobic exercise may be most beneficial for adults living with HIV.
Zhang, Ming; Wang, Zhou; Li, Penghui; Zhang, Hua; Xie, Li
2017-07-01
An important portion of organic matter and colorants still remain in the biologically treated distillery wastewater, leaving the dark brown and odorous downstream with the heavy loading of chemical oxygen demand and the potential of forming disinfection byproducts. However, those bio-recalcitrant colorants have not been clearly recognized. The current study investigated the features of the bio-refractory organic matter and colorants in a typical distillery effluent, cassava distillery wastewater; special attention was paid to their change and behaviors in the coagulation treatment following the bio-processes. The wastewater analyses denoted that the fraction of high molecular weight (1-50 kDa and >50 kDa) became predominant after the anaerobic-aerobic processes. Importantly, the lignin breakdown products, melanoidins and lignin phenols were confirmed to be the leading colored components, according to the parallel factor analysis of fluorescence excitation-emission matrixes results. Compared with lignin phenols, the former two types of colorants exhibited stronger bio-refractory activity and resulted in smaller color reduction after the aerobic treatment. Neither advanced oxidation nor adsorption could perform efficiently as post-treatment for decolorization in this study. Nevertheless, high removal of color and dissolved organic matter (∼94.0% and ∼78.3%, respectively) could be achieved by the FeCl 3 -involved coagulation under the optimal conditions. The ferric coagulant was found to preferably interact with the aromatic compounds (such as lignin derivatives) and melanoidins via either surface complexation or electric charge neutralization, or both. The findings presented herein might provide an insight into the evaluation of bio-refractory organic colorants and the Fe(III)-involved decolorization mechanisms of ethanol production wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Akizuki, S; Toda, T
2018-04-01
Although combination of denitritation and methanogenesis for wastewater treatment has been widely investigated, an application of this technology to solid waste treatment has been rarely studied. This study investigated an anaerobic-aerobic batch system with simultaneous denitritation-methanogenesis as an effective treatment for marine biofoulings, which is a major source of intermittently discharged organic solid wastes. Preliminary NO 2 - -exposed sludge was inoculated to achieve stable methanogenesis process without NO 2 - inhibition. Both high NH 4 + -N removal of 99.5% and high NO 2 - -N accumulation of 96.4% were achieved on average during the nitritation step. Sufficient CH 4 recovery of 101 L-CH 4 kg-COD -1 was achieved, indicating that the use of NO 2 - -exposed sludge is effective to avoid NO 2 - inhibition on methanogenesis. Methanogenesis was the main COD utilization pathway when the substrate solubilization occurred actively, while denitritation was the main when solubilization was limited because of substrate shortage. The results showed a high COD removal efficiency of 96.0% and a relatively low nitrogen removal efficiency of 64.4%. Fitting equations were developed to optimize the effluent exchange ratio. The estimated results showed that the increase of effluent exchange ratio during the active solubilization period increased the nitrogen removal efficiency but decreased CH 4 content in biogas. An appropriate effluent exchange ratio with high anaerobic effluent quality below approximately 120 mg-N L -1 as well as sufficient CH 4 gas quality which can be used as fuel for gas engine generator was achieved by daily effluent exchange of 80% during the first week and 5% during the subsequent 8 days. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hagemann, Nikolas; Subdiaga, Edisson; Orsetti, Silvia; de la Rosa, José María; Knicker, Heike; Schmidt, Hans-Peter; Kappler, Andreas; Behrens, Sebastian
2018-02-01
Biochar, a material defined as charred organic matter applied in agriculture, is suggested as a beneficial additive and bulking agent in composting. Biochar addition to the composting feedstock was shown to reduce greenhouse gas emissions and nutrient leaching during the composting process, and to result in a fertilizer and plant growth medium that is superior to non-amended composts. However, the impact of biochar on the quality and carbon speciation of the organic matter in bulk compost has so far not been the focus of systematic analyses, although these parameters are key to determine the long-term stability and carbon sequestration potential of biochar-amended composts in soil. In this study, we used different spectroscopic techniques to compare the organic carbon speciation of manure compost amended with three different biochars. A non-biochar-amended compost served as control. Based on Fourier-transformed infrared (FTIR) and 13 C nuclear magnetic resonance (NMR) spectroscopy we did not observe any differences in carbon speciation of the bulk compost independent of biochar type, despite a change in the FTIR absorbance ratio 2925cm -1 /1034cm -1 , that is suggested as an indicator for compost maturity. Specific UV absorbance (SUVA) and emission-excitation matrixes (EEM) revealed minor differences in the extractable carbon fractions, which only accounted for ~2-3% of total organic carbon. Increased total organic carbon content of biochar-amended composts was only due to the addition of biochar-C and not enhanced preservation of compost feedstock-C. Our results suggest that biochars do not alter the carbon speciation in compost organic matter under conditions optimized for aerobic decomposition of compost feedstock. Considering the effects of biochar on compost nutrient retention, mitigation of greenhouse gas emissions and carbon sequestration, biochar addition during aerobic composting of manure might be an attractive strategy to produce a sustainable, slow release fertilizer. Copyright © 2017 Elsevier B.V. All rights reserved.
Biotic and abiotic degradation of CL-20 and RDX in soils.
Crocker, Fiona H; Thompson, Karen T; Szecsody, James E; Fredrickson, Herbert L
2005-01-01
The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically attenuated soil controls were used to separate abiotic processes from biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d(-1)) and biologically attenuated soil controls (0.003 < k < 0.277 d(-1)). The addition of glucose to biologically active soil microcosms significantly increased CL-20 degradation rates (0.068 < k < 1.22 d(-1)). Extents of mineralization of (14)C-CL-20 to (14)CO(2) in biologically active soil microcosms were 41.1 to 55.7%, indicating that the CL-20 cage was broken, since all carbons are part of the heterocyclic cage. Under aerobic conditions, abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d(-1)) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d(-1). Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.
Zhang, Zhenhua; Zhao, Juan; Yu, Cigang; Dong, Shanshan; Zhang, Dini; Yu, Ran; Wang, Changyong; Liu, Yan
2015-12-01
Improper treatment of penicillin fermentation fungi residue (PFFR), one of the by-products of penicillin production process, may result in environmental pollution due to the high concentration of penicillin. Aerobic co-composting of PFFR with pig manure was determined to degrade penicillin in PFFR. Results showed that co-composting of PFFR with pig manure can significantly reduce the concentration of penicillin in PFFR, make the PFFR-compost safer as organic fertilizer for soil application. More than 99% of penicillin in PFFR were removed after 7-day composting. PFFR did not affect the composting process and even promote the activity of the microorganisms in the compost. Quantitative PCR (qPCR) indicated that the bacteria and actinomycetes number in the AC samples were 40-80% higher than that in the pig-manure compost (CK) samples in the same composting phases. This research indicated that the aerobic co-composting was a feasible PFFR treatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.
[EPIDEMIOLOGICAL, CLINICAL AND MICROBIOLOGICAL FINDINGS IN WOMEN WITH AEROBIC VAGINITIS].
Dermendjiev, T; Pehlivanov, B; Hadjieva, K; Stanev, S
2015-01-01
Aerobic vaginitis (AV) is an alterarion of the normal lactobacillic flora accompanied by signs of inflammation, presence of mainly aerobic microorganisms from intestinal commensals or other aerobic pathogens. Clinical symptoms may vary by type and intensity and are marked by a high tendency for recurrence and chronification. Inflammation and ulcerations in AV could increase the risk of contracting HIV or other sexually transmitted infections. The aim is to study some epidemiological, clinical and microbiological features of the aerobic vaginitis in patients of the specialized Obstetric and Gynecological Clinic in Plovdiv, Bulgaria. In a retrospective research 4687 vaginal smears have been gathered in Microbiological laboratory at "St. George" Hospital - Plovdiv. We used clinical, microbiological and statistical methods. Information processing is performed by variation, alternative, correlation and graphical analysis using specialized package SPSS v13.0. The overall prevalence rate of AV in the studied population is 11.77%. The levels of prevalence of AV in pregnant and non-pregnant women are respectively 13.08% and 4.34%. The highest frequency of AV is in the age group 21-30 years (32.3%). The results show a marked association between Escherichia coli and the cases of AV (p < 0.001). AV is a common cause of vaginal symptoms in patients of specialized ambulatory outpatient. One in ten women with vaginal complaints suffers from AV Streptococcus agalactiae and Escherichia coli are most often isolated aerobic microorganisms.
Stes, Hannah; Aerts, Sven; Caluwé, Michel; Dobbeleers, Thomas; Wuyts, Sander; Kiekens, Filip; D'aes, Jolien; De Langhe, Piet; Dries, Jan
2018-05-01
A laboratory-scale sequencing batch reactor (SBR) was operated for 450 days to assess aerobic granule formation when treating brewery/bottling plant wastewater by consistent application of a feast/famine regime. The experiment was divided into three major periods according to the different operational conditions: (I) no pH control and strong fluctuations in organic loading rate (OLR) (1.18 ± 0.25 kgCOD·(m 3 ·day) -1 ), (II) pH control and aeration control strategy to reduce OLR fluctuations (1.45 ± 0.65 kgCOD·(m 3 ·day) -1 ) and (III) no pH control and stable OLR (1.42 ± 0.18 kgCOD·(m 3 ·day) -1 ). Aerobic granule formation was successful after 80 days and maintained during the subsequent 380 days. The aerobic granular sludge was characterized by SVI 5 and SVI 30 values below 60 mL.g -1 and dominated by granular, dense structures. An oxygen uptake rate based aeration control strategy insured endogenous respiration at the end of the aerobic phase, resulting in stable SBR operation when the influent composition fluctuated. The quantitative polymerase chain reaction results show no significant enrichment of Accumulibacter or Competibacter during the granulation process. The 16S rRNA sequencing results indicate enrichment of other, possibly important species during aerobic granule formation while treating brewery wastewaters.
Ae Kim, Sun; Hong Park, Si; In Lee, Sang; Owens, Casey M.; Ricke, Steven C.
2017-01-01
The purpose of this study was to 1) identify microbial compositional changes on chicken carcasses during processing, 2) determine the antimicrobial efficacy of peracetic acid (PAA) and Amplon (blend of sulfuric acid and sodium sulfate) at a poultry processing pilot plant scale, and 3) compare microbial communities between chicken carcass rinsates and recovered bacteria from media. Birds were collected from each processing step and rinsates were applied to estimate aerobic plate count (APC) and Campylobacter as well as Salmonella prevalence. Microbiome sequencing was utilized to identify microbial population changes over processing and antimicrobial treatments. Only the PAA treatment exhibited significant reduction of APC at the post chilling step while both Amplon and PAA yielded detectable Campylobacter reductions at all steps. Based on microbiome sequencing, Firmicutes were the predominant bacterial group at the phyla level with over 50% frequency in all steps while the relative abundance of Proteobacteria decreased as processing progressed. Overall microbiota between rinsate and APC plate microbial populations revealed generally similar patterns at the phyla level but they were different at the genus level. Both antimicrobials appeared to be effective on reducing problematic bacteria and microbiome can be utilized to identify optimal indicator microorganisms for enhancing product quality. PMID:28230180
Nuechterlein, Keith H.; Ventura, Joseph; McEwen, Sarah C.; Gretchen-Doorly, Denise; Vinogradov, Sophia; Subotnik, Kenneth L.
2016-01-01
Cognitive training (CT) and aerobic exercise have separately shown promise for improving cognitive deficits in schizophrenia. Aerobic exercise releases brain-derived neurotrophic factor, which promotes synaptic plasticity and neurogenesis. Thus, aerobic exercise provides a neurotrophic platform for neuroplasticity-based CT. The combination of aerobic exercise and CT may yield more robust effects than CT alone, particularly in the initial course of schizophrenia. In a pilot study, 7 patients with a recent onset of schizophrenia were assigned to Cognitive Training & Exercise (CT&E) and 9 to CT alone for a 10-week period. Posit Science programs were used for CT. Neurocognitive training focused on tuning neural circuits related to perceptual processing and verbal learning and memory. Social cognitive training used the same learning principles with social and affective stimuli. Both groups participated in these training sessions 2d/wk, 2h/d. The CT&E group also participated in an aerobic conditioning program for 30 minutes at our clinic 2d/wk and at home 2d/wk. The effect size for improvement in the MATRICS Consensus Cognitive Battery Overall Composite score for CT&E patients relative to CT patients was large. Functional outcome, particularly independent living skills, also tended to improve more in the CT&E than in the CT group. Muscular endurance, cardiovascular fitness, and diastolic blood pressure also showed relative improvement in the CT&E compared to the CT group. These encouraging pilot study findings support the promise of combining CT and aerobic exercise to improve the early course of schizophrenia. PMID:27460618
Gong, H; Pishgar, R; Tay, J H
2018-04-27
Aerobic granulation is a recent technology with high level of complexity and sensitivity to environmental and operational conditions. Artificial neural networks (ANNs), computational tools capable of describing complex non-linear systems, are the best fit to simulate aerobic granular bioreactors. In this study, two feedforward backpropagation ANN models were developed to predict chemical oxygen demand (Model I) and total nitrogen removal efficiencies (Model II) of aerobic granulation technology under steady-state condition. Fundamentals of ANN models and the steps to create them were briefly reviewed. The models were respectively fed with 205 and 136 data points collected from laboratory-, pilot-, and full-scale studies on aerobic granulation technology reported in the literature. Initially, 60%, 20%, and 20%, and 80%, 10%, and 10% of the points in the corresponding datasets were randomly chosen and used for training, testing, and validation of Model I, and Model II, respectively. Overall coefficient of determination (R 2 ) value and mean squared error (MSE) of the two models were initially 0.49 and 15.5, and 0.37 and 408, respectively. To improve the model performance, two data division methods were used. While one method is generic and potentially applicable to other fields, the other can only be applied to modelling the performance of aerobic granular reactors. R 2 value and MSE were improved to 0.90 and 2.54, and 0.81 and 121.56, respectively, after applying the new data division methods. The results demonstrated that ANN-based models were capable simulation approach to predict a complicated process like aerobic granulation.
Lee, Minyoung; Lim, Taehyun; Lee, Jaehyuk; Kim, Kimyeong; Yoon, BumChul
2017-11-01
Little is known about the optimal retraining time for regaining functional fitness through multicomponent training following long-term detraining in older adults. This study first investigated the time course of functional fitness changes during 12-month multicomponent training, 12-month detraining, and 9-month retraining in 18 older adults (68.33±3.46) and then determined the optimal retraining time for regaining the post-training functional fitness level after a 12-month detraining period. Functional fitness, including lower and upper limb strength, lower and upper limb flexibility, aerobic endurance, and dynamic balance, was assessed at baseline, 12 months post-training, 12 months post-detraining, and 3, 6, and 9 months post-retraining. There were significant increases in all of the functional fitness components except upper limb flexibility at post-training and no significant decreases at post-detraining. For lower and upper limb strength and lower limb flexibility, a 3-month period was required to regain the post-training condition. For aerobic endurance and dynamic balance, a retraining period ≥9months was necessary to regain the post-training functional fitness condition. To regain the post-training condition of all functional fitness components, a retraining period ≥9months was required. This information might be useful for health professionals to encourage older adults not to interrupt retraining until they regain their post-training functional fitness condition. Copyright © 2017 Elsevier B.V. All rights reserved.
Gill, C O; Moza, L F; Badoni, M; Barbut, S
2006-07-15
The log mean numbers of aerobes, coliforms, Escherichia coli and presumptive staphylococci plus listerias on chicken carcasses and carcass portions at various stages of processing at a poultry packing plant were estimated from the numbers of those bacteria recovered from groups of 25 randomly selected product units. The fractions of listerias in the presumptive staphylococci plus listerias groups of organisms were also estimated. Samples were obtained from carcasses by excising a strip of skin measuring approximately 5 x 2 cm(2) from a randomly selected site on each selected carcass, or by rinsing each selected carcass portion. The log mean numbers of aerobes, coliforms, E. coli and presumptive staphylococci plus listerias on carcasses after scalding at 58 degrees C and plucking were about 4.4, 2.5, 2.2 and 1.4 log cfu/cm(2), respectively. The numbers of bacteria on eviscerated carcasses were similar. After the series of operations for removing the crop, lungs, kidneys and neck, the numbers of aerobes were about 1 log unit less than on eviscerated carcasses, but the numbers of the other bacteria were not substantially reduced. After cooling in water, the numbers of coliforms and E. coli were about 1 log unit less and the numbers of presumptive staphylococci plus listerias were about 0.5 log unit less than the numbers on dressed carcasses, but the numbers of aerobes were not reduced. The numbers of aerobes were 1 log unit more on boneless breasts, and 0.5 log units more on skin-on thighs and breasts that had been tumbled with brine than on cooled carcasses; and presumptive staphylococci plus listerias were 0.5 log unit more on thighs than on cooled carcasses. Otherwise the numbers of bacteria on the product were not substantially affected by processing. Listerias were <20% of the presumptive staphylococci plus listerias group of organisms recovered from product at each point in the process except after breasts were tumbled with brine, when >40% of the organisms were listerias.
Juris, P; Plachý, P; Lauková, A
1995-05-01
The survival of 8 bacterial species (Pseudomonas sp., Salmonella sp., Enterobacteriae, Streptococcus sp., Escherichia coli) was detected in municipal sewage sludge up to 37 hours of mesophilic aerobic digestion under laboratory conditions. The model strain Enterococcus faecium CCM 4231 survived almost twice as long as the above-mentioned isolates. Similar findings, regarding the viability of the microorganisms studied, were also determined during thermophilic aerobic digestion of municipal sewage sludges. The final reduction in the total count of bacteria was not directly dependent on the temperature during aerobic digestion. It may be supposed that E. faecium CCM 4231 strain as a bacteriocin-producing strain with a broad antimicrobial spectrum, inoculated into the sludges, could inhibit the growth of microorganisms in the sludges by the way of its bacteriocin activity. Studying the effect of aerobic digestion on the viability of helminth eggs, the observed negative effect of higher temperatures was more expressive in comparison with bacterial strains. During thermophilic digestion process all helminth eggs (Ascaris suum, Toxocara canis) were devitalized. All eggs of T. canis were killed in experiments under mesophilic temperature. However, 32% of nonembryonated A. suum eggs remained viable.
Effect of γ irradiation on the fatty acid composition of soybean and soybean oil.
Minami, Ikuko; Nakamura, Yoshimasa; Todoriki, Setsuko; Murata, Yoshiyuki
2012-01-01
Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.
Imai, T; Ukita, M; Sekine, M; Fukagawa, M; Nakanishi, H
2000-01-01
The objective of this study is to find a possibility of complete treatment of garbage and resource recovery (production of methane from available utility of carbon resource in garbage) by biological treatment process. As the first step, a fact-finding survey of actual garbage discharged from the dormitory of the Ube National College of Technology (equivalent to 300 population) was carried out. Second, the combined biological anaerobic-aerobic treatment, i.e. combination of upflow anaerobic sludge blanket (UASB) process and aerobic membrane bioreactor (AMB) process, was applied to the garbage treatment. The applicability and efficiency of this system were investigated in this study. The survey results showed that the composition and quantity of garbage from a student dormitory changed slightly during a week due to the change of the menu, however, they remained almost unchanged during the entire experimental period. The experimental results showed high biodegradability of the garbage, and demonstrated its suitability for methane production. The soluble nitrogen removal was high: over 97%. No excess sludge was wasted from the system. A high treatment efficiency of simultaneous organic carbon and nitrogen was obtained. The possibility of complete treatment of garbage with this process has been positively demonstrated by this study.
2017-01-01
A homogeneous Cu-based catalyst system consisting of [Cu(MeCN)4]PF6, N,N′-di-tert-butylethylenediamine (DBED), and p-(N,N-dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the “oxygenase”-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts. PMID:28470049
Creating Robust STEM Research Ecosystems in Schools: Joining the Dots for Young Researchers
NASA Astrophysics Data System (ADS)
Pritchard, M.; Ibarra, D. L.
2017-12-01
Developing an intelligent curiosity about the world in school-aged learners is one of the key purposes of education. Nurturing this intelligent curiosity in a systematic and integrated manner is essential for rigorous, scientific literacy, which in turn inspires advanced research and innovation in post-school life. STEM (Science, Technology, Engineering, and Mathematics) education has been widely adopted as the conceptual framework to achieve this goal. For young learners, their experienced world is largely confined to the spaces within the boundaries of educational institutions. This type of environment might be perceived as sterile or even hostile to genuine research, as institutional endeavor is largely shaped by examination syllabi. This can be changed by viewing the school as a living laboratory of processes and products, all of which offer enormous potential for meaningful and valuable student-led STEM research. Creating research-focused ecosystems within schools, however, requires considerable effort to create a learning culture that defragments knowledge systems and connects isolated pools of inquiry. The existing parameters and processes of school ecosystems, such as energy generation, consumption, waste creation and disposal offer opportunities for school students to utilize STEM-related skills observe and measure their own ecological footprint, undertake research into these living processes in an integrated manner, and develop solutions to create closed loops of optimally managed and measured consumption with the institution. For example, connecting a deep understanding of the principles of renewable energy generation with close, real-time monitoring of classroom energy usage creates the opportunity to develop a higher level of user awareness and more optimized consumption habits. Food waste, when composted and recycled on-site, similarly offers the potential to connect the sociological issue of excess consumption with a scientific understanding of aerobic and anaerobic decomposition and the subsequent purposes to which the product of the process might be put. In adopting a STEM framework to examine and shape school ecosystems, young researchers develop the capacity to observe, measure, analyze, troubleshoot, and optimize their own environment.
Jiang, Qing; Xu, Bin; Jia, Jing; Zhao, An; Zhao, Yu-Rou; Li, Ying-Ying; He, Na-Na; Guo, Can-Cheng
2014-08-15
A copper-catalyzed aerobic decarboxylative sulfonylation of alkenyl carboxylic acids with sodium sulfinates is developed. This study offers a new and expedient strategy for stereoselective synthesis of (E)-alkenyl sulfones that are widely present in biologically active natural products and therapeutic agents. Moreover, the transformation is proposed to proceed via a radical process and exhibits a broad substrate scope and good functional group tolerance.
Aerobic oxidation in nanomicelles of aryl alkynes, in water at room temperature.
Handa, Sachin; Fennewald, James C; Lipshutz, Bruce H
2014-03-24
On the basis of the far higher solubility of oxygen gas inside the hydrocarbon core of nanomicelles, metal and peroxide free aerobic oxidation of aryl alkynes to β-ketosulfones has been achieved in water at room temperature. Many examples are offered that illustrate broad functional group tolerance. The overall process is environmentally friendly, documented by the associated low E Factors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liang, Zhongwei; Xu, Song; Tian, Wenyan; Zhang, Ronghua
2015-01-01
A novel and simple strategy for the efficient synthesis of the corresponding tetrahydroquinolines from N,N-dimethylanilines and maleimides using visible light in an air atmosphere in the presence of Eosin Y as a photocatalyst has been developed. The metal-free protocol involves aerobic oxidative cyclization via sp(3) C-H bond functionalization process to afford good yields in a one-pot procedure under mild conditions.
Mojiri, Amin; Aziz, Hamidi Abdul; Zaman, Nastaein Q; Aziz, Shuokr Qarani; Zahed, Mohammad Ali
2014-06-15
Sequencing batch reactor (SBR) is one of the various methods of biological treatments used for treating wastewater and landfill leachate. This study investigated the treatment of landfill leachate and domestic wastewater by adding a new adsorbent (powdered ZELIAC; PZ) to the SBR technique. ZELIAC consists of zeolite, activated carbon, lime stone, rice husk ash, and Portland cement. The response surface methodology and central composite design were used to elucidate the nature of the response surface in the experimental design and describe the optimum conditions of the independent variables, including aeration rate (L/min), contact time (h), and ratio of leachate to wastewater mixture (%; v/v), as well as their responses (dependent variables). Appropriate conditions of operating variables were also optimized to predict the best value of responses. To perform an adequate analysis of the aerobic process, four dependent parameters, namely, chemical oxygen demand (COD), color, ammonia-nitrogen (NH3-N), and phenols, were measured as responses. The results indicated that the PZ-SBR showed higher performance in removing certain pollutants compared with SBR. Given the optimal conditions of aeration rate (1.74 L/min), leachate to wastewater ratio (20%), and contact time (10.31 h) for the PZ-SBR, the removal efficiencies for color, NH3-N, COD, and phenols were 84.11%, 99.01%, 72.84%, and 61.32%, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
van Lier, J B; Boncz, M A
2002-01-01
The pulp and paper industry uses significant amounts of water and energy for the paper production process. Closing the water cycles in this industry, therefore, promises large benefits for the environment and has the potential of huge cost savings for the industry. Closing the water cycle on the other hand also introduces problems with process water quality, quality of the end-product and scaling, owing to increased water contamination. An inline treatment system is discussed in which anaerobic-aerobic bioreactors perform a central role for removing both organic and inorganic pollutants from the process water cycle. In the proposed set-up, the organic compounds are converted to methane gas and reused for energy supply, while sulphur compounds are stripped from the process cycle and calcium carbonate is removed by precipitation. Improved control of the treatment system will direct the inorganic precipitates to a location where it does not adversely affect paper production and process water treatment. A simulation program for triggering and controlling CaCO3 precipitation was developed that takes both biological conversions and all relevant chemical equilibria in the system into account. Simulation results are in good agreement with data gathered in a full-scale "zero-emission" paper plant and indicate that control of CaCO3 precipitation can be improved, e.g. in the aerobic post-treatment. Alternatively, a separate precipitation unit could be considered.
The practice of physical activity and cryotherapy in rheumatoid arthritis: systematic review.
Peres, Daniele; Sagawa, Yoshimasa; Dugué, Benoit; Domenech, Susana C; Tordi, Nicolas; Prati, Clement
2017-10-01
Rheumatoid arthritis (RA) is an autoimmune, chronic and inflammatory disease, which the affected patients present a higher cardiovascular mortality rate. Physical activities have been identified as the most important strategy to prevent cardiovascular diseases. However, the articular damage and the chronic pain caused by RA challenges its regular practice. Moreover, persons with RA tend to avoid PA due to the fear of exacerbating the inflammatory potential and pain. One alternative to avoid the collateral effects of the PA could be the cryotherapy. Therefore, this study aimed to review studies focused on the use of both PA and cryotherapy in RA patients and to identify evidences that both therapies could be combined in order to optimize the symptomatic treatment. Four databases (MEDLINE, CINAHL, Elsevier and PEDro) were searched to identify publications regarding RA patients, PA and cryotherapy intervention by the terms and operators (rheumatoid arthritis AND exercise OR physical activity OR activity OR training OR reconditioning OR cryotherapy OR cold OR immersion). The selected studies should at least present one measure of the aerobic capacity, disease activity or pain relief. Among 19 studies with RA patients identified, only 4 studies used PA combined with cryotherapy. The other 13 studies used physical activities and 2 studies used cryotherapy intervention. The results of the physical activities combined with cryotherapy studies showed an improvement in the disease activity and pain relief, however without details of the physical activities intervention and an aerobic capacity. Among the physical activities studies, evidence was found suggesting that aerobic exercises and multiactivity exercises with high intensity are the more effective for improve the aerobic capacity. Even if few studies on cryotherapy were found, there are enough evidences in the literature that demonstrate the benefits of this intervention on pain relief and disease activity. In summary, neither study found associated physical activities to improve aerobic capacity with cryotherapy to improve disease activity and pain relief. This may be an innovative therapeutic strategy to improve the aerobic capacity in arthritis patients and consequently reduce their cardiovascular risk while minimizing pain and disease activity.
Duarte, Fernanda Oliveira; Sene-Fiorese, Marcela; de Aquino Junior, Antonio Eduardo; da Silveira Campos, Raquel Munhoz; Masquio, Deborah Cristina Landi; Tock, Lian; Garcia de Oliveira Duarte, Ana Claudia; Dâmaso, Ana Raimunda; Bagnato, Vanderlei Salvador; Parizotto, Nivaldo Antonio
2015-12-01
Obesity is one of the most important link factors to coronary artery disease development mainly due to the pro-inflammatory and pro-thrombotic states favoring atherosclerosis progression. The LLLT acts in the cellular metabolism and it is highly effective to improve inflammation. The same occur in response to different kinds of exercise. However, we have not known the associate effects using LLLT therapies with aerobic plus resistance training as strategy specifically with target at human obesity control and its comorbidities. Investigate the effects of the LLLT associated with aerobic plus resistance training on cardiometabolic risk factors in obese women. Women aged 20-40 years (BMI ≥ 30 kg/m(2)), were divided into 2 groups: Phototherapy (PHOTO) and Placebo. They were trained aerobic plus resistance exercises (in a concurrent mode), 1h, 3 times/week during 16 weeks. Phototherapy was applied after each exercise session for 16 min, with infrared laser, wavelength 808 nm, continuous output, power 100 mW, and energy delivery 50 J. The body composition was measured with bioimpedance. Inflammatory mark concentrations were measured using a commercially available multiplex. LLLT associated with aerobic plus resistance training was effective in decrease neck (P=0.0003) and waist circumferences (P=0.02); percentual of fat (P=0.04); visceral fat area (P=0.02); HOMA-IR (P=0.0009); Leptin (P=0.03) and ICAM (P=0.03). Also, the reduction in leptin (P=0.008) and ICAM-1 (0, 05) was much more expressive in the phototherapy group in comparison to placebo group when analyzed by delta values. LLLT associated with concurrent exercise (aerobic plus resistance training) potentiates the exercise effects of decreasing the cardiometabolic risk factors in obese woman. These results suggest the LLLT associated with exercises as a new therapeutic tool in the control of obesity and its comorbidities for obese people, targeting to optimize the strategies to control the cardiometabolic risk factors in these populations. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Peng; Shen, Yu; Guo, Jin-Song; Li, Chun; Wang, Han; Chen, You-Peng; Yan, Peng; Yang, Ji-Xiang; Fang, Fang
2015-07-10
In this work, proteins in extracellular polymeric substances extracted from anaerobic, anoxic and aerobic sludges of wastewater treatment plant (WWTP) were analyzed to probe their origins and functions. Extracellular proteins in WWTP sludges were identified using shotgun proteomics, and 130, 108 and 114 proteins in anaerobic, anoxic and aerobic samples were classified, respectively. Most proteins originated from cell and cell part, and their most major molecular functions were catalytic activity and binding activity. The results exhibited that the main roles of extracellular proteins in activated sludges were multivalence cations and organic molecules binding, as well as in catalysis and degradation. The catalytic activity proteins were more widespread in anaerobic sludge compared with those in anoxic and aerobic sludges. The structure difference between anaerobic and aerobic sludges could be associated with their catalytic activities proteins. The results also put forward a relation between the macro characteristics of activated sludges and micro functions of extracellular proteins in biological wastewater treatment process.
Cryptic oxygen cycling in anoxic marine zones.
Garcia-Robledo, Emilio; Padilla, Cory C; Aldunate, Montserrat; Stewart, Frank J; Ulloa, Osvaldo; Paulmier, Aurélien; Gregori, Gerald; Revsbech, Niels Peter
2017-08-01
Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30-50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O 2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O 2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O 2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O 2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling.
Wei, Chao; He, Wenjie; Wei, Li; Li, Chunying; Ma, Jun
2015-01-01
In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process.
Wei, Chao; He, Wenjie; Wei, Li; Li, Chunying; Ma, Jun
2015-01-01
In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process. PMID:26461260
Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu
2016-05-01
To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.
Physical activity and the elderly.
Hollmann, Wildor; Strüder, Heiko K; Tagarakis, Christos V M; King, Gerard
2007-12-01
Functional ageing processes are characterized by a loss of performance capabilities regarding coordination, flexibility, strength, speed, and endurance. The effects of ageing processes on the cardiovascular system and skeletal muscle are the foci of attention. After age 30, the maximum aerobic dynamic performance capacity decreases by an average of 8% per decade. The causes are mainly a reduction in the maximum cardiac output and decreases in capillarization and in the skeletal muscle mass. An improvement in the maximum oxygen uptake by 18% and in the aerobic-anaerobic threshold by 22% was achieved in untrained men aged 55-70 years, in a 12-week-long bicycle ergometer-training programme. The strength of the skeletal muscle decreases particularly after 50-60 years of age. The main cause is the reduction in the number of motor units and muscle fibres. Further, modifications of the endothelial function and the development of sarcopenia are of particular importance in ageing processes. General aerobic dynamic training can improve the endothelial function in old age and thus help prevent cardiovascular diseases. Strength training is most appropriate for the prevention of sarcopenia. Imaging techniques over the last 20 years have provided new findings on the influence and the significance of physical activity on the brain. We call this new interdisciplinary area 'Exercise Neuroscience'. Demands on coordination and aerobic dynamic endurance are suitable in counteracting age-related neuronal cellular loss, synapsis hypotrophy, and in improving neurogenesis and capillarization. Adjusted physical activity is thus capable of counteracting age-related changes and performance loss not only in the cardiovascular system but also in the brain.
Banerjee, Samiran
2012-01-01
Ammonia oxidation is a major process in nitrogen cycling, and it plays a key role in nitrogen limited soil ecosystems such as those in the arctic. Although mm-scale spatial dependency of ammonia oxidizers has been investigated, little is known about the field-scale spatial dependency of aerobic ammonia oxidation processes and ammonia-oxidizing archaeal and bacterial communities, particularly in arctic soils. The purpose of this study was to explore the drivers of ammonia oxidation at the field scale in cryosols (soils with permafrost within 1 m of the surface). We measured aerobic ammonia oxidation potential (both autotrophic and heterotrophic) and functional gene abundance (bacterial amoA and archaeal amoA) in 279 soil samples collected from three arctic ecosystems. The variability associated with quantifying genes was substantially less than the spatial variability observed in these soils, suggesting that molecular methods can be used reliably evaluate spatial dependency in arctic ecosystems. Ammonia-oxidizing archaeal and bacterial communities and aerobic ammonia oxidation were spatially autocorrelated. Gene abundances were spatially structured within 4 m, whereas biochemical processes were structured within 40 m. Ammonia oxidation was driven at small scales (<1m) by moisture and total organic carbon, whereas gene abundance and other edaphic factors drove ammonia oxidation at medium (1 to 10 m) and large (10 to 100 m) scales. In these arctic soils heterotrophs contributed between 29 and 47% of total ammonia oxidation potential. The spatial scale for aerobic ammonia oxidation genes differed from potential ammonia oxidation, suggesting that in arctic ecosystems edaphic, rather than genetic, factors are an important control on ammonia oxidation. PMID:22081570
SITE TECHNOLOGY CAPSULE: ZENOGEM™ WASTEWATER TREATMENT PROCESS
Zenon Environmental System's ZenoGem™ Wastewater Treatment Process treats aqueous media contaminated with volatile/semi-volatile organic compounds. This technology combines aerobic biological treatment to remove biodegradable organic compounds with ultrafiltration to separate res...
NASA Technical Reports Server (NTRS)
Chamberland, Dennis
1991-01-01
The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.
In situ bioremediation of petroleum hydrocarbons and chlorinated hydrocarbons: Three case studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bost, R.C.; Perry, R.G.; Barber, T.
1997-06-01
In situ biodegradation of organic contaminants is one of the most cost-effective means of site remediation. This method has proven successful in soils, ground water, and slurries. Bacteria capable of degrading organic contaminants within an aquifer include many species from a wide spectrum of genera, e.g. Pseudomonas, Corynebacterium, Bacillus, etc. In most cases, a mixture of bacterial strains is required to completely oxidize a complex organic contaminant. Each strain of an organism may target a specific compound, working together with other organisms to ultimately degrade each intermediate until complete degradation, also known as mineralization, occurs. One or more of themore » following mechanisms are utilized by bacteria for organic chemical degradation: (1) aerobic, (2) anaerobic, and (3) co-metabolic. During aerobic oxidation of organic chemicals, bacteria utilize the pollutant as an electron and hydrogen source and oxygen acts as the electron and hydrogen acceptor, resulting in water. As the bacterial enzymes cleave the compound, oxidized products are produced along with energy for the reaction to proceed. This is the most rapid and widely utilized mechanism. Dehalogenation occurs under aerobic, or perhaps more often, under anoxic conditions. This process occurs in the presence of alternate electron acceptors and replaces chlorine with hydrogen. The mechanism of co-metabolism can be aerobic or anaerobic, but is more often aerobic. This process requires a separate energy source for the bacterial cell because the pollutant is not utilized as an energy source. The role of bioremediation in site remediation is demonstrated below by three case studies: (1) a refinery, (2) a municipal landfill and (3) a pesticide formulation plant.« less
Kucyi, Aaron; Alsuwaidan, Mohammad T; Liauw, Samantha S; McIntyre, Roger S
2010-11-01
Neurocognitive dysfunction associated with bipolar disorder (BD) is pervasive, persistent across illness phases, and is demonstrated to predispose and portend psychosocial impairment. Moreover, no approved therapies for various phases of BD have been shown to reliably improve any dimension of neurocognitive performance. In this article, we emphasize that aerobic physical exercise is a viable neurocognitive-enhancing adjunctive treatment for patients with BD. The overarching aim of this review is to emphasize that aerobic physical exercise is a viable neurocognitive-enhancing adjunctive treatment for patients with BD. We conducted PubMed and Google Scholar searches of all English-language articles published between January 1966 and February 2010 using the search terms bipolar disorder, major depressive disorder, depression, exercise, and physical activity cross-referenced with each other and the following terms: cognition, executive function, learning, memory, attention, emotion, and behavior. Articles selected for review were based on adequacy of sample size, use of standardized experimental procedures, validated assessment measures, and overall quality. Available studies have documented an array of persisting neurocognitive deficits across disparate bipolar populations. Abnormalities in verbal working memory are highly replicated; deficits in executive function, learning, attention, and processing speed are also a consistent abnormality. The effect sizes of neurocognitive deficits in BD are intermediate between those reported in schizophrenia and major depressive disorder. Several original reports and reviews have documented the neurocognitive-enhancing effects of aerobic exercise in the general population as well as across diverse medical populations and ages. Proposed mechanisms involve nonexclusive effects on neurogenesis, neurotrophism, immunoinflammatory systems, insulin sensitivity, and neurotransmitter systems. Each of these effector systems are implicated in both normal and abnormal neurocognitive processes in BD. Available evidence provides a rationale for empirically evaluating the neurocognitive benefits of aerobic exercise in BD.
Vasiee, Alireza; Behbahani, Behrooz Alizadeh; Yazdi, Farideh Tabatabaei; Moradi, Samira
2016-12-01
In this study, the screening of lipase positive bacteria from rice flour was carried out by Rhodamin B agar plate method. Bacillus cereus was identified by 16S rDNA method. Screening of the appropriate variables and optimization of the lipase production was performed using Plackett-Burman design (PBD) and response surface methodology (RSM). Among the isolated bacteria, an aerobic Bacillus cereus strain was recognized as the best lipase-producing bacteria (177.3 ± 20 U/ml). Given the results, the optimal enzyme production conditions were achieved with coriander seed extract (CSE)/yeast extract ratio of 16.9 w/w, olive oil (OO) and MgCl 2 concentration of 2.37 g/L and 24.23 mM, respectively. In these conditions, the lipase activity (LA) was predicted 343 U/mL that was approximately close to the predicted value (324 U/mL), which was increased 1.83 fold LA compared with the non-optimized lipase. The kinetic parameters of V max and K m for the lipase were measured 0.367 μM/min.mL and 5.3 mM, respectively. The lipase producing Bacillus cereus was isolated and RSM was used for the optimization of enzyme production. The CSE/yeast extract ratio of 16.9 w/w, OO concentration of 2.37 g/L and MgCl 2 concentration of 24.23 mM, were found to be the optimal conditions of the enzyme production process. LA at optimal enzyme production conditions was observed 1.83 times more than the non-optimal conditions. Ultimately, it can be concluded that the isolated B. cereus from rice flour is a proper source of lipase. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buitrón, G; Moreno-Andrade, I; Linares-García, J A; Pérez, J; Betancur, M J; Moreno, J A
2007-01-01
This work presents the results and discussions of the application of an optimally controlled influent flow rate strategy to biodegrade, in a discontinuous reactor, a synthetic wastewater constituted by 4-chlorophenol. An aerobic automated discontinuous reactor system of 1.3 m3, with a useful volume of 0.75 m3 and an exchange volume of 60% was used. As part of the control strategy influent is fed into the reactor in such a way as to obtain the maximal degradation rate avoiding inhibition of microorganisms. Such an optimal strategy was able to manage increments of 4-chlorophenol concentrations in the influent between 250 and 1000 mg/L. it was shown that the optimally controlled influent flow rate strategy brings savings in reaction time and flexibility in treating high concentrations of an influent with toxic characteristics.
FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramin Yazdani; Jeff Kieffer; Heather Akau
2003-12-01
The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.« less
Hutchison, Michael L; Thomas, D John I; Small, Alison H; Buncic, Sava; Howell, Mary
2007-07-01
Statutory microbiological test results were collected from British meat plants over a 4-year period from June 2002 to May 2006. A total of 49,074 carcass test results from 19,409 cattle, 14,706 sheep, and 14,959 pig swabs and 95,179 environmental test results from surface swabs were obtained. These test results were donated by 94 slaughterhouses, which process about two thirds of the British national annual throughput of cattle, sheep, and pig carcasses. The data were collectively analyzed to determine any historical trends for numbers of total aerobes and Enterobacteriaceae. Significant reductions were observed in the numbers of indicator organisms on carcasses for all three species between 2002 and 2006. Reductions were also observed for numbers of aerobes on environmental and food contact surfaces. There were seasonal differences in bacterial numbers isolated from carcasses. Cattle and sheep carcasses had significantly higher numbers of total aerobes and Enterobacteriaceae in late summer and early autumn, whereas numbers of total aerobes on pig carcasses were higher in winter. Bacterial numbers on environmental surfaces were not influenced by the month that the swab samples were collected. Possible reasons for the observed reductions in bacterial numbers on carcasses and surfaces and the implications for carcass testing for process control purposes are discussed.
Voorn, Eric L.; Koopman, Fieke S.; Brehm, Merel A.; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H. L.; Nollet, Frans
2016-01-01
Objective To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. Design A process evaluation using data from an RCT. Patients Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Methods Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60–70% heart rate reserve). Results The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Conclusion Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Trial Registration Netherlands National Trial Register NTR1371 PMID:27419388
Sun, Jianyu; Liang, Peng; Yan, Xiaoxu; Zuo, Kuichang; Xiao, Kang; Xia, Junlin; Qiu, Yong; Wu, Qing; Wu, Shijia; Huang, Xia; Qi, Meng; Wen, Xianghua
2016-04-15
Reducing the energy consumption of membrane bioreactors (MBRs) is highly important for their wider application in wastewater treatment engineering. Of particular significance is reducing aeration in aerobic tanks to reduce the overall energy consumption. This study proposed an in situ ammonia-N-based feedback control strategy for aeration in aerobic tanks; this was tested via model simulation and through a large-scale (50,000 m(3)/d) engineering application. A full-scale MBR model was developed based on the activated sludge model (ASM) and was calibrated to the actual MBR. The aeration control strategy took the form of a two-step cascaded proportion-integration (PI) feedback algorithm. Algorithmic parameters were optimized via model simulation. The strategy achieved real-time adjustment of aeration amounts based on feedback from effluent quality (i.e., ammonia-N). The effectiveness of the strategy was evaluated through both the model platform and the full-scale engineering application. In the former, the aeration flow rate was reduced by 15-20%. In the engineering application, the aeration flow rate was reduced by 20%, and overall specific energy consumption correspondingly reduced by 4% to 0.45 kWh/m(3)-effluent, using the present practice of regulating the angle of guide vanes of fixed-frequency blowers. Potential energy savings are expected to be higher for MBRs with variable-frequency blowers. This study indicated that the ammonia-N-based aeration control strategy holds promise for application in full-scale MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Zhiwei; Shi, Wenxin; Li, Ji
2013-01-01
The quick recovery process of contaminants removal of aerobic granular sludge (AGS) is complex, and the influencing factors are still not clear. The effects of dissolved oxygen (DO, air intensive aeration rate), organic loading rate (OLR), and C/N on contaminants removal characteristics of AGS and subsequently long-term operation of AGS bioreactor were investigated in this study. DO had a major impact on the recovery of AGS. The granules reactivated at air intensive aeration rate of 100 L/h achieved better settling property and contaminants removal efficiency. Moreover, protein content in extracellular polymeric substance (EPS) was almost unchanged, which demonstrated that an aeration rate of 100 L/h was more suitable for maintaining the biomass and the structure of AGS. Higher OLR caused polysaccharides content increase in EPS, and unstable C/N resulted in the overgrowth of filamentous bacteria, which presented worse NH4 +-N and PO4 3−-P removal. Correspondingly, quick recovery of contaminants removal was accomplished in 12 days at the optimized operation conditions of aeration rate 100 L/h, OLR 4 g/L·d, and C/N 100 : 10, with COD, NH4 +-N, and PO4 3−-P removal efficiencies of 87.2%, 86.9%, and 86.5%, respectively. The renovation of AGS could be successfully utilized as the seed sludge for the rapid start-up of AGS bioreactor. PMID:24106695
Nuechterlein, Keith H; Ventura, Joseph; McEwen, Sarah C; Gretchen-Doorly, Denise; Vinogradov, Sophia; Subotnik, Kenneth L
2016-07-01
Cognitive training (CT) and aerobic exercise have separately shown promise for improving cognitive deficits in schizophrenia. Aerobic exercise releases brain-derived neurotrophic factor, which promotes synaptic plasticity and neurogenesis. Thus, aerobic exercise provides a neurotrophic platform for neuroplasticity-based CT. The combination of aerobic exercise and CT may yield more robust effects than CT alone, particularly in the initial course of schizophrenia. In a pilot study, 7 patients with a recent onset of schizophrenia were assigned to Cognitive Training & Exercise (CT&E) and 9 to CT alone for a 10-week period. Posit Science programs were used for CT. Neurocognitive training focused on tuning neural circuits related to perceptual processing and verbal learning and memory. Social cognitive training used the same learning principles with social and affective stimuli. Both groups participated in these training sessions 2d/wk, 2h/d. The CT&E group also participated in an aerobic conditioning program for 30 minutes at our clinic 2d/wk and at home 2d/wk. The effect size for improvement in the MATRICS Consensus Cognitive Battery Overall Composite score for CT&E patients relative to CT patients was large. Functional outcome, particularly independent living skills, also tended to improve more in the CT&E than in the CT group. Muscular endurance, cardiovascular fitness, and diastolic blood pressure also showed relative improvement in the CT&E compared to the CT group. These encouraging pilot study findings support the promise of combining CT and aerobic exercise to improve the early course of schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Aerobic Exercise Training Modalities and Prediabetes Risk Reduction.
Rowan, Chip P; Riddell, Michael C; Gledhill, Norman; Jamnik, Veronica K
2017-03-01
Prediabetes is linked to several modifiable risk factors, in particular, physical activity participation. The optimal prescription for physical activity remains uncertain. This pilot study aimed to investigate the effectiveness of continuous moderate intensity (CON) versus high-intensity interval training (HIIT) in persons with prediabetes. Outcome measures included glycated hemoglobin (A1C), body composition, musculoskeletal and aerobic fitness. Participants (n = 35) were recruited and screened using a questionnaire plus capillary blood point-of-care A1C analysis. After baseline screening/exclusions, 21 participants were randomly assigned to either HIIT or CON training three times per week for 12 wk. All participants also undertook resistance training two times per week. A1C, an oral glucose tolerance test, select measures of physical and physiological fitness were assessed at baseline and follow-up. There were no significant differences in improvements in select metabolic indicators to training between CON and HIT groups. Pooled participant data showed a mean reduction in A1C of 0.5% (95% confidence interval [CI] = 0.3%-0.7%), whereas β-cell function (%β) improved by 28.9% (95% CI = 16.5%-39.2%) and insulin sensitivity (%S) decreased by 34.8 (95% CI = 57.8%-11.8), as assessed by the Homeostatic Model Assessment. Significant reductions in waist circumference of 4.5 cm (P < 0.001) and a 20% (P < 0.001) improvement in aerobic fitness were also observed in both training groups. The completion of a 12-wk exercise program involving both resistance training and either HIIT or CON training results in improved glycemic control, visceral adiposity, and aerobic fitness in persons with prediabetes.
Pasukphun, N; Vinitnantharat, S; Gheewala, S
2010-04-01
The aim of this study is to investigate the decolorization in anaerobic/aerobic biological activated carbon (A/A BAC) system. The experiment was divided into 2 stages; stage I is batch test for preliminary study of dye removal equilibrium time. The preliminary experiment (stage I) provided the optimal data for experimental design of A/A BAC system in SBR (stage II). Stage II is A/A BAC system imitated Sequencing Batch Reactor (SBR) which consist of 5 main periods; fill, react, settle, draw and idle. React period include anaerobic phase followed by aerobic phase. The BAC main media; Granular Activated Carbon (GAC), Mixed Cultures (MC) and Biological Activated Carbon (BAC) were used for dye and organic substances removal in three different solutions; Desizing Agent Solution (DAS), dye Solution (DS) and Synthetic Textile Wastewater (STW). Results indicate that GAC adsorption plays role in dye removal followed by BAC and MC activities, respectively. In the presence desizing agent, decolorization by MC was improved because desizing agent acts as co-substrates for microorganisms. It was found that 50% of dye removal efficiency was achieved in Fill period by MC. GC/MS analysis was used to identify dye intermediate from decolorization. Dye intermediate containing amine group was found in the solution and on BAC surfaces. The results demonstrated that combination of MC and BAC in the system promotes decolorization and dye intermediate removal. In order to improve dye removal efficiency in an A/A BAC system, replacement of virgin GAC, sufficient co-substrates supply and the appropriate anaerobic: aerobic period should be considered.
Campos, Carlos; Rocha, Nuno B F; Lattari, Eduardo; Nardi, Antonio E; Machado, Sergio
2017-01-01
Cognitive impairment is a major manifestation of schizophrenia and a crucial treatment target as these deficits are closely related to patients' functional outcomes. Cognitive remediation is the gold-standard practice to address cognitive deficits in schizophrenia. There is clear evidence stating that cognitive remediation improves cognitive function and promotes structural neuroplastic changes in patients with schizophrenia, with brain-derived neurotrophic factor (BDNF) expression emerging as a potential biomarker for its efficacy. This is particularly important as there is clear evidence relating atypical BDNF expression to cognitive impairment in patients with schizophrenia. Despite the valuable role of cognitive remediation in the management of schizophrenia, there is still a need to develop methods that allow maximizing its efficacy. In this review, we present a hypothesis arguing that cognitive remediation efficacy for patients with schizophrenia can be enhanced by aerobic exercise-induced BDNF upregulation. There have been a few trials reporting that combining aerobic exercise with cognitive training was superior to cognitive training alone to improve cognitive functioning in patients with schizophrenia. Furthermore, there is preliminary evidence suggesting that combined aerobic and cognitive training can increase peripheral BDNF levels. Thereby, engaging in aerobic exercise in close temporal proximity to cognitive remediation may allow achieving a state of neuroplastic readiness in the brain, facilitating cognitive functioning enhancement. Although this hypothesis still lacks evidence, future clinical trials using cognitive remediation for schizophrenia should explore strategies to maximize neuroplasticity and achieve optimal cognitive improvements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Thurston, R.S.; Mandernack, K.W.; Shanks, Wayne C.
2010-01-01
Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (??18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ?? 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, ??18OSO4-H2O, of ~ 3.8??? for the anaerobic experiments. Aerobic oxidation produced apparent ??SO4-H2O values (6.4???) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. ??34SSO4 values are ~ 4??? lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in ??34SSO4 of ~- 1.5 ?? 0.2??? was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions. ?? 2009 Elsevier B.V.
Factors affecting microbial 2,4,6-trinitrotoluene mineralization in contaminated soil
Bradley, P.M.; Chapelle, F.H.
1995-01-01
The influence of selected environmental factors on microbial TNT mineralization in soils collected from a TNT-contaminated site at Weldon Spring, MO, was examined using uniformly ring-labeled [14C]TNT. Microbial TNT mineralization was significantly inhibited by the addition of cellobiose and syringate. This response suggests that the indigenous microorganisms are capable of metabolizing TNT but preferentially utilize less recalcitrant substrates when available. The observed inhibition of TNT mineralization by TNT concentrations higher than 100 ??mol/kg of soil and by dry soil conditions suggests that toxic inhibition of microbial activity at high TNT concentrations and the periodic drying of these soils have contributed to the long-term persistence of TNT at Weldon Spring. In comparison to aerobic microcosms, mineralization was inhibited in anaerobic microcosms and in microcosms with a headspace of air amended with oxygen, suggesting that a mosaic of aerobic and anaerobic conditions may optimize TNT degradation at this site.
Aerobic vaginitis in pregnancy.
Donders, Ggg; Bellen, G; Rezeberga, D
2011-09-01
Aerobic vaginitis (AV) is an alteration in vaginal bacterial flora that differs from bacterial vaginosis (BV). AV is characterised by an abnormal vaginal microflora accompanied by an increased localised inflammatory reaction and immune response, as opposed to the suppressed immune response that is characteristic of BV. Given the increased local production of interleukin (IL)-1, IL-6 and IL-8 associated with AV during pregnancy, not surprisingly AV is associated with an increased risk of preterm delivery, chorioamnionitis and funisitis of the fetus. There is no consensus on the optimal treatment for AV in pregnant or non-pregnant women, but a broader spectrum drug such as clindamycin is preferred above metronidazole to prevent infection-related preterm birth. The exact role of AV in pregnancy, the potential benefit of screening, and the use of newer local antibiotics, disinfectants, probiotics and immune modulators need further study. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.
Effect of organic matter to nitrogen ratio on membrane bioreactor performance.
Hao, L; Liao, B Q
2015-01-01
Effect of chemical oxygen demand (COD) to nitrogen (COD:N) ratio in feed on the performance of aerobic membrane bioreactor (MBR) for treating a synthetic high-strength industrial waste water containing glucose was studied for over 370 days. The widely recommended nutrients ratio (COD:N:P = 100:5:1) is not necessary for aerobic biological industrial waste water treatment. An increased COD:N ratio from 100:5 to 100:2.5 and 100:1.8 had a limited impact on COD removal efficiency and further led to a significant improvement in membrane performance, a reduced sludge yield, and improved effluent quality in terms of residual nutrients. An increased COD:N ratio will benefit the industrial waste water treatment using MBRs by reducing membrane fouling and sludge yield, saving chemical costs, and reducing secondary pollution by nutrients addition. Optimization of nutrients usage should be conducted for specific industrial waste water streams.
In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli.
Yishai, Oren; Bouzon, Madeleine; Döring, Volker; Bar-Even, Arren
2018-05-15
Assimilation of one-carbon compounds presents a key biochemical challenge, which limits their use as sustainable feedstocks for microbial growth and production. The reductive glycine pathway is a synthetic metabolic route that could provide an optimal way for the aerobic assimilation of reduced C1 compounds. Here, we show that a rational integration of native and foreign enzymes enables the tetrahydrofolate and glycine cleavage/synthase systems to operate in the reductive direction, such that Escherichia coli satisfies all of its glycine and serine requirements from the assimilation of formate and CO2. Importantly, the biosynthesis of serine from formate and CO2 does not lower the growth rate, indicating high flux that is able to provide 10% of cellular carbon. Our findings assert that the reductive glycine pathway could support highly efficient aerobic assimilation of C1-feedstocks.
Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes
NASA Astrophysics Data System (ADS)
Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.
2016-09-01
Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal.
Culture conditions affect cytotoxin production by Serratia marcescens.
Carbonell, G V; Fonseca, B A; Figueiredo, L T; Darini, A L; Yanaguita, R M
1996-12-31
Cytotoxins have been implicated in the pathogenesis of bacterial infections. In this study, the influence of different culture conditions was evaluated on cytotoxin production of Serratia marcescens. Parameters such as culture media, incubation temperature, starting pH of culture medium, aeration, anaerobiosis, carbon sources, iron concentration in he culture media, and release of cell-bond toxin by polymyxin B were investigated. The data suggest that this cytotoxin is predominantly extracellular and is not induced by iron limitation. Aerobic culture with shaking resulted in higher cytotoxicity than static aerobic or anaerobic culture. Bacteria grown in glucose, sucrose or galactose were more cytotoxic than those grown in inositol or maltose. The culture conditions that were identified as optimal for cytotoxin production by Serratia marcescens were incubation temperature ranging from 30 to 37 degrees C, in medium adjusted pH 8.5, with shaking. This work will contribute to further studies on the identification of this cytotoxic activity.
Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof
2012-01-01
Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s−1) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s−1 SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short start-up periods. PMID:22993513
Weissbrodt, David G; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof
2012-01-01
Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s(-1)) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s(-1) SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short start-up periods.
NASA Astrophysics Data System (ADS)
Bomba, A. Ya.; Safonik, A. P.
2018-05-01
A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.
NASA Astrophysics Data System (ADS)
Bomba, A. Ya.; Safonik, A. P.
2018-03-01
A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.
Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun
2010-09-01
The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Chen, Chunyan; Long, Sihua; Li, Airong; Xiao, Guoqing; Wang, Linyuan; Xiao, Zeyi
2017-03-16
Since both ethanol and butanol fermentations are urgently developed processes with the biofuel-demand increasing, performance comparison of aerobic ethanol fermentation and anerobic butanol fermentation in a continuous and closed-circulating fermentation (CCCF) system was necessary to achieve their fermentation characteristics and further optimize the fermentation process. Fermentation and pervaporation parameters including the average cell concentration, glucose consumption rate, cumulated production concentration, product flux, and separation factor of ethanol fermentation were 11.45 g/L, 3.70 g/L/h, 655.83 g/L, 378.5 g/m 2 /h, and 4.83, respectively, the corresponding parameters of butanol fermentation were 2.19 g/L, 0.61 g/L/h, 28.03 g/L, 58.56 g/m 2 /h, and 10.62, respectively. Profiles of fermentation and pervaporation parameters indicated that the intensity and efficiency of ethanol fermentation was higher than butanol fermentation, but the stability of butanol fermentation was superior to ethanol fermentation. Although the two fermentation processes had different features, the performance indicated the application prospect of both ethanol and butanol production by the CCCF system.
Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry.
Buyukkamaci, Nurdan; Koken, Emre
2010-11-15
Excessive water consumption in pulp and paper industry results in high amount of wastewater. Pollutant characteristics of the wastewater vary depending on the processes used in production and the quality of paper produced. However, in general, high organic material and suspended solid contents are considered as major pollutants of pulp and paper industry effluents. The major pollutant characteristics of pulp and paper industry effluents in Turkey were surveyed and means of major pollutant concentrations, which were grouped in three different pollution grades (low, moderate and high strength effluents), and flow rates within 3000 to 10,000m(3)/day range with 1000m(3)/day steps were used as design parameters. Ninety-six treatment plants were designed using twelve flow schemes which were combinations of physical treatment, chemical treatment, aerobic and anaerobic biological processes. Detailed comparative cost analysis which includes investment, operation, maintenance and rehabilitation costs was prepared to determine optimum treatment processes for each pollution grade. The most economic and technically optimal treatment processes were found as extended aeration activated sludge process for low strength effluents, extended aeration activated sludge process or UASB followed by an aeration basin for medium strength effluents, and UASB followed by an aeration basin or UASB followed by the conventional activated sludge process for high strength effluents. Copyright © 2010 Elsevier B.V. All rights reserved.
Benefits of regular aerobic exercise for executive functioning in healthy populations.
Guiney, Hayley; Machado, Liana
2013-02-01
Research suggests that regular aerobic exercise has the potential to improve executive functioning, even in healthy populations. The purpose of this review is to elucidate which components of executive functioning benefit from such exercise in healthy populations. In light of the developmental time course of executive functions, we consider separately children, young adults, and older adults. Data to date from studies of aging provide strong evidence of exercise-linked benefits related to task switching, selective attention, inhibition of prepotent responses, and working memory capacity; furthermore, cross-sectional fitness data suggest that working memory updating could potentially benefit as well. In young adults, working memory updating is the main executive function shown to benefit from regular exercise, but cross-sectional data further suggest that task-switching and post error performance may also benefit. In children, working memory capacity has been shown to benefit, and cross-sectional data suggest potential benefits for selective attention and inhibitory control. Although more research investigating exercise-related benefits for specific components of executive functioning is clearly needed in young adults and children, when considered across the age groups, ample evidence indicates that regular engagement in aerobic exercise can provide a simple means for healthy people to optimize a range of executive functions.
Joyner-Matos, Joanna; Chapman, Lauren J
2013-08-01
Aquatic hypoxia is generally viewed as stressful for aerobic organisms. However, hypoxia may also benefit organisms by decreasing cellular stress, particularly that related to free radicals. Thus, an ideal habitat may have the minimum O2 necessary to both sustain aerobic metabolism and reduce the need to scavenge free radicals and repair free radical damage. The ability of aquatic organisms to sustain aerobic metabolism relates in part to the ability to maximize gas diffusion, which can be facilitated by small body size when O2 uptake occurs across the body surface, by a large gill surface area, or by the ability to use atmospheric air. We use water-breathing organisms in chronically hypoxic papyrus (Cyperus papyrus) swamps of East Africa to test the hypothesis that cellular-level benefits of hypoxia may translate into increased fitness, especially for small organisms. A review of recent studies of fingernail clams (Sphaerium sp.) shows that clams living in sustained hypoxia have minimized oxidative stress and that these cellular-level benefits may lead to increased fitness. We suggest that organisms in the extreme conditions in the papyrus swamps provide a unique opportunity to challenge the conventional classification of hypoxic habitats as 'stressful' and normoxic habitats as 'optimal.' Copyright © 2013 Elsevier Inc. All rights reserved.
Towards a Microbial Thermoelectric Cell
Rodríguez-Barreiro, Raúl; Abendroth, Christian; Vilanova, Cristina; Moya, Andrés; Porcar, Manuel
2013-01-01
Microbial growth is an exothermic process. Biotechnological industries produce large amounts of heat, usually considered an undesirable by-product. In this work, we report the construction and characterization of the first microbial thermoelectric cell (MTC), in which the metabolic heat produced by a thermally insulated microbial culture is partially converted into electricity through a thermoelectric device optimized for low ΔT values. A temperature of 41°C and net electric voltage of around 250–600 mV was achieved with 1.7 L baker’s yeast culture. This is the first time microbial metabolic energy has been converted into electricity with an ad hoc thermoelectric device. These results might contribute towards developing a novel strategy to harvest excess heat in the biotechnology industry, in processes such as ethanol fermentation, auto thermal aerobic digestion (ATAD) or bioremediation, which could be coupled with MTCs in a single unit to produce electricity as a valuable by-product of the primary biotechnological product. Additionally, we propose that small portable MTCs could be conceived and inoculated with suitable thermophilic of hyperthermophilic starter cultures and used for powering small electric devices. PMID:23468862
The in situ aeration in an old landfill in China: Multi-wells optimization method and application.
Liu, Lei; Ma, Jun; Xue, Qiang; Shao, Jingbang; Chen, Yijun; Zeng, Gang
2018-06-01
The optimization design of well spacing (WS) and aeration rate (AR) is crucial to the in situ aeration system operation in under long-term and high-efficiency conditions. This optimization design aims to transport additional air into landfills and to develop an improved oxygen environment for enhancing aerobic degradation. Given the specific pore structure distribution within landfills, providing sufficient oxygen in all waste bodies in field sites through gas wells is difficult. The design of well distribution also lacks adequate criteria. In this work, the multi-well optimization aeration method (MWOAM) was proposed to select the WS and AR from prediction results that consider gas transport properties by maximizing oxygen storage ratio (OSR) as the key objective threshold. This method was applied to the aeration restoration engineering in Jinkou landfill, which represents the first full-scale application of an aeration project in China, to optimize the operation scheme of the aeration system. Results of the gas concentration monitoring show that the trend of the OSR with aeration time based on the measurement agrees with the prediction. The oxygen and methane contents remain high and low within the landfill during the aeration process, respectively. Moreover, the temperature in the waste body did not exceed the upper limit value. These results suggested that the MWOAM is an effective means of supplying sufficient oxygen content across the landfill body and extend the aeration system operation for the long term. Therefore, this work provides reliable evidence to support the design and operation management of the aeration systems in full-scale landfills. Copyright © 2018 Elsevier Ltd. All rights reserved.
General Characteristics and Treatment Possibilities of Dairy Wastewater – A Review
2017-01-01
Summary The milk processing industry is one of the world’s staple industries, thus the treatment possibilities of dairy effluents have been attracting more and more attention. The purpose of the paper is to review contemporary research on dairy wastewater. The origin, categories, as well as liquid by-products and general indicators of real dairy wastewater are described. Different procedures applied for dairy wastewater management are summarised. Attention is focused on in-factory treatment technologies with the emphasis on biological processes. Aerobic and anaerobic methods with both their advantages and disadvantages are discussed in detail. Consecutive anaerobic and aerobic systems are analysed, too. Finally, future research niches are identified. PMID:28559730
Bio-oil upgrading strategies to improve PHA production from selected aerobic mixed cultures.
Moita Fidalgo, Rita; Ortigueira, Joana; Freches, André; Pelica, João; Gonçalves, Magarida; Mendes, Benilde; Lemos, Paulo C
2014-06-25
Recent research on polyhydroxyalkanoates (PHAs) has focused on developing cost-effective production processes using low-value or industrial waste/surplus as substrate. One of such substrates is the liquid fraction resulting from pyrolysis processes, bio-oil. In this study, valorisation of bio-oil through PHA production was investigated. The impact of the complex bio-oil matrix on PHA production by an enriched mixed culture was examined. The performance of the direct utilization of pure bio-oil was compared with the utilization of three defined substrates contained in this bio-oil: acetate, glucose and xylose. When compared with acetate, bio-oil revealed lower capacity for polymer production as a result of a lower polymer yield on substrate and a lower PHA cell content. Two strategies for bio-oil upgrade were performed, anaerobic fermentation and vacuum distillation, and the resulting liquid streams were tested for polymer production. The first one was enriched in volatile fatty acids and the second one mainly on phenolic and long-chain fatty acids. PHA accumulation assays using the upgraded bio-oils attained polymer yields on substrate similar or higher than the one achieved with acetate, although with a lower PHA content. The capacity to use the enriched fractions for polymer production has yet to be optimized. The anaerobic digestion of bio-oil could also open-up the possibility to use the fermented bio-oil directly in the enrichment process of the mixed culture. This would increase the selective pressure toward an optimized PHA accumulating culture selection. Copyright © 2013 Elsevier B.V. All rights reserved.
High microbial loads found in minimally-processed sliced mushrooms from Italian market.
Jiang, Haiyang; Miraglia, Dino; Ranucci, David; Donnini, Domizia; Roila, Rossana; Branciari, Raffaella; Li, Cheng
2018-03-31
There is an increased consumer interest in minimally processed vegetables that has led to the development of products, such as pre-cut sliced mushrooms. Few data are available on the hygienic condition and the presence of foodborne pathogens in such products. Therefore, the current study aimed to evaluate the safety and hygienic characteristics of both ready-to-eat and ready-to-cook, pre-cut sliced mushrooms obtained from a local Italian market. For the evaluation of the hygienic condition, the aerobic mesophilic bacteria, aerobic psychrotrophic bacteria and Escherichia coli enumerations were performed. Salmonella spp., Listeria monocytogenes and Campylobacter spp. were considered in the assessment of the foodborne pathogens. High microbial loads were detected, including counts higher than 5 log CFU/g for E. coli and 6 log CFU/g for the other bacteria counts considered, but no pathogens were found. Ready-to-eat and ready-to-cook products differed only for aerobic mesophilic counts (7.87 and 8.26 log CFU/g, respectively, P=0.003). Strategies to enhance the hygienic level of the mushrooms, particularly the ready-to-eat products, are needed.
High microbial loads found in minimally-processed sliced mushrooms from Italian market
Jiang, Haiyang; Miraglia, Dino; Ranucci, David; Donnini, Domizia; Roila, Rossana; Branciari, Raffaella; Li, Cheng
2018-01-01
There is an increased consumer interest in minimally processed vegetables that has led to the development of products, such as pre-cut sliced mushrooms. Few data are available on the hygienic condition and the presence of foodborne pathogens in such products. Therefore, the current study aimed to evaluate the safety and hygienic characteristics of both ready-to-eat and ready-to-cook, pre-cut sliced mushrooms obtained from a local Italian market. For the evaluation of the hygienic condition, the aerobic mesophilic bacteria, aerobic psychrotrophic bacteria and Escherichia coli enumerations were performed. Salmonella spp., Listeria monocytogenes and Campylobacter spp. were considered in the assessment of the foodborne pathogens. High microbial loads were detected, including counts higher than 5 log CFU/g for E. coli and 6 log CFU/g for the other bacteria counts considered, but no pathogens were found. Ready-to-eat and ready-to-cook products differed only for aerobic mesophilic counts (7.87 and 8.26 log CFU/g, respectively, P=0.003). Strategies to enhance the hygienic level of the mushrooms, particularly the ready-to-eat products, are needed. PMID:29732334
Microbial degradation of chloroethenes: a review.
Dolinová, Iva; Štrojsová, Martina; Černík, Miroslav; Němeček, Jan; Macháčková, Jiřina; Ševců, Alena
2017-05-01
Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.
Cao, Xinhua; Qi, Yueling; Xu, Chen; Yang, Yuyi; Wang, Jun
2017-04-01
Shewanella oneidensis MR-1 degrades various azo dyes under microaerophilic and anaerobic conditions, but this process is inhibited under aerobic conditions. The mechanisms underlying azo dye biodegradation and inhibition remain unknown. Therefore, we investigated metabolic and transcriptional changes in strain MR-1, which was cultured under different conditions, to elucidate these mechanisms. At the transcriptional level, genes involved in certain metabolic processes, particularly the tricarboxylic acid (TCA) cycle, amino acid biodegradation, and the electron transfer system, were significantly altered (M ≧ 2, p > 0.8 ) in the presence of methyl orange (MO). Moreover, a high concentration of dissolved oxygen heavily impacted the expression levels of genes involved in fatty acid biodegradation. Metabolome analysis revealed significant alteration (p < 0.05) in the concentrations of nine metabolites when strain MR-1 was cultured under aerobic conditions; the majority of these metabolites were closely associated with amino acid metabolism and DNA replication. Accordingly, we propose a possible pathway for MO biodegradation and discuss the most likely causes of biodegradation inhibition due to dissolved oxygen.
Bacterial diversity at different stages of the composting process
2010-01-01
Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants. PMID:20350306
Shin, D H; Shin, W S; Kim, Y H; Han, Myung Ho; Choi, S J
2006-01-01
A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2. ln the MBBR process, 85% of COD and 70% of color (influent COD = 807.5 mg/L and color = 3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT = 44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment.
Nonoxidative removal of organics in the activated sludge process
Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte
2016-01-01
ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679
Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"
DOE Office of Scientific and Technical Information (OSTI.GOV)
James L. Gaddy, PhD; Ching-Whan Ko, PhD
2009-05-04
World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide andmore » simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T. crunogena produces a reasonable return when treating a sour gas stream of 120 million SCFD containing 2.5 percent H2S. In this case, the primary source of revenue is from desulfurization of the gas stream. While the technology has significant application in sequestering carbon dioxide in cell biomass or single cell proten (SCP), perhaps the most immediate application is in desulfurizing LGNG or other gas streams. This biological approach is a viable economical alternative to existing hydrogen sulfide removal technology, and is not sensitive to the presence of hydrocarbons which act as catalyst poisons.« less
Tomar, Sachin Kumar; Chakraborty, Saswati
2018-08-01
The impact of air flow rate on aerobic granulation was evaluated for treating toxic multiple pollutants; phenol (400 mg L -1 ), thiocyanate (100 mg L -1 ) and ammonia nitrogen (100 mg L -1 ) by using three lab scale sequencing batch reactors (SBRs) (R1, R2 and R3). Larger granules (2938.67 ± 64.91 μm) with higher biomass concentration (volatile solids of 4.17 ± 0.09 g L -1 ), higher granule settling velocity (55.56 ± 1.36 m h -1 ) and lower sludge volume index (35.25 ± 1.71 mL gTSS -1 ) were observed at optimal air flow rate of 2.5 L min -1 (R2). Confocal laser scanning microscopic images illustrated the extended fluorescence for extracellular polymeric substances in R2. In R2, partial nitrification was achieved. Phenol was completely removed in all the reactors while partial removal of SCN - and no nitrification were observed with a decrease (1.5 L min -1 ) and an increase (3.5 L min -1 ) in air flow rates (R1 and R3, respectively). This study provides an experimental contribution to examine the effect of optimal combination of aeration and toxic multiple pollutants, governing characteristics and nitrification efficiency of granules along with SBR performance in an economic way in terms of optimal air supply. Copyright © 2018 Elsevier Ltd. All rights reserved.
Validity of the Talk Test for exercise prescription after myocardial revascularization.
Zanettini, Renzo; Centeleghe, Paola; Franzelli, Cristina; Mori, Ileana; Benna, Stefania; Penati, Chiara; Sorlini, Nadia
2013-04-01
For exercise prescription, rating of perceived exertion is the subjective tool most frequently used in addition to methods based on percentage of peak exercise variables. The aim of this study was the validation of a subjective method widely called the Talk Test (TT) for optimization of training intensity in patients with recent myocardial revascularization. Fifty patients with recent myocardial revascularization (17 by coronary artery bypass grafting and 33 by percutaneous coronary intervention) were enrolled in a cardiac rehabilitation programme. Each patient underwent three repetitions of the TT during three different exercise sessions to evaluate the within-patient and between-operators reliability in assessing the workload (WL) at TT thresholds. These parameters were then compared with the data of a final cardiopulmonary exercise testing, and the WL range between the individual aerobic threshold (AeT) and anaerobic threshold (AnT) was considered as the optimal training zone. The within-patient and between-operators reliability in assessing TT thresholds were satisfactory. No significant differences were found between patients' and physiotherapists' evaluations of WL at different TT thresholds. WL at Last TT+ was between AeT and AnT in 88% of patients and slightly
Lünsmann, Vanessa; Kappelmeyer, Uwe; Taubert, Anja; Nijenhuis, Ivonne; von Bergen, Martin; Heipieper, Hermann J; Müller, Jochen A; Jehmlich, Nico
2016-07-15
Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase (bssA) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results indicated stable aerobic toluene degradation by members of the Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis in these bacteria was higher during the day, suggesting that they additionally fed on organic root exudates and reutilized the stored carbon compounds during the night. Our study illuminates microbial processes occurring in the rhizosphere of an aquatic ecosystem. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Lünsmann, Vanessa; Kappelmeyer, Uwe; Taubert, Anja; Nijenhuis, Ivonne; von Bergen, Martin; Müller, Jochen A.; Jehmlich, Nico
2016-01-01
ABSTRACT Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase (bssA) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. IMPORTANCE Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results indicated stable aerobic toluene degradation by members of the Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis in these bacteria was higher during the day, suggesting that they additionally fed on organic root exudates and reutilized the stored carbon compounds during the night. Our study illuminates microbial processes occurring in the rhizosphere of an aquatic ecosystem. PMID:27129963
Trotter, Eleanor W.; Rolfe, Matthew D.; Hounslow, Andrea M.; Craven, C. Jeremy; Williamson, Michael P.; Sanguinetti, Guido; Poole, Robert K.; Green, Jeffrey
2011-01-01
Background Many bacteria undergo transitions between environments with differing O2 availabilities as part of their natural lifestyles and during biotechnological processes. However, the dynamics of adaptation when bacteria experience changes in O2 availability are understudied. The model bacterium and facultative anaerobe Escherichia coli K-12 provides an ideal system for exploring this process. Methods and Findings Time-resolved transcript profiles of E. coli K-12 during the initial phase of transition from anaerobic to micro-aerobic conditions revealed a reprogramming of gene expression consistent with a switch from fermentative to respiratory metabolism. The changes in transcript abundance were matched by changes in the abundances of selected central metabolic proteins. A probabilistic state space model was used to infer the activities of two key regulators, FNR (O2 sensing) and PdhR (pyruvate sensing). The model implied that both regulators were rapidly inactivated during the transition from an anaerobic to a micro-aerobic environment. Analysis of the external metabolome and protein levels suggested that the cultures transit through different physiological states during the process of adaptation, characterized by the rapid inactivation of pyruvate formate-lyase (PFL), a slower induction of pyruvate dehydrogenase complex (PDHC) activity and transient excretion of pyruvate, consistent with the predicted inactivation of PdhR and FNR. Conclusion Perturbation of anaerobic steady-state cultures by introduction of a limited supply of O2 combined with time-resolved transcript, protein and metabolite profiling, and probabilistic modeling has revealed that pyruvate (sensed by PdhR) is a key metabolic signal in coordinating the reprogramming of E. coli K-12 gene expression by working alongside the O2 sensor FNR during transition from anaerobic to micro-aerobic conditions. PMID:21980479
Trotter, Eleanor W; Rolfe, Matthew D; Hounslow, Andrea M; Craven, C Jeremy; Williamson, Michael P; Sanguinetti, Guido; Poole, Robert K; Green, Jeffrey
2011-01-01
Many bacteria undergo transitions between environments with differing O₂ availabilities as part of their natural lifestyles and during biotechnological processes. However, the dynamics of adaptation when bacteria experience changes in O₂ availability are understudied. The model bacterium and facultative anaerobe Escherichia coli K-12 provides an ideal system for exploring this process. Time-resolved transcript profiles of E. coli K-12 during the initial phase of transition from anaerobic to micro-aerobic conditions revealed a reprogramming of gene expression consistent with a switch from fermentative to respiratory metabolism. The changes in transcript abundance were matched by changes in the abundances of selected central metabolic proteins. A probabilistic state space model was used to infer the activities of two key regulators, FNR (O₂ sensing) and PdhR (pyruvate sensing). The model implied that both regulators were rapidly inactivated during the transition from an anaerobic to a micro-aerobic environment. Analysis of the external metabolome and protein levels suggested that the cultures transit through different physiological states during the process of adaptation, characterized by the rapid inactivation of pyruvate formate-lyase (PFL), a slower induction of pyruvate dehydrogenase complex (PDHC) activity and transient excretion of pyruvate, consistent with the predicted inactivation of PdhR and FNR. Perturbation of anaerobic steady-state cultures by introduction of a limited supply of O₂ combined with time-resolved transcript, protein and metabolite profiling, and probabilistic modeling has revealed that pyruvate (sensed by PdhR) is a key metabolic signal in coordinating the reprogramming of E. coli K-12 gene expression by working alongside the O₂ sensor FNR during transition from anaerobic to micro-aerobic conditions.
Brotto, Ariane Coelho; Li, Huosheng; Dumit, Muriel; Gabarró, Jordi; Colprim, Jesús; Murthy, Sudhir; Chandran, Kartik
2015-11-01
It has been reported that a directional change from anoxic to aerobic conditions is a common trigger for nitrous oxide (N2 O) production by ammonia oxidizing bacteria (AOB). By extension, during anoxic-aerobic cycling, post-anoxic dissolved oxygen (DO) concentrations might likely play a role in the magnitude of N2 O emissions observed. The overall goal of this study was to determine the impact of three select post-anoxic DO concentrations (0.8, 2.0, and 3.0 mg O2 /L) on N2 O emissions from partial-nitrification (PN) and full-nitrification (FN) reactors subjected to anoxic-aerobic cycling and, ultimately, to explore the development of strategies to minimize N2 O emissions from PN and FN based biological nitrogen removal (BNR) processes. Statistically similar N2 O emissions were observed during anoxia for both PN (0.62 ± 0.21% N load) and FN (0.61 ± 0.070% N load) processes. In contrast, N2 O emissions were statistically lower for PN (0.86 ± 0.25% N load) than for FN (4.6 ± 2.8% N load), during the post-anoxic aerobic phase, when compared together for all three post-anoxic DO concentrations. Further, for PN, the highest N2 O emissions were observed at the highest post-anoxic DO concentration of 3.0 mg O2 /L (1.2% N load), likely due to the highest corresponding AOB specific growth rate. In contrast, for FN, the highest N2 O emissions were at the lowest post-anoxic DO concentration of 0.8 mg O2 /L (8.5% N load). The higher emissions from FN process at low DO concentrations were associated with a lag in nitrite oxidizing bacteria activity upon recovery to aerobic conditions. This lag phase contributed to transient nitrite accumulation, and in turn correlated positively to the observed N2 O emissions. Based on our findings, a gradual ramp up in post-anoxic DO concentrations can minimize N2 O emissions during PN-based BNR, whereas a completely different strategy, entailing a rapid increase in post-anoxic DO concentrations can minimize emissions during FN-based BNR operations. © 2015 Wiley Periodicals, Inc.
Cryptic oxygen cycling in anoxic marine zones
Padilla, Cory C.; Stewart, Frank J.; Ulloa, Osvaldo; Paulmier, Aurélien; Gregori, Gerald; Revsbech, Niels Peter
2017-01-01
Oxygen availability drives changes in microbial diversity and biogeochemical cycling between the aerobic surface layer and the anaerobic core in nitrite-rich anoxic marine zones (AMZs), which constitute huge oxygen-depleted regions in the tropical oceans. The current paradigm is that primary production and nitrification within the oxic surface layer fuel anaerobic processes in the anoxic core of AMZs, where 30–50% of global marine nitrogen loss takes place. Here we demonstrate that oxygenic photosynthesis in the secondary chlorophyll maximum (SCM) releases significant amounts of O2 to the otherwise anoxic environment. The SCM, commonly found within AMZs, was dominated by the picocyanobacteria Prochlorococcus spp. Free O2 levels in this layer were, however, undetectable by conventional techniques, reflecting a tight coupling between O2 production and consumption by aerobic processes under apparent anoxic conditions. Transcriptomic analysis of the microbial community in the seemingly anoxic SCM revealed the enhanced expression of genes for aerobic processes, such as nitrite oxidation. The rates of gross O2 production and carbon fixation in the SCM were found to be similar to those reported for nitrite oxidation, as well as for anaerobic dissimilatory nitrate reduction and sulfate reduction, suggesting a significant effect of local oxygenic photosynthesis on Pacific AMZ biogeochemical cycling. PMID:28716941
Mermillod-Blondin, F; Mauclaire, L; Montuelle, B
2005-05-01
Biogeochemical processes mediated by microorganisms in river sediments (hyporheic sediments) play a key role in river metabolism. Because biogeochemical reactions in the hyporheic zone are often limited to the top few decimetres of sediments below the water-sediment interface, slow filtration columns were used in the present study to quantify biogeochemical processes (uptakes of O2, DOC, and nitrate) and the associated microbial compartment (biomass, respiratory activity, and hydrolytic activity) at a centimetre scale in heterogeneous (gravel and sand) sediments. The results indicated that slow filtration columns recreated properly the aerobic-anaerobic gradient classically observed in the hyporheic zone. O2 and NO3- consumptions (256 +/- 13 microg of O2 per hour and 14.6 +/- 6.1 microg of N-NO3- per hour) measured in columns were in the range of values measured in different river sediments. Slow filtration columns also reproduced the high heterogeneity of the hyporheic zone with the presence of anaerobic pockets in sediments where denitrification and fermentation processes occurred. The respiratory and hydrolytic activities of bacteria were strongly linked with the O2 consumption in the experimental system, highlighting the dominance of aerobic processes in our river sediments. In comparison with these activities, the bacterial biomass (protein content) integrated both aerobic and anaerobic processes and could be used as a global microbial indicator in our system. Finally, slow filtration columns are an appropriate tool to quantify in situ rates of biogeochemical processes and to determine the relationship between the microbial compartment and the physico-chemical environment in coarse river sediments.
Huang, Linxian; Li, Meilin; Si, Guangchao; Wei, Jinglin; Ngo, Huu Hao; Guo, Wenshan; Xu, Weiying; Du, Bin; Wei, Qin; Wei, Dong
2018-05-18
In the present study, the responses of microbial products in the biosorption process of Cu(II) onto aerobic granular sludge were evaluated by using batch and spectroscopic approaches. Batch experimental data showed that extracellular polymeric substances (EPSs) contributed to Cu(II) removal from an aqueous solution, especially when treating low metal concentrations, whereas soluble microbial products (SMPs) were released under the metal stress during biosorption process. A three-dimensional excitation-emission matrix (3D-EEM) identified four main fluorescence peaks in the EPS, i.e., tryptophan protein-like, aromatic protein-like, humic-like and fulvic acid-like substances, and their fluorescence intensities decreased gradually in the presence of Cu(II) during the sorption process. Particularly, tryptophan protein-like substances quenched the Cu(II) binding to a much higher extent through a static quenching process with less than one class of binding sites. According to the synchronous fluorescence spectra, the whole fluorescence intensity of released SMP samples expressed an increased trend with different degrees along with contact time. Two-dimensional correlation spectroscopy (2D-COS) suggested that the fulvic-like fluorescence fraction might be more susceptible to metal exposure than other fractions. The result of molecular weight distribution demonstrated that the SMPs released from the biosorption process differed significantly according to contact time. The result obtained could provide new insights into the responses of microbial products from aerobic granular sludge with heavy metal treatment. Copyright © 2018. Published by Elsevier Inc.
Wet air oxidation induced enhanced biodegradability of distillery effluent.
Malik, S N; Saratchandra, T; Tembhekar, P D; Padoley, K V; Mudliar, S L; Mudliar, S N
2014-04-01
The present study reports the feasibility of Wet Air Oxidation (WAO) as a pretreatment option for enhanced biodegradation of complex distillery effluent. Initially, the distillery effluent was pretreated by WAO at different process conditions (pressure, temperature and time) to facilitate enhancement in the biodegradability index (BI = BOD5: COD ratio). The biodegradability of WAO pretreated effluent was evaluated by subjecting it to aerobic biodegradation and anaerobic followed by aerobic biodegradation. Aerobic biodegradation of pretreated effluent with enhanced biodegradability index (BI = 0.4-0.8) showed enhanced COD reduction of up to 67.7%, whereas the untreated effluent (BI = 0.17) indicated poor COD reduction of only 22.5%. Anaerobic followed by aerobic biodegradation of pretreated effluent has shown up to 87.9% COD reduction, while the untreated effluent has shown only 43.1% COD reduction. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. The results indicate that the WAO pretreatment facilitates enhanced bio-oxidation/bio-degradation of complex effluents like the distillery spent wash. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stabilisation of microalgae: Iodine mobilisation under aerobic and anaerobic conditions.
Han, Wei; Clarke, William; Pratt, Steven
2015-10-01
Mobilisation of iodine during microalgae stabilisation was investigated, with the view of assessing the potential of stabilised microalgae as an iodine-rich fertiliser. An iodine-rich waste microalgae (0.35 ± 0.05 mg I g(-1) VS(added)) was stabilised under aerobic and anaerobic conditions. Iodine mobilisation was linearly correlated with carbon emission, indicating iodine was in the form of organoiodine. Comparison between iodine and nitrogen mobilisation relative to carbon emission indicated that these elements were, at least in part, housed separately within the cells. After stabilisation, there were 0.22 ± 0.05 and 0.19 ± 0.01 mg g(-1) VS(added) iodine remaining in the solid in the aerobic and anaerobic processed material respectively, meaning 38 ± 5.0% (aerobic) and 50 ± 8.6% (anaerobic) of the iodine were mobilised, and consequently lost from the material. The iodine content of the stabilised material is comparable to the iodine content of some seaweed fertilisers, and potentially satisfies an efficient I-fertilisation dose. Copyright © 2015 Elsevier Ltd. All rights reserved.
Steinke, M; Barjenbruch, M
2010-01-01
This article presents full scale experience of one of the largest fish-processing factories in Europe with a production capacity of about 50,000 tons herring per year and a maximum daily wastewater discharge of 1,500 m(3). The wastewater treatment plant is the only direct discharger in the fish-processing industry in Germany. Thus, very low effluent values have to be keep in, especially the nitrogen reduction has to be operated during the whole year even when the temperature is low. The central point of the multi-stage WWTP (about 90,000 PE) is the biological nutrient removal (BNR) with pre-denitrification. The wastewater pre-treatment with sieves (0.8 mm) and a two staged flotation reduces the nitrogen load - mainly the particle bounded fraction - but the optimal nutrient ratios for biological treatment need to be observed. The activated sludge system has maximum OLR of 0.12 g COD/(g MLSS d) and NLR of 0.015 g TN/(g MLSS d) but a "Stand-By"-Operation with periods without wastewater influent is unavoidable. Discontinuous operating is one problem. The dependence on temperature as one of the main influences of nitrification-activity is the second point. The article gives an overview about the start-up and the optimisation of the process.
ERIC Educational Resources Information Center
Saunders, F. Michael
1978-01-01
Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)
GUIDE FOR CONDUCTING TREATABILITY STUDIES UNDER CERCLA: AEROBIC BIODEGRADATION REMEDY SCREENING
Systematically conducted, well-documented treatability studies are an important component of the remedial investigation/feasibility study (KU FS) process and the remedial design/remedial action (RD/RA) process under the Comprehensive Environmental Response, Compensation, and L...
Anoxic control of odour and corrosion from sewer networks.
Yang, W; Vollertsen, J; Hvitved-Jacobsen, T
2004-01-01
Anoxic processes can effectively control odour and corrosion in sewer networks. However, the absence of fundamental knowledge on the kinetics of anoxic transformation of sewage prevents the engineering applications of anoxic control in sewers. This paper focuss on a basic understanding of the anoxic transformations needed for a conceptual simulation of the water phase processes. Experiments conducted in batch reactors have shown that nitrite builds up in wastewater during denitrification. Part of the nitrate-reducing biomass is capable of utilizing nitrite after nitrate is depleted. Compared with aerobic transformation, anoxic processes have low values of maximum growth rate of the biomass and also a low endogenous respiration rate. Heterotrophic yield determined under anoxic conditions, at level of 0.25 mmol e-eq (mmol e-eq)(-1), accounted for less than 40% of the corresponding aerobic values.
Farrell, Patrick; Sun, Jacob; Gao, Meg; Sun, Hong; Pattara, Ben; Zeiser, Arno; D'Amore, Tony
2012-08-17
A simple approach to the development of an aerobic scaled-down fermentation model is presented to obtain more consistent process performance during the scale-up of recombinant protein manufacture. Using a constant volumetric oxygen mass transfer coefficient (k(L)a) for the criterion of a scale-down process, the scaled-down model can be "tuned" to match the k(L)a of any larger-scale target by varying the impeller rotational speed. This approach is demonstrated for a protein vaccine candidate expressed in recombinant Escherichia coli, where process performance is shown to be consistent among 2-L, 20-L, and 200-L scales. An empirical correlation for k(L)a has also been employed to extrapolate to larger manufacturing scales. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hanson, Andrea J; Paszczynski, Andrzej J; Coats, Erik R
2016-03-01
The production of polyhydroxyalkanoates (PHA; bioplastics) from waste or surplus feedstocks using mixed microbial consortia (MMC) and aerobic dynamic feeding (ADF) is a growing field within mixed culture biotechnology. This study aimed to optimize a 2DE workflow to investigate the proteome dynamics of an MMC synthesizing PHA from fermented dairy manure. To mitigate the challenges posed to effective 2DE by this complex sample matrix, the bacterial biomass was purified using Accudenz gradient centrifugation (AGC) before protein extraction. The optimized 2DE method yielded high-quality gels suitable for quantitative comparative analysis and subsequent protein identification by LC-MS/MS. The optimized 2DE method could be adapted to other proteomic investigations involving MMC in complex organic or environmental matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.
Yerushalmi, L; Ashrafi, O; Haghighat, F
2013-01-01
Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.
Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions.
Zíková, Alena; Hampl, Vladimír; Paris, Zdeněk; Týč, Jiří; Lukeš, Julius
In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated. Copyright © 2016 Elsevier B.V. All rights reserved.
Pirsaheb, Meghdad; Mohamadi, Samira; Rahmatabadi, Sama; Hossini, Hooshyar; Motteran, Fabrício
2017-08-30
In this study, simultaneous degradation of organic matter and color removal from food processing industries wastewater using an integrated anaerobic baffled reactor granular activated carbon (IABRGAC) was investigated. Theretofore, effective parameters such as hydraulic retention time (HRT) and granular activated carbon (GAC) filling ratio were studied. The bioreactor was operated at 3, 4 and 5 d of HRT and GAC filling ratio of 20%, 35% and 50%. To analyze and optimize the independent operating variables, response surface methodology was applied. Operating condition was optimized for HRT (4 d) and GAC filling ratio (50%). Better COD (94.6%) and BOD (93.7%) removal efficiency occurred with loading COD of 15,000 mg/L, with diminished wastewater color around 54% and turbidity to 54 NTU. In addition, methane production, methane yielding rate (Y m ) and specific methanogenic activity (SMA) test in an integrated system were investigated. The system IABRGAC was able to generate a volumetric rate about 0.31 and 0.44 L/g COD removed d at the experimental condition. The Y m was between 0.31 and 0.44 L/g COD removed .d and SMA was between 0.13 and 0.38 g COD/g volatile suspended solid. Based on results it can be concluded that the IABRGAC to be a successful pretreatment for highstrength wastewater before discharging the final effluent to sewerage and aerobic treating processes.
Akkoc, Orkun; Caliskan, Emine; Bayramoglu, Zuhal
2018-05-02
Athletic performance in basketball comprises the contributions of anaerobic and aerobic performance. The aim was to investigate the effects of passive muscle stiffness, using shear wave elastography (SWE), as well as muscle thickness, and body mass index (BMI), on both aerobic and anaerobic performances in adolescent female basketball players.Material and methods: Anaerobic and aerobic (VO2max) performance was assessed using the vertical jump and shuttle run tests, respectively, in 24 volunteer adolescent female basketball players. Passive muscle stiffness of the rectus femoris (RF), gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and soleus muscles were measured by SWE, and the thickness of each muscle was assessed by gray scale ultrasound. The BMI of each participant was also calculated. The relationship between vertical jump and VO2max values, and those of muscle stiffness, thickness, and BMI were investigated via Pearson's correlation and multivariate linear regression analysis. No significant correlation was observed between muscle stiffness and VO2max or vertical jump (p>0.05). There was significant negative correlation between GL thickness and VO2max (p=0.026), and soleus thickness and VO2max (p=0.046). There was also a significant negative correlation between BMI and VO2max (p=0.001). Conclusions: This preliminary work can be a reference for future research. Although our article indicates that passive muscle stiffness measured by SWE is not directly related to athletic performance, future comprehensive studies should be performed in order to illuminate the complex nature of muscles. The maintenance of lower muscle thickness and optimal BMI may be associated with better aerobic performance.
Quorum Sensing in a Methane-Oxidizing Bacterium.
Puri, Aaron W; Schaefer, Amy L; Fu, Yanfen; Beck, David A C; Greenberg, E Peter; Lidstrom, Mary E
2017-03-01
Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Dissecting the molecular details of how these organisms interact in the environment may increase our understanding of how they perform this important ecological role. Many bacterial species use quorum sensing (QS) systems to regulate gene expression in a cell density-dependent manner. We have identified a QS system in the genome of Methylobacter tundripaludum , a dominant methane oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA). We determined that M. tundripaludum produces primarily N -3-hydroxydecanoyl-l-homoserine lactone (3-OH-C 10 -HSL) and that its production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by QS in this methane oxidizer using transcriptome sequencing (RNA-seq) and discovered that this system regulates the expression of a putative nonribosomal peptide synthetase biosynthetic gene cluster. Finally, we detected an extracellular factor that is produced by M. tundripaludum in a QS-dependent manner. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium. IMPORTANCE Aerobic methanotrophs are critical for sequestering carbon from the potent greenhouse gas methane in the environment, yet the mechanistic details of chemical interactions in methane-oxidizing bacterial communities are not well understood. Understanding these interactions is important in order to maintain, and potentially optimize, the functional potential of the bacteria that perform this vital ecosystem function. In this work, we identify a quorum sensing system in the aerobic methanotroph Methylobacter tundripaludum and use both chemical and genetic methods to characterize this system at the molecular level. Copyright © 2017 American Society for Microbiology.
Clark, Timothy D; Jeffries, Kenneth M; Hinch, Scott G; Farrell, Anthony P
2011-09-15
Little is known of the physiological mechanisms underlying the effects of climate change on animals, yet it is clear that some species appear more resilient than others. As pink salmon (Oncorhynchus gorbuscha) in British Columbia, Canada, have flourished in the current era of climate warming in contrast to other Pacific salmonids in the same watershed, this study investigated whether the continuing success of pink salmon may be linked with exceptional cardiorespiratory adaptations and thermal tolerance of adult fish during their spawning migration. Sex-specific differences existed in minimum and maximum oxygen consumption rates (M(O2,min) and M(O2,max), respectively) across the temperature range of 8 to 28°C, reflected in a higher aerobic scope (M(O2,max)-M(O2,min)) for males. Nevertheless, the aerobic scope of both sexes was optimal at 21°C (T(opt)) and was elevated across the entire temperature range in comparison with other Pacific salmonids. As T(opt) for aerobic scope of this pink salmon population is higher than in other Pacific salmonids, and historic river temperature data reveal that this population rarely encounters temperatures exceeding T(opt), these findings offer a physiological explanation for the continuing success of this species throughout the current climate-warming period. Despite this, declining cardiac output was evident above 17°C, and maximum attainable swimming speed was impaired above ∼23°C, suggesting negative implications under prolonged thermal exposure. While forecasted summer river temperatures over the next century are likely to negatively impact all Pacific salmonids, we suggest that the cardiorespiratory capacity of pink salmon may confer a selective advantage over other species.
Wang, Chenchen; McAlindon, Timothy; Fielding, Roger A; Harvey, William F; Driban, Jeffrey B; Price, Lori Lyn; Kalish, Robert; Schmid, Anna; Scott, Tammy M; Schmid, Christopher H
2015-01-30
Fibromyalgia is a chronic musculoskeletal pain syndrome that causes substantial physical and psychological impairment and costs the US healthcare system over $25 billion annually. Current pharmacological therapies may cause serious adverse effects, are expensive, and fail to effectively improve pain and function. Finding new and effective non-pharmacological treatments for fibromyalgia patients is urgently needed. We are currently conducting the first comparative effectiveness randomized trial of Tai Chi versus aerobic exercise (a recommended component of the current standard of care) in a large fibromyalgia population. This article describes the design and conduct of this trial. A single-center, 52-week, randomized controlled trial of Tai Chi versus aerobic exercise is being conducted at an urban tertiary medical center in Boston, Massachusetts. We plan to recruit 216 patients with fibromyalgia. The study population consists of adults ≥21 years of age with fibromyalgia who meet American College of Rheumatology 1990 and 2010 diagnostic criteria. Participants are randomized to one of four Tai Chi intervention groups: 12 or 24 weeks of supervised Tai Chi held once or twice per week, or a supervised aerobic exercise control held twice per week for 24 weeks. The primary outcome is the change in Revised Fibromyalgia Impact Questionnaire total score from baseline to 24 weeks. Secondary outcomes include measures of widespread pain, symptom severity, functional performance, balance, muscle strength and power, psychological functioning, sleep quality, self-efficacy, durability effects, and health-related quality of life at 12, 24, and 52 week follow-up. This study is the first comparative effectiveness randomized trial of Tai Chi versus aerobic exercise in a large fibromyalgia population with long-term follow up. We present here a robust and well-designed trial to determine the optimal frequency and duration of a supervised Tai Chi intervention with regard to short- and long-term effectiveness. The trial also explores multiple outcomes to elucidate the potential mechanisms of Tai Chi and aerobic exercise and the generalizability of these interventions across instructors. Results of this study are expected to have important public health implications for patients with a major disabling disease that incurs substantial health burdens and economic costs. ClinicalTrials.gov identifier: NCT01420640 , registered 18 August 2011.
Misiti, Teresa M; Tezel, Ulas; Pavlostathis, Spyros G
2014-07-15
Aerobic biodegradation of naphthenic acids is of importance to the oil industry for the long-term management and environmental impact of process water and wastewater. The effect of structure, particularly the location of the alkyl side chain as well as cyclicity, on the aerobic biotransformation of 10 model naphthenic acids (NAs) was investigated. Using an aerobic, mixed culture, enriched with a commercial NA mixture (NA sodium salt; TCI Chemicals), batch biotransformation assays were conducted with individual model NAs, including eight 8-carbon isomers. It was shown that NAs with a quaternary carbon at the α- or β-position or a tertiary carbon at the β- and/or β'-position are recalcitrant or have limited biodegradability. In addition, branched NAs exhibited lag periods and lower degradation rates than nonbranched or simple cyclic NAs. Two NA isomers used in a closed bottle, aerobic biodegradation assay were mineralized, while 21 and 35% of the parent compound carbon was incorporated into the biomass. The NA biodegradation probability estimated by two widely used models (BIOWIN 2 and 6) and a recently developed model (OCHEM) was compared to the biodegradability of the 10 model NAs tested in this study as well as other related NAs. The biodegradation probability estimated by the OCHEM model agreed best with the experimental data and was best correlated with the measured NA biodegradation rate.
The relationship between sustained attention and aerobic fitness in a group of young adults.
Ciria, Luis F; Perakakis, Pandelis; Luque-Casado, Antonio; Morato, Cristina; Sanabria, Daniel
2017-01-01
A growing set of studies has shown a positive relationship between aerobic fitness and a broad array of cognitive functions. However, few studies have focused on sustained attention, which has been considered a fundamental cognitive process that underlies most everyday activities. The purpose of this study was to investigate the role of aerobic fitness as a key factor in sustained attention capacities in young adults. Forty-four young adults (18-23 years) were divided into two groups as a function of the level of aerobic fitness (high-fit and low-fit). Participants completed the Psychomotor Vigilance Task (PVT) and an oddball task where they had to detect infrequent targets presented among frequent non-targets. The analysis of variance (ANOVA) showed faster responses for the high-fit group than for the low-fit group in the PVT, replicating previous accounts. In the oddball task, the high-fit group maintained their accuracy (ACC) rate of target detection over time, while the low-fit group suffered a significant decline of response ACC throughout the task. Importantly, the results show that the greater sustained attention capacity of high-fit young adults is not specific to a reaction time (RT) sustained attention task like the PVT, but it is also evident in an ACC oddball task. In sum, the present findings point to the important role of aerobic fitness on sustained attention capacities in young adults.
Tabla-Hernandez, Jacobo; Lopez-Galvan, Edgar
2018-04-01
The aim of the present work was to study the effect of packing material on the organic matter removal efficiency (OMRE) in an anaerobic-aerobic baffled bioreactor (AAB). For this purpose, two different experiments were conducted with two types of packing material: activated carbon (AC) particles and polyurethane foam (PF). The system consisted of two treatments; the first one was anaerobic, where hydrolysis, acetogenesis and methanogenesis took place. In anaerobic chambers, there were no packing materials and the operating conditions were the same in both experiments. The second treatment was aerobic and both materials were placed at different times as a bedding. The parameters measured were chemical oxygen demand (COD), dissolved chemical oxygen demand (COD d ), total organic carbon (TOC), nitrate concentration (NO 3 - ), ammonium concentration (NH 4 + ), electric conductivity (σ), alkalinity (Alky) and hydrogen potential (pH). Paired t-Student test showed that there was no significant difference in the OMRE in anaerobic treatment, whereas there was in aerobic treatment, due to the effect of packing material. NH 4 + and NO 3 - showed a negative Pearson correlation in both experiments, indicating the presence of the nitrification process in the aerobic chamber. AAB packed with PF had better performance at obtaining an OMRE of around 63%, whereas AAB packed with AC presented an OMRE of around 51%.
Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard
2015-01-01
Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769
Gelinas, Jinelle C; Lewis, Nia C; Harper, Megan I; Melzer, Bernie; Agar, Gloria; Rolf, J Douglass; Eves, Neil D
2017-11-01
What is the central question of this study? Chronic obstructive pulmonary disease (COPD) is associated with endothelial dysfunction, arterial stiffness and systemic inflammation, which are linked to increased cardiovascular disease risk. We asked whether periodized aerobic exercise training could improve vascular structure and function in patients with COPD. What is the main finding and its importance? Eight weeks of periodized aerobic training did not improve endothelial function, arterial stiffness or systemic inflammation in COPD, despite improvements in aerobic capacity, blood pressure and dyspnoea. Short-term training programmes may not be long enough to improve vascular-related cardiovascular risk in COPD. Chronic obstructive pulmonary disease (COPD) has been associated with endothelial dysfunction and arterial stiffening, which are predictive of future cardiovascular events. Although aerobic exercise improves vascular function in healthy individuals and those with chronic disease, it is unknown whether aerobic exercise can positively modify the vasculature in COPD. We examined the effects of 8 weeks of periodized aerobic training on vascular structure and function and inflammation in 24 patients with COPD (age, 69 ± 7 years; forced expiratory volume in 1 second as a percentage of predicted (FEV 1 %pred), 68 ± 19%) and 20 matched control subjects (age, 64 ± 5 years; FEV 1 %pred, 113 ± 16%) for comparison. Endothelial function was measured using brachial artery flow-mediated dilatation, whereas central and peripheral pulse wave velocity, carotid artery intima-media thickness, carotid compliance, distensibility and β-stiffness index were measured using applanation tonometry and ultrasound. Peak aerobic power (V̇O2 peak ) was measured using an incremental cycling test. Upper and lower body cycling training was performed three times per week for 8 weeks, and designed to optimize vascular adaptation by increasing and sustaining vascular shear stress. Flow-mediated dilatation was not increased in COPD patients (+0.15 ± 2.27%, P = 0.82) or control subjects (+0.34 ± 3.20%, P = 0.64) and was not different between groups (P = 0.68). No significant improvements in central pulse wave velocity (COPD, +0.30 ± 1.79 m s -1 versus control subjects, -0.34 ± 1.47 m s -1 ) or other markers of vascular structure or function were found within or between groups. The V̇O2 peak increased significantly in COPD and control subjects, and was greater in control subjects (1.6 ± 1.4 versus 4.1 ± 3.7 ml kg min -1 , P = 0.003), while blood pressure and dyspnoea were reduced in COPD patients (P < 0.05). These findings demonstrate that 8 weeks of aerobic training improved cardiorespiratory fitness and blood pressure in COPD but had little effect on other established markers of cardiovascular disease risk. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Huang, Wenli; Cai, Wei; Huang, He; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong
2015-01-01
Phosphorus (P) recovery from sewage sludge is necessary for a sustainable development of the environment and thus the society due to gradual depletion of non-renewable P resources. Aerobic granular sludge is a promising biotechnology for wastewater treatment, which could achieve P-rich granules during simultaneous nitrification and denitrification processes. This study aimed to disclose the changes in inorganic and organic P species and their correlation with P mobility and bio-availability in aerobic granules. Two identical square reactors were used to cultivate aerobic granules, which were operated for 120 days with influent ammonia nitrogen (NH₄-N) of 100 mg/L before day 60 and then increased to 200 mg/L during the subsequent 60 days (chemical oxygen demand (COD) was kept constant at 600 mg/L). The aerobic granules exhibited excellent COD removal and nitrification efficiency. Results showed that inorganic P (IP) was about 61.4-67.7% of total P (TP) and non-apatite inorganic P (NAIP) occupied 61.9-70.2% of IP in the granules. The enrichment amount of NAIP and apatite P (AP) in the granules had strongly positive relationship with the contents of metal ions, i.e. Fe and Ca, respectively accumulated in the granules. X-ray diffraction (XRD) analysis and solution index calculation demonstrated that hydroxyapatite (Ca₅(PO₄)₃(OH)) and iron phosphate (Fe₇(PO₄)₆) were the major P minerals in the granules. Organic P (OP) content maintained around 7.5 mg per gram of biomass in the aerobic granules during the 120 days' operation. Monoester phosphate (21.8% of TP in extract), diester phosphate (1.8%) and phosphonate (0.1%) were identified as OP species by Phosphorus-31 nuclear magnetic resonance (³¹P NMR). The proportion of NAIP + OP to TP was about 80% in the granules, implying high potentially mobile and bio-available P was stored in the nitrifying aerobic granules. The present results provide a new insight into the characteristics of P species in aerobic granules, which could be helpful for developing P removal and recovery techniques through biological wastewater treatment.
Zhang, Chun; Feng, Peng; Jiao, Ning
2013-10-09
The Cu-catalyzed novel aerobic oxidative esterification reaction of 1,3-diones for the synthesis of α-ketoesters has been developed. This method combines C-C σ-bond cleavage, dioxygen activation and oxidative C-H bond functionalization, as well as provides a practical, neutral, and mild synthetic approach to α-ketoesters which are important units in many biologically active compounds and useful precursors in a variety of functional group transformations. A plausible radical process is proposed on the basis of mechanistic studies.
Electrolytic Removal of Nitrate From CELSS Crop Residues
NASA Technical Reports Server (NTRS)
Colon, Guillermo; Sager, John
1996-01-01
The controlled ecological life support system (CELSS) resource recovery system is a waste processing system using aerobic and anaerobic bioreactors to recover plant nutrients and secondary foods from inedible biomass. Crop residues contain significant amounts of nitrate which presents two problems: (1) both CELSS biomass production and resource recovery consume large quantities of nitric acid, (2) nitrate causes a variety of problems in both aerobic and anaerobic bioreactors. A technique was proposed to remove the nitrate from potato inedible biomass leachate and to satisfy the nitric acid demand using a four compartment electrolytic cell.
Flynn, Theodore M.; Koval, Jason C.; Greenwald, Stephanie M.; Owens, Sarah M.; Kemner, Kenneth M.; Antonopoulos, Dionysios A.
2017-01-01
We present DNA sequence data in FASTA-formatted files from aerobic environmental microcosms inoculated with a sole carbon source. DNA sequences are of 16S rRNA genes present in DNA extracted from each microcosm along with the environmental samples (soil, water) used to inoculate them. These samples were sequenced using the Illumina MiSeq platform at the Environmental Sample Preparation and Sequencing Facility at Argonne National Laboratory. This data is compatible with standard microbiome analysis pipelines (e.g., QIIME, mothur, etc.).
Treatment of old landfill leachate with high ammonium content using aerobic granular sludge.
Ren, Yanan; Ferraz, Fernanda; Kang, Abbass Jafari; Yuan, Qiuyan
2017-01-01
Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited. This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L -1 NH 4 + -N). The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L -1 N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L -1 N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L -1 NH 4 + -N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal. The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.
Duniere, Lysiane; Xu, Shanwei; Long, Jin; Elekwachi, Chijioke; Wang, Yuxi; Turkington, Kelly; Forster, Robert; McAllister, Tim A
2017-03-03
Describing the microbial populations present in small grain silage and understanding their changes during ensiling is of interest for improving the nutrient value of these important forage crops. Barley, oat and triticale forages as well as an intercropped mixture of the 3 crops were harvested and ensiled in mini silos for a period of 90 days, followed by 14 days of aerobic exposure. Changes in fermentation characteristics and nutritive value were assessed in terminal silages and bacterial and fungal communities during ensiling and aerobic exposure were described using 16S and 18S rDNA sequencing, respectively. All small grain silages exhibited chemical traits that were associated with well ensiled forages, such as low pH value (4.09 ± 0.28) and high levels of lactic acid (59.8 ± 14.59 mg/g DM). The number of microbial core genome operational taxonomic units (OTUs) decreased with time of ensiling. Taxonomic bacterial community profiles were dominated by the Lactobacillales after fermentation, with a notable increase in Bacillales as a result of aerobic exposure. Diversity of the fungal core microbiome was shown to also be reduced during ensiling. Operational taxonomic units assigned to filamentous fungi were found in the core microbiome at ensiling and after aerobic exposure, whereas the Saccharomycetales were the dominate yeast population after 90 days of ensiling and aerobic exposure. Bacterial and fungal orders typically associated with silage spoilage were identified in the core microbiome after aerobic exposure. Next Generation Sequencing was successfully used to describe bacterial communities and the first record of fungal communities throughout the process of ensiling and utilization. Adequately describing the microbial ecology of silages could lead to improved ensiling practices and the selection of silage inoculants that act synergistically with the natural forage microbiome.
Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment.
Inizan, M; Freval, A; Cigana, J; Meinhold, J
2005-01-01
Aerobic granulation seems to be an a attractive process for COD removal from industrial wastewater, characterised by a high content of soluble organic compounds. In order to evaluate the practical aspects of the process, comparative experimental tests are performed on synthetic and on industrial wastewater, originating from pharmaceutical industry. Two pilot plants are operated as sequencing batch bubble columns. Focus was put on the feasibility of the process for high COD removal and on its operational procedure. For both wastewaters, a rapid formation of aerobic granules is observed along with a high COD removal rate. Granule characteristics are quite similar with respect to the two types of wastewater. It seems that filamentous bacteria are part of the granule structure and that phosphorus precipitation can play an important role in granule formation. For both wastewaters similar removal performances for dissolved biodegradable COD are observed (> 95%). However, a relatively high concentration of suspended solids in the outlet deteriorates the performance with regard to total COD removal. Biomass detachment seems to play a non-negligible role in the current set-up. After a stable operational phase the variation of the pharmaceutical wastewater caused a destabilisation and loss of the granules, despite the control for balanced nutrient supply. The first results with real industrial wastewater demonstrate the feasibility of this innovative process. However, special attention has to be paid to the critical aspects such as granule stability as well as the economic competitiveness, which both will need further investigation and evaluation.
Hira, Daisuke; Aiko, Nobuyuki; Yabuki, Yoshinori; Fujii, Takao
2018-03-01
Nitrogenous pollution of water is regarded as a global environmental problem, and nitrogen removal has become an important issue in wastewater treatment processes. Landfill leachate is a typical large source of nitrogenous wastewater. Although the characteristics of leachate vary according to the age of the landfill, leachates of mature landfill have high concentrations of nitrogenous compounds. Most nitrogen in these leachates is in the form of ammonium nitrogen. In this study, we investigated the bacterial community of sludge from a landfill leachate lagoon by pyrosequencing of the bacterial 16S rRNA gene. The sludge was acclimated in a laboratory-scale reactor with aeration using a mechanical stirrer to promote nitrification. On 149 days, nitrification was achieved and then the bacterial community was also analyzed. The bacterial community was also analyzed after nitrification was achieved. Pyrosequencing analyses revealed that the abundances of ammonia-oxidizing and nitrite-oxidizing bacteria were increased by acclimation and their total proportions increased to >15% of total biomass. Changes in the sulfate-reducing and sulfur-oxidizing bacteria were also observed during the acclimation process. The aerobic acclimation process enriched a nitrifying microbial community from the landfill leachate sludge. These results suggested that the aerobic acclimation is a processing method for the nitrification ammonium oxidizing throw the enrichment of nitrifiers. Improvement of this acclimation method would allow nitrogen removal from leachate by nitrification and sulfur denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pan, Fei; Liu, Wen; Yu, Yang; Yin, Xianze; Wang, Qingrong; Zheng, Ziyan; Wu, Min; Zhao, Dongye; Zhang, Qiu; Lei, Xiaoman; Xia, Dongsheng
2016-11-21
This study examines the effects of manganese oxide octahedral molecular sieve chitosan microspheres (Fe 3 O 4 @OMS-2@CTS) on anaerobic and aerobic microbial communities during sewage biological treatment. The addition of Fe 3 O 4 @OMS-2@CTS (0.25 g/L) resulted in enhanced levels of operational performance for decolourization dye X-3B. However, degradation dye X-3B inhibition in the presence of Fe 3 O 4 @OMS-2@CTS was recorded as greater than or equal to 1.00 g/L. Illumina MiSeq high throughput sequencing of the 16 S rRNA gene showed that 108 genera were observed during the anaerobic process, while only 71 genera were observed during the aerobic process. The largest genera (Aequorivita) decreased from 21.14% to 12.65% and the Pseudomonas genera increased from 10.57% to 12.96% according to the abundance in the presence of 0.25 g/L Fe 3 O 4 @OMS-2@CTS during the anaerobic process. The largest Gemmatimonas genera decreased from 21.46% to 11.68% and the Isosphaerae genera increased from 5.8% to 11.98% according to the abundance in the presence of 0.25 g/L Fe 3 O 4 @OMS-2@CTS during the aerobic process. Moreover, the X-ray photoelectron spectroscopy results show that the valence states of Mn and Fe in Fe 3 O 4 @OMS-2@CTS changed during sewage biological treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalamorz, Falk; Keis, Stefanie; Stanton, Jo-Ann
The genes and molecular machines that allow for a thermoalkaliphilic lifestyle have not been defined. To address this goal, we report on the improved high-quality draft genome sequence of Caldalkalibacillus thermarum strain TA2.A1, an obligately aerobic bacterium that grows optimally at pH 9.5 and 65 to 70 C on a wide variety of carbon and energy sources.
Leles, Daniela M A; Lemos, Diego A; Filho, Ubirajara C; Romanielo, Lucienne L; de Resende, Miriam M; Cardoso, Vicelma L
2012-06-01
In the present study, the bioremoval of Cr(VI) and the removal of total organic carbon (TOC) were achieved with a system composed by an anaerobic filter and a submerged biofilter with intermittent aeration using a mixed culture of microorganisms originating from contaminated sludge. In the aforementioned biofilters, the concentrations of chromium, carbon, and nitrogen were optimized according to response surface methodology. The initial concentration of Cr(VI) was 137.35 mg l(-1), and a bioremoval of 85.23% was attained. The optimal conditions for the removal of TOC were 4 to 8 g l(-1) of sodium acetate, >0.8 g l(-1) of ammonium chloride and 60 to 100 mg l(-1) of Cr(VI). The results revealed that ammonium chloride had the strongest effect on the TOC removal, and 120 mg l(-1) of Cr(VI) could be removed after 156 h of operation. Moreover, 100% of the Cr(VI) and the total chromium content of the aerobic reactor output were removed, and TOC removals of 80 and 87% were attained after operating the anaerobic and aerobic reactors for 130 and 142 h, respectively. The concentrations of cells in both reactors remained nearly constant over time. The residence time distribution was obtained to evaluate the flow through the bioreactors.
NASA Astrophysics Data System (ADS)
Payn, R. A.; Helton, A. M.; Poole, G.; Izurieta, C.; Bernhardt, E. S.; Burgin, A. J.
2012-12-01
Many hypotheses have been proposed to predict patterns of biogeochemical redox reactions based on the availability of electron donors and acceptors and the thermodynamic theory of chemistry. Our objective was to develop a computer model that would allow us to test various alternatives of these hypotheses against data gathered from soil slurry batch reactors, experimental soil perfusion cores, and in situ soil profile observations from the restored Timberlake Wetland in coastal North Carolina, USA. Software requirements to meet this objective included the ability to rapidly develop and compare different hypothetical formulations of kinetic and thermodynamic theory, and the ability to easily change the list of potential biogeochemical reactions used in the optimization scheme. For future work, we also required an object pattern that could easily be coupled with an existing soil hydrologic model. These requirements were met using Network Exchange Objects (NEO), our recently developed object-oriented distributed modeling framework that facilitates simulations of multiple interacting currencies moving through network-based systems. An initial implementation of the object pattern was developed in NEO based on maximizing growth of the microbial community from available dissolved organic carbon. We then used this implementation to build a modeling system for comparing results across multiple simulated batch reactors with varied initial solute concentrations, varied biogeochemical parameters, or varied optimization schemes. Among heterotrophic aerobic and anaerobic reactions, we have found that this model reasonably predicts the use of terminal electron acceptors in simulated batch reactors, where reactions with higher energy yields occur before reactions with lower energy yields. However, among the aerobic reactions, we have also found this model predicts dominance of chemoautotrophs (e.g., nitrifiers) when their electron donor (e.g., ammonium) is abundant, despite the fact that aerobic respiration produces a higher energy yield from the available dissolved oxygen. This suggests that incorporation of an alternative hypothesis, such as a maximum efficiency model, may be necessary to explain an observation of substantial aerobic respiration occurring in the presence of high ammonium and oxygen concentrations. We are parameterizing and testing this model based on results from batch reactor experiments that have treated soil slurries with a full factorial combination of various levels of reactive solutes found in freshwater (e.g., nitrate) and seawater (e.g., sulfate). Initial comparisons suggest that the model may need to account for the biogeochemical reactivity of iron and the potential physical influence of salt to properly describe variability in the biogeochemistry of Timberlake soils. Comparisons of these evolving models with field-derived data from soils will ultimately reveal how thermodynamic theory may be used to explain the evolution of nutrient retention and greenhouse gas emission in the Timberlake Wetland, where nutrient behavior is changing after restoration from agricultural land use and where inputs of brackish water are expected to increase due to sea level rise.
C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol
NASA Astrophysics Data System (ADS)
Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun
2014-01-01
Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway.
C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol
Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun
2014-01-01
Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway. PMID:24413448
Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng
2016-03-01
Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking water and groundwater, bottlenecks and potential issues are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Di; Deng, Liangwei; Zheng, Dan; Wang, Lan; Liu, Yi
2016-03-01
There are two problems associated with treatment of swine wastewater, low efficiency of anaerobic digestion during winter and poor performance for aerobic treatment of digested effluent. A strategy employing unbalanced distributions of the pollutant mass and wastewater volumes in anaerobic and aerobic units was proposed. To accomplish this, swine wastewater was separated into high content liquid (HCL) and low content liquid (LCL). Three separation ratios of HCL to LCL (v/v), 1:9 (S1), 2:8 (S2), and 3:7 (S3), were evaluated. Anaerobically digestion of the HCL accounted for only 10%, 20% and 30% of the total volume of raw wastewater, but produced 63.38%, 73.79% and 76.61% of the total methane output for S1, S2 and S3, respectively. The mixed liquid of digested effluents of HCL and LCL were treated aerobically using sequencing batch reactors. S2 generated the best performance, with removal efficiencies of 96.98% for COD, 98.95% for NH3-N, 91.69% for TN and 74.71% for TP. The results obtained for S1 were not as good as those for S2, but were better than those for S3. Based on methane output from the anaerobic unit and pollutants removal in the aerobic unit, S2 was the most suitable system for the treatment of swine wastewater. Additionally, the anaerobic digestion efficiency of S2 was 282% higher than that of previous techniques employing balanced distribution. Taken together, these findings indicate that unbalanced distribution could improve the efficiency of the anaerobic unit remarkably, while ensuring good performance of the aerobic unit. Copyright © 2015. Published by Elsevier Ltd.
Bengtsson, Simon; de Blois, Mark; Wilén, Britt-Marie; Gustavsson, David
2018-03-20
The aerobic granular sludge (AGS) technology is growing towards becoming a mature option for new municipal wastewater treatment plants and capacity extensions. A process based on AGS was compared to conventional activated sludge processes (with and without enhanced biological phosphorus removal), an integrated fixed-film activated sludge (IFAS) process and a membrane bioreactor (MBR) by estimating the land area demand (footprint), electricity demand and chemicals' consumption. The process alternatives compared included pre-settling, sludge digestion and necessary post-treatment to achieve effluent concentrations of 8 mg/L nitrogen and 0.2 mg/L phosphorus at 7°C. The alternative based on AGS was estimated to have a 40-50% smaller footprint and 23% less electricity requirement than conventional activated sludge. In relation to the other compact treatment options IFAS and MBR, the AGS process had an estimated electricity usage that was 35-70% lower. This suggests a favourable potential for processes based on AGS although more available experience of AGS operation and performance at full scale is desired.
[Iron from soil to plant products].
Briat, Jean-François
2005-11-01
As an essential mineral, iron plays an important role in fundamental biological processes such as photosynthesis, respiration, nitrogen fixation and assimilation, and DNA synthesis. Iron is also a co-factor of many enzymes involved in the synthesis of plant hormones. The latter are involved in many pathways controling plant development or adaptative responses to environmental conditions. Iron reactivity with oxygen leads to its insolubility (responsible for deficiency) and potential toxicity, and complicates iron use by aerobic organisms. If plants lacked an active root system with which to acquire iron from the soil, most would experience iron deficiency and show physiological changes. In contrast, an excess of soluble iron, which can occur in flooded acidic soils, can lead to ferrous iron toxicity due to iron reactivity with reduced forms of oxygen and subsequent free radical production. An optimal iron concentration is thus required for a plant to grow and develop normally. This concentration depends on multiple regulatory mechanisms controlling iron uptake from soil by the roots, as well as iron transport and distribution to the various plant organs. Optimized seed iron content is a major biotechnological challenge identified by the World Health Organization, and it is therefore crucial to understand the underlying mechanisms. Iron delivery to seeds is tightly controlled, and depends on the nature of iron speciation in specific chelates, and their transport.
Moraes, Wilson Max Almeida Monteiro de; Santos, Neucilane Silveira Dos; Aguiar, Larissa Pereira; Sousa, Luís Gustavo Oliveira de
2017-01-01
To investigate whether maintenance of exercise training benefits is associated with adequate milk and dairy products intake in hypertensive elderly subjects after detraining. Twenty-eight elderly hypertensive patients with optimal clinical treatment underwent 16 weeks of multicomponent exercise training program followed by 6 weeks of detraining, and were classified according to milk and dairy products intake as low milk (<3 servings) and high milk (≥3 servings) groups. After exercise training, there was a significant reduction (p<0.001) in body weight, systolic, diastolic and mean blood pressure, an increase in lower and upper limb strength (chair-stand test and elbow flexor test) as well as in aerobic capacity (stationary gait test) and functional capacity (sit down, stand up, and move around the house) in both groups. However, in the Low Milk Intake Group significant changes were observed: body weight (+0.5%), systolic, diastolic and mean blood pressure (+0.9%,+1.4% and +1.1%, respectively), lower extremity strength (-7.0%), aerobic capacity (-3.9%) and functional capacity (+5.4) after detraining. These parameters showed no significant differences between post-detraining and post-training period in High Milk Intake Group. Maintenance of exercise training benefits related to pressure levels, lower extremity strength and aerobic capacity, is associated with adequate milk and dairy products intake in hypertensive elderly subjects following 6 weeks of detraining.
A novel technique of semi-aerobic aged refuse biofilter for leachate treatment.
Han, Zhi-Yong; Liu, Dan; Li, Qi-Bin; Li, Gui-Zhi; Yin, Zhao-Yang; Chen, Xin; Chen, Jian-Nan
2011-08-01
We developed a semi-aerobic aged refuse biofilter (SAARB) for leachate treatment and examined its advantages and disadvantages compared to previous aged refuse biofilters (ARBs). To assess its treatment capability, decontamination mechanisms and optimal performance parameters, a single-period experiment and L(9)(3(4)) orthogonal array design experiments were conducted on artificial leachate. The SAARB markedly enhanced the treatment capability and removal efficiency of organic matter and nitrogen pollutants due to the alternating aerobic-anoxic-anaerobic zones in situ. The reduction in chemical oxygen demand (COD), ammonia nitrogen (NH(4)(+)-N) and total nitrogen (TN) exceeded 98%, 94%, and 80%, respectively. After the leachate was distributed onto the SAARB surface, the effluent velocity decreased as a logarithmic function, and there was a concomitant reduction in leachate effluent volume. Based on the capacity for removal of COD, NH(4)(+)-N, and TN, the effective height of aged refuse in a SAARB was enough to be 900mm. An excellent treatment efficiency could be achieved at 20-35°C, with a leachate distribution time of 1h once every period of 2-3 days, hydraulic loading of 11-30L/(m(3)day), and COD loading of 550-1200g/(m(3)day). This new SAARB system demonstrates superior efficacy for biofilter compared to other ARB systems, especially for nitrogen removal from leachate. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lochmatter, Samuel; Holliger, Christof
2014-08-01
The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. Copyright © 2014 Elsevier Ltd. All rights reserved.
Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst
2015-01-01
Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869
Issues for storing plant-based alternative fuels in marine environments.
Lee, Jason S; Ray, Richard I; Little, Brenda J; Duncan, Kathleen E; Aktas, Deniz F; Oldham, Athenia L; Davidova, Irene A; Suflita, Joseph M
2014-06-01
Two coastal seawaters (Key West, FL, USA and the Persian Gulf, Bahrain, representing oligotrophic and eutrophic environments, respectively) were used to evaluate potential biodegradation and corrosion problems during exposure to alternative and conventional fuels. Uncoated carbon steel was exposed at the fuel/seawater interface and polarization resistance was monitored. Under typical marine storage conditions, dioxygen in natural seawater exposed to fuel and carbon steel was reduced to <0.1parts-per-million within 2d due to consumption by corrosion reactions and aerobic microbial respiration. Sulfides, produced by anaerobic sulfate-reducing bacteria, and chlorides were co-located in corrosion products. Transient dioxygen influenced both metabolic degradation pathways and resulting metabolites. Catechols, indicative of aerobic biodegradation, persisted after 90d exposures. Detection of catechols suggested that initial exposure to dioxygen resulted in the formation of aerobic metabolites that exacerbated subsequent corrosion processes. Published by Elsevier B.V.
Nguyen, Khac Minh Huy; Largeron, Martine
2015-09-01
Aerobic oxidative CH functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons Attribution NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Zhang, Zhennan; Yin, Naiyi; Cai, Xiaolin; Wang, Zhenzhou; Cui, Yanshan
2016-09-01
A mesophilic, Gram-negative, arsenite[As(III)]-oxidizing and arsenate[As(V)]-reducing bacterial strain, Pseudomonas sp. HN-2, was isolated from an As-contaminated soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Pseudomonas stutzeri. Under aerobic conditions, this strain oxidized 92.0% (61.4μmol/L) of arsenite to arsenate within 3hr of incubation. Reduction of As(V) to As(III) occurred in anoxic conditions. Pseudomonas sp. HN-2 is among the first soil bacteria shown to be capable of both aerobic As(III) oxidation and anoxic As(V) reduction. The strain, as an efficient As(III) oxidizer and As(V) reducer in Pseudomonas, has the potential to impact arsenic mobility in both anoxic and aerobic environments, and has potential application in As remediation processes. Copyright © 2016. Published by Elsevier B.V.
Variation in microbial activity in histosols and its relationship to soil moisture.
Tate, R L; Terry, R E
1980-08-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes.
Variation in Microbial Activity in Histosols and Its Relationship to Soil Moisture †
Tate, Robert L.; Terry, Richard E.
1980-01-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes. PMID:16345610
Best, John R.
2011-01-01
Executive function refers to the cognitive processes necessary for goal-directed cognition and behavior, which develop across childhood and adolescence. Recent experimental research indicates that both acute and chronic aerobic exercise promote children’s executive function. Furthermore, there is tentative evidence that not all forms of aerobic exercise benefit executive function equally: Cognitively-engaging exercise appears to have a stronger effect than non-engaging exercise on children’s executive function. This review discusses this evidence as well as the mechanisms that may underlie the association between exercise and executive function. Research from a variety of disciplines is covered, including developmental psychology, kinesiology, cognitive neuroscience, and biopsychology. Finally, these experimental findings are placed within the larger context of known links between action and cognition in infancy and early childhood, and the clinical and practical implications of this research are discussed. PMID:21818169
Padhi, Soumesh Kumar; Tripathy, Swetaleena; Mohanty, Sriprakash; Maiti, Nikhil Kumar
2017-05-01
Heterotrophic bacterium, Enterobacter cloacae CF-S27 exhibited simultaneous nitrification and aerobic denitrification in presence of high concentration of hydroxylamine. With the initial nitrogen concentration of 100mgL -1 h -1 , ammonium, nitrate and nitrite removal efficiencies were 81%, 99.9% and 92.8%, while the corresponding maximum removal rates reached as high as 11.6, 15.1 and 11.2mgL -1 h -1 respectively. Quantitative amplification by real time PCR and enzyme assay demonstrated that hydroxylamine reductase gene (hao) is actively involved in hetrotrophic nitrification and aerobic denitrification process of Enterobacter cloacae CF-S27. PCR primers were designed targeting amplification of hao gene from diversified environmental soil DNA. The strain Enterobacter cloacae CF-S27 significantly maintained the undetectable amount of dissolved nitrogen throughout 60days of zero water exchange fish culture experiment in domestic wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toki, C J
2008-07-01
Laboratory-scale experiments were conducted to determine the influence of higher thermophilic temperatures on thermophilic aerobic digestion treatment of a simulated sludge. The efficiency of the process was evaluated in respect of solids removal and degradation rate constants at four thermophilic temperatures. Batch runs were operated at a retention time of one day and temperatures of 65, 70, 72 and 75 degrees C. The results indicated that temperature increase did not impart any significant benefits to the digestion operation in terms of suspended solids and biochemichal oxygen demand reduction. The findings from this research also suggested that the treatment would not appear to benefit from temperatures higher than 65 degrees C, as classically suggested by Van't Hoff-Arrhenius. Therefore, increase of thermophilic temperature in the tested 65-75 degrees C range does not enhance the efficiency of thermophilic, aerobic sludge digestion treatment.
A microbiological surrogate for evaluating treatment efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, E.W.; Fox, K.W.; Miltner, R.J.
1995-10-01
In this study we report on the use of a microbial surrogate system which can be used to evaluate the efficiency of various unit processes used in drinking water treatment for the removal of microbial contaminants. The proposed procedure uses Gram-positive, mesophilic, aerobic spore-forming bacteria as the surrogate organisms. These bacteria do not pose a public health threat and are naturally occurring in most surface water supplies. The aerobic spore-formers are easy to culture and are present throughout the treatment train. This group of organisms consists primarily of species of the genus Bacillus. These organisms form endospores which are ellipsoidalmore » to spherical in shape and measure on average approximately 0.5 X 1.0 X 1.5 micrometers, and are environmentally resistant. Like pathogenic Giardia cysts and Cryptosporidium oocysts endospores of aerobic bacilli may be found far into the treatment train.« less
Neuronal control of astrocytic respiration through a variant of the Crabtree effect.
Fernández-Moncada, Ignacio; Ruminot, Iván; Robles-Maldonado, Daniel; Alegría, Karin; Deitmer, Joachim W; Barros, L Felipe
2018-02-13
Aerobic glycolysis is a phenomenon that in the long term contributes to synaptic formation and growth, is reduced by normal aging, and correlates with amyloid beta deposition. Aerobic glycolysis starts within seconds of neural activity and it is not obvious why energetic efficiency should be compromised precisely when energy demand is highest. Using genetically encoded FRET nanosensors and real-time oxygen measurements in culture and in hippocampal slices, we show here that astrocytes respond to physiological extracellular K + with an acute rise in cytosolic ATP and a parallel inhibition of oxygen consumption, explained by glycolytic stimulation via the Na + -bicarbonate cotransporter NBCe1. This control of mitochondrial respiration via glycolysis modulation is reminiscent of a phenomenon previously described in proliferating cells, known as the Crabtree effect. Fast brain aerobic glycolysis may be interpreted as a strategy whereby neurons manipulate neighboring astrocytes to obtain oxygen, thus maximizing information processing.
Monitoring pH and electric conductivity in an EBPR sequencing batch reactor.
Serralta, J; Borrás, L; Blanco, C; Barat, R; Seco, A
2004-01-01
This paper presents laboratory-scale experimentation carried out to study enhanced biological phosphorus removal. Two anaerobic aerobic (A/O) sequencing batch reactors (SBR) have been operated during more than one year to investigate the information provided by monitoring pH and electric conductivity under stationary and transient conditions. Continuous measurements of these parameters allow detecting the end of anaerobic phosphorus release, of aerobic phosphorus uptake and of initial denitrification, as well as incomplete acetic acid uptake. These results suggest the possibility of using pH and electric conductivity as control parameters to determine the length of both anaerobic and aerobic phases in an A/O SBR. More valuable information provided by monitoring pH and electric conductivity is the relation between the amount of phosphorus released and the conductivity increase observed during the anaerobic stages and which group of bacteria (heterotrophic or polyphosphate accumulating) is carrying out the denitrification process.
Zhang, Zhiqiang; Zhou, Yun; Zhang, Jiao; Xia, Siqing
2014-02-01
The extracellular polymeric substance (EPS) extracted from waste activated sludge (WAS) after short-time aerobic digestion was investigated to be used as a novel biosorbent for Cu(2+) removal from water. The EPS consisted of protein (52.6 %, w/w), polysaccharide (30.7 %, w/w), and nucleic acid (16.7 %, w/w). Short-time aerobic digestion process of WAS for about 4 h promoted the productivity growth of the EPS for about 10 %. With a molecular weight of about 1.9 × 10(6) Da, the EPS showed a linear structure with long chains, and contained carboxyl, hydroxyl, and amino groups. The sorption kinetics was well fit for the pseudo-second-order model, and the maximum sorption capacity of the EPS (700.3 mg Cu(2+)/g EPS) was markedly greater than those of the reported biosorbents. Both Langmuir model and Freundlich model commendably described the sorption isotherm. The Gibbs free energy analysis of the adsorption showed that the sorption process was feasible and spontaneous. According to the complex results of multiple analytical techniques, including scanning electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, etc., the adsorption process took place via both physical and chemical sorption, but the electrostatic interaction between sorption sites with the functional groups and Cu(2+) is the major mechanism.
Biofilms associated with poultry processing equipment.
Lindsay, D; Geornaras, I; von Holy, A
1996-01-01
Aerobic and Gram-negative bacteria were enumerated on non-metallic surfaces and stainless steel test pieces attached to equipment surfaces by swabbing and a mechanical dislodging procedure, respectively, in a South African grade B poultry processing plant. Changes in bacterial numbers were also monitored over time on metal test pieces. The highest bacterial counts were obtained from non-metallic surfaces such as rubber fingered pluckers and plastic defeathering curtains which exceeded the highest counts found on the metal surfaces by at least 1 log CFU cm-2. Gram-negative bacterial counts on all non-metallic surface types were at least 2 log CFU cm-2 lower than corresponding aerobic plate counts. On metal surfaces, the highest microbial numbers were obtained after 14 days exposure, with aerobic plate counts ranging from 3.57 log CFU cm-2 to 5.13 log CFU cm-2, and Gram-negative counts from 0.70 log CFU cm-2 to 3.31 log CFU cm-2. Scanning electron microscopy confirmed the presence of bacterial cells on non-metallic and metallic surfaces associated with poultry processing. Rubber 'fingers', plastic curtains, conveyor belt material and stainless steel test surfaces placed on the scald tank overflow and several chutes revealed extensive and often confluent bacterial biofilms. Extracellular polymeric substances, but few bacterial cells were visible on test pieces placed on evisceration equipment, spinchiller blades and the spinchiller outlet.
Microbiological survey of a South African poultry processing plant.
Geornaras, I; de Jesus, A; van Zyl, E; von Holy, A
1995-01-01
Bacterial populations associated with poultry processing were determined on neck skin samples, equipment surfaces and environmental samples by replicate surveys. Aerobic plate counts, Enterobacteriaceae counts, Enterobacteriaceae counts and Pseudomonas counts were performed by standard procedures and the prevalence of Listeria, presumptive Salmonella and Staphylococcus aureus determined. Statistically significant (P < 0.05) increases in counts of all types of bacteria were obtained on product samples as a result of processing. Although bacterial counts on neck skin samples decreased by 0.3 to 0.4 log CFU g-1 after spray washing of carcasses, subsequent spinchilling and packaging of whole carcasses resulted in 0.7 to 1.2 log CFU g-1 increases. Bacterial numbers on equipment surfaces, however, decreased significantly from the "dirty" to the "clean" areas of the abattoir. Transport cages, "rubber fingers", defeathering curtains, shackles and conveyor belts repeatedly showed aerobic plate counts in excess of 5.0 log CFU 25 cm-2. Aerobic plate counts of scald tank and spinchiller water were 2 log CFU ml-1 higher than those of potable water samples. Bacterial numbers of the air in the "dirty" area were higher than those of the "clean" area. Listeria, presumptive Salmonella and Staphylococcus aureus were isolated from 27.6, 51.7 and 24.1% of all product samples, respectively, and Listeria and Staphylococcus aureus were also isolated from selected equipment surfaces.
Electricity generation from tetrathionate in microbial fuel cells by acidophiles.
Sulonen, Mira L K; Kokko, Marika E; Lakaniemi, Aino-Maija; Puhakka, Jaakko A
2015-03-02
Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5. Copyright © 2014 Elsevier B.V. All rights reserved.
Assessing Commercial and Alternative Poultry Processing Methods using Microbiome Analyses
USDA-ARS?s Scientific Manuscript database
Assessing poultry processing methods/strategies has historically used culture-based methods to assess bacterial changes or reductions, both in terms of general microbial communities (e.g. total aerobic bacteria) or zoonotic pathogens of interest (e.g. Salmonella, Campylobacter). The advent of next ...
Flow-mediated dilation and exercise blood pressure in healthy adolescents
USDA-ARS?s Scientific Manuscript database
Objectives: Atherosclerosis is a process that begins in youth. The endothelium plays an essential role in regulating blood flow and protecting against progression of the initial stages of the atherosclerotic process. Few studies have investigated the relationship between aerobic fitness and exerc...
Metered oxygen supply aids treatment of domestic sewage
NASA Technical Reports Server (NTRS)
Weliky, N.; Hooper, T. J.; Silverman, H. P.
1972-01-01
Microbiological fixed-bed process was developed in which supplementary oxygen required by microbial species is supplied by electrochemical device. Rate of addition of oxygen to waste treatment process is controlled to maintain aerobic metabolism and prevent anaerobic metabolisms which produce odorous or toxic products.
Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.
Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M
2015-01-01
Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.
Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones
Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.
2015-01-01
Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623
Transcriptional Regulation of Aerobic Metabolism in Pichia pastoris Fermentation
Zhang, Biao; Li, Baizhi; Chen, Dai; Zong, Jie; Sun, Fei; Qu, Huixin; Liang, Chongyang
2016-01-01
In this study, we investigated the classical fermentation process in Pichia pastoris based on transcriptomics. We utilized methanol in pichia yeast cell as the focus of our study, based on two key steps: limiting carbon source replacement (from glycerol to methonal) and fermentative production of exogenous proteins. In the former, the core differential genes in co-expression net point to initiation of aerobic metabolism and generation of peroxisome. The transmission electron microscope (TEM) results showed that yeast gradually adapted methanol induction to increased cell volume, and decreased density, via large number of peroxisomes. In the fermentative production of exogenous proteins, the Gene Ontology (GO) mapping results show that PAS_chr2-1_0582 played a vital role in regulating aerobic metabolic drift. In order to confirm the above results, we disrupted PAS_chr2-1_0582 by homologous recombination. Alcohol consumption was equivalent to one fifth of the normal control, and fewer peroxisomes were observed in Δ0582 strain following methanol induction. In this study we determined the important core genes and GO terms regulating aerobic metabolic drift in Pichia, as well as developing new perspectives for the continued development within this field. PMID:27537181
Bian, Xiao; Wang, Kaijun
2018-01-01
Low-energy cost wastewater treatment is required to change its current energy-intensive status. Although promising, the direct anaerobic digestion of municipal wastewater treatment faces challenges such as low organic content and low temperature, which require further development. The hydrolysis-aerobic system investigated in this study utilized the two well-proven processes of hydrolysis and aerobic oxidation. These have the advantages of efficient COD removal and biodegradability improvement with limited energy cost due to their avoidance of aeration. A pilot-scale hydrolysis-aerobic system was built for performance evaluation with actual municipal wastewater as feed. Results indicated that as high as 39–47% COD removal was achieved with a maximum COD load of 1.10 kg/m3·d. The dominant bacteria phyla included Proteobacteria (36.0%), Planctomycetes (15.4%), Chloroflexi (9.7%), Bacteroidetes (7.7%), Firmicutes (4.4%), Acidobacteria (2.5%), Actinobacteria (1.8%) and Synergistetes (1.3%), while the dominant genera included Thauera (3.42%) and Dechloromonas (3.04%). The absence of methanogens indicates that the microbial community was perfectly retained in the hydrolysis stage instead of in the methane-producing stage. PMID:29522450
Naveena, B M; Khansole, Panjab S; Shashi Kumar, M; Krishnaiah, N; Kulkarni, Vinayak V; Deepak, S J
2017-01-01
The processing of sous vide chicken sausages was optimized under vacuum packaging condition and cooking at 100 ℃ for 30 min (SV30), 60 min (SV60) and 120 min (SV120) and compared with aerobically cooked control at 100 ℃ for 30 min. Sous vide processing of chicken sausages (SV30) produced higher (p < 0.05) cooking yield, Hunterlab a* values and sensory attributes without affecting proximate composition and shear force values relative to control. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis and scanning electron microscopy results revealed no significant changes in protein quality and emulsion ultra-structure due to SV30 processing relative to control sausages. Sous vide processing of chicken sausages enriched with rosemary diterpene phenols retained the freshness and quality up to 120 days during storage at 4 ± 1 ℃ relative to control sausages that were spoiled on 20th day. Lipid oxidation and microbial growth remained below the spoilage levels for all the SV-processed sausages throughout the storage and addition of rosemary diterpene mixture at 0.02% v/w reduced the microbial growth and improved (p < 0.05) the sensory attributes. Our results demonstrate that sous vide processing minimizes lipid oxidation and microbial growth of chicken sausages with improved product quality and shelf-life at 4 ± 1 ℃. © The Author(s) 2016.
Exercise, cognition, and the adolescent brain.
Herting, Megan M; Chu, Xiaofang
2017-12-01
Few adolescents engage in the recommended levels of physical activity, and daily exercise levels tend to drastically decrease throughout adolescence. Beyond physical health benefits, regular exercise may also have important implications for the teenage brain and cognitive and academic capabilities. This narrative review examines how physical activity and aerobic exercise relate to school performance, cognition, and brain structure and function. A number of studies have found that habitual exercise and physical activity are associated with academic performance, cognitive function, brain structure, and brain activity in adolescents. We also discuss how additional intervention studies that examine a wide range of neurological and cognitive outcomes are necessary, as well as characterizing the type, frequency, and dose of exercise and identifying individual differences that contribute to how exercise may benefit the teen brain. Routine exercise relates to adolescent brain structure and function as well as cognitive performance. Together, these studies suggest that physical activity and aerobic exercise may be important factors for optimal adolescent brain development. © 2017 Wiley Periodicals, Inc.
Stress responses during aerobic exercise in relation to motivational dominance and state.
Thatcher, Joanne; Kuroda, Yusuke; Legrand, Fabien D; Thatcher, Rhys
2011-02-01
We examined the hypothesis that congruence between motivational dominance and state results in optimal psychological responses and performance during exercise. Twenty participants (10 telic dominant and 10 paratelic dominant) rated their stress at 5 min intervals as they cycled on an ergometer at gas exchange threshold for 30 min in both telic and paratelic state manipulated conditions. Participants then performed a test to exhaustion at a resistance equivalent to 110% of VO(2max). The hypothesized interaction between condition and dominance was significant for internal tension stress, as paratelic dominants were more stressed than telic dominants when exercising in the telic state and telic dominants were more stressed than paratelic dominants when exercising in the paratelic state. Similarly, the condition × dominance interaction for internal stress discrepancy was significant, as paratelic dominants reported greater internal stress discrepancy exercising in the telic compared with the paratelic state. Findings are discussed in relation to the application of reversal theory for understanding stress responses during aerobic exercise.
Copeland, Alex; Gu, Wei; Yasawong, Montri; Lapidus, Alla; Lucas, Susan; Deshpande, Shweta; Pagani, Ioanna; Tapia, Roxanne; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Tindall, Brian J.; Sikorski, Johannes; Göker, Markus; Detter, John C.; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja
2012-01-01
Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1T was the first isolate within the phylum “Thermus-Deinococcus” to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1T is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:22675595
Chou, Aileen; Bursley, Brett; Smulofsky, Jaclyn; Jezequel, Joel
2014-01-01
OBJECTIVE. Alzheimer’s disease (AD) results in a loss of independence in activities of daily living (ADLs), which in turn affects the quality of life of affected people and places a burden on caretakers. Limited research has examined the influence of physical training (aerobic, balance, and strength training) on ADL performance of people with AD. METHOD. Six randomized controlled trials (total of 446 participants) fit the inclusion criteria. For each study, we calculated effect sizes for primary and secondary outcomes. RESULTS. Average effect size (95% confidence interval) for exercise on the primary outcome (ADL performance) was 0.80 (p < .001). Exercise had a moderate impact on the secondary outcome of physical function (effect size = 0.53, p = .004). CONCLUSION. Occupational therapy intervention that includes aerobic and strengthening exercises may help improve independence in ADLs and improve physical performance in people with AD. Additional research is needed to identify specific components of intervention and optimal dosage to develop clinical guidelines. PMID:24367955
Li, Bo; Wu, Guangxue
2014-01-01
Sludge retention time (SRT) is an important factor affecting not only the performance of the nutrient removal and sludge characteristics, but also the production of secondary pollutants such as nitrous oxide (N2O) in biological nutrient removal (BNR) processes. Four laboratory-scale sequencing batch reactors (SBRs), namely, SBR5, SBR10, SBR20 and SBR40 with the SRT of 5 d, 10 d, 20 d and 40 d, respectively, were operated to examine effects of SRT on nutrient removal, activated sludge characteristics and N2O emissions. The removal of chemical oxygen demand or total phosphorus was similar under SRTs of 5–40 d, SRT mainly affected the nitrogen removal and the optimal SRT for BNR was 20 d. The molecular weight distribution of the effluent organic matters was in the range of 500–3,000 Da under SRTs of 5–40 d. The lowest concentration of the effluent soluble microbial products concentration was obtained at the SRT of 5 d. Nitrifier growth was limited at a short SRT and nitrite existed in the effluent of SBR5. With increasing SRTs, mixed liquor suspended solids concentration increased while the excess sludge production was reduced due to the high endogenous decay rate at high SRTs. Endogenous decay coefficients were 0.020 d−1, 0.036 d−1, 0.037 d−1 and 0.039 d−1 under SRTs of 5–40 d, respectively. In BNR, the N2O emission occurred mainly during the aerobic phase and its emission ratio decreased with increasing SRTs. The ratio between the N2O-N emission and the removed ammonium nitrogen in the aerobic phase was 5%, 3%, 1.8% and 0.8% at the SRT of 5 d, 10 d, 20 d and 40 d, respectively. With low concentrations of dissolved oxygen and high concentrations of oxidized nitrogen, the N2O emission was significantly accelerated due to heterotrophic denitrification activities. PMID:24681555
Vigneron, Adrien; Bishop, Andrew; Alsop, Eric B.; Hull, Kellie; Rhodes, Ileana; Hendricks, Robert; Head, Ian M.; Tsesmetzis, Nicolas
2017-01-01
The Pennsylvania region hosts numerous oil and gas reservoirs and the presence of hydrocarbons in groundwater has been locally observed. However, these methane-containing freshwater ecosystems remain poorly explored despite their potential importance in the carbon cycle. Methane isotope analysis and analysis of low molecular weight hydrocarbon gases from 18 water wells indicated that active methane cycling may be occurring in methane-containing groundwater from the Pennsylvania region. Consistent with this observation, multigenic qPCR and gene sequencing (16S rRNA genes, mcrA, and pmoA genes) indicated abundant populations of methanogens, ANME-2d (average of 1.54 × 104 mcrA gene per milliliter of water) and bacteria associated with methane oxidation (NC10, aerobic methanotrophs, methylotrophs; average of 2.52 × 103 pmoA gene per milliliter of water). Methane cycling therefore likely represents an important process in these hydrocarbon-containing aquifers. The microbial taxa and functional genes identified and geochemical data suggested that (i) methane present is at least in part due to methanogens identified in situ; (ii) Potential for aerobic and anaerobic methane oxidation is important in groundwater with the presence of lineages associated with both anaerobic an aerobic methanotrophy; (iii) the dominant methane oxidation process (aerobic or anaerobic) can vary according to prevailing conditions (oxic or anoxic) in the aquifers; (iv) the methane cycle is closely associated with the nitrogen cycle in groundwater methane seeps with methane and/or methanol oxidation coupled to denitrification or nitrate and nitrite reduction. PMID:28424678
NASA Astrophysics Data System (ADS)
Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.
2015-12-01
Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.
Gasparotto, Juciano; Petiz, Lyvia Lintzmaier; Girardi, Carolina Saibro; Bortolin, Rafael Calixto; de Vargas, Amanda Rodrigues; Henkin, Bernardo Saldanha; Chaves, Paloma Rodrigues; Roncato, Sabrina; Matté, Cristiane; Zanotto-Filho, Alfeu; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens
2015-12-01
Exercise training induces reactive oxygen species production and low levels of oxidative damage, which are required for induction of antioxidant defenses and tissue adaptation. This process is physiological and essential to improve physical conditioning and performance. During exercise, endogenous antioxidants are recruited to prevent excessive oxidative stress, demanding appropriate intake of antioxidants from diet or supplements; in this context, the search for vitamin supplements that enhance the antioxidant defenses and improve exercise performance has been continuously increasing. On the other hand, excess of antioxidants may hinder the pro-oxidant signals necessary for this process of adaptation. The aim of this study was to investigate the effects of vitamin A supplementation (2000 IU/kg, oral) upon oxidative stress and parameters of pro-inflammatory signaling in lungs of rats submitted to aerobic exercise (swimming protocol). When combined with exercise, vitamin A inhibited biochemical parameters of adaptation/conditioning by attenuating exercise-induced antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreasing the content of the receptor for advanced glycation end-products. Increased oxidative damage to proteins (carbonylation) and lipids (lipoperoxidation) was also observed in these animals. In sedentary animals, vitamin A decreased superoxide dismutase and increased lipoperoxidation. Vitamin A also enhanced the levels of tumor necrosis factor alpha and decreased interleukin-10, effects partially reversed by aerobic training. Taken together, the results presented herein point to negative effects associated with vitamin A supplementation at the specific dose here used upon oxidative stress and pro-inflammatory cytokines in lung tissues of rats submitted to aerobic exercise.
NASA Astrophysics Data System (ADS)
Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.
2016-02-01
Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.
Biotreatment from hot bugs to cold ducks
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
There are few forms of industrial wastes that cannot be neutralized and disposed of using modern treatment methods. The challenge is to control costs and minimize liability. Such is the quandary for waste treatment facilities dealing with biological sludge. One way to reduce sludge volume is to use a high-temperature aerobic treatment process, such as the one recently commercialized by US Filter. The process relies on a strain of bacteria heated to 50--65 C. The high temperatures destroy pathogens and speed metabolism. Cultivated in a lagoon or pond treatment system, the duckweed floats on top of the water and feedsmore » on the organics. The plants consume nitrogen, ammonia and phosphoric compounds, help retain aerobic conditions in the pond, and control algae growth by blocking sunlight.« less
Nutritional needs in the professional practice of swimming: a review
Domínguez, Raúl; Jesús-Sánchez-Oliver, Antonio; Cuenca, Eduardo; Jodra, Pablo; Fernandes da Silva, Sandro; Mata-Ordóñez, Fernando
2017-01-01
[Purpose] Swimming requires developing a high aerobic and anaerobic capacity for strength and technical efficiency. The purpose of this study was to establish the nutritional requirements and dietary strategies that can optimize swimming performance. [Methods] Several related studies retrieved from the databases, Dialnet, Elsevier, Medline, Pubmed, and Web of Science, through keyword search strategies were reviewed. [Results] The recommended carbohydrate intake ranges between 6-10-12 g/kg/d, protein 2 g/kg/d, and fat should surpass 20-25% of the daily intake. [Conclusion] Performance can be optimized with a hydration plan, as well as adequate periodization of supplements, such as caffeine, creatine, sodium bicarbonate, B-alanine, beetroot juice, Vitamin D, bovine colostrum, and HMB. PMID:29370667
Hariz, Harizah Bajunaid; Takriff, Mohd Sobri
2017-09-01
In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO 2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.
Wang, Hengwei; Li, Lijuan; Zhang, Lebin; An, Jin; Cheng, Hairong; Deng, Zixin
2016-05-16
The process of industrial xylitol production is a massive source of organic pollutants, such as waste xylose mother liquor (WXML), a viscous reddish-brown liquid. Currently, WXML is difficult to reuse due to its miscellaneous low-cost sugars, high content of inhibitors and complex composition. WXML, as an organic pollutant of hemicellulosic hydrolysates, accumulates and has become an issue of industrial concern in China. Previous studies have focused only on the catalysis of xylose in the hydrolysates into xylitol using one strain, without considering the removal of other miscellaneous sugars, thus creating an obstacle to subsequent large-scale purification. In the present study, we aimed to develop a simple one-pot biotransformation to produce high-purity xylitol from WXML to improve its economic value. In the present study, we developed a procedure to produce xylitol from WXML, which combines detoxification, biotransformation and removal of by-product sugars (purification) in one bioreactor using two complementary strains, Candida tropicalis X828 and Bacillus subtilis Bs12. At the first stage of micro-aerobic biotransformation, the yeast cells were allowed to grow and metabolized glucose and the inhibitors furfural and hydroxymethyl furfural (HMF), and converted xylose into xylitol. At the second stage of aerobic biotransformation, B. subtilis Bs12 was activated and depleted the by-product sugars. The one-pot process was successfully scaled up from shake flasks to 5, 150 L and 30 m(3) bioreactors. Approximately 95 g/L of pure xylitol could be obtained from the medium containing 400 g/L of WXML at a yield of 0.75 g/g xylose consumed, and the by-product sugars glucose, L-arabinose and galactose were depleted simultaneously. Our results demonstrate that the one-pot procedure is a viable option for the industrial application of WXML to produce value-added chemicals. The integration of complementary strains in the biotransformation of hemicellulosic hydrolysates is efficient under optimized conditions. Moreover, our study of one-pot biotransformation also provides useful information on the combination of biotechnological processes for the biotransformation of other compounds.
[Resistance training is an underutilized therapy in obesity and advanced age].
Sundell, Jan
2011-01-01
The prevalence and costs of obesity, type 2 diabetes and frailty syndrome will increase dramatically. Resistance training not only decreases fat mass and central obesity, but also enhances insulin sensitivity. Resistance training is probably the most effective measure to prevent and treat sarcopenia. Many studies have shown that resistance training can maintain or even increase bone mineral density. Optimal nutrition enhances the anabolic effect of resistance training. Resistance training should be a central component of public health promotion programs along with aerobic exercise.
Yedla, Sudhakar; Sindhu, N T
2016-06-01
Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods. © The Author(s) 2016.
Microbial Metabolic Diversity Study of the Kuantzuling Mud Hot Spring in the Southwestern Taiwan
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, P.; Lin, L.
2009-12-01
Organic carbon, sulfate, methane, and hydrogen are available for microorganisms to carry on diverse metabolisms in the Kuantzuling mud hot spring, southwestern Taiwan. On the basis of bioenergetic evaluations and environmental DNA analyses, previous studies have inferred diverse metabolic capabilities, including methanogenesis, sulfate reduction, fermentation, aerobic heterotrophy and methanotrophy. However, active metabolisms have never been confirmed by cultivation-based analysis. Due to the temperature fluctuation of the Kuantzuling mud spring, this study performed a set of enrichment experiments at temperatures ranging from 25oC to 80oC to understand the activity and interaction among microorganisms at various temperatures. Pure stains were also isolated along with their physiological tests to reveal their possible roles in this terrestrial hot spring ecosystem. According to the geochemical and molecular data, nine types of media were designed to enrich different kinds of metabolisms in the slurry. Positive enrichments were obtained in all types of media, but not at all investigated temperatures. Methanogens using acetate, methanol, and hydrogen and carbon dioxide, sulfate reducers, thiosulfate reducers, fermenters, aerobic heterotrophs could be enriched at temperatures higher than 50oC and even 80oC. Methanogen using methylamine and aerobic methanotroph can only be enriched at temperatures lower than 50 oC. This result is generally consistent with previous energetic evaluation and molecular analysis. It also inferred that microbial assemblages possessing diverse metabolisms were either competitive or collaborative to each other for degradation of organic carbon or carbon cycling. Two strains were isolated from aerobic heterotrophic media. The 16S rDNA gene sequence of one strain exhibited a very close affiliation (at a similarity of 99%) with Meiothermus ruber strain SPS242 and that of the other showed an affiliation to that of Rhodobacter vinaykumarii JA123 at the similarity of 95%. The former grew at the pH values between 5 and 9, at the temperatures ranging from 20 to 70oC with the optimal growth temperature at 60oC, while the later can grow at the pH values between 6 and 9, at the temperatures ranging from 20 to 60oC with the optimal growth temperature at 50oC. The Kuantzuling mud spring harbors diverse microorganisms. Such a wide range of physiological capability might represent an unstable ecosystem constantly exposed to the substantial environmental fluctuations, such as temperature, oxygen content and fluid source.
USDA-ARS?s Scientific Manuscript database
: Large amount of water is used for processing of our food supplies, especially in meat processing plants. The resulting amount of wastewater cannot be discarded freely back into natural settings due to regulatory mandates, whether the sinks would be rivers, ponds, or other natural systems. These wa...
USDA-ARS?s Scientific Manuscript database
Large amount of water is used for processing of our food supplies, especially in meat processing plants. The resulting amount of wastewater cannot be discarded freely back into natural settings due to regulatory mandates, whether the sinks would be rivers, ponds, or other natural systems. These wast...
Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.
Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami
2009-05-15
The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.
Loonen, A J M; Jansz, A R; Stalpers, J; Wolffs, P F G; van den Brule, A J C
2012-07-01
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is a fast and reliable method for the identification of bacteria from agar media. Direct identification from positive blood cultures should decrease the time to obtaining the result. In this study, three different processing methods for the rapid direct identification of bacteria from positive blood culture bottles were compared. In total, 101 positive aerobe BacT/ALERT bottles were included in this study. Aliquots from all bottles were used for three bacterial processing methods, i.e. the commercially available Bruker's MALDI Sepsityper kit, the commercially available Molzym's MolYsis Basic5 kit and a centrifugation/washing method. In addition, the best method was used to evaluate the possibility of MALDI application after a reduced incubation time of 7 h of Staphylococcus aureus- and Escherichia coli-spiked (1,000, 100 and 10 colony-forming units [CFU]) aerobe BacT/ALERT blood cultures. Sixty-six (65%), 51 (50.5%) and 79 (78%) bottles were identified correctly at the species level when the centrifugation/washing method, MolYsis Basic 5 and Sepsityper were used, respectively. Incorrect identification was obtained in 35 (35%), 50 (49.5%) and 22 (22%) bottles, respectively. Gram-positive cocci were correctly identified in 33/52 (64%) of the cases. However, Gram-negative rods showed a correct identification in 45/47 (96%) of all bottles when the Sepsityper kit was used. Seven hours of pre-incubation of S. aureus- and E. coli-spiked aerobe BacT/ALERT blood cultures never resulted in reliable identification with MALDI-TOF MS. Sepsityper is superior for the direct identification of microorganisms from aerobe BacT/ALERT bottles. Gram-negative pathogens show better results compared to Gram-positive bacteria. Reduced incubation followed by MALDI-TOF MS did not result in faster reliable identification.
Sulfur Cycling Mediates Calcium Carbonate Geochemistry in Modern Marine Stromatolites
NASA Technical Reports Server (NTRS)
Visscher, P. T.; Hoeft, S. E.; Bebout, B. M.; Reid, R. P.
2004-01-01
Modem marine stromatolites forming in Highborne Cay, Exumas (Bahamas), contain microbial mats dominated by Schizothrix. Although saturating concentrations of Ca2+ and CO32- exist, microbes mediate CaCO3 precipitation. Cyanobacterial photosynthesis in these stromatolites aids calcium carbonate precipitation by removal of HS+ through CO2 use. Photorespiration and exopolymer production predominantly by oxygenic phototrophs fuel heterotrophic activity: aerobic respiration (approximately 60 umol/sq cm.h) and sulfate reduction (SR; 1.2 umol SO42-/sq cm.h) are the dominant C- consuming processes. Aerobic microbial respiration and the combination of SR and H2S oxidation both facilitate CaCO3 dissolution through H+ production. Aerobic respiration consumes much more C on an hourly basis, but duel fluctuating O2 and H2 depth profiles indicate that overall, SR consumes only slightly less (0.2-0.5) of the primary production. Moreover, due to low O2 concentrations when SR rates are peaking, reoxidation of the H2S formed is incomplete: both thiosulfate and polythionates are formed. The process of complete H2S oxidation yields H+. However, due to a low O2 concentration late in the day and relatively high O2 concentrations early in the following morning, a two-stage oxidation takes place: first, polythionates are formed from H2S, creating alkalinity which coincides with CaCO3 precipitation; secondly, oxidation of polythionates to sulfate yields acidity, resulting in dissolution, etc. Vertical profiles confirmed that the pH peaked late in the afternoon (greater than 8.8) and had the lowest values (less than 7.4) early in the morning. Thus, the effect of this S-cycling through alkalinity production, followed by acidification during H2S oxidation, results in a six times stronger fluctuation in acidity than photosynthesis plus aerobic respiration accomplish. This implies that anaerobic processes play a pivotal role in stromatolite formation.
NASA Astrophysics Data System (ADS)
Arnold, Tim; Markovic, Tamara; Kirk, Guy J. D.; Schönbächler, Maria; Rehkämper, Mark; Zhao, Fangjie J.; Weiss, Dominik J.
2015-11-01
Stable isotope fractionation is emerging quickly as a powerful novel technique to study metal uptake and translocation in plants. Fundamental to this development is a thorough understanding of the processes that lead to isotope fractionation under differing environmental conditions. In this study, we investigated Zn and Fe isotope fractionation in rice grown to maturity in anaerobic and aerobic soils under greenhouse conditions. The overall Zn isotope fractionation between the soil and above ground plant material was negligible in aerobic soil but significant in anaerobic soil with isotopically lighter Zn in the rice plant. The observed range of fractionation is in line with previously determined fractionations of Zn in rice grown in hydroponic solutions and submerged soils and emphasizes the effect of taking up different chemical forms of Zn, most likely free and organically complexed Zn. The Zn in the grain was isotopically lighter than in the rest of the above ground plant in rice grown in aerobic and anaerobic soils alike. This suggests that in the course of the grain loading and during the translocation within the plant important biochemical and/or biophysical processes occur. The isotope fractionation observed in the grains would be consistent with an unidirectional controlled transport from shoot to grain with a fractionation factor of α ≈ 0.9994. Iron isotopes showed an isotopic lighter signature in shoot and grain compared to the bulk soil or the leachate in aerobic and anaerobic soils alike. The negative direction of isotopic fractionation is consistent with possible changes in the redox state of Fe occurring during the uptake and translocation processes. The isotope fractionation pattern between shoots and grain material are different for Zn and Fe which finally suggests that different mechanisms operate during translocation and grain-loading in rice for these two key micronutrients.
Lima, Lídia J R; van der Velpen, Vera; Wolkers-Rooijackers, Judith; Kamphuis, Henri J; Zwietering, Marcel H; Nout, M J Rob
2012-04-01
We sampled a cocoa powder production line to investigate the impact of processing on the microbial community size and diversity at different stages. Classical microbiological methods were combined with 16S rRNA gene PCR-denaturing gradient gel electrophoresis, coupled with clone library construction, to analyze the samples. Aerobic thermoresistant spores (ThrS) (100°C; 10 min) were also isolated and characterized (identity, genetic diversity, and spore heat resistance), in view of their relevance to the quality of downstream heat-treated cocoa-flavored drinks. In the nibs (broken, shelled cocoa beans), average levels of total aerobic microorganisms (TAM) (4.4 to 5.6 log CFU/g) and aerobic total spores (TS) (80°C; 10 min; 4.3 to 5.5 log CFU/g) were significantly reduced (P < 0.05) as a result of alkalizing, while fungi (4.2 to 4.4 log CFU/g) and Enterobacteriaceae (1.7 to 2.8 log CFU/g) were inactivated to levels below the detection limit, remaining undetectable throughout processing. Roasting further decreased the levels of TAM and TS, but they increased slightly during subsequent processing. Molecular characterization of bacterial communities based on enriched cocoa samples revealed a predominance of members of the Bacillaceae, Pseudomonadaceae, and Enterococcaceae. Eleven species of ThrS were found, but Bacillus licheniformis and the Bacillus subtilis complex were prominent and revealed great genetic heterogeneity. We concluded that the microbiota of cocoa powder resulted from microorganisms that could have been initially present in the nibs, as well as microorganisms that originated during processing. B. subtilis complex members, particularly B. subtilis subsp. subtilis, formed the most heat-resistant spores. Their occurrence in cocoa powder needs to be considered to ensure the stability of derived products, such as ultrahigh-temperature-treated chocolate drinks.
Aerobic Food Waste Composting: Measurement of Green House Gases
NASA Astrophysics Data System (ADS)
Chung, J.
2016-12-01
Greenhouse gases (GHGs) are a major cause of global warming. While food waste composting can reduce the amount of waste being sent to traditional landfills, it also produces GHGs during the process. The objective of this research is to evaluate the GHGs emitted from an aerobic food composting machine, which is used in ISF. The Independent Schools Foundation Academy is a private independent school in Hong Kong with approximately 1500 students. Each academic year, the school produces 27 metric tons of food waste. In November 2013, the school installed a food waste composting system. Over the past 3 years, various improvements, such as installing a bio-filter to reduce the smell of the compost, have been made to the composting process. Meanwhile the compost is used by the primary students, as part of their experiential learning curriculum and organic farming projects. The composting process employs two machines: the Dehydra and A900 Rocket. The Dehydra reduces the mass of the food waste by separating the ground food waste and excessive water. The A900 Rocket, a composter made by Tidy Planet, processes food waste into compost in 14 days. This machine runs in an aerobic process, in which oxygen is used as an input gas and gases, such as carbon dioxide, are released. Carbon Dioxide is one of the greenhouse gases (GHGs). This research focuses on GHGs that are emitted from the A900 Rocket. The data is collected by the Gasmet DX 4015, a Fourier transform infrared spectroscopy (FTIR) multi gas analyser. This equipment measures the concentration (ppm) of different GHGs, including N2O, CO2, CH4, NH3 and CO.