Science.gov

Sample records for optimized flow sheet

  1. Optimal swimming of a sheet.

    PubMed

    Montenegro-Johnson, Thomas D; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments. PMID:25019709

  2. Optimal swimming of a sheet

    NASA Astrophysics Data System (ADS)

    Montenegro-Johnson, Thomas D.; Lauga, Eric

    2014-06-01

    Propulsion at microscopic scales is often achieved through propagating traveling waves along hairlike organelles called flagella. Taylor's two-dimensional swimming sheet model is frequently used to provide insight into problems of flagellar propulsion. We derive numerically the large-amplitude wave form of the two-dimensional swimming sheet that yields optimum hydrodynamic efficiency: the ratio of the squared swimming speed to the rate-of-working of the sheet against the fluid. Using the boundary element method, we show that the optimal wave form is a front-back symmetric regularized cusp that is 25% more efficient than the optimal sine wave. This optimal two-dimensional shape is smooth, qualitatively different from the kinked form of Lighthill's optimal three-dimensional flagellum, not predicted by small-amplitude theory, and different from the smooth circular-arc-like shape of active elastic filaments.

  3. Shape Optimization of Swimming Sheets

    SciTech Connect

    Wilkening, J.; Hosoi, A.E.

    2005-03-01

    The swimming behavior of a flexible sheet which moves by propagating deformation waves along its body was first studied by G. I. Taylor in 1951. In addition to being of theoretical interest, this problem serves as a useful model of the locomotion of gastropods and various micro-organisms. Although the mechanics of swimming via wave propagation has been studied extensively, relatively little work has been done to define or describe optimal swimming by this mechanism.We carry out this objective for a sheet that is separated from a rigid substrate by a thin film of viscous Newtonian fluid. Using a lubrication approximation to model the dynamics, we derive the relevant Euler-Lagrange equations to optimize swimming speed and efficiency. The optimization equations are solved numerically using two different schemes: a limited memory BFGS method that uses cubic splines to represent the wave profile, and a multi-shooting Runge-Kutta approach that uses the Levenberg-Marquardt method to vary the parameters of the equations until the constraints are satisfied. The former approach is less efficient but generalizes nicely to the non-lubrication setting. For each optimization problem we obtain a one parameter family of solutions that becomes singular in a self-similar fashion as the parameter approaches a critical value. We explore the validity of the lubrication approximation near this singular limit by monitoring higher order corrections to the zeroth order theory and by comparing the results with finite element solutions of the full Stokes equations.

  4. Geometry of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  5. A study of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1993-01-01

    This study was a theoretical and experimental investigation of thin liquid sheet flows in vacuum. A sheet flow created by a narrow slit of width, W, coalesces to a point at a distance, L, as a result of surface tension forces acting at the sheet edges. As the flow coalesces, the fluid accumulates in the sheet edges. The observed triangular shape of the sheet agrees with the calculated triangular result. Experimental results for L/W as a function of Weber number, We, agree with the calculated result, L/W = the sq. root of 8We. The edge cross sectional shape is found to oscillate from elliptic to 'cigar' like to 'peanut' like and then back to elliptic in the flow direction. A theoretical one-dimensional model was developed that yielded only elliptic solutions for the edge cross section. At the points where the elliptic shapes occur, there is agreement between theory and experiment.

  6. Stability of Thin Liquid Sheet Flows

    NASA Technical Reports Server (NTRS)

    McConley, Marc W.; Chubb, Donald L.; McMaster, Matthew S.; Afjeh, Abdollah A.

    1997-01-01

    A two-dimensional, linear stability analysis of a thin nonplanar liquid sheet flow in vacuum is carried out. A sheet flow created by a narrow slit of W and tau attains a nonplanar cross section as a consequence of cylinders forming on the sheet edge under the influence of surface tension forces. The region where these edge cylinders join the sheet is one of high curvature, and this is found to be the location where instability is most likely to occur. The sheet flow is found to be unstable, but with low growth rates for symmetric wave disturbances and high growth rates for antisymmetric disturbances. By combining the symmetric and antisymmetric disturbance modes, a wide range of stability characteristics is obtained. The product of unstable growth rate and flow time is proportional to the width-to-thickness ratio of the sift generating the sheet Three-dimensional effects can alter these results, particularly when the sheet length-to-width ratio is not much greater than unity.

  7. Light-sheet optimization for microscopy

    NASA Astrophysics Data System (ADS)

    Wilding, Dean; Pozzi, Paolo; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel

    2016-03-01

    Aberrations, scattering and absorption degrade the performance light-sheet fluorescence microscopes (LSFM). An adaptive optics system to correct for these artefacts and to optimize the light-sheet illumination is presented. This system allows a higher axial resolution to be recovered over the field-of-view of the detection objective. It is standard selective plane illumination microscope (SPIM) configuration modified with the addition of a spatial light modulator (SLM) and a third objective for the detection of transmitted light. Optimization protocols use this transmission light allowing the extension the depth-of-field and correction of aberrations whilst retaining a thin optical section.

  8. Primary care flow sheet for hepatitis C virus

    PubMed Central

    von Aesch, Zoë; Steele, Leah S.; Shah, Hermant

    2016-01-01

    Abstract Objective To develop an expert-guided, evidence-based, primary care flow sheet for the monitoring of patients living with chronic untreated hepatitis C virus (HCV). Design Delphi consensus process. Setting Ontario and British Columbia. Participants Five hepatologists and 4 family physicians experienced in HCV care. Main outcome measures There were 3 rounds of consultation and revision. In round 1, participants ranked (on an 11-point scale) the importance of 27 possible clinical elements that fell under the categories of background patient information, counseling topics, and biochemical parameters; indicated the ideal frequency of such interventions (in months); and suggested additional elements. Results were collated and elements that were ranked with an average score greater than 4.9 were included in further iterations. The second and third rounds involved the circulation of draft flow sheets, and participants were asked to flag erroneous or missing elements. All comments were integrated. Results Group consensus was achieved following 3 iterations. The final flow sheet to improve monitoring of HCV in primary care includes 31 clinical elements that fall under the categories background patient information, key counseling topics, and biochemical parameters (and the intervals for such interventions). Conclusion A diverse group of experienced clinicians came to a consensus regarding optimal primary care monitoring and counseling of the untreated HCV population. Future steps include refinement and pilot-testing of this flow sheet in order to optimize its usefulness within the family medicine setting.

  9. Flow variability in the Scandinavian ice sheet: modelling the coupling between ice sheet flow and hydrology

    NASA Astrophysics Data System (ADS)

    Arnold, Neil; Sharp, Martin

    2002-02-01

    There is increasing geologic evidence for periodic flow variability within large ice sheets, manifested as spatially and temporally variable areas of fast ice flow, and resulting in the very complex patterns of lineations observed in formerly glaciated areas. However, many ice sheet models do not replicate this behaviour. A possible reason for this is that such models do not include a detailed treatment of basal hydrology. Changes in the character of sub-glacial drainage systems are believed to cause surges in valley glaciers. Recent ice sheet models, which have included basal hydrology or at least a link between basal velocity and the presence of water at the bed, often show flow variability. However, these models have typically assumed a deformable bed, or have made no assumptions about the nature of the bed. Whilst these assumptions seem applicable to areas close to the former margins of Quaternary ice sheets, they are less applicable to interior areas. These areas typically show thin or scanty till cover over eroded bedrock, and the presence of eskers, which are indicative of drainage in sub-glacial tunnels. We have developed a two-dimensional time-dependent ice sheet model that includes hard-bed basal hydrology. This allows calculation of sub-glacial water pressures and the use of a water pressure dependent sliding law to calculate ice sheet velocities. When used to simulate the Weichselian Scandinavian ice sheet, with late Quaternary climate and sea level as forcing functions, this model develops localised areas of fast-flowing ice, which vary in extent and in distance of penetration into the interior of the ice sheet both spatially and temporally. The behaviour of these lobes depends crucially on the influence of the evolving ice sheet topography on the routing of subglacial water flow, due to the resulting variations in the subglacial hydraulic potential which drive the water flow. Bedrock topography also has some influence, but fast flow areas are not

  10. Emittance Measurements for a Thin Liquid Sheet Flow

    NASA Technical Reports Server (NTRS)

    Englehart, Amy N.; McConley, Marc W.; Chubb, Donald L.

    1996-01-01

    The Liquid Sheet Radiator (LSR) is an external flow radiator that uses a triangular-shaped flowing liquid sheet as the radiating surface. It has potentially much lower mass than solid wall radiators such as pumped loop and heat pipe radiators, along with being nearly immune to micrometeoroid penetration. The LSR has an added advantage of simplicity. Surface tension causes a thin (100-300 microns) liquid sheet to coalesce to a point, causing the sheet flow to have a triangular shape. Such a triangular sheet is desirable since it allows for simple collection of the flow at a single point. A major problem for all external flow radiators is the requirement that the working fluid be of very low (approx. 10(sup -8) torr) vapor pressure to keep evaporative losses low. As a result, working fluids are limited to certain oils (such as used in diffusion pumps) for low temperatures (300-400 K) and liquid metals for higher temperatures. Previous research on the LSR has been directed at understanding the fluid mechanics of thin sheet flows and assessing the stability of such flows, especially with regard to the formation of holes in the sheet. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. The latest research has been directed at determining the emittance of thin sheet flows. The emittance was calculated from spectral transmittance data for the Dow Corning 705 silicone oil. By experimentally setting up a sheet flow, the emittance was also determined as a function of measurable quantities, most importantly, the temperature drop between the top of the sheet and the temperature at the coalescence point of the sheet. Temperature fluctuations upstream of the liquid sheet were a potential problem in the analysis and were investigated.

  11. Coupled finite element simulation and optimization of single- and multi-stage sheet-forming processes

    NASA Astrophysics Data System (ADS)

    Tamasco, Cynthia M.; Rais-Rohani, Masoud; Buijk, Arjaan

    2013-03-01

    This article presents the development and application of a coupled finite element simulation and optimization framework that can be used for design and analysis of sheet-forming processes of varying complexity. The entire forming process from blank gripping and deep drawing to tool release and springback is modelled. The dies, holders, punch and workpiece are modelled with friction, temperature, holder force and punch speed controlled in the process simulation. Both single- and multi-stage sheet-forming processes are investigated. Process simulation is coupled with a nonlinear gradient-based optimization approach for optimizing single or multiple design objectives with imposed sheet-forming response constraints. A MATLAB program is developed and used for data-flow management between process simulation and optimization codes. Thinning, springback, damage and forming limit diagram are used to define failure in the forming process design optimization. Design sensitivity analysis and optimization results of the example problems are presented and discussed.

  12. Hanford Site Treated Effluent Disposal Facility process flow sheet

    SciTech Connect

    Bendixsen, R.B.

    1993-04-01

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process.

  13. Optimal Design of Sheet Pile Wall Embedded in Clay

    NASA Astrophysics Data System (ADS)

    Das, Manas Ranjan; Das, Sarat Kumar

    2015-09-01

    Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.

  14. Task centered visualization of Electronic Medical Record flow sheet.

    PubMed

    Xie, Zhong; Gregg, Peggy; Zhang, Jiajie

    2003-01-01

    Usability problem of Electronic Medical Record (EMR) systems is a major hurdle for their acceptance. In this study we used the methodology of Human-Centered Distributed Information Design (HCDID) to compare and evaluate Flow Sheet module of two commercial EMR systems. After which we tried to develop usable interface of a flow sheet using visualization, focusing on task-representation mapping during design and development.

  15. Flow-pattern evolution of the last British Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hughes, Anna L. C.; Clark, Chris D.; Jordan, Colm J.

    2014-04-01

    We present a 10-stage reconstruction of the evolution in ice-flow patterns of the last British Ice Sheet from build-up to demise derived from geomorphological evidence. 100 flowsets identified in the subglacial bedform record (drumlins, mega-scale glacial lineations, and ribbed moraine) are combined with ancillary evidence (erratic-transport paths, absolute dates and a semi-independently reconstructed retreat pattern) to define flow patterns, ice divides and ice-sheet margins during build-up, maximum glaciation and retreat. Overprinting and cross-cutting of landform assemblages are used to define the relative chronology of flow patterns and a tentative absolute chronology is presented based on a collation of available dates for ice advance and retreat. The ice-flow configuration of the last British Ice Sheet was not static. Some ice divides were remarkably stable, persisting through multiple stages of the ice-sheet evolution, whereas others were transient features existing for a short time and/or shifting in position 10s km. The 10 reconstructed stages of ice-sheet geometry capture two main modes of operation; first as an integrated ice sheet with a broadly N-S orientated ice divide, and second as a multi-domed ice sheet orientated parallel with the shelf edge. A thick integrated ice sheet developed as ice expanded out of source areas in Scotland to envelop southerly ice caps in northern England and Wales, and connect with the Irish Ice Sheet to the west and the Scandinavian Ice Sheet across the North Sea. Following break-up of ice over the North Sea, ice streaming probably drove mass loss and ice-sheet thinning to create a more complex divide structure, where ice-flow patterns were largely controlled by the form of the underlying topography. Ice surface lowering occurred before separation of, and retreat to, multiple ice centres centred over high ground. We consider this 10-stage reconstruction of the evolution in ice-sheet configuration to be the simplest palaeo

  16. A synchronous strobed laser light sheet for rotor flow visualization

    NASA Astrophysics Data System (ADS)

    Leighty, Bradley D.; Rhodes, David B.; Franke, John M.; Jones, Stephen B.

    1991-05-01

    A synchronous strobed laser light sheet generator was designed and used for flow visualization of a helicopter rotor model. The laser light sheet strobe circuit was designed to allow selectable blade position viewing, strobe duration, and multiple pulses per revolution for rotors having 2 to 9 blades. A slip-sync mode permits slow motion visualization of the flow field over complete rotations of the rotor. The design was tested at NASA Langley Research Center's 14 by 22 foot subsonic tunnel where the flow was seeded with propylene glycol smoke. Between runs, a calibration grid board was placed in the plane of the laser sheet and recorded with the video camera at the position used to record the flow field. The system was used to make 2-dimensional flow field cuts of a four-bladed rotor operating at wind tunnel speeds up to 79.25 meters per second (260 feet per second).

  17. The Steady Flow Resistance of Perforated Sheet Materials in High Speed Grazing Flows

    NASA Technical Reports Server (NTRS)

    Syed, Asif A.; Yu, Jia; Kwan, H. W.; Chien, E.; Jones, Michael G. (Technical Monitor)

    2002-01-01

    A study was conducted to determine the effects of high speed grazing air flow on the acoustic resistance of perforated sheet materials used in the construction of acoustically absorptive liners placed in commercial aircraft engine nacelles. Since DC flow resistance of porous sheet materials is known to be a major component of the acoustic resistance of sound suppression liners, the DC flow resistance of a set of perforated face-sheets and linear 'wiremesh' face-sheets was measured in a flow duct apparatus (up to Mach 0.8). Samples were fabricated to cover typical variations in perforated face-sheet parameters, such as hole diameter, porosity and sheet thickness, as well as those due to different manufacturing processes. The DC flow resistance data from perforated sheets were found to correlate strongly with the grazing flow Mach number and the face-sheet porosity. The data also show correlation against the boundary layer displacement thickness to hole-diameter ratio. The increase in resistance with grazing flow for punched aluminum sheets is in good agreement with published results up to Mach 0.4, but is significantly larger than expected above Mach 0.4. Finally, the tests demonstrated that there is a significant increase in the resistance of linear 'wiremesh' type face-sheet materials.

  18. Plasma Sheet Dynamics Imposed by Bursty Bulk Flows

    NASA Astrophysics Data System (ADS)

    Panov, E. V.

    2009-04-01

    On 17 March 2008 around 9:12 UT the five Themis spacecraft were located in the plasma sheet no more than 1 hour MLT apart and cover ed radial distances from 15 Re (THB) to about 10 Re (THA). We found that all the spacecraft consecutively observed a bursty bulk flow traveling first earthward, slowing down between THB and THA from 400 km/s to 50 km/s, and then changing toward the opposite direction. We found that the most tailward located spacecraft, THB and THC, detected thinning and then thickening of the plasma sheet around the time of the flow direction change. The plasma sheet thinning propagated from THB to THC at about the Alfvén velocity in the plasma sheet boundary layer. Both spacecraft showed signatures of crossing the reconnection separatrix. On the other hand, we found that the THA, THD and THE spacecraft, which were located in a more dipolar region, indicated first plasma sheet thickening and then thinning. The five spacecraft observations can well be explained as the observation of the reconnected magnetic flux, which first moved toward a more dipolar field region close to the Earth, and then bounced tailward. Finally, we discuss the Pi2 pulsations observed by ground based magnetometers during these space observations, and also the non-adiabatic heating of particles inside the plasma sheet found after the sheet's thinning-thickening motion.

  19. Analysis of the flow imbalance on the profile shape during the extrusion of thin magnesium sheets

    SciTech Connect

    Gall, Sven; Müller, Sören; Reimers, Walter

    2013-12-16

    The extrusion process facilitates the production of magnesium sheets featuring a very thin thickness as well as excellent surface properties by using a single process step only. However, the extrusion of the magnesium sheets applying not optimized process parameters, e.g. low billet temperature or/ and poorly deformable magnesium alloy, produce pronounced buckling and waving of the extruded sheets as well as a variation of accuracy in profile shape along the cross section. The present investigation focuses on the FEM-simulation of the extrusion of magnesium sheets in order to clarify the origin of the mentioned effects. The simulations identify the flow imbalance during extrusion as the main critical factor. Due to the flow imbalance after passing the die a large compression stress zone is formed causing the buckling and waving of the thin sheets. Furthermore, the simulations of the magnesium sheet extrusion reveal that the interaction of the material flow gradients along the width and along the thickness direction near the die orifice lead to the variation of the accuracy in profile shape.

  20. A Three-Dimensional Vortex Sheet Method for Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Stock, Mark; Dahm, Werner; Tryggvason, Gretar

    2002-11-01

    Previous work on a three-dimensional vortex-in-cell method is extended to include baroclinic vorticity generation in flows with large density ratios. A vortex sheet discretization is used both to maintain the boundary between different fluids or fluid phases, and to provide for a divergence-free vorticity field at all times. Automatic insertion and deletion of triangular elements allow the vortex sheet to maintain its connectivity and resolution during the simulation, despite extensive stretching of the material surface. The VIC grid provides regularization, and the simulation is inviscid at resolved scales. Computational results for flows with weak and strong density variations are presented.

  1. Optimal TCSC placement for optimal power flow

    NASA Astrophysics Data System (ADS)

    Lakdja, Fatiha; Zohra Gherbi, Fatima; Berber, Redouane; Boudjella, Houari

    2012-11-01

    Very few publications have been focused on the mathematical modeling of Flexible Alternating Current Transmission Systems (FACTS) -devices in optimal power flow analysis. A Thyristor Controlled Series Capacitors (TCSC) model has been proposed, and the model has been implemented in a successive QP. The mathematical models for TCSC have been established, and the Optimal Power Flow (OPF) problem with these FACTS-devices is solved by Newtons method. This article employs the Newton- based OPF-TCSC solver of MATLAB Simulator, thus it is essential to understand the development of OPF and the suitability of Newton-based algorithms for solving OPF-TCSC problem. The proposed concept was tested and validated with TCSC in twenty six-bus test system. Result shows that, when TCSC is used to relieve congestion in the system and the investment on TCSC can be recovered, with a new and original idea of integration.

  2. 33. Photograph of a line drawing. 'EQUIPMENT FLOW SHEET, BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Photograph of a line drawing. 'EQUIPMENT FLOW SHEET, BUILDING 'D', PLANT 'B'. Holston Ordnance Works, Tennessee Eastman Corporation. August 4, 1942. Delineator: Hattaway. Drawing # 7651-1004.218. - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  3. Laminar Entrained Flow Reactor (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  4. Interpretation of high-speed flows in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Chen, C. X.; Wolf, R. A.

    1993-01-01

    Pursuing an idea suggested by Pontius and Wolf (1990), we propose that the `bursty bulk flows' observed by Baumjohann et al. (1990) and Angelopoulos et al. (1992) are `bubbles' in the Earth's plasma sheet. Specifically, they are flux tubes that have lower values of pV(exp 5/3) than their neighbors, where p is the thermal pressure of the particles and V is the volume of a tube containing one unit of magnetic flux. Whether they are created by reconnection or some other mechanism, the bubbles are propelled earthward by a magnetic buoyancy force, which is related to the interchange instability. Most of the major observed characteristics of the bursty bulk flows can be interpreted naturally in terms of the bubble picture. We propose a new `stratified fluid' picture of the plasma sheet, based on the idea that bubbles constitute the crucial transport mechanism. Results from simple mathematical models of plasma sheet transport support the idea that bubbles can resolve the pressure balance inconsistency, particularly in cases where plasma sheet ions are lost by gradient/curvature drift out the sides of the tail or bubbles are generated by reconnection in the middle of plasma sheet.

  5. Azimuthal flow bursts in the inner plasma sheet and possible connection with SAPS and plasma sheet earthward flow bursts

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Nishimura, Y.; Gallardo-Lacourt, B.; Nicolls, M. J.; Chen, S.; Hampton, D. L.; Bristow, W. A.; Ruohoniemi, J. M.; Nishitani, N.; Donovan, E. F.; Angelopoulos, V.

    2015-06-01

    We have combined radar observations and auroral images obtained during the Poker Flat Incoherent Scatter Radar Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the subauroral polarization stream (SAPS) region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the azimuthally moving flow bursts often connect to earthward (equatorward in the ionosphere) plasma sheet flow bursts. This indicates that rather than stopping or bouncing, some flow bursts turn azimuthally after reaching the inner plasma sheet and lead to the bursts of strong azimuthal flow. Evidence is also seen for a general guiding of the flow bursts by the large-scale convection pattern, flow bursts within the duskside convection being azimuthally turned to the west, and those within the dawn cell being turned toward the east. The possibility that the SAPS region flow structures considered here may be connected to localized flow enhancements from the polar cap that cross the nightside auroral poleward boundary and lead to flow bursts within the plasma sheet warrants further consideration.

  6. Modelling water flow under glaciers and ice sheets

    PubMed Central

    Flowers, Gwenn E.

    2015-01-01

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082

  7. Pulsed laser light sheet flow visualization

    NASA Astrophysics Data System (ADS)

    Soreide, D. C.; Douglas, G. D.; Brandt, W. P.

    A pulsed ruby laser was used as light source for a set of flow visualization tests involving two test situations. In both cases, the conducted investigation was concerned with the location of the tip vortex of the rotor-blade of a helicopter, giving particular attention to the position relative to the following blade. The optical system employed is considered along with the electronics system, the setup equipment, and the helicopter test. Vortex field maps are provided for the case in which the helicopter rotor vortex field phase angle equals 0 degrees and for the case in which this angle equals 90 degrees.

  8. Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Hon, K.; Kauahikaua, J.; Denlinger, R.; Mackay, K.

    1994-01-01

    Inflated pahoehoe sheet flows have a distinctive horizontal upper surface, which can be several hundred meters across, and are bounded to steep monoclinal uplifts. The inflated sheet flows studied ranged from 1 to 5 m in thickness, but initially propagated as thin sheets of fluid pahoehoe lava, generally 20-30 cm thick. The morphology of the lava as flow advanced is described. Inflated sheet flows from Kilauea and Mauna Loa are morphologically similar to some thick Icelandic and submarine sheet flows, suggesting a similar mechanism of emplacement. -from Authors

  9. How does ice sheet loading affect ocean flow around Antarctica?

    NASA Astrophysics Data System (ADS)

    Dijkstra, H. A.; Rugenstein, M. A.; Stocchi, P.; von der Heydt, A. S.

    2012-12-01

    Interactions and dynamical feedbacks between ocean circulation, heat and atmospheric moisture transport, ice sheet evolution, and Glacial Isostatic Adjustment (GIA) are overlooked issues in paleoclimatology. Here we will present first results on how ocean flows were possibly affected by the glaciation of Antarctica across the Eocene-Oligocene Transition (~ 34 Ma) through GIA and bathymetry variations. GIA-induced gravitationally self-consistent bathymetry variations are determined by solving the Sea Level Equation (SLE), which describes the time dependent shape of (i) the solid Earth and (ii) the equipotential surface of gravity. Since the ocean circulation equations are defined relative to the equipotential surface of gravity, only bathymetry variations can influence ocean flows, although the sea surface slope will also change through time due to gravitational attraction. We use the Hallberg Isopycnal Model under late Eocene conditions to calculate equilibrium ocean flows in a domain in which the bathymetry evolves under ice loading according to the SLE. The bathymetric effects of the glaciation of Antarctica lead to substantial spatial changes in ocean flows, and close to the coast, the flow even reverses direction. Volume transports through the Drake Passage and Tasman Seaway adjust to the new bathymetry. The results indicate that GIA-induced ocean flow variations alone may have had an impact on sedimentation and erosion patterns, the repositioning of fronts, ocean heat transport and grounding line and ice sheet stability.

  10. Dacitic ash-flow sheet near Superior and Globe, Arizona

    USGS Publications Warehouse

    Peterson, Donald W.

    1961-01-01

    Remnants of a dacitic ash-flow sheet near Globe, Miama, and Superia, Arizona cover about 100 square miles; before erosion the area covered by the sheet was at least 400 square miles and perhaps as much as 1,500 square miles. Its maximum thickness is about 2,000 feet, its average thickness is about 500 feet, and its original volume was at least 40 cubic miles. It was erupted on an eroded surface with considerable relief. The main part of the deposit was thought by early workers to be a lava flow. Even after the distinctive character of welded tuffs and related rocks was discovered, the nature and origin of this deposit remained dubious because textures did not correspond to those in other welded tuff bodies. Yet a lava flow as silicic as this dacite would be viscous instead of spreading out as an extensive sheet. The purpose of this investigation has been to study the deposit, resolve the inconsistencies, and deduce its origin and history. Five stratigraphic zones are distinguished according to differences in the groundmass. From bottom to top the zones are basal tuff, vitrophyre, brown zone, gray zone, and white zone. The three upper zones are distinguished by colors on fresh surfaces, for each weathers to a similar shade of light reddish brown. Nonwelded basal tuff grades upward into the vitrophyre, which is a highly welded tuff. The brown and gray zones consist of highly welded tuff with a lithoidal groundmass. Degree of welding decreases progressively upward through the gray and the white zones, and the upper white zone is nonwelded. Textures are clearly outlined in the lower part of the brown zone, but upward they become more diffuse because of increasing devitrification. In the white zone, original textures are essentially obliterated, and the groundmass consists of spherulites and microcrystalline intergrowths. The chief groundmass minerals are cristobalite and sanidine, with lesser quartz and plagioclase. Phenocrysts comprise about 40 percent of the rock

  11. Effects of wave shape on sheet flow sediment transport

    USGS Publications Warehouse

    Hsu, T.-J.; Hanes, D.M.

    2004-01-01

    A two-phase model is implemented to study the effects of wave shape on the transport of coarse-grained sediment in the sheet flow regime. The model is based on balance equations for the average mass, momentum, and fluctuation energy for both the fluid and sediment phases. Model simulations indicate that the responses of the sheet flow, such as the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady free-stream velocity and may be correlated with the magnitude of local horizontal pressure gradient (or free-stream acceleration). A net sediment flux in the direction of wave advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and breaking waves. The model further suggests that at critical values of the horizontal pressure gradient, there is a failure event within the bed that mobilizes more sediment into the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize the total bed shear stress and the total sediment flux appear promising. Copyright 2004 by the American Geophysical Union.

  12. Leakage of the Greenland Ice Sheet through accelerated ice flow

    NASA Astrophysics Data System (ADS)

    Rignot, E.

    2005-12-01

    A map of coastal velocities of the Greenland ice sheet was produced from Radarsat-1 acquired during the background mission of 2000 and combined with radio echo sounding data to estimate the ice discharge from the ice sheet. On individual glaciers, ice discharge was compared with snow input from the interior and melt above the flux gate to determine the glacier mass balance. Time series of velocities on several glaciers at different latitudes reveal seasonal fluctuations of only 7-8 percent so that winter velocities are only 2 percent less than the yearly mean. The results show the northern Greenland glaciers to be close to balance yet losing mass. No change in ice flow is detected on Petermann, 79north and Zachariae Isstrom in 2000-2004. East Greenland glaciers are in balance and flowing steadily north of Kangerdlussuaq, but Kangerdlussuaq, Helheim and all the southeastern glaciers are thinning dramatically. All these glaciers accelerated, Kangerdlussuaq in 2000, Helheim prior to 2004, and southeast Greenland glaciers accelerated 10 to 50 percent in 2000-2004. Glacier acceleration is generally brutal, probably once the glacier reached a threshold, and sustained. In the northwest, most glaciers are largely out of balance. Jakobshavn accelerated significantly in 2002, and glaciers in its immediate vicinity accelerated more than 50 percent in 2000-2004. Less is known about southwest Greenland glaciers due to a lack of ice thickness data but the glaciers have accelerated there as well and are likely to be strongly out of balance despite thickening of the interior. Overall, I estimate the mass balance of the Greenland ice sheet to be about -80 +/-10 cubic km of ice per year in 2000 and -110 +/-15 cubic km of ice per year in 2004, i.e. more negative than based on partial altimetry surveys of the outlet glaciers. As climate continues to warm, more glaciers will accelerate, and the mass balance will become increasingly negative, regardless of the evolution of the ice sheet

  13. Optimization of Forming Processes with Different Sheet Metal Alloys

    NASA Astrophysics Data System (ADS)

    Sousa, Luísa C.; Castro, Catarina F.; António, Carlos C.

    2007-05-01

    Over the past decades relatively heavy components made of steel alloys comprise the majority of many manufactured parts due to steel's low cost, high formability and good strength. The desire to produce lightweight parts has led to studies searching for lighter and stronger materials such as aluminum alloys. However, they exhibit lower elastic stiffness than steel resulting in higher elastic strains causing known distortions such as spring-back and so decreasing accuracy of manufactured net-shape components. This paper presents a developed computational method to optimize the design of sheet metal processes using genetic algorithms. An inverse approach is considered so that the final geometry of the bended blank closely follows a prescribed one. The developed computational method couples a finite element forming simulation and an evolutionary algorithm searching the optimal design parameters of the process. The developed method searches the optimal parameters that ensure a perfect net-shape part. Different aluminum alloys candidates for automotive structural applications are considered and the optimal solutions are analyzed.

  14. Optimization of Forming Processes with Different Sheet Metal Alloys

    SciTech Connect

    Sousa, Luisa C.; Castro, Catarina F.; Antonio, Carlos C.

    2007-05-17

    Over the past decades relatively heavy components made of steel alloys comprise the majority of many manufactured parts due to steel's low cost, high formability and good strength. The desire to produce lightweight parts has led to studies searching for lighter and stronger materials such as aluminum alloys. However, they exhibit lower elastic stiffness than steel resulting in higher elastic strains causing known distortions such as spring-back and so decreasing accuracy of manufactured net-shape components. This paper presents a developed computational method to optimize the design of sheet metal processes using genetic algorithms. An inverse approach is considered so that the final geometry of the bended blank closely follows a prescribed one. The developed computational method couples a finite element forming simulation and an evolutionary algorithm searching the optimal design parameters of the process. The developed method searches the optimal parameters that ensure a perfect net-shape part. Different aluminum alloys candidates for automotive structural applications are considered and the optimal solutions are analyzed.

  15. Numerical Tool Path Optimization for Conventional Sheet Metal Spinning Processes

    NASA Astrophysics Data System (ADS)

    Rentsch, Benedikt; Manopulo, Niko; Hora, Pavel

    2016-08-01

    To this day, conventional sheet metal spinning processes are designed with a very low degree of automation. They are usually executed by experienced personnel, who actively adjust the tool paths during production. The practically unlimited freedom in designing the tool paths enables the efficient manufacturing of complex geometries on one hand, but is challenging to translate into a standardized procedure on the other. The present study aims to propose a systematic methodology, based on a 3D FEM model combined with a numerical optimization strategy, in order to design tool paths. The accurate numerical modelling of the spinning process is firstly discussed, followed by an analysis of appropriate objective functions and constraints required to obtain a failure free tool path design.

  16. Sheet Flows, Avalanches, and Dune Evolution on Earth and Mars

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This investigation is a collaboration between researchers at Cornell University, the University of Florida, and the University of Rennes 1, France. Flow modeling at Cornell University focused on mechanisms for the suspension and transport of wind-blown sand that are important in both terrestrial and Martian environments. These mechanisms include the saltation (or jumping) of grains, collisions between grains, and the interaction of grains with the velocity fluctuations of the turbulent wind. Of particular interest are sheet flows; these are relatively thin, highly concentrated regions of grains flowing near the ground under the influence of a strong turbulent wind. In them, the grains are suspended by interparticle collisions. Sheet flows may be relatively rare events, but they have the capacity to move great amounts of sand. In order to describe sheet flows, a turbulent mixture theory was formulated for particles in a fluid in which fluctuations in the volume fiaction of the particles take place on the scale of the turbulent eddies. Ensemble averaged equations for particle and fluid mass, momentum, and energy and fluid rate of dissipation were expressed in terms of Farve (concentration) averaged velocities and the associated velocity fluctuations. Correlations that describe the turbulent suspension of particles and dissipation of turbulent energy of both phases due to fluid particle interactions were modeled and boundary conditions at the bed and at the upper surface of the collisional flow were formulated. The boundary conditions at the upper surface were tested in a numerical simulation developed at the University of Florida. Steady and unsteady solutions for steady and unsteady fully-developed flows were obtained over a range of wind speeds fiom the lowest for which collisional between particles occurred to at which turbulent suspension is found to dominate collisional suspension. Below the value of the wind speed at which collisions between particles were

  17. Neptunium flow-sheet verification at reprocessing plants

    SciTech Connect

    Rance, P.; Chesnay, B.; Killeen, T.; Murray, M.; Nikkinen, M.; Petoe, A.; Plumb, J.; Saukkonen, H.

    2007-07-01

    Due to their fissile nature, neptunium and americium have at least a theoretical potential application as nuclear explosives and their proliferation potential was considered by the IAEA in studies in the late 1990's. This work was motivated by an increased awareness of the proliferation potential of americium and neptunium and a number of emerging projects in peaceful nuclear programmes which could result in an increase in the available quantities of these minor actinides. The studies culminated in proposals for various voluntary measures including the reporting of international transfers of separated americium and neptunium, declarations concerning the amount of separated neptunium and americium held by states and the application of flow-sheet verification to ensure that facilities capable of separating americium or neptunium are operated in a manner consistent with that declared. This paper discusses the issue of neptunium flowsheet verification in reprocessing plants. The proliferation potential of neptunium is first briefly discussed and then the chemistry of neptunium relevant to reprocessing plants described with a view to indicating a number of issues relevant to the verification of neptunium flow-sheets. Finally, the scope of verification activities is discussed including analysis of process and engineering design information, plant monitoring and sampling and the potential application of containment and surveillance measures. (authors)

  18. Development of a novel carrier optimized for cell sheet transplantation.

    PubMed

    Amagai, Yosuke; Karasawa, Kaoru; Kyungsook, Jung; Matsuda, Akira; Kojima, Masanori; Watanabe, Jun; Hibi, Toyoji; Matsuda, Hiroshi; Tanaka, Akane

    2015-01-01

    Tissue engineering is a rapidly advancing technology in the field of regenerative medicine. For the transplantation of cell sheets, a carrier must maintain the shape of a cell sheet from a culture dish to affected sites as well as release the sheet easily onto the lesion. In this study, we examined the utility of a novel, poly(lactic acid)-based carrier for cell sheets transplantation to the cornea of dogs and the skin of rats. The poly(lactic acid)-based carrier easily picked a cell sheet up from the dish, fit to the shape of the transplantation sites, and saved time for cell sheets detachment comparing to a conventional carrier. Thus, the poly(lactic acid)-based carrier would be useful for easy cell sheet transplantations. PMID:25869322

  19. Traffic Flow Management and Optimization

    NASA Technical Reports Server (NTRS)

    Rios, Joseph Lucio

    2014-01-01

    This talk will present an overview of Traffic Flow Management (TFM) research at NASA Ames Research Center. Dr. Rios will focus on his work developing a large-scale, parallel approach to solving traffic flow management problems in the national airspace. In support of this talk, Dr. Rios will provide some background on operational aspects of TFM as well a discussion of some of the tools needed to perform such work including a high-fidelity airspace simulator. Current, on-going research related to TFM data services in the national airspace system and general aviation will also be presented.

  20. Optimal flow for brown trout: Habitat - prey optimization.

    PubMed

    Fornaroli, Riccardo; Cabrini, Riccardo; Sartori, Laura; Marazzi, Francesca; Canobbio, Sergio; Mezzanotte, Valeria

    2016-10-01

    The correct definition of ecosystem needs is essential in order to guide policy and management strategies to optimize the increasing use of freshwater by human activities. Commonly, the assessment of the optimal or minimum flow rates needed to preserve ecosystem functionality has been done by habitat-based models that define a relationship between in-stream flow and habitat availability for various species of fish. We propose a new approach for the identification of optimal flows using the limiting factor approach and the evaluation of basic ecological relationships, considering the appropriate spatial scale for different organisms. We developed density-environment relationships for three different life stages of brown trout that show the limiting effects of hydromorphological variables at habitat scale. In our analyses, we found that the factors limiting the densities of trout were water velocity, substrate characteristics and refugia availability. For all the life stages, the selected models considered simultaneously two variables and implied that higher velocities provided a less suitable habitat, regardless of other physical characteristics and with different patterns. We used these relationships within habitat based models in order to select a range of flows that preserve most of the physical habitat for all the life stages. We also estimated the effect of varying discharge flows on macroinvertebrate biomass and used the obtained results to identify an optimal flow maximizing habitat and prey availability. PMID:27320735

  1. Optimal flow for brown trout: Habitat - prey optimization.

    PubMed

    Fornaroli, Riccardo; Cabrini, Riccardo; Sartori, Laura; Marazzi, Francesca; Canobbio, Sergio; Mezzanotte, Valeria

    2016-10-01

    The correct definition of ecosystem needs is essential in order to guide policy and management strategies to optimize the increasing use of freshwater by human activities. Commonly, the assessment of the optimal or minimum flow rates needed to preserve ecosystem functionality has been done by habitat-based models that define a relationship between in-stream flow and habitat availability for various species of fish. We propose a new approach for the identification of optimal flows using the limiting factor approach and the evaluation of basic ecological relationships, considering the appropriate spatial scale for different organisms. We developed density-environment relationships for three different life stages of brown trout that show the limiting effects of hydromorphological variables at habitat scale. In our analyses, we found that the factors limiting the densities of trout were water velocity, substrate characteristics and refugia availability. For all the life stages, the selected models considered simultaneously two variables and implied that higher velocities provided a less suitable habitat, regardless of other physical characteristics and with different patterns. We used these relationships within habitat based models in order to select a range of flows that preserve most of the physical habitat for all the life stages. We also estimated the effect of varying discharge flows on macroinvertebrate biomass and used the obtained results to identify an optimal flow maximizing habitat and prey availability.

  2. Structure and organization of submarine basaltic flows: sheet flow transformation into pillow lavas in shallow submarine environments

    NASA Astrophysics Data System (ADS)

    Carracedo Sánchez, M.; Sarrionandia, F.; Juteau, T.; Gil Ibarguchi, J. I.

    2012-11-01

    Distal pillows occur associated with a sheet flow and megapillows in the meñakoz outcrops of the Basque-Cantabrian Basin (N Spain). Basaltic volcanic rocks are interbedded with Turonian sediments and depict typical features of shallow submarine emissions. An exceptional basaltic flow displays four types of morphology: (1) sheet lava with columnar jointing, (2) welded columnar breccia, (3) megapillows, and (4) pillow lavas with sparse megapillows. The field data from meñakoz combined with experimental and field data from the literature for similar volcanic facies can be integrated into a new propagation model for the transition from sheet flows to pillow lavas in underwater environments. At near vent high emission rates, lava flows develop a thin crust immediately after its emplacement and break at the front under the magma pressure allowing for the massive propagation of lava as a sheet flow. Increased cooling promotes thickening of the lava outer crust far from the vent while continuous supply of fresh magma increases the pressure onto the thick crust until its rupture. The lava emitted in small volumes from the flow front promotes the formation of megapillows and pillow lavas that are later on covered by the advancing sheet flow. The lava flow freezes progressively toward more distal parts, gradually increasing its viscosity until it stops. The crust temporarily holds the residual melt pressure increasing the volume of the flow distal section by inflation. Finally, the internal magma pressure breaks the crust and liberates lava at moderate-to-low flow rates producing pillows, while lava drainage inside the inflated sheet flow produces lava tunnels and gravitational collapse of the roofs by hydrostatic pressure to form breccias nurtured by columnar lava fragments.

  3. Mission analysis flow sequencing optimization

    NASA Technical Reports Server (NTRS)

    Scott, M.

    1986-01-01

    This investigation is an extension of a project dealing with the problem of optimal use of ground resources for future space missions. This problem was formulated as a linear programming problem using an indirect approach. Instead of minimizing the inventory level of needed ground resources, the overlapping periods during which the same types of resources are used by various flights are minimized. The model was built upon the assumption that during the time interval under consideration, the costs of various needed resources remain constant. Under other assumptions concerning costs of resources, the objective function, in general, assumes a non-linear form. In this study, one case where the form of the objective function turns out to be quadratic is considered. Also, disadvantages and limitations of the approach used are briefly discussed.

  4. The Properties of Flowing Sheets Formed by Impingement of Liquid Jets on Curved Surfaces

    NASA Technical Reports Server (NTRS)

    Riebling, Robert W.; Powell, Walter B.

    1966-01-01

    An applied research program was conducted to determine the properties of flat sheets of propellants formed by directing jets of liquid tangentially against concave, cylindrical deflector surfaces. The dimensions and spatial orientation of the resultant sheets were found to depend only on the orifice diameter and deflector geometry for three propellant simulants of widely-varying physical properties, over the range of injection velocities encountered in liquid rocket engines. Correlating equations, suitable for use in injector design, are presented for free-sheet width and spreading angle. Distribution of mass and velocity across the free-flowing sheets is also reported. Conditions were discovered under which true sheets do not form, or at best malformed or pulsating sheets result. An envelope of geometrical constraints for deflector design is tentatively defined in order to avoid these undesirable operating regions. The results of the present cold-flow tests are compared with firing test data for impinging-sheet injectors and combustion performance is related to single sheet behavior.

  5. Optimal disturbances in shearing and swirling flows

    NASA Astrophysics Data System (ADS)

    Daly, Conor

    2011-11-01

    Over the past twenty years transient energy density growth of linearly stable disturbances has shown to be the likely instigator for transition to turbulence in parallel shear flows. In this vein, optimal linear perturbations are calculated for two flows which have a mixture of forces acting on the fluid body. These are; rotating plane Couette flow (RPCF), which combines pressure-driven shear and swirl, and cylindrical Couette-Poiseuille flow (CCPF), which combines pressure-driven and Couette shear. Contours are presented of the maximum achievable linear transient growth, G, over the full range of wavenumbers within the linearly stable parameter regimes. Reference is made to experimental works on each flow and we examine the role that optimal disturbances have in the different transition phenomena that are observed. It is found that the contours of G fall qualitatively alongside the points of transition in the two flows, in support of the notion that large linear transient growth can act a precursor to transition. Despite the combination of effects acting on each fluid, transition in both flows falls in the range 102 < G <10 2 . 5 suggesting that in both flows the same mechanism may be at work. This work is funded by EPSRC.

  6. Continuously Optimized Reliable Energy (CORE) Microgrid: Models & Tools (Fact Sheet)

    SciTech Connect

    Not Available

    2013-07-01

    This brochure describes Continuously Optimized Reliable Energy (CORE), a trademarked process NREL employs to produce conceptual microgrid designs. This systems-based process enables designs to be optimized for economic value, energy surety, and sustainability. Capabilities NREL offers in support of microgrid design are explained.

  7. The stability of steady magnetohydrodynamic flows with current-vortex sheets

    NASA Astrophysics Data System (ADS)

    Ilin, K. I.; Trakhinin, Y. L.; Vladimirov, V. A.

    2003-07-01

    The stability of steady magnetohydrodynamic flows of an inviscid incompressible fluid with current-vortex sheets to small three-dimensional perturbations is studied. The energy method of Frieman and Rotenberg is extended to the case of steady flows with surfaces of tangential discontinuities across which the tangent velocity or the tangent magnetic field or both of them have jump discontinuities. Sufficient conditions for linear stability of some classes of steady flows with parallel velocity and magnetic field are obtained. Also, a sufficient condition for instability of a tubular current-vortex sheet is given.

  8. Non-Newtonian Power-Law Fluid Flow over a Shrinking Sheet

    NASA Astrophysics Data System (ADS)

    Fang, Tie-Gang; Tao, Hua; Zhong, Yong-Fang

    2012-11-01

    The boundary layer flow of power-law fluids over a shrinking sheet with mass transfer is revisited. Closed-form analytical solutions are found and presented for special cases. One of the presented solutions has an algebraic decay behavior. These analytical solutions might offer valuable insight into the nonlinear boundary layer flow for power-law fluids.

  9. Flow visualization using the laser light sheet method in vehicle aerodynamics and combustion chamber engineering

    NASA Astrophysics Data System (ADS)

    Hentschel, Werner

    Laser light sheet flow visualization is applied in the automobile industry with a view to the reduction of air resistance. Using high power lasers a plane is cut out of the 3-D flow field and the course of flow in the plane is analyzed. In vehicle aerodynamics the flow phenomena are mainly visualized with smoke in the tail region of automobiles and in the wake, in planes parallel as well as perpendicular to the flow direction. For the investigation of flow phenomena in the combustion chamber of Otto and Diesel engines, the laser light sheet method is used on a series motor with optical access, the so-called flow motor. Typical results and requirements for future automated evaluation methods are discussed.

  10. Complex Dynamic Flows in Solar Flare Sheet Structures

    NASA Technical Reports Server (NTRS)

    McKenzie, David E.; Reeves, Katharine K.; Savage, Sabrina

    2012-01-01

    Observations of high-energy emission from solar flares often reveal the presence of large sheet-like structures, sometimes extending over a space comparable to the Sun's radius. Given that these structures are found between a departing coronal mass ejection and the post-eruption flare arcade, it is natural to associate the structure with a current sheet; though the relationship is unclear. Moreover, recent high-resolution observations have begun to reveal that the motions in this region are highly complex, including reconnection outflows, oscillations, and apparent wakes and eddies. We present a detailed first look at the complicated dynamics within this supra-arcade plasma, and consider implications for the interrelationship between the plasma and its embedded magnetic field.

  11. Late Wisconsinan ice sheet flow across northern and central Vermont, USA

    NASA Astrophysics Data System (ADS)

    Wright, Stephen F.

    2015-12-01

    A compilation of over 2000 glacial striation azimuths across northern and central Vermont, northeastern USA, provides the basis for interpreting a sequence of ice flow directions across this area. The oldest striations indicate widespread ice flow to the southeast, obliquely across the mountains. Similarly oriented striations between northern Vermont and the ice sheet's terminus in the Gulf of Maine suggest that a broad area of southeast ice flow existed at the Last Glacial Maximum. Younger striations with more southerly azimuths on both the mountain ridgelines and within adjacent valleys indicate that ice sheet flow trajectories in most areas rotated from southeast to south, parallel to the North-South alignment of the mountains, as the ice sheet thinned. This transition in ice flow direction was time transgressive from south to north with the Green Mountains eventually separating a thick south-flowing lobe of ice in the Champlain Valley from a much thinner lobe of south-flowing ice east of the mountains. While this transition was taking place yet ice was still thick enough to flow across the mountains, ice flow along a narrow ˜65 km long section of the Green Mountains shifted to the southwest such that ice was flowing into the Champlain Valley. The most likely process driving this change was a limited period of fast ice flow in the Champlain Valley, a short-lived ice streaming event, that drew down the ice surface in the valley. The advancing ice front during this period of fast ice flow may be responsible for the Luzerne Readvance south of Glens Falls, New York. Valley-parallel striations across the area indicate strong topographic control on ice flow as the ice sheet thinned.

  12. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy.

    PubMed

    Fu, Qinyi; Martin, Benjamin L; Matus, David Q; Gao, Liang

    2016-01-01

    Despite the progress made in selective plane illumination microscopy, high-resolution 3D live imaging of multicellular specimens remains challenging. Tiling light-sheet selective plane illumination microscopy (TLS-SPIM) with real-time light-sheet optimization was developed to respond to the challenge. It improves the 3D imaging ability of SPIM in resolving complex structures and optimizes SPIM live imaging performance by using a real-time adjustable tiling light sheet and creating a flexible compromise between spatial and temporal resolution. We demonstrate the 3D live imaging ability of TLS-SPIM by imaging cellular and subcellular behaviours in live C. elegans and zebrafish embryos, and show how TLS-SPIM can facilitate cell biology research in multicellular specimens by studying left-right symmetry breaking behaviour of C. elegans embryos. PMID:27004937

  13. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy

    PubMed Central

    Fu, Qinyi; Martin, Benjamin L.; Matus, David Q.; Gao, Liang

    2016-01-01

    Despite the progress made in selective plane illumination microscopy, high-resolution 3D live imaging of multicellular specimens remains challenging. Tiling light-sheet selective plane illumination microscopy (TLS-SPIM) with real-time light-sheet optimization was developed to respond to the challenge. It improves the 3D imaging ability of SPIM in resolving complex structures and optimizes SPIM live imaging performance by using a real-time adjustable tiling light sheet and creating a flexible compromise between spatial and temporal resolution. We demonstrate the 3D live imaging ability of TLS-SPIM by imaging cellular and subcellular behaviours in live C. elegans and zebrafish embryos, and show how TLS-SPIM can facilitate cell biology research in multicellular specimens by studying left-right symmetry breaking behaviour of C. elegans embryos. PMID:27004937

  14. Seasonal Greenland Ice Sheet ice flow variations in regions of differing bed and surface topography

    NASA Astrophysics Data System (ADS)

    Sole, A. J.; Livingstone, S. J.; Rippin, D. M.; Hill, J.; McMillan, M.; Quincey, D. J.

    2015-12-01

    The contribution of the Greenland Ice Sheet (GrIS) to future sea-level rise is uncertain. Observations reveal the important role of basal water in controlling ice-flow to the ice sheet margin. In Greenland, drainage of large volumes of surface meltwater to the ice sheet bed through moulins and hydrofracture beneath surface lakes dominates the subglacial hydrological system and provides an efficient means of moving mass and heat through the ice sheet. Ice surface and bed topography influence where meltwater can access the bed, and the nature of its subsequent flow beneath the ice. However, no systematic investigation into the influence of topographic variability on Greenland hydrology and dynamics exists. Thus, physical processes controlling storage and drainage of surface and basal meltwater, and the way these affect ice flow are not comprehensively understood. This presents a critical obstacle in efforts to predict the future evolution of the GrIS. Here we present high-resolution satellite mapping of the ice-surface drainage network (e.g. lakes, channels and moulins) and measurements of seasonal variations in ice flow in south west Greenland. The region is comprised of three distinct subglacial terrains which vary in terms of the amplitude and wavelength and thus the degree to which basal topography is reflected in the ice sheet surface. We find that the distribution of surface hydrological features is related to the transfer of bed topography to the ice sheet surface. For example, in areas of thinner ice and high bed relief, moulins occur more frequently and are more uniformly dispersed, indicating a more distributed influx of surface-derived meltwater to the ice sheet bed. We investigate the implications of such spatial variations in surface hydrology on seasonal ice flow rates.

  15. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  16. Thin current sheets caused by plasma flow gradients in space plasma

    NASA Astrophysics Data System (ADS)

    Nickeler, D.; Wiegelmann, T.

    2011-12-01

    To understand complex space plasma systems like the solar wind-magnetosphere coupling, we need to have a good knowledge of the slowly evolving equilibrium state. The slow change of external constraints on the system (for example boundary conditions or other external parameters) lead in many cases to the formation of current sheets. These current sheets can trigger micro-instabilities, which cause resistivity on fluid scales. Consequently resistive instabilities like magnetic reconnection can occur and the systems evolves dynamically. Therefore such a picture of quasi-magneto-hydro-static changes can explain the quasy-static phase of many space plasma before an eruption occurs. Within this work we extend the theory by the inclusion of a nonlinear stationary plasma flows. Our analysis shows that stationary plasma flows with strong flow gradients (for example the solar wind magnetosphere coupling) can be responsible for the existence or generation of current sheets.

  17. Sheet flow and suspended sediment due to wave groups in a large wave flume

    USGS Publications Warehouse

    Dohmen-Janssen, C. M.; Hanes, D.M.

    2005-01-01

    A series of sand bed experiments was carried out in the Large Wave Flume in Hannover, Germany as a component of the SISTEX99 experiment. The experiments focussed on the dynamic sediment response due to wave group forcing over a flat sand bed in order to improve understanding of cross-shore sediment transport mechanisms and determine sediment concentrations, fluxes and net transport rates under these conditions. Sediment concentrations were measured within the sheet flow layer (thickness in the order of 10 grain diameters) and in the suspension region (thickness in the order of centimetres). Within the sheet flow layer, the concentrations are highly coherent with the instantaneous near-bed velocities due to each wave within the wave group. However, in the suspension layer concentrations respond much more slowly to changes in near-bed velocity. At several centimetres above the bed, the suspended sediment concentrations vary on the time scale of the wave group, with a time delay relative to the peak wave within the wave group. The thickness of the sheet flow changes with time. It is strongly coherent with the wave forcing, and is not influenced by the history or sequence of the waves within the group. The velocity of the sediment was also measured within the sheet flow layer some of the time (during the larger wave crests of the group), and the velocity of the fluid was measured at several cm above the sheet flow layer. The grain velocity and concentration estimates can be combined to estimate the sediment flux. The estimates were found to be consistent with previous measurements under monochromatic waves. Under these conditions, without any significant mean current, the sediment flux within the sheet flow layer was found to greatly exceed the sediment flux in the suspension layer. As a result, net transport rates under wave groups are similar to those under monochromatic waves. ?? 2004 Elsevier Ltd. All rights reserved.

  18. Current sheet flapping motions in the tailward flow of magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Wu, Mingyu; Lu, Quanming; Volwerk, Martin; Vörös, Zoltán.; Ma, Xuanye; Wang, Shui

    2016-08-01

    The feature and origin of current sheet flapping motions are one of most interesting issues of magnetospheric dynamics. In this paper we report the flapping motion of the current sheet detected in the tailward flow of a magnetic reconnection event on 7 February 2009. This flapping motion with frequency about 12 mHz was accompanied by magnetic turbulence. The observations by the tail-elongated fleet of five Time History of Events and Macroscale Interactions during Substorms probes indicate that these flapping oscillations were rather confined within the tailward flow than were due to a global process. This flapping motion could be due to the instability driven by the free energy associated with the ion temperature anisotropy in the tailward flow. Our observations indicate that the flapping motion in the tailward flow could have a different generation mechanism with that in the earthward flow.

  19. Taguchi based fuzzy logic optimization of multiple quality characteristics in laser cutting of Duralumin sheet

    NASA Astrophysics Data System (ADS)

    Pandey, Arun Kumar; Dubey, Avanish Kumar

    2012-03-01

    Capability of laser cutting mainly depends on optical and thermal properties of work material. Highly reflective and thermally conductive Duralumin sheets are difficult-to-laser-cut. Application of Duralumin sheets in aeronautic and automotive industries due to its high strength to weight ratio demand narrow and complex cuts with high geometrical accuracy. The present paper experimentally investigates the laser cutting of Duralumin sheet with the aim to improve geometrical accuracy by simultaneously minimizing the kerf width and kerf deviations at top and bottom sides. A hybrid approach, obtained by combining robust parameter design methodology and Fuzzy logic theory has been applied to compute the fuzzy multi-response performance index. This performance index is further used for multi-objective optimization. The predicted optimum results have been verified by performing the confirmation tests. The confirmation tests show considerable reduction in kerf deviations at top and bottom sides.

  20. Multiphase flow of the late Wisconsinan Cordilleran ice sheet in Western Canada

    USGS Publications Warehouse

    Stumpf, A.J.; Broster, B.E.; Levson, V.M.

    2000-01-01

    In central British Columbia, ice flow during the late Wisconsinan Fraser glaciation (ca. 25-10 ka) occurred in three phases. The ice expansion phase occurred during an extended period when glaciers flowed westward to the Pacific Ocean and east-southeastward onto the Nechako Plateau from ice centers in the Skeena, Hazelton, Coast, and Omineca Mountains. Initially, glacier flow was confined by topography along major valleys, but eventually piedmont and montane glaciers coalesced to form an integrated glacier system, the Cordilleran ice sheet. In the maximum phase, a Cordilleran ice divide developed over the Nechako Plateau to 300 km inland from the Pacific coast. At this time, the surface of the ice sheet extended well above 2500 m above sea level, and flowed westward over the Skeena, Hazelton, and Coast Mountains onto the continental shelf, and eastward across the Rocky Mountains into Alberta. In the late glacial phase, a rapid rise of the equilibrium line caused ice lobes to stagnate in valleys, and restricted accumulation centers to high mountains. Discordant directions in ice flow are attributed to fluctuations of the ice divide representing changes in the location of accumulation centers and ice thickness. Ice centers probably shifted in response to climate, irregular growth in the ice sheet, rapid calving, ice streaming, and drainage of proglacial and subglacial water bodies. Crosscutting ice-flow indicators and preservation of early (valley parallel) flow features in areas exposed to later (cross-valley) glacier erosion indicate that the ice expansion phase was the most erosive and protracted event.

  1. Simulation and optimization of electromagnetohydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Dennis, Brian Harrison

    2000-10-01

    Electromagnetohydrodynamics (EMHD) is the study of flow of electrically conducting incompressible fluids in applied electric and magnetic fields. The goal of this research was to develop and implement a numerical method for the simulation and optimization of steady viscous planar and axisymmetric EMHD flows. A finite element method based on least-squares variational principles, known as least-squares finite element method (LSFEM), was used to discretize the governing system of partial differential equations. The use of LSFEM allows the use of equal order approximation functions for all unknowns and is stable for high Reynolds numbers. In addition, the LSFEM allows the enforcement of the divergence constraint on the magnetic field in a straight forward manner. The associated linear algebraic system is symmetric and positive definite. A new second order theoretical model of the combined interaction of externally applied electric and magnetic fields and viscous incompressible fluid flows was rewritten as a system of first order partial differential equations, making it suitable for the application of LSFEM. The method was implemented in an object-oriented fashion using the C++ programming language. Both h and p-type finite elements were implemented in the software. The p-type finite elements were developed using hierarchical basis functions based on Jacobi polynomials. The hierarchical basis leads to a linear algebraic system with a natural multilevel structure that is well suited to adaptive enrichment. The sparse linear systems were solved by either direct sparse LU factorization or by iterative methods. Two iterative methods were implemented in the software, one based on a Jacobi preconditioned conjugate gradient and the another based a multigrid-like technique that uses the hierarchy of basis functions instead of a hierarchy of finer grids. The software was tested against analytic solutions for Navier-Stokes equations and for channel flows through transverse

  2. Evaluation of alternative flow sheets for upgrade of the Process Waste Treatment Plant

    SciTech Connect

    Robinson, S.M.

    1991-04-01

    Improved chemical precipitation and/or ion-exchange (IX) methods are being developed at the Oak Ridge National Laboratory (ORNL) in an effort to reduce waste generation at the Process Waste Treatment Plant (PWTP). A wide variety of screening tests were performed on potential precipitation techniques and IX materials on a laboratory scale. Two of the more promising flow sheets have been tested on pilot and full scales. The data were modeled to determine the operating conditions and waste generation at plant-scale and used to develop potential flow sheets for use at the PWTP. Each flow sheet was evaluated using future-valve economic analysis and performance ratings (where numerical values were assigned to costs, process flexibility and simplicity, stage of development, waste reduction, environmental and occupational safety, post-processing requirements, and final waste form). The results of this study indicated that several potential flow sheets should be considered for further development, and more detailed cost estimates should be made before a final selection is made for upgrade of the PWTP. 19 refs., 52 figs., 22 tabs.

  3. A Hybrid Vortex Sheet / Point Vortex Model for Unsteady Separated Flows

    NASA Astrophysics Data System (ADS)

    Darakananda, Darwin; Eldredge, Jeff D.; Colonius, Tim; Williams, David R.

    2015-11-01

    The control of separated flow over an airfoil is essential for obtaining lift enhancement, drag reduction, and the overall ability to perform high agility maneuvers. In order to develop reliable flight control systems capable of realizing agile maneuvers, we need a low-order aerodynamics model that can accurately predict the force response of an airfoil to arbitrary disturbances and/or actuation. In the present work, we integrate vortex sheets and variable strength point vortices into a method that is able to capture the formation of coherent vortex structures while remaining computationally tractable for control purposes. The role of the vortex sheet is limited to tracking the dynamics of the shear layer immediately behind the airfoil. When parts of the sheet develop into large scale structures, those sections are replaced by variable strength point vortices. We prevent the vortex sheets from growing indefinitely by truncating the tips of the sheets and transfering their circulation into nearby point vortices whenever the length of sheet exceeds a threshold. We demonstrate the model on a variety of canonical problems, including pitch-up and impulse translation of an airfoil at various angles of attack. Support by the U.S. Air Force Office of Scientific Research (FA9550-14-1-0328) with program manager Dr. Douglas Smith is gratefully acknowledged.

  4. Optimal propulsive flapping in Stokes flows.

    PubMed

    Was, Loïc; Lauga, Eric

    2014-03-01

    Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers.

  5. Optimal propulsive flapping in Stokes flows.

    PubMed

    Was, Loïc; Lauga, Eric

    2014-03-01

    Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers. PMID:24343130

  6. Annular flow optimization: A new integrated approach

    SciTech Connect

    Maglione, R.; Robotti, G.; Romagnoli, R.

    1997-07-01

    During the drilling stage of an oil and gas well the hydraulic circuit of the mud assumes great importance with respect to most of the numerous and various constituting parts (mostly in the annular sections). Each of them has some points to be satisfied in order to guarantee both the safety of the operations and the performance optimization of each of the single elements of the circuit. The most important tasks for the annular part of the drilling hydraulic circuit are the following: (1) Maximum available pressure to the last casing shoe; (2) avoid borehole wall erosions; and (3) guarantee the hole cleaning. A new integrated system considering all the elements of the annular part of the drilling hydraulic circuit and the constraints imposed from each of them has been realized. In this way the family of the flow parameters (mud rheology and pump rate) satisfying simultaneously all the variables of the annular section has been found. Finally two examples regarding a standard and narrow annular section (slim hole) will be reported, showing briefly all the steps of the calculations until reaching the optimum flow parameters family (for that operational condition of drilling) that satisfies simultaneous all the flow parameters limitations imposed by the elements of the annular section circuit.

  7. Equivalent Relaxations of Optimal Power Flow

    SciTech Connect

    Bose, S; Low, SH; Teeraratkul, T; Hassibi, B

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results imply that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.

  8. Opposed flow flame spread over an array of thin solid fuel sheets in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Malhotra, Vinayak; Kumar, Chenthil; Kumar, Amit

    2013-10-01

    In this work a numerical study has been carried out to gain physical insight into the phenomena of opposed flow flame spread over an array of thin solid fuel sheets in a microgravity environment. The two-dimensional (2D) simulations show that the flame spread rates for the multiple-fuel configuration are higher than those for the flame spreading over a single fuel sheet. This is due to reduced radiation losses from the flame and increased heat feedback to the solid fuel. The flame spread rate exhibits a non-monotonic variation with decrease in the interspace distance between the fuel sheets. Higher radiation heat feedback primarily as gas/flame radiation was found to be responsible for the increase in the flame spread rate with the reduction of the interspace distance. It was noted that as the interspace distance between the fuel sheets was reduced below a certain value, no steady solution could be obtained. However, at very small interspace distances, steady state spread rates were obtained. Here, due to oxygen starvation the flame spread rate decreased and eventually at some interspace distance the flame extinguished. With fuel emittance (equal to absorptance) reduced to '0' the flame spread rate was nearly independent of the interspace distance, except at very small distances where the flame spread rate dropped due to oxygen starvation. A flame extinction plot with the extinction oxygen level was constructed for the multiple-fuel configuration at various interspace distances. The default fuel with an emittance of 0.92 was found to be more flammable in the multiple-fuel configuration than in a single fuel sheet configuration. For a fuel emittance equal to zero, the extinction oxygen limit decreases for both the single and the multiple fuel sheet configurations. However, the two flammability curves cross over at a certain fuel separation distance. The multiple-fuel configurations become less flammable compared to the single fuel sheet configuration below a certain

  9. Effects of Texture on Mechanical Properties of Aluminum Alloy Sheets and Texture Optimization Strategy

    SciTech Connect

    Kuroda, Mitsutoshi

    2005-08-05

    It is known that the crystallographic texture affects very much the mechanical properties of sheet metals. In this paper, rolled aluminum alloy sheets are considered as target materials. Typical texture components usually observed in rolled aluminum alloy sheets are the deformation textures of Cu, Brass and S, and the recrystallization textures of Cube and Goss. First, the effects of these components on mechanical properties, such as variations of Lankford's r-value for different tensile directions and forming limit strains, are investigated using full crystal plasticity analyses. In general, the most appropriate volume fractions of the texture components for a user-defined particular requirement, e.g. the smallest possible in-plane anisotropy, or the largest possible formability for a particular strain path, are unknown. Then, a texture optimization strategy is considered, i.e. a genetic algorithm is adopted to solve texture optimization problems. We describe a genetic algorithm with real-valued genes, which is called the real-coded GA. This algorithm is used to search for optimum textures that satisfy the requirements of smallest possible in-plane anisotropy and largest possible formability in biaxial stretch, as examples, to verify the efficiency of the method.

  10. An analysis of the acoustic energy in a flow duct with a vortex sheet

    NASA Astrophysics Data System (ADS)

    Boij, Susann

    2009-03-01

    Modelling the acoustic scattering and absorption at an area expansion in a flow duct requires the incorporation of the flow-acoustic interaction. One way to quantify the interaction is to study the energy in the incident and the scattered field respectively. If the interaction is strong, energy may be transferred between the acoustic and the main flow field. In particular, shear layers, that may be the result of the flow separation, are unstable to low frequency perturbations such as acoustic waves. The vortex sheet model is an analytical linear acoustic model, developed to study scattering of acoustic waves in duct with sharp edges including the interaction with primarily the separated flows that arise at sharp edges and corners. In the model the flow field at an area expansion in a duct is described as a jet issuing into the larger part of the duct. In this paper, the flow-acoustic interaction is described in terms of energy flow. The linear convective wave equation is solved for a two-dimensional, rectangular flow duct geometry. The resulting modes are classified as "hydrodynamic" and "acoustic" when separating the acoustic energy from the part of the energy arising from the steady flow field. In the downstream duct, the set of modes for this complex flow field are not orthogonal. For small Strouhal numbers, the plane wave and the two hydrodynamic waves are all plane, although propagating with different wave speeds. As the Strouhal numbers increases, the hydrodynamic modes changes to get a shape where the amplitude is concentrated near the vortex sheet. In an intermediate Strouhal number region, the mode shape of the first higher order mode is very similar to the damped hydrodynamic mode. A physical interpretation of this is that we have a strong coupling between the flow field and the acoustic field when the modes are non-orthogonal. Energy concepts for this duct configuration and mean flow profile are introduced. The energy is formulated such that the vortex

  11. Shape optimization of a sheet swimming over a thin liquid layer

    NASA Astrophysics Data System (ADS)

    Wilkening, Jon; Hosoi, A. E.

    Motivated by the propulsion mechanisms adopted by gastropods, annelids and other invertebrates, we consider shape optimization of a flexible sheet that moves by propagating deformation waves along its body. The self-propelled sheet is separated from a rigid substrate by a thin layer of viscous Newtonian fluid. We use a lubrication approximation to model the dynamics and derive the relevant Euler-Lagrange equations to simultaneously optimize swimming speed, efficiency and fluid loss. We find that as the parameters controlling these quantities approach critical values, the optimal solutions become singular in a self-similar fashion and sometimes leave the realm of validity of the lubrication model. We explore these singular limits by computing higher-order corrections to the zeroth order theory and find that wave profiles that develop cusp-like singularities are appropriately penalized, yielding non-singular optimal solutions. These corrections are themselves validated by comparison with finite element solutions of the full Stokes equations, and, to the extent possible, using recent rigorous a priori error bounds.

  12. Shape optimization of a sheet swimming over a thin liquid layer

    SciTech Connect

    Wilkening, J.; Hosoi, A.E.

    2008-12-10

    Motivated by the propulsion mechanisms adopted by gastropods, annelids and other invertebrates, we consider shape optimization of a flexible sheet that moves by propagating deformation waves along its body. The self-propelled sheet is separated from a rigid substrate by a thin layer of viscous Newtonian fluid. We use a lubrication approximation to model the dynamics and derive the relevant Euler-Lagrange equations to simultaneously optimize swimming speed, efficiency and fluid loss. We find that as the parameters controlling these quantities approach critical values, the optimal solutions become singular in a self-similar fashion and sometimes leave the realm of validity of the lubrication model. We explore these singular limits by computing higher order corrections to the zeroth order theory and find that wave profiles that develop cusp-like singularities are appropriately penalized, yielding non-singular optimal solutions. These corrections are themselves validated by comparison with finite element solutions of the full Stokes equations, and, to the extent possible, using recent rigorous a-priori error bounds.

  13. Optimal power flow using sequential quadratic programming

    NASA Astrophysics Data System (ADS)

    Nejdawi, Imad M.

    1999-11-01

    Optimal power flow (OPF) is an operational as well as a planning tool used by electric utilities to help them operate their network in the most economic and secure mode of operation. Various algorithms to solve the OPF problem evolved over the past three decades; linear programming (LP) techniques were among the major mathematical programming methods utilized. The linear models of the objective function and the linearization of the constraints are the main features of these techniques. The main advantages of the LP approach are simplicity and speed. Nonlinear programming techniques have been applied to OPF solution. The major drawback is the expensive solution of large sparse systems of equations. This research is concerned with the development of a new OPF solution algorithm using sequential quadratic programming (SQP). In this formulation, a small dense system the size of which is equal to the number of control variables is solved in an inner loop. The Jacobian and Hessian terms are calculated in an outer loop. The total number of outer loop iterations is comparable to those in an ordinary load flow in contrast to 20--30 iterations in other nonlinear methods. In addition, the total number of floating point operations is less than that encountered in direct methods by two orders of magnitude. We also model dispatch over a twenty four-hour time horizon in a transmission constrained power network that includes price-responsive loads where large energy customers can operate their loads in time intervals with lowest spot prices.

  14. Stability analysis of stagnation-point flow over a stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Awaludin, I. S.; Weidman, P. D.; Ishak, Anuar

    2016-04-01

    The stagnation point flow over a linearly stretching or shrinking sheet is considered in the present study. The transformed ordinary differential equations are solved numerically. Dual solutions are possible for the shrinking case, while the solution is unique for the stretching case. For the shrinking case, a linear temporal stability analysis is performed to determine which one of the solution is stable and thus physically reliable.

  15. Heterogeneous Heat Flow and Groundwater Effects on East Antarctic Ice Sheet Dynamics

    NASA Astrophysics Data System (ADS)

    Gooch, B. T.; Soderlund, K. M.; Young, D. A.; Blankenship, D. D.

    2015-12-01

    We present the results numerical models describing the potential contributions groundwater and heterogeneous heat sources might have on ice dynamics. A two-phase, 1D hydrothermal model demonstrates the importance of groundwater flow in heat flux advection near the ice-bed interface. Typical, conservative vertical groundwater volume fluxes on the order of +/- 1-10 mm/yr can alter vertical heat flux by +/- 50-500 mW/m2 that could produce considerable volumes of meltwater depending on basin geometry and geothermal heat production. A 1D hydromechanical model demonstrates that during ice advance groundwater is mainly recharged into saturated sedimentary aquifers and during retreat groundwater discharges into the ice-bed interface, potentially contributing to subglacial water budgets on the order of 0.1-1 mm/yr during ice retreat. A map of most-likely elevated heat production provinces, estimated sedimentary basin depths, and radar-derived bed roughness are compared together to delineate areas of greatest potential to ice sheet instability in East Antarctica. Finally, a 2D numerical model of crustal fluid and heat flow typical to recently estimated sedimentary basins under the East Antarctic Ice Sheet is coupled to a 2.5D Full Stokes ice sheet model (with simple basal hydrology) to test for the sensitivity of hydrodynamic processes on ice sheet dynamics. Preliminary results show that the enhanced fluid flow can dramatically alter the basal heating of the ice and its temperature profile, as well as, the sliding rate, which heavily alter ice dynamics.

  16. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity

  17. Electromagnetic ELF wave intensification associated with fast earthward flows in mid-tail plasma sheet

    NASA Astrophysics Data System (ADS)

    Liang, J.; Ni, B.; Cully, C. M.; Donovan, E. F.; Thorne, R. M.; Angelopoulos, V.

    2012-03-01

    In this study we perform a statistical survey of the extremely-low-frequency wave activities associated with fast earthward flows in the mid-tail central plasma sheet (CPS) based upon THEMIS measurements. We reveal clear trends of increasing wave intensity with flow enhancement over a broad frequency range, from below fLH (lower-hybrid resonant frequency) to above fce (electron gyrofrequency). We mainly investigate two electromagnetic wave modes, the lower-hybrid waves at frequencies below fLH, and the whistler-mode waves in the frequency range fLH < f < fce. The waves at f < fLH dramatically intensify during fast flow intervals, and tend to contain strong electromagnetic components in the high-plasma-beta CPS region, consistent with the theoretical expectation of the lower-hybrid drift instability in the center region of the tail current sheet. ULF waves with very large perpendicular wavenumber might be Doppler-shifted by the flows and also partly contribute to the observed waves in the lower-hybrid frequency range. The fast flow activity substantially increases the occurrence rate and peak magnitude of the electromagnetic waves in the frequency range fLH < f < fce, though they still tend to be short-lived and sporadic in occurrence. We also find that the electron pitch-angle distribution in the mid-tail CPS undergoes a variation from negative anisotropy (perpendicular temperature smaller than parallel temperature) during weak flow intervals, to more or less positive anisotropy (perpendicular temperature larger than parallel temperature) during fast flow intervals. The flow-related electromagnetic whistler-mode wave tends to occur in conjunction with positive electron anisotropy.

  18. Tail reconnection region versus auroral activity inferred from conjugate ARTEMIS plasma sheet flow and auroral observations

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Lyons, L. R.; Xing, X.; Angelopoulos, V.; Donovan, E. F.; Mende, S. B.; Bonnell, J. W.; Auster, U.

    2013-09-01

    sheet flow bursts have been suggested to correspond to different types of auroral activity, such as poleward boundary intensifications (PBIs), ensuing auroral streamers, and substorms. The flow-aurora association leads to the important question of identifying the magnetotail source region for the flow bursts and how this region depends on magnetic activity. The present study uses the ARTEMIS spacecraft coordinated with conjugate ground-based auroral imager observations to identify flow bursts beyond 45 RE downtail and corresponding auroral forms. We find that quiet-time flows are directed dominantly earthward with a one-to-one correspondence with PBIs. Flow bursts during the substorm recovery phase and during steady magnetospheric convection (SMC) periods are also directed earthward, and these flows are associated with a series of PBIs/streamers lasting for tens of minutes with similar durations to that of the series of earthward flows. Presubstorm onset flows are also earthward and associated with PBIs/streamers. The earthward flows during those magnetic conditions suggest that the flow bursts, which lead to PBIs and streamers, originate from further downtail of ARTEMIS, possibly from the distant-tail neutral line (DNL) or tailward-retreated near-Earth neutral line (NENL) rather than from the nominal NENL location in the midtail. We find that tailward flows are limited primarily to the substorm expansion phase. They continue throughout the period of auroral poleward expansion, indicating that the expansion-phase flows originate from the NENL and that NENL activity is closely related to the auroral expansion of the substorm expansion phase.

  19. Plug Flow, Fracture, and Fast Emplacement of a Magma Sheet, Trachyte Mesa Laccolith, Henry Mts., USA.

    NASA Astrophysics Data System (ADS)

    Morgan, S. S.; Serwatowski, T.; Goodwin, L.; Tikoff, B.; Horsman, E.

    2008-12-01

    'blebs' which overgrow and are adjacent to smaller euhedral microphenocrysts of plagioclase (An30). Cathodoluminescence images reveal two generations of quartz: older quartz blebs are cut by younger quartz microveins emanating from the cataclastic plagioclase. These microveins are the only feature to crosscut the matrix. We interpret the magnetic fabric, crystal percentage, and electron microscope data to indicate that plug flow (high shear strains near the margins with translation of the interior of the magma sheet) occurred. We infer that strain rate was high within the narrow shear zone at the top of the magma sheet, allowing the magma in the zone to cross the glass transition. In this scenario, both phenocrysts and glass matrix fracture. After the sheet was emplaced and deformation ceased, the magma returned to the liquid state and subsequently crystallized, leaving no trace of fracturing in the matrix.

  20. Numerical and Series Solutions for Stagnation-Point Flow of Nanofluid over an Exponentially Stretching Sheet

    PubMed Central

    Mustafa, Meraj; Farooq, Muhammad A.; Hayat, Tasawar; Alsaedi, Ahmed

    2013-01-01

    This investigation is concerned with the stagnation-point flow of nanofluid past an exponentially stretching sheet. The presence of Brownian motion and thermophoretic effects yields a coupled nonlinear boundary-value problem (BVP). Similarity transformations are invoked to reduce the partial differential equations into ordinary ones. Local similarity solutions are obtained by homotopy analysis method (HAM), which enables us to investigate the effects of parameters at a fixed location above the sheet. The numerical solutions are also derived using the built-in solver bvp4c of the software MATLAB. The results indicate that temperature and the thermal boundary layer thickness appreciably increase when the Brownian motion and thermophoresis effects are strengthened. Moreover the nanoparticles volume fraction is found to increase when the thermophoretic effect intensifies. PMID:23671576

  1. Numerical and series solutions for stagnation-point flow of nanofluid over an exponentially stretching sheet.

    PubMed

    Mustafa, Meraj; Farooq, Muhammad A; Hayat, Tasawar; Alsaedi, Ahmed

    2013-01-01

    This investigation is concerned with the stagnation-point flow of nanofluid past an exponentially stretching sheet. The presence of Brownian motion and thermophoretic effects yields a coupled nonlinear boundary-value problem (BVP). Similarity transformations are invoked to reduce the partial differential equations into ordinary ones. Local similarity solutions are obtained by homotopy analysis method (HAM), which enables us to investigate the effects of parameters at a fixed location above the sheet. The numerical solutions are also derived using the built-in solver bvp4c of the software MATLAB. The results indicate that temperature and the thermal boundary layer thickness appreciably increase when the Brownian motion and thermophoresis effects are strengthened. Moreover the nanoparticles volume fraction is found to increase when the thermophoretic effect intensifies.

  2. Boundary layer flow past a stretching sheet with fluid-particle suspension and convective boundary condition

    NASA Astrophysics Data System (ADS)

    Ramesh, G. K.; Gireesha, B. J.; Gorla, Rama Subba Reddy

    2015-08-01

    The steady two-dimensional boundary layer flow of a viscous dusty fluid over a stretching sheet with the bottom surface of the sheet heated by convection from a hot fluid is considered. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg fourth-fifth order method (RKF45 Method) with the help of MAPLE. The effects of convective Biot number, fluid particle interaction parameter, and Prandtl number on the heat transfer characteristics are discussed. It is found that the temperature of both fluid and dust phase increases with increasing Biot number. A comparative study between the previous published and present results in a limiting sense is found in an excellent agreement.

  3. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization.

    PubMed

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method. PMID:27127499

  4. Development of a Prediction Model Based on RBF Neural Network for Sheet Metal Fixture Locating Layout Design and Optimization

    PubMed Central

    Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan

    2016-01-01

    Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method. PMID:27127499

  5. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    SciTech Connect

    Khodabakhshi, F.; Kazeminezhad, M. Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

  6. Plasma flow and magnetic field characteristics near the midtail neutral sheet

    NASA Technical Reports Server (NTRS)

    Nakamura, R.; Baker, D. N.; Fairfield, D. H.; Mitchell, D. G.; Mcpherron, R. L.; Hones, E. W., Jr.

    1994-01-01

    Using IMP 6, 7, and 8 magnetic field and plasma data, we have determined statistical occurrance properties of bulk flow and magnetic field orientation near the midtail neutral sheet. Characteristics of bulk plasma flow and magnetic field significantly change according to the radial distance down the tail. High-speed flow events (v greater than 300 km/s) are essentially restricted to the region tailward of X = -2.5 R(sub E) and are predominatly sunward or tailward. The low-speed flows were nearly equally likely to be in any direction, with the occurace rate of dustward and sunward flow being larger than that of tailward and dawnward flow. Dustward flow occurrence is highest in the region Earthward of X = -2.5 R(sub E), while sunward flow occurrence is highest in the region tailward of X = -2.5 R(sub E). The significance of the dawn-to-dust flow in the near-Earth region obtained in our study supports the idea that there exists a very effective mechanism to accelerate ions in the dawn-to-dust direction and hence the relief of pressure buildup in the near-Earth region. During high-speed flow events the relationship between B(sub Z) polarity and plasma flow direction is largely consistent with that expected from the magnetic reconnenection processes associted with substorms. There are also significant numbers of negative B9sub Z) events that are not associated with tailward flow. Mechanism other than substorm neutral line should therefore also taken into account to explain general B(sub Z) polarity in the midtail region.

  7. A test bed for investigating the flow of outlet glaciers and ice streams embedded in the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Calov, Reinhard; Rückamp, Martin; Schlegel, Rebecca; Ganopolski, Andrey; Humbert, Angelika

    2016-04-01

    Here, we define a test bed for fast flow regions and its vicinity embedded in an ice sheet. This test bed is designed for outlet glaciers and ice streams of the Greenland ice sheet. It consists of a fine resolution part with a manufactured basal trough over which the professional software COMSOL (Multiphysics Modeling Software) operates as a full-Stokes model. Results by COMSOL are compared with coarse resolution simulations with the ice-sheet model SICOPOLIS operating in shallow-ice-approximation mode and using parameterizations of the fast flow effects. For simplification, in this preliminary approach, both models run in isothermal mode. Definition of surface mass balance follows the EISMINT intercomparison project with parameters adapted to the Greenland ice sheet. In particular, we inspect with this test bed upstream and lateral flow effects of ice streams and outlet glaciers. We present first simulations with this approach, although presentation of the test bed itself is the main emphasis of this presentation.

  8. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet

    PubMed Central

    Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-01-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier. PMID:27126274

  9. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet.

    PubMed

    Bons, Paul D; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C; Binder, Tobias; Eisen, Olaf; Jessell, Mark W; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-01-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier. PMID:27126274

  10. Flow Over AN Unsteady Shrinking Sheet with Suction in a Nanofluid

    NASA Astrophysics Data System (ADS)

    Rohni, Azizah Mohd; Ahmad, Syakila; Ismail, Ahmad Izani Md.; Pop, Ioan

    The unsteady flow over a continuously shrinking sheet with wall mass suction in a nanofluid is numerically studied. The governing boundary layer equations are transformed into a set of nonlinear ordinary differential equations by using similarity transformation. The resulting similarity equations are then solved by the shooting method for three types of nanofluid: copper-water, alumina-water and titania-water to investigate the effect of nanoparticle volume fraction parameter ɸ to the flow in nanofluid. The skin friction coefficient and velocity profiles are presented and results show that dual solutions exist for a certain range of unsteadiness parameter A. It is also found that the nanoparticle volume fraction parameter ɸ and types of nanofluid play an important role to significantly determine the flow behaviour.

  11. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Jansen, Daniela; Mundel, Felicitas; Bauer, Catherine C.; Binder, Tobias; Eisen, Olaf; Jessell, Mark W.; Llorens, Maria-Gema; Steinbach, Florian; Steinhage, Daniel; Weikusat, Ilka

    2016-04-01

    The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new conceptual model for the formation process, we analysed the radar data at the onset of the Petermann Glacier, North Greenland, and created a three-dimensional model of several distinct stratigraphic layers. We demonstrate that the dominant structures are cylindrical folds sub-parallel to the ice flow. By numerical modelling, we show that these folds can be formed by lateral compression of mechanically anisotropic ice, while a general viscosity contrast between layers would not lead to folding for the same boundary conditions. We conclude that the folds primarily form by converging flow as the mechanically anisotropic ice is channelled towards the glacier.

  12. A sensitivity equation approach to shape optimization in fluid flows

    NASA Technical Reports Server (NTRS)

    Borggaard, Jeff; Burns, John

    1994-01-01

    A sensitivity equation method to shape optimization problems is applied. An algorithm is developed and tested on a problem of designing optimal forebody simulators for a 2D, inviscid supersonic flow. The algorithm uses a BFGS/Trust Region optimization scheme with sensitivities computed by numerically approximating the linear partial differential equations that determine the flow sensitivities. Numerical examples are presented to illustrate the method.

  13. Flow and heat transfer of a nanofluid over a hyperbolically stretching sheet

    NASA Astrophysics Data System (ADS)

    A., Ahmad; Asghar, S.; Alsaedi, A.

    2014-07-01

    This article explores the boundary layer flow and heat transfer of a viscous nanofluid bounded by a hyperbolically stretching sheet. Effects of Brownian and thermophoretic diffusions on heat transfer and concentration of nanoparticles are given due attention. The resulting nonlinear problems are computed for analytic and numerical solutions. The effects of Brownian motion and thermophoretic property are found to increase the temperature of the medium and reduce the heat transfer rate. The thermophoretic property thus enriches the concentration while the Brownian motion reduces the concentration of the nanoparticles in the fluid. Opposite effects of these properties are observed on the Sherwood number.

  14. Stagnation-point flow and heat transfer over an exponentially shrinking sheet: A stability analysis

    NASA Astrophysics Data System (ADS)

    Ismail, Nurul Syuhada; Arifin, Norihan Md.; Bachok, Norfifah; Mahiddin, Norhasimah

    2016-06-01

    Numerical solutions for the stagnation-point flow and heat transfer over an exponentially shrinking sheet have been investigated. The governing boundary layer equations are transformed into an ordinary differential equation using a non-similar transformation. By using the bvp4c solver in MATLAB, the results of the equations can be solved numerically. Numerical results indicate that in certain parameter, the non-unique solutions for the velocity and the temperature do exist. A linear stability analysis shows that only one solution is linearly stable otherwise is unstable. Then, the stability analysis is performed to identify which solution is stable between the two non-unique solutions.

  15. Recent advances in applying Free Vortex Sheet theory to the estimation of vortex flow aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Schoonover, W. E., Jr.; Frink, N. T.

    1982-01-01

    Free Vortex Sheet theory has been applied to a variety of configurations for the estimation of three-dimensional pressure distributions for wings developing separation-induced leading-edge vortex flows. Correlations with experiment show reasonable estimates for the effects of compressibility, side-slip, side edges, swept-wing blast-induced loads, and leading-edge vortex flaps. Theoretical studies expand upon these correlations to show general aerodynamic trends. Consideration is also given to simple, yet effective techniques which expedite convergence and therefore reduce computational expense.

  16. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    PubMed

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  17. Forced Convective Heat Transfer in Boundary Layer Flow of Sisko Fluid over a Nonlinear Stretching Sheet

    PubMed Central

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden’s method in the domain. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature. PMID:24949738

  18. The Effect of Electric Current and Strain Rate on Serrated Flow of Sheet Aluminum Alloy 5754

    NASA Astrophysics Data System (ADS)

    Zhao, Kunmin; Fan, Rong; Wang, Limin

    2016-03-01

    Electrically assisted tensile tests are carried out on sheet aluminum alloy AA5754 at electric current densities ranging from 0 to 30.4 A/mm2 and strain rates ranging from 10-3 to 10-1 s-1. The strain rate sensitivity and the serrated flow behavior are investigated in accordance with dynamic strain aging mechanism. The strain rate sensitivity changes from negative to positive and keeps increasing with current density. The tendency toward serrated flow is characterized by the onset of Portevin-Le Chatelier (PLC) instabilities, which are influenced by strain rate, temperature, and electric current. The evolutions of three types of serrated flow are observed and analyzed with respect to strain rate and current density. The magnitude of serration varies with strain rate and current density. The serrated flow can be suppressed by a high strain rate, a high temperature, or a strong electric current. The threshold values of these parameters are determined and discussed. Conventional oven-heated tensile tests are conducted to distinguish the electroplasticity. The flow stress reduces more in electrically assisted tension compared to oven-heated tension at the same temperature level. The electric current helps suppress the serrated flow at the similar temperature level of oven-heating.

  19. The Extent of Channelized Basal Water Flow Under the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Downs, J.; Johnson, J. V.; Harper, J. T.

    2015-12-01

    Glacial ice flows due to a combination of deformation and basal sliding, with sliding accounting for most of the fastest ice flow. Basal sliding is controlled by the transport of water at the glacier's bed, which can be accomplished through both high pressure, low discharge, distributed flow, or low pressure, high discharge, channelized flow. Higher pressures are generally associated with more complete decoupling of a glacier from its bed and faster flow. As the intensity of summer melt in Greenland has increased, our poor understanding of the drainage network's discharge capacity and its coupling to sliding has generated fundamental questions, such as: will larger fluxes of liquid water promote or inhibit basal sliding? To investigate this question we have implemented a model of distributed and channelized flow developed by Werder et. al 2013. The sensitivity of the modeled channel network to basal and surface geometry, melt rate, boundary conditions, and other parameters is examined in a sequence of experiments using synthetic geometries. Expanding on these experiments, we run the model with realistic surface and bedrock data from Issunguata Sermia in Western Central Greenland. These experiments benefit from a wealth of in-situ data, including observations of basal water pressure. Our results suggest that the development of large channels is limited to the margins of the ice sheet, and that higher pressures continue to prevail in the interior.

  20. Mineral and chemical variations within an ash-flow sheet from Aso caldera, Southwestern Japan

    USGS Publications Warehouse

    Lipman, P.W.

    1967-01-01

    Although products of individual volcanic eruptions, especially voluminous ash-flow eruptions, have been considered among the best available samples of natural magmas, detailed petrographic and chemical study indicates that bulk compositions of unaltered Pleistocene ash-flow tuffs from Aso caldera, Japan, deviate significantly from original magmatic compositions. The last major ash-flow sheet from Aso caldera is as much as 150 meters thick and shows a general vertical compositional change from phenocryst-poor rhyodacite upward into phenocryst-rich trachyandesite; this change apparently reflects in inverse order a compositionally zoned magma chamber in which more silicic magma overlay more mafic magma. Details of these magmatic variations were obscured, however, by: (1) mixing of compositionally distinct batches of magma during upwelling in the vent, as indicated by layering and other heterogeneities within single pumice lumps; (2) mixing of particulate fragments-pumice lumps, ash, and phenocrysts-of varied compositions during emplacement, with the result that separate pumice lenses from a single small outcrop may have a compositional range nearly as great as the bulk-rook variation of the entire sheet; (3) density sorting of phenocrysts and ash during eruption and emplacement, resulting in systematic modal variations with distance from the caldera; (4) addition of xenocrysts, resulting in significant contamination and modification of proportions of crystals in the tuffs; and (5) ground-water leaching of glassy fractions during hydration after cooling. Similar complexities characterize ash-flow tuffs under study in southwestern Nevada and in the San Juan Mountains, Colorado, and probably are widespread in other ash-flow fields as well. Caution and careful planning are required in study of the magmatic chemistry and phenocryst mineralogy of these rocks. ?? 1967 Springer-Verlag.

  1. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    NASA Technical Reports Server (NTRS)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  2. Flow of a power-law nanofluid past a vertical stretching sheet with a convective boundary condition

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Hussain, M.; Shehzad, S. A.; Alsaedi, A.

    2016-01-01

    A boundary layer flow of a non-Newtonian fluid in the presence of nanoparticles is examined. The flow is caused by a vertical stretching sheet. Convergence of the solution obtained is checked. The values of velocity, temperature, skin friction, and Nusselt number in the boundary layer are obtained.

  3. Optimization of pneumatic sheet extrusion of whole wheat flour poory dough using response surface methodology.

    PubMed

    Murthy, K Venkatesh; Sudha, M L; Ravi, R; Raghavarao, K S M S

    2015-07-01

    Pneumatic extrusion of whole wheat flour dough is a challenge in the preparation of Poory. In the present study, the pneumatic extrusion process variables (pneumatic pressure, rate of extrusion) and quality of deep fried product (oil uptake, frying time, puffed height) was evaluated to get Poory of maximum overall sensory quality, minimum shear and minimum oil uptake. These parameters depend on the moisture content of wheat dough. Response surface methodology was demonstrated to be an efficient tool for the optimization of process parameters of pneumatic extrusion. The results indicated that extrusion pressure ranging from 3 ~ 6 × 10(5) Pa for the whole wheat flour dough with added moisture of 56 ~ 60 % was found to give a uniform rate of extruded sheet. It was observed that submerged frying time for the extruded dough sheet was in the range of 35 ~ 40 s, with the temperature of the vegetable oil to be in the range of 180 ~ 185 °C. Oil uptake during frying was about 12 ± 1 % and the textural shear force was found to be 9.9 N with an overall sensory score of 7.2 ± 0.5 on nine point scale. The experimental errors for all attributes were non-significant (p > 0.05) and thus optimum variables predicted by the model are found suitable.

  4. Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer

    NASA Astrophysics Data System (ADS)

    Krishnendu, Bhattacharyya; Tasawar, Hayat; Ahmed, Alsaedi

    2013-02-01

    In this analysis, the magnetohydrodynamic boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet in the presence of wall mass transfer is studied. Using similarity transformations, the governing equations are converted to an ordinary differential equation and then solved analytically. The introduction of a magnetic field changes the behavior of the entire flow dynamics in the shrinking sheet case and also has a major impact in the stretching sheet case. The similarity solution is always unique in the stretching case, and in the shrinking case the solution shows dual nature for certain values of the parameters. For stronger magnetic field, the similarity solution for the shrinking sheet case becomes unique.

  5. Inflation rates, rifts, and bands in a pāhoehoe sheet flow

    USGS Publications Warehouse

    Hoblitt, Richard P.; Orr, Tim R.; Heliker, Christina; Denlinger, Roger P.; Hon, Ken; Cervelli, Peter F.

    2012-01-01

    The margins of sheet flows—pāhoehoe lavas emplaced on surfaces sloping Inflation and rift-band formation is probably cyclic, because the pattern we observed suggests episodic or crude cyclic behavior. Furthermore, some inflation rifts contain numerous bands whose spacing and general appearances are remarkably similar. We propose a conceptual model wherein the inferred cyclicity is due to the competition between the fluid pressure in the flow's liquid core and the tensile strength of the viscoelastic layer where it is weakest—in inflation rifts. The viscoelastic layer consists of lava that has cooled to temperatures between 800 and 1070 °C. This layer is the key parameter in our model because, in its absence, rift banding and stepwise changes in the flow height would not occur.

  6. A glass fiber sheet-based electroosmotic lateral flow immunoassay for point-of-care testing.

    PubMed

    Oyama, Yuriko; Osaki, Toshihisa; Kamiya, Koki; Kawano, Ryuji; Honjoh, Tsutomu; Shibata, Haruki; Ide, Toru; Takeuchi, Shoji

    2012-12-21

    We have developed a quantitative immunoassay chip targeting point-of-care testing. To implement a lateral flow immunoassay, a glass fiber sheet was chosen as the material for the microfluidic channel in which the negative charge on the fiber surfaces efficiently generates the electroosmotic flow (EOF). The EOF, in turn, allows controllable bound/free separation of antigen/antibody interactions on the chip and enables precise determination of the antigen concentration. In addition, the defined size of the porous matrix was suitable for the filtration of undesired large particles. We confirmed the linear relationship between the concentration of analyte and the resulting fluorescence intensity from the immunoassay of two model analytes, C-reactive protein (CRP) and insulin, demonstrating that analyte concentration was quantitatively determined within the developed chip in 20 min. The limits of detection were 8.5 ng mL(-1) and 17 ng mL(-1) for CRP and insulin, respectively. PMID:23114383

  7. Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model.

    PubMed

    Zaimi, Khairy; Ishak, Anuar; Pop, Ioan

    2014-01-01

    The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno's nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter. PMID:25365118

  8. Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet

    NASA Astrophysics Data System (ADS)

    Haq, Rizwan; Nadeem, Sohail; Khan, Zafar; Okedayo, Toyin

    2014-12-01

    Current study examines the magnetohydrodynamic (MHD) boundary layer flow of a Casson nanofluid over an exponentially permeable shrinking sheet with convective boundary condition. Moreover, we have considered the suction/injection effects on the wall. By applying the appropriate transformations, system of non-linear partial differential equation along with the boundary conditions are transformed to couple non-linear ordinary differential equations. The resulting systems of non-linear ordinary differential equations are solved numerically using Runge-Kutta method. Numerical results for velocity, temperature and nanoparticle volume concentration are presented through graphs for various values of dimensionless parameters. Effects of parameters for heat transfer at wall and nanoparticle volume concentration are also presented through graphs and tables. At the end, fluid flow behavior is examined through stream lines. Concluding remarks are provided for the whole analysis.

  9. Efficacy of very fast simulated annealing global optimization method for interpretation of self-potential anomaly by different forward formulation over 2D inclined sheet type structure

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Sharma, S. P.

    2012-12-01

    Self-Potential anomaly is an important geophysical technique that measures the electrical potential due natural source of current in the Earth's subsurface. An inclined sheet type model is a very familiar structure associated with mineralization, fault plane, groundwater flow and many other geological features which exhibits self potential anomaly. A number of linearized and global inversion approaches have been developed for the interpretation of SP anomaly over different structures for various purposes. Mathematical expression to compute the forward response over a two-dimensional dipping sheet type structures can be described in three different ways using five variables in each case. Complexities in the inversion using three different forward approaches are different. Interpretation of self-potential anomaly using very fast simulated annealing global optimization has been developed in the present study which yielded a new insight about the uncertainty and equivalence in model parameters. Interpretation of the measured data yields the location of the causative body, depth to the top, extension, dip and quality of the causative body. In the present study, a comparative performance of three different forward approaches in the interpretation of self-potential anomaly is performed to assess the efficacy of the each approach in resolving the possible ambiguity. Even though each forward formulation yields the same forward response but optimization of different sets of variable using different forward problems poses different kinds of ambiguity in the interpretation. Performance of the three approaches in optimization has been compared and it is observed that out of three methods, one approach is best and suitable for this kind of study. Our VFSA approach has been tested on synthetic, noisy and field data for three different methods to show the efficacy and suitability of the best method. It is important to use the forward problem in the optimization that yields the

  10. Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet

    NASA Astrophysics Data System (ADS)

    Krishnendu, Bhattacharyya; Swati, Mukhopadhyay; C. Layek, G.

    2011-09-01

    An analysis is presented for an unsteady boundary layer stagnation-point flow of a Newtonian fluid and the heat transfer towards a stretching sheet taking non-conventional partial slip conditions at the sheet. The self-similar equations are obtained using similarity transformations and solved numerically by the shooting method. Effects of the parameters involved in the equations, especially velocity slip and thermal slip parameters on the velocity and temperature profiles, are analyzed extensively. It is revealed that due to the velocity and thermal slip parameters, the rate of heat transfer from the sheet and the wall skin friction change significantly.

  11. Modeling and experiments for sheet flow transport with bimodal size distributions

    NASA Astrophysics Data System (ADS)

    Thaxton, C.; Holway, K.; Calantoni, J.

    2012-12-01

    The state-of-the-art models for coastal morphodynamics have moved beyond predicting bed elevation changes and begun to estimate the amount of sediment transport by size. The conventional method for predicting these fractional sediment transport rates typically involves dividing the bed into a user-defined number of size classes where traditional bedload transport formulae are computed using a median grain size for each class. Consequently, the conventional method does not resolve the effect of vertical sorting that occurs in the active sediment layer during transport. The challenge lies in quantifying the rate of exchange of sediment from one location to another even when there is zero net sediment transport. Numerical simulations and experimental observations demonstrate that significant vertical sorting of grains by size does occur under oscillatory forcing conditions at or near sheet flow, even when gradients in net transport rates are zero. We have developed a cellular automaton model that combines formulae for net sediment transport rates with a simple power law to also predict the transport rates of the individual size fractions in a bimodal mixture. The power law was previously developed using a simulation technique that explicitly captures the effect of vertical sorting of grains by size within the active layer. We performed laboratory experiments for sheet flow transport with bimodal distributions of sediments and used video observations to quantify the evolution of sediments by size on the surface of the bed. Results from our cellular automaton model compare favorably with the laboratory experiments.

  12. Australia-East Antarctica geological linkages and ice-sheet flow

    NASA Astrophysics Data System (ADS)

    Aitken, Alan; Ferraccioli, Fausto; Betts, Peter; Young, Duncan; Richter, Tom; Greenbaum, Jamin; Roberts, Jason; Siegert, Martin; Blankenship, Don

    2013-04-01

    For much of Antarctica, geophysical data have been too spatially sparse to reliably image geology and tectonic structures beneath the ice sheet. Robust supercontinental reconstructions to provide context to interpretations have also been lacking. Here we interpret new airborne gravity and magnetics data to define geology and tectonic structures within the Wilkes Land/Terre Adelie sector from 90°E to 150°E, penetrating up to 1000 km into the East Antarctic continent. We co-interpret East Antarctic and Australian geophysical data in a robust and independent Gondwana-fit reconstruction. Geological features are reliably interpreted in context, and show that the major tectonic provinces of Australia, and their bounding fault zones continue into Antarctica. This allows their geometries to be defined. Features imaged include,the boundary between Indo-antarctic crust and Australo-antarctic crust, the Perth Basin, The Albany-Fraser-Musgrave Orogen, the Gawler-Mawson Craton and the Ross Delamerian Orogen. The data also reveals East Antarctic Ice Sheet (EAIS) catchments, and current flow, is controlled by large-scale faults and sedimentary basins. We hypothesise that the tectonic inheritance of Gondwana breakup provided strong boundary conditions for the initiation and development of the EAIS at 34 Ma. These conditions have remained in place since, to the extent that they exert major influence on the present flow of ice.

  13. Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno's model.

    PubMed

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2015-10-06

    The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet.

  14. Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno's model.

    PubMed

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2015-01-01

    The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet. PMID:26440761

  15. Optimization neural network for solving flow problems.

    PubMed

    Perfetti, R

    1995-01-01

    This paper describes a neural network for solving flow problems, which are of interest in many areas of application as in fuel, hydro, and electric power scheduling. The neural network consist of two layers: a hidden layer and an output layer. The hidden units correspond to the nodes of the flow graph. The output units represent the branch variables. The network has a linear order of complexity, it is easily programmable, and it is suited for analog very large scale integration (VLSI) realization. The functionality of the proposed network is illustrated by a simulation example concerning the maximal flow problem. PMID:18263420

  16. New ways of studying ice sheet flow directions and glacial erosion by computer modelling—examples from Fennoscandia

    NASA Astrophysics Data System (ADS)

    Näslund, J. O.; Rodhe, L.; Fastook, J. L.; Holmlund, P.

    2003-02-01

    A computer ice sheet model has been used to study regional ice flow directions and glacial erosion of the Weichselian ice sheet, adopting a new method of presenting modelled ice flow directions. Ice sheet model results from different time periods during the Weichselian were extracted for five regions and presented in rose diagrams. When comparing these computer-generated results with information on flow directions obtained from current conceptual geological models based on field data, large similarities were observed. In comparing the ice flow directions as such, the similarities were strikingly good. In many cases there was also a good agreement in the timing of the events, while in some cases a certain flow direction was assigned to a different time period by the ice sheet model than in the current interpretation of geological information. Nevertheless, the overall agreement between the data sets shows that results from ice sheet models can aid in placing geological information into a coarse timeframe and chronostratigraphic context, and also fill in time gaps in the glacial geological record where chronological control is sparse. Ice sheet model results thus constitute a new data set against which glacial geological information can be compared and tested. A new quantity, basal sliding distance, has also been calculated from the ice sheet model results, describing the over time accumulated length of ice that has passed over the landscape by basal sliding. The results show high basal sliding distance values in SW Sweden/SE Norway, in Skagerrak, and along the Gulf of Bothnia, implying relatively large amounts of glacial erosion in these regions. On elevated parts of the Scandinavian mountain range and on adjacent plains in the east the basal sliding distance values are low, implying weaker glacial erosion. This compares well with different types of geological and morphological data, suggesting that basal sliding distance is a useful entity for studying regional

  17. Profile Optimization Method for Robust Airfoil Shape Optimization in Viscous Flow

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2003-01-01

    Simulation results obtained by using FUN2D for robust airfoil shape optimization in transonic viscous flow are included to show the potential of the profile optimization method for generating fairly smooth optimal airfoils with no off-design performance degradation.

  18. Caterpillar-like flow of the Greenland Ice Sheet: observations of basal control on ice motion

    NASA Astrophysics Data System (ADS)

    Ryser, C.; Luethi, M. P.; Funk, M.; Catania, G. A.; Andrews, L. C.; Hawley, R. L.; Neumann, T.; Hoffman, M. J.

    2012-12-01

    Varying basal motion due to episodic basal water supply is a long-established component of ice flow. However, the physical processes that govern the role of water in basal motion still remain only weakly understood. We instrumented four boreholes at two sites with sensor systems to better understand the processes controlling seasonal flow velocity variations in the marginal zone of the Greenland Ice Sheet. We present measurements of borehole deformation, subglacial water pressure and surface motion during one year (July 2011 to September 2012). Subglacial water pressure and ice deformation show periodic variations on several time scales which are delayed by up to half a period, depending on sensor depth. These observations are interpreted as ice motion in a caterpillar-like fashion, as opposed to the conventionally assumed shear flow. Using a time-dependent, Full-Stokes ice flow model we find that spatially and temporally varying basal motion can explain the observed variations in deformation, and the delayed reaction at different depths. These new data show that the reaction to basal motion is not uniform throughout the ice column, but varies with depth.

  19. Fully localised nonlinear energy growth optimals in pipe flow

    NASA Astrophysics Data System (ADS)

    Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.

    2015-06-01

    A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, "Optimal energy density growth in Hagen-Poiseuille flow," J. Fluid Mech. 277, 192-225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., "Minimal seeds for shear flow turbulence: Using nonlinear transient growth to touch the edge of chaos," J. Fluid Mech. 702, 415-443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for "real" (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.

  20. Fully localised nonlinear energy growth optimals in pipe flow

    SciTech Connect

    Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.

    2015-06-15

    A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, “Optimal energy density growth in Hagen-Poiseuille flow,” J. Fluid Mech. 277, 192–225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., “Minimal seeds for shear flow turbulence: Using nonlinear transient growth to touch the edge of chaos,” J. Fluid Mech. 702, 415–443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for “real” (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.

  1. Optimization of laser welding of DP/TRIP steel sheets using statistical approach

    NASA Astrophysics Data System (ADS)

    Reisgen, U.; Schleser, M.; Mokrov, O.; Ahmed, E.

    2012-02-01

    Generally, the quality of a weld joint is directly influenced by the welding input parameter settings. Selection of proper process parameters is important to obtain the desired weld bead profile and quality. In this research work, numerical and graphical optimization techniques of the CO 2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets were carried out using response surface methodology (RSM) based on Box-Behnken design. The procedure was established to improve the weld quality, increase the productivity and minimize the total operation cost by considering the welding parameters range of laser power (2-2.2 kW), welding speed (40-50 mm/s) and focus position (-1 to 0 mm). It was found that, RSM can be considered as a powerful tool in experimental welding optimization, even when the experimenter does not have a model for the process. Strong, efficient and low cost weld joints could be achieved using the optimum welding conditions.

  2. Overexcitability and Optimal Flow in Talented Dancers, Singers, and Athletes

    ERIC Educational Resources Information Center

    Thomson, Paula; Jaque, S. Victoria

    2016-01-01

    Overexcitability (OE) and optimal flow are variables shared by talented individuals. This study demonstrated that the dancer (n = 86) and opera singer (n = 61) groups shared higher OE profiles compared to the athlete group (n = 50). Two self-report instruments assessed flow (global and subscales) and the five OE dimensions. All groups endorsed…

  3. Multi-sheet surface rebinning methods for reconstruction from asymmetrically truncated cone beam projections: I. Approximation and optimality

    NASA Astrophysics Data System (ADS)

    Betcke, Marta M.; Lionheart, William R. B.

    2013-11-01

    The mechanical motion of the gantry in conventional cone beam CT scanners restricts the speed of data acquisition in applications with near real time requirements. A possible resolution of this problem is to replace the moving source detector assembly with static parts that are electronically activated. An example of such a system is the Rapiscan Systems RTT80 real time tomography scanner, with a static ring of sources and axially offset static cylinder of detectors. A consequence of such a design is asymmetrical axial truncation of the cone beam projections resulting, in the sense of integral geometry, in severely incomplete data. In particular we collect data only in a fraction of the Tam-Danielsson window, hence the standard cone beam reconstruction techniques do not apply. In this work we propose a family of multi-sheet surface rebinning methods for reconstruction from such truncated projections. The proposed methods combine analytical and numerical ideas utilizing linearity of the ray transform to reconstruct data on multi-sheet surfaces, from which the volumetric image is obtained through deconvolution. In this first paper in the series, we discuss the rebinning to multi-sheet surfaces. In particular we concentrate on the underlying transforms on multi-sheet surfaces and their approximation with data collected by offset multi-source scanning geometries like the RTT. The optimal multi-sheet surface and the corresponding rebinning function are found as a solution of a variational problem. In the case of the quadratic objective, the variational problem for the optimal rebinning pair can be solved by a globally convergent iteration. Examples of optimal rebinning pairs are computed for different trajectories. We formulate the axial deconvolution problem for the recovery of the volumetric image from the reconstructions on multi-sheet surfaces. Efficient and stable solution of the deconvolution problem is the subject of the second paper in this series (Betcke and

  4. Optimal Scaling in Solids Undergoing Ductile Fracture by Void Sheet Formation

    NASA Astrophysics Data System (ADS)

    Fokoua, Landry; Conti, Sergio; Ortiz, Michael

    2014-04-01

    This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, that is, it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material.

  5. The magnetohydrodynamic stagnation point flow of a nanofluid over a stretching/shrinking sheet with suction.

    PubMed

    Mansur, Syahira; Ishak, Anuar; Pop, Ioan

    2015-01-01

    The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface.

  6. The Magnetohydrodynamic Stagnation Point Flow of a Nanofluid over a Stretching/Shrinking Sheet with Suction

    PubMed Central

    Mansur, Syahira; Ishak, Anuar; Pop, Ioan

    2015-01-01

    The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface. PMID:25760733

  7. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet

    NASA Astrophysics Data System (ADS)

    Ahmad, Rida; Mustafa, M.; Hayat, T.; Alsaedi, A.

    2016-06-01

    Recent advancements in nanotechnology have led to the discovery of new generation coolants known as nanofluids. Nanofluids possess novel and unique characteristics which are fruitful in numerous cooling applications. Current work is undertaken to address the heat transfer in MHD three-dimensional flow of magnetic nanofluid (ferrofluid) over a bidirectional exponentially stretching sheet. The base fluid is considered as water which consists of magnetite-Fe3O4 nanoparticles. Exponentially varying surface temperature distribution is accounted. Problem formulation is presented through the Maxwell models for effective electrical conductivity and effective thermal conductivity of nanofluid. Similarity transformations give rise to a coupled non-linear differential system which is solved numerically. Appreciable growth in the convective heat transfer coefficient is observed when nanoparticle volume fraction is augmented. Temperature exponent parameter serves to enhance the heat transfer from the surface. Moreover the skin friction coefficient is directly proportional to both magnetic field strength and nanoparticle volume fraction.

  8. Numerical investigation of dynamics of unsteady sheet/cloud cavitating flow using a compressible fluid model

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hao; Wang, Guo-Yu; Huang, Biao; Hu, Chang-Li; Wang, Zhi-Ying; Wang, Jian

    2015-02-01

    In this paper, a compressible fluid model is proposed to investigate dynamics of the turbulent cavitating flow over a Clark-Y hydrofoil. The numerical simulation is based on the homogeneous mixture approach coupled with filter-based density correction model (FBDCM) turbulence model and Zwart cavitation model. Considering the compressibility effect, the equation of state of each phase is introduced into the numerical model. The results show that the predicted results agree well with experimental data concerning the time-averaged lift/drag coefficient and shedding frequency. The quasi-periodic evolution of sheet/cloud cavitation and the resulting lift and drag are discussed in detail. Especially, the present compressible-mixture numerical model is capable of simulating the shock waves in the final stage of cavity collapse. It is found that the shock waves may cause the transient significant increase and decrease in lift and drag if the cavity collapses near the foil surface.

  9. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir

    2016-06-01

    This research article addresses the magnetohydrodynamic (MHD) flow of second grade nanofluid over a nonlinear stretching sheet. Heat and mass transfer aspects are investigated through the thermophoresis and Brownian motion effects. Second grade fluid is assumed electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed subject to small magnetic Reynolds number and boundary layer assumptions. Newly constructed condition having zero mass flux of nanoparticles at the boundary is incorporated. Transformations have been invoked for the reduction of partial differential systems into the set of nonlinear ordinary differential systems. The governing nonlinear systems have been solved for local behavior. Graphical results of different influential parameters are studied and discussed in detail. Computations for skin friction coefficient and local Nusselt number have been carried out. It is observed that the effects of thermophoresis parameter on the temperature and nanoparticles concentration distributions are qualitatively similar. The temperature and nanoparticles concentration distributions are enhanced for the larger magnetic parameter.

  10. Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Khan, Waqar Azeem

    2015-10-01

    This article reports the two-dimensional forced convective flow of a generalized Burgers fluid over a linearly stretched sheet under the impacts of nano-sized material particles. Utilizing appropriate similarity transformations the coupled nonlinear partial differential equations are converted into a set of coupled nonlinear ordinary differential equations. The analytic results are carried out through the homotopy analysis method (HAM) to investigate the impact of various pertinent parameters for the velocity, temperature and concentration fields. The obtained results are presented in tabular form as well as graphically and discussed in detail. The presented results show that the rate of heat transfer at the wall and rate of nanoparticle volume fraction diminish with each increment of the thermophoresis parameter. While incremented values of the Brownian motion parameter lead to a quite opposite effect on the rates of heat transfer and nanoparticle volume fraction at the wall.

  11. The magnetohydrodynamic stagnation point flow of a nanofluid over a stretching/shrinking sheet with suction.

    PubMed

    Mansur, Syahira; Ishak, Anuar; Pop, Ioan

    2015-01-01

    The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface. PMID:25760733

  12. Sediment micromechanics in sheet flows induced by asymmetric waves: A CFD-DEM study

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Xiao, Heng

    2016-11-01

    observed that the coordination number in rapid sheet flow layer is larger than one, which indicates that a typical particle in the sediment layer is in contact with more than one particles, and thus the binary collision model commonly used in two-fluid approaches may underestimate the contact between the particles.

  13. Effect of sheet and rill erosion on overland flow connectivity in bare agricultural plots

    NASA Astrophysics Data System (ADS)

    Penuela Fernandez, Andres; Rocio Rodriguez Pleguezuelo, Carmen; Javaux, Mathieu; Bielders, Charles L.

    2014-05-01

    Rill erosion processes generate preferential flow paths that may increase the degree of connectivity of the soil surface and hence strongly modify its hydrological response. However, few studies have tried to quantify the effect of rill development on overland flow connectivity. For this purpose, changes in surface microtopography were monitored on three bare agricultural plots (3 m wide x 10 m long and 11% of slope) in Louvain-la-Neuve (Belgium) under natural rainfall conditions. Digital elevation models of these plots were obtained on a monthly basis over a 1-year period by photogrammetry using the Micmac software. Runoff was collected at the plot outlets. To characterize the hydrological connectivity, a functional connectivity indicator was used, called the relative surface connection function (RSCf). This indicator, which relates the area connected to the outflow boundary to the degree of filling of maximum depression storage (MDS), is fast to compute and was previously shown to be able to capture runoff-relevant connectivity properties. The RSC function was calculated for each DEM and the evolution of overland flow connectivity was quantified and compared to the measured runoff. The results of this study showed that the changes in microtopography resulting from sheet and rill erosion have a strong impact on the hydrological connectivity as reflected in the RSCf. A higher volume of runoff was generated as a consequence of surface sealing and the decrease of the MDS. More rapid runoff initiation was observed as the RSCf evolved from a concave to a convex shape.

  14. Paleo-Ice Sheet/Stream Flow Directions of the Northern Antarctic Peninsula Ice Sheet Based Upon New Synthesis of Multibeam Seabed Imagery

    NASA Astrophysics Data System (ADS)

    Domack, E. W.; Lavoie, C.; Scambos, T. A.; Pettit, E. C.; Schenke, H. W.; Yoo, K. C.; Larter, R. D.; Gutt, J.; Wellner, J.; Canals, M.; Anderson, J. B.; Amblas, D.

    2014-12-01

    We provide a new map of swath bathymetry for the northern Antarctic Peninsula, including data sets from five national programs. Our map allows for the compilation and examination of Late Glacial Maximum (LGM) paleo-ice sheet/stream flow directions developed upon the seafloor from the preservation of: mega-scale glacial lineations, drumlinized features, and selective linear erosion. We combine this with terrestrial observations of flow direction to place constraints on ice divides and accumulation centers (ice domes). The results show a flow divergence in Larsen B embayment, between flow emanating off the Seal Nunataks (including Robertson Island) that directed ice in a southeast direction, then easterly as the flow transits toward the Robertson Trough. A second, stronger "streaming flow" directed ice southeasterly then southward, as ice overflowed the Jason Peninsula to reach the Jason Trough, the southern perimeter of the embayment. This reconstruction is far more detailed than other recent compilations because we followed specific flow indicators and have kept tributary flow paths parallel. Our reconstitution also refines the extent of at least five other distinct paleo-ice stream systems which in turn serve to delineate seven broad regions where ice domes must have been centered across the continental shelf during the LGM.

  15. Topometry optimization of sheet metal structures for crashworthiness design using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Mozumder, Chandan K.

    The objective in crashworthiness design is to generate plastically deformable energy absorbing structures which can satisfy the prescribed force-displacement (FD) response. The FD behavior determines the reaction force, displacement and the internal energy that the structure should withstand. However, attempts to include this requirement in structural optimization problems remain scarce. The existing commercial optimization tools utilize models under static loading conditions because of the complexities associated with dynamic/impact loading. Due to the complexity of a crash event and the consequent time required to numerically analyze the dynamic response of the structure, classical methods (i.e., gradient-based and direct) are not well developed to solve this undertaking. This work presents an approach under the framework of the hybrid cellular automaton (HCA) method to solve the above challenge. The HCA method has been successfully applied to nonlinear transient topology optimization for crashworthiness design. In this work, the HCA algorithm has been utilized to develop an efficient methodology for synthesizing shell-based sheet metal structures with optimal material thickness distribution under a dynamic loading event using topometry optimization. This method utilizes the cellular automata (CA) computing paradigm and nonlinear transient finite element analysis (FEA) via ls-dyna. In this method, a set field variables is driven to their target states by changing a convenient set of design variables (e.g., thickness). These rules operate locally in cells within a lattice that only know local conditions. The field variables associated with the cells are driven to a setpoint to obtain the desired structure. This methodology is used to design for structures with controlled energy absorption with specified buckling zones. The peak reaction force and the maximum displacement are also constrained to meet the desired safety level according to passenger safety

  16. Insight Into Lava Sheet Inflation and Deflation Events From the McCartys Flow, New Mexico, and Implications for Planetary Lava Flow Emplacement

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Garry, W. B.; Zimbelman, J. R.; Crumpler, L. S.

    2007-12-01

    Basaltic lavas typically form channels or tubes during flow away from a vent. However, the importance of sheet flow in the development of basaltic terrains has gained attention within the last 15 years. The McCartys lava flow field (NM) is among the youngest (~3000 yrs) basaltic lava flows in the continental United States. It was emplaced over slopes of < 1 degree, displaying features suggested to represent lava sheet inflation and deflation. Therefore, it among the most pristine examples of sheet flow morphologies in the United States. Here we present field observations of this flow field. At the meter scale the interior flow surface typically forms smooth, undulating lobes that appear to represent breakouts from adjacent lobes. These features display grooved surfaces and occasional squeeze-ups along lobe contacts. At the scale of 10s to 100s of meters the flow comprises multiple topographic platforms and depressions. Some depressions display level floors with surfaces as described above, while some are bowl shaped with floors covered in broken lava slabs. The boundaries between platforms and depressions are also typically smooth, grooved surfaces that have been tilted to angles sometimes approaching vertical. The upper margin of these tilted surfaces typically displays large cracks parallel to the boundary, sometimes containing squeeze-ups. The bottom boundary with smooth floored depressions typically shows embayment by younger lavas. The superposition relationships between platforms, depressions, and small lava flows within depressions are complex. It appears that this style of terrain represents the emplacement of an extensive, sheet, likely as one large unit. The sheet experiences inflation episodes within preferred regions, which produce platforms of varied elevations. Inflation events appear to be associated with breakouts of lava which flood the floors of accessible depressions. Depressions are the result of non-inflation, or collapse of an inflated surface

  17. A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions

    SciTech Connect

    Liu, H. H.

    2010-09-15

    Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

  18. Analogue modelling of the influence of ice shelf collapse on the flow of ice sheets grounded below sea-level

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio

    2016-04-01

    The sudden breakup of ice shelves is expected to result in significant acceleration of inland glaciers, a process related to the removal of the buttressing effect exerted by the ice shelf on the tributary glaciers. This effect has been tested in previous analogue models, which however applied to ice sheets grounded above sea level (e.g., East Antarctic Ice Sheet; Antarctic Peninsula and the Larsen Ice Shelf). In this work we expand these previous results by performing small-scale laboratory models that analyse the influence of ice shelf collapse on the flow of ice streams draining an ice sheet grounded below sea level (e.g., the West Antarctic Ice Sheet). The analogue models, with dimensions (width, length, thickness) of 120x70x1.5cm were performed at the Tectonic Modelling Laboratory of CNR-IGG of Florence, Italy, by using Polydimethilsyloxane (PDMS) as analogue for the flowing ice. This transparent, Newtonian silicone has been shown to well approximate the rheology of natural ice. The silicone was allowed to flow into a water reservoir simulating natural conditions in which ice streams flow into the sea, terminating in extensive ice shelves which act as a buttress for their glaciers and slow their flow. The geometric scaling ratio was 10(-5), such that 1cm in the models simulated 1km in nature; velocity of PDMS (a few mm per hour) simulated natural velocities of 100-1000 m/year. Instability of glacier flow was induced by manually removing a basal silicone platform (floating on water) exerting backstresses to the flowing analogue glacier: the simple set-up adopted in the experiments isolates the effect of the removal of the buttressing effect that the floating platform exerts on the flowing glaciers, thus offering insights into the influence of this parameter on the flow perturbations resulting from a collapse event. The experimental results showed a significant increase in glacier velocity close to its outlet following ice shelf breakup, a process similar to what

  19. Group analysis and numerical computation of magneto-convective non-Newtonian nanofluid slip flow from a permeable stretching sheet

    NASA Astrophysics Data System (ADS)

    Uddin, M. J.; Ferdows, M.; Bég, O. Anwar

    2014-10-01

    Two-dimensional magnetohydrodynamic boundary layer flow of non-Newtonian power-law nanofluids past a linearly stretching sheet with a linear hydrodynamic slip boundary condition is investigated numerically. The non-Newtonian nanofluid model incorporates the effects of Brownian motion and thermophoresis. Similarity transformations and corresponding similarity equations of the transport equations are derived via a linear group of transformations. The transformed equations are solved numerically using Runge-Kutta-Fehlberg fourth-fifth order numerical method available in the Maple 14 software for the influence of power-law (rheological) index, Lewis number, Prandtl number, thermophoresis parameter, Brownian motion parameter, magnetic field parameter and linear momentum slip parameter. Validation is achieved with an optimized Nakamura implicit finite difference algorithm (NANONAK). Representative results for the dimensionless axial velocity, temperature and concentration profiles have been presented graphically. The present results of skin friction factor and reduced heat transfer rate are also compared with the published results for several special cases of the model and found to be in close agreement. The study has applications in electromagnetic nano-materials processing.

  20. Optimized boundary driven flows for dynamos in a sphere

    SciTech Connect

    Khalzov, I. V.; Brown, B. P.; Cooper, C. M.; Weisberg, D. B.; Forest, C. B.

    2012-11-15

    We perform numerical optimization of the axisymmetric flows in a sphere to minimize the critical magnetic Reynolds number Rm{sub cr} required for dynamo onset. The optimization is done for the class of laminar incompressible flows of von Karman type satisfying the steady-state Navier-Stokes equation. Such flows are determined by equatorially antisymmetric profiles of driving azimuthal (toroidal) velocity specified at the spherical boundary. The model is relevant to the Madison plasma dynamo experiment, whose spherical boundary is capable of differential driving of plasma in the azimuthal direction. We show that the dynamo onset in this system depends strongly on details of the driving velocity profile and the fluid Reynolds number Re. It is found that the overall lowest Rm{sub cr} Almost-Equal-To 200 is achieved at Re Almost-Equal-To 240 for the flow, which is hydrodynamically marginally stable. We also show that the optimized flows can sustain dynamos only in the range Rm{sub cr}optimized flows and the corresponding dynamo fields are presented.

  1. Technology maturation project on optimization of sheet metal forming of aluminum for use in transportation systems

    NASA Astrophysics Data System (ADS)

    Johnson, Ken I.; Smith, Mark T.; Lavender, Curt A.; Khalell, Mohammad A.

    1994-10-01

    Using aluminum instead of steel in transportation systems could dramatically reduce the weight of vehicles, an effective way of decreasing energy consumption and emissions. The current cost of sheet metal formed (SMF) aluminum alloys (about $4 per pound) and the relatively long forming times of current materials are serious drawbacks to the widespread use of SMF in industry. The interdependence of materials testing and model development is critical to optimizing SMF since the current process is conducted in a heated, pressurized die where direct measurement of critical SMF parameters is extremely difficult. Numerical models provide a means of tracking the forming process, allowing the applied gas pressure to be adjusted to maintain the optimum SMF behavior throughout the forming process. Thus, models can help produce the optimum SMF component in the least amount of time. The Pacific Northwest Laboratory is integrating SMF model development with research in improved aluminum alloys for SMF. The objectives of this research are: develop and characterize competitively priced aluminum alloys for SMF applications in industry; improve numerical models to accurately predict the optimum forming cycle for reduced forming time and improved quality; and verify alloy performance and model accuracy with forming tests conducted in PNL's Superplastic Forming User Facility. The activities performed in this technology maturation project represent a critical first step in achieving these objectives through cooperative research among industry, PNL, and universities.

  2. Are longitudinal ice-surface structures on the Antarctic Ice Sheet indicators of long-term ice-flow configuration?

    NASA Astrophysics Data System (ADS)

    Glasser, N. F.; Jennings, S. J. A.; Hambrey, M. J.; Hubbard, B.

    2014-07-01

    Continent-wide mapping of longitudinal ice-surface structures on the Antarctic Ice Sheet reveals that they originate in the interior of the ice sheet and are arranged in arborescent networks fed by multiple tributaries. Longitudinal ice-surface structures can be traced continuously down-ice for distances of up to 1200 km. They are co-located with fast-flowing glaciers and ice streams that are dominated by basal sliding rates above tens of m yr-1 and are strongly guided by subglacial topography. Longitudinal ice-surface structures dominate regions of converging flow, where ice flow is subject to non-coaxial strain and simple shear. Associating these structures with the AIS' surface velocity field reveals (i) ice residence times of ~ 2500 to 18 500 years, and (ii) undeformed flow-line sets for all major flow units analysed except the Kamb Ice Stream and the Institute and Möller Ice Stream areas. Although it is unclear how long it takes for these features to form and decay, we infer that the major ice-flow and ice-velocity configuration of the ice sheet may have remained largely unchanged for several thousand years, and possibly even since the end of the last glacial cycle. This conclusion has implications for our understanding of the long-term landscape evolution of Antarctica, including large-scale patterns of glacial erosion and deposition.

  3. Information flow and optimization in transcriptional regulation

    NASA Astrophysics Data System (ADS)

    Tkacik, Gasper

    2008-03-01

    In the simplest view of transcriptional regulation, the expression of a gene is turned on or off by the changes in the concentration of a transcription factor (TF). Here we analyze transcriptional regulatory elements with the tools of information theory. Recent data on noise levels in gene expression are used to show that it should be possible to transmit much more than just one regulatory bit. Realizing this optimal information capacity would require that the dynamic range of TF concentrations used by the cell, the input/output relation of the regulatory module, and the noise levels of binding and transcription satisfy certain matching relations. This parameter-free prediction is in good agreement with recent experiments on the Bicoid/Hunchback system in the early Drosophila embryo, and this system achieves around 90% of its theoretical maximum information transmission. The dependence of information capacity on parameters that govern gene expression for simple, single-input / single-output, genetic regulatory elements is systematically examined and the extensions of the work to genetic circuits consisting of several interacting elements are presented.

  4. Fault-related fluid flow, Beech Mountain thrust sheet, Blue Ridge Province, Tennessee-North Carolina

    SciTech Connect

    Waggoner, W.K.; Mora, C.I. . Dept. of Geological Sciences)

    1992-01-01

    The latest proterozoic Beech Granite is contained within the Beech Mountain thrust sheet (BMTS), part of a middle-late Paleozoic thrust complex located between Mountain City and Grandfather Mountain windows in the western Blue Ridge of TN-NC. At the base of the BMTS, Beech Granite is juxtaposed against lower Paleozoic carbonate and elastics of the Rome Fm. along the Stone Mountain thrust on the southeaster margin of the Mountain City window. At the top of the BMTS, Beech Granite occurs adjacent to Precambrian mafic rocks of the Pumpkin Patch thrust sheet (PPTS). The Beech Granite is foliated throughout the BMTS with mylonitization and localized cataclasis occurring within thrust zones along the upper and lower margins of the BMTS. Although the degree of mylonitization and cataclasis increases towards the thrusts, blocks of relatively undeformed granite also occur within these fault zones. Mylonites and thrusts are recognized as conduits for fluid movement, but the origin of the fluids and magnitude and effects of fluid migration are not well constrained. This study was undertaken to characterize fluid-rock interaction within the Beech Granite and BMTS. Extensive mobility of some elements/compounds within the thrust zones, and the isotopic and mineralogical differences between the thrust zones and interior of the BMTS indicate that fluid flow was focused within the thrust zones. The wide range of elevated temperatures (400--710 C) indicated by qz-fsp fractionations suggest isotopic disequilibrium. Using a more likely temperature range of 300--400 C for Alleghanian deformation, calculated fluid compositions indicate interactions with a mixture of meteoric-hydrothermal and metamorphic water with delta O-18 = 2.6--7.5[per thousand] for the upper thrust zone and 1.3 to 6.2[per thousand] for the lower thrust zone. These ranges are similar to isotopic data reported for other Blue Ridge thrusts and may represent later periods of meteoric water influx.

  5. Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: Implications for ice sheet configuration and dynamics

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Woodward, John; Ross, Neil; Dunning, Stuart A.; Bingham, Robert G.; Corr, Hugh F. J.; Siegert, Martin J.

    2015-09-01

    Despite the importance of ice streaming to the evaluation of West Antarctic Ice Sheet (WAIS) stability we know little about mid- to long-term dynamic changes within the Institute Ice Stream (IIS) catchment. Here we use airborne radio echo sounding to investigate the subglacial topography, internal stratigraphy, and Holocene flow regime of the upper IIS catchment near the Ellsworth Mountains. Internal layer buckling within three discrete, topographically confined tributaries, through Ellsworth, Independence, and Horseshoe Valley Troughs, provides evidence for former enhanced ice sheet flow. We suggest that enhanced ice flow through Independence and Ellsworth Troughs, during the mid-Holocene to late Holocene, was the source of ice streaming over the region now occupied by the slow-flowing Bungenstock Ice Rise. Although buckled layers also exist within the slow-flowing ice of Horseshoe Valley Trough, a thicker sequence of surface-conformable layers in the upper ice column suggests slowdown more than ~4000 years ago, so we do not attribute enhanced flow switch-off here, to the late Holocene ice-flow reorganization. Intensely buckled englacial layers within Horseshoe Valley and Independence Troughs cannot be accounted for under present-day flow speeds. The dynamic nature of ice flow in IIS and its tributaries suggests that recent ice stream switching and mass changes in the Siple Coast and Amundsen Sea sectors are not unique to these sectors, that they may have been regular during the Holocene and may characterize the decline of the WAIS.

  6. Optimal schooling formations using a potential flow model

    NASA Astrophysics Data System (ADS)

    Tchieu, Andrew; Gazzola, Mattia; de Brauer, Alexia; Koumoutsakos, Petros

    2012-11-01

    A self-propelled, two-dimensional, potential flow model for agent-based swimmers is used to examine how fluid coupling affects schooling formation. The potential flow model accounts for fluid-mediated interactions between swimmers. The model is extended to include individual agent actions by means of modifying the circulation of each swimmer. A reinforcement algorithm is applied to allow the swimmers to learn how to school in specified lattice formations. Lastly, schooling lattice configurations are optimized by combining reinforcement learning and evolutionary optimization to minimize total control effort and energy expenditure.

  7. Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects

    NASA Astrophysics Data System (ADS)

    Mustafa, M.; Khan, Junaid Ahmad

    2015-07-01

    Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.

  8. Three-Dimensional Flow of Nanofluid Induced by an Exponentially Stretching Sheet: An Application to Solar Energy

    PubMed Central

    Khan, Junaid Ahmad; Mustafa, M.; Hayat, T.; Sheikholeslami, M.; Alsaedi, A.

    2015-01-01

    This work deals with the three-dimensional flow of nanofluid over a bi-directional exponentially stretching sheet. The effects of Brownian motion and thermophoretic diffusion of nanoparticles are considered in the mathematical model. The temperature and nanoparticle volume fraction at the sheet are also distributed exponentially. Local similarity solutions are obtained by an implicit finite difference scheme known as Keller-box method. The results are compared with the existing studies in some limiting cases and found in good agreement. The results reveal the existence of interesting Sparrow-Gregg-type hills for temperature distribution corresponding to some range of parametric values. PMID:25785857

  9. Three-dimensional flow of nanofluid induced by an exponentially stretching sheet: an application to solar energy.

    PubMed

    Khan, Junaid Ahmad; Mustafa, M; Hayat, T; Sheikholeslami, M; Alsaedi, A

    2015-01-01

    This work deals with the three-dimensional flow of nanofluid over a bi-directional exponentially stretching sheet. The effects of Brownian motion and thermophoretic diffusion of nanoparticles are considered in the mathematical model. The temperature and nanoparticle volume fraction at the sheet are also distributed exponentially. Local similarity solutions are obtained by an implicit finite difference scheme known as Keller-box method. The results are compared with the existing studies in some limiting cases and found in good agreement. The results reveal the existence of interesting Sparrow-Gregg-type hills for temperature distribution corresponding to some range of parametric values. PMID:25785857

  10. Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska

    USGS Publications Warehouse

    Hogeweg, N.; Keith, T.E.C.; Colvard, E.M.; Ingebritsen, S.E.

    2005-01-01

    The June 1912 eruption of Novarupta filled nearby glacial valleys on the Alaska Peninsula with ash-flow tuff (ignimbrite), and post-eruption observations of thousands of steaming fumaroles led to the name 'Valley of Ten Thousand Smokes' (VTTS). By the late 1980s most fumarolic activity had ceased, but the discovery of thermal springs in mid-valley in 1987 suggested continued cooling of the ash-flow sheet. Data collected at the mid-valley springs between 1987 and 2001 show a statistically significant correlation between maximum observed chloride (Cl) concentration and temperature. These data also show a statistically significant decline in the maximum Cl concentration. The observed variation in stream chemistry across the sheet strongly implies that most solutes, including Cl, originate within the area of the VTTS occupied by the 1912 deposits. Numerous measurements of Cl flux in the Ukak River just below the ash-flow sheet suggest an ongoing heat loss of ???250 MW. This represents one of the largest hydrothermal heat discharges in North America. Other hydrothermal discharges of comparable magnitude are related to heat obtained from silicic magma bodies at depth, and are quasi-steady on a multidecadal time scale. However, the VTTS hydrothermal flux is not obviously related to a magma body and is clearly declining. Available data provide reasonable boundary and initial conditions for simple transient modeling. Both an analytical, conduction-only model and a numerical model predict large rates of heat loss from the sheet 90 years after deposition.

  11. Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska

    NASA Astrophysics Data System (ADS)

    Hogeweg, Noor; Keith, T. E. C.; Colvard, E. M.; Ingebritsen, S. E.

    2005-05-01

    The June 1912 eruption of Novarupta filled nearby glacial valleys on the Alaska Peninsula with ash-flow tuff (ignimbrite), and post-eruption observations of thousands of steaming fumaroles led to the name 'Valley of Ten Thousand Smokes' (VTTS). By the late 1980s most fumarolic activity had ceased, but the discovery of thermal springs in mid-valley in 1987 suggested continued cooling of the ash-flow sheet. Data collected at the mid-valley springs between 1987 and 2001 show a statistically significant correlation between maximum observed chloride (Cl) concentration and temperature. These data also show a statistically significant decline in the maximum Cl concentration. The observed variation in stream chemistry across the sheet strongly implies that most solutes, including Cl, originate within the area of the VTTS occupied by the 1912 deposits. Numerous measurements of Cl flux in the Ukak River just below the ash-flow sheet suggest an ongoing heat loss of ˜250 MW. This represents one of the largest hydrothermal heat discharges in North America. Other hydrothermal discharges of comparable magnitude are related to heat obtained from silicic magma bodies at depth, and are quasi-steady on a multidecadal time scale. However, the VTTS hydrothermal flux is not obviously related to a magma body and is clearly declining. Available data provide reasonable boundary and initial conditions for simple transient modeling. Both an analytical, conduction-only model and a numerical model predict large rates of heat loss from the sheet 90 years after deposition.

  12. The viscous curtain: General formulation and finite-element solution for the stability of flowing viscous sheets

    NASA Astrophysics Data System (ADS)

    Perdigou, C.; Audoly, B.

    2016-11-01

    The stability of thin viscous sheets has been studied so far in the special case where the base flow possesses a direction of invariance: the linear stability is then governed by an ordinary differential equation. We propose a mathematical formulation and a numerical method of solution that are applicable to the linear stability analysis of viscous sheets possessing no particular symmetry. The linear stability problem is formulated as a non-Hermitian eigenvalue problem in a 2D domain and is solved numerically using the finite-element method. Specifically, we consider the case of a viscous sheet in an open flow, which falls in a bath of fluid; the sheet is mildly stretched by gravity and the flow can become unstable by 'curtain' modes. The growth rates of these modes are calculated as a function of the fluid parameters and of the geometry, and a phase diagram is obtained. A transition is reported between a buckling mode (static bifurcation) and an oscillatory mode (Hopf bifurcation). The effect of surface tension is discussed.

  13. A laser-sheet flow visualization technique for the large wind tunnels of the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Reinath, M. S.; Ross, J. C.

    1990-01-01

    A flow visualization technique for the large wind tunnels of the National Full Scale Aerodynamics Complex (NFAC) is described. The technique uses a laser sheet generated by the NFAC Long Range Laser Velocimeter (LRLV) to illuminate a smoke-like tracer in the flow. The LRLV optical system is modified slightly, and a scanned mirror is added to generate the sheet. These modifications are described, in addition to the results of an initial performance test conducted in the 80- by 120-Foot Wind Tunnel. During this test, flow visualization was performed in the wake region behind a truck as part of a vehicle drag reduction study. The problems encountered during the test are discussed, in addition to the recommended improvements needed to enhance the performance of the technique for future applications.

  14. A laser-sheet flow visualization technique for the large wind tunnels of the National Full-Scale Aerodynamics Complex

    NASA Astrophysics Data System (ADS)

    Reinath, M. S.; Ross, J. C.

    1990-09-01

    A flow visualization technique for the large wind tunnels of the National Full Scale Aerodynamics Complex (NFAC) is described. The technique uses a laser sheet generated by the NFAC Long Range Laser Velocimeter (LRLV) to illuminate a smoke-like tracer in the flow. The LRLV optical system is modified slightly, and a scanned mirror is added to generate the sheet. These modifications are described, in addition to the results of an initial performance test conducted in the 80- by 120-Foot Wind Tunnel. During this test, flow visualization was performed in the wake region behind a truck as part of a vehicle drag reduction study. The problems encountered during the test are discussed, in addition to the recommended improvements needed to enhance the performance of the technique for future applications.

  15. Unsteady Flow of Third Grade Fluid over an Oscillatory Stretching Sheet with Thermal Radiation and Heat Source/Sink

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Khan, Sami Ullah; Abbas, Zaheer

    2015-12-01

    The aim of this article is to investigate the unsteady boundary layer flow and heat transfer analysis in a third grade fluid over an oscillatory stretching sheet under the influences of thermal radiation and heat source/sink. The convective boundary condition at the sheet is imposed to determine the temperature distribution. Homotopy analysis method (HAM) is used to solve dimensionless nonlinear partial differential equations. The effects of involved parameters on both velocity and temperature fields are illustrated in detail through various plots. It is found that the amplitude of velocity decreases by increasing the ratio of the oscillation frequency of the sheet to its stretching rate and Hartmann number while it increases by increasing the third grade fluid parameter. On contrary, the temperature field is found to be a decreasing function of the third grade fluid parameter.

  16. Optical vortex tracking studies of a horizontal axis wind turbine in yaw using laser-sheet, flow visualisation

    NASA Astrophysics Data System (ADS)

    Grant, I.; Parkin, P.; Wang, X.

    Experimental studies have been conducted on a 0.9 m diameter, horizontal axis wind turbine (HAWT) placed in the open jet of a closed return wind tunnel. The turbine was tested in a three blade and a two blade configuration. The power coefficient of the turbine was measured and wake flow studies conducted for a range of yawed flows by tilting the rotor plane at various angles up to 30° to the incident wind direction. The motion of the shed vorticity was followed using laser-sheet flow visualisation with the overall wake deflection being measured. The results were compared with theoretical predictions and with studies conducted elsewhere.

  17. Unsteady hydromagnetic flow of dusty fluid and heat transfer over a vertical stretching sheet with thermal radiation

    SciTech Connect

    Isa, Sharena Mohamad; Ali, Anati

    2015-10-22

    In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.

  18. Airfoil shape optimization using sensitivity analysis on viscous flow equations

    NASA Technical Reports Server (NTRS)

    Eleshaky, Mohamed E.; Baysal, Oktay

    1993-01-01

    An aerodynamic shape optimization method has previously been developed by the authors using the Euler equations and has been applied to supersonic-hypersonic nozzle designs. This method has also included a flowfield extrapolation (or flow prediction) method based on the Taylor series expansion of an existing CFD solution. The present paper reports on the extension of this method to the thin-layer Navier-Stokes equations in order to account for the viscous effects. Also, to test the method under highly nonlinear conditions, it has been applied to the transonic flows. Initially, the success of the flow prediction method is tested. Then, the overall method is demonstrated by optimizing the shapes of two supercritical transonic airfoils at zero angle of attack. The first one is shape optimized to achieve a minimum drag while obtaining a lift above a specified value. Whereas, the second one is shape optimized for a maximum lift while attaining a drag below a specified value. The results of these two cases indicate that the present method can produce successfully optimized aerodynamic shapes.

  19. Epidotisation and fluid flow in sheeted dyke complex : new field and experimental constraints

    NASA Astrophysics Data System (ADS)

    Coelho, Gabriel; Sizaret, Stanislas; Arbaret, Laurent; Branquet, Yannick; Champallier, Rémi

    2013-04-01

    Hydrothermal system in oceanic crust is usually studied via dredge samples and drilled holes but their equivalent are also found in ophiolitic complexes (Oman, Cyprus). In the deepest zone, the fluids react with the sheeted diabase dikes at 400°C and 400 bars to form epidosites by enrichment in epidote and quartz [1]. Mineralogy and chemistry of epidosites have been widely studied on fields [1] and hydrology is generally studied using numerical models [2]. However, the relations and the timing of the emplacement of diabase dikes, their alteration in epidosite and the regional deformation remain unclear. We performed experiments on diabase sampled in the Troodos complex (Cyprus), 1) to stress the P-T-fO2-fluid composition conditions of the reaction of epidotisation and, 2) to quantify interrelations between the permeability and the epidotisation during deformation. In Troodos, we observed two major types of epidosite: 1) a pervasive epidosite in the core of dikes and a banding which is parallel to chilled margins and, 2) assemblages of epidote and quartz as alteration fronts in cooling joints or in the form of veins cross-cutting non-epidotised dikes. This last type of epidotisation clearly appears to be a hydrothermal veining process. We synthesized epidote in a static autoclave with external heating at 500°C and 2500 bars. Epidote was formed by the following reaction: 6 albite + 2 hematite + anorthite + 7 Ca2+ + 6 H2O → 4 epidote + 8 quartz + 6 Na+ + 8 H+. The calculated variation of the molar volume is about -3% (creation of porosity). Two parameters are essential to synthesize epidote from diabase: the oxygen fugacity and the composition of the fluid (enriched in Ca and Fe). However, there is an obvious problem of nucleation at 400°C and 400 bars. In order to understand how fluid flows throughout sheeted dikes, in situ measurements of permeability during coaxial deformation have been performed in a Paterson apparatus by infiltration of Argon and water. The

  20. MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect

    NASA Astrophysics Data System (ADS)

    Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan

    2016-06-01

    The steady two-dimensional magnetohydrodynamic (MHD) flow past a permeable stretching/shrinking sheet with radiation effects is investigated. The similarity transformation is introduced to transform the governing partial differential equations into a system of ordinary differential equations before being solved numerically using a shooting method. The results are obtained for the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and the concentration profiles for some values of the governing parameters, namely, suction/injection parameter S, stretching/shrinking parameter λ, magnetic parameter M, radiation parameter R, heat source/sink Q and chemical rate parameter K. For the shrinking case, there exist two solutions for a certain range of parameters, but the solution is unique for the stretching case. The stability analysis verified that the upper branch solution is linearly stable and physically reliable while the lower branch solution is not. For the reliable solution, the skin friction coefficient increases in the present of magnetic field. The heat transfer rate at the surface decreases in the present of radiation.

  1. Flow and Heat Transfer to Sisko Nanofluid over a Nonlinear Stretching Sheet.

    PubMed

    Khan, Masood; Malik, Rabia; Munir, Asif; Khan, Waqar Azeem

    2015-01-01

    The two-dimensional boundary layer flow and heat transfer to Sisko nanofluid over a non-linearly stretching sheet is scrutinized in the concerned study. Our nanofluid model incorporates the influences of the thermophoresis and Brownian motion. The convective boundary conditions are taken into account. Implementation of suitable transformations agreeing with the boundary conditions result in reduction of the governing equations of motion, energy and concentration into non-linear ordinary differential equations. These coupled non-linear ordinary differential equations are solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting technique. The effects of the thermophoresis and Brownian motion parameters on the temperature and concentration fields are analyzed and graphically presented. The secured results make it clear that the temperature distribution is an increasing function of the thermophoresis and Brownian motion parameters and concentration distribution increases with the thermophoresis parameter but decreases with the Brownian motion parameter. To see the validity of the present work, we made a comparison with the numerical results as well as previously published work with an outstanding compatibility.

  2. Flow and Heat Transfer to Sisko Nanofluid over a Nonlinear Stretching Sheet.

    PubMed

    Khan, Masood; Malik, Rabia; Munir, Asif; Khan, Waqar Azeem

    2015-01-01

    The two-dimensional boundary layer flow and heat transfer to Sisko nanofluid over a non-linearly stretching sheet is scrutinized in the concerned study. Our nanofluid model incorporates the influences of the thermophoresis and Brownian motion. The convective boundary conditions are taken into account. Implementation of suitable transformations agreeing with the boundary conditions result in reduction of the governing equations of motion, energy and concentration into non-linear ordinary differential equations. These coupled non-linear ordinary differential equations are solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting technique. The effects of the thermophoresis and Brownian motion parameters on the temperature and concentration fields are analyzed and graphically presented. The secured results make it clear that the temperature distribution is an increasing function of the thermophoresis and Brownian motion parameters and concentration distribution increases with the thermophoresis parameter but decreases with the Brownian motion parameter. To see the validity of the present work, we made a comparison with the numerical results as well as previously published work with an outstanding compatibility. PMID:25993658

  3. Flow and Heat Transfer to Sisko Nanofluid over a Nonlinear Stretching Sheet

    PubMed Central

    Khan, Masood; Malik, Rabia; Munir, Asif; Khan, Waqar Azeem

    2015-01-01

    The two-dimensional boundary layer flow and heat transfer to Sisko nanofluid over a non-linearly stretching sheet is scrutinized in the concerned study. Our nanofluid model incorporates the influences of the thermophoresis and Brownian motion. The convective boundary conditions are taken into account. Implementation of suitable transformations agreeing with the boundary conditions result in reduction of the governing equations of motion, energy and concentration into non-linear ordinary differential equations. These coupled non-linear ordinary differential equations are solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting technique. The effects of the thermophoresis and Brownian motion parameters on the temperature and concentration fields are analyzed and graphically presented. The secured results make it clear that the temperature distribution is an increasing function of the thermophoresis and Brownian motion parameters and concentration distribution increases with the thermophoresis parameter but decreases with the Brownian motion parameter. To see the validity of the present work, we made a comparison with the numerical results as well as previously published work with an outstanding compatibility. PMID:25993658

  4. Fe/V Redox Flow Battery Electrolyte Investigation and Optimization

    SciTech Connect

    Li, Bin; Li, Liyu; Wang, Wei; Nie, Zimin; Chen, Baowei; Wei, Xiaoliang; Luo, Qingtao; Yang, Zhenguo; Sprenkle, Vincent L.

    2013-05-01

    Recently invented Fe/V redox flow battery (IVBs) system has attracted more and more attentions due to its long-term cycling stability. In this paper, the factors (such as compositions, state of charge (SOC) and temperatures) influencing the stability of electrolytes in both positive and negative half-cells were investigated by an extensive matrix study. Thus an optimized electrolyte, which can be operated in the temperature ranges from -5oC to 50oC without any precipitations, was identified. The Fe/V flow cells using the optimized electrolytes and low-cost membranes exhibited satisfactory cycling performances at different temperatures. The efficiencies, capacities and energy densities of flow batteries with varying temperatures were discussed in detail.

  5. Magnetic grain-size variations through an ash flow sheet: Influence on magnetic properties and implications for cooling history

    SciTech Connect

    Rosenbaum, J.G.

    1993-07-10

    Rock magnetic studies of tuffs are essential to the interpretation of paleomagnetic data derived from such rocks, provide a basis for interpretation of aeromagnetic data over volcanic terranes, and yield insights into the depositional and cooling histories of ash flow sheets. A rhyolitic ash flow sheet, the Miocene-aged Tiva Canyon Member of the Paintbrush Tuff, contains both titanomagnetite phenocrysts, present in the magma prior to eruption, and cubic Fe-oxide microcrystals that grew after emplacement. Systematic variations in the quantity and magnetic grain size of the microcrystals produce large variations in magnetic properties through a section of the ash flow sheet penetrated in a borehole on the Nevada Test Site. Natural remanent magnetization varies from less than 1 x 10{sup {minus}4} to more than 8 x 10{sup {minus}4} A m{sup 3} kg{sup {minus}1}, and in-phase magnetic susceptibility varies from less than 1 x 10{sup {minus}6} to more than 10 x 10{sup {minus}6} m{sup 3} kg{sup {minus}1}. The microcrystals, which include both magnetite and maghemite, have Curie points and maximum unblocking temperatures between 580{degrees}C and 640{degrees}C. Rock magnetic data, including in-phase and quadrature magnetic susceptibilities as well as hysteresis parameters, demonstrate that these microcrystals are of superparamagnetic and single-domain sizes. Titanomagnetite phenocrysts are the dominant remanence carriers in the central 50 m of the section, whereas microcrystals are important contributors to remanent magnetization and magnetic susceptibility in two 15-m-thick zones at the top and bottom. Within these zones the size of microcrystals decreases both toward the quenched margins and toward the interior of the sheet. The decrease in microcrystal size toward the interior of the sheet is interpreted to indicate the presence of a cooling break; possibly represented by a concentration of pumice. 32 refs., 11 figs.

  6. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  7. Thermodynamic framework for discrete optimal control in multiphase flow systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanislaw

    1999-08-01

    Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.

  8. Numerical Solution for the Effect of Suction or Injection on Flow of Nanofluids Past a Stretching Sheet

    NASA Astrophysics Data System (ADS)

    Abd Elazem, Nader Y.

    2016-06-01

    The flow of nanofluids past a stretching sheet has attracted much attention owing to its wide applications in industry and engineering. Numerical solution has been discussed in this article for studying the effect of suction (or injection) on flow of nanofluids past a stretching sheet. The numerical results carried out using Chebyshev collocation method (ChCM). Useful results for temperature profile, concentration profile, reduced Nusselt number, and reduced Sherwood number are discussed in tabular and graphical forms. It was also demonstrated that both temperature and concentration profiles decrease by an increase from injection to suction. Moreover, the numerical results show that the temperature profiles decrease at high values of Prandtl number Pr. Finally, the present results showed that the reduced Nusselt number is a decreasing function, whereas the reduced Sherwood number is an increasing function at fixed values of Prandtl number Pr, Lewis number Le and suction (or injection) parameter s for variation of Brownian motion parameter Nb, and thermophoresis parameter Nt.

  9. The dynamical role of vortex tubes and sheets in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Pirozzoli, Sergio

    2009-11-01

    Vortex sheets and tubes are extracted from DNS of a canonical compressible boundary layer, and their dynamical contribution analyzed by means of a non-local analysis based on the solution of the Poisson equation for the vector potential. The results show non-negligible contribution of vortex sheets to the wall layer dynamics, especially in the inner layer. The statistical relationship between tubes and sheets is also analyzed by means of conditional average fields extracted from a DNS database. The results support strong association between the two types of coherent structures, and indicate that vortex tubes are mainly produced upon roll-up of vortex sheets (as in the hairpin vortex paradigm), or interact causing the ejection of near-wall vorticity, or generate sheets of streamwise vorticity through a rubbing effect caused by the no-slip condition.

  10. Optimized open-flow mixing: insights from microbubble streaming

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha

    2015-11-01

    Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.

  11. Optimization of the Mini-Flo flow cytometer

    SciTech Connect

    Venkatesh, M.

    1996-06-01

    A new method of collecting light scattering from a liquid flow cytometer has been proposed; this apparatus is named the Mini-Flo flow cytometer. The Mini-Flo uses a high numerical aperture collection immersed in the flow stream. The collector consists of a conically tipped fiber optic pipe and terminating optical detector. This study was performed to improve the signal/noise ration and optimize the Mini-Flo`s performance for HIV blood detection applications. Experiments were performed to gauge the effects of Raman scattering, lens/filter fluorescence, and fiber optic fluorescence on the Mini-Flo`s performance and signal/noise ratio. Results indicated that the fiber optic was a major source of fluorescence noise and reducing its length from 33 cm to 10 cm increased the signal noise ratio from 8 to 75. Therefore, one of the key issues in optimizing the Mini-Flo`s performance is a redesign of the holding structure such that the fiber optic length is minimized. Further improvements of the Mini-Flo`s performance can be achieved by studying the polish of the fiber optic, the flow over the fiber optics`s conical tip, and the optimal particle rates.

  12. Multicriteria optimization of gluconic acid production using net flow.

    PubMed

    Halsall-Whitney, H; Taylor, D; Thibault, J

    2003-03-01

    The biochemical process industry is often confronted with the challenge of making decisions in an atmosphere of multiple and conflicting objectives. Recent innovations in the field of operations research and systems science have yielded rigorous multicriteria optimization techniques that can be successfully applied to the field of biochemical engineering. These techniques incorporate the expert's experience into the optimization routine and provide valuable information about the zone of possible solutions. This paper presents a multicriteria optimization strategy that generates a Pareto domain, given a set of conflicting objective criteria, and determines the optimal operating region for the production of gluconic acid using the net flow method (NFM). The objective criteria include maximizing the productivity and concentration of gluconic acid, while minimizing the residual substrate. Three optimization strategies are considered. The first two strategies identify the optimal operating region for the process inputs. The results yielded an acceptable compromise between productivity, gluconic acid concentration and residual substrate concentration. Fixing the process inputs representing the batch time, initial substrate concentration and initial biomass equal to their optimal values, the remaining simulations were used to study the sensitivity of the optimum operating region to changes in the oxygen mass transfer coefficient, K(L) a, by utilizing a multi-level K(L) a strategy. The results show that controlling K(L) a during the reaction reduced the production of biomass, which in turn resulted in increased productivity and concentration of gluconic acid above that of a fixed K(L) a.

  13. Optimization of micropillar sequences for fluid flow sculpting

    NASA Astrophysics Data System (ADS)

    Stoecklein, Daniel; Wu, Chueh-Yu; Kim, Donghyuk; Di Carlo, Dino; Ganapathysubramanian, Baskar

    2016-01-01

    Inertial fluid flow deformation around pillars in a microchannel is a new method for controlling fluid flow. Sequences of pillars have been shown to produce a rich phase space with a wide variety of flow transformations. Previous work has successfully demonstrated manual design of pillar sequences to achieve desired transformations of the flow cross section, with experimental validation. However, such a method is not ideal for seeking out complex sculpted shapes as the search space quickly becomes too large for efficient manual discovery. We explore fast, automated optimization methods to solve this problem. We formulate the inertial flow physics in microchannels with different micropillar configurations as a set of state transition matrix operations. These state transition matrices are constructed from experimentally validated streamtraces for a fixed channel length per pillar. This facilitates modeling the effect of a sequence of micropillars as nested matrix-matrix products, which have very efficient numerical implementations. With this new forward model, arbitrary micropillar sequences can be rapidly simulated with various inlet configurations, allowing optimization routines quick access to a large search space. We integrate this framework with the genetic algorithm and showcase its applicability by designing micropillar sequences for various useful transformations. We computationally discover micropillar sequences for complex transformations that are substantially shorter than manually designed sequences. We also determine sequences for novel transformations that were difficult to manually design. Finally, we experimentally validate these computational designs by fabricating devices and comparing predictions with the results from confocal microscopy.

  14. Anisotropic hardening model based on non-associated flow rule and combined nonlinear kinematic hardening for sheet materials

    NASA Astrophysics Data System (ADS)

    Taherizadeh, Aboozar; Green, Daniel E.; Yoon, Jeong W.

    2013-12-01

    A material model for more effective analysis of plastic deformation of sheet materials is presented in this paper. The model is capable of considering the following aspects of plastic deformation behavior of sheet materials: the anisotropy in yielding stresses in different directions by using a quadratic yield function (based on Hill's 1948 model and stress ratios), the anisotropy in work hardening by introducing non-constant flow stress hardening in different directions, the anisotropy in plastic strains in different directions by using a quadratic plastic potential function and non-associated flow rule (based on Hill's 1948 model and plastic strain ratios, r-values), and finally some of the cyclic hardening phenomena such as Bauschinger's effect and transient behavior for reverse loading by using a coupled nonlinear kinematic hardening (so-called Armstrong-Frederick-Chaboche model). Basic fundamentals of the plasticity of the model are presented in a general framework. Then, the model adjustment procedure is derived for the plasticity formulations. Also, a generic numerical stress integration procedure is developed based on backward-Euler method (so-called multi-stage return mapping algorithm). Different aspects of the model are verified for DP600 steel sheet. Results show that the new model is able to predict the sheet material behavior in both anisotropic hardening and cyclic hardening regimes more accurately. By featuring the above-mentioned facts in the presented constitutive model, it is expected that more accurate results can be obtained by implementing this model in computational simulations of sheet material forming processes. For instance, more precise results of springback prediction of the parts formed from highly anisotropic hardened materials or that of determining the forming limit diagrams is highly expected by using the developed material model.

  15. Stereoscopic PIV on multiple color-coded light sheets and its application to axial flow in flapping robotic insect wings

    NASA Astrophysics Data System (ADS)

    Pick, Simon; Lehmann, Fritz-Olaf

    2009-12-01

    Non-scanning volume flow measurement techniques such as 3D-PTV, holographic and tomographic particle image velocimetry (PIV) permit reconstructions of all three components (3C) of velocity and vorticity vectors in a fluid volume (3D). In this study, we present a novel 3D3C technique termed Multiple-Color-Plane Stereo Particle-Image-Velocimetry (color PIV), which allows instantaneous measurements of 3C velocity vectors in six parallel, colored light sheets. We generated the light sheets by passing white light of two strobes through dichroic color filters and imaged the slices by two 3CCD color cameras in Stereo-PIV configuration. The stereo-color images were processed by custom software routines that sorted each colored fluid particle into one of six gray-scale images according to its hue, saturation, and luminance. We used conventional Stereo PIV cross-correlation algorithms to compute a 3D planar vector field for each light sheet and subsequently interpolated a volume flow map from the six vector fields. As a first application, we quantified the wake and axial flow in the vortical structures of a robotic insect (fruit fly) model wing. In contrast to previous findings, the measured data indicate strong axial flow components on the upper wing surface, including axial flow in the leading-edge vortex core. Collectively, color PIV is robust against mechanical misalignments, avoids laser safety issues, and computes instantaneous 3D vector fields in a fraction of the time typical for other 3D systems. Color PIV might thus be of value for volume measurements of highly unsteady flows.

  16. Fuzzy modelling of power system optimal load flow

    SciTech Connect

    Miranda, V.; Saraiva, J.T. )

    1992-05-01

    In this paper, a fuzzy model for power system operation is presented. Uncertainties in loads and generations are modeled as fuzzy numbers. System behavior under known (while uncertain) injections is dealt with by a DC fuzzy power flow model. System optimal (while uncertain) operation is calculated with linear programming procedures where the problem nature and structure allows some efficient techniques such as Dantzig Wolfe decomposition and dual simplex to be used. Among the results, one obtains a fuzzy cost value for system operation and possibility distributions for branch power flows and power generations. Some risk analysis is possible, as system robustness and exposure indices can be derived and hedging policies can be investigated.

  17. MHD mixed convection flow of a power law nanofluid over a vertical stretching sheet with radiation effect

    NASA Astrophysics Data System (ADS)

    Aini Mat, Nor Azian; Arifin, Norihan Md.; Nazar, Roslinda; Ismail, Fudziah; Bachok, Norfifah

    2013-09-01

    A similarity solution of the steady magnetohydrodynamic (MHD) mixed convection boundary layer flow due to a stretching vertical heated sheet in a power law nanofluid with thermal radiation effect is theoretically studied. The governing system of partial differential equations is first transformed into a system of ordinary differential equations. The transformed equations are solved numerically using the shooting method. The influence of pertinent parameters such as the nanoparticle volume fraction parameter, the magnetic parameter, the buoyancy or mixed convection parameter and the radiation parameter on the flow and heat transfer characteristics is discussed. Comparisons with published results are also presented.

  18. Numerical Study of Boundary Layer Flow and Heat Transfer of Oldroyd-B Nanofluid towards a Stretching Sheet

    PubMed Central

    Nadeem, Sohail; Ul Haq, Rizwan; Akbar, Noreen Sher; Lee, Changhoon; Khan, Zafar Hayat

    2013-01-01

    In the present article, we considered two-dimensional steady incompressible Oldroyd-B nanofluid flow past a stretching sheet. Using appropriate similarity variables, the partial differential equations are transformed to ordinary (similarity) equations, which are then solved numerically. The effects of various parameters, namely, Deborah numbers and , Prandtl parameter , Brownian motion , thermophoresis parameter and Lewis number , on flow and heat transfer are investigated. To see the validity of the present results, we have made the comparison of present results with the existing literature. PMID:24015172

  19. Artificial bee colony algorithm for solving optimal power flow problem.

    PubMed

    Le Dinh, Luong; Vo Ngoc, Dieu; Vasant, Pandian

    2013-01-01

    This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem.

  20. Artificial Bee Colony Algorithm for Solving Optimal Power Flow Problem

    PubMed Central

    Le Dinh, Luong; Vo Ngoc, Dieu

    2013-01-01

    This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem. PMID:24470790

  1. Opposed-Flow Flame Spread in a Narrow Channel Apparatus over Thin PMMA Sheets

    NASA Technical Reports Server (NTRS)

    Bornand, G. R.; Olson, Sandra L.; Miller, F. J.; Pepper, J. M.; Wichman, I. S.

    2013-01-01

    Flame spread tests have been conducted over polymethylmethacrylate (PMMA) samples in San Diego State University's Narrow Channel Apparatus (SDSU NCA). The Narrow Channel Apparatus (NCA) has the ability to suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression achieved with a NCA allows for tests to be conducted in a simulated microgravity atmosphere-a characteristic that Test 1 lacks since flames present in Test 1 are buoyantly driven. The SDSU NCA allows for flame spread tests to be conducted with varying opposed flow oxidizer velocities, oxygen percent by volume, and total pressure. Also, since the test sample is placed symmetrically between two confining plates so that there is a gap above and below the sample, this gap can be adjusted. This gap height adjustment allows for a compromise between heat loss from the flame to the confining boundaries and buoyancy suppression achieved by those boundaries. This article explores the effect gap height has on the flame spread rate for 75 µm thick PMMA at 1 atm pressure and 21% oxygen concentration by volume in the SDSU NCA. Flame spread results from the SDSU NCA for thin cellulose fuels have previously been compared to results from tests in actual microgravity at various test conditions with the same sample materials and were found to be in good agreement. This article also presents results from the SDSU NCA for PMMA at 1 atm pressure, opposed oxidizer velocity ranging from 3 to 35 cm/s, oxygen concentration by volume at 21%, 30 %, and 50% and fuel thicknesses of 50 and 75 µm. These results are compared to results obtained in actual microgravity for PMMA obtained at the 4.5s drop tower of MGLAB in Gifu, Japan, and the 5.2s drop tower at NASA's Zero-Gravity Research Facility in Cleveland, OH. This comparison confirms

  2. Average patterns of precipitation and plasma flow in the plasma sheet flux tubes during steady magnetospheric convection

    NASA Technical Reports Server (NTRS)

    Sergeev, V. A.; Lennartsson, W.; Pellinen, R.; Vallinkoski, M.; Fedorova, N. I.

    1990-01-01

    Average patterns of plasma drifts and auroral precipitation in the nightside auroral zone were constructed during a steady magnetospheric convection (SMC) event on February 19, 1978. By comparing these patterns with the measurements in the midtail plasma sheet made by ISEE-1, and using the corresponding magnetic field model, the following features are inferred: (1) the concentration of the earthward convection in the midnight portion of the plasma sheet (convection jet); (2) the depleted plasma energy content of the flux tubes in the convection jet region; and (3) the Region-1 field-aligned currents generated in the midtail plasma sheet. It is argued that these three elements are mutually consistent features appearing in the process of ionosphere-magnetosphere interaction during SMC periods. These configurational characteristics resemble the corresponding features of substorm expansions (enhanced convection and 'dipolarized' magnetic field within the substorm current wedge) and appear to play the same role in regulating the plasma flow in the flux tubes connected to the plasma sheet.

  3. Resistive Network Optimal Power Flow: Uniqueness and Algorithms

    SciTech Connect

    Tan, CW; Cai, DWH; Lou, X

    2015-01-01

    The optimal power flow (OPF) problem minimizes the power loss in an electrical network by optimizing the voltage and power delivered at the network buses, and is a nonconvex problem that is generally hard to solve. By leveraging a recent development on the zero duality gap of OPF, we propose a second-order cone programming convex relaxation of the resistive network OPF, and study the uniqueness of the optimal solution using differential topology, especially the Poincare-Hopf Index Theorem. We characterize the global uniqueness for different network topologies, e.g., line, radial, and mesh networks. This serves as a starting point to design distributed local algorithms with global behaviors that have low complexity, are computationally fast, and can run under synchronous and asynchronous settings in practical power grids.

  4. Analysis of the Hessian for Aerodynamic Optimization: Inviscid Flow

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Ta'asan, Shlomo

    1996-01-01

    In this paper we analyze inviscid aerodynamic shape optimization problems governed by the full potential and the Euler equations in two and three dimensions. The analysis indicates that minimization of pressure dependent cost functions results in Hessians whose eigenvalue distributions are identical for the full potential and the Euler equations. However the optimization problems in two and three dimensions are inherently different. While the two dimensional optimization problems are well-posed the three dimensional ones are ill-posed. Oscillations in the shape up to the smallest scale allowed by the design space can develop in the direction perpendicular to the flow, implying that a regularization is required. A natural choice of such a regularization is derived. The analysis also gives an estimate of the Hessian's condition number which implies that the problems at hand are ill-conditioned. Infinite dimensional approximations for the Hessians are constructed and preconditioners for gradient based methods are derived from these approximate Hessians.

  5. Self-Contained Automated Methodology for Optimal Flow Control

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Gunzburger, Max D.; Nicolaides, Roy A.; Erlebacherl, Gordon; Hussaini, M. Yousuff

    1997-01-01

    This paper describes a self-contained, automated methodology for active flow control which couples the time-dependent Navier-Stokes system with an adjoint Navier-Stokes system and optimality conditions from which optimal states, i.e., unsteady flow fields and controls (e.g., actuators), may be determined. The problem of boundary layer instability suppression through wave cancellation is used as the initial validation case to test the methodology. Here, the objective of control is to match the stress vector along a portion of the boundary to a given vector; instability suppression is achieved by choosing the given vector to be that of a steady base flow. Control is effected through the injection or suction of fluid through a single orifice on the boundary. The results demonstrate that instability suppression can be achieved without any a priori knowledge of the disturbance, which is significant because other control techniques have required some knowledge of the flow unsteadiness such as frequencies, instability type, etc. The present methodology has been extended to three dimensions and may potentially be applied to separation control, re-laminarization, and turbulence control applications using one to many sensors and actuators.

  6. Optimization of gas hydrate reactors with slug flow

    SciTech Connect

    Elperin, T.; Fominykh, A.

    1997-11-01

    A model of heat transfer during gas hydrate formation at a gas-liquid interface in gas-liquid slug flow with liquid plugs containing small bubbles is suggested. Under the assumption of perfect mixing of liquid in liquid plugs, recurrent relations for temperature in the n-th liquid plug and heat and mass fluxes from the n-th unit cell in a gas-liquid slug flow are derived. The ratio of the total mass flux during gas hydrate formation in a cluster with N unit cells to the mass flux in a cluster with an infinite number of unit cells is determined. The number of unit cells that yield 95% of the total amount of gas hydrates in an infinite cluster of unit cells is calculated and formula for an optimal length of a gas hydrate slug flow reactor is derived.

  7. Multi-Objective Parallel Test-Sheet Composition Using Enhanced Particle Swarm Optimization

    ERIC Educational Resources Information Center

    Ho, Tsu-Feng; Yin, Peng-Yeng; Hwang, Gwo-Jen; Shyu, Shyong Jian; Yean, Ya-Nan

    2009-01-01

    For large-scale tests, such as certification tests or entrance examinations, the composed test sheets must meet multiple assessment criteria. Furthermore, to fairly compare the knowledge levels of the persons who receive tests at different times owing to the insufficiency of available examination halls or the occurrence of certain unexpected…

  8. A Particle Swarm Optimization Approach to Composing Serial Test Sheets for Multiple Assessment Criteria

    ERIC Educational Resources Information Center

    Yin, Peng-Yeng; Chang, Kuang-Cheng; Hwang, Gwo-Jen; Hwang, Gwo-Haur; Chan, Ying

    2006-01-01

    To accurately analyze the problems of students in learning, the composed test sheets must meet multiple assessment criteria, such as the ratio of relevant concepts to be evaluated, the average discrimination degree, difficulty degree and estimated testing time. Furthermore, to precisely evaluate the improvement of student's learning performance…

  9. Adjoint-based airfoil shape optimization in transonic flow

    NASA Astrophysics Data System (ADS)

    Gramanzini, Joe-Ray

    The primary focus of this work is efficient aerodynamic shape optimization in transonic flow. Adjoint-based optimization techniques are employed on airfoil sections and evaluated in terms of computational accuracy as well as efficiency. This study examines two test cases proposed by the AIAA Aerodynamic Design Optimization Discussion Group. The first is a two-dimensional, transonic, inviscid, non-lifting optimization of a Modified-NACA 0012 airfoil. The second is a two-dimensional, transonic, viscous optimization problem using a RAE 2822 airfoil. The FUN3D CFD code of NASA Langley Research Center is used as the ow solver for the gradient-based optimization cases. Two shape parameterization techniques are employed to study their effect and the number of design variables on the final optimized shape: Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD) and the BandAids free-form deformation technique. For the two airfoil cases, angle of attack is treated as a global design variable. The thickness and camber distributions are the local design variables for MASSOUD, and selected airfoil surface grid points are the local design variables for BandAids. Using the MASSOUD technique, a drag reduction of 72.14% is achieved for the NACA 0012 case, reducing the total number of drag counts from 473.91 to 130.59. Employing the BandAids technique yields a 78.67% drag reduction, from 473.91 to 99.98. The RAE 2822 case exhibited a drag reduction from 217.79 to 132.79 counts, a 39.05% decrease using BandAids.

  10. Ice flow physical processes derived from the ERS-1 high-resolution map of the Antarctica and Greenland ice sheets

    NASA Astrophysics Data System (ADS)

    Rémy, Frédérique; Shaeffer, Philippe; Legrésy, Benoît

    1999-12-01

    The ERS-1 satellite, launched in 1991, has provided altimetric observations of the Greenland Ice Sheet and 80 per cent of the Antarctica Ice Sheet north of 82 degS. It was placed in a geodetic (168-day repeat) orbit between April 1994 and March 1995, yielding a 1.5 km across-track spacing at latitude 70 deg with a higher along-track sampling of 350 m. We have analysed the waveform altimetric data from this period to compute maps with a 1/30 deg grid size. Data processing consists of correcting for environmental factors and editing and retracking the waveforms. A further step consists of reducing the radial orbit error through crossover analysis and correcting the slope error to second order. The high-resolution topography of both ice sheets reveals numerous details. A kilometre-scale surface roughness running at 45 deg from the flow direction is the dominant topographic characteristic of both continents. Antarctica also exhibits many scars due to local flow anomalies. Several physical processes can be identified: abrupt transitions from deformation to sliding and vice versa, and impressive strike-slip phenomena, inducing en echelon folds.

  11. MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Alizadeh-Pahlavan, Amir; Aliakbar, Vahid; Vakili-Farahani, Farzad; Sadeghy, Kayvan

    2009-02-01

    The performance of a two-auxiliary-parameter homotopy analysis method (HAM) is investigated in solving laminar MHD flow of an upper-convected Maxwell fluid (UCM) above a porous isothermal stretching sheet. The analysis is carried out up to the 20th-order of approximation, and the effect of parameters such as elasticity number, suction/injection velocity, and magnetic number are studied on the velocity field above the sheet. The results will be contrasted with those reported recently by Hayat et al. [Hayat T, Abbas Z, Sajid M. Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys Lett A 358;2006:396-403] obtained using a third-order one-auxiliary-parameter homotopy analysis method. It is concluded that the flow reversal phenomenon as predicted by Hayat et al. (2006) may have arisen because of the inadequacies of using just one-auxiliary-parameter in their analysis. That is, no flow reversal is predicted to occur if instead of using one-auxiliary-parameter use is made of two auxiliary parameters together with a more convenient set of base functions to assure the convergence of the series used to solve the highly nonlinear ODE governing the flow.

  12. Optimal Control of Airfoil Flow Separation using Fluidic Excitation

    NASA Astrophysics Data System (ADS)

    Shahrabi, Arireza F.

    as well as F+ were evaluated and discussed. The computational model predictions showed good agreement with the experimental data. It was observed that different angles of attack and flap angles have different requirements for the minimum value of the momentum coefficient, Cμ, in order for the SJA to be effective for control of separation. It was also found that the variation of F + noticeably affects the lift and drag forces acting on the airfoil. The optimum values of parameters during open loop control simulations have been applied in order to introduce the optimal open loop control outcome. An innovative approach has been implemented to formulate optimal frequencies and momentum ratios of vortex shedding which depends on angle of attack and static pressure of the separation zone in the upper chord. Optimal open loop results have been compared with the optimal closed loop results. Cumulative case studies in the matter of angle of attacks, flap angles, Re, Cμ and F+ provide a convincing collection of evidence to the following conclusion. An improvement of a direct closed loop control was demonstrated, and an analytical formula describing the properties of a separated flow and vortex shedding was proposed. Best AFC solutions are offered by providing optimal frequencies and momentum ratios at a variety of flow conditions.

  13. Model Assessment and Optimization Using a Flow Time Transformation

    NASA Astrophysics Data System (ADS)

    Smith, T. J.; Marshall, L. A.; McGlynn, B. L.

    2012-12-01

    Hydrologic modeling is a particularly complex problem that is commonly confronted with complications due to multiple dominant streamflow states, temporal switching of streamflow generation mechanisms, and dynamic responses to model inputs based on antecedent conditions. These complexities can inhibit the development of model structures and their fitting to observed data. As a result of these complexities and the heterogeneity that can exist within a catchment, optimization techniques are typically employed to obtain reasonable estimates of model parameters. However, when calibrating a model, the cost function itself plays a large role in determining the "optimal" model parameters. In this study, we introduce a transformation that allows for the estimation of model parameters in the "flow time" domain. The flow time transformation dynamically weights streamflows in the time domain, effectively stretching time during high streamflows and compressing time during low streamflows. Given the impact of cost functions on model optimization, such transformations focus on the hydrologic fluxes themselves rather than on equal time weighting common to traditional approaches. The utility of such a transform is of particular note to applications concerned with total hydrologic flux (water resources management, nutrient loading, etc.). The flow time approach can improve the predictive consistency of total fluxes in hydrologic models and provide insights into model performance by highlighting model strengths and deficiencies in an alternate modeling domain. Flow time transformations can also better remove positive skew from the streamflow time series, resulting in improved model fits, satisfaction of the normality assumption of model residuals, and enhanced uncertainty quantification. We illustrate the value of this transformation for two distinct sets of catchment conditions (snow-dominated and subtropical).

  14. Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity

    NASA Astrophysics Data System (ADS)

    Breuer, D.; Futterer, B.; Plesa, A.; Krebs, A.; Zaussinger, F.; Egbers, C.

    2013-12-01

    In mantle dynamics research, experiments, usually performed in rectangular geometries in Earth-based laboratories, have the character of ';exploring new physics and testing theories' [1]. In this work, we introduce our spherical geometry experiments on electro-hydrodynamical driven Rayleigh-Benard convection that have been performed for both temperature-independent (`GeoFlow I'), and temperature-dependent fluid viscosity properties (`GeoFlow II') with a measured viscosity contrast up to 1.5. To set up a self-gravitating force field, we use a high voltage potential between the inner and outer boundaries and a dielectric insulating liquid and perform the experiment under microgravity conditions at the ISS [2, 3]. Further, numerical simulations in 3D spherical geometry have been used to reproduce the results obtained in the `GeoFlow' experiments. For flow visualisation, we use Wollaston prism shearing interferometry which is an optical method producing fringe pattern images. Flow pattern differ between our two experiments (Fig. 1). In `GeoFlow I', we see a sheet-like thermal flow. In this case convection patterns have been successfully reproduced by 3D numerical simulations using two different and independently developed codes. In contrast, in `GeoFlow II' we obtain plume-like structures. Interestingly, numerical simulations do not yield this type of solution for the low viscosity contrast realised in the experiment. However, using a viscosity contrast of two orders of magnitude or higher, we can reproduce the patterns obtained in the `GeoFlow II' experiment, from which we conclude that non-linear effects shift the effective viscosity ratio [4]. References [1] A. Davaille and A. Limare (2009). In: Schubert, G., Bercovici, D. (Eds.), Treatise on Geophysics - Mantle Dynamics. [2] B. Futterer, C. Egbers, N. Dahley, S. Koch, L. Jehring (2010). Acta Astronautica 66, 193-100. [3] B. Futterer, N. Dahley, S. Koch, N. Scurtu, C. Egbers (2012). Acta Astronautica 71, 11-19. [4

  15. Paleo-ice flow directions of the Northern Antarctic Peninsula ice sheet based upon a new synthesis of seabed imagery

    NASA Astrophysics Data System (ADS)

    Lavoie, C.; Domack, E. W.; Pettit, E. C.; Scambos, T. A.; Larter, R. D.; Schenke, H.-W.; Yoo, K. C.; Gutt, J.; Wellner, J.; Canals, M.; Anderson, J. B.; Amblas, D.

    2014-10-01

    We present a new seafloor map for the northern Antarctic Peninsula (AP), including swath multibeam data sets from five national programs. Our map allows for the examination and interpretation of Last Glacial Maximum (LGM) paleo-ice sheet/stream flow directions developed upon the seafloor from the preservation of: mega-scale glacial lineations, drumlinized features, and selective linear erosion. We combine this with terrestrial observations of flow direction to place constraints on ice divides and accumulation centers (ice domes) on the AP continental shelf. The results show a flow bifurcation as ice exits the Larsen-B embayment. Flow emanating off the Seal Nunataks (including Robertson Island) is directed toward the southeast, then eastward as the flow transits toward the Robertson Trough. A second, stronger "streaming flow" is directed toward the southeast then southward, as ice overflowed the tip of the Jason Peninsula to reach the southern perimeter of the embayment. Our reconstruction also refines the extent of at least five other distinct paleo-ice stream systems which, in turn, serve to delineate seven broad regions where contemporaneous ice domes must have been centered on the continental shelf during the LGM time interval. Our reconstruction is more detailed than other recent compilations because we followed specific flow indicators and have kept tributary flow paths parallel.

  16. Analyzing Quadratic Unconstrained Binary Optimization Problems Via Multicommodity Flows

    PubMed Central

    Wang, Di; Kleinberg, Robert D.

    2009-01-01

    Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n {0, 1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2, C3, C4,…. It is known that C2 can be computed by solving a maximum-flow problem, whereas the only previously known algorithms for computing Ck (k > 2) require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0, 1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network. PMID:20161596

  17. Optimal flow sensor placement on wastewater treatment plants.

    PubMed

    Villez, Kris; Vanrolleghem, Peter A; Corominas, Lluís

    2016-09-15

    Obtaining high quality data collected on wastewater treatment plants is gaining increasing attention in the wastewater engineering literature. Typical studies focus on recognition of faulty data with a given set of installed sensors on a wastewater treatment plant. Little attention is however given to how one can install sensors in such a way that fault detection and identification can be improved. In this work, we develop a method to obtain Pareto optimal sensor layouts in terms of cost, observability, and redundancy. Most importantly, the resulting method allows reducing the large set of possibilities to a minimal set of sensor layouts efficiently for any wastewater treatment plant on the basis of structural criteria only, with limited sensor information, and without prior data collection. In addition, the developed optimization scheme is fast. Practically important is that the number of sensors needed for both observability of all flows and redundancy of all flow sensors is only one more compared to the number of sensors needed for observability of all flows in the studied wastewater treatment plant configurations.

  18. Optimal flow sensor placement on wastewater treatment plants.

    PubMed

    Villez, Kris; Vanrolleghem, Peter A; Corominas, Lluís

    2016-09-15

    Obtaining high quality data collected on wastewater treatment plants is gaining increasing attention in the wastewater engineering literature. Typical studies focus on recognition of faulty data with a given set of installed sensors on a wastewater treatment plant. Little attention is however given to how one can install sensors in such a way that fault detection and identification can be improved. In this work, we develop a method to obtain Pareto optimal sensor layouts in terms of cost, observability, and redundancy. Most importantly, the resulting method allows reducing the large set of possibilities to a minimal set of sensor layouts efficiently for any wastewater treatment plant on the basis of structural criteria only, with limited sensor information, and without prior data collection. In addition, the developed optimization scheme is fast. Practically important is that the number of sensors needed for both observability of all flows and redundancy of all flow sensors is only one more compared to the number of sensors needed for observability of all flows in the studied wastewater treatment plant configurations. PMID:27258618

  19. Digital-Particle-Image-Velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder

    NASA Astrophysics Data System (ADS)

    Brücker, Ch.

    1995-08-01

    Scanning-Particle-Image-Velocimetry Technique (SPIV), introduced by Brücker (1992) and Brücker and Althaus (1992), offers the quantitative investigation of three-dimensional vortical structures in unsteady flows. On principle, this technique combines classical Particle-Image-Velocimetry (PIV) with volume scanning using a scanning light-sheet. In our previous studies, single scans obtained from photographic frame series were evaluated to show the instantaneous vortical structure of the respective flow phenomena. Here, continuous video recordings are processed to capture also the temporal information for the study of the set-up of 3D effects in the cylinder wake. The flow is continuously sampled in depth by the scanning light-sheet and in each of the parallel planes frame-to-frame cross-correlation of the video images (DPIV) is applied to obtain the 2D velocity field. Because the scanning frequency and repetition rate is high in comparison with the characteristic time-scale of the flow, the evaluation provides a complete time-record of the 3D flow during the starting process. With use of the continuity concept as described by Robinson and Rockwell (1993), we obtained in addition the out-of-plane component of the velocity in spanwise direction. This in view, the described technique enabled the reconstruction of the three-dimensional time-dependent velocity and vorticity field. The visualization of the dynamical behaviour of these quantities as, e.g. by video, gave a good impression of the spanwise flow showing the “tornado-like” suction effect of the starting vortices.

  20. Incorporating User Preferences Within an Optimal Traffic Flow Management Framework

    NASA Technical Reports Server (NTRS)

    Rios, Joseph Lucio; Sheth, Kapil S.; Guiterrez-Nolasco, Sebastian Armardo

    2010-01-01

    The effectiveness of future decision support tools for Traffic Flow Management in the National Airspace System will depend on two major factors: computational burden and collaboration. Previous research has focused separately on these two aspects without consideration of their interaction. In this paper, their explicit combination is examined. It is shown that when user preferences are incorporated with an optimal approach to scheduling, runtime is not adversely affected. A benefit-cost ratio is used to measure the influence of user preferences on an optimal solution. This metric shows user preferences can be accommodated without inordinately, negatively affecting the overall system delay. Specifically, incorporating user preferences will increase delays proportionally to increased user satisfaction.

  1. Optimization studies on a Fe/Cr redox flow battery

    NASA Astrophysics Data System (ADS)

    Lopez-Atalaya, M.; Codina, G.; Perez, J. R.; Vazquez, J. L.; Aldaz, A.

    The performance of a Fe/Cr redox flow battery which operates in bipolar mode is described. The optimization studies on electrolyte composition, temperature and membrane type are presented. These studies have achieved a coulombic efficiency of 97% and an energy efficiency of 73% for an electrolyte composition of 2.3 M HCl + 1.25 M FeCl 2 + 1.25 M CrCl 3, working at 44 °C with a current density of 40 mA/cm 2 and using the Nafion 117 membrane. A maximum discharge power density of 73 mW/cm 2 has been obtained.

  2. Exact Convex Relaxation of Optimal Power Flow in Radial Networks

    SciTech Connect

    Gan, LW; Li, N; Topcu, U; Low, SH

    2015-01-01

    The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. It is nonconvex. We prove that a global optimum of OPF can be obtained by solving a second-order cone program, under a mild condition after shrinking the OPF feasible set slightly, for radial power networks. The condition can be checked a priori, and holds for the IEEE 13, 34, 37, 123-bus networks and two real-world networks.

  3. Impact of Velocity Slip and Temperature Jump of Nanofluid in the Flow over a Stretching Sheet with Variable Thickness

    NASA Astrophysics Data System (ADS)

    Guo, Chengjie; Zheng, Liancun; Zhang, Chaoli; Chen, Xuehui; Zhang, Xinxin

    2016-05-01

    In this study, the generalised velocity slip and the generalised temperature jump of nanofluid in the flow over a stretching sheet with variable thickness are investigated. Because of the non-adherence of the fluid to a solid boundary, the velocity slip and the temperature jump between fluid and moving sheet may happen in industrial process, so taking velocity slip and temperature jump into account is indispensable. It is worth mentioning that the analysis of the velocity v, which has not been seen in the previous references related to the variable thickness sheet, is presented. The thermophoresis and the Brownian motion, which are the two very important physical parameters, are fully studied. The governing equations are simplified into ordinary differential equations by the proper transformations. The homotopy analysis method (HAM) is applied to solve the reduced equations for general conditions. In addition, the effects of involved parameters such as velocity slip parameter, temperature jump parameter, Prandtl number, magnetic field parameter, permeable parameter, Lewis number, thermophoresis parameter, and Brownian motion parameter are investigated and analysed graphically.

  4. Optimizing the simulation of riverine species flow preferences

    NASA Astrophysics Data System (ADS)

    Kiesel, Jens; Pfannerstill, Matthias; Guse, Björn; Kakouei, Karan; Jähnig, Sonja C.; Fohrer, Nicola

    2016-04-01

    Riverine biota have distinct demands on the discharge regime. To quantify these demands, discharge time series are translated to ecohydrological indicators, e.g. magnitude, timing or duration of baseflow or peak flow events. These indicators are then related to species occurrence and/or absence to establish the feedback response of aquatic species to hydrological conditions. These links can be used in conjunction with hydrological simulations for predictions of species occurrences. If differences between observed and simulated ecohydrological indicator values are too high, such predictions can be wrong. Indicator differences can be due to poor input data quality and simplified model algorithms, but also depend on how the model was optimized. For instance, in case the model was optimised towards a single objective function, e.g. minimizing the difference between simulated and observed Q95, differences between simulated and observed high flow indicators will be smaller as compared to baseflow indicators. In this study, we are working towards assessing this error depending on the optimisation of the model. This assessment is based on a multi-objective vs. single-objective model optimization which we have realised in the following four-step approach: (1) sets of highly relevant ecohydrological indicators are defined; (2) the hydrologic model is optimised using a multi-objective function that combines all indicators; (3) the hydrologic model is optimised using single-objective functions with one optimisation round for each indicator and (4) the differences between all optimisation methods are calculated. By assessing these absolute (simulated vs observed) and relative (simulated vs simulated) differences, we can evaluate the magnitude of the possible error band when optimising a hydrological model towards different ecohydrological indicators. This assessment can be used to optimize hydrological models for depicting preferences of riverine biota more effectively and

  5. Optimal control of an asymptotic model of flow separation

    NASA Astrophysics Data System (ADS)

    Qadri, Ubaid; Schmid, Peter; LFC-UK Team

    2015-11-01

    In the presence of surface imperfections, the boundary layer developing over an aircraft wing can separate and reattach, leading to a small separation bubble. We are interested in developing a low-order model that can be used to control the onset of separation at high Reynolds numbers typical of aircraft flight. In contrast to previous studies, we use a high Reynolds number asymptotic description of the Navier-Stokes equations to describe the motion of motion of the fluid. We obtain a steady solution to the nonlinear triple-deck equations for the separated flow over a small bump at high Reynolds numbers. We derive for the first time the adjoint of the nonlinear triple-deck equations and use it to study optimal control of the separated flow. We calculate the sensitivity of the properties of the separation bubble to local base flow modifications and steady forcing. We assess the validity of using this simplified asymptotic model by comparing our results with those obtained using the full Navier-Stokes equations.

  6. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  7. Description of a flow optimized oxygenator with integrated pulsatile pump.

    PubMed

    Borchardt, Ralf; Schlanstein, Peter; Arens, Jutta; Graefe, Roland; Schreiber, Fabian; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2010-11-01

    Extracorporeal membrane oxygenation (ECMO) is a well-established therapy for several lung and heart diseases in the field of neonatal and pediatric medicine (e.g., acute respiratory distress syndrome, congenital heart failure, cardiomyopathy). Current ECMO systems are typically composed of an oxygenator and a separate nonpulsatile blood pump. An oxygenator with an integrated pulsatile blood pump for small infant ECMO was developed, and this novel concept was tested regarding functionality and gas exchange rate. Pulsating silicone tubes (STs) were driven by air pressure and placed inside the cylindrical fiber bundle of an oxygenator to be used as a pump module. The findings of this study confirm that pumping blood with STs is a viable option for the future. The maximum gas exchange rate for oxygen is 48mL/min/L(blood) at a medium blood flow rate of about 300mL/min. Future design steps were identified to optimize the flow field through the fiber bundle to achieve a higher gas exchange rate. First, the packing density of the hollow-fiber bundle was lower than commercial oxygenators due to the manual manufacturing. By increasing this packing density, the gas exchange rate would increase accordingly. Second, distribution plates for a more uniform blood flow can be placed at the inlet and outlet of the oxygenator. Third, the hollow-fiber membranes can be individually placed to ensure equal distances between the surrounding hollow fibers.

  8. Determination of the geometrical position of vortices in flow fields visualized by laser light sheet

    NASA Astrophysics Data System (ADS)

    Foerster, S.

    A method to map out the location of vortex cores as a function of body station and angle of attack by means of a digital image processing is presented. The laser light sheet technique with smoke as tracer particles was employed to visualize the vortex cores. Later on the visualization-pictures of different planes of the light sheet, stored on video-film, were digitized and fed into an image processing system. After determination of the location of the vortex cores in picture units these vortex positions were transformed into units of the model configuration by means of an appropriate algorithm. Thus, the vortex trajectories could be defined for the horizontal and vertical planes in model coordinates.

  9. Series solution of hydromagnetic flow and heat transfer with Hall effect in a second grade fluid over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Ayub, Muhammad; Zaman, Haider; Ahmad, Masud

    2010-02-01

    We examine the problem of flow and heat transfer in a second grade fluid over a stretching sheet [K. Vajravelu, T. Roper, Int. J. Nonlinear Mech. 34, 1031 (1999)]. The equations considered by Vajravelu and Roper [K. Vajravelu, T. Roper, Int. J. Nonlinear Mech. 34, 1031 (1999)], are found to be incorrect in the literature. In this paper, we not only corrected the equation but found a useful analytic solution to this important problem. We also extended the problem for hydromagnetic flow and heat transfer with Hall effect. The explicit analytic homotopy solution for the velocity field and heat transfer are presented. Graphs for the velocity field, skin friction coefficient, and rate of heat transfer are presented. Tables for the skin friction coefficient and rate of heat transfer are also presented. The convergence of the solution is also properly checked and discussed.

  10. Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations

    SciTech Connect

    Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

    1980-03-01

    This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

  11. Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno’s model

    PubMed Central

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2015-01-01

    The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet. PMID:26440761

  12. Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno’s model

    NASA Astrophysics Data System (ADS)

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2015-10-01

    The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet.

  13. Flow Optimization in the Princeton MRI Experiment and Zonal Flow Generation in HTX

    NASA Astrophysics Data System (ADS)

    Caspary, Kyle; Burin, Michael; Gilson, Erik; Goodman, Jeremy; Ji, Hantao; McNulty, Michael; Schartman, Ethan; Sloboda, Peter; Wei, Xing

    2015-11-01

    The Princeton Magneto-Rotational Instability (MRI) experiment and the Hydrodynamic Turbulence Experiment (HTX) are a pair of modified Taylor-Couette devices which explore rotating magnetohydrodynamic and hydrodynamic flows. The Princeton MRI experiment uses a GaInSn working fluid and was designed to study the MRI, which is believed to be the mechanism responsible for the rapid accretion rate observed in some magnetized accretion disks. The experiment utilizes ultrasound Doppler velocimetry to measure velocity profiles and a newly installed suite of hall sensors on the inner and outer cylinders to characterize the magnetic field. Results are presented from experiments which seek to optimize the flow by varying the inner ring speed for a given magnetic field strength. In HTX, we explore the generation of zonal flows from turbulence by flow jets with water as the working fluid. Laser Doppler velocimetry is used to measure the mean and fluctuating velocity. The generation of anisotropic mean flow by means of beta plane turbulence is investigated through the use of a sloped end-cap. The impact of varying the end cap slope, fluid height and jet flow rate will be discussed.

  14. Computerized optimization of flows and temperature gradient in flow modulated comprehensive two-dimensional gas chromatography.

    PubMed

    Májek, Pavel; Krupčík, Ján; Gorovenko, Roman; Špánik, Ivan; Sandra, Pat; Armstrong, Daniel W

    2014-07-01

    Informational entropy and syentropy percent were used to optimize the flows in the first (1D) and in the second (2D) dimension ((1)Fm and (2)Fm, respectively) as well as the temperature program rate (r) for the flow modulated GC×GC-FID separation of C6-C12 aromatic hydrocarbons in a low boiling petrochemical sample. The separations were performed on a column series consisting of a 25m×0.25mm i.d.×0.2μm df of the polar ionic liquid SLB-IL 100 (1,9-di(3-vinylimidazolium)nonane bis(trifluoromethylsulfonyl)imide) in the first dimension and 5m×0.25mm i.d.×0.25μm df apolar HP-5MS (5% phenyl-95% methylpolysiloxane) in the second dimension. A dependence of a distribution of individual aromatic hydrocarbons in the 2D retention plane on the carrier gas flows ((1)Fm, and (2)Fm,) and temperature gradient (r) was examined in this study. It was found that informational entropy and synentropy percent are advantageous criteria to characterize the distribution of peaks in the 2D retention plane. Maximum informational entropy and synentropy percents correspond to the maximum distribution of C6-C12 aromatic hydrocarbons in the corresponding 2D retention plane gained by the given separation using optimized values of individual carrier gas column volume flows and the temperature rate at the temperature programmed GC×GC separations.

  15. Diverse magma flow directions during construction of sheeted dike complexes at fast- to superfast-spreading centers

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.

    2014-12-01

    Dike intrusion is a fundamental process during upper oceanic crustal accretion at fast- to superfast-spreading ridges. Based on the distribution of magma along fast-spreading centers inferred from marine geophysical data, models predict systematic steep flow at magmatically robust segment centers and shallow magma flow toward distal segment ends. Anisotropy of magnetic susceptibility (AMS) fabrics from 48 fully-oriented block samples of dikes from upper oceanic crust exposed at Hess Deep Rift and Pito Deep Rift reveal a wide range of magma flow directions that are not consistent with such simple magma supply models. The AMS is interpreted to arise from distribution anisotropy of titanomagnetite crystals based on weak shape-preferred orientation of opaque oxide and plagioclase crystals generally parallel to AMS maximum eigenvectors. Most dike samples show normal AMS fabrics with maximum eigenvector directions ranging from subvertical to subhorizontal. The distributions of inferred magma flow lineations from maximum eigenvectors show no preferred flow pattern, even after structural correction. We use a Kolmogorov-Smirnov test (KS-test) to show that the distribution of bootstrapped flow lineation rakes from Pito Deep are not statistically distinct from Hess Deep, and neither are distinguishable from Oman and Troodos Ophiolite AMS data. Magma flow directions in sheeted dikes from these two seafloor escarpments also do not correlate with available geochemistry in any systematic way as previously predicted. These results indicate distinct compositional sources feed melt that is injected into dikes at fast- to superfast-spreading ridges with no preference for subhorizontal or subvertical magma flow. Collectively, results imply ephemeral melt lenses at different along-axis locations within the continuous axial magma chamber and either direct injection or intermingling of melt from other deeper ridge-centered or off-axis sources.

  16. Optimizing dispersal corridors for the Cape Proteaceae using network flow.

    PubMed

    Phillips, Steven J; Williams, Paul; Midgley, Guy; Archer, Aaron

    2008-07-01

    We introduce a new way of measuring and optimizing connectivity in conservation landscapes through time, accounting for both the biological needs of multiple species and the social and financial constraint of minimizing land area requiring additional protection. Our method is based on the concept of network flow; we demonstrate its use by optimizing protected areas in the Western Cape of South Africa to facilitate autogenic species shifts in geographic range under climate change for a family of endemic plants, the Cape Proteaceae. In 2005, P. Williams and colleagues introduced a novel framework for this protected area design task. To ensure population viability, they assumed each species should have a range size of at least 100 km2 of predicted suitable conditions contained in protected areas at all times between 2000 and 2050. The goal was to design multiple dispersal corridors for each species, connecting suitable conditions between time periods, subject to each species' limited dispersal ability, and minimizing the total area requiring additional protection. We show that both minimum range size and limited dispersal abilities can be naturally modeled using the concept of network flow. This allows us to apply well-established tools from operations research and computer science for solving network flow problems. Using the same data and this novel modeling approach, we reduce the area requiring additional protection by a third compared to previous methods, from 4593 km2 to 3062 km , while still achieving the same conservation planning goals. We prove that this is the best solution mathematically possible: the given planning goals cannot be achieved with a smaller area, given our modeling assumptions and data. Our method allows for flexibility and refinement of the underlying climate-change, species-habitat-suitability, and dispersal models. In particular, we propose an alternate formalization of a minimum range size moving through time and use network flow to

  17. Further developments in LP-based optimal power flow

    SciTech Connect

    Alsac, O.; Bright, J.; Prais, M.; Stott, B.P )

    1990-08-01

    Over the past twenty five years, the optimal power flow (OPF) approach that has received the most widespread practical application is the one based on linear programming (LP). Special customized LP methods have been utilized primarily for fast reliable security-constrained dispatch using decoupled separable OPF problem formulations. They have been used in power system planning, operations and control. Nevertheless, while the LP approach has a number of important attributes, its range of application in the OPF field has remained somewhat restricted. This paper describes further developments that have transformed the LP approach into a truly general-purpose OPF solver, with computational and other advantages over even recent nonlinear programming (NLP) methods. The nonseparable loss-minimization problem can now be solved, giving the same results as NLP on power systems of any size and type.

  18. Optimal information provision for maximizing flow in a forked lattice

    NASA Astrophysics Data System (ADS)

    Imai, Takeaki; Nishinari, Katsuhiro

    2015-06-01

    In a forked road, the provision of inappropriate information to car drivers sometimes leads to undesirable situations such as one-sided congestion, which is called the hunting phenomenon in real traffic. To address such problems, we propose a forked exclusion model and investigate the behavior of traffic flow in two routes, providing various types of information to a limited number of traveling particles according to the share rate of information. To analytically understand the phenomena, we develop a coarse-grained representation of the model. By analyzing the model, we find the most effective types of information to minimize particles' travel time and the existence of an optimal share rate according to route conditions.

  19. Optimal information provision for maximizing flow in a forked lattice.

    PubMed

    Imai, Takeaki; Nishinari, Katsuhiro

    2015-06-01

    In a forked road, the provision of inappropriate information to car drivers sometimes leads to undesirable situations such as one-sided congestion, which is called the hunting phenomenon in real traffic. To address such problems, we propose a forked exclusion model and investigate the behavior of traffic flow in two routes, providing various types of information to a limited number of traveling particles according to the share rate of information. To analytically understand the phenomena, we develop a coarse-grained representation of the model. By analyzing the model, we find the most effective types of information to minimize particles' travel time and the existence of an optimal share rate according to route conditions.

  20. Optimal information provision for maximizing flow in a forked lattice.

    PubMed

    Imai, Takeaki; Nishinari, Katsuhiro

    2015-06-01

    In a forked road, the provision of inappropriate information to car drivers sometimes leads to undesirable situations such as one-sided congestion, which is called the hunting phenomenon in real traffic. To address such problems, we propose a forked exclusion model and investigate the behavior of traffic flow in two routes, providing various types of information to a limited number of traveling particles according to the share rate of information. To analytically understand the phenomena, we develop a coarse-grained representation of the model. By analyzing the model, we find the most effective types of information to minimize particles' travel time and the existence of an optimal share rate according to route conditions. PMID:26172765

  1. Pulsed pumping process optimization using a potential flow model

    NASA Astrophysics Data System (ADS)

    Tenney, C. M.; Lastoskie, C. M.

    2007-08-01

    A computational model is applied to the optimization of pulsed pumping systems for efficient in situ remediation of groundwater contaminants. In the pulsed pumping mode of operation, periodic rather than continuous pumping is used. During the pump-off or trapping phase, natural gradient flow transports contaminated groundwater into a treatment zone surrounding a line of injection and extraction wells that transect the contaminant plume. Prior to breakthrough of the contaminated water from the treatment zone, the wells are activated and the pump-on or treatment phase ensues, wherein extracted water is augmented to stimulate pollutant degradation and recirculated for a sufficient period of time to achieve mandated levels of contaminant removal. An important design consideration in pulsed pumping groundwater remediation systems is the pumping schedule adopted to best minimize operational costs for the well grid while still satisfying treatment requirements. Using an analytic two-dimensional potential flow model, optimal pumping frequencies and pumping event durations have been investigated for a set of model aquifer-well systems with different well spacings and well-line lengths, and varying aquifer physical properties. The results for homogeneous systems with greater than five wells and moderate to high pumping rates are reduced to a single, dimensionless correlation. Results for heterogeneous systems are presented graphically in terms of dimensionless parameters to serve as an efficient tool for initial design and selection of the pumping regimen best suited for pulsed pumping operation for a particular well configuration and extraction rate. In the absence of significant retardation or degradation during the pump-off phase, average pumping rates for pulsed operation were found to be greater than the continuous pumping rate required to prevent contaminant breakthrough.

  2. Improving Emergency Department flow through optimized bed utilization

    PubMed Central

    Chartier, Lucas Brien; Simoes, Licinia; Kuipers, Meredith; McGovern, Barb

    2016-01-01

    Over the last decade, patient volumes in the emergency department (ED) have grown disproportionately compared to the increase in staffing and resources at the Toronto Western Hospital, an academic tertiary care centre in Toronto, Canada. The resultant congestion has spilled over to the ED waiting room, where medically undifferentiated and potentially unstable patients must wait until a bed becomes available. The aim of this quality improvement project was to decrease the 90th percentile of wait time between triage and bed assignment (time-to-bed) by half, from 120 to 60 minutes, for our highest acuity patients. We engaged key stakeholders to identify barriers and potential strategies to achieve optimal flow of patients into the ED. We first identified multiple flow-interrupting challenges, including operational bottlenecks and cultural issues. We then generated change ideas to address two main underlying causes of ED congestion: unnecessary patient utilization of ED beds and communication breakdown causing bed turnaround delays. We subsequently performed seven tests of change through sequential plan-do-study-act (PDSA) cycles. The most significant gains were made by improving communication strategies: small gains were achieved through the optimization of in-house digital information management systems, while significant improvements were achieved through the implementation of a low-tech direct contact mechanism (a two-way radio or walkie-talkie). In the post-intervention phase, time-to-bed for the 90th percentile of high-acuity patients decreased from 120 minutes to 66 minutes, with special cause variation showing a significant shift in the weekly measurements. PMID:27752312

  3. Pulsed pumping process optimization using a potential flow model.

    PubMed

    Tenney, C M; Lastoskie, C M

    2007-08-15

    A computational model is applied to the optimization of pulsed pumping systems for efficient in situ remediation of groundwater contaminants. In the pulsed pumping mode of operation, periodic rather than continuous pumping is used. During the pump-off or trapping phase, natural gradient flow transports contaminated groundwater into a treatment zone surrounding a line of injection and extraction wells that transect the contaminant plume. Prior to breakthrough of the contaminated water from the treatment zone, the wells are activated and the pump-on or treatment phase ensues, wherein extracted water is augmented to stimulate pollutant degradation and recirculated for a sufficient period of time to achieve mandated levels of contaminant removal. An important design consideration in pulsed pumping groundwater remediation systems is the pumping schedule adopted to best minimize operational costs for the well grid while still satisfying treatment requirements. Using an analytic two-dimensional potential flow model, optimal pumping frequencies and pumping event durations have been investigated for a set of model aquifer-well systems with different well spacings and well-line lengths, and varying aquifer physical properties. The results for homogeneous systems with greater than five wells and moderate to high pumping rates are reduced to a single, dimensionless correlation. Results for heterogeneous systems are presented graphically in terms of dimensionless parameters to serve as an efficient tool for initial design and selection of the pumping regimen best suited for pulsed pumping operation for a particular well configuration and extraction rate. In the absence of significant retardation or degradation during the pump-off phase, average pumping rates for pulsed operation were found to be greater than the continuous pumping rate required to prevent contaminant breakthrough.

  4. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films

    NASA Astrophysics Data System (ADS)

    Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-Ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo

    2016-03-01

    Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as “ferrite plating”. The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.

  5. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films.

    PubMed

    Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo

    2016-03-15

    Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as "ferrite plating". The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.

  6. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films.

    PubMed

    Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo

    2016-01-01

    Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as "ferrite plating". The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management. PMID:26975208

  7. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films

    PubMed Central

    Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo

    2016-01-01

    Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as “ferrite plating”. The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management. PMID:26975208

  8. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  9. Numerical Simulation of Liquid Sheet Instability in a Multiphase Flow Domain

    NASA Astrophysics Data System (ADS)

    Souvick, Chatterjee; Mahapatra, Soumik; Mukhopadhyay, Achintya; Sen, Swarnendu

    2013-11-01

    Instability of a liquid sheet leading to the formation of droplets is a classical problem finding a wide range of multi-scale applications like gas turbine engines and inkjet printers. Numerical simulation of such a phenomenon is crucial because of its cost and time effective nature. In this work, the hydrodynamics in a custom designed nozzle is analyzed using Volume of Fluid method in Ansys Fluent. This innovative nozzle design includes an annular liquid sheet sandwiched between two air streams such that the inner air channel is recessed to a certain length. Such a recession leads to interaction between the two multiphase streams inside the atomizer resulting to an increased shear layer instability which augments the disintegration process. The numerical technique employed in this work couples Navier Stokes equation with VoF surface tracking technique. A parametric study with the hydrodynamic parameters involved in the problem, as well as the recession length, is performed while monitoring the axial and tangential exit velocities along with the spray cone angle. Comparison between the full 3D model and two different equivalent 2D axisymmetric models have been shown. The two axisymmetric models vary based on conserving different physical parameters between the 2D and 3D cases.

  10. Changes in Bedform Shape at the Transition Between Upper Plane-Bed and Sheet-Flow Bedload Transport Regimes

    NASA Astrophysics Data System (ADS)

    Hernandez Moreira, R. R.; Huffman, B.; Vautin, D.; Viparelli, E.

    2015-12-01

    The interactions between flow hydrodynamics and bedform characteristics at the transition between upper plane-bed bedload transport regime and sheet-flow have not yet been thoroughly described and still remain poorly understood. The present study focuses on the experimental study of this transition in open channel mode. The experiments were performed in the hydraulic laboratory of the Department of Civil and Environmental Engineering of the University of South Carolina in a sediment-feed flume, 9-m long by 19-cm wide with uniform material sediment of geometric mean grain size diameter of 1.11 mm. Sediment feed rates ranged between 0.5 kg/min and 20 kg/min with two different flow rates of 20 l/s and 30 l/s. We recorded periodic measurements of water surface and bed elevation to estimate the global flow parameters, e.g. mean flow velocity and bed shear stress, and to determine when the flow and the sediment transport reached conditions of mobile bed equilibrium. We define mobile bed equilibrium as a condition in which the mean bed elevation does not change in time. At equilibrium, measurements of bed elevation fluctuations were taken with an ultrasonic transducer system at six discrete locations. In the runs with low and medium feed rates, i.e. smaller than ~12 kg/min, the long wavelength and small amplitude bedforms typical of the upper plane bed regime, which were observed in previous experimental work, formed and migrated downstream. In particular, with increasing feed rates, the amplitude of the bedforms decreases and their geometry changes, from well-defined triangular shapes, to rounded shapes to flat bed with very small amplitude, long wavelength undulations. The decrease in amplitude corresponds to a decrease in form drag and an increase in the thickness of the bedload layer. The ultrasonic measurements are analyzed to statistically describe the observed transition in terms of probability distribution functions of the bed elevation fluctuations.

  11. Optimal orientation in flows: providing a benchmark for animal movement strategies.

    PubMed

    McLaren, James D; Shamoun-Baranes, Judy; Dokter, Adriaan M; Klaassen, Raymond H G; Bouten, Willem

    2014-10-01

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity. PMID:25056213

  12. Optimal orientation in flows: providing a benchmark for animal movement strategies.

    PubMed

    McLaren, James D; Shamoun-Baranes, Judy; Dokter, Adriaan M; Klaassen, Raymond H G; Bouten, Willem

    2014-10-01

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity.

  13. Optimal orientation in flows: providing a benchmark for animal movement strategies

    PubMed Central

    McLaren, James D.; Shamoun-Baranes, Judy; Dokter, Adriaan M.; Klaassen, Raymond H. G.; Bouten, Willem

    2014-01-01

    Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity. PMID:25056213

  14. Optimization of flow field-flow fractionation for the characterization of natural colloids.

    PubMed

    El Hadri, Hind; Gigault, Julien; Chéry, Philippe; Potin-Gautier, Martine; Lespes, Gaëtane

    2014-02-01

    The methodological approach used to robustly optimize the characterization of the polydisperse colloidal phase of drain water samples is presented. The approach is based on asymmetric flow field-flow fractionation coupled to online ultraviolet/visible spectrophotometry, multi-angle light scattering, and inductively coupled plasma mass spectrometry. Operating factors such as the amount of sample injected and the ratio between main-flow and cross-flow rates were considered. The evaluation of the injection and fractionation steps was performed considering the polydispersity index and the contribution to the polydispersity of the plate height, the recovery, the retention ratio and the size range of the fractionated colloids. This approach allows the polydispersity of natural colloid samples to be taken into consideration to achieve the most efficient and representative fractionation. In addition to the size characterization, elemental analysis was also evaluated using the recovery, precision, and limits of detection and quantification relative to a trace element of interest (copper) in drain water. To complete this investigation, the potential application of the methodology was assessed using several independent drain water samples from different soils. The contribution of the polydispersity to the plate height ranges from 4.8 to 8.9 cm with a mean precision of 6%. The mean colloidal recovery was 81 ± 3 %, and the mean retention ratio was 0.043-0.062. The limits of detection and quantification for copper were 0.6 and 1.8 μg L(-1), respectively.

  15. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.

    PubMed

    Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H

    2013-01-11

    Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 μg. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP. PMID:23261297

  16. Optimization of a heterogeneous catalytic hydrodynamic cavitation reactor performance in decolorization of Rhodamine B: application of scrap iron sheets.

    PubMed

    Basiri Parsa, Jalal; Ebrahimzadeh Zonouzian, Seyyed Alireza

    2013-11-01

    A low pressure pilot scale hydrodynamic cavitation (HC) reactor with 30 L volume, using fixed scrap iron sheets, as the heterogeneous catalyst, with no external source of H2O2 was devised to investigate the effects of operating parameters of the HC reactor performance. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The reactor optimization was done based upon the extent of decolorization (ED) of aqueous solution of Rhodamine B (RhB). To have a perfect study on the pertinent parameters of the heterogeneous catalyzed HC reactor, the following cases as, the effects of scrap iron sheets, inlet pressure (2.4-5.8 bar), the distance between orifice plates and catalyst sheets (submerged and inline located orifice plates), back-pressure (2-6 bar), orifice plates type (4 various orifice plates), pH (2-10) and initial RhB concentration (2-14 mg L(-1)) have been investigated. The results showed that the highest cavitational yield can be obtained at pH 3 and initial dye concentration of 10 mg L(-1). Also, an increase in the inlet pressure would lead to an increase in the ED. In addition, it was found that using the deeper holes (thicker orifice plates) would lead to lower ED, and holes with larger diameter would lead to the higher ED in the same cross-sectional area, but in the same holes' diameters, higher cross-sectional area leads to the lower ED. The submerged operation mode showed a greater cavitational effects rather than the inline mode. Also, for the inline mode, the optimum value of 3 bar was obtained for the back-pressure condition in the system. Moreover, according to the analysis of changes in the UV-Vis spectra of RhB, both degradation of RhB chromophore structure and N-deethylation were occurred during the catalyzed HC process.

  17. On the Limiting Cases Related to Flow Past a Zhukovskii Sheet Pile

    NASA Astrophysics Data System (ADS)

    Bereslavskii, É. N.

    2015-05-01

    Within the framework of the Darcy's theory of plane steady fi ltration of an incompressible liquid, two limiting schemes are considered that model fi ltration fl ows under a Zhukovskii sheet pile through a large mass of ground underlain by an impermeable base or by a permeable water-bearing pressure horizon. For purposes of analyzing these schemes, mixed boundary-layer problems of the theory of analytical functions are formulated that are solved with the aid of the Polubarinova-Kochina method. Based on these models, algorithms have been developed for calculating a saturation zone in those cases where, while considering the motion of water, one has to take into account the exposure of fl ow pattern to the combined effect of such important factors as backwater from the side of the impermeable base or of the underlying well permeable water-bearing bed, evaporation or infi ltration on the free groundwater surface, as well as the ground capillarity.

  18. Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site

    NASA Astrophysics Data System (ADS)

    Koutnik, Michelle R.; Fudge, T. J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-05-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 kyr of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 km from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20% lower than modern at 9.2 kyr before present (B.P.), increased by 40% from 9.2 to 2.3 kyr B.P., and decreased by at least 10% over the past 2 kyr B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 km of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  19. Slip Flow of Powell-Eyring Liquid Film Due to an Unsteady Stretching Sheet with Heat Generation

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mostafa A. A.; Megahed, Ahmed M.

    2016-06-01

    This paper is focused on the study of the viscous Powell-Eyring liquid thin film flow and heat transfer driven by an unsteady stretching sheet in the presence of slip velocity and non-uniform heat generation. A system of equations for momentum and thermal energy are reduced to a set of coupled non-linear ordinary differential equations with the aid of dimensionless transformation. The resulting seven-parameter problem has been solved numerically by using an efficient shooting technique coupled with the fourth-order Runge-Kutta algorithm over the entire range of physical parameters. To interpret various physical parameters governing the flow and heat transfer which appear in the momentum and energy equations, the results are presented graphically. The present results are compared with some of the earlier published work in some limiting cases and are found to be in an excellent agreement. This favorable comparison lends confidence in the numerical results to be reported in the present work. Furthermore, the effects of the parameters governing the thin film flow and heat transfer are examined and discussed through graphs and tables. Also, the values of the local skin-friction coefficient and the local Nusselt number for different values of physical parameters are presented through tables. Additionally, the obtained results for some particular cases of the present problem appear in good agreement with the literature review.

  20. Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Goyal, M.; Bhargava, R.

    2014-05-01

    This paper deals with the double-diffusive boundary layer flow of non-Newtonian nanofluid over a stretching sheet. In this model, where binary nanofluid is used, the Brownian motion and thermophoresis are classified as the main mechanisms which are responsible for the enhancement of the convection features of the nanofluid. The boundary layer equations governed by the partial differential equations are transformed into a set of ordinary differential equations with the help of group theory transformations. The variational finite element method (FEM) is used to solve these ordinary differential equations. We have examined the effects of different controlling parameters, namely, the Brownian motion parameter, the thermophoresis parameter, modified Dufour number, viscoelastic parameter, Prandtl number, regular Lewis number, Dufour Lewis number, and nanofluid Lewis number on the flow field and heat transfer characteristics. Graphical display of the numerical examine are performed to illustrate the influence of various flow parameters on the velocity, temperature, concentration, reduced Nusselt, reduced Sherwood and reduced nanofluid Sherwood number distributions. The present study has many applications in coating and suspensions, movement of biological fluids, cooling of metallic plate, melt-spinning, heat exchangers technology, and oceanography.

  1. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    NASA Astrophysics Data System (ADS)

    Muñoz-Andrade, Juan D.

    2013-12-01

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  2. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    SciTech Connect

    Muñoz-Andrade, Juan D.

    2013-12-16

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  3. Experimental Observations About The Behavior of The Sheet Flow On Sand Bed Streams and The Reversal Gradation Effect.

    NASA Astrophysics Data System (ADS)

    Bateman, A.; Aguilar, C.; Roquer, R.; Andreatta, A.; Velasco, D.

    In our land, Catalonia, exists a lot of torrential ephemeral streams. Which are char- acterized by a great floods during typical convective storms. Sediment transport rates are very important in this gravel/sand torrent. Usually, near the cities, they show a 2- 3% slope bed profile. Engineering works or actuations have to deal with this kind of dynamic systems. The stabilization of this torrents is one of the aim of our research at the Polytechnic University of Catalonia (Hydraulic, Marine and environmental De- partment). Typical experiments in a hydraulic flume was normally used to observe the behavior of stabilization structures. The first step in the research is to know the general evolution of the bed profile. Agradation and degradation experiments in a laboratory flume of 20 m length was car- ried out to study the behavior of the steady and unsteady flow with sediment transport. The hydraulic regime of the experiments was set to be supercritical flat bed; sand flow rates about 300gr/s which gives near a 2% equilibrium slope. The most interesting results of those experiments was the reversal gradation of the sand sizes measured along the flume in the final steady state. This kind of effect was reported by Luca Solari and Gary Parker 2000. A 1-D numerical model to solve the Exner and Saint_Venant implicit system of equation were used to compare the evolu- tion of the different experiments. The sheet sand flow produces a great resistance to flow, the experiments shows the influence exhorted by the sand discharge in the flow resistance factor.

  4. Water fact sheet, history of landslides and debris flows at Mount Rainier

    USGS Publications Warehouse

    Scott, K.M.; Vallance, J.W.

    1993-01-01

    Many landslides and debris flows have originated from Mount Rainier since the retreat of glaciers from Puget Sound about 10,000 years ago. The recurrent instability is due to several factors--height of the steep-sided volcanic cone, frequent volcanic activity, continuous weakening of rock by steam and hot, chemical-laden water, and exposure of unstable areas as the mountains glaciers have receded. The landslide scars and deposits tell a fascinating story of the changing shape of the volcano. Landslides occur when part of the volcano "collapses" or fails and slides away from the rest of the volcano. The failed mass rapidly breaks up into a jumble of disaggregated pieces that flow at high velocity like a fluid. Clay and water in the debris cause further change to a liquid slurry known as a debris flow or mudflow. Volcanic debris flows are also widely known by the Indonesian term "lahar." Although the largest debris flows at Rainier form from landslides, many smaller flows are caused by volcanic eruptions, intense rainfall, and glacial-outburst floods.

  5. Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    Condensing boiler technology has been around for many years and has proven to be a durable, reliable method of heating. Based on previous research efforts, however, it is apparent that these types of systems are not designed and installed to achieve maximum efficiency. For example, in order to protect their equipment in the field, manufacturers of low-mass condensing boilers typically recommend design strategies and components that ensure steady, high flow rates through the heat exchangers, such as primary-secondary piping, which ultimately result in decreased efficiency.

  6. Performance optimization of water-jet assisted underwater laser cutting of AISI 304 stainless steel sheet

    NASA Astrophysics Data System (ADS)

    Mullick, Suvradip; Madhukar, Yuvraj K.; Roy, Subhransu; Nath, Ashish K.

    2016-08-01

    Recent development of water-jet assisted underwater laser cutting has shown some advantages over the gas assisted underwater laser cutting, as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. Scattering is reported to be a dominant loss mechanism, which depends on the growth of vapor layer at cut front and its removal by water-jet. Present study reports improvement in process efficiency by reducing the scattering loss using modulated laser power. Judicious control of laser pulse on- and off-time could improve process efficiency through restricting the vapor growth and its effective removal by water-jet within the laser on- and off-time, respectively. Effects of average laser power, duty cycle and modulation frequency on specific energy are studied to get an operating zone for maximum efficiency. Next, the variation in laser cut quality with different process parameters are studied within this operating zone using Design of experiment (DOE). Response surface methodology (RSM) is used by implementing three level Box-Behnken design to optimize the variation in cut quality, and to find out the optimal process parameters for desired quality. Various phenomena and material removal mechanism involved in this process are also discussed.

  7. Relation of plasma sheet flows to different modes of magnetospheric response

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.; Hsu, T.; Kissinger, J.; Angelopoulos, V.

    2009-12-01

    Recent studies have demonstrated that every known type of auroral zone magnetic activity can be associated with flux closure in the magnetotail. These include pseudo breakups, substorms, poleward boundary intensifications, steady magnetospheric convection, and sawtooth injection events. As flux closure is caused by magnetic reconnection we expect that each of these can also be associated with fast flows in the tail. We have scanned magnetic index data during the 2008 and 2009 intervals when the Themis spacecraft passed through the tail (December-May) identifying examples of each type of event. We demonstrate that each mode of magnetospheric response can be associated with plasma flows. We examine the temporal relation of these flows to the onset times of each type of event as determined by a variety of onset signatures. We also describe the spatial distribution and properties of the flows. Since no sawtooth events have been identified in the Themis era we use Geotail plasma data in earlier more disturbed times to study this association.

  8. Optimal Materials and Deposition Technique Lead to Cost-Effective Solar Cell with Best-Ever Conversion Efficiency (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the SJ3 solar cell was invented, explains how the technology works, and why it won an R&D 100 Award. Based on NREL and Solar Junction technology, the commercial SJ3 concentrator solar cell - with 43.5% conversion efficiency at 418 suns - uses a lattice-matched multijunction architecture that has near-term potential for cells with {approx}50% efficiency. Multijunction solar cells have higher conversion efficiencies than any other type of solar cell. But developers of utility-scale and space applications crave even better efficiencies at lower costs to be both cost-effective and able to meet the demand for power. The SJ3 multijunction cell, developed by Solar Junction with assistance from foundational technological advances by the National Renewable Energy Laboratory, has the highest efficiency to date - almost 2% absolute more than the current industry standard multijunction cell-yet at a comparable cost. So what did it take to create this cell having 43.5% efficiency at 418-sun concentration? A combination of materials with carefully designed properties, a manufacturing technique allowing precise control, and an optimized device design.

  9. Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer

    NASA Astrophysics Data System (ADS)

    Abdul Hakeem, A. K.; Renuka, P.; Vishnu Ganesh, N.; Kalaivanan, R.; Ganga, B.

    2016-03-01

    The inclined magnetic field effect on the boundary layer flow of a Casson model non-Newtonian fluid over a stretching sheet in the existence of thermal radiation and velocity slip boundary condition is investigated for both prescribed surface temperature and power law of surface heat flux cases. It is assumed that the magnetic field is applied with an aligned angle which varied from 0° to 90°. Both analytical and numerical solutions are obtained for the transformed non-dimensional ODE's using confluent hypergeometric function and fourth order Runge-Kutta method with shooting technique respectively. The combined effects of inclined magnetic field with other pertinent parameters such as Casson parameter, velocity slip parameter, radiation parameter and Prandtl number on velocity profile, temperature profile, local skin friction coefficient, local Nusselt number and non-dimensional wall temperature are discussed through graphs. It is found that the aligned angle plays a vital role in controlling the magnetic field strength on the Casson fluid flow region and the increasing values of aligned angle of the magnetic field lead to decrease the skin friction coefficient and the Nusselt number and increase the non-dimensional wall temperature.

  10. Flow and heat transfer in a Maxwell liquid film over an unsteady stretching sheet in a porous medium with radiation.

    PubMed

    Waheed, Shimaa E

    2016-01-01

    A problem of flow and heat transfer in a non-Newtonian Maxwell liquid film over an unsteady stretching sheet embedded in a porous medium in the presence of a thermal radiation is investigated. The unsteady boundary layer equations describing the problem are transformed to a system of non-linear ordinary differential equations which is solved numerically using the shooting method. The effects of various parameters like the Darcy parameter, the radiation parameter, the Deborah number and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. It is observed that increasing values of the Darcy parameter and the Deborah number cause an increase of the local skin-friction coefficient values and decrease in the values of the local Nusselt number. Also, it is noticed that the local Nusselt number increases as the Prandtl number increases and it decreases with increasing the radiation parameter. However, it is found that the free surface temperature increases by increasing the Darcy parameter, the radiation parameter and the Deborah number whereas it decreases by increasing the Prandtl number. PMID:27462509

  11. Experimental investigation of the effect of small-obstacle-induced vortex sheet on the separated flow in cavity

    NASA Astrophysics Data System (ADS)

    D'yachenko, A. Yu.; Terekhov, V. I.; Yarygina, N. I.

    2014-12-01

    In the present paper, we report results of an experimental study of the influence which a vortex-generating element installed upstream of the main obstacle has on the separated flow and heat transfer in a cross-flow cavitytrench. The element was a small cross-flow rib whose height was an order of magnitude smaller than the depth of the cavity. In the experiments, the variable parameters were the angle of inclination of the frontal and rear walls of the cavity, the rib height, and the rib-to-cavity distance. It is shown that the introduction of additional vortical perturbations into the recirculation zone leads to a substantial modification of both the vortex production process and the distributions of pressure and heat-transfer coefficients. Optimal height of the mini-turbulizer and its optimal location are defined by the fall of the re-attachment point of mini-rib-generated flow onto the rear wall of cavity. In the latter situation, the maximal value of the heat-transfer coefficient increases as compared to the case with no vortex generator used, the increase amounting to 30 %.

  12. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    SciTech Connect

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model

  13. Electrospun Nanofibrous Sheets for Selective Cell Capturing in Continuous Flow in Microchannels.

    PubMed

    Son, Young Ju; Kang, Jihyun; Kim, Hye Sung; Yoo, Hyuk Sang

    2016-03-14

    Electrospun nanofibrous meshes were surface-modified for selective capturing of specific cells from a continuous flow in PDMS microchannels. We electrospun nanofibrous mats composed of poly(ε-carprolactone) (PCL) and amine-functionalized block copolymers composed of PCL and poly(ethylenimine) (PEI). A mixture of biotinylated PEG and blunt PEG was chemically tethered to the nanofibrous mats via the surface-exposed amines on the mat. The degree of biotinylation was fluorescently and quantitatively assayed for confirming the surface-biotinylation levels for avidin-specific binding. The incorporation level of avidin gradually increased when the blend ratio of biotinylated PEG on the mat increased, confirming the manipulated surfaces with various degree of biotinylation. Biotinylated cells were incubated with avidin-coated biotinylated mats and the specific binding of biotinylated cells was monitored in a microfluidic channel with a continuous flow of culture medium, which suggests efficient and selective capturing of the biotinylated cells on the nanofibrous mat. PMID:26812501

  14. Mass Transfer Effects on the Unsteady Flow of UCM Fluid Over a Stretching Sheet

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Awais, M.; Sajid, M.

    This paper looks at the mass transfer effects on the unsteady two-dimensional and magnetohydrodynamic flow of an upper-convected Maxwell fluid bounded by a stretching surface. Homotopy analysis method is used for the development of series solution of the arising nonlinear problem. Plots of velocity and concentration fields are displayed and discussed. The values of surface mass transfer and gradient of mass transfer are also tabulated.

  15. Optimized anion exchange membranes for vanadium redox flow batteries.

    PubMed

    Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan

    2013-08-14

    In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance.

  16. User's manual for an aerodynamic optimization scheeme that updates flow variables and design parameters simultaneously

    NASA Technical Reports Server (NTRS)

    Rizk, Magdi H.

    1988-01-01

    This user's manual is presented for an aerodynamic optimization program that updates flow variables and design parameters simultaneously. The program was developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The program was tested by applying it to the problem of optimizing propeller designs. Some reference to this particular application is therefore made in the manual. However, the optimization scheme is suitable for application to general aerodynamic design problems. A description of the approach used in the optimization scheme is first presented, followed by a description of the use of the program.

  17. Numerical solution of non-Newtonian nanofluid flow over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Haq, Rizwan Ul; Khan, Z. H.

    2014-06-01

    The steady flow of a Jeffrey fluid model in the presence of nano particles is studied. Similarity transformation is used to convert the governing partial differential equations to a set of coupled nonlinear ordinary differential equations which are solved numerically. Behavior of emerging parameters is presented graphically and discussed for velocity, temperature and nanoparticles fraction. Variation of the reduced Nusselt and Sherwood number against physical parameters is presented graphically. It was found that reduced Nusselt number is decreasing function and reduced Sherwood number is increasing function of Brownian parameter and thermophoresis parameter.

  18. On transonic flow models for optimized design and experiment

    NASA Astrophysics Data System (ADS)

    Stodůlka, Jiří; Sobieczky, Helmut

    2014-03-01

    In the paper the near sonic flow theory for flows with small perturbations to sonic parallel flow is developed. This theory stands on the basis of potential flow of a compressible fluid and enables to receive an exact solution of the flow parameters past transonic cusped airfoils and their geometrical description. Generated airfoil shapes are tested using CFD ANSYS Fluent code to validate the results. Obtained numerical results from all-round commercial code show good accordance with the theory and confirm their value for future work in transonic design.

  19. Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Hashim

    2015-10-01

    This article studies the Carreau viscosity model (which is a generalized Newtonian model) and then use it to obtain a formulation for the boundary layer equations of the Carreau fluid. The boundary layer flow and heat transfer to a Carreau model over a nonlinear stretching surface is discussed. The Carreau model, adequate for many non-Newtonian fluids, is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical values of the power law exponent n. The modeled boundary layer conservation equations are converted to non-linear coupled ordinary differential equations by a suitable transformation. Numerical solution of the resulting equations are obtained by using the Runge-Kutta Fehlberg method along with shooting technique. This analysis reveals many important physical aspects of flow and heat transfer. Computations are performed for different values of the stretching parameter (m), the Weissenberg number (We) and the Prandtl number (Pr). The obtained results show that for shear thinning fluid the fluid velocity is depressed by the Weissenberg number while opposite behavior for the shear thickening fluid is observed. A comparison with previously published data in limiting cases is performed and they are in excellent agreement.

  20. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-01-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  1. Thermal and Concentration Stratifications Effects in Radiative Flow of Jeffrey Fluid over a Stretching Sheet

    PubMed Central

    Hayat, T.; Hussain, Tariq; Shehzad, S. A.; Alsaedi, A.

    2014-01-01

    In this article we investigate the heat and mass transfer analysis in mixed convective radiative flow of Jeffrey fluid over a moving surface. The effects of thermal and concentration stratifications are also taken into consideration. Rosseland's approximations are utilized for thermal radiation. The nonlinear boundary layer partial differential equations are converted into nonlinear ordinary differential equations via suitable dimensionless variables. The solutions of nonlinear ordinary differential equations are developed by homotopic procedure. Convergence of homotopic solutions is examined graphically and numerically. Graphical results of dimensionless velocity, temperature and concentration are presented and discussed in detail. Values of the skin-friction coefficient, the local Nusselt and the local Sherwood numbers are analyzed numerically. Temperature and concentration profiles are decreased when the values of thermal and concentration stratifications parameters increase. Larger values of radiation parameter lead to the higher temperature and thicker thermal boundary layer thickness. PMID:25275441

  2. Phenocryst abundances and glass and phenocryst compositions as indicators of magmatic environments of large-volume ash flow sheets in southwestern Nevada

    SciTech Connect

    Warren, R. G.; Byers, F. M., Jr.; Broxton, D. E.; Freeman, S. H.; Hagan, R. C.

    1989-05-10

    The Topopah Spring, Tiva Canyon, Rainier Mesa, and Ammonia Tanks tuffsare large-volume, silicic ash flow sheets that provide samples of fourmagmatic systems in southwestern Nevada. Successively erupted within a span of2 m.y. from the same source area, they allow comparison of the sequentialevolution of large-volume, mature Cordilleran magmatic systems. Each largesheet has a rhyolitic lower zone and quartz latitic upper zone. Coevalbasaltic andesite and basalt show petrochemical continuity with these sheetsand may represent mantle contributions that triggered eruptions of themidcrustal silicic portion. Abundance of phenocrysts and accessory phasesincrease upward with whole rock Fe (FeOt) from the base of all four sheets tomaximum values unique for each system. Although maximum abundances of eachmineral are unique for each sheet, each maximum occupies the same relativeposition within each sheet. High-temperature minerals such as plagioclaseincrease in abundance continuously with FeOt in each system, showing a decreasewith FeOt only within basaltic andesite at the base of the Rainier Mesasystem. Late crystallizing minerals such as quartz and sphene show maximumabundances at much lower FeOt, at or near the top of the rhyolitic zone.Minerals that normally form at intermediate stages of crystallization, such assanidine, show maxima at intermediate FeOt for each sheet. A continuum ofglass and phenocryst compositions occurs within the Topopah Spring andRainier Mesa sheets. Variations in phenocryst compositions with FeOt aregenerally consistent with those expected for crystallization within magmareservoirs characterized by vertical thermal and compositional gradients.However, simple fractional crystallization does not adequately explain theclose relationship in each sheet among the mineral chemistry, glass (magma)chemistry, and phase assemblages, which indicate a close approach to equilibriumwithin each magma system.

  3. A mathematical model of the heat and fluid flows in direct-chill casting of aluminum sheet ingots and billets

    NASA Astrophysics Data System (ADS)

    Mortensen, Dag

    1999-02-01

    A finite-element method model for the time-dependent heat and fluid flows that develop during direct-chill (DC) semicontinuous casting of aluminium ingots is presented. Thermal convection and turbulence are included in the model formulation and, in the mushy zone, the momentum equations are modified with a Darcy-type source term dependent on the liquid fraction. The boundary conditions involve calculations of the air gap along the mold wall as well as the heat transfer to the falling water film with forced convection, nucleate boiling, and film boiling. The mold wall and the starting block are included in the computational domain. In the start-up period of the casting, the ingot domain expands over the starting-block level. The numerical method applies a fractional-step method for the dynamic Navier-Stokes equations and the “streamline upwind Petrov-Galerkin” (SUPG) method for mixed diffusion and convection in the momentum and energy equations. The modeling of the start-up period of the casting is demonstrated and compared to temperature measurements in an AA1050 200×600 mm sheet ingot.

  4. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    NASA Astrophysics Data System (ADS)

    Kosaraju, Srinivas

    2015-11-01

    The T- and Y-shaped flow channels can be optimized for reduced pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, we studied the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same pumping power and heat generation constraints and their heat transfer performance is studied.

  5. Creating Optimal Work Environments: Exploring Teacher Flow Experiences

    ERIC Educational Resources Information Center

    Basom, Margaret R.; Frase, Larry

    2004-01-01

    The purpose of this article is to provide a new perspective on the intricacies of the work life in schools that motivate and satisfy teachers. The authors review the literature related to the improvement of school environments and the concept of "flow" as defined by Mihalyi Csikszentmihalyi (1990). He describes flow as a "state in which people are…

  6. Optimal structure of tree-like branching networks for fluid flow

    NASA Astrophysics Data System (ADS)

    Kou, Jianlong; Chen, Yanyan; Zhou, Xiaoyan; Lu, Hangjun; Wu, Fengmin; Fan, Jintu

    2014-01-01

    Tree-like branching networks are very common flow or transportation systems from natural evolution. In this study, the optimal structures of tree-like branching networks for minimum flow resistance are analyzed for both laminar and turbulent flow in both smooth and rough pipes. It is found that the dimensionless effective flow resistance under the volume constraint for different flows is sensitive to the geometrical parameters of the structure. The flow resistance of the tree-like branching networks reaches a minimum when the diameter ratio β∗ satisfies β∗=Nk, where, N is the bifurcation number N=2,3,4,… and k is a constant. For laminar flow, k=-1/3, which is in agreement with the existing Murray’s law; for turbulent flow in smooth pipes, k=-3/7; for turbulent flow in rough pipes, k=-7/17. These results serve as design guidelines of efficient transport and flow systems.

  7. Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Tun, Min Thaw; Sakaguchi, Daisaku

    2016-06-01

    High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.

  8. Dual solutions for stagnation-point flow and convective heat transfer of a Williamson nanofluid past a stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Gorla, Rama Subba Reddy; Gireesha, B. J.

    2016-06-01

    In this paper, the problem of boundary layer stagnation-point flow and heat transfer of a Williamson nanofluid on a linear stretching/shrinking sheet with convective boundary condition is studied. The effects of Brownian motion and thermophoresis are considered in the energy equation. The governing partial differential equations are first transformed into set of ordinary differential equations, which are then solved numerically using Runge-Kutta-Felhberg fourth-fifth order method with Shooting technique. The characteristics of the flow and heat transfer as well as skin friction and Nusselt number for various prevailing parameters are presented graphically and discussed in detail. A comparison with the earlier reported results has been done and an excellent agreement is shown. It is found that dual solutions exist for the shrinking sheet case. Further, it is observed that the thermal boundary layer thickness increases with increase in Williamson parameter for both solutions.

  9. Optimal heating condition of mouthguard sheet in vacuum-pressure formation: part 2 Olefin-based thermoplastic elastomer.

    PubMed

    Takahashi, Mutsumi; Koide, Kaoru

    2016-04-01

    The purposes of this study were to clarify the suitable heating conditions during vacuum-pressure formation of olefin copolymer sheets and to examine the sheet temperature at molding and the thickness of the molded mouthguard. Mouthguards were fabricated using 4.0-mm-thick olefin copolymer sheets utilizing a vacuum-pressure forming device, and then, 10 s of vacuum forming and 2 min of compression molding were applied. Three heating conditions were investigated. They were, defined by the degree of sagging observed at the center of the softened sheet (10, 15, or 20 mm lower than the clamp (H-10, H-15, or H-20, respectively)). The working model was trimmed to the height of 20 mm at the maxillary central incisor and 15 mm at the mesiobuccal cusp of the maxillary first molar. The temperature on both the directly heated and the non-heated surfaces of the mouthguard sheet was measured by the radiation thermometer for each condition. The thickness of mouthguard sheets after fabrication was determined for the incisal portion (incisal edge and labial surface) and molar portion (cusp and buccal surface), and dimensional measurements were obtained using a measuring device. Differences in the thickness due to the heating condition of the sheets were analyzed by one-way analysis of variance and Bonferroni's multiple comparison tests. The temperature difference between the heated and non-heated surfaces was highest under H-10. Sheet temperature under H-15 and H-20 was almost the same. The thickness differences were noted at incisal edge, cusp, and buccal surface, and H-15 was the greatest. This study demonstrated that heating of the sheet resulting in sag of 15 mm or more was necessary for sufficient softening of the sheet and that the mouthguard thickness decreased with increased sag. In conclusion, sag of 15 mm can be recommended as a good indicator of appropriate molding timing for this material.

  10. Detailed spatially distributed geothermal heat-flow data for modeling of basal temperatures and meltwater production beneath the Fennoscandian ice sheet

    NASA Astrophysics Data System (ADS)

    Näslund, Jens-Ove; Jansson, Peter; Fastook, James L.; Johnson, Jesse; Andersson, Leif

    Accurate modeling of ice sheets requires proper information on boundary conditions, including the geothermal heat flow (or heat-flow density (HFD)). Traditionally, one uniform HFD value is adopted for the entire modeled domain. We have calculated a distributed, high-resolution HFD dataset for an approximate core area (Sweden and Finland) of the Scandinavian ice sheet, and imbedded this within lower-resolution data published for surrounding regions. Within the Last Glacial Maximum ice margin, HFD varies with a factor of as much as 2.8 (HFD values ranging between 30 and 83 mW m-2), with an average of 49 mW m-2. This average value is 17% higher than 42 mW m-2, a common uniform value used in ice-sheet modeling studies of Fennoscandia. Using this new distributed dataset on HFD, instead of a traditional uniform value of 42 mW m-2, yields a 1.4 times larger total basal meltwater production for the last glacial cycle. Furthermore, using the new dataset in high-resolution modeling results in increased spatial thermal gradients at the bed. This enhances and introduces new local and regional effects on basal ice temperatures and melt rates. We observed significant strengthening of local 'ice streaming', which in one case correlates to an ice-flow event previously interpreted from geomorphology. Regional to local variations in geothermal heat flow need to be considered for proper identification and treatment of thermal and hydraulic bed conditions, most likely also when studying Laurentide, Greenland and Antarctic ice sheets.

  11. Optimized Coolant-Flow Diverter For Increased Bearing Life

    NASA Technical Reports Server (NTRS)

    Subbaraman, Maria R.; Butner, Myles F.

    1995-01-01

    Coolant-flow diverter for rolling-element bearings in cryogenic turbopump designed to enhance cooling power of flow in contact with bearings and thereby reduce bearing wear. Delivers jets of coolant as close as possible to hot spots at points of contact between balls and race. Also imparts swirl that enhances beneficial pumping effect. Used with success in end ball bearing of high-pressure-oxidizer turbopump.

  12. Three-dimensional MHD boundary layer flow due to an axisymmetric shrinking sheet with radiation, viscous dissipation and heat source/sink

    NASA Astrophysics Data System (ADS)

    Madhu, M.; Balaswamy, B.; Kishan, N.

    2016-05-01

    An analysis is made to study a three dimensional MHD boundary layer flow and heat transfer due to a porous axisymmetric shrinking sheet. The governing partial differential equations of momentum and energy are transformed into self similar non-linear ordinary differential equations by using the suitable similarity transformations. These equations are, then solved by using the variational finite element method. The flow phenomena is characterised by the magnetic parameter M, suction parameter S, porosity parameter Kp, heat source/sink parameter Q, Prandtl number Pr, Eckert number Ec and radiation parameter Rd. The numerical results of the velocity and temperature profiles are obtained and displayed graphically.

  13. Effect of Local Junction Losses in the Optimization of T-shaped Flow Channels

    NASA Astrophysics Data System (ADS)

    Kosaraju, Srinivas

    2015-11-01

    T-shaped channels are extensively used in flow distribution applications such as irrigation, chemical dispersion, gas pipelines and space heating and cooling. The geometry of T-shaped channels can be optimized to reduce the overall pressure drop in stem and branch sections. Results of such optimizations are in the form of geometric parameters such as the length and diameter ratios of the stem and branch sections. The traditional approach of this optimization accounts for the pressure drop across the stem and branch sections, however, ignores the pressure drop in the T-junction. In this paper, we conduct geometry optimization while including the effect of local junction losses in laminar flows. From the results, we are able to identify a non-dimensional parameter that can be used to predict the optimal geometric configurations. This parameter can also be used to identify the conditions in which the local junction losses can be ignored during the optimization.

  14. [Optimization of aerobic/anaerobic subsurface flow constructed wetlands].

    PubMed

    Li, Feng-Min; Shan, Shi; Li, Yuan-Yuan; Li, Yang; Wang, Zheng-Yu

    2012-02-01

    Previous studies showed that setting aerobic and anaerobic paragraph segments in the subsurface constructed wetlands (SFCWs) can improve the COD, NH4(+)-N, and TN removal rate, whereas the oxygen enrichment environment which produced by the artificial aeration could restrain the NO3(-)-N and NO2(-)-N removal process, and to a certain extent, inhibit the denitrification in SFCWs Therefore, in this research the structure and technology of SFCW with aerobic and anaerobic paragraph segments were optimized, by using the multi-point water inflow and setting the corresponding section for the extra pollutant removal. Results showed that with the hydraulic load of 0.06 m3 x (m2 x d)(-1), the COD, NH4(+)-N and TN removal efficiencies in the optimized SFCW achieved 91.6%, 100% and 87.7% respectively. COD/N increased to 10 speedily after the inflow supplement. The multi-point water inflow could add carbon sources, and simultaneously maximum utilization of wetland to remove pollutants. The optimized SFCW could achieve the purposes of purification process optimization, and provide theoretical basis and application foundation for improving the total nitrogen removal efficiency.

  15. Aerodynamic optimization by simultaneously updating flow variables and design parameters with application to advanced propeller designs

    NASA Technical Reports Server (NTRS)

    Rizk, Magdi H.

    1988-01-01

    A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.

  16. The Effects of Thermal Radiation on an Unsteady MHD Axisymmetric Stagnation-Point Flow over a Shrinking Sheet in Presence of Temperature Dependent Thermal Conductivity with Navier Slip

    PubMed Central

    Mondal, Sabyasachi; Haroun, Nageeb A. H.; Sibanda, Precious

    2015-01-01

    In this paper, the magnetohydrodynamic (MHD) axisymmetric stagnation-point flow of an unsteady and electrically conducting incompressible viscous fluid in with temperature dependent thermal conductivity, thermal radiation and Navier slip is investigated. The flow is due to a shrinking surface that is shrunk axisymmetrically in its own plane with a linear velocity. The magnetic field is imposed normally to the sheet. The model equations that describe this fluid flow are solved by using the spectral relaxation method. Here, heat transfer processes are discussed for two different types of wall heating; (a) a prescribed surface temperature and (b) a prescribed surface heat flux. We discuss and evaluate how the various parameters affect the fluid flow, heat transfer and the temperature field with the aid of different graphical presentations and tabulated results. PMID:26414006

  17. Fluid-Dynamic Optimal Design of Helical Vascular Graft for Stenotic Disturbed Flow

    PubMed Central

    Ha, Hojin; Hwang, Dongha; Choi, Woo-Rak; Baek, Jehyun; Lee, Sang Joon

    2014-01-01

    Although a helical configuration of a prosthetic vascular graft appears to be clinically beneficial in suppressing thrombosis and intimal hyperplasia, an optimization of a helical design has yet to be achieved because of the lack of a detailed understanding on hemodynamic features in helical grafts and their fluid dynamic influences. In the present study, the swirling flow in a helical graft was hypothesized to have beneficial influences on a disturbed flow structure such as stenotic flow. The characteristics of swirling flows generated by helical tubes with various helical pitches and curvatures were investigated to prove the hypothesis. The fluid dynamic influences of these helical tubes on stenotic flow were quantitatively analysed by using a particle image velocimetry technique. Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe. In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions. Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*. Finally, an optimized helical design with a maximum Gn* was suggested for the future design of a vascular graft. PMID:25360705

  18. Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease

    NASA Astrophysics Data System (ADS)

    Marsden, Alison

    2009-11-01

    Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.

  19. Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.

  20. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    PubMed

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571

  1. Optimal Micro-Vane Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-vane secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-vane secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low unit strength" micro-effector arrays. "Low unit strength" micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. Therefore, this report examines optimal micro-vane secondary flow control array designs for compact inlets through a Response Surface Methodology.

  2. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks

    PubMed Central

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme. PMID:26690571

  3. A Scheme to Optimize Flow Routing and Polling Switch Selection of Software Defined Networks.

    PubMed

    Chen, Huan; Li, Lemin; Ren, Jing; Wang, Yang; Zhao, Yangming; Wang, Xiong; Wang, Sheng; Xu, Shizhong

    2015-01-01

    This paper aims at minimizing the communication cost for collecting flow information in Software Defined Networks (SDN). Since flow-based information collecting method requires too much communication cost, and switch-based method proposed recently cannot benefit from controlling flow routing, jointly optimize flow routing and polling switch selection is proposed to reduce the communication cost. To this end, joint optimization problem is formulated as an Integer Linear Programming (ILP) model firstly. Since the ILP model is intractable in large size network, we also design an optimal algorithm for the multi-rooted tree topology and an efficient heuristic algorithm for general topology. According to extensive simulations, it is found that our method can save up to 55.76% communication cost compared with the state-of-the-art switch-based scheme.

  4. A Randomized Rounding Approach for Optimization of Test Sheet Composing and Exposure Rate Control in Computer-Assisted Testing

    ERIC Educational Resources Information Center

    Wang, Chu-Fu; Lin, Chih-Lung; Deng, Jien-Han

    2012-01-01

    Testing is an important stage of teaching as it can assist teachers in auditing students' learning results. A good test is able to accurately reflect the capability of a learner. Nowadays, Computer-Assisted Testing (CAT) is greatly improving traditional testing, since computers can automatically and quickly compose a proper test sheet to meet user…

  5. Studies on pressure losses and flow rate optimization in vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Tang, Ao; Bao, Jie; Skyllas-Kazacos, Maria

    2014-02-01

    Premature voltage cut-off in the operation of the vanadium redox flow battery is largely associated with the rise in concentration overpotential at high state-of-charge (SOC) or state-of-discharge (SOD). The use of high constant volumetric flow rate will reduce concentration overpotential, although potentially at the cost of consuming excessive pumping energy which in turn lowers system efficiency. On the other hand, any improper reduction in flow rate will also limit the operating SOC and lead to deterioration in battery efficiency. Pressure drop losses are further exacerbated by the need to reduce shunt currents in flow battery stacks that requires the use of long, narrow channels and manifolds. In this paper, the concentration overpotential is modelled as a function of flow rate in an effort to determine an appropriate variable flow rate that can yield high system efficiency, along with the analysis of pressure losses and total pumping energy. Simulation results for a 40-cell stack under pre-set voltage cut-off limits have shown that variable flow rates are superior to constant flow rates for the given system design and the use of a flow factor of 7.5 with respect to the theoretical flow rate can reach overall high system efficiencies for different charge-discharge operations.

  6. Going against the flow: finding the optimal path

    NASA Astrophysics Data System (ADS)

    Talbot, Julian

    2010-01-01

    We consider the problem of finding the optimum path of a boat traversing a straight in a current. The path of the shortest time is found using the calculus of variations with the constraint that the boat must land directly opposite to its starting point. We compare the optimal trajectory with that where the boat's local orientation is always directed to the arrival point. When analytical solutions cannot be found we use numerical methods. The level of the exposition is suitable for advanced undergraduate students, graduate students and general physicists.

  7. Shape optimization of a pressure vessel under plastic flow, plastic instability, weight and fatigue life criteria

    SciTech Connect

    El Abdi, R.; Touratier, M.; Convert, P.; Lalanne, B.

    1994-06-01

    The structural shape optimization of a complex shell under complex criteria is presented. The shell is one of various cases of a turboshaft, and optimization criteria are associated with the cost, the technology, and above all the working conditions for the turboshaft. Optimization criteria involved are of course the weight of the structure, but also the plastic flow, plastic instability and fatigue life. The fatigue life criterion is an extension to the three-dimensional state of the one-dimensional Lemaitre-Chaboche rule, taking into account the elasto-plastic Neuber correction. All computations have been made with the ANSYS finite element program in which an optimization module exists. 20 refs.

  8. Optimized dynamic framing for PET-based myocardial blood flow estimation

    NASA Astrophysics Data System (ADS)

    Kolthammer, Jeffrey A.; Muzic, Raymond F.

    2013-08-01

    An optimal experiment design methodology was developed to select the framing schedule to be used in dynamic positron emission tomography (PET) for estimation of myocardial blood flow using 82Rb. A compartment model and an arterial input function based on measured data were used to calculate a D-optimality criterion for a wide range of candidate framing schedules. To validate the optimality calculation, noisy time-activity curves were simulated, from which parameter values were estimated using an efficient and robust decomposition of the estimation problem. D-optimized schedules improved estimate precision compared to non-optimized schedules, including previously published schedules. To assess robustness, a range of physiologic conditions were simulated. Schedules that were optimal for one condition were nearly-optimal for others. The effect of infusion duration was investigated. Optimality was better for shorter than for longer tracer infusion durations, with the optimal schedule for the shortest infusion duration being nearly optimal for other durations. Together this suggests that a framing schedule optimized for one set of conditions will also work well for others and it is not necessary to use different schedules for different infusion durations or for rest and stress studies. The method for optimizing schedules is general and could be applied in other dynamic PET imaging studies.

  9. Optimization and Control of Acoustic Liner Impedance with Bias Flow

    NASA Technical Reports Server (NTRS)

    Wood, Houston; Follet, Jesse

    2000-01-01

    Because communities are impacted by steady increases in aircraft traffic, aircraft noise continues to be a growing problem for the growth of commercial aviation. Research has focused on improving the design of specific high noise source areas of aircraft and on noise control measures to alleviate noise radiated from aircraft to the surrounding environment. Engine duct liners have long been a principal means of attenuating engine noise. The ability to control in-situ the acoustic impedance of a liner would provide a valuable tool to improve the performance of liners. The acoustic impedance of a liner is directly related to the sound absorption qualities of that liner. Increased attenuation rates, the ability to change liner acoustic impedance to match various operating conditions, or the ability to tune a liner to more precisely match design impedance represent some ways that in-situ impedance control could be useful. With this in mind, the research to be investigated will focus on improvements in the ability to control liner impedance using a mean flow through the liner which is referred to as bias flow.

  10. Optimizing information flow in small genetic networks. IV. Spatial coupling

    NASA Astrophysics Data System (ADS)

    Sokolowski, Thomas R.; Tkačik, Gašper

    2015-06-01

    We typically think of cells as responding to external signals independently by regulating their gene expression levels, yet they often locally exchange information and coordinate. Can such spatial coupling be of benefit for conveying signals subject to gene regulatory noise? Here we extend our information-theoretic framework for gene regulation to spatially extended systems. As an example, we consider a lattice of nuclei responding to a concentration field of a transcriptional regulator (the input) by expressing a single diffusible target gene. When input concentrations are low, diffusive coupling markedly improves information transmission; optimal gene activation functions also systematically change. A qualitatively different regulatory strategy emerges where individual cells respond to the input in a nearly steplike fashion that is subsequently averaged out by strong diffusion. While motivated by early patterning events in the Drosophila embryo, our framework is generically applicable to spatially coupled stochastic gene expression models.

  11. Grid sensitivity for aerodynamic optimization and flow analysis

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, I.; Tiwari, S. N.

    1993-01-01

    After reviewing relevant literature, it is apparent that one aspect of aerodynamic sensitivity analysis, namely grid sensitivity, has not been investigated extensively. The grid sensitivity algorithms in most of these studies are based on structural design models. Such models, although sufficient for preliminary or conceptional design, are not acceptable for detailed design analysis. Careless grid sensitivity evaluations, would introduce gradient errors within the sensitivity module, therefore, infecting the overall optimization process. Development of an efficient and reliable grid sensitivity module with special emphasis on aerodynamic applications appear essential. The organization of this study is as follows. The physical and geometric representations of a typical model are derived in chapter 2. The grid generation algorithm and boundary grid distribution are developed in chapter 3. Chapter 4 discusses the theoretical formulation and aerodynamic sensitivity equation. The method of solution is provided in chapter 5. The results are presented and discussed in chapter 6. Finally, some concluding remarks are provided in chapter 7.

  12. Optimal Ranking Regime analysis of TreeFlow dendrohydrological reconstructions

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.

    2015-03-01

    The Optimal Ranking Regime (ORR) method was used to identify 6-100 year time windows containing significant ranking sequences in 55 western US streamflow reconstructions, and reconstructions of the level of the Great Salt Lake and San Francisco Bay salinity during 1500-2007. The method's ability to identify optimally significant and non-overlapping runs of low and high rankings allows it to re-express a reconstruction time series as a simplified sequence of regime segments marking intra- to multi-decadal (IMD) periods of low or high streamflow, lake level, or salinity. Those ORR sequences, referred to here as Z lines, can be plotted to identify consistent regime patterns in the analysis of numerous reconstructions. The Z lines for the 57 reconstructions evaluated here show a common pattern of IMD cycles of drought and pluvial periods during the late 16th and 17th centuries, a relatively dormant period during the 18th century, and the reappearance of alternating dry and wet IMD periods during the 19th and early 20th centuries. Although this pattern suggests the possibility of similarly active and inactive oceanic modes in the North Pacific and North Atlantic, such centennial-scale patterns are not evident in the ORR analyses of reconstructed Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation, and North Atlantic seas-surface temperature variation. But given the inconsistency in the analyses of four PDO reconstructions the possible role of centennial-scale oceanic mechanisms is uncertain. In future research the ORR method might be applied to climate reconstructions around the Pacific Basin to try to resolve this uncertainty. Given its ability to compare regime patterns in climate reconstructions derived using different methods and proxies, the method may also be used in future research to evaluate long-term regional temperature reconstructions.

  13. Optimal ranking regime analysis of TreeFlow dendrohydrological reconstructions

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.

    2015-08-01

    The optimal ranking regime (ORR) method was used to identify 6-100-year time windows containing significant ranking sequences in 55 western US streamflow reconstructions, and reconstructions of the level of the Great Salt Lake and San Francisco Bay salinity during 1500-2007. The method's ability to identify optimally significant and non-overlapping runs of low- and high-rankings allows it to re-express a reconstruction time series as a simplified sequence of regime segments marking intra- to multi-decadal (IMD) periods of low or high streamflow, lake level, and salinity. Those ORR sequences, referred to here as Z-lines, can be plotted to identify consistent regime patterns in the analysis of numerous reconstructions. The Z-lines for the 57 reconstructions evaluated here show a common pattern of IMD cycles of drought and pluvial periods during the late 16th and 17th centuries, a relatively dormant period during the 18th century, and the reappearance of alternating dry and wet IMD periods during the 19th and early 20th centuries. Although this pattern suggests the possibility of similarly active and inactive oceanic modes in the North Pacific and North Atlantic, such centennial-scale patterns are not evident in the ORR analyses of reconstructed Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation, and North Atlantic sea-surface temperature variation. However, given the inconsistency in the analyses of four PDO reconstructions, the possible role of centennial-scale oceanic mechanisms is uncertain. In future research the ORR method might be applied to climate reconstructions around the Pacific Basin to try to resolve this uncertainty. Given its ability to compare regime patterns in climate reconstructions derived using different methods and proxies, the method may also be used in future research to evaluate long-term regional temperature reconstructions.

  14. Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, M. R.; Gireesha, B. J.; Prasannakumara, B. C.; Gorla, Rama Subba Reddy

    2016-09-01

    A theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.

  15. Melting Phenomenon in MHD Stagnation Point Flow of Dusty Fluid over a Stretching Sheet in the Presence of Thermal Radiation and Non-Uniform Heat Source/Sink

    NASA Astrophysics Data System (ADS)

    Prasannakumara, B. C.; Gireesha, B. J.; Manjunatha, P. T.

    2015-09-01

    A comprehensive numerical study is conducted to investigate the effect of melting on flow and heat transfer of incompressible viscous dusty fluid near two-dimensional stagnation-point flow over a stretching surface, in the presence of thermal radiation, non-uniform heat source/sink and applied magnetic field. Using suitable transformations, the governing nonlinear partial differential equations are transformed into a set of coupled nonlinear ordinary differential equations and then they are solved numerically. The influence of the various interesting parameters on the flow and heat transfer is analyzed and discussed in detail through plotted graphs. Comparison of the present results with existing results is shown and a good agreement is observed. We found that the velocity and temperature fields increase with an increase in the melting process of the stretching sheet.

  16. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  17. Optimal Experience and Optimal Identity: A Multinational Study of the Associations Between Flow and Social Identity

    PubMed Central

    Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino

    2016-01-01

    Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person’s identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants’ gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow. PMID:26924995

  18. Optimal Experience and Optimal Identity: A Multinational Study of the Associations Between Flow and Social Identity.

    PubMed

    Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino

    2016-01-01

    Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person's identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants' gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow.

  19. Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid

    NASA Astrophysics Data System (ADS)

    Sadegh, Khalili; Saeed, Dinarvand; Reza, Hosseini; Hossein, Tamim; Ioan, Pop

    2014-04-01

    In this article, the unsteady magnetohydrodynamic (MHD) stagnation point flow and heat transfer of a nanofluid over a stretching/shrinking sheet is investigated numerically. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations which are then solved numerically using the fourth-order Runge-Kutta method with shooting technique. The ambient fluid velocity, stretching/shrinking velocity of sheet, and the wall temperature are assumed to vary linearly with the distance from the stagnation point. To investigate the influence of various pertinent parameters, graphical results for the local Nusselt number, the skin friction coefficient, velocity profile, and temperature profile are presented for different values of the governing parameters for three types of nanoparticles, namely copper, alumina, and titania in the water-based fluid. It is found that the dual solution exists for the decelerating flow. Numerical results show that the extent of the dual solution domain increases with the increases of velocity ratio, magnetic parameter, and permeability parameter whereas it remains constant as the value of solid volume fraction of nanoparticles changes. Also, it is found that permeability parameter has a greater effect on the flow and heat transfer of a nanofluid than the magnetic parameter.

  20. Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Hsien; Low, Ying Min; Chiew, Yee-Meng

    2016-05-01

    Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial, and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k - ɛ turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.

  1. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation

    PubMed Central

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  2. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    PubMed

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  3. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    PubMed

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.

  4. MHD Flow and Heat Transfer of Nanofluids through a Porous Media Due to a Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects

    NASA Astrophysics Data System (ADS)

    Yirga, Y.; Shankar, B.

    2015-09-01

    This article investigates the convective heat and mass transfer in nanofluid flow through a porous media due to a stretching sheet subjected to magnetic field, viscous dissipation, chemical reaction, and Soret effects. The governing equations are reduced to ordinary differential equations using similarity transformations and then solved numerically by the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number, Sherwood number, as well as for the velocity, temperature, and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier studies in the literature.

  5. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    PubMed Central

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  6. An analytic study of near terminal area optimal sequencing and flow control techniques

    NASA Technical Reports Server (NTRS)

    Park, S. K.; Straeter, T. A.; Hogge, J. E.

    1973-01-01

    Optimal flow control and sequencing of air traffic operations in the near terminal area are discussed. The near terminal area model is based on the assumptions that the aircraft enter the terminal area along precisely controlled approach paths and that the aircraft are segregated according to their near terminal area performance. Mathematical models are developed to support the optimal path generation, sequencing, and conflict resolution problems.

  7. Optimal Taylor-Couette flow: radius ratio dependence

    NASA Astrophysics Data System (ADS)

    Ostilla-Mónico, Rodolfo; Huisman, Sander G.; Jannink, Tim J. G.; Van Gils, Dennis P. M.; Verzicco, Roberto; Grossmann, Siegfried; Sun, Chao; Lohse, Detlef

    2014-05-01

    Taylor-Couette flow with independently rotating inner (i) and outer (o) cylinders is explored numerically and experimentally to determine the effects of the radius ratio {\\eta} on the system response. Numerical simulations reach Reynolds numbers of up to Re_i=9.5 x 10^3 and Re_o=5x10^3, corresponding to Taylor numbers of up to Ta=10^8 for four different radius ratios {\\eta}=r_i/r_o between 0.5 and 0.909. The experiments, performed in the Twente Turbulent Taylor-Couette (T^3C) setup, reach Reynolds numbers of up to Re_i=2x10^6$ and Re_o=1.5x10^6, corresponding to Ta=5x10^{12} for {\\eta}=0.714-0.909. Effective scaling laws for the torque J^{\\omega}(Ta) are found, which for sufficiently large driving Ta are independent of the radius ratio {\\eta}. As previously reported for {\\eta}=0.714, optimum transport at a non-zero Rossby number Ro=r_i|{\\omega}_i-{\\omega}_o|/[2(r_o-r_i){\\omega}_o] is found in both experiments and numerics. Ro_opt is found to depend on the radius ratio and the driving of the system. At a driving in the range between {Ta\\sim3\\cdot10^8} and {Ta\\sim10^{10}}, Ro_opt saturates to an asymptotic {\\eta}-dependent value. Theoretical predictions for the asymptotic value of Ro_{opt} are compared to the experimental results, and found to differ notably. Furthermore, the local angular velocity profiles from experiments and numerics are compared, and a link between a flat bulk profile and optimum transport for all radius ratios is reported.

  8. ICESHEET 1.0: a program to produce paleo-ice sheet reconstructions with minimal assumptions

    NASA Astrophysics Data System (ADS)

    Gowan, Evan J.; Tregoning, Paul; Purcell, Anthony; Lea, James; Fransner, Oscar J.; Noormets, Riko; Dowdeswell, J. A.

    2016-05-01

    We describe a program that produces paleo-ice sheet reconstructions using an assumption of steady-state, perfectly plastic ice flow behaviour. It incorporates three input parameters: ice margin, basal shear stress and basal topography. Though it is unlikely that paleo-ice sheets were ever in complete steady-state conditions, this method can produce an ice sheet without relying on complicated and unconstrained parameters such as climate and ice dynamics. This makes it advantageous to use in glacial-isostatic adjustment ice sheet modelling, which are often used as input parameters in global climate modelling simulations. We test this program by applying it to the modern Greenland Ice Sheet and Last Glacial Maximum Barents Sea Ice Sheet and demonstrate the optimal parameters that balance computational time and accuracy.

  9. Time-optimal path planning in dynamic flows using level set equations: theory and schemes

    NASA Astrophysics Data System (ADS)

    Lolla, Tapovan; Lermusiaux, Pierre F. J.; Ueckermann, Mattheus P.; Haley, Patrick J.

    2014-10-01

    We develop an accurate partial differential equation-based methodology that predicts the time-optimal paths of autonomous vehicles navigating in any continuous, strong, and dynamic ocean currents, obviating the need for heuristics. The goal is to predict a sequence of steering directions so that vehicles can best utilize or avoid currents to minimize their travel time. Inspired by the level set method, we derive and demonstrate that a modified level set equation governs the time-optimal path in any continuous flow. We show that our algorithm is computationally efficient and apply it to a number of experiments. First, we validate our approach through a simple benchmark application in a Rankine vortex flow for which an analytical solution is available. Next, we apply our methodology to more complex, simulated flow fields such as unsteady double-gyre flows driven by wind stress and flows behind a circular island. These examples show that time-optimal paths for multiple vehicles can be planned even in the presence of complex flows in domains with obstacles. Finally, we present and support through illustrations several remarks that describe specific features of our methodology.

  10. Time-optimal path planning in dynamic flows using level set equations: theory and schemes

    NASA Astrophysics Data System (ADS)

    Lolla, Tapovan; Lermusiaux, Pierre F. J.; Ueckermann, Mattheus P.; Haley, Patrick J.

    2014-09-01

    We develop an accurate partial differential equation-based methodology that predicts the time-optimal paths of autonomous vehicles navigating in any continuous, strong, and dynamic ocean currents, obviating the need for heuristics. The goal is to predict a sequence of steering directions so that vehicles can best utilize or avoid currents to minimize their travel time. Inspired by the level set method, we derive and demonstrate that a modified level set equation governs the time-optimal path in any continuous flow. We show that our algorithm is computationally efficient and apply it to a number of experiments. First, we validate our approach through a simple benchmark application in a Rankine vortex flow for which an analytical solution is available. Next, we apply our methodology to more complex, simulated flow fields such as unsteady double-gyre flows driven by wind stress and flows behind a circular island. These examples show that time-optimal paths for multiple vehicles can be planned even in the presence of complex flows in domains with obstacles. Finally, we present and support through illustrations several remarks that describe specific features of our methodology.

  11. An automatic CFD-based flow diverter optimization principle for patient-specific intracranial aneurysms.

    PubMed

    Janiga, Gábor; Daróczy, László; Berg, Philipp; Thévenin, Dominique; Skalej, Martin; Beuing, Oliver

    2015-11-01

    The optimal treatment of intracranial aneurysms using flow diverting devices is a fundamental issue for neuroradiologists as well as neurosurgeons. Due to highly irregular manifold aneurysm shapes and locations, the choice of the stent and the patient-specific deployment strategy can be a very difficult decision. To support the therapy planning, a new method is introduced that combines a three-dimensional CFD-based optimization with a realistic deployment of a virtual flow diverting stent for a given aneurysm. To demonstrate the feasibility of this method, it was applied to a patient-specific intracranial giant aneurysm that was successfully treated using a commercial flow diverter. Eight treatment scenarios with different local compressions were considered in a fully automated simulation loop. The impact on the corresponding blood flow behavior was evaluated qualitatively as well as quantitatively, and the optimal configuration for this specific case was identified. The virtual deployment of an uncompressed flow diverter reduced the inflow into the aneurysm by 24.4% compared to the untreated case. Depending on the positioning of the local stent compression below the ostium, blood flow reduction could vary between 27.3% and 33.4%. Therefore, a broad range of potential treatment outcomes was identified, illustrating the variability of a given flow diverter deployment in general. This method represents a proof of concept to automatically identify the optimal treatment for a patient in a virtual study under certain assumptions. Hence, it contributes to the improvement of virtual stenting for intracranial aneurysms and can support physicians during therapy planning in the future.

  12. Preliminary Optimization for Spring-Run Chinook Salmon Environmental Flows in Lassen Foothill Watersheds

    NASA Astrophysics Data System (ADS)

    Ta, J.; Kelsey, R.; Howard, J.; Hall, M.; Lund, J. R.; Viers, J. H.

    2014-12-01

    Stream flow controls physical and ecological processes in rivers that support freshwater ecosystems and biodiversity vital for services that humans depend on. This master variable has been impaired by human activities like dam operations, water diversions, and flood control infrastructure. Furthermore, increasing water scarcity due to rising water demands and droughts has further stressed these systems, calling for the need to find better ways to identify and allocate environmental flows. In this study, a linear optimization model was developed for environmental flows in river systems that have minimal or no regulation from dam operations, but still exhibit altered flow regimes due to surface water diversions and groundwater abstraction. Flow regime requirements for California Central Valley spring-run Chinook salmon (Oncorhynchus tshawytscha) life history were used as a test case to examine how alterations to the timing and magnitude of water diversions meet environmental flow objectives while minimizing impact to local water supply. The model was then applied to Mill Creek, a tributary of the Sacramento River, in northern California, and its altered flow regime that currently impacts adult spring-run Chinook spawning and migration. The resulting optimized water diversion schedule can be used to inform water management decisions that aim to maximize benefit for the environment while meeting local water demands.

  13. Design optimization of flow channel and performance analysis for a new-type centrifugal blood pump

    NASA Astrophysics Data System (ADS)

    Ji, J. J.; Luo, X. W.; Y Wu, Q.

    2013-12-01

    In this paper, a new-type centrifugal blood pump, whose impeller is suspended inside a pump chamber with hydraulic bearings, is presented. In order to improve the hydraulic performance of the pump, an internal flow simulation is conducted to compare the effects of different geometrical parameters of pump flow passage. Based on the numerical results, the pumps can satisfy the operation parameters and be free of hemolysis. It is noted that for the pump with a column-type supporter at its inlet, the pump head and hydraulic efficiency decreases compared to the pump with a step-type support structure. The performance drop is caused by the disturbed flow upstream impeller inlet. Further, the unfavorable flow features such as reverse flow and low velocity in the pump may increases the possibility of thrombus. It is also confirmed that the casing shape can little influence pump performance. Those results are helpful for design optimization in blood pump development.

  14. Radiation Effects on the Flow of Powell-Eyring Fluid Past an Unsteady Inclined Stretching Sheet with Non-Uniform Heat Source/Sink

    PubMed Central

    Hayat, Tasawar; Asad, Sadia; Mustafa, Meraj; Alsaedi, Ahmed

    2014-01-01

    This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis method (HAM). The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and analyzed. PMID:25072515

  15. MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching/shrinking sheet with prescribed heat flux

    NASA Astrophysics Data System (ADS)

    Ishak, Nazila; Hashim, Hasmawani; Mohamed, Muhammad Khairul Anuar; Sarif, Norhafizah Md; Khaled, Mohd; Rosli, Norhayati; Salleh, Mohd Zuki

    2015-12-01

    In this paper, the effect of Magnetohydrodynamic (MHD) towards the flow and heat transfer for the upper-convected Maxwell (UCM) fluid over a stretching/shrinking sheet with prescribed heat flux (PHF) is considered. The governing equations are transformed into a set of ordinary differential equations (ODEs) by using the similarity transformation. Shooting technique is applied to solve the transform ODEs. Numerical solutions of the local temperature, reduced skin friction coefficient, velocity and temperature profiles are obtained. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, the magnetic parameter M, the suction parameter S, the stretching/shrinking parameter ɛ and the Maxwell parameter β are analyzed and discussed.

  16. Jurassic ash-flow sheets, calderas, and related intrusions of the Cordilleran volcanic arc in southeastern Arizona: implications for regional tectonics and ore deposits

    USGS Publications Warehouse

    Lipman, P.W.; Hagstrum, J.T.

    1992-01-01

    Volcanologic, petrologic, and paleomagnetic studies of widespread Jurassic ash-flow sheets in the Huachuca-southern Dragoon Mountains area have led to identification of four large source calderas and associated comagnetic intracaldera intrusions. Stratigraphic, facies, and contact features of the caldera-related tuffs also provide constraints on the locations, lateral displacements, and very existence for some major northwest-trending faults and inferred regional thrusts in southeastern Arizona. Silicic alkalic compositions of the Jurassic caldera-related, ash-flow tuffs; bimodal associated mafic magmatism; and interstratified coarse sedimentary deposits provide evidence for synvolcanic extension and rifting within the Cordilleran magmatic arc. Gold-copper mineralization is associated with subvolcanic intrusions at several of the Jurassic calderas. -from Authors

  17. The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno's Model: A Revised Model

    NASA Astrophysics Data System (ADS)

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2016-01-01

    A numerical study on the stagnation-point boundary layer flow of a viscous and incompressible (Newtonian) fluid past a stretching/shrinking sheet with the fluid suction using Buongiorno's model is considered. The main focus of this article is the effects of the non-alignment of the flow and the surface of the sheet. We have also studied the problem using a new boundary condition that is more physically realistic which assumes that the nanoparticle fraction at the surface is passively controlled. The governing equations of this problem are reduced to the ordinary differential equations using some similarity transformations which are then solved using the bvp4c function in Matlab. From the results obtained, we concluded that the effect of the non-alignment function is the same as in the regular fluid or nanofluid. However, it is found that the fluid suction can reduce the effect of the non-alignment at the surface. Dual solutions have also been discovered in this problem and from the stability analysis it is found that the first solution is stable while the second solution is not stable.

  18. The Limits of Porous Materials in the Topology Optimization of Stokes Flows

    SciTech Connect

    Evgrafov, Anton

    2005-10-15

    We consider a problem concerning the distribution of a solid material in a given bounded control volume with the goal to minimize the potential power of the Stokes flow with given velocities at the boundary through the material-free part of the domain.We also study the relaxed problem of the optimal distribution of the porous material with a spatially varying Darcy permeability tensor, where the governing equations are known as the Darcy-Stokes, or Brinkman, equations. We show that the introduction of the requirement of zero power dissipation due to the flow through the porous material into the relaxed problem results in it becoming a well-posed mathematical problem, which admits optimal solutions that have extreme permeability properties (i.e., assume only zero or infinite permeability); thus, they are also optimal in the original (non-relaxed) problem. Two numerical techniques are presented for the solution of the constrained problem. One is based on a sequence of optimal Brinkman flows with increasing viscosities, from the mathematical point of view nothing but the exterior penalty approach applied to the problem. Another technique is more special, and is based on the 'sizing' approximation of the problem using a mix of two different porous materials with high and low permeabilities, respectively. This paper thus complements the study of Borrvall and Petersson (Internat. J. Numer. Methods Fluids, vol. 41, no. 1, pp. 77-107, 2003), where only sizing optimization problems are treated.

  19. Simulation based flow distribution network optimization for vacuum assisted resin transfer moulding process

    NASA Astrophysics Data System (ADS)

    Hsiao, Kuang-Ting; Devillard, Mathieu; Advani, Suresh G.

    2004-05-01

    In the vacuum assisted resin transfer moulding (VARTM) process, using a flow distribution network such as flow channels and high permeability fabrics can accelerate the resin infiltration of the fibre reinforcement during the manufacture of composite parts. The flow distribution network significantly influences the fill time and fill pattern and is essential for the process design. The current practice has been to cover the top surface of the fibre preform with the distribution media with the hope that the resin will flood the top surface immediately and penetrate through the thickness. However, this approach has some drawbacks. One is when the resin finds its way to the vent before it has penetrated the preform entirely, which results in a defective part or resin wastage. Also, if the composite structure contains ribs or inserts, this approach invariably results in dry spots. Instead of this intuitive approach, we propose a science-based approach to design the layout of the distribution network. Our approach uses flow simulation of the resin into the network and the preform and a genetic algorithm to optimize the flow distribution network. An experimental case study of a co-cured rib structure is conducted to demonstrate the design procedure and validate the optimized flow distribution network design. Good agreement between the flow simulations and the experimental results was observed. It was found that the proposed design algorithm effectively optimized the flow distribution network of the part considered in our case study and hence should prove to be a useful tool to extend the VARTM process to manufacture of complex structures with effective use of the distribution network layup.

  20. A landscape lake flow pattern design approach based on automated CFD simulation and parallel multiple objective optimization.

    PubMed

    Guo, Hao; Tian, Yimei; Shen, Hailiang; Wang, Yi; Kang, Mengxin

    2016-01-01

    A design approach for determining the optimal flow pattern in a landscape lake is proposed based on FLUENT simulation, multiple objective optimization, and parallel computing. This paper formulates the design into a multi-objective optimization problem, with lake circulation effects and operation cost as two objectives, and solves the optimization problem with non-dominated sorting genetic algorithm II. The lake flow pattern is modelled in FLUENT. The parallelization aims at multiple FLUENT instance runs, which is different from the FLUENT internal parallel solver. This approach: (1) proposes lake flow pattern metrics, i.e. weighted average water flow velocity, water volume percentage of low flow velocity, and variance of flow velocity, (2) defines user defined functions for boundary setting, objective and constraints calculation, and (3) parallels the execution of multiple FLUENT instances runs to significantly reduce the optimization wall-clock time. The proposed approach is demonstrated through a case study for Meijiang Lake in Tianjin, China.

  1. A landscape lake flow pattern design approach based on automated CFD simulation and parallel multiple objective optimization.

    PubMed

    Guo, Hao; Tian, Yimei; Shen, Hailiang; Wang, Yi; Kang, Mengxin

    2016-01-01

    A design approach for determining the optimal flow pattern in a landscape lake is proposed based on FLUENT simulation, multiple objective optimization, and parallel computing. This paper formulates the design into a multi-objective optimization problem, with lake circulation effects and operation cost as two objectives, and solves the optimization problem with non-dominated sorting genetic algorithm II. The lake flow pattern is modelled in FLUENT. The parallelization aims at multiple FLUENT instance runs, which is different from the FLUENT internal parallel solver. This approach: (1) proposes lake flow pattern metrics, i.e. weighted average water flow velocity, water volume percentage of low flow velocity, and variance of flow velocity, (2) defines user defined functions for boundary setting, objective and constraints calculation, and (3) parallels the execution of multiple FLUENT instances runs to significantly reduce the optimization wall-clock time. The proposed approach is demonstrated through a case study for Meijiang Lake in Tianjin, China. PMID:27642835

  2. Optimality and Conductivity for Water Flow: From Landscapes, to Unsaturated Soils, to Plant Leaves

    SciTech Connect

    Liu, H.H.

    2012-02-23

    Optimality principles have been widely used in many areas. Based on an optimality principle that any flow field will tend toward a minimum in the energy dissipation rate, this work shows that there exists a unified form of conductivity relationship for three different flow systems: landscapes, unsaturated soils and plant leaves. The conductivity, the ratio of water flux to energy gradient, is a power function of water flux although the power value is system dependent. This relationship indicates that to minimize energy dissipation rate for a whole system, water flow has a small resistance (or a large conductivity) at a location of large water flux. Empirical evidence supports validity of the relationship for landscape and unsaturated soils (under gravity dominated conditions). Numerical simulation results also show that the relationship can capture the key features of hydraulic structure for a plant leaf, although more studies are needed to further confirm its validity. Especially, it is of interest that according to this relationship, hydraulic conductivity for gravity-dominated unsaturated flow, unlike that defined in the classic theories, depends on not only capillary pressure (or saturation), but also the water flux. Use of the optimality principle allows for determining useful results that are applicable to a broad range of areas involving highly non-linear processes and may not be possible to obtain from classic theories describing water flow processes.

  3. Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics

    NASA Astrophysics Data System (ADS)

    Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl

    2015-11-01

    We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.

  4. PSO Based Optimal Power Flow with FACTS Devices for Security Enhancement Considering Credible Network Contingencies

    NASA Astrophysics Data System (ADS)

    Rambabu, C.; Obulesu, Y. P.; Saibabu, Ch.

    2014-07-01

    This work presents particle swarm optimization (PSO) based method to solve the optimal power flow in power systems incorporating flexible AC transmission systems controllers such as thyristor controlled phase shifter, thyristor controlled series compensator and unified power flow controller for security enhancement under single network contingencies. A fuzzy contingency ranking method is used in this paper and observed that it effectively eliminates the masking effect when compared with other methods of contingency ranking. The fuzzy based network composite overall severity index is used as an objective to be minimized to improve the security of the power system. The proposed optimization process with PSO is presented with case study example using IEEE 30-bus test system to demonstrate its applicability. The results are presented to show the feasibility and potential of this new approach.

  5. A Practically Validated Intelligent Calibration Circuit Using Optimized ANN for Flow Measurement by Venturi

    NASA Astrophysics Data System (ADS)

    Venkata, Santhosh Krishnan; Roy, Binoy Krishna

    2016-03-01

    Design of an intelligent flow measurement technique using venturi flow meter is reported in this paper. The objectives of the present work are: (1) to extend the linearity range of measurement to 100 % of full scale input range, (2) to make the measurement technique adaptive to variations in discharge coefficient, diameter ratio of venturi nozzle and pipe (β), liquid density, and liquid temperature, and (3) to achieve the objectives (1) and (2) using an optimized neural network. The output of venturi flow meter is differential pressure. It is converted to voltage by using a suitable data conversion unit. A suitable optimized artificial neural network (ANN) is added, in place of conventional calibration circuit. ANN is trained, tested with simulated data considering variations in discharge coefficient, diameter ratio between venturi nozzle and pipe, liquid density, and liquid temperature. The proposed technique is then subjected to practical data for validation. Results show that the proposed technique has fulfilled the objectives.

  6. Parametric modeling and stagger angle optimization of an axial flow fan

    NASA Astrophysics Data System (ADS)

    Li, M. X.; Zhang, C. H.; Liu, Y.; Y Zheng, S.

    2013-12-01

    Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%.

  7. Multi-objective optimization of hole characteristics during pulsed Nd:YAG laser microdrilling of gamma-titanium aluminide alloy sheet

    NASA Astrophysics Data System (ADS)

    Biswas, R.; Kuar, A. S.; Mitra, S.

    2014-09-01

    Nd:YAG laser microdrilled holes on gamma-titanium aluminide, a newly developed alloy having wide applications in turbine blades, engine valves, cases, metal cutting tools, missile components, nuclear fuel and biomedical engineering, are important from the dimensional accuracy and quality of hole point of view. Keeping this in mind, a central composite design (CCD) based on response surface methodology (RSM) is employed for multi-objective optimization of pulsed Nd:YAG laser microdrilling operation on gamma-titanium aluminide alloy sheet to achieve optimum hole characteristics within existing resources. The three characteristics such as hole diameter at entry, hole diameter at exit and hole taper have been considered for simultaneous optimization. The individual optimization of all three responses has also been carried out. The input parameters considered are lamp current, pulse frequency, assist air pressure and thickness of the job. The responses at predicted optimum parameter level are in good agreement with the results of confirmation experiments conducted for verification tests.

  8. Interpolating between random walks and optimal transportation routes: Flow with multiple sources and targets

    NASA Astrophysics Data System (ADS)

    Guex, Guillaume

    2016-05-01

    In recent articles about graphs, different models proposed a formalism to find a type of path between two nodes, the source and the target, at crossroads between the shortest-path and the random-walk path. These models include a freely adjustable parameter, allowing to tune the behavior of the path toward randomized movements or direct routes. This article presents a natural generalization of these models, namely a model with multiple sources and targets. In this context, source nodes can be viewed as locations with a supply of a certain good (e.g. people, money, information) and target nodes as locations with a demand of the same good. An algorithm is constructed to display the flow of goods in the network between sources and targets. With again a freely adjustable parameter, this flow can be tuned to follow routes of minimum cost, thus displaying the flow in the context of the optimal transportation problem or, by contrast, a random flow, known to be similar to the electrical current flow if the random-walk is reversible. Moreover, a source-targetcoupling can be retrieved from this flow, offering an optimal assignment to the transportation problem. This algorithm is described in the first part of this article and then illustrated with case studies.

  9. Efficient algorithms for optimal arrival scheduling and air traffic flow management

    NASA Astrophysics Data System (ADS)

    Saraf, Aditya

    The research presented in this dissertation is motivated by the need for new, efficient algorithms for the solution of two important problems currently faced by the air-traffic control community: (i) optimal scheduling of aircraft arrivals at congested airports, and (ii) optimal National Airspace System (NAS) wide traffic flow management. In the first part of this dissertation, we present an optimal airport arrival scheduling algorithm, which works within a hierarchical scheduling structure. This structure consists of schedulers at multiple points along the arrival-route. Schedulers are linked through acceptance-rate constraints, which are passed up from downstream metering-points. The innovation in this scheduling algorithm is that these constraints are computed by using an Eulerian model-based optimization scheme. This rate computation removes inefficiencies introduced in the schedule through ad hoc acceptance-rate computations. The scheduling process at every metering-point uses its optimal acceptance-rate as a constraint and computes optimal arrival sequences by using a combinatorial search-algorithm. We test this algorithm in a dynamic air-traffic environment, which can be customized to emulate different arrival scenarios. In the second part of this dissertation, we introduce a novel two-level control system for optimal traffic-flow management. The outer-level control module of this two-level control system generates an Eulerian-model of the NAS by aggregating aircraft into interconnected control-volumes. Using this Eulerian model of the airspace, control strategies like Model Predictive Control are applied to find the optimal inflow and outflow commands for each control-volume so that efficient flows are achieved in the NAS. Each control-volume has its separate inner-level control-module. The inner-level control-module takes in the optimal inflow and outflow commands generated by the outer control-module as reference inputs and uses hybrid aircraft models to

  10. Mechanics of Sheeting Joints

    NASA Astrophysics Data System (ADS)

    Martel, S. J.

    2015-12-01

    the joints can slide downslope; they can also buckle, resulting in a further breakdown of the rock. Understanding how sheeting joints evolve in three dimensions through time remains an outstanding challenge and would illuminate their affect on landscapes, slope stability, and fluid flow.

  11. Efficient global optimization applied to wind tunnel evaluation-based optimization for improvement of flow control by plasma actuators

    NASA Astrophysics Data System (ADS)

    Kanazaki, Masahiro; Matsuno, Takashi; Maeda, Kengo; Kawazoe, Hiromitsu

    2015-09-01

    A kriging-based genetic algorithm called efficient global optimization (EGO) was employed to optimize the parameters for the operating conditions of plasma actuators. The aerodynamic performance was evaluated by wind tunnel testing to overcome the disadvantages of time-consuming numerical simulations. The proposed system was used on two design problems to design the power supply for a plasma actuator. The first case was the drag minimization problem around a semicircular cylinder. In this case, the inhibitory effect of flow separation was also observed. The second case was the lift maximization problem around a circular cylinder. This case was similar to the aerofoil design, because the circular cylinder has potential to work as an aerofoil owing to the control of the flow circulation by the plasma actuators with four design parameters. In this case, applicability to the multi-variant design problem was also investigated. Based on these results, optimum designs and global design information were obtained while drastically reducing the number of experiments required compared to a full factorial experiment.

  12. Flow analysis and design optimization methods for nozzle afterbody of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1991-01-01

    This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the three dimensional Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Argon. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. In the second phase of this project, the Aerodynamic Design Optimization with Sensitivity analysis (ADOS) was developed. Pre and post optimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.

  13. Application of Newton's optimal power flow in voltage/reactive power control

    SciTech Connect

    Bjelogrlic, M.; Babic, B.S. ); Calovic, M.S. ); Ristanovic, P. )

    1990-11-01

    This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.

  14. [Choice of optimal perfusion flow rate during surgical correction of combined acquired heart diseases].

    PubMed

    Len'kin, A I; Zakharov, V I; Smetkin, A A; Len'kin, P I; Kirov, M Iu

    2013-01-01

    Cardiac output during the use of cardiopulmonary bypass (CPB) is defined by perfusion flow rate, which is calculated by multiplying the perfusion index (PI) on the body surface area. To date, there is no clear definition of an optimal PI and flow rate of perfusion. 60 patients operated with CPB were enrolled in the prospective study to determine the relations between different modes of perfusion and oxygen transport during surgical correction of combined valvular heart disease. Calculation of the CPB flow rate was based on PI 2.5 and 3.0 l/min/m2. Results of the study demonstrate that perfusion based on PI 2.5 l/min/m2 provides more stable oxygen transport parameters and reduces the time of ICU stay in comparison with the flow rate based on PI 3.0 l/min/m2.

  15. A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Keller, Dennis J.

    2001-01-01

    It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and

  16. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin

    2016-08-01

    Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.

  17. A variational level set method for the topology optimization of steady-state Navier Stokes flow

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Li, Qing

    2008-12-01

    The smoothness of topological interfaces often largely affects the fluid optimization and sometimes makes the density-based approaches, though well established in structural designs, inadequate. This paper presents a level-set method for topology optimization of steady-state Navier-Stokes flow subject to a specific fluid volume constraint. The solid-fluid interface is implicitly characterized by a zero-level contour of a higher-order scalar level set function and can be naturally transformed to other configurations as its host moves. A variational form of the cost function is constructed based upon the adjoint variable and Lagrangian multiplier techniques. To satisfy the volume constraint effectively, the Lagrangian multiplier derived from the first-order approximation of the cost function is amended by the bisection algorithm. The procedure allows evolving initial design to an optimal shape and/or topology by solving the Hamilton-Jacobi equation. Two classes of benchmarking examples are presented in this paper: (1) periodic microstructural material design for the maximum permeability; and (2) topology optimization of flow channels for minimizing energy dissipation. A number of 2D and 3D examples well demonstrated the feasibility and advantage of the level-set method in solving fluid-solid shape and topology optimization problems.

  18. Fabric development in syn-tectonic intrusive sheets as a consequence of melt-dominated flow and thermal softening of the crust

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry L.

    1996-03-01

    The temperature dependence of ductile deformational processes suggests that the thermal anomaly associated with a cooling, syn-tectonic intrusion will produce a crustal low-viscosity horizon that will concentrate deformation in the vicinity of the pluton during cooling. This effect should be most prominent when magma is present but should also occur after solidification of the magma when flow is by solid-state processes. This paper evaluates this hypothesis for sheet-like intrusions using one-dimensional, time-dependent thermal models and accompanying predictions of viscosity vs. time history based on experimental flow laws. These models predict that for systems with an initial "normal" geothermal gradient (e.g., extensional systems, strike-slip systems, or thrust systems with low displacement rates), the base of a large plutonic sheet cools more slowly than the top and fabric development should be most pronounced on the floor of the pluton. In contrast, in megathrust systems where displacements are sufficiently rapid to produce temperature inversions, cooling is also "upside-down" and fabric development should preferentially occur along the top of plutonic sheets. Moreover, when a pluton is emplaced within a zone of inverted isotherms, the heat may be trapped within the inversion. A natural system characterized by this history should show a sharp thermal front coincident with the top of a paleo-temperature inversion. If a pluton is weaker than its country rock it will form a weak horizon in the crust throughout its cooling history and the plutonic sheet should take up the bulk of the deformation throughout its cooling history. If a pluton is stronger than its country rock under conditions of solid-state flow, however, models predict a two-phase deformational history: prior to solidification the deformation should be concentrated in the pluton with the magma representing a weak horizon in the crust, but upon crystallization the pluton should become relatively rigid

  19. A MILP-Based Distribution Optimal Power Flow Model for Microgrid Operation

    SciTech Connect

    Liu, Guodong; Starke, Michael R; Zhang, Xiaohu; Tomsovic, Kevin

    2016-01-01

    This paper proposes a distribution optimal power flow (D-OPF) model for the operation of microgrids. The proposed model minimizes not only the operating cost, including fuel cost, purchasing cost and demand charge, but also several performance indices, including voltage deviation, network power loss and power factor. It co-optimizes the real and reactive power form distributed generators (DGs) and batteries considering their capacity and power factor limits. The D-OPF is formulated as a mixed-integer linear programming (MILP). Numerical simulation results show the effectiveness of the proposed model.

  20. Optimal bounds with semidefinite programming: An application to stress-driven shear flows.

    PubMed

    Fantuzzi, G; Wynn, A

    2016-04-01

    We introduce an innovative numerical technique based on convex optimization to solve a range of infinite-dimensional variational problems arising from the application of the background method to fluid flows. In contrast to most existing schemes, we do not consider the Euler-Lagrange equations for the minimizer. Instead, we use series expansions to formulate a finite-dimensional semidefinite program (SDP) whose solution converges to that of the original variational problem. Our formulation accounts for the influence of all modes in the expansion, and the feasible set of the SDP corresponds to a subset of the feasible set of the original problem. Moreover, SDPs can be easily formulated when the fluid is subject to imposed boundary fluxes, which pose a challenge for the traditional methods. We apply this technique to compute rigorous and near-optimal upper bounds on the dissipation coefficient for flows driven by a surface stress. We improve previous analytical bounds by more than 10 times and show that the bounds become independent of the domain aspect ratio in the limit of vanishing viscosity. We also confirm that the dissipation properties of stress-driven flows are similar to those of flows subject to a body force localized in a narrow layer near the surface. Finally, we show that SDP relaxations are an efficient method to investigate the energy stability of laminar flows driven by a surface stress. PMID:27176429

  1. Optimal bounds with semidefinite programming: An application to stress-driven shear flows

    NASA Astrophysics Data System (ADS)

    Fantuzzi, G.; Wynn, A.

    2016-04-01

    We introduce an innovative numerical technique based on convex optimization to solve a range of infinite-dimensional variational problems arising from the application of the background method to fluid flows. In contrast to most existing schemes, we do not consider the Euler-Lagrange equations for the minimizer. Instead, we use series expansions to formulate a finite-dimensional semidefinite program (SDP) whose solution converges to that of the original variational problem. Our formulation accounts for the influence of all modes in the expansion, and the feasible set of the SDP corresponds to a subset of the feasible set of the original problem. Moreover, SDPs can be easily formulated when the fluid is subject to imposed boundary fluxes, which pose a challenge for the traditional methods. We apply this technique to compute rigorous and near-optimal upper bounds on the dissipation coefficient for flows driven by a surface stress. We improve previous analytical bounds by more than 10 times and show that the bounds become independent of the domain aspect ratio in the limit of vanishing viscosity. We also confirm that the dissipation properties of stress-driven flows are similar to those of flows subject to a body force localized in a narrow layer near the surface. Finally, we show that SDP relaxations are an efficient method to investigate the energy stability of laminar flows driven by a surface stress.

  2. Uniformity evaluation and optimization of fluid flow characteristics in a seven-strand tundish

    NASA Astrophysics Data System (ADS)

    Wang, Min; Zhang, Chao-jie; Li, Rui

    2016-02-01

    The effect of flow control devices (FCDs) on the uniformity of flow characteristics in a seven-strand symmetrical trapezoidal tundish was studied using both an experimental 1:2.5 hydraulic model and a numerical simulation of a 1:1 geometric model. The variation coefficient (CV) was defined to evaluate the flow uniformity of the seven-strand tundish. An optimized FCD configuration was proposed on the basis of the evaluation of experimental results. It is concluded that a turbulence inhibitor (TI) and U-type dam are essential to improve the uniformity of fluid flow in the seven-strand tundish. In addition, the configuration of inclination T-type dams with a height of 200 mm between the second and third strands and with a height of 300 mm between the third and fourth strands can minimize the proportion of dead zone. After optimizing the configuration of FCDs, the variation coefficient reduces below 20% of the mean value, and the average proportion of dead zone is just 14.6%; in addition, the temperature fluctuation between the strands could be controlled within 0.6 K. In summary, the uniformity of flow and temperature in the seven-strand tundish is greatly improved.

  3. Optimal bounds with semidefinite programming: An application to stress-driven shear flows.

    PubMed

    Fantuzzi, G; Wynn, A

    2016-04-01

    We introduce an innovative numerical technique based on convex optimization to solve a range of infinite-dimensional variational problems arising from the application of the background method to fluid flows. In contrast to most existing schemes, we do not consider the Euler-Lagrange equations for the minimizer. Instead, we use series expansions to formulate a finite-dimensional semidefinite program (SDP) whose solution converges to that of the original variational problem. Our formulation accounts for the influence of all modes in the expansion, and the feasible set of the SDP corresponds to a subset of the feasible set of the original problem. Moreover, SDPs can be easily formulated when the fluid is subject to imposed boundary fluxes, which pose a challenge for the traditional methods. We apply this technique to compute rigorous and near-optimal upper bounds on the dissipation coefficient for flows driven by a surface stress. We improve previous analytical bounds by more than 10 times and show that the bounds become independent of the domain aspect ratio in the limit of vanishing viscosity. We also confirm that the dissipation properties of stress-driven flows are similar to those of flows subject to a body force localized in a narrow layer near the surface. Finally, we show that SDP relaxations are an efficient method to investigate the energy stability of laminar flows driven by a surface stress.

  4. Optimal rheological characteristics in dynamic stability of polymer flow through porous media: Topical report

    SciTech Connect

    Gao, H.W.; French, T.R.

    1988-04-01

    To identify the optimal rheological characteristics for maintaining the dynamic stability of polymer solutions flowing through porous media, displacement tests with a Newtonian fluid and a non-Newtonian fluid were performed in a 4-ft Berea sandstone core. A solution of 63 wt pct gylcerin in 53 meg/1 NaCL and a solution of 1500 ppM Pusher 500 in 53 meq/1 NaCl were used as the Newtonian fluid and non-Newtonian fluid, respectively. Two flow rates one in the purely viscous regime and one in the viscoelastic flow regime of Pusher 500 in Berea sandstone, were used in the displacement tests. The effluents collected were analyzed to determine polymer and tracer concentrations. The viscosities of the effluents were also measured with a Contraves viscometer. By comparing the concentration profiles obtained in tests with Pusher 500 and in those with gylcerin, the effects of flow rate, mobility ratio, and rheological characteristics on the dynamic stability of polymer flow in porous media were determined. At both leading and trailing edges of the polymer slug, stability increases with decreasing mobility ratio. At both high and low flow rates, a Newtonian fluid gives a more stable displacement at the fluid front than does a non-Newtonian fluid. Measurements on the mixing lengths at the back edge show that the size of the mobility buffer bank required for a flow rate at reservior conditions (viscous flow regime) would be less for a Newtonian fluid than for a non-Newtonian fluid. At a flow rate in the viscoelastic flow regime, the required size of the mobility buffer bank is less for a non-Newtonian fluid than for a Newtonian fluid. 39 refs., 13 figs., 1 tab.

  5. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet.

    PubMed

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-04-19

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable.

  6. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-04-01

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable.

  7. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet

    PubMed Central

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-01-01

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable. PMID:27091085

  8. Improved parameterization of marine ice dynamics and flow instabilities for simulation of the Austfonna ice cap using a large-scale ice sheet model

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Greve, R.; Schuler, T.; Hagen, J. M.; Navarro, F.; Vasilenko, E.; Reijmer, C.

    2009-12-01

    The Austfonna ice cap covers an area of 8120 km2 and is by far the largest glacier on Svalbard. Almost 30% of the entire area is grounded below sea-level, while the figure is as large as 57% for the known surge-type basins in particular. Marine ice dynamics, as well as flow instabilities presumably control flow regime, form and evolution of Austfonna. These issues are our focus in numerical simulations of the ice cap. We employ the thermodynamic, large-scale ice sheet model SICOPOLIS (http://sicopolis.greveweb.net/) which is based on the shallow-ice approximation. We present improved parameterizations of (a) the marine extent and calving and (b) processes that may initiate flow instabilities such as switches from cold to temperate basal conditions, surface steepening and hence, increases in driving stress, enhanced sliding or deformation of unconsolidated marine sediments and diminishing ice thicknesses towards flotation thickness. Space-borne interferometric snapshots of Austfonna revealed a velocity structure of a slow moving polar ice cap (< 10m/a) interrupted by distinct fast flow units with velocities in excess of 100m/a. However, observations of flow variability are scarce. In spring 2008, we established a series of stakes along the centrelines of two fast-flowing units. Repeated DGPS and continuous GPS measurements of the stake positions give insight in the temporal flow variability of these units and provide constrains to the modeled surface velocity field. Austfonna’s thermal structure is described as polythermal. However, direct measurements of the temperature distribution is available only from one single borehole at the summit area. The vertical temperature profile shows that the bulk of the 567m thick ice column is cold, only underlain by a thin temperate basal layer of approximately 20m. To acquire a spatially extended picture of the thermal structure (and bed topography), we used low-frequency (20 MHz) GPR profiling across the ice cap and the

  9. RECOVERY ACT - Robust Optimization for Connectivity and Flows in Dynamic Complex Networks

    SciTech Connect

    Balasundaram, Balabhaskar; Butenko, Sergiy; Boginski, Vladimir; Uryasev, Stan

    2013-12-25

    The goal of this project was to study robust connectivity and flow patterns of complex multi-scale systems modeled as networks. Networks provide effective ways to study global, system level properties, as well as local, multi-scale interactions at a component level. Numerous applications from power systems, telecommunication, transportation, biology, social science, and other areas have benefited from novel network-based models and their analysis. Modeling and optimization techniques that employ appropriate measures of risk for identifying robust clusters and resilient network designs in networks subject to uncertain failures were investigated in this collaborative multi-university project. In many practical situations one has to deal with uncertainties associated with possible failures of network components, thereby affecting the overall efficiency and performance of the system (e.g., every node/connection has a probability of partial or complete failure). Some extreme examples include power grid component failures, airline hub failures due to weather, or freeway closures due to emergencies. These are also situations in which people, materials, or other resources need to be managed efficiently. Important practical examples include rerouting flow through power grids, adjusting flight plans, and identifying routes for emergency services and supplies, in the event network elements fail unexpectedly. Solutions that are robust under uncertainty, in addition to being economically efficient, are needed. This project has led to the development of novel models and methodologies that can tackle the optimization problems arising in such situations. A number of new concepts, which have not been previously applied in this setting, were investigated in the framework of the project. The results can potentially help decision-makers to better control and identify robust or risk-averse decisions in such situations. Formulations and optimal solutions of the considered problems need

  10. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    NASA Astrophysics Data System (ADS)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  11. Submarine debris flows and continental slople evolution in front of Quaternary ice sheets, Baffin Bay, Canadian Arctic

    SciTech Connect

    Hiscott, R.N.; Aksu, A.E. )

    1994-03-01

    Baffin Bay is a semi-enclosed extension of the Labrador Sea in the Canadian Arctic. The upper Pliocene and Quaternary successions beneath the continental slope contain important slumps and debris-flow deposits. New high-resolution single-channel seismic data have been acquired from a 500 to 600-m-deep transverse trough that indents that shelf in an area where glacial outflow was focused during the Pliocene and Pleistocene. Major shelf-edge progradation occurred both inside and on the flanks of the transverse trough. In the lower slope, several large debris flows carried proglacial deposits into the deep basin. The largest of these debris flows dramatically reshaped the sea floor by reducing bottom slopes both by proximal erosion and distal thickening of the debris-flow deposit. Subsequently, the lower slope was starved of terrigenous input, and the upper slope was steepened by accumulation of basinward thinning wedges of mass flow deposits. The processes of emplacement of large debris flows, slope reshaping, and out-of-phase accumulation identified in upper and lower slope areas of Baffin Bay are relevant to the interpretation of other line-source margins affected by major sea level falls or changes in sediment influx, including siliciclastic slope aprons and carbonate platform margins. On fans, muddy debris flows provide both a potential seal for hydrocarbons generated after burial and a potentially important mass of organic-rich mudstones that may act as source rocks in the subsurface. 32 refs., 14 figs., 1 tab.

  12. MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach

    NASA Astrophysics Data System (ADS)

    Salahuddin, T.; Malik, M. Y.; Hussain, Arif; Bilal, S.; Awais, M.

    2016-03-01

    The present analysis inspects the numerical investigation of MHD flow of Williamson fluid model over a sheet with variable thickness. Cattaneo-Christov heat flux model, an amended form of Fourier's law, is used to explore the heat transfer phenomena. The governing non-linear problem is presented and transformed into self-similar form by using similarity approach. The developed non-linear problem is solved numerically by using implicit finite difference scheme known as Keller box method. The effects of relevant physical parameters on velocity and temperature profiles are taken into consideration. The important finds are as follows: influence of Hartmann number M on velocity and temperature profile is opposite. Large values of wall thickness parameter α and Weissenberg number λ are suitable for reduction of velocity profile. A comparative investigation between the previously published results and the present results is found to be in good agreement.

  13. Ramification of variable thickness on MHD TiO2 and Ag nanofluid flow over a slendering stretching sheet using NDM

    NASA Astrophysics Data System (ADS)

    Acharya, Nilankush; Das, Kalidas; Kumar Kundu, Prabir

    2016-09-01

    The present investigation reveals the effect of variable thickness on the steady two-dimensional boundary layer flows of a TiO2-water and Ag-water nanofluid through a slendering stretching sheet. The whole analysis has been performed in the presence of variable magnetic field and variable surface temperature. Similarity transformation has been introduced to renovate the non-linear partial differential equations into ordinary ones and then they were solved using the innovative technique of Natural decomposition method (NDM). The influence of pertinent parameters on velocity and temperature distribution has been illustrated by means of graphs and tables approach. Our analysis conveys that the temperature of the nanofluid reduces due to enhancing of the variable thickness parameter. The rate of heat transfer is significantly reduced for the Ag-water nanofluid with the positive impact of nanoparticle volume fraction.

  14. Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation

    PubMed Central

    Ramzan, Muhammad; Bilal, Muhammad

    2015-01-01

    The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM). Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile. PMID:25962063

  15. Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation.

    PubMed

    Ramzan, Muhammad; Bilal, Muhammad

    2015-01-01

    The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM). Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile. PMID:25962063

  16. Optimal transient disturbances behind a circular cylinder in a quasi-two-dimensional magnetohydrodynamic duct flow

    NASA Astrophysics Data System (ADS)

    Hussam, Wisam K.; Thompson, Mark C.; Sheard, Gregory J.

    2012-02-01

    The transient response of optimal linear perturbations of liquid metal flow under a strong axial magnetic field in an electrically insulated rectangular duct is considered. The focus is on the subcritical regime, below the onset of von Kármán vortex shedding, to determine the role of optimal disturbances in developing wake instabilities. In this configuration, the flow is quasi-two-dimensional and can be solved over a two-dimensional domain. Parameter ranges considered include Reynolds numbers 50 le textit {Re}lesssim 2100, modified Hartmann numbers 50 le {textit {Ha}^star }lesssim 500, and blockage ratios 0.1 ⩽ β ⩽ 0.4. In some instances, the optimal disturbances are found to generate energy growth of greater than four orders of magnitude. Variation in the wake recirculation length in the steady flow regime is determined as a function of Reynolds number, Hartman number, and blockage ratio, and a universal expression is proposed. For all β, the energy amplification of the disturbances is found to decrease significantly with increasing Hartmann number and the peak growth shifts towards smaller times. The optimal initial disturbances are consistently located in the vicinity of the boundary layer separation from the cylinder, and the structure of these disturbances is consistent for all Hartmann numbers and blockage ratios considered in this study. The time evolution of the optimal perturbations is presented, and is shown to correspond to sinuous oscillations of the shear layer downstream of the wake recirculation. The critical Reynolds number for the onset of growth at different Hartmann numbers and blockage ratios is determined. It is found that it increases rapidly with increasing Hartmann number and blockage ratio. For all β, the peak energy amplification grows exponentially with textit {Re} at low and high Hartmann numbers. Direct numerical simulation in which the inflow is perturbed by a random white noise confirms the predictions arising from the

  17. [Research on optimization of mathematical model of flow injection-hydride generation-atomic fluorescence spectrometry].

    PubMed

    Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li

    2014-01-01

    Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.

  18. Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow

    SciTech Connect

    Donna Post Guillen

    2009-07-01

    A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.

  19. A self-contained, automated methodology for optimal flow control validated for transition delay

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Gunzburger, Max D.; Nicolaides, R. A.; Erlebacher, Gordon; Hussaini, M. Yousuff

    1995-01-01

    This paper describes a self-contained, automated methodology for flow control along with a validation of the methodology for the problem of boundary layer instability suppression. The objective of control is to match the stress vector along a portion of the boundary to a given vector; instability suppression is achieved by choosing the given vector to be that of a steady base flow, e.g., Blasius boundary layer. Control is effected through the injection or suction of fluid through a single orifice on the boundary. The present approach couples the time-dependent Navier-Stokes system with an adjoint Navier-Stokes system and optimality conditions from which optimal states, i.e., unsteady flow fields, and control, e.g., actuators, may be determined. The results demonstrate that instability suppression can be achieved without any a priori knowledge of the disturbance, which is significant because other control techniques have required some knowledge of the flow unsteadiness such as frequencies, instability type, etc.

  20. New strategies for optimization of compliant tensegrity surfaces for drag reduction in turbulent flows

    NASA Astrophysics Data System (ADS)

    Luo, H.; Bewley, T. R.

    2002-11-01

    The present project is inspired by two observations from nature: 1) the incredible strength of spider fibers (derived essentially from a tensegrity-based configuration of proteins), and 2) the efficient swimming motion of dolphins (perhaps derived in part from the compliant nature of their skin). Motivated by such observations, we are exploring a new design for a tensegrity-based ``fabric'' consisting of a weave of both members in tension and members designed to support compressive loads. In particular, we are attempting to optimize the surface compliance of such a fabric, that is, the response of the surface of the fabric to externally-applied friction and pressure forces, in order to reduce the drag induced by an overlying turbulent flow at the flow/structure interface. As the first stage of the research, we developed the software simulating the interaction of the two-part system. Direct numerical simulations are used to model the dynamics of the flow part. To account for the moving walls, we use an immersed-boundary technique which simulates the presence of a moving boundary. In collaboration with another research group, we developed object-oriented software for computation of the dynamics of the tensegrity fabric part. The two codes written in two different languages run in parallel and communicate data at each time step. In this presentation, we will outline the numerical method used, present recent simulation results demonstrating the flow/surface interaction, and outline our ongoing efforts to optimize the compliance properties of the tensegrity fabric.

  1. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    PubMed

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand.

  2. Emplacement of subaerial pahoehoe lava sheet flows into water: 1990 Kūpaianaha flow of Kilauea volcano at Kaimū Bay, Hawai`i

    USGS Publications Warehouse

    Umino, Susumu; Nonaka, Miyuki; Kauahikaua, James P.

    2006-01-01

    Episode 48 of the ongoing eruption of Kilauea, Hawai`i, began in July 1986 and continuously extruded lava for the next 5.5 years from a low shield, Kūpaianaha. The flows in March 1990 headed for Kalapana and inundated the entire town under 15–25 m of lava by the end of August. As the flows advanced eastward, they entered into Kaimū Bay, replacing it with a plain of lava that extends 300 m beyond the original shoreline. The focus of our study is the period from August 1 to October 31, 1990, when the lava buried almost 406,820 m2 of the 5-m deep bay. When lava encountered the sea, it flowed along the shoreline as a narrow primary lobe up to 400 m long and 100 m wide, which in turn inflated to a thickness of 5–6 m. The flow direction of the primary lobes was controlled by the submerged delta below the lavas and by damming up lavas fed at low extrusion rates. Breakout flows through circumferential and axial inflation cracks on the inflating primary lobes formed smaller secondary lobes, burying the lows between the primary lobes and hiding their original outlines. Inflated flow lobes eventually ruptured at proximal and/or distal ends as well as mid-points between the two ends, feeding new primary lobes which were emplaced along and on the shore side of the previously inflated lobes. The flow lobes mapped with the aid of aerial photographs were correlated with daily observations of the growing flow field, and 30 primary flow lobes were dated. Excluding the two repose periods that intervened while the bay was filled, enlargement of the flow field took place at a rate of 2,440–22,640 square meters per day in the bay. Lobe thickness was estimated to be up to 11 m on the basis of cross sections of selected lobes measured using optical measurement tools, measuring tape and hand level. The total flow-lobe volume added in the bay during August 1–October 31 was approximately 3.95 million m3, giving an average supply rate of 0.86 m3/s.

  3. Estimating flow rates to optimize winter habitat for centrarchid fish in mississippi river (USA) backwaters

    USGS Publications Warehouse

    Johnson, B.L.; Knights, B.C.; Barko, J.W.; Gaugush, R.F.; Soballe, D.M.; James, W.F.

    1998-01-01

    The backwaters of large rivers provide winter refuge for many riverine fish, but they often exhibit low dissolved oxygen levels due to high biological oxygen demand and low flows. Introducing water from the main channel can increase oxygen levels in backwaters, but can also increase current velocity and reduce temperature during winter, which may reduce habitat suitability for fish. In 1993, culverts were installed to introduce flow to the Finger Lakes, a system of six backwater lakes on the Mississippi River, about 160 km downstream from Minneapolis, Minnesota. The goal was to improve habitat for bluegills and black crappies during winter by providing dissolved oxygen concentrations > 3 mg/L, current velocities < 1 cm/s, and temperatures < 1??C. To achieve these conditions, we used data on lake volume and oxygen demand to estimate the minimum flow required to maintain 3 mg/L of dissolved oxygen in each lake. Estimated flows ranged from 0.02 to 0.14 m3/s among lakes. Data gathered in winter 1994 after the culverts were opened, indicated that the estimated flows met habitat goals, but that thermal stratification and lake morphometry can reduce the volume of optimal habitat created.

  4. Optimizing neural networks for river flow forecasting - Evolutionary Computation methods versus the Levenberg-Marquardt approach

    NASA Astrophysics Data System (ADS)

    Piotrowski, Adam P.; Napiorkowski, Jarosław J.

    2011-09-01

    SummaryAlthough neural networks have been widely applied to various hydrological problems, including river flow forecasting, for at least 15 years, they have usually been trained by means of gradient-based algorithms. Recently nature inspired Evolutionary Computation algorithms have rapidly developed as optimization methods able to cope not only with non-differentiable functions but also with a great number of local minima. Some of proposed Evolutionary Computation algorithms have been tested for neural networks training, but publications which compare their performance with gradient-based training methods are rare and present contradictory conclusions. The main goal of the present study is to verify the applicability of a number of recently developed Evolutionary Computation optimization methods, mostly from the Differential Evolution family, to multi-layer perceptron neural networks training for daily rainfall-runoff forecasting. In the present paper eight Evolutionary Computation methods, namely the first version of Differential Evolution (DE), Distributed DE with Explorative-Exploitative Population Families, Self-Adaptive DE, DE with Global and Local Neighbors, Grouping DE, JADE, Comprehensive Learning Particle Swarm Optimization and Efficient Population Utilization Strategy Particle Swarm Optimization are tested against the Levenberg-Marquardt algorithm - probably the most efficient in terms of speed and success rate among gradient-based methods. The Annapolis River catchment was selected as the area of this study due to its specific climatic conditions, characterized by significant seasonal changes in runoff, rapid floods, dry summers, severe winters with snowfall, snow melting, frequent freeze and thaw, and presence of river ice - conditions which make flow forecasting more troublesome. The overall performance of the Levenberg-Marquardt algorithm and the DE with Global and Local Neighbors method for neural networks training turns out to be superior to other

  5. Joint inversion of seismic and flow data for reservoir parameter assessment using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Suman, A.; Mukerji, T.; Fernandez Martinez, J.

    2010-12-01

    Time lapse seismic data has begun to play an important role in reservoir characterization, management and monitoring. It can provide information on the dynamics of fluids in the reservoir based on the relation between variations of seismic signals and movement of hydrocarbons and changes in formation pressure. Reservoir monitoring by repeated seismic or time lapse surveys can help in reducing the uncertainties attached to reservoir models. In combination with geological and flow modeling as a part of history matching process it can provide better description of the reservoir and thus better reservoir forecasting. However joint inversion of seismic and flow data for reservoir parameter is highly non-linear and complex. Stochastic optimization based inversion has shown very good results in integration of time-lapse seismic and production data in reservoir history matching. In this paper we have used a family of particle swarm optimizers for inversion of semi-synthetic Norne field data set. We analyze the performance of the different PSO optimizers, both in terms of exploration and convergence rate. Finally we also show some promising and preliminary results of the application of differential evolution. All of the versions of PSO provide an acceptable match with the original synthetic model. The advantage of using global optimization method is that uncertainty can be assessed near the optimum point. To assess uncertainty near the optimum point we keep track of all particles over all iterations that have an objective function value below a selected cutoff. With these particles we plot the best, E-type and IQR (Inter quartile range) of porosity and permeability for each version of PSO. To compute uncertainty measures using a stochastic optimizer algorithm care has to be taken not to oversample the optimal point. We keep track of the evolution of the median distance between the global best in each of the iterations and the particles of the swarm. When this distance is

  6. Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot devicea

    PubMed Central

    Haward, S. J.; Jaishankar, A.; Oliveira, M. S. N.; Alves, M. A.; McKinley, G. H.

    2013-01-01

    We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers. PMID:24738010

  7. Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot device.

    PubMed

    Haward, S J; Jaishankar, A; Oliveira, M S N; Alves, M A; McKinley, G H

    2013-07-01

    We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers.

  8. Structural-acoustic optimization of structures excited by turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Shepherd, Micah R.

    In order to reduce noise radiation of aircraft or marine panels, a general structural-acoustic optimization technique is presented. To compute the structural-acoustic response, a modal approach based on finite element / boundary element analysis is used which can easily incorporate fluid loading, added structures and static pre-loads. Simple deterministic or complex random forcing functions are included in the analysis by transforming their cross-spectral density matrices to modal space. Particular emphasis is placed in this dissertation on structures excited by the fluctuating pressures due to turbulent boundary layer (TBL) flow. An efficient frequency-spacing is also used to minimize evaluation time but ensure accuracy. The response from the structural-acoustic analysis is coupled to an evolutionary strategy with covariance matrix adaptation (CMA-ES) to find the best design for low noise and weight. CMA-ES, a stochastic optimizer with robust search properties, samples candidate solutions from a multi-variate normal distribution and adapts the covariance matrix to favor good solutions. The optimization procedure is validated by minimizing the sound radiated by a point-driven ribbed panel and comparing the optimization results to an exhaustive search of the design space. Structural-acoustic optimization is then performed on a curved marine panel with heavy fluid loading excited by slow TBL flow. A weighted combination of noise radiation and mass are minimized by changing the thickness of strips and patches of elements. An uncorrelated pressure approximation is used to estimate the modal force due to TBL flow thus reducing the evaluation time required to compute the objective function. The results show that the best noise reduction is achieved by minimizing the modal acceptance of energy by the panel. This is equivalent to pushing the structural modes away from the peak frequency range of the forcing function. Additionally, the Pareto trade-off curve between total

  9. Technology maturation project on optimization of sheet metal forming of aluminum for use in transportation systems: Final project report

    SciTech Connect

    Johnson, K.I.; Smith, M.T.; Lavender, C.A.; Khalell, M.A.

    1994-10-01

    Using aluminum instead of steel in transportation systems could dramatically reduce the weight of vehicles--an effective way of decreasing energy consumption and emissions. The current cost of SMF aluminum alloys (about $4 per pound) and the relatively long forming times of current materials are serious drawbacks to the widespread use of SMF in industry. The interdependence of materials testing and model development is critical to optimizing SMF since the current process is conducted in a heated, pressurized die where direct measurement of critical SMF parameters is extremely difficult. Numerical models provide a means of tracking the forming process, allowing the applied gas pressure to be adjusted to maintain the optimum SMF behavior throughout the forming process. Thus, models can help produce the optimum SMF component in the least amount of time. The Pacific Northwest Laboratory is integrating SMF model development with research in improved aluminum alloys for SMF. The objectives of this research are: develop and characterize competitively priced aluminum alloys for SMF applications in industry; improve numerical models to accurately predict the optimum forming cycle for reduced forming time and improved quality; verify alloy performance and model accuracy with forming tests conducted in PNL`s Superplastic Forming User Facility. The activities performed in this technology maturation project represent a critical first step in achieving these objectives through cooperative research among industry, PNL, and universities.

  10. Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for decontamination of arsenic: Material design and optimization, study of mechanisms, and application prospects.

    PubMed

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-07-01

    Arsenic contamination in industrial wastewater and groundwater has become an important environmental issue. In this study, a novel zirconium/polyvinyl alcohol (PVA) modified polyvinyldene fluoride (PVDF) membrane was developed for arsenate removal from simulated contaminated water. A PVDF flat-sheet membrane was first fabricated; it was then soaked in a zirconium-PVA solution and dried, and finally reacted with a glutaraldehyde solution, by which the zirconium ions were impregnated onto the PVDF surface through the ether and hydroxyl groups according to the cross-linkage mechanism. The fabrication procedure was optimized by the Box-Behnken experimental design approach. The adsorption kinetics study showed that most of uptake occurred in 5 h and the equilibrium was established in 24 h. The acidic condition was beneficial for the arsenate removal and the optimal removal efficiency can be obtained at pH 2.0. The experimental data of the adsorption isotherm was better described by Langmuir equation than Freundlich equation. The maximum adsorption capacity of 128 mg-As/g was achieved at pH 2.0. In the filtration study, the modified membrane with an area of 12.56 cm(2) could treat 15.6 L arsenate solution (equivalent to 75,150 bed volumes) with an influent concentration of 98.6 μg/L to meet the maximum contaminate level of 10 μg/L. Several instrumental studies revealed that the removal was mainly associated with ion exchange between chloride and arsenate ions.

  11. Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for decontamination of arsenic: Material design and optimization, study of mechanisms, and application prospects.

    PubMed

    Zhao, Dandan; Yu, Yang; Chen, J Paul

    2016-07-01

    Arsenic contamination in industrial wastewater and groundwater has become an important environmental issue. In this study, a novel zirconium/polyvinyl alcohol (PVA) modified polyvinyldene fluoride (PVDF) membrane was developed for arsenate removal from simulated contaminated water. A PVDF flat-sheet membrane was first fabricated; it was then soaked in a zirconium-PVA solution and dried, and finally reacted with a glutaraldehyde solution, by which the zirconium ions were impregnated onto the PVDF surface through the ether and hydroxyl groups according to the cross-linkage mechanism. The fabrication procedure was optimized by the Box-Behnken experimental design approach. The adsorption kinetics study showed that most of uptake occurred in 5 h and the equilibrium was established in 24 h. The acidic condition was beneficial for the arsenate removal and the optimal removal efficiency can be obtained at pH 2.0. The experimental data of the adsorption isotherm was better described by Langmuir equation than Freundlich equation. The maximum adsorption capacity of 128 mg-As/g was achieved at pH 2.0. In the filtration study, the modified membrane with an area of 12.56 cm(2) could treat 15.6 L arsenate solution (equivalent to 75,150 bed volumes) with an influent concentration of 98.6 μg/L to meet the maximum contaminate level of 10 μg/L. Several instrumental studies revealed that the removal was mainly associated with ion exchange between chloride and arsenate ions. PMID:27174848

  12. Rapid loss of the plasma sheet energetic electrons associated with the growth of whistler mode waves inside the bursty bulk flows

    NASA Astrophysics Data System (ADS)

    Li, L. Y.; Yu, J.; Cao, J. B.

    During the interval 07:45:36- 07:54:24 UT on 24 August 2005, Cluster satellites (C1 and C3) observed an obvious loss of energetic electrons (3.2- 95keV) associated with the growth of whistler mode waves inside some bursty bulk flows (BBFs) in the midtail plasma sheet (X _{GSM}= -17.25 R _{E}). However, the fluxes of the higher-energy electrons (>128keV) and energetic ions (10- 160 keV) were relatively stable in the BBF-impacted regions. The energy-dependent electron loss inside the BBFs is mainly due to the energy-selective pitch angle scatterings by whistler mode waves within the time scales from several seconds to several minutes, and the electron scatterings in different pitch angle distributions are different in the wave growth regions. The plasma sheet energetic electrons have mainly a quasi-perpendicular pitch angle distribution (30(°)

  13. Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet

    PubMed Central

    Rubab, Khansa; Mustafa, M.

    2016-01-01

    This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here. PMID:27093542

  14. Cattaneo-Christov Heat Flux Model for MHD Three-Dimensional Flow of Maxwell Fluid over a Stretching Sheet.

    PubMed

    Rubab, Khansa; Mustafa, M

    2016-01-01

    This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here. PMID:27093542

  15. Increasing power generation in horizontal axis wind turbines using optimized flow control

    NASA Astrophysics Data System (ADS)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a

  16. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors.

    PubMed

    Ren, N Q; Chua, H; Chan, S Y; Tsang, Y F; Wang, Y J; Sin, N

    2007-07-01

    In this study, the optimal fermentation type and the operating conditions of anaerobic process in continuous-flow acidogenic reactors was investigated for the maximization of bio-hydrogen production using mixed cultures. Butyric acid type fermentation occurred at pH>6, propionic acid type fermentation occurred at pH about 5.5 with E(h) (redox potential) >-278mV, and ethanol-type fermentation occurred at pH<4.5. The representative strains of these fermentations were Clostridium sp., Propionibacterium sp. and Bacteriodes sp., respectively. Ethanol fermentation was optimal type by comparing the operating stabilities and hydrogen production capacities between the fermentation types, which remained stable when the organic loading rate (OLR) reached the highest OLR at 86.1kgCOD/m(3)d. The maximum hydrogen production reached up to 14.99L/d.

  17. Towards an optimal flow: Density-of-states-informed replica-exchange simulations

    SciTech Connect

    Vogel, Thomas; Perez, Danny

    2015-11-05

    Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely, the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.

  18. Flow optimization study of a batch microfluidics PET tracer synthesizing device

    PubMed Central

    Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.

    2010-01-01

    We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595

  19. Multiple optimal current difference effect in the lattice traffic flow model

    NASA Astrophysics Data System (ADS)

    Sun, D. H.; Zhang, M.; Chuan, T.

    2014-05-01

    Kerner and Konhäuser study moving jam dynamics first discovered in 1993 in Ref. 1. In light of their previous work, a new lattice hydrodynamic model is presented with consideration of the effect of multiple optimal current difference. To investigate the influences of new consideration on traffic jams, the linear stability analysis of the new model is conducted by employing the linear stability theory. Theoretical analysis result shows that the new consideration can stabilize traffic flow. By means of nonlinear analysis method, a modified Korteweg-deVries (mKdV) equation near the critical point is constructed and solved. The propagation behavior of traffic jam can thus be described by the kink-antikink soliton solution for the mKdV equation. Numerical simulation result shows that the effect of the multiple optimal current differences can suppress the emergence of traffic jams and the result is in good agreement with the analytical results.

  20. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework

    PubMed Central

    Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  1. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework.

    PubMed

    Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  2. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  3. Optimal receiver design for diffusive molecular communication with flow and additive noise.

    PubMed

    Noel, Adam; Cheung, Karen C; Schober, Robert

    2014-09-01

    In this paper, we perform receiver design for a diffusive molecular communication environment. Our model includes flow in any direction, sources of information molecules in addition to the transmitter, and enzymes in the propagation environment to mitigate intersymbol interference. We characterize the mutual information between receiver observations to show how often independent observations can be made. We derive the maximum likelihood sequence detector to provide a lower bound on the bit error probability. We propose the family of weighted sum detectors for more practical implementation and derive their expected bit error probability. Under certain conditions, the performance of the optimal weighted sum detector is shown to be equivalent to a matched filter. Receiver simulation results show the tradeoff in detector complexity versus achievable bit error probability, and that a slow flow in any direction can improve the performance of a weighted sum detector.

  4. Numerical investigation and optimization on mixing enhancement factors in supersonic jet-to-crossflow flow fields

    NASA Astrophysics Data System (ADS)

    Yan, Li; Huang, Wei; Li, Hao; Zhang, Tian-tian

    2016-10-01

    Sufficient mixing between the supersonic airstream and the injectant is critical for the design of scramjet engines. The information in the two-dimensional supersonic jet-to-crossflow flow field has been explored numerically and theoretically, and the numerical approach has been validated against the available experimental data in the open literature. The obtained results show that the extreme difference analysis approach can obtain deeper information than the variance analysis method, and the optimal strategy can be generated by the extreme difference analysis approach. The jet-to-crossflow pressure ratio is the most important influencing factor for the supersonic jet-to-crossflow flow field, following is the injection angle, and all the design variables have no remarkable impact on the separation length and the height of Mach disk in the range considered in the current study.

  5. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  6. Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique

    USGS Publications Warehouse

    Simunek, J.; Nimmo, J.R.

    2005-01-01

    A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time-variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field. Copyright 2005 by the American Geophysical Union.

  7. Association of consecutive Pi2-Ps6 band pulsations with earthward fast flows in the plasma sheet in response to IMF variations

    NASA Astrophysics Data System (ADS)

    Cheng, Ching-Chang; Mann, Ian R.; Baumjohann, Wolfgang

    2014-05-01

    On 11 March 2009, the H component had four consecutive bay-like variations accompanied by positive and negative deflections in the D component across the Atlantic like those affected by the substorm current wedge formation. A train of pulsations with a frequency range 2-10 mHz (referred to as Pi2-Ps6 band), sensed by Time History of Events and Macroscale Interactions during Substorms (THEMIS)/Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) magnetometers, had clearly three consecutive Pi2s followed by a Ps6 at low latitudes, but first Pi2 and then Ps6 at high latitudes mixed with large-amplitude Ps6 at midlatitudes. The geostationary orbit magnetometers sensed similar magnetic perturbations. THEMIS probes first observed earthward fast flows, magnetic dipolarizations, and modulated energetic particle fluxes at ~ XGSM -9.2 RE, then at ~ XGSM -7.5 RE for Pi2 and at ~ XGSM -18.0 RE only for Ps6. They appeared during a very quiet period for northward interplanetary magnetic field (IMF) with a clock angle variation of low to high and then low. The H spectrum shows two harmonic frequencies ~2-4 mHz and ~8-10 mHz but the D spectrum one dominant frequency ~2-4 mHz. Pi2 can result from a combination of fast magnetospheric and plasmaspheric cavity resonances and Ps6 from a fast magnetospheric cavity resonance. The surface waves at the interface separating braking earthward fast flows from the ambient plasma convection region could lead to large-amplitude Ps6 at midlatitudes. Hence, consecutive Pi2-Ps6 band pulsations can be associated with earthward fast flows in the plasma sheet, expectedly driven by magnetotail reconnection, respectively, in the near-Earth region and the distant Earth one in response to IMF variations as in the two-neutral-point model.

  8. Parallel solution of optimal shape design problem governed by Helmholtz/potential flow equations

    SciTech Connect

    Maekinen, R.A.E.; Toivanen, J.

    1995-12-01

    Computation of a wave scattered by a flying obstacle is a problem of great practical importance. We consider in this paper the numerical solution of a shape optimization problem for a lifting 2D airfoil in a distributed computing environment. A mathematical model describing of the Helmholtz equation {Delta}u + {omega}{sup 2}u = 0 with suitable boundary conditions on the profile and in the infinity. For potential flow the pressure distribution p on the profile is obtained by solving two Laplace equations on the computational domain.

  9. Online Optimal Control of Connected Vehicles for Efficient Traffic Flow at Merging Roads

    SciTech Connect

    Rios-Torres, Jackeline; Malikopoulos, Andreas; Pisu, Pierluigi

    2015-01-01

    This paper addresses the problem of coordinating online connected vehicles at merging roads to achieve a smooth traffic flow without stop-and-go driving. We present a framework and a closed-form solution that optimize the acceleration profile of each vehicle in terms of fuel economy while avoiding collision with other vehicles at the merging zone. The proposed solution is validated through simulation and it is shown that coordination of connected vehicles can reduce significantly fuel consumption and travel time at merging roads.

  10. Finite element modelling of a 3 dimensional dielectrophoretic flow separator device for optimal bioprocessing conditions.

    PubMed

    Fatoyinbo, H O; Hughes, M P

    2004-01-01

    Planar 2-dimensional dielectrophoresis electrode geometries are limited in only being capable of handling fluid volumes ranging from picolitres to hundreds of microliters per hour. A 3-dimensional electrode system has been developed capable of handling significantly larger volumes of fluid. Using finite element modeling the electric field distribution within various bore sizes was realized. From these simulations it is possible to optimize bioprocessing factors influencing the performance of a dielectrophoretic separator. Process calculations have shown that flow-rates of 25ml hr/sup -1/ or more can be attained for the separation of heterogeneous populations of bio-particles based on their dielectric properties.

  11. An investigation of design optimization using a 2-D viscous flow code with multigrid

    NASA Technical Reports Server (NTRS)

    Doria, Michael L.

    1990-01-01

    Computational fluid dynamics (CFD) codes have advanced to the point where they are effective analytical tools for solving flow fields around complex geometries. There is also a need for their use as a design tool to find optimum aerodynamic shapes. In the area of design, however, a difficulty arises due to the large amount of computer resources required by these codes. It is desired to streamline the design process so that a large number of design options and constraints can be investigated without overloading the system. There are several techniques which have been proposed to help streamline the design process. The feasibility of one of these techniques is investigated. The technique under consideration is the interaction of the geometry change with the flow calculation. The problem of finding the value of camber which maximizes the ratio of lift over drag for a particular airfoil is considered. In order to test out this technique, a particular optimization problem was tried. A NACA 0012 airfoil was considered at free stream Mach number of 0.5 with a zero angle of attack. Camber was added to the mean line of the airfoil. The goal was to find the value of camber for which the ratio of lift over drag is a maximum. The flow code used was FLOMGE which is a two dimensional viscous flow solver which uses multigrid to speed up convergence. A hyperbolic grid generation program was used to construct the grid for each value of camber.

  12. Flow and Mixture Optimization for a Fuel Stratification Engine Using PIV and PLIF Techniques

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhao, H.; Ma, T.

    2006-07-01

    This paper describes an application of PIV (particle image velocimetry) and two-tracer PLIF (planar laser-induced florescence) techniques to optimize the in-cylinder flow and to visualize two fuels distribution simultaneously for developing a fuel stratification engine. This research was carried out on a twin-spark four-valve SI engine. The PIV measurement results shows that a strong tumbling flow was produced in the cylinder as the intake valves were shrouded. The flow exhibited a symmetrical distribution in the plane perpendicular to the cylinder axis from the early stage of intake until the late stage of compression. This flow pattern helps to stratify the two fuels introduced from separate ports into two regions laterally. The stratification of fuels was observed visually by the two-tracer PLIF technique. During the PLIF measurement, two tracers, 3- pentanone and N, N-dimethylaniline (DMA), were doped into two fuels, hexane and iso-octane, respectively. Their fluorescence emissions were separated by two optical band-pass filters and recorded by a single ICCD camera simultaneously via an image doubling system. The PLIF measurement result shows that two fuels were well stratified.

  13. Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals

    NASA Astrophysics Data System (ADS)

    Wolcott, Paul J.

    Ultrasonic additive manufacturing (UAM) is a low temperature, solid-state manufacturing process that enables the creation of layered, solid metal structures with designed anisotropies and embedded materials. As a low temperature process, UAM enables the creation of active composites containing smart materials, components with embedded sensors, thermal management devices, and many others. The focus of this work is on the improvement and characterization of UAM aluminum structures, advancing the capabilities of ultrasonic joining into sheet geometries, and examination of dissimilar material joints using the technology. Optimized process parameters for Al 6061 were identified via a design of experiments study indicating a weld amplitude of 32.8 synum and a weld speed of 200 in/min as optimal. Weld force and temperature were not significant within the levels studied. A methodology of creating large scale builds is proposed, including a prescribed random stacking sequence and overlap of 0.0035 in. (0.0889 mm) for foils to minimize voids and maximize mechanical strength. Utilization of heat treatments is shown to significantly increase mechanical properties of UAM builds, within 90% of bulk material. The applied loads during the UAM process were investigated to determine the stress fields and plastic deformation induced during the process. Modeling of the contact mechanics via Hertzian contact equations shows that significant stress is applied via sonotrode contact in the process. Contact modeling using finite element analysis (FEA), including plasticity, indicates that 5000 N normal loads result in plastic deformation in bulk aluminum foil, while at 3000 N no plastic deformation occurs. FEA studies on the applied loads during the process, specifically a 3000 N normal force and 2000 N shear force, show that high stresses and plastic deformation occur at the edges of a welded foil, and base of the UAM build. Microstructural investigations of heat treated foils confirms

  14. Effects of Convective Heat and Mass Transfer in Flow of Powell-Eyring Fluid Past an Exponentially Stretching Sheet

    PubMed Central

    Hayat, T.; Saeed, Yusra; Alsaedi, A.; Asad, Sadia

    2015-01-01

    The aim here is to investigate the effects of convective heat and mass transfer in the flow of Eyring-Powell fluid past an inclined exponential stretching surface. Mathematical formulation and analysis have been performed in the presence of Soret, Dufour and thermal radiation effects. The governing partial differential equations corresponding to the momentum, energy and concentration are reduced to a set of non-linear ordinary differential equations. Resulting nonlinear system is computed for the series solutions. Interval of convergence is determined. Physical interpretation is seen for the embedded parameters of interest. Skin friction coefficient, local Nusselt number and local Sherwood number are numerically computed and examined. PMID:26327398

  15. Three-dimensional flow of a magnetohydrodynamic Casson fluid over an unsteady stretching sheet embedded into a porous medium

    NASA Astrophysics Data System (ADS)

    Butt, A. S.; Tufail, M. N.; Ali, Asif

    2016-03-01

    A three-dimensional flow of a magnetohydrodynamic Casson fluid over an unsteady stretching surface placed into a porous medium is examined. Similarity transformations are used to convert time-dependent partial differential equations into nonlinear ordinary differential equations. The transformed equations are then solved analytically by the homotopy analysis method and numerically by the shooting technique combined with the Runge-Kutta-Fehlberg method. The results obtained by both methods are compared with available reported data. The effects of the Casson fluid parameter, magnetic field parameter, and unsteadiness parameter on the velocity and local skin friction coefficients are discussed in detail.

  16. Effects of Convective Heat and Mass Transfer in Flow of Powell-Eyring Fluid Past an Exponentially Stretching Sheet.

    PubMed

    Hayat, T; Saeed, Yusra; Alsaedi, A; Asad, Sadia

    2015-01-01

    The aim here is to investigate the effects of convective heat and mass transfer in the flow of Eyring-Powell fluid past an inclined exponential stretching surface. Mathematical formulation and analysis have been performed in the presence of Soret, Dufour and thermal radiation effects. The governing partial differential equations corresponding to the momentum, energy and concentration are reduced to a set of non-linear ordinary differential equations. Resulting nonlinear system is computed for the series solutions. Interval of convergence is determined. Physical interpretation is seen for the embedded parameters of interest. Skin friction coefficient, local Nusselt number and local Sherwood number are numerically computed and examined.

  17. Experimental investigation of the flow, oxidation, cooling, and thermal-fatigue characteristics of a laminated porous sheet material

    NASA Technical Reports Server (NTRS)

    Hickel, R. O.; Warren, E. L.; Kaufman, A.

    1972-01-01

    The basic flow and oxidation characteristics of a laminated porous material (Lamilloy) are presented. The oxidation characteristics of Lamilloy are compared to a wireform-type porous material for the case when both materials are made from Hastelloy-X alloy. The cooling performance of an air cooled vane made from Lamilloy, as determined from cascade tests made at gas temperatures ranging from 1388 to 1741 C (2350 to 3165 F) is also discussed, as well as of a cascade-type thermal fatigue test of the Lamilloy vane.

  18. Study and optimization of gas flow and temperature distribution in a Czochralski configuration

    NASA Astrophysics Data System (ADS)

    Fang, H. S.; Jin, Z. L.; Huang, X. M.

    2012-12-01

    The Czochralski (Cz) method has virtually dominated the entire production of bulk single crystals with high productivity. Since the Cz-grown crystals are cylindrical, axisymmetric hot zone arrangement is required for an ideally high-quality crystal growth. However, due to three-dimensional effects the flow pattern and temperature field are inevitably non-axisymmetric. The grown crystal suffers from many defects, among which macro-cracks and micro-dislocation are mainly related to inhomogeneous temperature distribution during the growth and cooling processes. The task of the paper is to investigate gas partition and temperature distribution in a Cz configuration, and to optimize the furnace design for the reduction of the three-dimensional effects. The general design is found to be unfavorable to obtain the desired temperature conditions. Several different types of the furnace designs, modified at the top part of the side insulation, are proposed for a comparative analysis. The optimized one is chosen for further study, and the results display the excellence of the proposed design in suppression of three-dimensional effects to achieve relatively axisymmetric flow pattern and temperature distribution for the possible minimization of thermal stress related crystal defects.

  19. Improved design and optimization of subsurface flow constructed wetlands and sand filters

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Carranza-Díaz, O.; Rossi, L.; Barry, D. A.

    2010-05-01

    Subsurface flow constructed wetlands and sand filters are engineered systems capable of eliminating a wide range of pollutants from wastewater. These devices are easy to operate, flexible and have low maintenance costs. For these reasons, they are particularly suitable for small settlements and isolated farms and their use has substantially increased in the last 15 years. Furthermore, they are also becoming used as a tertiary - polishing - step in traditional treatment plants. Recent work observed that research is however still necessary to understand better the biogeochemical processes occurring in the porous substrate, their mutual interactions and feedbacks, and ultimately to identify the optimal conditions to degrade or remove from the wastewater both traditional and anthropogenic recalcitrant pollutants, such as hydrocarbons, pharmaceuticals, personal care products. Optimal pollutant elimination is achieved if the contact time between microbial biomass and the contaminated water is sufficiently long. The contact time depends on the hydraulic residence time distribution (HRTD) and is controlled by the hydrodynamic properties of the system. Previous reports noted that poor hydrodynamic behaviour is frequent, with water flowing mainly through preferential paths resulting in a broad HRTD. In such systems the flow rate must be decreased to allow a sufficient proportion of the wastewater to experience the minimum residence time. The pollutant removal efficiency can therefore be significantly reduced, potentially leading to the failure of the system. The aim of this work was to analyse the effect of the heterogeneous distribution of the hydraulic properties of the porous substrate on the HRTD and treatment efficiency, and to develop an improved design methodology to reduce the risk of system failure and to optimize existing systems showing poor hydrodynamics. Numerical modelling was used to evaluate the effect of substrate heterogeneity on the breakthrough curves of

  20. Design and Optimization of Phononic Crystals and Metamaterials for Flow Control and Other Applications

    NASA Astrophysics Data System (ADS)

    Bilal, Osama R.

    Transmission of everyday sound and heat can be traced back to a physical particle, or wave, called a "phonon". Understanding, analyzing and manipulating phonons across multiple scales/disciplines can be achieved using phononic materials. That is a class of material systems featuring a basic pattern that repeats spatially. Among many qualities, it exhibits distinct frequency characteristics such as band gaps, where vibrational waves of certain frequencies are prohibited from propagation. These properties can benefit a multitude of applications, ranging from vibration isolation and converting waste heat into electricity to exotic concepts like acoustic cloaking. Using unit-cell design and optimization, phononic materials/devices with extraordinary properties may be realized. Since many of these applications are based on band-gap utilization, a critical design objective is to widen band-gap size or precisely synthesize its characteristics. Approaching this problem at the unit cell level is advantageous in many aspects, mostly because it provides a complete picture of the intrinsic local dynamics which is often obscured when analyzing the structure as a whole. Moreover, it is computationally less expensive than designing an entire structure. Unit-cell dispersion engineering is also scale independent; an optimized unit cell may be used to manipulate waves ranging from a few Hz to GHz, or higher, with proper scaling. In order to keep the structure/device size as small as possible, the band-gap central frequency is tuned to be as low as possible. The objective of this thesis is to explore and advance unit-cell design and optimization of phononic materials in one, two and three-dimensions for a broad range of applications. In particular, an application for flow control is investigated where a phononic material is shown to manipulate and alter a flow field in a favorable manner. Results involving unit-cell design and coupled fluid-structure simulations (as part of a

  1. A multiobjective ant colony optimization approach for scheduling environmental flow management alternatives with application to the River Murray, Australia

    NASA Astrophysics Data System (ADS)

    Szemis, J. M.; Dandy, G. C.; Maier, H. R.

    2013-10-01

    In regulated river systems, such as the River Murray in Australia, the efficient use of water to preserve and restore biota in the river, wetlands, and floodplains is of concern for water managers. Available management options include the timing of river flow releases and operation of wetland flow control structures. However, the optimal scheduling of these environmental flow management alternatives is a difficult task, since there are generally multiple wetlands and floodplains with a range of species, as well as a large number of management options that need to be considered. Consequently, this problem is a multiobjective optimization problem aimed at maximizing ecological benefit while minimizing water allocations within the infrastructure constraints of the system under consideration. This paper presents a multiobjective optimization framework, which is based on a multiobjective ant colony optimization approach, for developing optimal trade-offs between water allocation and ecological benefit. The framework is applied to a reach of the River Murray in South Australia. Two studies are formulated to assess the impact of (i) upstream system flow constraints and (ii) additional regulators on this trade-off. The results indicate that unless the system flow constraints are relaxed, there is limited additional ecological benefit as allocation increases. Furthermore the use of regulators can increase ecological benefits while using less water. The results illustrate the utility of the framework since the impact of flow control infrastructure on the trade-offs between water allocation and ecological benefit can be investigated, thereby providing valuable insight to managers.

  2. Multi-objective design optimization of the transverse gaseous jet in supersonic flows

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Jun; Yan, Li

    2014-01-01

    The mixing process between the injectant and the supersonic crossflow is one of the important issues for the design of the scramjet engine, and the efficiency mixing has a great impact on the improvement of the combustion efficiency. A hovering vortex is formed between the separation region and the barrel shock wave, and this may be induced by the large negative density gradient. The separation region provides a good mixing area for the injectant and the subsonic boundary layer. In the current study, the transverse injection flow field with a freestream Mach number of 3.5 has been optimized by the non-dominated sorting genetic algorithm (NSGA II) coupled with the Kriging surrogate model; and the variance analysis method and the extreme difference analysis method have been employed to evaluate the values of the objective functions. The obtained results show that the jet-to-crossflow pressure ratio is the most important design variable for the transverse injection flow field, and the injectant molecular weight and the slot width should be considered for the mixing process between the injectant and the supersonic crossflow. There exists an optimal penetration height for the mixing efficiency, and its value is about 14.3 mm in the range considered in the current study. The larger penetration height provides a larger total pressure loss, and there must be a tradeoff between these two objection functions. In addition, this study demonstrates that the multi-objective design optimization method with the data mining technique can be used efficiently to explore the relationship between the design variables and the objective functions.

  3. g-Jitter mixed convective slip flow of nanofluid past a permeable stretching sheet embedded in a Darcian porous media with variable viscosity.

    PubMed

    Uddin, Mohammed J; Khan, Waqar A; Amin, Norsarahaida S

    2014-01-01

    The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results.

  4. g-Jitter Mixed Convective Slip Flow of Nanofluid past a Permeable Stretching Sheet Embedded in a Darcian Porous Media with Variable Viscosity

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Amin, Norsarahaida S.

    2014-01-01

    The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results. PMID:24927277

  5. Unsteady boundary layer flow of a nanofluid over a stretching sheet with variable fluid properties in the presence of thermal radiation

    NASA Astrophysics Data System (ADS)

    Daba, Mitiku; Devaraj, P.

    2016-05-01

    In this paper, we investigated numerically an unsteady boundary layer flow of a nanofluid over a stretching sheet in the presence of thermal radiation with variable fluid properties. Using a set of suitable similarity transformations, the governing partial differential equations are reduced into a set of nonlinear ordinary differential equations. System of the nonlinear ordinary differential equations are then solved by the Keller-box method. The physical parameters taken into consideration for the present study are: Prandtl number Pr, Lewis number Le, Brownian motion parameter N b, thermophoresis parameter N t, radiation parameter N r, unsteady parameter M. In addition to these parameters, two more new parameters namely variable thermophoretic diffusion coefficient parameter e and variable Brownian motion diffusion coefficient parameter β have been introduced in the present study. Effects of these parameters on temperature, volume fraction of the nanoparticles, surface heat and mass transfer rates are presented graphically and discussed briefly. To validate our method, we have compared the present results with some previously reported results in the literature. The results are found to be in a very good agreement.

  6. Optimization of flow-sensitive alternating inversion recovery (FAIR) for perfusion functional MRI of rodent brain.

    PubMed

    Nasrallah, Fatima A; Lee, Eugene L Q; Chuang, Kai-Hsiang

    2012-11-01

    Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain.

  7. Influence of ice sheet bed morphology on spatial and seasonal patterns of ice flow in Greenland: preliminary results from an automated method for interpreting high resolution ice velocity data derived from Landsat imagery.

    NASA Astrophysics Data System (ADS)

    Jones, Andrew H.; Swift, Darrel A.; Livingstone, Stephen J.

    2016-04-01

    Ice sheet bed morphology affects ice flow rates and patterns by topographically directing and resisting ice flow and by modulating rates of basal sliding. Notably, reverse bedslopes are anticipated to modulate basal sliding rates and mechanisms through their control on subglacial drainage system morphology and efficiency. In ice sheet contexts, understanding of the significance of these controls, their relative importance and ubiquity, remains weak. We aim to use contemporary remote sensing data products that provide high spatial and temporal resolution ice velocity and bed data for the Greenland ice sheet to attempt a comprehensive and systematic analysis of spatial and seasonal variation in flow behaviour and its links to bed morphology. Here we present an automated method for high resolution 4-dimensional analysis of a large archive dataset (Rosenau et al, 2015) of Landsat-derived ice velocity that enables the extraction of velocity data along a large number of longitudinal flowlines for individual glacier catchments and the analysis of along-flow velocity patterns. Analysis can be undertaken on individual flowlines, or adjacent flowlines can be custom aggregated both spatially and temporarily to investigate factors such as intra-annual or inter-annual seasonal patterns. We present initial analyses of seasonal velocity changes at a sample of glacier catchments and their relationship to glacier bed characteristics.

  8. Spatial Dynamic Optimization of Groundwater Use with Ecological Standards for Instream Flow

    NASA Astrophysics Data System (ADS)

    Brozovic, N.; Han, J.; Speir, C.

    2011-12-01

    Instream flow requirements for protected species in arid and semi-arid regions have created the need to reduce groundwater use adjacent to streams. We present an integrated hydrologic-economic model that optimizes agricultural groundwater use next to streams with flow standards. Policies to meet instream flow standards should aim to minimize the welfare losses to irrigated agriculture due to reduced pumping. Previous economic studies have proposed spatially targeted water allocations between groundwater irrigators and instream demands. However, these studies focused on meeting aggregate instream flow goals on a seasonal or yearly basis rather than meeting them on a continuous basis. Temporally aggregated goals ignore important intra-seasonal hydrologic effects and may not provide sufficient habitat quality for species of concern. We present an optimization model that solves for groundwater pumping allocations across space in a stream-aquifer system with instream flow goals that must be met on a daily basis. We combine an analytical model of stream depletion with a farm profit maximization model that includes cumulative crop yield damages from water stress. The objective is the minimization of agricultural losses from reduced groundwater use while minimum instream flow requirements for ecological needs are met on a daily basis. As a case study, we apply our model to the Scott River Basin in northern California. This is a region where stream depletion resulting from extensive irrigation has degraded habitat for Coho salmon, a species protected under the U.S. Endangered Species Act. Our results indicate the importance of considering the lag between the time at which pumping occurs and the time at which stream depletion related to that pumping occurs. In general, we find that wells located farther from the stream should be allocated more water in most hydrologic scenarios. However, we also find that the spatial and temporal distribution of optimal groundwater pumping

  9. Robust parametric estimation over optimal support of fluid flow structure in multispectral image sequences

    NASA Astrophysics Data System (ADS)

    Rougon, Nicolas F.; Brossard-Pailleux, M. A.; Preteux, Francoise J.

    2000-10-01

    This article presents a methodology for analyzing the Lagrangian structure of fluid flows generated by the evolution of cloud systems in meteorological multispectral image sequences. The correlation between the orientation of cloud texture and the underlying motion field Lagrangian component allows to adopt a static strategy. Following a scale-space approach, we therefore first construct a non-local robust estimator for the locally dominant orientation field in an image. This estimator, which is derived from the image structure tensor, is relevant in both mono- and multisprectral contexts. In a second step, the Lagrangian component of the flow is estimated over some bounded image region by robustly fitting a hierarchical vector parametric model to the dominant orientation field. Here, a recurrent problem deals with adaptating the geometry of the model support to obtain unbiased estimates. To tackle this classic issue, we introduce a novel variational, semi-parametric approach which allows the joint optimization of model parameters and support. This approach is generic and, in particular, can be readily applied to motion estimation yielding robust measurement of the Eulerian structure of the flow. Finally, a structural characterization of the reflecting vector field is derived by means of classic differential geometry techniques. This methodology is applied to the analysis of temperated latitude depressions in Meteosat images.

  10. The Annual Glaciohydrology Cycle in the Ablation Zone of the Greenland Ice Sheet: Part 2. Observed and Modeled Ice Flow

    NASA Technical Reports Server (NTRS)

    Colgan, William Terence; Rajaram, Harihar; Anderson, Robert S.; Steffen, Konrad; Zwally, H. Jay; Phillips, Thomas; Abdalati, Waleed

    2012-01-01

    Ice velocities observed in 2005/06 at three GPS stations along the Sermeq Avannarleq flowline, West Greenland, are used to characterize an observed annual velocity cycle. We attempt to reproduce this annual ice velocity cycle using a 1-D ice-flow model with longitudinal stresses coupled to a 1-D hydrology model that governs an empirical basal sliding rule. Seasonal basal sliding velocity is parameterized as a perturbation of prescribed winter sliding velocity that is proportional to the rate of change of glacier water storage. The coupled model reproduces the broad features of the annual basal sliding cycle observed along this flowline, namely a summer speed-up event followed by a fall slowdown event. We also evaluate the hypothesis that the observed annual velocity cycle is due to the annual calving cycle at the terminus. We demonstrate that the ice acceleration due to a catastrophic calving event takes an order of magnitude longer to reach CU/ETH ('Swiss') Camp (46km upstream of the terminus) than is observed. The seasonal acceleration observed at Swiss Camp is therefore unlikely to be the result of velocity perturbations propagated upstream via longitudinal coupling. Instead we interpret this velocity cycle to reflect the local history of glacier water balance.

  11. Ultradiscrete optimal velocity model: A cellular-automaton model for traffic flow and linear instability of high-flux traffic

    NASA Astrophysics Data System (ADS)

    Kanai, Masahiro; Isojima, Shin; Nishinari, Katsuhiro; Tokihiro, Tetsuji

    2009-05-01

    In this paper, we propose the ultradiscrete optimal velocity model, a cellular-automaton model for traffic flow, by applying the ultradiscrete method for the optimal velocity model. The optimal velocity model, defined by a differential equation, is one of the most important models; in particular, it successfully reproduces the instability of high-flux traffic. It is often pointed out that there is a close relation between the optimal velocity model and the modified Korteweg-de Vries (mkdV) equation, a soliton equation. Meanwhile, the ultradiscrete method enables one to reduce soliton equations to cellular automata which inherit the solitonic nature, such as an infinite number of conservation laws, and soliton solutions. We find that the theory of soliton equations is available for generic differential equations and the simulation results reveal that the model obtained reproduces both absolutely unstable and convectively unstable flows as well as the optimal velocity model.

  12. Development of a multiple-parameter nonlinear perturbation procedure for transonic turbomachinery flows: Preliminary application to design/optimization problems

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Elliott, J. P.; Spreiter, J. R.

    1983-01-01

    An investigation was conducted to continue the development of perturbation procedures and associated computational codes for rapidly determining approximations to nonlinear flow solutions, with the purpose of establishing a method for minimizing computational requirements associated with parametric design studies of transonic flows in turbomachines. The results reported here concern the extension of the previously developed successful method for single parameter perturbations to simultaneous multiple-parameter perturbations, and the preliminary application of the multiple-parameter procedure in combination with an optimization method to blade design/optimization problem. In order to provide as severe a test as possible of the method, attention is focused in particular on transonic flows which are highly supercritical. Flows past both isolated blades and compressor cascades, involving simultaneous changes in both flow and geometric parameters, are considered. Comparisons with the corresponding exact nonlinear solutions display remarkable accuracy and range of validity, in direct correspondence with previous results for single-parameter perturbations.

  13. Aero-Structural Optimization of HSCT Configurations in Transonic and Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Alonso, Juan J.

    1999-01-01

    This document outlines the progress made under NASA Cooperative Research Agreement NCC2- 5226 for the period 10/01/97-09/30/98. The work statement originally proposed was meant to extend over the period of two complete years of which only one was funded. Consequently, only a portion of the goals were achieved. Similar work will continue in our group under different sponsorship and will be available in the form of conference and journal publications. The following sections summarize the technical accomplishments obtained during the last year. Details of these accomplishments can be found in the accompanying paper that was presented at the AIAA 37th Aerospace Sciences and Exhibit Meeting which was held in Reno, NV in January of this year. The original proposal outlined a research program meant to lay down the foundation for the development of high-fidelity, fully-coupled aerodynamic/structural optimization methods applicable to a variety of aerospace applications including the design optimization of High Speed Civil Transport (HSCT) configurations. The necessary research and development work was divided into two main efforts which addressed the necessities of the long term goal. Initially, our experience in the simulation of unsteady aeroelastic flows was directly applied to existing aerodynamic optimization techniques in order to provide insight into the effects of aeroelastic deformations on the performance of aircraft which have been designed based on purely aerodynamic cost functions. The intention was to follow up this work with a detailed investigation into the basic research work that has to be completed for the development of an optimization framework which efficiently allows the truly coupled design of aero-structural systems. This follow-up effort was not funded. The outcome of our efforts during the past year was the development of a coupled aero-structural analysis and design environment that was applied to the design of a complete aircraft configuration.

  14. On Jovian plasma sheet structure

    NASA Astrophysics Data System (ADS)

    Khurana, Krishan K.; Kivelson, Margaret G.

    1989-09-01

    Several models of Jovian plasma sheet structure are studied, focusing on the ways in which they organize aspects of the observed Voyager 2 magnetic field characteristics as a function of radial distance from Jupiter. A technique which locates the interfaces between the plasma sheet and the lobes from magnetic data is presented. This boundary location is used to test models of the magnetotail. Improved variations of the hinged-magnetodisk and the magnetic anomaly models are given in which the parameters are optimized by using structural information from observed magnetic equator and plasma-sheet-lobe boundary crossings.

  15. Analysis and optimization of flow distribution in parallel-channel configurations for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Weigang; Hu, Peng; Lai, Xinmin; Peng, Linfa

    Parallel channels have many advantages, such as low pressure drop and easy fabrication, but they may cause flow maldistribution which would result in low reaction efficiency. This study presents an analytical model to calculate the flow distribution of the parallel channels based on the assumption of the analogy between fluid flow and electrical network. The model, which ultimately releases from the solution of a set of nonlinear equations, is validated by comparing with the results obtained from three-dimensional computational fluid dynamics (CFD) simulations. Consequently, the model is used to optimize the geometric dimension of a parallel plate to obtain a uniform flow field distribution.

  16. Optimizing Simplified One-Step Chemical Models for High Speed Reacting Flows

    NASA Astrophysics Data System (ADS)

    Ozgen, Alp; Houim, Ryan W.; Oran, Elaine S.

    2015-11-01

    One of the most important and difficult parts of constructing a multidimensional numerical simulation of a hydrocarbon reacting flow is finding a reliable and affordable model of the chemical and diffusive properties. Full detailed chemical models of these systems contain too many reactions and chemical species to be practical for realistic scenarios. The objective of our work is to create the simplest model possible that can reproduce the time-dependence of the energy input and the conversion from fuel to products. To that end, we are developing a procedure optimizing parameters in the most simplified ``one-step'' model. An important requirement of this model is that it reproduces known flame and detonation properties. Multidimensional numerical simulations using the new model are compared to deflagration-to-detonation experiments in channels containing ethylene and oxygen.

  17. 3D FEM Geometry and Material Flow Optimization of Porthole-Die Extrusion

    SciTech Connect

    Ceretti, Elisabetta; Mazzoni, Luca; Giardini, Claudio

    2007-05-17

    The aim of this work is to design and to improve the geometry of a porthole-die for the production of aluminum components by means of 3D FEM simulations. In fact, the use of finite element models will allow to investigate the effects of the die geometry (webs, extrusion cavity) on the material flow and on the stresses acting on the die so to reduce the die wear and to improve the tool life. The software used to perform the simulations was a commercial FEM code, Deform 3D. The technological data introduced in the FE model have been furnished by METRA S.p.A. Company, partner in this research. The results obtained have been considered valid and helpful by the Company for building a new optimized extrusion porthole-die.

  18. High Performance Vanadium Redox Flow Batteries with Optimized Electrode Configuration and Membrane Selection

    SciTech Connect

    Liu, Q. H.; Grim, G. M.; Papandrew, A; Turhan, A.; Zawodzinski, Thomas A; Mench, Matthew M

    2012-01-01

    The performance of a vanadium flow battery with no-gap architecture was significantly improved via several techniques. Specifically, gains arising from variation of the overall electrode thickness, membrane thickness, and electrode thermal treatment were studied. There is a trade-off between apparent kinetic losses, mass transfer losses, and ionic resistance as the electrode thickness is varied at the anode and cathode. Oxidative thermal pretreatment of the carbon paper electrode increased the peak power density by 16%. Results of the pretreatment in air showed greater improvement in peak power density compared to that obtained with pretreatment in an argon environment. The highest peak power density in a VRB yet published to the author s knowledge was achieved at a value of 767 mW cm 2 with optimized membrane and electrode engineering. 2012 The Electrochemical Society. [DOI: 10.1149/2.051208jes] All rights reserved.

  19. Optimization of the cryopreservation of biological resources, Toxoplasma gondii tachyzoites, using flow cytometry.

    PubMed

    Mzabi, Alexandre; Escotte-Binet, Sandie; Le Naour, Richard; Ortis, Naïma; Audonnet, Sandra; Dardé, Marie-Laure; Aubert, Dominique; Villena, Isabelle

    2015-12-01

    The conservation of Toxoplasma gondii strains isolated from humans and animals is essential for conducting studies on Toxoplasma. Conservation is the main function of the French Biological Toxoplasma Resource Centre (BRC Toxoplasma, France, http://www.toxocrb.com/). In this study, we have determined the suitability of a standard cryopreservation methodology for different Toxoplasma strains using the viability of tachyzoites assayed by flow cytometry with dual fluorescent labelling (calcein acetoxymethyl ester and propidium iodide) of tachyzoites. This method provides a comparative quantitative assessment of viability after thawing. The results helped to define and refine quality criteria before tachyzoite cryopreservation and optimization of the cryopreservation parameters. The optimized cryopreservation method uses a volume of 1.0 mL containing 8 × 10(6) tachyzoites, in Iscove's Modified Dulbecco's Medium (IMDM) containing 10% foetal calf serum (FCS). The cryoprotectant additive is 10% v/v Me2SO without incubation. A cooling rate of ∼1 °C/min to -80 °C followed, after 48 h, by storage in liquid nitrogen. Thawing was performed using a 37 °C water bath that produced a warming rate of ∼100 °C/min, and samples were then diluted 1:5 in IMDM with 5% FCS, and centrifuged and resuspended for viability assessment.

  20. Global design optimization for an axial-flow tandem pump based on surrogate method

    NASA Astrophysics Data System (ADS)

    Li, D. H.; Zhao, Y.; Y Wang, G.

    2013-12-01

    Tandem pump, compared with multistage pump, goes without guide vanes between impellers. Better cavitation performance and significant reduction of the axial geometry scale is important for high-speed propulsion. This study presents a global design optimization method based on surrogated method for an axial-flow tandem pump to enhance trade-off performances: energy and cavitation performances. At the same time, interactions between impellers and impacts on the performances are analyzed. Fixed angle of blades in impellers and phase angle are performed as design variables. Efficiency and minimum average pressure coefficient (MAPC) on axial sectional surface in front impeller are the objective function, which can represent energy and cavitation performances well. Different surrogate models are constructed, and Global Sensitivity Analysis and Pareto Front method are used. The results show that, 1) Influence from phase angle on performances can be neglected compared with other two design variables, 2) Impact ratio of fixed angle of blades in two impellers on efficiency are the same as their designed loading distributions, which is 4:6, 3) The optimization results can enhance the trade-off performances well: efficiency is improved by 0.6%, and the MAPC is improved by 4.5%.

  1. Towards an optimal flow: Density-of-states-informed replica-exchange simulations

    DOE PAGES

    Vogel, Thomas; Perez, Danny

    2015-11-05

    Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely,more » the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.« less

  2. Optimization of air-ejected rocket/missile geometries under validated supersonic flow field simulations

    NASA Astrophysics Data System (ADS)

    López, D.; Domínguez, D.; Gonzalo, J.

    2014-12-01

    This paper defines a methodology to carry out optimizations of rocket/missile geometries by means of krigingbased algorithms applied to simulations made with computational fluid dynamic (CFD) codes. The first part of the paper is focused on the validation of the open source CFD code against a well-studied 3-dimmensional test case in supersonic conditions. The impact of several turbulence models, different numerical schemes to discretize the equations and different mesh resolution levels have been analyzed demonstrating the performance of using wall functions for supersonic flow. Good agreements between numerical, theoretical and experimental results are obtained and some general guidelines are extracted. The best accuracy is obtained with SST k-omega turbulence model with meshes suitable for the use of wall functions in the boundary cells. Then, with this configuration for the simulations, an air-ejected rocket fairing is selected to apply a geometrical optimization. The selected method is kriging-based, where a statistical model is generated by means of several numerical experiments dependent on a certain number of design parameters; the final objective is to find the minimum drag coefficient for the model, keeping enough room inside the fairing to install the requested payload. This kriging-based method allows obtaining the samples in a parallel manner, looking for the optimum design at the generated metamodel and hence improving its accuracy adding new samples if needed.

  3. A two element laminar flow airfoil optimized for cruise. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Steen, Gregory Glen

    1994-01-01

    Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.

  4. A Critical Survey of Optimization Models for Tactical and Strategic Aspects of Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo

    1997-01-01

    This document presents a critical review of the principal existing optimization models that have been applied to Air Traffic Flow Management (TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow Management Problem (GTFMP) and the Ground Holding Problem (GHP), as well as on some of their variations. To perform this task, we have carried out an extensive literature review that has covered more than 40 references, most of them very recent. Based on the review of this emerging field our objectives were to: (i) identify the best available models; (ii) describe typical contexts for applications of the models; (iii) provide illustrative model formulations; and (iv) identify the methodologies that can be used to solve the models. We shall begin our presentation below by providing a brief context for the models that we are reviewing. In Section 3 we shall offer a taxonomy and identify four classes of models for review. In Sections 4, 5, and 6 we shall then review, respectively, models for the Single-Airport Ground Holding Problem, the Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for the definition of these problems see Section 3 below). In each section, we identify the best available models and discuss briefly their computational performance and applications, if any, to date. Section 7 summarizes our conclusions about the state of the art.

  5. Inhibition of viscous fluid fingering: A variational scheme for optimal flow rates

    NASA Astrophysics Data System (ADS)

    Miranda, Jose; Dias, Eduardo; Alvarez-Lacalle, Enrique; Carvalho, Marcio

    2012-11-01

    Conventional viscous fingering flow in radial Hele-Shaw cells employs a constant injection rate, resulting in the emergence of branched interfacial shapes. The search for mechanisms to prevent the development of these bifurcated morphologies is relevant to a number of areas in science and technology. A challenging problem is how best to choose the pumping rate in order to restrain growth of interfacial amplitudes. We use an analytical variational scheme to look for the precise functional form of such an optimal flow rate. We find it increases linearly with time in a specific manner so that interface disturbances are minimized. Experiments and nonlinear numerical simulations support the effectiveness of this particularly simple, but not at all obvious, pattern controlling process. J.A.M., E.O.D. and M.S.C. thank CNPq/Brazil for financial support. E.A.L. acknowledges support from Secretaria de Estado de IDI Spain under project FIS2011-28820-C02-01.

  6. High uniform growth of 4-inch GaN wafer via flow field optimization by HVPE

    NASA Astrophysics Data System (ADS)

    Cheng, Yutian; Liu, Peng; Wu, Jiejun; Xiang, Yong; Chen, Xinjuan; Ji, Cheng; Yu, Tongjun; Zhang, Guoyi

    2016-07-01

    The uniformity of flow field inner the reactor plays a crucial role for hydride vapor phase epitaxy (HVPE) crystal growth and its more important for large scale substrate. A new nozzle structure was designed by adding a push and dilution (PD) gas pipe in the center of gas channels for a 4-inch HVPE (PD-HVPE) system. Experimental results showed that the thickness inhomogeneity of 46 μm 4-inch GaN layer could reach ±1.8% by optimizing PD gas, greatly improved from ±14% grown with conventional nozzle. The simulations of the internal flow field were consistent with our experiment, and the enhancement in uniformity should be attributed to the redistribution of GaCl and NH3 upon the wafer induced by PD pipe. The full width at half maximum (FWHM) of X-ray diffraction rocking curves for the 4-inch GaN film were about 224 and 200 arcsec for (002) and (102) reflection. The dislocation density of as-grown GaN was about 6.4×107 cm-2.

  7. Development of an entrained flow gasifier model for process optimization study

    SciTech Connect

    Biagini, E.; Bardi, A.; Pannocchia, G.; Tognotti, L.

    2009-10-15

    Coal gasification is a versatile process to convert a solid fuel in syngas, which can be further converted and separated in hydrogen, which is a valuable and environmentally acceptable energy carrier. Different technologies (fixed beds, fluidized beds, entrained flow reactors) are used, operating under different conditions of temperature, pressure, and residence time. Process studies should be performed for defining the best plant configurations and operating conditions. Although 'gasification models' can be found in the literature simulating equilibrium reactors, a more detailed approach is required for process analysis and optimization procedures. In this work, a gasifier model is developed by using AspenPlus as a tool to be implemented in a comprehensive process model for the production of hydrogen via coal gasification. It is developed as a multizonal model by interconnecting each step of gasification (preheating, devolatilization, combustion, gasification, quench) according to the reactor configuration, that is in entrained flow reactor. The model removes the hypothesis of equilibrium by introducing the kinetics of all steps and solves the heat balance by relating the gasification temperature to the operating conditions. The model allows to predict the syngas composition as well as quantity the heat recovery (for calculating the plant efficiency), 'byproducts', and residual char. Finally, in view of future works, the development of a 'gasifier model' instead of a 'gasification model' will allow different reactor configurations to be compared.

  8. Optimizing the Physical Implementation of an Eddy-covariance System to Minimize Flow Distortion

    NASA Astrophysics Data System (ADS)

    Durden, D.; Zulueta, R. C.; Durden, N. P.; Metzger, S.; Luo, H.; Duvall, B.

    2015-12-01

    The eddy-covariance technique is widely applied to observe the exchange of energy and scalars between the earth's surface and its atmosphere. In practice, fast (≥10 Hz) sonic anemometry and enclosed infrared gas spectroscopy are used to determine fluctuations in the 3-D wind vector and trace gas concentrations, respectively. Here, two contradicting requirements need to be fulfilled: (i) the sonic anemometer and trace gas analyzer should sample the same air volume, while (ii) the presence of the gas analyzer should not affect the wind field measured by the 3-D sonic anemometer. To determine the optimal positioning of these instruments with respect to each other, a trade-off study was performed. Theoretical formulations were used to determine a range of positions between the sonic anemometer and the gas analyzer that minimize the sum of (i) decorrelation error and (ii) wind blocking error. Subsequently, the blocking error induced by the presence of the gas sampling system was experimentally tested for a range of wind directions to verify the model-predicted placement: In a controlled environment the sonic anemometer was placed in the directed flow from a fan outfitted with a large shroud, with and without the presence of the enclosed gas analyzer and its sampling system. Blocking errors were enhanced by up to 10% for wind directions deviating ≥130° from frontal, when the flow was coming from the side where the enclosed gas analyzer was mounted. Consequently, we suggest a lateral position of the enclosed gas analyzer towards the aerodynamic wake of the tower, as data from this direction is likely affected by tower-induced flow distortion already. Ultimately, this physical implementation of the sonic anemometer and enclosed gas analyzer resulted in decorrelation and blocking errors ≤5% for ≥70% of all wind directions. These findings informed the design of the National Ecological Observatory Network's (NEON) eddy-covariance system, which is currently being

  9. TECHNETIUM RETENTION IN WTP LAW GLASS WITH RECYCLE FLOW-SHEET DM10 MELTER TESTING VSL-12R2640-1 REV 0

    SciTech Connect

    Abramowitz, Howard; Brandys, Marek; Cecil, Richard; D'Angelo, Nicholas; Matlack, Keith S.; Muller, Isabelle S.; Pegg, Ian L.; Callow, Richard A.; Joseph, Innocent

    2012-12-11

    Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the {sup 99m}Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the {sup 99m}Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P&ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives.

  10. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    NASA Astrophysics Data System (ADS)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal

  11. Numerical solution of an optimal control problem governed by three-phase non-isothermal flow equations

    NASA Astrophysics Data System (ADS)

    Temirbekov, Nurlan M.; Baigereyev, Dossan R.

    2016-08-01

    The paper focuses on the numerical implementation of a model optimal control problem governed by equations of three-phase non-isothermal flow in porous media. The objective is to achieve preassigned temperature distribution along the reservoir at a given time of development by controlling mass flow rate of heat transfer agent on the injection well. The problem of optimal control is formulated, the adjoint problem is presented, and an algorithm for the numerical solution is proposed. Results of computational experiments are presented for a test problem.

  12. Combining flow routing modelling and direct velocity measurement for optimal discharge estimation

    NASA Astrophysics Data System (ADS)

    Corato, G.; Moramarco, T.; Tucciarelli, T.

    2011-03-01

    A new procedure is proposed for estimating river discharge hydrographs during flood events, using only water level data measured at a gauged site, as well as 1-D shallow water modelling and sporadic maximum surface flow velocity measurements. During flood, the piezometric level is surmised constant in the vertical plane of the river section, where the top of the banks is always above the river level, and is well represented by the recorded stage hydrograph. The river is modelled along the reach directly located downstream the upstream gauged section, where discharge hydrograph is sought after. For the stability with respect to the topographic error, as well as for the simplicity of the data required to satisfy the boundary conditions, a diffusive hydraulic model is adopted for flow routing. Assigned boundary conditions are: (1) the recorded stage hydrograph at the upstream river site and (2) the zero diffusion condition at the downstream end of the reach. The MAST algorithm is used for the numerical solution of the flow routing problem, which is embedded in the Brent algorithm used for the computation of the optimum Manning coefficient. Based on synthetic tests concerning a broad prismatic channel, the optimal reach length is chosen so that the approximated downstream boundary condition effects on discharge hydrograph assessment at upstream end are negligible. The roughness Manning coefficient is calibrated by using sporadic instantaneous surface velocity measurements during the rising limb of flood that are turned into instantaneous discharges through the solid of velocity estimated by a two-dimensional entropic model. Several historical events, occurring in three gauged sites along the upper Tiber River wherein a reliable rating curve is available, have been used for the validation. The analysis outcomes can be so summarized: (1) criteria adopted for selecting the optimal channel length and based on synthetic tests have been proved reliable by using field data of

  13. Optimal operation of a concurrent-flow corn dryer with a drying heat pump using superheated steam

    SciTech Connect

    Moraitis, C.S.; Akritidis, C.B.

    1998-07-01

    A numerical model of a concurrent-flow dryer of corn using superheated steam as drying medium is solved applying a shooting technique, so as to satisfy boundary conditions imposed by the optimal design of a drying heat pump. The drying heat pump is based on the theory of minimum energy cycles. The solution of the model proves the applicability of the heat pump to a concurrent-flow dryer, achieving a Specific Energy Consumption as low as 1080 kJ/kg.

  14. Flow Sheet Is Process Language.

    ERIC Educational Resources Information Center

    Fehr, Manfred

    1988-01-01

    Uses heat exchange, evaporator, and distillation pressure examples to illustrate ways of motivating students to participate creatively and generate questions on process engineering logic. Relates the need for providing a link between theory and industrial practice. (RT)

  15. Death valley regional ground-water flow model calibration using optimal parameter estimation methods and geoscientific information systems

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Hill, M.C.; Turner, A.K.

    1999-01-01

    A regional-scale, steady-state, saturated-zone ground-water flow model was constructed to evaluate potential regional ground-water flow in the vicinity of Yucca Mountain, Nevada. The model was limited to three layers in an effort to evaluate the characteristics governing large-scale subsurface flow. Geoscientific information systems (GSIS) were used to characterize the complex surface and subsurface hydrogeologic conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. Subsurface properties in this system vary dramatically, producing high contrasts and abrupt contacts. This characteristic, combined with the large scale of the model, make zonation the logical choice for representing the hydraulic-conductivity distribution. Different conceptual models were evaluated using sensitivity analysis and were tested by using nonlinear regression to determine parameter values that are optimal, in that they provide the best match between the measured and simulated heads and flows. The different conceptual models were judged based both on the fit achieved to measured heads and spring flows, and the plausibility of the optimal parameter values. One of the conceptual models considered appears to represent the system most realistically. Any apparent model error is probably caused by the coarse vertical and horizontal discretization.A regional-scale, steady-state, saturated-zone ground-water flow model was constructed to evaluate potential regional ground-water flow in the vicinity of Yucca Mountain, Nevada. The model was limited to three layers in an effort to evaluate the characteristics governing large-scale subsurface flow. Geoscientific information systems (GSIS) were used to characterize the complex surface and subsurface hydrogeologic conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. Subsurface properties in this system vary dramatically, producing

  16. Uncertainty quantification for ice sheet inverse problems

    NASA Astrophysics Data System (ADS)

    Petra, N.; Ghattas, O.; Stadler, G.; Zhu, H.

    2011-12-01

    Modeling the dynamics of polar ice sheets is critical for projections of future sea level rise. Yet, there remain large uncertainties in the basal boundary conditions and in the non-Newtonian constitutive relations employed within ice sheet models. In this presentation, we consider the problem of estimating uncertainty in the solution of (large-scale) ice sheet inverse problems within the framework of Bayesian inference. Computing the general solution of the inverse problem-i.e., the posterior probability density-is intractable with current methods on today's computers, due to the expense of solving the forward model (3D full Stokes flow with nonlinear rheology) and the high dimensionality of the uncertain parameters (which are discretizations of the basal slipperiness field and the Glen's law exponent field). However, under the assumption of Gaussian noise and prior probability densities, and after linearizing the parameter-to-observable map, the posterior density becomes Gaussian, and can therefore be characterized by its mean and covariance. The mean is given by the solution of a nonlinear least squares optimization problem, which is equivalent to a deterministic inverse problem with appropriate interpretation and weighting of the data misfit and regularization terms. To obtain this mean, we solve a deterministic ice sheet inverse problem; here, we infer parameters arising from discretizations of basal slipperiness and rheological exponent fields. For this purpose, we minimize a regularized misfit functional between observed and modeled surface flow velocities. The resulting least squares minimization problem is solved using an adjoint-based inexact Newton method, which uses first and second derivative information. The posterior covariance matrix is given (in the linear-Gaussian case) by the inverse of the Hessian of the least squares cost functional of the deterministic inverse problem. Direct computation of the Hessian matrix is prohibitive, since it would

  17. Linear stability of optimal streaks in the log-layer of turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Alizard, Frédéric

    2015-10-01

    The importance of secondary instability of streaks for the generation of vortical structures attached to the wall in the logarithmic region of turbulent channels is studied. The streaks and their linear instability are computed by solving equations associated with the organized motion that include an eddy-viscosity modeling the effect of incoherent fluctuations. Three friction Reynolds numbers, Reτ = 2000, 3000, and 5000, are investigated. For all flow cases, optimal streamwise vortices (i.e., having the highest potential for linear transient energy amplification) are used as initial conditions. Due to the lift-up mechanism, these optimal perturbations lead to the nonlinear growth of streaks. Based on a Floquet theory along the spanwise direction, we observe the onset of streak secondary instability for a wide range of spanwise wavelengths when the streak amplitude exceeds a critical value. Under neutral conditions, it is shown that streak instability modes have their energy mainly concentrated in the overlap layer and propagate with a phase velocity equal to the mean streamwise velocity of the log-layer. These neutral log-layer modes exhibit a sinuous pattern and have characteristic sizes that are proportional to the wall distance in both streamwise and spanwise directions, in agreement with the Townsend's attached eddy hypothesis (A. Townsend, the structure of turbulent shear flow, Cambridge university press, 1976 2nd edition). In particular, for a distance from the wall varying from y+ ≈ 100 (in wall units) to y ≈ 0.3h, where h is half the height of the channel, the neutral log-layer modes are self-similar with a spanwise width of λz ≈ y/0.3 and a streamwise length of λx ≈ 3λz, independently of the Reynolds number. Based on this observation, it is suggested that compact vortical structures attached to the wall can be ascribed to streak secondary instabilities. In addition, spatial distributions of fluctuating vorticity components show that the onset

  18. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    SciTech Connect

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives

  19. An enhanced bacterial foraging algorithm approach for optimal power flow problem including FACTS devices considering system loadability.

    PubMed

    Belwin Edward, J; Rajasekar, N; Sathiyasekar, K; Senthilnathan, N; Sarjila, R

    2013-09-01

    Obtaining optimal power flow solution is a strenuous task for any power system engineer. The inclusion of FACTS devices in the power system network adds to its complexity. The dual objective of OPF with fuel cost minimization along with FACTS device location for IEEE 30 bus is considered and solved using proposed Enhanced Bacterial Foraging algorithm (EBFA). The conventional Bacterial Foraging Algorithm (BFA) has the difficulty of optimal parameter selection. Hence, in this paper, BFA is enhanced by including Nelder-Mead (NM) algorithm for better performance. A MATLAB code for EBFA is developed and the problem of optimal power flow with inclusion of FACTS devices is solved. After several run with different initial values, it is found that the inclusion of FACTS devices such as SVC and TCSC in the network reduces the generation cost along with increased voltage stability limits. It is also observed that, the proposed algorithm requires lesser computational time compared to earlier proposed algorithms.

  20. Brownian Dynamics Simulations of Dispersed Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Xu, Yueyi; Green, Micah

    2013-03-01

    Past simulations of the dynamics of dispersed graphene sheets are limited to static fluids on small timescales, with little attention devoted to flow dynamics. To address this need, we investigated how flow fields affect graphene morphology dynamics using a coarse-grained model; this relatively untouched area is critical given the importance of graphene solution-processing of multifunctional devices and materials. In particular, we developed a Brownian Dynamics (BD) algorithm to study the morphology of sheetlike macromolecules in dilute, flowing solutions. We used a bead-rod lattice to represent the mesoscopic conformation of individual two dimensional sheets. We then analyzed the morphology dynamic modes (stretching, tumbling, crumpling) of these molecules as a function of sheet size, Weissenberg number, and bending stiffness. Our results indicate the model can successfully simulate a range of dynamic modes in a given flow field and yield fundamental insight into the flow processing of graphene sheets.

  1. Flow-based local optimization for image-to-geometry projection.

    PubMed

    Dellepiane, Matteo; Marroquim, Ricardo; Callieri, Marco; Cignoni, Paolo; Scopigno, Roberto

    2012-03-01

    The projection of a photographic data set on a 3D model is a robust and widely applicable way to acquire appearance information of an object. The first step of this procedure is the alignment of the images on the 3D model. While any reconstruction pipeline aims at avoiding misregistration by improving camera calibrations and geometry, in practice a perfect alignment cannot always be reached. Depending on the way multiple camera images are fused on the object surface, remaining misregistrations show up either as ghosting or as discontinuities at transitions from one camera view to another. In this paper we propose a method, based on the computation of Optical Flow between overlapping images, to correct the local misalignment by determining the necessary displacement. The goal is to correct the symptoms of misregistration, instead of searching for a globally consistent mapping, which might not exist. The method scales up well with the size of the data set (both photographic and geometric) and is quite independent of the characteristics of the 3D model (topology cleanliness, parametrization, density). The method is robust and can handle real world cases that have different characteristics: low level geometric details and images that lack enough features for global optimization or manual methods. It can be applied to different mapping strategies, such as texture or per-vertex attribute encoding. PMID:21519108

  2. Guidelines for optimizing multilevel ECN using fluid-flow-based TCP model

    NASA Astrophysics Data System (ADS)

    Quet, Pierre-Francois; Chellappan, Sriram; Durresi, Arjan; Sridharan, Mukundan; Ozbay, Hitay; Jain, Raj

    2002-07-01

    Congestion avoidance on today's Internet is mainly provided by the combination of the TCP protocol and Active Queue Management (AQM) schemes such as the de facto standard RED (Random Early Detection). When used with ECN (Explicit Congestion Notification), these algorithms can be modeled as a feedback control system in which the feedback information is carried on a single bit. A modification of this scheme called MECN was proposed, where the marking information is carried using 2 bits. MECN conveys more accurate feedback about the network congestion to the source than the current 1-bit ECN. The TCP source reaction was modified so that it takes advantage of the extra information about congestion and adapts faster to the changing congestion scenario leading to a smoother decrease in the sending rates of the sources upon congestion detection and consequently resulting in an increase in the router's throughput. A linearized fluid flow model already developed for ECN is extended to our case. Using control theoretic tools we justify the performance obtained in using the MECN scheme and give guidelines for optimizing its parameters. We use ns simulations to illustrate the performance improvement from the point of better throughput and low level of oscillations in the queue.

  3. A robust approach to chance constrained optimal power flow with renewable generation

    DOE PAGES

    Lubin, Miles; Dvorkin, Yury; Backhaus, Scott N.

    2015-11-20

    Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved usingmore » a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. In conclusion, deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance.« less

  4. A robust approach to chance constrained optimal power flow with renewable generation

    SciTech Connect

    Lubin, Miles; Dvorkin, Yury; Backhaus, Scott N.

    2015-11-20

    Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved using a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. In conclusion, deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance.

  5. Sample size matters: Investigating the optimal sample size for a logistic regression debris flow susceptibility model

    NASA Astrophysics Data System (ADS)

    Heckmann, Tobias; Gegg, Katharina; Becht, Michael

    2013-04-01

    Statistical approaches to landslide susceptibility modelling on the catchment and regional scale are used very frequently compared to heuristic and physically based approaches. In the present study, we deal with the problem of the optimal sample size for a logistic regression model. More specifically, a stepwise approach has been chosen in order to select those independent variables (from a number of derivatives of a digital elevation model and landcover data) that explain best the spatial distribution of debris flow initiation zones in two neighbouring central alpine catchments in Austria (used mutually for model calculation and validation). In order to minimise problems arising from spatial autocorrelation, we sample a single raster cell from each debris flow initiation zone within an inventory. In addition, as suggested by previous work using the "rare events logistic regression" approach, we take a sample of the remaining "non-event" raster cells. The recommendations given in the literature on the size of this sample appear to be motivated by practical considerations, e.g. the time and cost of acquiring data for non-event cases, which do not apply to the case of spatial data. In our study, we aim at finding empirically an "optimal" sample size in order to avoid two problems: First, a sample too large will violate the independent sample assumption as the independent variables are spatially autocorrelated; hence, a variogram analysis leads to a sample size threshold above which the average distance between sampled cells falls below the autocorrelation range of the independent variables. Second, if the sample is too small, repeated sampling will lead to very different results, i.e. the independent variables and hence the result of a single model calculation will be extremely dependent on the choice of non-event cells. Using a Monte-Carlo analysis with stepwise logistic regression, 1000 models are calculated for a wide range of sample sizes. For each sample size

  6. Local-in-Time Adjoint-Based Method for Optimal Control/Design Optimization of Unsteady Compressible Flows

    NASA Technical Reports Server (NTRS)

    Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.

    2009-01-01

    .We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.

  7. Optimism

    PubMed Central

    Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.

    2010-01-01

    Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998

  8. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  9. Optimized small molecule antibody labeling efficiency through continuous flow centrifugal diafiltration.

    PubMed

    Cappione, Amedeo; Mabuchi, Masaharu; Briggs, David; Nadler, Timothy

    2015-04-01

    Protein immuno-detection encompasses a broad range of analytical methodologies, including western blotting, flow cytometry, and microscope-based applications. These assays which detect, quantify, and/or localize expression for one or more proteins in complex biological samples, are reliant upon fluorescent or enzyme-tagged target-specific antibodies. While small molecule labeling kits are available with a range of detection moieties, the workflow is hampered by a requirement for multiple dialysis-based buffer exchange steps that are both time-consuming and subject to sample loss. In a previous study, we briefly described an alternative method for small-scale protein labeling with small molecule dyes whereby all phases of the conjugation workflow could be performed in a single centrifugal diafiltration device. Here, we expand on this foundational work addressing functionality of the device at each step in the workflow (sample cleanup, labeling, unbound dye removal, and buffer exchange/concentration) and the implications for optimizing labeling efficiency. When compared to other common buffer exchange methodologies, centrifugal diafiltration offered superior performance as measured by four key parameters (process time, desalting capacity, protein recovery, retain functional integrity). Originally designed for resin-based affinity purification, the device also provides a platform for up-front antibody purification or albumin carrier removal. Most significantly, by exploiting the rapid kinetics of NHS-based labeling reactions, the process of continuous diafiltration minimizes reaction time and long exposure to excess dye, guaranteeing maximal target labeling while limiting the risks associated with over-labeling. Overall, the device offers a simplified workflow with reduced processing time and hands-on requirements, without sacrificing labeling efficiency, final yield, or conjugate performance.

  10. Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.; Lin, John C.

    2006-01-01

    This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan-face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan-face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3- Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCP(sub avg), the circumferential distortion level at the

  11. Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R., Jr.; Lin, John C.

    2006-01-01

    This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCPavg, the circumferential distortion level at the engine

  12. Optimization of carbon dioxide supply in raceway reactors: Influence of carbon dioxide molar fraction and gas flow rate.

    PubMed

    Duarte-Santos, T; Mendoza-Martín, J L; Acién Fernández, F G; Molina, E; Vieira-Costa, J A; Heaven, S

    2016-07-01

    Influence of CO2 composition and gas flow rate to control pH in a pilot-scale raceway producing Scenedesmus sp. was studied. Light and temperature determined the biomass productivity whereas neither the CO2 molar fraction nor the gas flow rate used influenced it; because pH was always controlled and carbon limitation did not take place. The CO2 molar fraction and the gas flow rate influenced carbon loss in the system. At low CO2 molar fraction (2-6%) or gas flow rate (75-100l·min(-1)) the carbon efficiency in the sump was higher than 95%, 85% of the injected carbon being transformed into biomass. Conversely, at high CO2 molar fraction (14%) or gas flow rate (150l·min(-1)) the carbon efficiency in the sump was lower than 67%, 32% of the carbon being fixed as biomass. Analysis here reported allows the pH control to be optimized and production costs to be reduced by optimizing CO2 efficiency.

  13. Contagious Flow: Antecedents and Consequences of Optimal Experience in the Classroom

    ERIC Educational Resources Information Center

    Culbertson, Satoris S.; Fullagar, Clive J.; Simmons, Mathias J.; Zhu, Mengmeng

    2015-01-01

    The current study examined undergraduate student understanding of, and interest in, course material as potential antecedents to student experiences of flow within a classroom setting. In addition, the social, informative, and contagious nature of flow were examined, as was the influence of being in flow during classroom coverage of material on…

  14. Optimizing Virtual Land and Water Resources Flow Through Global Trade to Meet World Food and Biofuel Demand

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2013-12-01

    Biofuels is booming in recent years due to its potential contributions to energy sustainability, environmental improvement and economic opportunities. Production of biofuels not only competes for land and water with food production, but also directly pushes up food prices when crops such as maize and sugarcane are used as biofuels feedstock. Meanwhile, international trade of agricultural commodities exports and imports water and land resources in a virtual form among different regions, balances overall water and land demands and resource endowment, and provides a promising solution to the increasingly severe food-energy competition. This study investigates how to optimize water and land resources uses for overall welfare at global scale in the framework of 'virtual resources'. In contrast to partial equilibrium models that usually simulate trades year-by-year, this optimization model explores the ideal world where malnourishment is minimized with optimal resources uses and trade flows. Comparing the optimal production and trade patterns with historical data can provide meaningful implications regarding how to utilize water and land resources more efficiently and how the trade flows would be changed for overall welfare at global scale. Valuable insights are obtained in terms of the interactions among food, water and bioenergy systems. A global hydro-economic optimization model is developed, integrating agricultural production, market demands (food, feed, fuel and other), and resource and environmental constraints. Preliminary results show that with the 'free market' mechanism and land as well as water resources use optimization, the malnourished population can be reduced by as much as 65%, compared to the 2000 historical value. Expected results include: 1) optimal trade paths to achieve global malnourishment minimization, 2) how water and land resources constrain local supply, 3) how policy affects the trade pattern as well as resource uses. Furthermore, impacts of

  15. Keratinocyte cytoskeletal roles in cell sheet engineering

    PubMed Central

    2013-01-01

    Background There is an increasing need to understand cell-cell interactions for cell and tissue engineering purposes, such as optimizing cell sheet constructs, as well as for examining adhesion defect diseases. For cell-sheet engineering, one major obstacle to sheet function is that cell sheets in suspension are fragile and, over time, will contract. While the role of the cytoskeleton in maintaining the structure and adhesion of cells cultured on a rigid substrate is well-characterized, a systematic examination of the role played by different components of the cytoskeleton in regulating cell sheet contraction and cohesion in the absence of a substrate has been lacking. Results In this study, keratinocytes were cultured until confluent and cell sheets were generated using dispase to remove the influence of the substrate. The effects of disrupting actin, microtubules or intermediate filaments on cell-cell interactions were assessed by measuring cell sheet cohesion and contraction. Keratin intermediate filament disruption caused comparable effects on cell sheet cohesion and contraction, when compared to actin or microtubule disruption. Interfering with actomyosin contraction demonstrated that interfering with cell contraction can also diminish cell cohesion. Conclusions All components of the cytoskeleton are involved in maintaining cell sheet cohesion and contraction, although not to the same extent. These findings demonstrate that substrate-free cell sheet biomechanical properties are dependent on the integrity of the cytoskeleton network. PMID:23442760

  16. Optimizing dynamic T2* MR imaging for measurement of cerebral blood flow using infusions for cerebral blood volume.

    PubMed

    Newman, G C; Hospod, F E; Fain, S B; Cook, T D

    2006-01-01

    We describe an approach to measuring cerebral blood flow (CBF) based on independent measurements of cerebral blood volume (CBV) and mean transit time (MTT) with calculation of CBF by using the central volume theorem: CBF = CBV / MTT. This permits optimization of the individual acquisitions and analyses. In particular, measurement of CBV during contrast infusion, rather than simultaneously with MTT from a single bolus, yields values more consistent with those of other methods.

  17. Twin-Mirrored-Galvanometer Laser-Light-Sheet Generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1991-01-01

    Multiple, rotating laser-light sheets generated to illuminate flows in wind tunnels. Designed and developed to provide flexibility and adaptability to wide range of applications. Design includes capability to control size and location of laser-light sheet in real time, to generate horizontal or vertical sheets, to sweep sheet repeatedly through volume, to generate multiple sheets with controllable separation, and to rotate single or multiple laser-light sheets. Includes electronic equipment and laser mounted on adjustable-height platform. Twin-mirrored galvanometer unit supported by tripod to reduce vibration. Other possible applications include use in construction industry to align beams of building. Artistic or display applications also possible.

  18. Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh.

    PubMed

    Divett, T; Vennell, R; Stevens, C

    2013-02-28

    At tidal energy sites, large arrays of hundreds of turbines will be required to generate economically significant amounts of energy. Owing to wake effects within the array, the placement of turbines within will be vital to capturing the maximum energy from the resource. This study presents preliminary results using Gerris, an adaptive mesh flow solver, to investigate the flow through four different arrays of 15 turbines each. The goal is to optimize the position of turbines within an array in an idealized channel. The turbines are represented as areas of increased bottom friction in an adaptive mesh model so that the flow and power capture in tidally reversing flow through large arrays can be studied. The effect of oscillating tides is studied, with interesting dynamics generated as the tidal current reverses direction, forcing turbulent flow through the array. The energy removed from the flow by each of the four arrays is compared over a tidal cycle. A staggered array is found to extract 54 per cent more energy than a non-staggered array. Furthermore, an array positioned to one side of the channel is found to remove a similar amount of energy compared with an array in the centre of the channel. PMID:23319710

  19. Optimization of the in-needle extraction device for the direct flow of the liquid sample through the sorbent layer.

    PubMed

    Pietrzyńska, Monika; Voelkel, Adam

    2014-11-01

    In-needle extraction was applied for preparation of aqueous samples. This technique was used for direct isolation of analytes from liquid samples which was achieved by forcing the flow of the sample through the sorbent layer: silica or polymer (styrene/divinylbenzene). Specially designed needle was packed with three different sorbents on which the analytes (phenol, p-benzoquinone, 4-chlorophenol, thymol and caffeine) were retained. Acceptable sampling conditions for direct analysis of liquid sample were selected. Experimental data collected from the series of liquid samples analysis made with use of in-needle device showed that the effectiveness of the system depends on various parameters such as breakthrough volume and the sorption capacity, effect of sampling flow rate, solvent effect on elution step, required volume of solvent for elution step. The optimal sampling flow rate was in range of 0.5-2 mL/min, the minimum volume of solvent was at 400 µL level. PMID:25127610

  20. Re-evaluation of an Optimized Second Order Backward Difference (BDF2OPT) Scheme for Unsteady Flow Applications

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Carpenter, Mark H.; Lockard, David P.

    2009-01-01

    Recent experience in the application of an optimized, second-order, backward-difference (BDF2OPT) temporal scheme is reported. The primary focus of the work is on obtaining accurate solutions of the unsteady Reynolds-averaged Navier-Stokes equations over long periods of time for aerodynamic problems of interest. The baseline flow solver under consideration uses a particular BDF2OPT temporal scheme with a dual-time-stepping algorithm for advancing the flow solutions in time. Numerical difficulties are encountered with this scheme when the flow code is run for a large number of time steps, a behavior not seen with the standard second-order, backward-difference, temporal scheme. Based on a stability analysis, slight modifications to the BDF2OPT scheme are suggested. The performance and accuracy of this modified scheme is assessed by comparing the computational results with other numerical schemes and experimental data.

  1. Two-mirrored galvanometer laser light sheet generator

    NASA Technical Reports Server (NTRS)

    Leighty, B. D.; Franke, J. M.; Jones, S. B.; Rhodes, D. B.

    1988-01-01

    Light sheets generated with either laser or noncoherent sources have found widespread application to flow visualization. Previous light sheet generating systems were usually dedicated to a specific viewing geometry. The technique with the most flexibility is the galvanometer mirror based laser light sheet system. A two-mirrored system was designed and developed to provide flexibility and adaptability to a wide range of applications. The design includes the capability to control the size and location of the laser light sheet in real time, to generate horizontal or vertical sheets, to sweep the sheet repeatedly through a volume, to generate multiple sheets with controllable separation and to rotate single or multiple laser light sheets. The system is capable of producing up to 12 sheets of laser light at an angular divergence of + or - 20 degrees. Maximum scan rate of any one line is 500 Hertz. This system has proven to be uniquely versatile and a patent has been applied for.

  2. Scaling results for the Liquid Sheet Radiator (LSR)

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.

    1989-01-01

    Surface tension forces at the edges of a thin liquid (approx. 100 micrometers) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. The experimental investigation of such sheet flows was extended to large sheets (width = W = 23.5 cm, length = L approx. = 3.5 m). Experimental L/W results are greater than the calculated results. However, more experimental results are necessary for a complete comparison. The calculated emissivity of a sheet of Dow-Corning 705 silicone oil, which is a low temperature (300 to 400K) candidate for a liquid sheet radiator (LSR), is greater than .8 for sheet thicknesses greater than 100 micrometers.

  3. ESBWR enhanced flow distribution with optimized orificing and related fuel cycle performance

    SciTech Connect

    Pearson, G. J.; Karve, A. A.; Fawcett, R. M.

    2012-07-01

    The Economic Simplified Boiling Water Reactor (ESBWR) is GEH's latest Generation III+ reactor design with natural circulation coolant flow and passive safety features. Reliance on natural circulation as the sole means of core coolant driving force results in increased power-to-flow ratio and places increased importance on the efficient distribution of core flow in order to achieve optimum thermal margins and improved fuel cycle efficiency. In addition, the large core size of the ESBWR, containing 1132 bundles, greatly benefits from a more targeted distribution of flow, directing a higher fraction of flow to high power bundles in the 'ring of fire' region of typical BWR loading patterns and a lower fraction of flow to low power bundles on and near the core periphery. Desirable flow distributions can be achieved by modifying the hydraulic resistance of the inlet orifices to preferentially force flow to the targeted region. The inlet orifice is a feature that is incorporated into the fuel support piece of a typical BWR design. The majority of existing forced circulation BWR's rely on only two orifice types - a peripheral orifice located along the outermost row and a central orifice in all other locations. A more optimum distribution of core flow is achievable with the introduction of multiple inlet orifice types. Multi-zone orifice layouts comprised of two, three and four types have been evaluated for the ESBWR. An efficient radial distribution of flow can have a direct beneficial effect on the Minimum Critical Power Ratio (MCPR). An improved multi-zone orifice layout in the ESBWR has the potential of significantly increasing active flow in high power bundles. On average, this flow increase corresponds to a noteworthy MCPR improvement. Additional MCPR margin may be used to enhance operating flexibility and to achieve reduced fuel cycle costs over the plant lifetime. Combined with GNF's latest high performance fuel design for the ESBWR, GNF2E, and improved loading

  4. High-efficiency screen-printed solar cell on edge-defined film-fed grown ribbon silicon through optimized rapid belt co-firing of contacts and high-sheet-resistance emitter

    NASA Astrophysics Data System (ADS)

    Rohatgi, Ajeet; Hilali, Mohamed M.; Nakayashiki, Kenta

    2004-04-01

    High-quality screen-printed contacts were achieved on a high-sheet-resistance emitter (˜100 Ω/sq.) using PV168 Ag paste and rapid co-firing in the belt furnace. The optimized co-firing cycle developed for a 100 Ω/sq. emitter produced 16.1% efficient 4 cm2 planar edge-defined film-fed grown (EFG) ribbon Si cells with a low series-resistance (0.8 Ω cm2), high fill factor of ˜0.77, along with very significant bulk lifetime enhancement from 3 to 100 μs. This represents the highest-efficiency screen-printed EFG Si cells with single-layer antireflection (AR) coating. These cells were fabricated using a simple process involving POCl3 diffusion for a high-sheet-resistance emitter, SiNx AR coating and rapid cofiring of Ag grid and Al-doped back-surface field in a conventional belt furnace. The rapid cofiring process also prevented junction shunting while maintaining very effective SiNx-induced hydrogen passivation of defects, resulting in an average bulk lifetime exceeding 100 μs.

  5. PLUTONIUM PROCESSING OPTIMIZATION IN SUPPORT OF THE MOX FUEL PROGRAM

    SciTech Connect

    GRAY, DEVIN W.; COSTA, DAVID A.

    2007-02-02

    After Los Alamos National Laboratory (LANL) personnel completed polishing 125 Kg of plutonium as highly purified PuO{sub 2} from surplus nuclear weapons, Duke, COGEMA, Stone, and Webster (DCS) required as the next process stage, the validation and optimization of all phases of the plutonium polishing flow sheet. Personnel will develop the optimized parameters for use in the upcoming 330 kg production mission.

  6. Determination of the optimal time and cost of manufacturing flow of an assembly using the Taguchi method

    NASA Astrophysics Data System (ADS)

    Petrila, S.; Brabie, G.; Chirita, B.

    2016-08-01

    The optimization of the parts and assembly manufacturing operation was carried out in order to minimize both the time and cost of production as appropriate. The optimization was made by using the Taguchi method. The Taguchi method is based on the plans of experiences that vary the input and outputs factors. The application of the Taguchi method in order to optimize the flow of the analyzed assembly production is made in the following: to find the optimal combination between the manufacturing operations; to choose the variant involving the use of equipment performance; to delivery operations based on automation. The final aim of the Taguchi method application is that the entire assembly to be achieved at minimum cost and in a short time. Philosophy Taguchi method of optimizing product quality is synthesized from three basic concepts: quality must be designed into the product and not he product inspected after it has been manufactured; the higher quality is obtained when the deviation from the proposed target is low or when uncontrollable factors action has no influence on it, which translates robustness; costs entailed quality are expressed as a function of deviation from the nominal value [1]. When determining the number of experiments involving the study of a phenomenon by this method, follow more restrictive conditions [2].

  7. Death Valley regional groundwater flow model calibration using optimal parameter estimation methods and geoscientific information systems

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Hill, M.C.; Turner, A.K.

    1996-01-01

    A three-layer Death Valley regional groundwater flow model was constructed to evaluate potential regional groundwater flow paths in the vicinity of Yucca Mountain, Nevada. Geoscientific information systems were used to characterize the complex surface and subsurface hydrogeological conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. The high contrasts and abrupt contacts of the different hydrogeological units in the subsurface make zonation the logical choice for representing the hydraulic conductivity distribution. Hydraulic head and spring flow data were used to test different conceptual models by using nonlinear regression to determine parameter values that currently provide the best match between the measured and simulated heads and flows.

  8. Toward an optimal design principle in symmetric and asymmetric tree flow networks.

    PubMed

    Miguel, Antonio F

    2016-01-21

    Fluid flow in tree-shaped networks plays an important role in both natural and engineered systems. This paper focuses on laminar flows of Newtonian and non-Newtonian power law fluids in symmetric and asymmetric bifurcating trees. Based on the constructal law, we predict the tree-shaped architecture that provides greater access to the flow subjected to the total network volume constraint. The relationships between the sizes of parent and daughter tubes are presented both for symmetric and asymmetric branching tubes. We also approach the wall-shear stresses and the flow resistance in terms of first tube size, degree of asymmetry between daughter branches, and rheological behavior of the fluid. The influence of tubes obstructing the fluid flow is also accounted for. The predictions obtained by our theory-driven approach find clear support in the findings of previous experimental studies. PMID:26555845

  9. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions; Chicago, Illinois (Fact Sheet)

    SciTech Connect

    Not Available

    2014-07-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt-recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  10. Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method

    NASA Astrophysics Data System (ADS)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright

  11. Bacterial screening of platelet concentrates on day 2 and 3 with flow cytometry: the optimal sampling time point?

    PubMed Central

    Vollmer, Tanja; Schottstedt, Volkmar; Bux, Juergen; Walther-Wenke, Gabriele; Knabbe, Cornelius; Dreier, Jens

    2014-01-01

    Background There is growing concern on the residual risk of bacterial contamination of platelet concentrates in Germany, despite the reduction of the shelf-life of these concentrates and the introduction of bacterial screening. In this study, the applicability of the BactiFlow flow cytometric assay for bacterial screening of platelet concentrates on day 2 or 3 of their shelf-life was assessed in two German blood services. The results were used to evaluate currently implemented or newly discussed screening strategies. Materials and methods Two thousand and ten apheresis platelet concentrates were tested on day 2 or day 3 after donation using BactiFlow flow cytometry. Reactive samples were confirmed by the BacT/Alert culture system. Results Twenty-four of the 2,100 platelet concentrates tested were reactive in the first test by BactiFlow. Of these 24 platelet concentrates, 12 were false-positive and the other 12 were initially reactive. None of the microbiological cultures of the initially reactive samples was positive. Parallel examination of 1,026 platelet concentrates by culture revealed three positive platelet concentrates with bacteria detected only in the anaerobic culture bottle and identified as Staphylococcus species. Two platelet concentrates were confirmed positive for Staphylcoccus epidermidis by culture. Retrospective analysis of the growth kinetics of the bacteria indicated that the bacterial titres were most likely below the diagnostic sensitivity of the BactiFlow assay (<300 CFU/mL) and probably had no transfusion relevance. Conclusions The BactiFlow assay is very convenient for bacterial screening of platelet concentrates independently of the testing day and the screening strategy. Although the optimal screening strategy could not be defined, this study provides further data to help achieve this goal. PMID:24887230

  12. Investigation of the rotational flow effects in a pitching airfoil genetically optimized for vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Ragni, Daniele; Vitale, Laura; Ianiro, Andrea; Geurts, Ben; Ferreira, Carlos

    2012-11-01

    In the present study, an airfoil optimized for vertical axis wind turbines applications has been developed with a genetic algorithm, selecting the geometry with maximum (dcl/d α) /cd among airfoils generated with 16 shape functions. The airfoil, operating in the curved trajectory of a vertical axis wind turbine, is usually optimized adopting conformal mappings in the straight path. Recent experimental results have shown disagreement with this approach, due to the forces determined in the curved flow path. To investigate the effects of flow rotation, an aluminum model (c=0.25m) has been manufactured from the optimized shape and further tested in the LST tunnel of the TUDelft at Reynolds number 106. Planar PIV experiments in combination with the PIV based load determination technique have been performed to simultaneously obtain velocity fields and loads. Results including velocity, pressure distributions, lift and drag are initially discussed in a steady airfoil configuration and compared with numerical results. Successively, the model has been unsteadily pitched using a magnetic linear actuator (up to 3 Hz frequency), with a free stream V∞ = 40 m/s corresponding to Re = 0.7 ×106. Phase locked PIV vector fields have been acquired and compared to the steadily obtained results.

  13. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    NASA Astrophysics Data System (ADS)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  14. Optimization of magnetic amplification by flow constraints in turbulent liquid sodium

    SciTech Connect

    Nornberg, M. D. Taylor, N. Z.; Forest, C. B.; Rahbarnia, K.; Kaplan, E.

    2014-05-15

    Direct measurements of the vector turbulent emf in a driven two-vortex flow of liquid sodium were performed in the Madison Dynamo Experiment [K. Rahbarnia et al., Astrophys. J. 759, 80 (2012)]. The measured turbulent emf is anti-parallel with the mean current and is almost entirely described by an enhanced resistivity, which increases the threshold for a kinematic dynamo. We have demonstrated that this enhanced resistivity can be mitigated by eliminating the largest-scale eddies through the introduction of baffles. By tailoring the flow to reduce large-scale components and control the helical pitch, we have reduced the power required to drive the impellers, doubled the magnetic flux generated by differential rotation, and increased the decay time of externally applied magnetic fields. Despite these improvements, the flows remain sub-critical to the dynamo instability due to the reemergence of turbulent fluctuations at high flow speeds.

  15. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  16. The impact of uncertainty on shape optimization of idealized bypass graft models in unsteady flow

    NASA Astrophysics Data System (ADS)

    Sankaran, Sethuraman; Marsden, Alison L.

    2010-12-01

    It is well known that the fluid mechanics of bypass grafts impacts biomechanical responses and is linked to intimal thickening and plaque deposition on the vessel wall. In spite of this, quantitative information about the fluid mechanics is not currently incorporated into surgical planning and bypass graft design. In this work, we use a derivative-free optimization technique for performing systematic design of bypass grafts. The optimization method is coupled to a three-dimensional pulsatile Navier-Stokes solver. We systematically account for inevitable uncertainties that arise in cardiovascular simulations, owing to noise in medical image data, variable physiologic conditions, and surgical implementation. Uncertainties in the simulation input parameters as well as shape design variables are accounted for using the adaptive stochastic collocation technique. The derivative-free optimization framework is coupled with a stochastic response surface technique to make the problem computationally tractable. Two idealized numerical examples, an end-to-side anastomosis, and a bypass graft around a stenosis, demonstrate that accounting for uncertainty significantly changes the optimal graft design. Results show that small changes in the design variables from their optimal values should be accounted for in surgical planning. Changes in the downstream (distal) graft angle resulted in greater sensitivity of the wall-shear stress compared to changes in the upstream (proximal) angle. The impact of cost function choice on the optimal solution was explored. Additionally, this work represents the first use of the stochastic surrogate management framework method for robust shape optimization in a fully three-dimensional unsteady Navier-Stokes design problem.

  17. Heuristic optimization of a continuous flow point-of-use UV-LED disinfection reactor using computational fluid dynamics.

    PubMed

    Jenny, Richard M; Jasper, Micah N; Simmons, Otto D; Shatalov, Max; Ducoste, Joel J

    2015-10-15

    Alternative disinfection sources such as ultraviolet light (UV) are being pursued to inactivate pathogenic microorganisms such as Cryptosporidium and Giardia, while simultaneously reducing the risk of exposure to carcinogenic disinfection by-products (DBPs) in drinking water. UV-LEDs offer a UV disinfecting source that do not contain mercury, have the potential for long lifetimes, are robust, and have a high degree of design flexibility. However, the increased flexibility in design options will add a substantial level of complexity when developing a UV-LED reactor, particularly with regards to reactor shape, size, spatial orientation of light, and germicidal emission wavelength. Anticipating that LEDs are the future of UV disinfection, new methods are needed for designing such reactors. In this research study, the evaluation of a new design paradigm using a point-of-use UV-LED disinfection reactor has been performed. ModeFrontier, a numerical optimization platform, was coupled with COMSOL Multi-physics, a computational fluid dynamics (CFD) software package, to generate an optimized UV-LED continuous flow reactor. Three optimality conditions were considered: 1) single objective analysis minimizing input supply power while achieving at least (2.0) log10 inactivation of Escherichia coli ATCC 11229; and 2) two multi-objective analyses (one of which maximized the log10 inactivation of E. coli ATCC 11229 and minimized the supply power). All tests were completed at a flow rate of 109 mL/min and 92% UVT (measured at 254 nm). The numerical solution for the first objective was validated experimentally using biodosimetry. The optimal design predictions displayed good agreement with the experimental data and contained several non-intuitive features, particularly with the UV-LED spatial arrangement, where the lights were unevenly populated throughout the reactor. The optimal designs may not have been developed from experienced designers due to the increased degrees of

  18. Heuristic optimization of a continuous flow point-of-use UV-LED disinfection reactor using computational fluid dynamics.

    PubMed

    Jenny, Richard M; Jasper, Micah N; Simmons, Otto D; Shatalov, Max; Ducoste, Joel J

    2015-10-15

    Alternative disinfection sources such as ultraviolet light (UV) are being pursued to inactivate pathogenic microorganisms such as Cryptosporidium and Giardia, while simultaneously reducing the risk of exposure to carcinogenic disinfection by-products (DBPs) in drinking water. UV-LEDs offer a UV disinfecting source that do not contain mercury, have the potential for long lifetimes, are robust, and have a high degree of design flexibility. However, the increased flexibility in design options will add a substantial level of complexity when developing a UV-LED reactor, particularly with regards to reactor shape, size, spatial orientation of light, and germicidal emission wavelength. Anticipating that LEDs are the future of UV disinfection, new methods are needed for designing such reactors. In this research study, the evaluation of a new design paradigm using a point-of-use UV-LED disinfection reactor has been performed. ModeFrontier, a numerical optimization platform, was coupled with COMSOL Multi-physics, a computational fluid dynamics (CFD) software package, to generate an optimized UV-LED continuous flow reactor. Three optimality conditions were considered: 1) single objective analysis minimizing input supply power while achieving at least (2.0) log10 inactivation of Escherichia coli ATCC 11229; and 2) two multi-objective analyses (one of which maximized the log10 inactivation of E. coli ATCC 11229 and minimized the supply power). All tests were completed at a flow rate of 109 mL/min and 92% UVT (measured at 254 nm). The numerical solution for the first objective was validated experimentally using biodosimetry. The optimal design predictions displayed good agreement with the experimental data and contained several non-intuitive features, particularly with the UV-LED spatial arrangement, where the lights were unevenly populated throughout the reactor. The optimal designs may not have been developed from experienced designers due to the increased degrees of

  19. Hyperspectral light sheet microscopy.

    PubMed

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O; Huisken, Jan

    2015-01-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos. PMID:26329685

  20. Hyperspectral light sheet microscopy

    NASA Astrophysics Data System (ADS)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  1. Hyperspectral light sheet microscopy

    PubMed Central

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-01-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos. PMID:26329685

  2. Optimal Micro-Scale Secondary Flow Control for the Management of High Cycle Fatigue and Distortion in Compact Inlet Diffusers

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Keller, Dennis J.

    2002-01-01

    The purpose of this study on micro-scale secondary flow control (MSFC) is to study the aerodynamic behavior of micro-vane effectors through their factor (i.e., the design variable) interactions and to demonstrate how these statistical interactions, when brought together in an optimal manner, determine design robustness. The term micro-scale indicates the vane effectors are small in comparison to the local boundary layer height. Robustness in this situation means that it is possible to design fixed MSFC robust installation (i.e.. open loop) which operates well over the range of mission variables and is only marginally different from adaptive (i.e., closed loop) installation design, which would require a control system. The inherent robustness of MSFC micro-vane effector installation designs comes about because of their natural aerodynamic characteristics and the manner in which these characteristics are brought together in an optimal manner through a structured Response Surface Methodology design process.

  3. Transient Growth Theory Prediction of Optimal Placing of Passive and Active Flow Control Devices for Separation Delay in LPT Airfoils

    NASA Technical Reports Server (NTRS)

    Tumin, Anatoli; Ashpis, David E.

    2003-01-01

    An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. At very low Reynolds numbers, there is a possibility to enhance the transient energy growth by means of wall cooling.

  4. Economic Concerns in Optimal Power Dispatch in the Presence of a Generalized Unified Power Flow Controller under Practical Constraints

    NASA Astrophysics Data System (ADS)

    Suresh, Chintalapudi V.; Sivanagaraju, Sirigiri; Reddy, P. Umapathi

    2016-09-01

    In power system restructuring, pricing the electrical power plays a vital role in cost allocation between suppliers and consumers. In optimal power dispatch problem, not only the cost of active power generation but also the costs of reactive power generated by the generators, shunt capacitors, transmission losses and device investment costs should be considered. In this paper, a more realistic multi-fuel total cost objective is formulated by considering all the above mentioned costs. As the characteristics of reactive power cost curve are similar to that of active power cost curve, a non-convex reactive power cost function is formulated. The formulated cost function is optimized by satisfying equality, in-equality and practical constraints and also device limits using the proposed uniform distributed two-stage particle swarm optimization. In this paper, power injection model of generalized unified power flow controller (GUPFC) including converter switching losses is presented. The proposed objective functions are optimized in the presence of UPFC and GUPFC and finally suitable device is identified for the standard IEEE-30 bus test system.

  5. Design and optimization of non-clogging counter-flow microconcentrator for enriching epidermoid cervical carcinoma cells.

    PubMed

    Tran-Minh, Nhut; Dong, Tao; Su, Qianhua; Yang, Zhaochu; Jakobsen, Henrik; Karlsen, Frank

    2011-02-01

    Clogging failure is common for microfilters in living cells concentration; for instance, the CaSki Cell-lines (Epidermoid cervical carcinoma cells) utilizing the flat membrane structure. In order to avoid the clogging, counter-flow concentration units with turbine blade-like micropillar are proposed in microconcentrator design. Due to the unusual geometrical-profiles and extraordinary microfluidic performance, the cells blocking does not occur even at permeate entrances. A counter-flow microconcentrator was designed, with both processing layer and collecting layer arranged in terms of the fractal based honeycomb structure. The device was optimized by coupling Artificial Neuron Network (ANN) and Computational Fluid Dynamics (CFD). The excellent concentration ratio of a final microconcentrator was presented in numerical results.

  6. Optimization of operation of a three-electrode gyrotron with the use of a flow-type calorimeter

    SciTech Connect

    Kharchev, Nikolay K.; Batanov, German M.; Kolik, Leonid V.; Malakhov, Dmitrii V.; Petrov, Aleksandr Ye.; Sarksyan, Karen A.; Skvortsova, Nina N.; Stepakhin, Vladimir D.; Belousov, Vladimir I.; Malygin, Sergei A.; Tai, Yevgenii M.

    2013-01-15

    Results are presented for measurements of microwave power of the Borets-75/0.8 gyrotron with recovery of residual electron energy, which were performed by a flow-type calorimeter. This gyrotron is a part of the ECR plasma heating complex put into operation in 2010 at the L-2M stellarator. The new calorimeter is capable of measuring microwave power up to 0.5 MW. Monitoring of the microwave power makes it possible to control the parameters of the gyrotron power supply unit (its voltage and current) and the magnetic field of the cryomagnet in order to optimize the gyrotron operation and arrive at maximum efficiency.

  7. Optimization of operation of a three-electrode gyrotron with the use of a flow-type calorimeter

    NASA Astrophysics Data System (ADS)

    Kharchev, Nikolay K.; Batanov, German M.; Kolik, Leonid V.; Malakhov, Dmitrii V.; Petrov, Aleksandr Ye.; Sarksyan, Karen A.; Skvortsova, Nina N.; Stepakhin, Vladimir D.; Belousov, Vladimir I.; Malygin, Sergei A.; Tai, Yevgenii M.

    2013-01-01

    Results are presented for measurements of microwave power of the Borets-75/0.8 gyrotron with recovery of residual electron energy, which were performed by a flow-type calorimeter. This gyrotron is a part of the ECR plasma heating complex put into operation in 2010 at the L-2M stellarator. The new calorimeter is capable of measuring microwave power up to 0.5 MW. Monitoring of the microwave power makes it possible to control the parameters of the gyrotron power supply unit (its voltage and current) and the magnetic field of the cryomagnet in order to optimize the gyrotron operation and arrive at maximum efficiency.

  8. Optimization of operation of a three-electrode gyrotron with the use of a flow-type calorimeter.

    PubMed

    Kharchev, Nikolay K; Batanov, German M; Kolik, Leonid V; Malakhov, Dmitrii V; Petrov, Aleksandr Ye; Sarksyan, Karen A; Skvortsova, Nina N; Stepakhin, Vladimir D; Belousov, Vladimir I; Malygin, Sergei A; Tai, Yevgenii M

    2013-01-01

    Results are presented for measurements of microwave power of the Borets-75/0.8 gyrotron with recovery of residual electron energy, which were performed by a flow-type calorimeter. This gyrotron is a part of the ECR plasma heating complex put into operation in 2010 at the L-2M stellarator. The new calorimeter is capable of measuring microwave power up to 0.5 MW. Monitoring of the microwave power makes it possible to control the parameters of the gyrotron power supply unit (its voltage and current) and the magnetic field of the cryomagnet in order to optimize the gyrotron operation and arrive at maximum efficiency.

  9. Optimization of the axial compressor flow passage to reduce the circumferential distortion

    NASA Astrophysics Data System (ADS)

    Popov, G.; Kolmakova, D.; Shklovets, A.; Ermakov, A.

    2015-08-01

    This work is motivated by the necessity to reduce the effects of the flow circumferential distortion in the flow passage of the aircraft gas turbine engine (GTE). In previous research, the authors have proposed the approaches to decrease of the flow circumferential distortion arising from the mid-support racks of GTE compressor and having a negative impact on the blade rows, located upstream. In particular, the idea of introducing the circumferentially non-uniform blade pitch and profile stagger angle of guide vanes located in front of the support was contributed in order to redistribute the flow and decrease the dynamic stresses in the rotor wheel of the same stage. During the research presented in this paper, another principal of reduction of the flow circumferential distortion was chosen. Firstly, the variants of upgrading the existing support racks were found. Secondly, the new design of support was offered. Both the first and the second version of the support design variation took into account the availability of technological and structural limitations associated with the location of oil pipes, springs and others elements in the support racks. Investigations of modified design showed that the support with altered racks provides a reduction of dynamic stresses by 20% at resonance with the most dangerous harmonic, and the new design of support can give the decrease of 30%.

  10. Optimization of the AC-gradient method for velocity profile measurement and application to slow flow

    NASA Astrophysics Data System (ADS)

    Kartäusch, Ralf; Helluy, Xavier; Jakob, Peter Michael; Fidler, Florian

    2014-11-01

    This work presents a spectroscopic method to measure slow flow. Within a single shot the velocity distribution is acquired. This allows distinguishing rapidly between single velocities within the sampled volume with a high sensitivity. The technique is based on signal acquisition in the presence of a periodic gradient and a train of refocussing RF pulses. The theoretical model for trapezoidal bipolar pulse shaped gradients under consideration of diffusion and the outflow effect is introduced. A phase correction technique is presented that improves the spectral accuracy. Therefore, flow phantom measurements are used to validate the new sequence and the simulation based on the theoretical model. It was demonstrated that accurate parabolic flow profiles can be acquired and flow variations below 200 μm/s can be detected. Three post-processing methods that eliminate static background signal are also presented for applications in which static background signal dominates. Finally, this technique is applied to flow measurement of a small alder tree demonstrating a typical application of in vivo plant measurements.

  11. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  12. Design and optimization of a widely tunable semiconductor laser for blood oxygenation and blood flow measurements

    NASA Astrophysics Data System (ADS)

    Feng, Yafei; Deng, Haoyu; Song, Guangyi; He, Jian-Jun

    2014-11-01

    A method for measuring blood oxygenation and blood flow rate using a single widely tunable semiconductor laser is proposed and investigated. It is shown that a 700-nm-band tunable laser gives the highest sensitivity for blood oxygen measurement. The corresponding tunable laser is designed using the V-coupled cavity structure. The wavelength tuning range can reach 8 nm, which is sufficient for the blood oxygenation measurement in the 700-nm-band by using the Beer- Lambert law. In contrast to conventional blood oxygenation measurement method based on two LEDs, the laser can be used at the same time to measure the blood flow rate based on the Doppler principle.

  13. Quantum Black Holes, Strings and σ-MODELS at θ=π:. Hawking Quantum Evaporation as World-Sheet Rg-Flow

    NASA Astrophysics Data System (ADS)

    Kogan, Ian I.

    We discuss the quantum black holes and even more generally the problem of quantum horizons in string theory. A toy model for quantum horizon is the two-dimensional O(3) σ-model. Using the interpretation of time as zero mode of conformal factor of world-sheet metric (Liouville field) the possible equivalence between two-dimensional renormalization group equations and Hawking quantum evaporation formula is found. The infrared fixed points of two-dimensional renormalization group corresponds to final state of the quantum black hole. Using conjecture that such a fixed points are described by σ-models with θ=π we suggest the axionic black holes as possible candidates to final (meta)stable states of black holes. The corresponding renormalization group picture are similar to the quantum Hall effect.

  14. A twin-mirrored galvanometer laser light sheet generator

    NASA Technical Reports Server (NTRS)

    Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Leighty, Bradley D.

    1988-01-01

    A galvanometer mirror-based laser light sheet system has been developed for use in the Basic Aerodynamics Research Tunnel at NASA Langley. This system generates and positions single or multiple light sheets over aeronautical research models being tested in the low speed tunnel. This report describes a twin mirrored galvanometer laser light sheet generator and shows typical light sheet arrangements in use. With this system, illumination of smoke entrained in the flow over a delta wing model reveals the vortical flow produced by the separation of the flow at the leading edge of the model. The light sheet system has proven to be very adaptable and easy to use in sizing and positioning light sheets in wind tunnel applications.

  15. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions

    PubMed Central

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail. PMID:27776174

  16. Some Approaches Towards Constructing Optimally Efficient Multigrid Solvers for the Inviscid Flow Equations

    NASA Technical Reports Server (NTRS)

    Sidilkover, David

    1997-01-01

    Some important advances took place during the last several years in the development of genuinely multidimensional upwind schemes for the compressible Euler equations. In particular, a robust, high-resolution genuinely multidimensional scheme which can be used for any of the flow regimes computations was constructed. This paper summarizes briefly these developments and outlines the fundamental advantages of this approach.

  17. Information Points and Optimal Discharging Speed: Effects on the Saturation Flow at Signalized Intersections

    ERIC Educational Resources Information Center

    Gao, Lijun

    2015-01-01

    An information point was defined in this study as any object, structure, or activity located outside of a traveling vehicle that could potentially attract the visual attention of the driver. Saturation flow rates were studied for three pairs of signalized intersections in Toledo, Ohio. Each pair of intersections consisted of one intersection with…

  18. Electronic Rotator For Sheet Of Laser Light

    NASA Technical Reports Server (NTRS)

    Franke, John M.; Rhodes, David B.; Leighty, Bradley D.; Jones, Stephen B.

    1989-01-01

    Primary flow-visualization system in Basic Aerodynamic Research Tunnel (BART) at NASA Langley Research Center is sheet of laser light generated by 5-W argon-ion laser and two-axis mirror galvanometer scanner. Generates single and multiple sheets of light, which remain stationary or driven to sweep out volume. Sine/cosine potentiometer used to orient two galvanometer/mirror devices simultaneously and yields desired result at reasonable cost and incorporated into prototype in 1 day.

  19. Structural Biology Fact Sheet

    MedlinePlus

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  20. Zika Virus Fact Sheet

    MedlinePlus

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key facts ... and last for 2-7 days. Complications of Zika virus disease After a comprehensive review of evidence, there ...