Evolutionary Optimization of a Geometrically Refined Truss
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.
Optimization of biotechnological systems through geometric programming
Marin-Sanguino, Alberto; Voit, Eberhard O; Gonzalez-Alcon, Carlos; Torres, Nestor V
2007-01-01
Background In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM) was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. Results A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA) system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. Conclusion GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into the GMA form. Thus
Geometric Computational Mechanics and Optimal Control
2011-12-02
methods. Further methods that depend on global optimization problems are in development and preliminary versions of these results, many of which...de la Sociedad Espanola de Matimatica Aplicada (SeMA), 50, 2010, pp 61-81. K. Flaßkamp, S. Ober-Blöbaum, M. Kobilarov, Solving optimal control...continuous setting. Consequently, globally optimal methods for computing optimal trajectories for vehicles with complex dynamics were developed. The
Geometric methods for optimal sensor design.
Belabbas, M-A
2016-01-01
The Kalman-Bucy filter is the optimal estimator of the state of a linear dynamical system from sensor measurements. Because its performance is limited by the sensors to which it is paired, it is natural to seek optimal sensors. The resulting optimization problem is however non-convex. Therefore, many ad hoc methods have been used over the years to design sensors in fields ranging from engineering to biology to economics. We show in this paper how to obtain optimal sensors for the Kalman filter. Precisely, we provide a structural equation that characterizes optimal sensors. We furthermore provide a gradient algorithm and prove its convergence to the optimal sensor. This optimal sensor yields the lowest possible estimation error for measurements with a fixed signal-to-noise ratio. The results of the paper are proved by reducing the optimal sensor problem to an optimization problem on a Grassmannian manifold and proving that the function to be minimized is a Morse function with a unique minimum. The results presented here also apply to the dual problem of optimal actuator design.
Geometric methods for optimal sensor design
Belabbas, M.-A.
2016-01-01
The Kalman–Bucy filter is the optimal estimator of the state of a linear dynamical system from sensor measurements. Because its performance is limited by the sensors to which it is paired, it is natural to seek optimal sensors. The resulting optimization problem is however non-convex. Therefore, many ad hoc methods have been used over the years to design sensors in fields ranging from engineering to biology to economics. We show in this paper how to obtain optimal sensors for the Kalman filter. Precisely, we provide a structural equation that characterizes optimal sensors. We furthermore provide a gradient algorithm and prove its convergence to the optimal sensor. This optimal sensor yields the lowest possible estimation error for measurements with a fixed signal-to-noise ratio. The results of the paper are proved by reducing the optimal sensor problem to an optimization problem on a Grassmannian manifold and proving that the function to be minimized is a Morse function with a unique minimum. The results presented here also apply to the dual problem of optimal actuator design. PMID:26997885
Optimized geometric configuration of active ring laser gyroscopes
NASA Astrophysics Data System (ADS)
Gormley, John; Salloum, Tony
2016-05-01
We present a thorough derivation of the Sagnac effect for a ring laser gyroscope of any arbitrary polygonal configuration. We determine optimized alternative geometric configurations for the mirrors. The simulations incur the implementation of a lasing medium with the standard square system, triangular, pentagonal, and oblongated square configuration (diamond). Simulations of possible new geometric configurations are considered, as well as the possibility of adjusting the concavity of the mirrors.
Improved bond-orbital calculations of rotation barriers and geometrical isomerism
NASA Astrophysics Data System (ADS)
Musso, Gian Franco; Magnasco, Valerio
Rotational barriers in 19 molecules possessing a single internal rotation angle around a B-N, C-C, C-N, C-O, N-N, N-O, O-O central bond and geometrical isomerism in 3 molecules possessing a N=N double bond have been studied ab initio by the improved bond-orbital method. The first approximation, where the chemical groups occurring in these molecules are described in terms of non-orthogonal SCF bond-orbitals constructed from energy-optimized bond hybrids and polarities, is improved in second order of perturbation theory by admitting single excitations from bonding to antibonding orbitals and accounting for induction including exchange (polarization and delocalization). The molecules studied possess 16 to 34 electrons and a variety of functional groups differing in their chemical structure (CH3, NH2, OH, NO, CHO, CH=CH2, NH= and some of their F-derivatives). The overall results obtained using a STO-3G basis, rigid rotation and experimental geometries, are close to experiment and to the corresponding MO-SCF calculations in the same basis, but individual energy components allow us to establish a clear correlation between barriers and chemical structure, grouping the 22 molecules into 4 classes. In the first class (CH3-X molecules and 1,2-difluoroethane) barriers are dominated by steric interactions (Pauli repulsions) which are sufficiently well described in first order. In the second class (N2H4, NH2OH, NH=NH and its fluoroderivatives, molecules all possessing lone pairs adjacent to the central bond) barriers are due to competition between first-order Pauli repulsion and characteristic geminal σ-σ* delocalization occurring in second order. In the third class (1,3-butadiene, glyoxal, formamide and formic acid, molecules possessing double bonds and/or π-lone pairs at both ends of the rotation axis) barriers are dominated by large π-π* vicinal delocalization. In the fourth class (HNO2, H2O2 and its fluoroderivatives, molecules presenting both previous structural
Optimal control of underactuated mechanical systems: A geometric approach
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela
2010-08-01
In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.
Optimizing ultrasonic imaging for adhesively bonded plates
Conboy, Mike; Hart, Scot; Harris-Weiel, David; Meyer, R. L.; Claytor, T. N.
2004-01-01
Bonded materials are used in many critical applications, making it important to determine the state of the adhesive during service or aging. It is also of importance, in many cases, to determine if the adhesive has uniformly and completely covered the area to be joined. Through dual transducer scanning, focused and unfocused transducers, and immersion scanning, the uniformity and adherence of a visco-elastic material can be evaluated. In this report, ultrasonic scanning parameters will be optimized experimentally with guidance from simulation tools including Wave 2000 pro and Imagine 3D. We explored optimizing the contrast ratio by varying the interrogation frequency and also by adjusting the distance between the transducer and bond line. An improvement in contrast should also increase the ability to detect differences in compositions and viscosity of the bonded layer. By maximizing the contrast the quality of the visco-elastic bond can be determined, and imperfections detected before adhesive failure.
Optimized probabilistic quantum processors: A unified geometric approach 1
NASA Astrophysics Data System (ADS)
Bergou, Janos; Bagan, Emilio; Feldman, Edgar
Using probabilistic and deterministic quantum cloning, and quantum state separation as illustrative examples we develop a complete geometric solution for finding their optimal success probabilities. The method is related to the approach that we introduced earlier for the unambiguous discrimination of more than two states. In some cases the method delivers analytical results, in others it leads to intuitive and straightforward numerical solutions. We also present implementations of the schemes based on linear optics employing few-photon interferometry
Geometric Mechanics Reveals Optimal Complex Terrestrial Undulation Patterns
NASA Astrophysics Data System (ADS)
Gong, Chaohui; Astley, Henry; Schiebel, Perrin; Dai, Jin; Travers, Matthew; Goldman, Daniel; Choset, Howie; CMU Team; GT Team
Geometric mechanics offers useful tools for intuitively analyzing biological and robotic locomotion. However, utility of these tools were previously restricted to systems that have only two internal degrees of freedom and in uniform media. We show kinematics of complex locomotors that make intermittent contacts with substrates can be approximated as a linear combination of two shape bases, and can be represented using two variables. Therefore, the tools of geometric mechanics can be used to analyze motions of locomotors with many degrees of freedom. To demonstrate the proposed technique, we present studies on two different types of snake gaits which utilize combinations of waves in the horizontal and vertical planes: sidewinding (in the sidewinder rattlesnake C. cerastes) and lateral undulation (in the desert specialist snake C. occipitalis). C. cerastes moves by generating posteriorly traveling body waves in the horizontal and vertical directions, with a relative phase offset equal to +/-π/2 while C. occipitalismaintains a π/2 offset of a frequency doubled vertical wave. Geometric analysis reveals these coordination patterns enable optimal movement in the two different styles of undulatory terrestrial locomotion. More broadly, these examples demonstrate the utility of geometric mechanics in analyzing realistic biological and robotic locomotion.
35Cl NQR study of geometric isotope effect in hydrogen bonded chlorooctanes
NASA Astrophysics Data System (ADS)
Zdanowska-Fraçzek, M.
1994-05-01
35Cl NQR spectroscopy was applied to study the geometric isotope effect in a wide range of 2 : 1 salts of chloroacetic, trichloroacetic and difluorochloroacetic acids. The NQR results were correlated with IR spectroscopic studies, which provided information on the potential shape for proton motion. The NQR results were discussed on the basis of a variational correlated ground state wave function theory of a single hydrogen bond.
Optical properties of geometrically optimized graphene quantum dots
NASA Astrophysics Data System (ADS)
Bugajny, Paweł; Szulakowska, Ludmiła; Jaworowski, Błazej; Potasz, Paweł
2017-01-01
We derive effective tight-binding model for geometrically optimized graphene quantum dots and based on it we investigate corresponding changes in their optical properties in comparison to ideal structures. We consider hexagonal and triangular dots with zigzag and armchair edges. Using density functional theory methods we show that displacement of lattice sites leads to changes in atomic distances and in consequence modifies their energy spectrum. We derive appropriate model within tight-binding method with edge-modified hopping integrals. Using group theoretical analysis, we determine allowed optical transitions and investigate oscillatory strength between bulk-bulk, bulk-edge and edge-edge transitions. We compare optical joint density of states for ideal and geometry optimized structures. We also investigate an enhanced effect of sites displacement which can be designed in artificial graphene-like nanostructures. A shift of absorption peaks is found for small structures, vanishing with increasing system size.
A geometric analysis of mastectomy incisions: Optimizing intraoperative breast volume
Chopp, David; Rawlani, Vinay; Ellis, Marco; Johnson, Sarah A; Buck, Donald W; Khan, Seema; Bethke, Kevin; Hansen, Nora; Kim, John YS
2011-01-01
INTRODUCTION: The advent of acellular dermis-based tissue expander breast reconstruction has placed an increased emphasis on optimizing intraoperative volume. Because skin preservation is a critical determinant of intraoperative volume expansion, a mathematical model was developed to capture the influence of incision dimension on subsequent tissue expander volumes. METHODS: A mathematical equation was developed to calculate breast volume via integration of a geometrically modelled breast cross-section. The equation calculates volume changes associated with excised skin during the mastectomy incision by reducing the arc length of the cross-section. The degree of volume loss is subsequently calculated based on excision dimensions ranging from 35 mm to 60 mm. RESULTS: A quadratic relationship between breast volume and the vertical dimension of the mastectomy incision exists, such that incrementally larger incisions lead to a disproportionally greater amount of volume loss. The vertical dimension of the mastectomy incision – more so than the horizontal dimension – is of critical importance to maintain breast volume. Moreover, the predicted volume loss is more profound in smaller breasts and primarily occurs in areas that affect breast projection on ptosis. CONCLUSIONS: The present study is the first to model the relationship between the vertical dimensions of the mastectomy incision and subsequent volume loss. These geometric principles will aid in optimizing intra-operative volume expansion during expander-based breast reconstruction. PMID:22654531
State-Selective Excitation of Quantum Systems via Geometrical Optimization.
Chang, Bo Y; Shin, Seokmin; Sola, Ignacio R
2015-09-08
We lay out the foundations of a general method of quantum control via geometrical optimization. We apply the method to state-selective population transfer using ultrashort transform-limited pulses between manifolds of levels that may represent, e.g., state-selective transitions in molecules. Assuming that certain states can be prepared, we develop three implementations: (i) preoptimization, which implies engineering the initial state within the ground manifold or electronic state before the pulse is applied; (ii) postoptimization, which implies engineering the final state within the excited manifold or target electronic state, after the pulse; and (iii) double-time optimization, which uses both types of time-ordered manipulations. We apply the schemes to two important dynamical problems: To prepare arbitrary vibrational superposition states on the target electronic state and to select weakly coupled vibrational states. Whereas full population inversion between the electronic states only requires control at initial time in all of the ground vibrational levels, only very specific superposition states can be prepared with high fidelity by either pre- or postoptimization mechanisms. Full state-selective population inversion requires manipulating the vibrational coherences in the ground electronic state before the optical pulse is applied and in the excited electronic state afterward, but not during all times.
Sigala, Paul A.; Kraut, Daniel A.; Caaveiro, Jose M. M.; Pybus, Brandon; Ruben, Eliza A.; Ringe, Dagmar; Petsko, Gregory A.; Herschlag, Daniel
2009-01-01
Enzymes are classically proposed to accelerate reactions by binding substrates within active site environments that are structurally preorganized to optimize binding interactions with reaction transition states rather than ground states. This is a remarkably formidable task considering the limited 0.1 – 1 Å scale of most substrate rearrangements. The flexibility of active site functional groups along the coordinate of substrate rearrangement, the distance scale on which enzymes can distinguish structural rearrangement, and the energetic significance of discrimination on that scale remain open questions that are fundamental to a basic physical understanding of enzyme active sites and catalysis. We bring together high resolution X-ray crystallography, 1H and 19F NMR spectroscopy, quantum mechanical calculations, and transition state analog binding measurements to test the distance scale on which non-covalent forces can constrain side chain and ligand relaxation or translation along a specific coordinate and the energetic consequences of such geometric constraints within the active site of bacterial ketosteroid isomerase (KSI). Our results strongly suggest that packing and binding interactions within the KSI active site can constrain local side chain reorientation and prevent hydrogen bond shortening by 0.1 Å or less. Further, this constraint has substantial energetic effects on ligand binding and stabilization of negative charge within the oxyanion hole. These results provide evidence that subtle geometric effects, indistinguishable in most X-ray crystallographic structures, can have significant energetic consequences and highlight the importance of using synergistic experimental approaches to dissect enzyme function. PMID:18808119
NASA Astrophysics Data System (ADS)
Yamamoto, Kaichi; Kanematsu, Yusuke; Nagashima, Umpei; Ueda, Akira; Mori, Hatsumi; Tachikawa, Masanori
2017-04-01
We theoretically investigated a significant contraction of the hydrogen-bonding O⋯O distance upon H/D substitution in our recently developed purely organic crystals, κ-H3(Cat-EDT-ST)2 (H-ST) and its isotopologue κ-D3(Cat-EDT-ST)2 (D-ST), having π-electron systems coupled with hydrogen-bonding fluctuation. The origin of this geometrical H/D isotope effect was elucidated by using the multicomponent DFT method, which takes the H/D nuclear quantum effect into account. The optimized O⋯O distance in H-ST was found to be longer than that in D-ST due to the anharmonicity of the potential energy curve along the Osbnd H bond direction, which was in reasonable agreement with the experimental trend.
Wikfeldt, K. T.; Michaelides, A.
2014-01-28
Ab initio simulations that account for nuclear quantum effects have been used to examine the order-disorder transition in squaric acid, a prototypical H-bonded antiferroelectric crystal. Our simulations reproduce the >100 K difference in transition temperature observed upon deuteration as well as the strong geometrical isotope effect observed on intermolecular separations within the crystal. We find that collective transfer of protons along the H-bonding chains – facilitated by quantum mechanical tunneling – is critical to the order-disorder transition and the geometrical isotope effect. This sheds light on the origin of isotope effects and the importance of tunneling in squaric acid which likely extends to other H-bonded ferroelectrics.
Printability Optimization For Fine Pitch Solder Bonding
Kwon, Sang-Hyun; Lee, Chang-Woo; Yoo, Sehoon
2011-01-17
Effect of metal mask and pad design on solder printability was evaluated by DOE in this study. The process parameters were stencil thickness, squeegee angle, squeegee speed, mask separating speed, and pad angle of PCB. The main process parameters for printability were stencil thickness and squeegee angle. The response surface showed that maximum printability of 1005 chip was achieved at the stencil thickness of 0.12 mm while the maximum printability of 0603 and 0402 chip was obtained at the stencil thickness of 0.05 mm. The bonding strength of the MLCC chips was also directly related with the printability.
Printability Optimization For Fine Pitch Solder Bonding
NASA Astrophysics Data System (ADS)
Kwon, Sang-Hyun; Lee, Chang-Woo; Yoo, Sehoon
2011-01-01
Effect of metal mask and pad design on solder printability was evaluated by DOE in this study. The process parameters were stencil thickness, squeegee angle, squeegee speed, mask separating speed, and pad angle of PCB. The main process parameters for printability were stencil thickness and squeegee angle. The response surface showed that maximum printability of 1005 chip was achieved at the stencil thickness of 0.12 mm while the maximum printability of 0603 and 0402 chip was obtained at the stencil thickness of 0.05 mm. The bonding strength of the MLCC chips was also directly related with the printability.
Optimization of the geometrical stability in square ring laser gyroscopes
NASA Astrophysics Data System (ADS)
Santagata, R.; Beghi, A.; Belfi, J.; Beverini, N.; Cuccato, D.; Di Virgilio, A.; Ortolan, A.; Porzio, A.; Solimeno, S.
2015-03-01
Ultra-sensitive ring laser gyroscopes are regarded as potential detectors of the general relativistic frame-dragging effect due to the rotation of the Earth. Our project for this goal is called GINGER (gyroscopes in general relativity), and consists of a ground-based triaxial array of ring lasers aimed at measuring the rotation rate of the Earth with an accuracy of {{10}-14} rad {{s}-1}. Such an ambitious goal is now within reach, as large-area ring lasers are very close to the required sensitivity and stability. However, demanding constraints on the geometrical stability of the optical path of the laser inside the ring cavity are required. Thus, we have begun a detailed study of the geometry of an optical cavity in order to find a control strategy for its geometry that could meet the specifications of the GINGER project. As the cavity perimeter has a stationary point for the square configuration, we identify a set of transformations on the mirror positions that allows us to adjust the laser beam steering to the shape of a square. We show that the geometrical stability of a square cavity strongly increases by implementing a suitable system to measure the mirror distances, and that the geometry stabilization can be achieved by measuring the absolute lengths of the two diagonals and the perimeter of the ring.
Bond strength optimization between adherends with different curvatures
Randow, C.L.; Dillard, D.A.
1996-12-31
Due to the increasing use of adhesives in various industrial applications, the accurate prediction of bond behavior becomes more important. This information may also be used to optimize bond design. In particular, the following analysis focuses on bond geometries involving a curvature mismatch between adherends. For example, consider the profile view of a typical laminated counter-top. This involves bonding an initially flat adherend to a rigid substrate with a flat top, a curved corner of radius {rho}, and a flat landing at the bond edge. Questions arise regarding the behavior of the bond and how to optimize the design to minimize stresses resulting from the initially flat adherend being fixed to the rigid, curved substrate. The deflection of the adherend is modeled using beam on elastic foundation analysis. These results, which can be used to calculate peel stresses, are used to determine the optimal design of the laminated counter-top geometry as presented above. Experimental results are also correlated to the analytical solution.
Optimization of absorption placement using geometrical acoustic models and least squares.
Saksela, Kai; Botts, Jonathan; Savioja, Lauri
2015-04-01
Given a geometrical model of a space, the problem of optimally placing absorption in a space to match a desired impulse response is in general nonlinear. This has led some to use costly optimization procedures. This letter reformulates absorption assignment as a constrained linear least-squares problem. Regularized solutions result in direct distribution of absorption in the room and can accommodate multiple frequency bands, multiple sources and receivers, and constraints on geometrical placement of absorption. The method is demonstrated using a beam tracing model, resulting in the optimal absorption placement on the walls and ceiling of a classroom.
Geometric constraints for shape and topology optimization in architectural design
NASA Astrophysics Data System (ADS)
Dapogny, Charles; Faure, Alexis; Michailidis, Georgios; Allaire, Grégoire; Couvelas, Agnes; Estevez, Rafael
2017-02-01
This work proposes a shape and topology optimization framework oriented towards conceptual architectural design. A particular emphasis is put on the possibility for the user to interfere on the optimization process by supplying information about his personal taste. More precisely, we formulate three novel constraints on the geometry of shapes; while the first two are mainly related to aesthetics, the third one may also be used to handle several fabrication issues that are of special interest in the device of civil structures. The common mathematical ingredient to all three models is the signed distance function to a domain, and its sensitivity analysis with respect to perturbations of this domain; in the present work, this material is extended to the case where the ambient space is equipped with an anisotropic metric tensor. Numerical examples are discussed in two and three space dimensions.
NASA Astrophysics Data System (ADS)
Limbach, Hans-Heinrich; Pietrzak, Mariusz; Benedict, Hans; Tolstoy, Peter M.; Golubev, Nikolai S.; Denisov, Gleb S.
2004-11-01
In this paper, empirical corrections for anharmonic ground-state vibrations of hydrogen and deuterium in the hydrogen bridges A-L⋯B, L=H, D are introduced into the geometric hydrogen bond correlation analysis based on the empirical Pauling valence bond orders. The method is verified using the examples of the hydrogen bonded anions in [(CO) 5Cr-CN⋯H⋯NC-Cr(CO) 5] - As(Ph) 4+ ( 1h), in [(CO) 5Cr-CN⋯H⋯NC-Cr(CO) 5] - N( n-propyl) 4+ ( 2h), in the model system [CN⋯H⋯NC] - Li + ( 3h), and their deuterated isotopologs ( 1d, 2d and 3d) studied previously by dipolar NMR and theoretical methods by H. Benedict et al. [J. Am. Chem. Soc. 120 (1998) 2939]. The new corrections are able to describe isotope effects on hydrogen bond geometries from the weak to the strong hydrogen bond regime, taking into account single and double-well situations.
NASA Technical Reports Server (NTRS)
Horowitz, Stephen; Chen, Tai-An; Chandrasekaran, Venkataraman; Tedjojuwono, Ken; Cattafesta, Louis; Nishida, Toshikazu; Sheplak, Mark
2004-01-01
This paper presents a geometric Moir optical-based floating-element shear stress sensor for wind tunnel turbulence measurements. The sensor was fabricated using an aligned wafer-bond/thin-back process producing optical gratings on the backside of a floating element and on the top surface of the support wafer. Measured results indicate a static sensitivity of 0.26 microns/Pa, a resonant frequency of 1.7 kHz, and a noise floor of 6.2 mPa/(square root)Hz.
NASA Astrophysics Data System (ADS)
Wang, Yingjun; Benson, David J.
2016-12-01
In this paper, an approach based on the fast point-in-polygon (PIP) algorithm and trimmed elements is proposed for isogeometric topology optimization (TO) with arbitrary geometric constraints. The isogeometric parameterized level-set-based TO method, which directly uses the non-uniform rational basis splines (NURBS) for both level set function (LSF) parameterization and objective function calculation, provides higher accuracy and efficiency than previous methods. The integration of trimmed elements is completed by the efficient quadrature rule that can design the quadrature points and weights for arbitrary geometric shape. Numerical examples demonstrate the efficiency and flexibility of the method.
Geometric versus numerical optimal control of a dissipative spin-(1)/(2) particle
NASA Astrophysics Data System (ADS)
Lapert, M.; Zhang, Y.; Braun, M.; Glaser, S. J.; Sugny, D.
2010-12-01
We analyze the saturation of a nuclear magnetic resonance (NMR) signal using optimal magnetic fields. We consider both the problems of minimizing the duration of the control and its energy for a fixed duration. We solve the optimal control problems by using geometric methods and a purely numerical approach, the grape algorithm, the two methods being based on the application of the Pontryagin maximum principle. A very good agreement is obtained between the two results. The optimal solutions for the energy-minimization problem are finally implemented experimentally with available NMR techniques.
Geometric versus numerical optimal control of a dissipative spin-(1/2) particle
Lapert, M.; Sugny, D.; Zhang, Y.; Braun, M.; Glaser, S. J.
2010-12-15
We analyze the saturation of a nuclear magnetic resonance (NMR) signal using optimal magnetic fields. We consider both the problems of minimizing the duration of the control and its energy for a fixed duration. We solve the optimal control problems by using geometric methods and a purely numerical approach, the grape algorithm, the two methods being based on the application of the Pontryagin maximum principle. A very good agreement is obtained between the two results. The optimal solutions for the energy-minimization problem are finally implemented experimentally with available NMR techniques.
NASA Astrophysics Data System (ADS)
Li, Ying; Cheng, Bo
2009-10-01
With the development of remote sensing satellites, the data quantity of remote sensing image is increasing tremendously, which brings a huge workload to the image geometric rectification through manual ground control point (GCP) selections. GCP database is one of the effective methods to cut down manual operation. The GCP loaded from database is generally redundant, which may result in a rectification slowdown. How to automatically optimize these ground control points is a problem that should be resolved urgently. According to the basic theory of geometric rectification and the principle of GCP selection, this paper deeply comprehends some existing methods about automatic optimization of GCP, and puts forward a new method of automatic optimization of GCP based on voronoi diagram to filter ground control points from the overfull ones without manual subjectivity for better accuracy. The paper is organized as follows: First, it clarifies the basic theory of remote sensing image multinomial geometric rectification and the arithmetic of how to get the GCP error. Second, it particularly introduces the voronoi diagram including its origin, development and characteristics, especially the creating process. Third, considering the deficiencies of existing methods about automatic optimization of GCP, the paper presents the idea of applying voronoi diagram to filter GCP in order to complete automatic optimization. During this process, it advances the conception of single GCP's importance value based on voronoi diagram. Then by integrating the GCP error and GCP's importance value, the paper gives the theory and the flow of automatic optimization of GCPs as well. It also presents an example of the application of this method. In the conclusion, it points out the advantages of automatic optimization of GCP based on the voronoi diagram.
Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine
NASA Astrophysics Data System (ADS)
Zhang, L.; Zhuge, W. L.; Peng, J.; Liu, S. J.; Zhang, Y. J.
2013-12-01
In general, the method proposed by Whitfield and Baines is adopted for the turbine preliminary design. In this design procedure for the turbine blade trailing edge geometry, two assumptions (ideal gas and zero discharge swirl) and two experience values (WR and γ) are used to get the three blade trailing edge geometric parameters: relative exit flow angle β6, the exit tip radius R6t and hub radius R6h for the purpose of maximizing the rotor total-to-static isentropic efficiency. The method above is established based on the experience and results of testing using air as working fluid, so it does not provide a mathematical optimal solution to instruct the optimization of geometry parameters and consider the real gas effects of the organic, working fluid which must be taken into consideration for the ORC turbine design procedure. In this paper, a new preliminary design and optimization method is established for the purpose of reducing the exit kinetic energy loss to improve the turbine efficiency ηts, and the blade trailing edge geometric parameters for a small scale ORC turbine with working fluid R123 are optimized based on this method. The mathematical optimal solution to minimize the exit kinetic energy is deduced, which can be used to design and optimize the exit shroud/hub radius and exit blade angle. And then, the influence of blade trailing edge geometric parameters on turbine efficiency ηts are analysed and the optimal working ranges of these parameters for the equations are recommended in consideration of working fluid R123. This method is used to modify an existing ORC turbine exit kinetic energy loss from 11.7% to 7%, which indicates the effectiveness of the method. However, the internal passage loss increases from 7.9% to 9.4%, so the only way to consider the influence of geometric parameters on internal passage loss is to give the empirical ranges of these parameters, such as the recommended ranges that the value of γ is at 0.3 to 0.4, and the value
Optimization of the Geometric Phase Sensitivity of an Array of Atom Ring Interferometers
NASA Astrophysics Data System (ADS)
Sandoval-Sanchez, Karina; Campo, Christian; Rivera, Tabitha; Toland, John
2015-05-01
Sagnac, and Aharonov-Bohm phase shifts are important geometric phase shifts in atom interferometry. These phase shifts characterize rotational and magnetic field interference effects respectively. Theoretical explorations have shown that a series of ring interferometers can be connected in series to increase the sensitivity of the overall device while keeping the maximum path separation less than the coherence length of the atoms. It has also been shown that the application of an area chirp to the rings will further enhance the sensitivity of the array of rings to geometric phase shifts. Area chirp refers to characterizing all of the rings in the array to a fixed percentage of a reference ring, this allows for the phase shifts in each ring to be characterized by one ring. The goal of this project is to determine a set of parameters namely kL, the product of the ring circumference and the wave number and γ, the chirp factor for the area chirp, that optimize the geometric phase sensitivity for an array of N rings. We model the transmission coefficient of a quantum matter wave through an area chirped array of interferometers as a function of phase, using transfer matrices to represent the transmission and reflection of individual rings in the array. Isolated transmission resonances represent the domain of interest, these are regions of high phase sensitivity. After optimizing a ring array without loss we apply velocity broadening to the input matter waves to investigate a more realistic output.
McShan, D.L.; Kessler, M.L.; Vineberg, K.; Fraass, B.A.
2006-05-15
Radiotherapy treatment plans that are optimized to be highly conformal based on a static patient geometry can be degraded by setup errors and/or intratreatment motion, particularly for IMRT plans. To achieve improved plans in the face of geometrical uncertainties, direct simulation of multiple instances of the patient anatomy (to account for setup and/or motion uncertainties) is used within the inverse planning process. This multiple instance geometry approximation (MIGA) method uses two or more instances of the patient anatomy and optimizes a single beam arrangement for all instances concurrently. Each anatomical instance can represent expected extremes or a weighted distribution of geometries. The current implementation supports mapping between instances that include distortions, but this report is limited to the use of rigid body translations/rotations. For inverse planning, the method uses beamlet dose calculations for each instance, with the resulting doses combined using a weighted sum of the results for the multiple instances. Beamlet intensities are then optimized using the inverse planning system based on the cost for the composite dose distribution. MIGA can simulate various types of geometrical uncertainties, including random setup error and intratreatment motion. A limited number of instances are necessary to simulate Gaussian-distributed errors. IMRT plans optimized using MIGA show significantly less degradation in the face of geometrical errors, and are robust to the expected (simulated) motions. Results for a complex head/neck plan involving multiple target volumes and numerous normal structures are significantly improved when the MIGA method of inverse planning is used. Inverse planning using MIGA can lead to significant improvements over the use of simple PTV volume expansions for inclusion of geometrical uncertainties into inverse planning, since it can account for the correlated motions of the entire anatomical representation. The optimized plan
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-11-16
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-01-01
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range. PMID:27854342
Witte, Marnix G; van der Geer, Joris; Schneider, Christoph; Lebesque, Joos V; Alber, Markus; van Herk, Marcel
2007-09-01
The purpose of this work was the development of a probabilistic planning method with biological cost functions that does not require the definition of margins. Geometrical uncertainties were integrated in tumor control probability (TCP) and normal tissue complication probability (NTCP) objective functions for inverse planning. For efficiency reasons random errors were included by blurring the dose distribution and systematic errors by shifting structures with respect to the dose. Treatment plans were made for 19 prostate patients following four inverse strategies: Conformal with homogeneous dose to the planning target volume (PTV), a simultaneous integrated boost using a second PTV, optimization using TCP and NTCP functions together with a PTV, and probabilistic TCP and NTCP optimization for the clinical target volume without PTV. The resulting plans were evaluated by independent Monte Carlo simulation of many possible treatment histories including geometrical uncertainties. The results showed that the probabilistic optimization technique reduced the rectal wall volume receiving high dose, while at the same time increasing the dose to the clinical target volume. Without sacrificing the expected local control rate, the expected rectum toxicity could be reduced by 50% relative to the boost technique. The improvement over the conformal technique was larger yet. The margin based biological technique led to toxicity in between the boost and probabilistic techniques, but its control rates were very variable and relatively low. During evaluations, the sensitivity of the local control probability to variations in biological parameters appeared similar for all four strategies. The sensitivity to variations of the geometrical error distributions was strongest for the probabilistic technique. It is concluded that probabilistic optimization based on tumor control probability and normal tissue complication probability is feasible. It results in robust prostate treatment plans
NASA Astrophysics Data System (ADS)
Rotskoff, Grant M.; Crooks, Gavin E.; Vanden-Eijnden, Eric
2017-01-01
Optimal control of nanomagnets has become an urgent problem for the field of spintronics as technological tools approach thermodynamically determined limits of efficiency. In complex, fluctuating systems, such as nanomagnetic bits, finding optimal protocols is challenging, requiring detailed information about the dynamical fluctuations of the controlled system. We provide a physically transparent derivation of a metric tensor for which the length of a protocol is proportional to its dissipation. This perspective simplifies nonequilibrium optimization problems by recasting them in a geometric language. We then describe a numerical method, an instance of geometric minimum action methods, that enables computation of geodesics even when the number of control parameters is large. We apply these methods to two models of nanomagnetic bits: a Landau-Lifshitz-Gilbert description of a single magnetic spin controlled by two orthogonal magnetic fields, and a two-dimensional Ising model in which the field is spatially controlled. These calculations reveal nontrivial protocols for bit erasure and reversal, providing important, experimentally testable predictions for ultra-low-power computing.
Implementation and Optimization of miniGMG - a Compact Geometric Multigrid Benchmark
Williams, Samuel; Kalamkar, Dhiraj; Singh, Amik; Deshpande, Anand M.; Straalen, Brian Van; Smelyanskiy, Mikhail; Almgren, Ann; Dubey, Pradeep; Shalf, John; Oliker, Leonid
2012-12-01
Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems used in a number of different application areas. In this report, we describe miniGMG, our compact geometric multigrid benchmark designed to proxy the multigrid solves found in AMR applications. We explore optimization techniques for geometric multigrid on existing and emerging multicore systems including the Opteron-based Cray XE6, Intel Sandy Bridge and Nehalem-based Infiniband clusters, as well as manycore-based architectures including NVIDIA's Fermi and Kepler GPUs and Intel's Knights Corner (KNC) co-processor. This report examines a variety of novel techniques including communication-aggregation, threaded wavefront-based DRAM communication-avoiding, dynamic threading decisions, SIMDization, and fusion of operators. We quantify performance through each phase of the V-cycle for both single-node and distributed-memory experiments and provide detailed analysis for each class of optimization. Results show our optimizations yield significant speedups across a variety of subdomain sizes while simultaneously demonstrating the potential of multi- and manycore processors to dramatically accelerate single-node performance. However, our analysis also indicates that improvements in networks and communication will be essential to reap the potential of manycore processors in large-scale multigrid calculations.
Geometrical optimization of sensors for eddy currents nondestructive testing and evaluation
Thollon, F.; Burais, N.
1995-05-01
Design of Non Destructive Testing (NDT) and Non Destructive Evaluation (NDE) sensors is possible by solving Maxwell`s relations with FEM or BIM. But the large number of geometrical and electrical parameters of sensor and tested material implies many results that don`t give necessarily a well adapted sensor. The authors have used a genetic algorithm for automatic optimization. After having tested this algorithm with analytical solution of Maxwell`s relations for cladding thickness measurement, the method has been implemented in finite element package.
NASA Astrophysics Data System (ADS)
Nguyen, Q. H.; Lang, V. T.; Nguyen, N. D.; Choi, S. B.
2014-01-01
When designing a magneto-rheological brake (MRB), it is well known that the shape of the brake envelope significantly affects the performance characteristics of the brake. In this study, different shapes for the MR brake envelope, such as rectangular, polygonal or spline shape, are considered and the most suitable shape identified. MRBs with different envelope shapes are introduced followed by the derivation of the braking torque based on Bingham-plastic behavior of the magneto-rheological fluid (MRF). Optimization of the design of the MRB with different envelope shapes is then done. The optimization problem is to find the optimal value for the significant geometric dimensions of the MRB that can produce a certain required braking torque while the brake mass is minimized. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions for the MRBs. From the results, the most suitable shape for the brake envelope is identified and discussed with the reduction of mass. In addition, the results of the analysis are compared with the experimental results to verify the proposed optimal design characteristics.
Dinkla, Anna M. Laarse, Rob van der; Koedooder, Kees; Petra Kok, H.; Wieringen, Niek van; Pieters, Bradley R.; Bel, Arjan
2015-01-15
Purpose: Dose optimization for stepping source brachytherapy can nowadays be performed using automated inverse algorithms. Although much quicker than graphical optimization, an experienced treatment planner is required for both methods. With automated inverse algorithms, the procedure to achieve the desired dose distribution is often based on trial-and-error. Methods: A new approach for stepping source prostate brachytherapy treatment planning was developed as a quick and user-friendly alternative. This approach consists of the combined use of two novel tools: Enhanced geometrical optimization (EGO) and interactive inverse planning (IIP). EGO is an extended version of the common geometrical optimization method and is applied to create a dose distribution as homogeneous as possible. With the second tool, IIP, this dose distribution is tailored to a specific patient anatomy by interactively changing the highest and lowest dose on the contours. Results: The combined use of EGO–IIP was evaluated on 24 prostate cancer patients, by having an inexperienced user create treatment plans, compliant to clinical dose objectives. This user was able to create dose plans of 24 patients in an average time of 4.4 min/patient. An experienced treatment planner without extensive training in EGO–IIP also created 24 plans. The resulting dose-volume histogram parameters were comparable to the clinical plans and showed high conformance to clinical standards. Conclusions: Even for an inexperienced user, treatment planning with EGO–IIP for stepping source prostate brachytherapy is feasible as an alternative to current optimization algorithms, offering speed, simplicity for the user, and local control of the dose levels.
Parametric geometric model and shape optimization of an underwater glider with blended-wing-body
NASA Astrophysics Data System (ADS)
Sun, Chunya; Song, Baowei; Wang, Peng
2015-11-01
Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.
Geometric-attributes-based segmentation of cortical bone slides using optimized neural networks.
Hage, Ilige S; Hamade, Ramsey F
2016-05-01
In cortical bone, solid (lamellar and interstitial) matrix occupies space left over by porous microfeatures such as Haversian canals, lacunae, and canaliculi-containing clusters. In this work, pulse-coupled neural networks (PCNN) were used to automatically distinguish the microfeatures present in histology slides of cortical bone. The networks' parameters were optimized using particle swarm optimization (PSO). When forming the fitness functions for the PSO, we considered the microfeatures' geometric attributes-namely, their size (based on measures of elliptical perimeter or area), shape (based on measures of compactness or the ratio of minor axis length to major axis length), and a two-way combination of these two geometric attributes. This hybrid PCNN-PSO method was further enhanced for pulse evaluation by combination with yet another method, adaptive threshold (AT), where the PCNN algorithm is repeated until the best threshold is found corresponding to the maximum variance between two segmented regions. Together, this framework of using PCNN-PSO-AT constitutes, we believe, a novel framework in biomedical imaging. Using this framework and extracting microfeatures from only one training image, we successfully extracted microfeatures from other test images. The high fidelity of all resultant segments was established using quantitative metrics such as precision, specificity, and Dice indices.
Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; Ferraro, Sebastián; Martín de Diego, David
2016-12-01
Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. In this paper we present a method to construct symplectic-momentum integrators for higher-order Lagrangian systems. Given a regular higher-order Lagrangian L:T^{(k)}Q→ R with k≥ 1, the resulting discrete equations define a generally implicit numerical integrator algorithm on T^{(k-1)}Q× T^{(k-1)}Q that approximates the flow of the higher-order Euler-Lagrange equations for L. The algorithm equations are called higher-order discrete Euler-Lagrange equations and constitute a variational integrator for higher-order mechanical systems. The general idea for those variational integrators is to directly discretize Hamilton's principle rather than the equations of motion in a way that preserves the invariants of the original system, notably the symplectic form and, via a discrete version of Noether's theorem, the momentum map. We construct an exact discrete Lagrangian L_d^e using the locally unique solution of the higher-order Euler-Lagrange equations for L with boundary conditions. By taking the discrete Lagrangian as an approximation of L_d^e, we obtain variational integrators for higher-order mechanical systems. We apply our techniques to optimal control problems since, given a cost function, the optimal control problem is understood as a second-order variational problem.
Coogan, Sean C. P.; Raubenheimer, David; Stenhouse, Gordon B.; Nielsen, Scott E.
2014-01-01
Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L.), relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots), which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction) and population density
Coogan, Sean C P; Raubenheimer, David; Stenhouse, Gordon B; Nielsen, Scott E
2014-01-01
Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L.), relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots), which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction) and population density
Geometric optimization of helical tail designs to calibrate swimming velocities of microswimmers
NASA Astrophysics Data System (ADS)
Demir, Ebru; Yesilyurt, Serhat
2014-11-01
Artificial microswimmers present both a solution and a challenge as alternative tools to be used in medical applications, namely, drug delivery and minimally invasive surgeries. Achieving desired amount of controlled displacement of microswimmers at desired velocities plays an important role in determining the success of such applications. In this study, a non-dimensionalised CFD model is utilised to investigate the effects of various geometrical parameters on swimming velocities of microswimmers with helical tails in cylindrical confinements, such as helix wavelength, helical body thickness, and diameter. To this end, a ``one wavelength long'' helical tail is placed inside a cylindrical channel of the same length with periodic boundary conditions applied to both ends, constituting an infinite helix model. As the channel diameter is kept constant, a parametric study of abovementioned geometric identities is conducted to observe the change in the swimming velocities. Furthermore, effects of helix-channel eccentricity and helix rotation about the longitudinal axis on swimming velocity of a dimensionally optimized helix are investigated to reveal near wall effects. The results are found to be in good agreement with the theoretical models existing in the literature.
Riemannian geometric approach to human arm dynamics, movement optimization, and invariance.
Biess, Armin; Flash, Tamar; Liebermann, Dario G
2011-03-01
We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparameterized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm's configuration space may provide insights into the emerging properties of the movements generated by the motor system.
Riemannian geometric approach to human arm dynamics, movement optimization, and invariance
NASA Astrophysics Data System (ADS)
Biess, Armin; Flash, Tamar; Liebermann, Dario G.
2011-03-01
We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparametrized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm’s configuration space may provide insights into the emerging properties of the movements generated by the motor system.
NASA Astrophysics Data System (ADS)
Noever Castelos, Pablo; Balzani, Claudio
2016-09-01
The accurate prediction of stress histories for the fatigue analysis is of utmost importance for the design process of wind turbine rotor blades. As detailed, transient, and geometrically non-linear three-dimensional finite element analyses are computationally weigh too expensive, it is commonly regarded sufficient to calculate the stresses with a geometrically linear analysis and superimpose different stress states in order to obtain the complete stress histories. In order to quantify the error from geometrically linear simulations for the calculation of stress histories and to verify the practical applicability of the superposition principal in fatigue analyses, this paper studies the influence of geometric non-linearity in the example of a trailing edge bond line, as this subcomponent suffers from high strains in span-wise direction. The blade under consideration is that of the IWES IWT-7.5-164 reference wind turbine. From turbine simulations the highest edgewise loading scenario from the fatigue load cases is used as the reference. A 3D finite element model of the blade is created and the bond line fatigue assessment is performed according to the GL certification guidelines in its 2010 edition, and in comparison to the latest DNV GL standard from end of 2015. The results show a significant difference between the geometrically linear and non-linear stress analyses when the bending moments are approximated via a corresponding external loading, especially in case of the 2010 GL certification guidelines. This finding emphasizes the demand to reconsider the application of the superposition principal in fatigue analyses of modern flexible rotor blades, where geometrical nonlinearities become significant. In addition, a new load application methodology is introduced that reduces the geometrically non-linear behaviour of the blade in the finite element analysis.
Joining of Silicon Carbide: Diffusion Bond Optimization and Characterization
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2008-01-01
Joining and integration methods are critically needed as enabling technologies for the full utilization of advanced ceramic components in aerospace and aeronautics applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. In the application, several SiC substrates with different hole patterns to form fuel and combustion air channels are bonded to form the injector. Diffusion bonding is a joining approach that offers uniform bonds with high temperature capability, chemical stability, and high strength. Diffusion bonding was investigated with the aid of titanium foils and coatings as the interlayer between SiC substrates to aid bonding. The influence of such variables as interlayer type, interlayer thickness, substrate finish, and processing time were investigated. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.
Geometrical Optimization Of Clinch Forming Process Using The Response Surface Method
Oudjene, M.; Ben-Ayed, L.; Batoz, J.-L.
2007-05-17
The determination of optimum tool shapes in clinch forming process is needed to achieve the required high quality of clinch joints. The design of the tools (punch and die) is crucial since the strength of the clinch joints is closely correlated to the tools geometry. To increase the strength of clinch joints, an automatic optimization procedure is developed. The objective function is defined in terms of the maximum value of the tensile force, obtained by separation of the sheets. Feasibility constraints on the geometrical parameters are also taken into account. First, a Python Script is used to generate the ABAQUS finite element model, to run the computations and post-process results, which are exported in an ASCII file. Then, this ASCII file is read by a FORTRAN program, in which the response surface approximation and SQP algorithm are implemented. The results show the potential interest of the developed optimization procedure towards the improvement of the strength of the clinch forming joints to tensile loading.
NASA Astrophysics Data System (ADS)
Paul, Bijan Kumar; Guchhait, Nikhil
2013-02-01
Density functional theory based computational study has been performed to characterize intramolecular hydrogen bonding (IMHB) interaction in a series of salicylic acid derivatives varying in chlorine substitution on the benzene ring. The molecular systems studied are salicylic acid, 5-chlorosalicylic acid, 3,5-dichlorosalicylic acid and 3,5,6-tricholorosalicylic acid. Major emphasis is rendered on the analysis of IMHB interaction by calculation of electron density ρ(r) and Laplacian ∇2ρ(r) at the bond critical point using atoms-in-molecule theory. Topological features, energy densities based on ρ(r) through perturbing the intramolecular H-bond distances suggest that at equilibrium geometry the IMHB interaction develops certain characteristics typical of covalent interaction. The interplay between aromaticity and resonance-assisted hydrogen bonding (RAHB) is discussed using both geometrical and magnetic criteria as the descriptors of aromaticity. The optimized geometry features, molecular electrostatic potential map analysis are also found to produce a consensus view in relation with the formation of RAHB in these systems.
Geometric optimization of self-healing power capacitor with consideration of multiple factors
NASA Astrophysics Data System (ADS)
Wang, Zijian; Yan, Fei; Hua, Zheng; Qi, Lingna; Hou, Zhijian; Xu, Zhiniu
2016-08-01
To decrease temperature rise in self-healing power capacitor and lay foundation for improvement of applied voltage and lifetime, the influence of elements orientation on the temperature distribution of self-healing capacitor is investigated using Fluent15.0 and validated by thermal stability test. Based on the above investigations, the influences of parameters of film, electrode and element on power loss and temperature rise of capacitor are systematically investigated. The results reveal that if geometry and volume of capacitor remain constant, orientation of spray coating has little influence on temperature rise. In view of manufacturing processes, the mode of spray coating close to the large surface should be selected. The power loss will decrease with increasing/decreasing in film thickness/width. Therefore, thicker film should be selected and its width should be less than 75 mm. Temperature rise decreases slowly with element diameter. However, the element diameter should be a moderate value because of the influence of it on the number of self-healing point. A capacitor group with rated voltage of 11/ √{ 3} kV and capacity of 334 kvar is designed and the scheme with the lowest temperature rise is selected. This study provides a reference to self-healing capacitor geometric optimization and lifetime improvement.
Optimization of hydrogen bonds for combined DNA/collagen complex.
Pidaparti, Ramana M; Svintradze, David V; Shan, Yingfeng; Yokota, Hiroki
2009-01-21
Many natural and biological systems including collagen and DNA polymers are formed by a process of molecular self-assembly. In this paper, we developed two novel structural models and built heterogeneous DNA/collagen complexes through a preferable arrangement of multiple hydrogen bonds (H-bonds) between DNA and collagen molecules. The simulation results based on three sets of criteria indicate that one of the models with five collagen molecules, which are positioned around each strand of DNA molecules emerged to form a suitable polymer complex with the maximum number of H-bonds. Our predictions quantitatively validated and agreed with the molecular structure reported by Mrevlishvili and Svintradze [2005. Int. J. Biol. Macromol. 36, 324-326].
Isaev, L; Rey, A M
2015-10-16
We analyze a microscopic mechanism behind the coexistence of a heavy Fermi liquid and geometric frustration in Kondo lattices. We consider a geometrically frustrated periodic Anderson model and demonstrate how orbital fluctuations lead to a Kondo-screened phase in the limit of extreme strong frustration when only local singlet states participate in the low-energy physics. We also propose a setup to realize and study this exotic state with SU(3)-symmetric alkaline-earth cold atoms.
Process optimization for diffusion bonding of tungsten with EUROFER97 using a vanadium interlayer
NASA Astrophysics Data System (ADS)
Basuki, Widodo Widjaja; Aktaa, Jarir
2015-04-01
Solid-state diffusion bonding is a selected joining technology to bond divertor components consisting of tungsten and EUROFER97 for application in fusion power plants. Due to the large mismatch in their coefficient of thermal expansions, which leads to serious thermally induced residual stresses after bonding, a thin vanadium plate is introduced as an interlayer. However, the diffusion of carbon originated from EUROFER97 in the vanadium interlayer during the bonding process can form a vanadium carbide layer, which has detrimental influences on the mechanical properties of the joint. For optimal bonding results, the thickness of this layer and the residual stresses has to be decreased sufficiently without a significant reduction of material transport especially at the vanadium/tungsten interface, which can be achieved by varying the diffusion bonding temperature and duration. The investigation results show that at a sufficiently low bonding temperature of 700 °C and a bonding duration of 4 h, the joint reaches a reasonable high ductility and toughness especially at elevated test temperature of 550 °C with elongation to fracture of 20% and mean absorbed Charpy impact energy of 2 J (using miniaturized Charpy impact specimens). The strength of the bonded materials is about 332 MPa at RT and 291 MPa at 550 °C. Furthermore, a low bonding temperature of 700 °C can also help to avoid the grain coarsening and the alteration of the grain structure especially of the EUROFER97 close to the bond interface.
Optimization approach for the evaluation of geometric errors in computer-aided inspection
NASA Astrophysics Data System (ADS)
Jiang, Guohua
Geometric dimensioning and tolerancing (GD&T) is a set of standards that defines a clear and concise mathematical language for communicating product definition. A design based on GD&T clearly reflects the functional requirements of a product, provides unique definition of a drawing among design, manufacturing and inspection engineers and conveys the design intention clearly without any ambiguity. The latest version of this standard is ASME Y14.5M-1994. Traditional methods for the inspection of geometric tolerances have been mostly with the use of functional gages and Coordinate Measuring Machines (CMM). Function gages are very expensive and only provide a yes/no result. CMMs have embedded algorithms to verify geometric tolerances according to the design specification. However, it has been shown that these embedded algorithms neither provide accurate evaluation of geometric errors nor do they conform to the ASME standards. High accuracy requirements in the manufacture of precision parts with complex geometries have made accurate evaluation and verification of geometric tolerances very critical. Over the years, researchers have developed many algorithms to evaluate some of the geometric errors. However, there is still a significant lack of evaluation procedures for complex geometric errors. In this dissertation, mathematical models have been built for the evaluation of a certain set of complex geometric characteristics. The concentration has been on the evaluation of 3D feature relating positional error, cylindricity error and straightness error of spatial line. Research has been carried out to understand the mathematical natures of these problems. Based on the research results, efficient solution methodologies have been developed according to the ASME standards. A robust and efficient procedure has also been developed for the identification of candidate datum sets. The proposed procedures have been implemented using the C++ or C programming language. Experimental
Mohammadipour, Amir H; Alavi, Seyed Hafez
2009-03-01
This study attempts to optimize the geometric cross-section dimensions of raised pedestrian crosswalks (RPC), employing safety and comfort measures which reflect environmental conditions and drivers behavioral patterns in Qazvin, Iran. Geometric characteristics including street width, ramp lengths, top flat crown length and height, and 4672 spot speed observations of 23 implemented RPCs were considered. The authors established geometric and analytical equations to satisfactorily express the discomfort that vehicle occupants experience while traversing an RPC and the crossing risk to pedestrians. Artificial neural networks (ANN) are reputed for their capability to learn and generalize complex engineering phenomena and were therefore adopted to cope with the highly nonlinear relationship between the before-RPC spot speeds, the geometric characteristics, and spot speeds on the RPC. This on-RPC spot speed has been utilized for computing the above-mentioned criteria. Combining these criteria, a new judgment index was created to identify the optimum RPC which fulfills the highest comfort and safety levels. It was observed that the variable with the highest impact is the second ramp length, followed by the first ramp length, top flat crown length, before-RPC spot speed, height, and street width, in order of magnitude.
NASA Astrophysics Data System (ADS)
Khusainov, M. A.; Popov, S. A.; Malukhina, O. A.
2015-08-01
A technique is developed to determine the force of impact of a spherical segment on an obstacle (dynamometer) during the martensite → austenite phase transition. An impact on an obstacle is shown to occur at certain ratios of the geometric parameters of a segment. A model is constructed for the dependence of the impact force on key parameters D/R and h/R, and a separating function is obtained to divide spherical segments into the segments that flick with an impact on an obstacle and the segments that restore their shape without a clap and, correspondingly, an impact. A procedure is proposed to calculate the geometric parameters of a spherical segment ( D, h, R) at a given impact force P imp and to determine the impact force from the geometric parameters of a segment.
Enhanced Dispersion in Polymer Nanocomposites by Optimized Hydrogen Bonding
NASA Astrophysics Data System (ADS)
Dadmun, Mark; Rasheed, Asif; Britt, Phillip; Geohegan, David; Ivanov, Ilia; Chae, Han Gi; Kumar, Satish
2006-03-01
The dispersion of the minor phase in a multi-component polymer system can readily lead to nonlinear enhancement of material properties. In any multi-component polymer system, including polymer nanocomposites, understanding and control of the dispersion of the nanofiller in the polymer matrix is critical to rationally design and create a useful new material. This presentation will discuss the work in our group to optimize the specific interactions between components of polymer nanocomposites. We will discuss results that indicate that the optimization of intermolecular interaction between components provides a controllable mechanism to improve the dispersion of nanoscale fillers in a polymer matrix and that the improved dispersion correlates directly to improved thermal, mechanical, and electrical properties.
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.; Nguyen, Duc T.
2008-01-01
A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.
Vogt, Mark; van Gerwen, Dennis J; van den Dobbelsteen, John J; Hagenaars, Martin
2016-01-01
Performance of neuraxial blockade using a midline approach can be technically difficult. It is therefore important to optimize factors that are under the influence of the clinician performing the procedure. One of these factors might be the chosen point of insertion of the needle. Surprisingly few data exist on where between the tips of two adjacent spinous processes the needle should be introduced. A geometrical model was adopted to gain more insight into this issue. Spinous processes were represented by parallelograms. The length, the steepness relative to the skin, and the distance between the parallelograms were varied. The influence of the chosen point of insertion of the needle on the range of angles at which the epidural and subarachnoid space could be reached was studied. The optimal point of insertion was defined as the point where this range is the widest. The geometrical model clearly demonstrated, that the range of angles at which the epidural or subarachnoid space can be reached, is dependent on the point of insertion between the tips of the adjacent spinous processes. The steeper the spinous processes run, the more cranial the point of insertion should be. Assuming that the model is representative for patients, the performance of neuraxial blockade using a midline approach might be improved by choosing the optimal point of insertion. PMID:27570462
NASA Astrophysics Data System (ADS)
Archer, Cristina; Ghaisas, Niranjan
2015-04-01
The energy generation at a wind farm is controlled primarily by the average wind speed at hub height. However, two other factors impact wind farm performance: 1) the layout of the wind turbines, in terms of spacing between turbines along and across the prevailing wind direction; staggering or aligning consecutive rows; angles between rows, columns, and prevailing wind direction); and 2) atmospheric stability, which is a measure of whether vertical motion is enhanced (unstable), suppressed (stable), or neither (neutral). Studying both factors and their complex interplay with Large-Eddy Simulation (LES) is a valid approach because it produces high-resolution, 3D, turbulent fields, such as wind velocity, temperature, and momentum and heat fluxes, and it properly accounts for the interactions between wind turbine blades and the surrounding atmospheric and near-surface properties. However, LES are computationally expensive and simulating all the possible combinations of wind directions, atmospheric stabilities, and turbine layouts to identify the optimal wind farm configuration is practically unfeasible today. A new, geometry-based method is proposed that is computationally inexpensive and that combines simple geometric quantities with a minimal number of LES simulations to identify the optimal wind turbine layout, taking into account not only the actual frequency distribution of wind directions (i.e., wind rose) at the site of interest, but also atmospheric stability. The geometry-based method is calibrated with LES of the Lillgrund wind farm conducted with the Software for Offshore/onshore Wind Farm Applications (SOWFA), based on the open-access OpenFOAM libraries. The geometric quantities that offer the best correlations (>0.93) with the LES results are the blockage ratio, defined as the fraction of the swept area of a wind turbine that is blocked by an upstream turbine, and the blockage distance, the weighted distance from a given turbine to all upstream turbines
NASA Astrophysics Data System (ADS)
Le-Duc, Thang; Ho-Huu, Vinh; Nguyen-Thoi, Trung; Nguyen-Quoc, Hung
2016-12-01
In recent years, various types of magnetorheological brakes (MRBs) have been proposed and optimized by different optimization algorithms that are integrated in commercial software such as ANSYS and Comsol Multiphysics. However, many of these optimization algorithms often possess some noteworthy shortcomings such as the trap of solutions at local extremes, or the limited number of design variables or the difficulty of dealing with discrete design variables. Thus, to overcome these limitations and develop an efficient computation tool for optimal design of the MRBs, an optimization procedure that combines differential evolution (DE), a gradient-free global optimization method with finite element analysis (FEA) is proposed in this paper. The proposed approach is then applied to the optimal design of MRBs with different configurations including conventional MRBs and MRBs with coils placed on the side housings. Moreover, to approach a real-life design, some necessary design variables of MRBs are considered as discrete variables in the optimization process. The obtained optimal design results are compared with those of available optimal designs in the literature. The results reveal that the proposed method outperforms some traditional approaches.
NASA Astrophysics Data System (ADS)
Fedorov, Mikhail S.; Giricheva, Nina I.; Shpilevaya, Kseniya E.; Lapykina, Elena A.; Syrbu, Svetlana A.
2017-03-01
Conformational properties of the main part (excluding sbnd OC3H7 radicals) of the p-n-propyloxybenzoic (A1) and p-n-propyloxycinnamic (A2) acids molecules (relating to mesomorphic compounds) as well as p-n-propyloxybenzoic acid pyridine ester (B1) and p-n-propyloxyphenylazopyridine (B2) molecules (relating to non-mesomorphic compounds) were studied by DFT(B3LYP)/cc-pVTZ method. It was shown that the main parts of A1 and A2 acids are rigid. The barrier to internal rotation of pyridine fragment in the B1 and B2 molecules depends on the nature of the bridging group. It was determined that all studied A1⋯B1, A2⋯B1 and A2⋯B2 complexes are characterized by a strong hydrogen bond. The binding energy of complexes (≈14 kcal/mol, with BSSE corrections, DFT(B97D)/6-311++G**) exceeds the energy per hydrogen bond in the corresponding acid dimers (≈10 kcal/mol). The structural non-rigidity of A⋯B complexes is mainly caused by possibility of sbnd OC3H7 radicals internal rotation and A and B molecules rotation about the (H)O⋯N line. The characteristics of intermolecular hydrogen bonds were determined by NBO-analysis. The obtained results indicate that examined complexes correspond to the basic requirements to mesogen molecular forms. The thermodynamic functions of the gas-phase complexation reactions (idealized model of the complexes formation in the condensed state) were calculated. Preliminary studies of mesogen-non-mesogen A1⋯B2 system by differential scanning calorimetry and polarizing optical microscopy, showed that it has mesomorphic properties.
A Monte Carlo Method for Multi-Objective Correlated Geometric Optimization
2014-05-01
PAGES 19b. TELEPHONE NUMBER (Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 May 2014 Final A Monte Carlo Method for...requiring computationally intensive algorithms for optimization. This report presents a method developed for solving such systems using a Monte Carlo...performs a Monte Carlo optimization to provide geospatial intelligence on entity placement using OpenCL framework. The solutions for optimal
NASA Astrophysics Data System (ADS)
Geng, Li-Hui; Geng, Li-Yan; Lu, Sheng-Li; Cui, Shi-Gang
2012-07-01
An L 2-optimal identification method is extended to cope with MIMO errors-in-variables (EIV) model estimation based on a geometrical interpretation for the v-gap metric. The L 2-optimal approximate models are composed of system and noise models and characterised by a normalised right graph symbol (NRGS) and its complementary inner factor (CIF), respectively. This metric can be evaluated as the supreme of sine values of the maximal principal angles between NRGS frequency responses of two concerned models. In order to make full use of the angular cosine formula for complex vectors to reduce computational loads, a CIF of the NRGS of the perturbed model is introduced and thus, the system parameter optimisation can be efficiently solved by sequential quadratic programming methods. With the estimated system model, the associated noise model can be built by right multiplication of an inner matrix. Finally, a simulation example demonstrates the effectiveness of the proposed identification method.
NASA Astrophysics Data System (ADS)
Chung, Kun-Jen
2012-08-01
Cardenas-Barron [Cardenas-Barron, L.E. (2010) 'A Simple Method to Compute Economic order Quantities: Some Observations', Applied Mathematical Modelling, 34, 1684-1688] indicates that there are several functions in which the arithmetic-geometric mean method (AGM) does not give the minimum. This article presents another situation to reveal that the AGM inequality to locate the optimal solution may be invalid for Teng, Chen, and Goyal [Teng, J.T., Chen, J., and Goyal S.K. (2009), 'A Comprehensive Note on: An Inventory Model under Two Levels of Trade Credit and Limited Storage Space Derived without Derivatives', Applied Mathematical Modelling, 33, 4388-4396], Teng and Goyal [Teng, J.T., and Goyal S.K. (2009), 'Comment on 'Optimal Inventory Replenishment Policy for the EPQ Model under Trade Credit Derived without Derivatives', International Journal of Systems Science, 40, 1095-1098] and Hsieh, Chang, Weng, and Dye [Hsieh, T.P., Chang, H.J., Weng, M.W., and Dye, C.Y. (2008), 'A Simple Approach to an Integrated Single-vendor Single-buyer Inventory System with Shortage', Production Planning and Control, 19, 601-604]. So, the main purpose of this article is to adopt the calculus approach not only to overcome shortcomings of the arithmetic-geometric mean method of Teng et al. (2009), Teng and Goyal (2009) and Hsieh et al. (2008), but also to develop the complete solution procedures for them.
NASA Astrophysics Data System (ADS)
Osusky, Lana Maria
The increase in the availability and power of computational resources over the last fifteen years has contributed to the development of many different types of numerical optimization methods and created a large area of research focussed on numerical aerodynamic shape optimization and, more recently, high-fidelity multidisciplinary optimization. Numerical optimization provides dramatic savings when designing new aerodynamic configurations, as it allows the designer to focus more on the development of a well-posed design problem rather than on performing an exhaustive search of the design space via the traditional cut-and-try approach, which is expensive and time-consuming. It also reduces the dependence on the designer's experience and intuition, which can potentially lead to more optimal designs. Numerical optimization methods are particularly attractive when designing novel, unconventional aircraft for which the designer has no pre-existing studies or experiences from which to draw; these methods have the potential to discover new designs that might never have been arrived at without optimization. This work presents an extension of an efficient gradient-based numerical aerodynamic shape optimization algorithm to enable optimization in turbulent flow. The algorithm includes an integrated geometry parameterization and mesh movement scheme, an efficient parallel Newton-Krylov-Schur algorithm for solving the Reynolds-Averaged Navier-Stokes (RANS) equations, which are fully coupled with the one-equation Spalart-Allmaras turbulence model, and a discrete-adjoint gradient evaluation. In order to develop an efficient methodology for optimization in turbulent flows, the viscous and turbulent terms in the ii governing equations were linearized by hand. Additionally, a set of mesh refinement tools was introduced in order to obtain both an acceptable control volume mesh and a sufficiently refined computational mesh from an initial coarse mesh. A series of drag minimization
Geometric optimization of a solar cubic-cavity multi-tubular reactor
NASA Astrophysics Data System (ADS)
Valades-Pelayo, P. J.; Arancibia-Bulnes, C. A.; Villafan-Vidales, H.; Romero-Paredes, H.
2016-05-01
A multi-tubular solar thermochemical cavity reactor is proposed and the tubular array optimized. The optimized reactor design aims at operating under different temperatures and carrying out different kinds of thermochemical reactions. The radiation entering the receptacle comes from a solar concentrating system and the reactor consists of a cubic receptacle made of woven graphite, housing nine 2.54 cm diameter tungsten tubes. A model is developed and implemented considering high-temperature radiative transfer at steady state. The temperature distribution within the cavity surfaces is determined by employing a hybrid Monte Carlo-Finite Volume approach. Optimal tube distributions are explored by using a custom-made stochastic, multi-parameter, optimization algorithm. In this way, multiple global maxima are determined. Patterns among all possible optimal tube distributions within the cavity are obtained for different scenarios, by maximizing average tube temperature. From this study, practical guidelines are obtained for future application in the design of solar cavity reactors and more specifically, on the layout of multi tubular arrays to optimize radiative heat transfer.
Rakhmilevitch, David; Sarkar, Soumyajit; Bitton, Ora; Kronik, Leeor; Tal, Oren
2016-03-09
Molecular junctions based on ferromagnetic electrodes allow the study of electronic spin transport near the limit of spintronics miniaturization. However, these junctions reveal moderate magnetoresistance that is sensitive to the orbital structure at their ferromagnet-molecule interfaces. The key structural parameters that should be controlled in order to gain high magnetoresistance have not been established, despite their importance for efficient manipulation of spin transport at the nanoscale. Here, we show that single-molecule junctions based on nickel electrodes and benzene molecules can yield a significant anisotropic magnetoresistance of up to ∼200% near the conductance quantum G0. The measured magnetoresistance is mechanically tuned by changing the distance between the electrodes, revealing a nonmonotonic response to junction elongation. These findings are ascribed with the aid of first-principles calculations to variations in the metal-molecule orientation that can be adjusted to obtain highly spin-selective orbital hybridization. Our results demonstrate the important role of geometrical considerations in determining the spin transport properties of metal-molecule interfaces.
Optimizing Terminal Conditions Using Geometric Guidance for Low-Control Authority Munitions
2008-06-01
37 5.1 Optimal Performance and Guidance Identity . . . . . . . . . . . . . . . . 57 5.2 “Ideal” Control Up Time Statistics ...constraints. Figure 2.1 shows a publicly released picture of and some statistics on one such program, the Extended Range Guided Munition (ERGM) built by...in the same way. The center of gravity equation is mathematically derived to represent the empirically derived data of the center of gravity as the
NASA Astrophysics Data System (ADS)
Youcef, Kerkoub; Ahmed, Benzaoui; Ziari, Yasmina; Fadila, Haddad
2017-02-01
A three dimensional computational fluid dynamics model is proposed in this paper to investigate the effect of flow field design and dimensions of bipolar plates on performance of serpentine proton exchange membrane fuel cell (PEMFC). A complete fuel cell of 25 cm2 with 25 channels have been used. The aim of the work is to investigate the effect of flow channels and ribs scales on overall performance of PEM fuel cell. Therefore, geometric aspect ratio parameter defined as (width of flow channel/width of rib) is used. Influences of the ribs and openings current collector scales have been studied and analyzed in order to find the optimum ratio between them to enhance the production of courant density of PEM fuel cell. Six kind of serpentine designs have been used in this paper included different aspect ratio varying from 0.25 to 2.33 while the active surface area and number of channels are keeping constant. Aspect ratio 0.25 corresponding of (0.4 mm channel width/ 1.6mm ribs width), and Aspect ratio2.33 corresponding of (0.6 mm channel width/ 1.4mm ribs width. The results show that the best flow field designs (giving the maximum density of current) are which there dimensions of channels width is minimal and ribs width is maximal (Γ≈0.25). Also decreasing width of channels enhance the pressure drop inside the PEM fuel cell, this causes an increase of gazes velocity and enhance convection process, therefore more power generation.
A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Finckenor, Jeffrey L.
1999-01-01
A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables
ERIC Educational Resources Information Center
Magnasco, Valerio
2008-01-01
Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H[subscript 2][superscript +], H[subscript 2], He[subscript 2][superscript +], He[subscript 2] gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region. Correct bond lengths and…
Spatiotemporal and geometric optimization of sensor arrays for detecting analytes in fluids
Lewis, Nathan S.; Freund, Michael S.; Briglin, Shawn S.; Tokumaru, Phillip; Martin, Charles R.; Mitchell, David
2009-09-29
Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.
Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
Lewis, Nathan S.; Freund, Michael S.; Briglin, Shawn M.; Tokumaru, Phil; Martin, Charles R.; Mitchell, David T.
2006-10-17
Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.
Kosaka, Ryo; Yada, Toru; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi
2013-09-01
A hydrodynamically levitated centrifugal blood pump with a semi-open impeller has been developed for mechanical circulatory assistance. However, a narrow bearing gap has the potential to cause hemolysis. The purpose of the present study is to optimize the geometric configuration of the hydrodynamic step bearing in order to reduce hemolysis by expansion of the bearing gap. First, a numerical analysis of the step bearing, based on lubrication theory, was performed to determine the optimal design. Second, in order to assess the accuracy of the numerical analysis, the hydrodynamic forces calculated in the numerical analysis were compared with those obtained in an actual measurement test using impellers having step lengths of 0%, 33%, and 67% of the vane length. Finally, a bearing gap measurement test and a hemolysis test were performed. As a result, the numerical analysis revealed that the hydrodynamic force was the largest when the step length was approximately 70%. The hydrodynamic force calculated in the numerical analysis was approximately equivalent to that obtained in the measurement test. In the measurement test and the hemolysis test, the blood pump having a step length of 67% achieved the maximum bearing gap and reduced hemolysis, as compared with the pumps having step lengths of 0% and 33%. It was confirmed that the numerical analysis of the step bearing was effective, and the developed blood pump having a step length of approximately 70% was found to be a suitable configuration for the reduction of hemolysis.
Tickle, Ian J
2007-12-01
A number of inconsistencies are apparent in the recent research paper by Jaskolski et al. [(2007), Acta Cryst. D63, 611-620] concerning their recommendations for the values of the magnitude and resolution-dependence of the root-mean-square deviations (RMSDs) of bond lengths and angles from their restrained ideal values in macromolecular refinement, as well as their suggestions for the use of variable standard uncertainties dependent on atomic displacement parameters (ADPs) and occupancies. Whilst many of the comments and suggestions in the paper regarding updates for the ideal geometry values proposed by Engh and Huber are entirely reasonable and supported by the experimental evidence, the recommendations concerning the optimal values of RMSDs appear to be in conflict with previous experimental and theoretical work in this area [Tickle et al. (1998), Acta Cryst. D54, 243-252] and indeed appear to be based on a misunderstanding of the distinction between RMSD and standard uncertainty (SU). In contrast, it is proposed here that the optimal values of all desired weighting parameters, in particular the weighting parameters for the ADP differences and for the diffraction terms, be estimated by the purely objective procedure of maximizing the experiment-based log(free likelihood). In principle, this allows all weighting parameters that are not known accurately a priori to be scaled globally, relative to those that are known accurately, for an optimal refinement. The RMS Z score (RMSZ) is recommended as a more satisfactory statistic than the RMSD to assess the extent to which the geometry deviates from the ideal values and a theoretical rationale for the results obtained is presented in which the optimal RMSZ is identified as the calculated versus true Z-score correlation coefficient, the latter being a monotonic function of the resolution cutoff of the data. Regarding the proposal to use variable standard uncertainties, it is suggested that any departure from the current
Processing parameter optimization for the laser dressing of bronze-bonded diamond wheels
NASA Astrophysics Data System (ADS)
Deng, H.; Chen, G. Y.; Zhou, C.; Li, S. C.; Zhang, M. J.
2014-01-01
In this paper, a pulsed fiber-laser dressing method for bronze-bonded diamond wheels was studied systematically and comprehensively. The mechanisms for the laser dressing of bronze-bonded diamond wheels were theoretically analyzed, and the key processing parameters that determine the results of laser dressing, including the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles, were proposed for the first time. Further, the effects of these four key parameters on the oxidation-damaged layer of the material surface, the material removal efficiency, the material surface roughness, and the average protrusion height of the diamond grains were explored and summarized through pulsed laser ablation experiments. Under the current experimental conditions, the ideal values of the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles were determined to be 4.2 × 107 W/cm2, 30%, 30%, and 16, respectively. Pulsed laser dressing experiments were conducted on bronze-bonded diamond wheels using the optimized processing parameters; next, both the normal and tangential grinding forces produced by the dressed grinding wheel were measured while grinding alumina ceramic materials. The results revealed that the normal and tangential grinding forces produced by the laser-dressed grinding wheel during grinding were smaller than those of grinding wheels dressed using the conventional mechanical method, indicating that the pulsed laser dressing technology provides irreplaceable advantages relative to the conventional mechanical dressing method.
Extremal Optimization for Ground States of the Sherrington-Kirkpatrick Spin Glass with Levy Bonds
NASA Astrophysics Data System (ADS)
Boettcher, Stefan
2013-03-01
Using the Extremal Optimization heuristic (EO),[3] ground states of the SK-spin glass are studied with bonds J distributed according to a Levy distribution P (J) ~ 1 /| J | 1 + α with | J | > 1 and 1 < α < 4 . The variation of the energy densities with α, their finite-size corrections, their fluctuations, and their local field distribution are analyzed and compared with those for the SK model with Gaussian bonds.[4] We find that the energies attain universally the Parisi-energy of the SK when the second moment of P(J) exists (α > 2). They compare favorably with recent one-step replica symmetry breaking predictions well below α = 2 . Near α = 2 , the simulations deviate significantly from theoretical expectations. The finite-size corrections exponent ω decays from the putative SK value ωSK =2/3 already well above α = 2 . The exponent ρ for the scaling of ground state energy fluctuations with system size decays linearly from its SK value for decreasing α and vanishes at α = 1 . Supported through NSF grant DMR-#1207431
Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M
2016-08-01
We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%.
Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.
2016-01-01
We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370
García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A
2016-07-22
Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical
Shen, Yuyi; Yanagimachi, Kurt
2011-01-01
The inclined multiplate (lamella) gravity settler has proven to be an effective cell retention device in industrial perfusion cell culture applications. Investigations on the effects of geometric design and operational variables of the cell settler are crucial to understanding how to best improve the settler performance. Maximizing the harvest/perfusion flow rate while minimizing viable cell loss out of the harvest is the primary challenge for optimization of the settler design. This study demonstrated that computational fluid dynamics (CFD) can be utilized to accurately model and evaluate the settler separation performance for near-monodisperse suspensions and therefore aid in the design optimization of the settler under these baseline conditions. With the preferred geometric features that were identified from CFD modeling results, we proposed design guidelines for the scale-up of these multiplate settler systems. With these guidelines and performance verification using the CFD model, a new large-scale settler was designed and fabricated for a perfusion cell culture process using a minimally aggregating production cell line. Perfusion cell culture runs with this particular cell line were performed with this settler, and the CFD model was able to predict the initial ramp-up performance, proving it to be a valuable scale-up design tool for this production process.
Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela R.; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.
2012-01-01
Objectives Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Results The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. Significance Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future. PMID:22901826
NASA Astrophysics Data System (ADS)
Goldberg, A.; El-Batanouny, M.; Wooten, F.
1982-12-01
The phonon dispersion curves and phonon density of states for silicon in the BC-8 structure have been calculated with the use of Weber's adiabatic-bond-charge model. All parameters were scaled in an unambiguous physical manner from Weber's values for silicon in the diamond structure. The frequency values at Γ agree to within 10% of those values available from Raman spectroscopy. The Γ-1 mode is compatible with a transformation from the BC-8 structure to the wurtzite structure, a transformation that takes place upon heating the BC-8 polymorph.
Sharma, Sitansh; Sharma, Purshotam; Singh, Harjinder; Balint-Kurti, Gabriel G
2009-06-01
Time dependent quantum dynamics and optimal control theory are used for selective vibrational excitation of the N6-H (amino N-H) bond in free adenine and in the adenine-thymine (A-T) base pair. For the N6-H bond in free adenine we have used a one dimensional model while for the hydrogen bond, N6-H(A)...O4(T), present in the A-T base pair, a two mathematical dimensional model is employed. The conjugate gradient method is used for the optimization of the field dependent cost functional. Optimal laser fields are obtained for selective population transfer in both the model systems, which give virtually 100% excitation probability to preselected vibrational levels. The effect of the optimized laser field on the other hydrogen bond, N1(A)...H-N3(T), present in A-T base pair is also investigated.
Laser Surface Preparation of Epoxy Composites for Secondary Bonding: Optimization of Ablation Depth
NASA Technical Reports Server (NTRS)
Palmieri, Frank L.; Hopkins, John; Wohl, Christopher J.; Lin, Yi; Connell, John W.; Belcher, Marcus A.; Blohowiak, Kay Y.
2015-01-01
Surface preparation has been identified as one of the most critical aspects of attaining predictable and reliable adhesive bonds. Energetic processes such as laser ablation or plasma treatment are amenable to automation and are easily monitored and adjusted for controlled surface preparation. A laser ablation process was developed to accurately remove a targeted depth of resin, approximately 0.1 to 20 micrometers, from a carbon fiber reinforced epoxy composite surface while simultaneously changing surface chemistry and creating micro-roughness. This work demonstrates the application of this process to prepare composite surfaces for bonding without exposing or damaging fibers on the surface. Composite panels were prepared in an autoclave and had a resin layer approximately 10 micrometers thick above the fiber reinforcement. These composite panels were laser surface treated using several conditions, fabricated into bonded panels and hygrothermally aged. Bond performance of aged, experimental specimens was compared with grit blast surface treated specimens using a modified double cantilever beam test that enabled accelerated saturation of the specimen with water. Comparison of bonded specimens will be used to determine how ablation depth may affect average fracture energies and failure modes.
Optimizing dentin bond durability: strategies to prevent hydrolytic degradation of the hybrid layer
Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.
2014-01-01
Objectives Endogenous dentin collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, are responsible for the time-related hydrolysis of collagen matrix of the hybrid layers. As the integrity of the collagen matrix is essential for the preservation of long-term dentin bond strength, inhibition or inactivation of endogenous dentin proteases is necessary for durable resin-bonded composite resin restorations. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Several tentative approaches to prevent enzyme function either directly or indirectly have been proposed in the literature. Results Chlorhexidine, a general inhibitor of both MMPs and cysteine cathepsins, applied before primer/adhesive application is the most tested method. In general, these experiments have shown that enzyme inhibition is a promising scheme to improve hybrid layer preservation and bond strength durability. Other enzyme inhibitors, e.g. enzyme-inhibiting monomers and antimicrobial compounds, may be considered promising alternatives that would allow more simple clinical application than chlorhexidine. Cross-linking collagen and/or dentin organic matrix-bound enzymes could render hybrid layer organic matrix resistant to degradation, and complete removal of water from the hybrid layer with ethanol wet bonding or biomimetic remineralization should eliminate hydrolysis of both collagen and resin components. Significance Identification of the enzymes responsible for the hydrolysis of hybrid layer collagen and understanding their function has prompted several innovative approaches to retain the hybrid layer integrity and strong dentin bonding. The ultimate goal, prevention of collagen matrix degradation with techniques and commercially available materials that are simple and effective in clinical settings may be achievable in
Ning, Bende; Qu, Xiaobo; Guo, Di; Hu, Changwei; Chen, Zhong
2013-11-01
Reducing scanning time is significantly important for MRI. Compressed sensing has shown promising results by undersampling the k-space data to speed up imaging. Sparsity of an image plays an important role in compressed sensing MRI to reduce the image artifacts. Recently, the method of patch-based directional wavelets (PBDW) which trains geometric directions from undersampled data has been proposed. It has better performance in preserving image edges than conventional sparsifying transforms. However, obvious artifacts are presented in the smooth region when the data are highly undersampled. In addition, the original PBDW-based method does not hold obvious improvement for radial and fully 2D random sampling patterns. In this paper, the PBDW-based MRI reconstruction is improved from two aspects: 1) An efficient non-convex minimization algorithm is modified to enhance image quality; 2) PBDW are extended into shift-invariant discrete wavelet domain to enhance the ability of transform on sparsifying piecewise smooth image features. Numerical simulation results on vivo magnetic resonance images demonstrate that the proposed method outperforms the original PBDW in terms of removing artifacts and preserving edges.
Insect kinin analogs with cis-peptide bond motif 4-aminopyroglutamate: Optimal stereochemistry
Technology Transfer Automated Retrieval System (TEKTRAN)
The insect kinins are present in a wide variety of insects and function as potent diuretic peptides, though they are subject to rapid degradation by internal peptidases. Insect kinin analogs incorporating stereochemical variants of (2S,4S)-4-aminopyroglutamate (APy), a cis-peptide bond motif, demon...
NASA Astrophysics Data System (ADS)
Vián, J. G.; Astrain, D.; Rodríguez, A.; Martínez, A.
2010-09-01
The objective of this paper is to optimize a thermoelectric ice-maker installed in a no-frost refrigerator, by means of a computational model. This model provides the electric power consumption of the Peltier module and the ice production. The Peltier module is the most important part of the thermoelectric ice-maker; therefore, it must be optimized in order to obtain an efficient ice-maker. First of all, the length of the thermocouples of the Peltier module has been optimized in order to obtain the maximum ice production. It turned out that 3.5 kg per day could be achieved if 1.5-mm-long thermocouples were used. The coefficient of performance (COP) was 0.44. Second, the ice production was expressed as a function of the number of thermocouples of the Peltier module. Given a constant electric power consumption of the module, the results showed that the maximum ice production was achieved with a Peltier module with 254 thermocouples. However, if a module with 140 thermocouples was installed, the ice production would decrease by only 1%.
NASA Astrophysics Data System (ADS)
Talman, Richard
1999-10-01
Mechanics for the nonmathematician-a modern approach For physicists, mechanics is quite obviously geometric, yet the classical approach typically emphasizes abstract, mathematical formalism. Setting out to make mechanics both accessible and interesting for nonmathematicians, Richard Talman uses geometric methods to reveal qualitative aspects of the theory. He introduces concepts from differential geometry, differential forms, and tensor analysis, then applies them to areas of classical mechanics as well as other areas of physics, including optics, crystal diffraction, electromagnetism, relativity, and quantum mechanics. For easy reference, Dr. Talman treats separately Lagrangian, Hamiltonian, and Newtonian mechanics-exploring their geometric structure through vector fields, symplectic geometry, and gauge invariance respectively. Practical perturbative methods of approximation are also developed. Geometric Mechanics features illustrative examples and assumes only basic knowledge of Lagrangian mechanics. Of related interest . . . APPLIED DYNAMICS With Applications to Multibody and Mechatronic Systems Francis C. Moon A contemporary look at dynamics at an intermediate level, including nonlinear and chaotic dynamics. 1998 (0-471-13828-2) 504 pp. MATHEMATICAL PHYSICS Applied Mathematics for Scientists and Engineers Bruce Kusse and Erik Westwig A comprehensive treatment of the mathematical methods used to solve practical problems in physics and engineering. 1998 (0-471-15431-8) 680 pp.
Keyvani, Zahra Alimohammadi; Shahbazian, Shant; Zahedi, Mansour
2016-10-18
The equivalence of the molecular graphs emerging from the comparative analysis of the optimized and the promolecule electron densities in two hundred and twenty five unsubstituted hydrocarbons was recently demonstrated [Keyvani et al. Chem. Eur. J. 2016, 22, 5003]. Thus, the molecular graph of an optimized molecular electron density is not shaped by the formation of the C-H and C-C bonds. In the present study, to trace the fingerprint of the C-H and C-C bonds in the electron densities of the same set of hydrocarbons, the amount of electron density and its Laplacian at the (3, -1) critical points associated with these bonds are derived from both optimized and promolecule densities, and compared in a newly proposed comparative analysis. The analysis not only conforms to the qualitative picture of the electron density build up between two atoms upon formation of a bond in between, but also quantifies the resulting accumulation of the electron density at the (3, -1) critical points. The comparative analysis also reveals a unified mode of density accumulation in the case of 2318 studied C-H bonds, but various modes of density accumulation are observed in the case of 1509 studied C-C bonds and they are classified into four groups. The four emerging groups do not always conform to the traditional classification based on the bond orders. Furthermore, four C-C bonds described as exotic bonds in previous studies, for example the inverted C-C bond in 1,1,1-propellane, are naturally distinguished from the analysis.
Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.
Li, Yizhou; Gabriele, Elena; Samain, Florent; Favalli, Nicholas; Sladojevich, Filippo; Scheuermann, Jörg; Neri, Dario
2016-08-08
DNA-encoded combinatorial libraries are increasingly being used as tools for the discovery of small organic binding molecules to proteins of biological or pharmaceutical interest. In the majority of cases, synthetic procedures for the formation of DNA-encoded combinatorial libraries incorporate at least one step of amide bond formation between amino-modified DNA and a carboxylic acid. We investigated reaction conditions and established a methodology by using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7-azabenzotriazole and N,N'-diisopropylethylamine (EDC/HOAt/DIPEA) in combination, which provided conversions greater than 75% for 423/543 (78%) of the carboxylic acids tested. These reaction conditions were efficient with a variety of primary and secondary amines, as well as with various types of amino-modified oligonucleotides. The reaction conditions, which also worked efficiently over a broad range of DNA concentrations and reaction scales, should facilitate the synthesis of novel DNA-encoded combinatorial libraries.
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.; Huffman, J. K.
1979-01-01
An investigation conducted in the Langley 7 by 10 foot tunnel to determine the influence of an optimized leading-edge deflection on the low speed aerodynamic performance of a configuration with a low aspect ratio, highly swept wing. The sensitivity of the lateral stability derivative to geometric anhedral was also studied. The optimized leading edge deflection was developed by aligning the leading edge with the incoming flow along the entire span. Owing to spanwise variation of unwash, the resulting optimized leading edge was a smooth, continuously warped surface for which the deflection varied from 16 deg at the side of body to 50 deg at the wing tip. For the particular configuration studied, levels of leading-edge suction on the order of 90 percent were achieved. The results of tests conducted to determine the sensitivity of the lateral stability derivative to geometric anhedral indicate values which are in reasonable agreement with estimates provided by simple vortex-lattice theories.
NASA Astrophysics Data System (ADS)
Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying
2017-04-01
DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.
Morphology selection via geometric frustration in chiral filament bundles.
Hall, Douglas M; Bruss, Isaac R; Barone, Justin R; Grason, Gregory M
2016-07-01
In assemblies, the geometric frustration of a locally preferred packing motif leads to anomalous behaviours, from self-limiting growth to defects in the ground state. Here, we demonstrate that geometric frustration selects the equilibrium morphology of cohesive bundles of chiral filaments, an assembly motif critical to a broad range of biological and synthetic nanomaterials. Frustration of inter-filament spacing leads to optimal shapes of self-twisting bundles that break the symmetries of packing and of the underlying inter-filament forces, paralleling a morphological instability in spherical two-dimensional crystals. Equilibrium bundle morphology is controlled by a parameter that characterizes the relative costs of filament bending and the straining of cohesive bonds between filaments. This parameter delineates the boundaries between stable, isotropic cylindrical bundles and anisotropic, twisted-tape bundles. We also show how the mechanical and interaction properties of constituent amyloid fibrils may be extracted from the mesoscale dimensions of the anisotropic bundles that they form.
Ghani, Muhammad. U.; Yan, Aimin; Wong, Molly. D.; Li, Yuhua; Ren, Liqiang; Wu, Xizeng; Liu, Hong
2016-01-01
The objective of this study was to investigate the optimization of a high energy in-line phase sensitive x-ray imaging prototype under different geometric and operating conditions for mammography application. A phase retrieval algorithm based on phase attenuation duality (PAD) was applied to the phase contrast images acquired by the prototype. Imaging performance was investigated at four magnification values of 1.67, 2, 2.5 and 3 using an acrylic edge, an American College of Radiology (ACR) mammography phantom and contrast detail (CD) phantom with tube potentials of 100, 120 and 140 kVp. The ACR and CD images were acquired at the same mean glandular dose (MGD) of 1.29 mGy with a computed radiography (CR) detector of 43.75 µm pixel pitch at a fixed source to image distance (SID) of 170 cm. The x-ray tube focal spot size was kept constant as 7 µm while a 2.5 mm thick aluminum (Al) filter was used for beam hardening. The performance of phase contrast and phase retrieved images were compared with computer simulations based on the relative phase contrast factor (RPF) at high x-ray energies. The imaging results showed that the x-ray tube operated at 100 kVp under the magnification of 2.5 exhibits superior imaging performance which is in accordance to the computer simulations. As compared to the phase contrast images, the phase retrieved images of the ACR and CD phantoms demonstrated improved imaging contrast and target discrimination. We compared the CD phantom images acquired in conventional contact mode with and without the anti-scatter grid using the same prototype at 1.295 mGy and 2.59 mGy using 40 kVp, a 25 µm rhodium (Rh) filter. At the same radiation dose, the phase sensitive images provided improved detection capabilities for both the large and small discs, while compared to the double dose image acquired in conventional mode, the observer study also indicated that the phase sensitive images provided improved detection capabilities for the large discs. This
Ghani, Muhammad U; Yan, Aimin; Wong, Molly D; Li, Yuhua; Ren, Liqiang; Wu, Xizeng; Liu, Hong
2015-01-01
The objective of this study was to investigate the optimization of a high energy in-line phase sensitive x-ray imaging prototype under different geometric and operating conditions for mammography application. A phase retrieval algorithm based on phase attenuation duality (PAD) was applied to the phase contrast images acquired by the prototype. Imaging performance was investigated at four magnification values of 1.67, 2, 2.5 and 3 using an acrylic edge, an American College of Radiology (ACR) mammography phantom and contrast detail (CD) phantom with tube potentials of 100, 120 and 140 kVp. The ACR and CD images were acquired at the same mean glandular dose (MGD) of 1.29 mGy with a computed radiography (CR) detector of 43.75 μm pixel pitch at a fixed source to image distance (SID) of 170 cm. The x-ray tube focal spot size was kept constant as 7 μm while a 2.5 mm thick aluminum (Al) filter was used for beam hardening. The performance of phase contrast and phase retrieved images were compared with computer simulations based on the relative phase contrast factor (RPF) at high x-ray energies. The imaging results showed that the x-ray tube operated at 100 kVp under the magnification of 2.5 exhibits superior imaging performance which is in accordance to the computer simulations. As compared to the phase contrast images, the phase retrieved images of the ACR and CD phantoms demonstrated improved imaging contrast and target discrimination. We compared the CD phantom images acquired in conventional contact mode with and without the anti-scatter grid using the same prototype at 1.295 mGy and 2.59 mGy using 40 kVp, a 25 μm rhodium (Rh) filter. At the same radiation dose, the phase sensitive images provided improved detection capabilities for both the large and small discs, while compared to the double dose image acquired in conventional mode, the observer study also indicated that the phase sensitive images provided improved detection capabilities for the large discs. This
NASA Astrophysics Data System (ADS)
Si, Yue; Zhang, Zhousuo; Wang, Hongfang; Yuan, Feichen
2017-03-01
Bonding quality detection of explosive clad structure is significant to prevent catastrophic accidents. Multi-modal features related to bonding quality are contained in structural vibration response signal. Different modal feature has different sensitivity to the bonding quality. Extracting the desired mono-modal feature from the vibration response signal is necessary. Due to the mode aliasing easily appeared in the process of extracting the desired mono-modal feature, there is no effective method for this task. Dual-tree complex wavelet with attractive properties such as shift invariance and reduced spectral aliasing may provide a better way to extract the mono-modal feature. However, the fixed basis functions independent of the analyzed signal may weak the advantage of the method and even reduce the accuracy of detection result. To overcome this shortcoming, a technique called optimized dual-tree complex wavelet transform (ODTCWT) is proposed in this paper. Based on the analyzed signal, the optimized dual-tree complex wavelet basis function is constructed by searching for the proper parameters of vanishing moment K and the order of filter L. The optimized dual-tree complex wavelet with improved wavelet filters can best matched the modal frequencies of the analyzed signal. The ODTCWT can extract the mono-modal feature from vibration response signal with lower mode aliasing. The feasibility and effectiveness of the method of constructing ODTCWT is illustrated by the simulated signal. The proposed ODTCWT is combined with time entropy to detecting bonding quality of explosive clad pipes. For comparison, un-optimized dual-tree complex wavelet transform (UODTCWT), second-generation wavelet transform (SGWT) and band-pass filter (BPF) are also used for this task to demonstrate the validity of ODTCWT.
NASA Astrophysics Data System (ADS)
Shoji, Mitsuo; Isobe, Hiroshi; Saito, Toru; Kitagawa, Yasutaka; Yamanaka, Shusuke; Kawakami, Takashi; Okumura, Mitsutaka; Yamaguchi, Kizashi
Physiochemical properties of compound I and II intermediate states for heme enzymes (catalase, peroxidase, P450) and inorganic models are investigated by hybrid density functional theory. Used theoretical models are composed of an oxoferryl porphyrin and an axial ligand, which are cresol, methylimidazole, methylthiol, and chloride for catalase, peroxidase, P450, and inorganic models, respectively. The oxoferryl bonds are characterized in terms of bond lengths and vibration frequencies. It is found that the oxoferryl bond lengths (the stretching frequency) are shorter (higher) than those of the X-ray crystal structures of enzymes, on the other hand for inorganic models, they are comparable with the experimental values. Spin density distributions showed that radical state at the compound I can be classified into two types: (1) porphyrin radical state and (2) axial ligand radical state. Peroxidase and inorganic model are in the former case and Catalase and P450 are in the later case at the present calculation models. Magnetic interactions between oxoferryl and ligand radical moieties are analyzed by the natural orbital analysis and it is showed that the effective exchange integral (J) values are strongly related to the radical spin density distributions: axial ligand radical tends to increase the antiferromagnetic interaction. Mössbauer shift parameters are also evaluated and it is shown that iron charge states are similar for these models.
Bent Bonds and Multiple Bonds.
ERIC Educational Resources Information Center
Robinson, Edward A.; Gillespie, Ronald J.
1980-01-01
Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)
Hydrogen bonds in methane-water clusters.
Salazar-Cano, Juan-Ramón; Guevara-García, Alfredo; Vargas, Rubicelia; Restrepo, Albeiro; Garza, Jorge
2016-08-24
Characterization of hydrogen bonds in CH4-(H2O)12 clusters was carried out by using several quantum chemistry tools. An initial stochastic search provided around 2 500 000 candidate structures, then, using a convex-hull polygon criterion followed by gradient based optimization under the Kohn-Sham scheme, a total of 54 well defined local minima were located in the Potential Energy Surface. These structures were further analyzed through second-order many-body perturbation theory with an extended basis set at the MP2/6-311++G(d,p) level. Our analysis of Gibbs energies at several temperatures clearly suggests a structural preference toward compact water clusters interacting with the external methane molecule, instead of the more commonly known clathrate-like structures. This study shows that CH4-(H2O)12 clusters may be detected at temperatures up to 179 K, this finding provides strong support to a recently postulated hypothesis that suggests that methane-water clusters could be present in Mars at these conditions. Interestingly, we found that water to water hydrogen bonding is strengthened in the mixed clusters when compared to the isolated water dimer, which in turn leads to a weakening of the methane to water hydrogen bonding when compared to the CH4-(H2O) dimer. Finally, our evidence places a stern warning about the abilities of popular geometrical criteria to determine the existence of hydrogen bonds.
Cooperativity in beryllium bonds.
Alkorta, Ibon; Elguero, José; Yáñez, Manuel; Mó, Otilia
2014-03-07
A theoretical study of the beryllium bonded clusters of the (iminomethyl)beryllium hydride and (iminomethyl)beryllium fluoride [HC(BeX)=NH, X = H, F] molecules has been carried out at the B3LYP/6-311++G(3df,2p) level of theory. Linear and cyclic clusters have been characterized up to the decamer. The geometric, energetic, electronic and NMR properties of the clusters clearly indicate positive cooperativity. The evolution of the molecular properties, as the size of the cluster increases, is similar to those reported in polymers held together by hydrogen bonds.
Exploring New Geometric Worlds
ERIC Educational Resources Information Center
Nirode, Wayne
2015-01-01
When students work with a non-Euclidean distance formula, geometric objects such as circles and segment bisectors can look very different from their Euclidean counterparts. Students and even teachers can experience the thrill of creative discovery when investigating these differences among geometric worlds. In this article, the author describes a…
Jang, Seogjoo; Rivera, Eva; Montemayor, Daniel
2015-03-19
The light harvesting 2 (LH2) antenna complex from purple photosynthetic bacteria is an efficient natural excitation energy carrier with well-known symmetric structure, but the molecular level design principle governing its structure-function relationship is unknown. Our all-atomistic simulations of nonnatural analogues of LH2 as well as those of a natural LH2 suggest that nonnatural sizes of LH2-like complexes could be built. However, stable and consistent hydrogen bonding (HB) between bacteriochlorophyll and the protein is shown to be possible only near naturally occurring sizes, leading to significantly smaller disorder than for nonnatural ones. Extensive quantum calculations of intercomplex exciton transfer dynamics, sampled for a large set of disorder, reveal that taming the negative effect of disorder through a reliable HB as well as quantum delocalization of the exciton is a critical mechanism that makes LH2 highly functional, which also explains why the natural sizes of LH2 are indeed optimal.
NASA Astrophysics Data System (ADS)
Pariona, Moisés Meza; de Oliveira, Fabiane; Teleginski, Viviane; Machado, Siliane; Pinto, Marcio Augusto Villela
2016-05-01
Al-1.5 wt% Fe alloy was irradiate by Yb-fiber laser beam using the laser surface remelting (LSR) technique, generating weld fillets that covered the whole surface of the sample. The laser-treatment showed to be an efficient technology for corrosion resistance improvements. In this study, the finite element method was used to simulate the solidification processes by LSR technique. The method Multigrid was employed in order to reduce the CPU time, which is important to the viability for industrial applications. Multigrid method is a technique very promising of optimization that reduced drastically the CPU time. The result was highly satisfactory, because the CPU time has fallen dramatically in comparison when it was not used Multigrid method. To validate the result of numerical simulation with the experimental result was done the microstructural characterization of laser-treated layer by the optical microscopy and SEM techniques and however, that both results showing be consistent.
Irvine, D M; Cole, A J; Hanna, G G; McGarry, C K
2015-01-01
Objective: The aim of this study was to identify sources of anatomical misrepresentation owing to the location of camera mounting, tumour motion velocity and image processing artefacts in order to optimize the four-dimensional CT (4DCT) scan protocol and improve geometrical–temporal accuracy. Methods: A phantom with an imaging insert was driven with a sinusoidal superior–inferior motion of varying amplitude and period for 4DCT scanning. The length of a high-density cube within the insert was measured using treatment planning software to determine the accuracy of its spatial representation. Scan parameters were varied, including the tube rotation period and the cine time between reconstructed images. A CT image quality phantom was used to measure various image quality signatures under the scan parameters tested. Results: No significant difference in spatial accuracy was found for 4DCT scans carried out using the wall- or couch-mounted camera for sinusoidal target motion. Greater spatial accuracy was found for 4DCT scans carried out using a tube rotation speed of 0.5 s rather than 1.0 s. The reduction in image quality when using a faster rotation speed was not enough to require an increase in patient dose. Conclusion: The 4DCT accuracy may be increased by optimizing scan parameters, including choosing faster tube rotation speeds. Peak misidentification in the recorded breathing trace may lead to spatial artefacts, and this risk can be reduced by using a couch-mounted infrared camera. Advances in knowledge: This study explicitly shows that 4DCT scan accuracy is improved by scanning with a faster CT tube rotation speed. PMID:25470359
Semiquantal analysis of hydrogen bond
NASA Astrophysics Data System (ADS)
Ando, Koji
2006-07-01
The semiquantal time-dependent Hartree (SQTDH) theory is applied to the coupled Morse and modified Lippincott-Schroeder (LS) model potentials of hydrogen bond. The structural correlation between the heavy atoms distance and the proton position, the geometric isotope effect, the energy of hydrogen bond formation, and the proton vibrational frequency shift are examined in a broad range of structural parameters. In particular, the geometric isotope effect is found to depend notably on the choice of the potential model, for which the LS potential gives the isotope shift of the heavy atoms distance in the range of 0.02-0.04Å, in quantitative agreement with the experimental findings from assortment of hydrogen bonding crystals. The fourth-order expansion approximation to the semiquantal extended potential was confirmed to be highly accurate in reproducing the full SQTDH results. The approximation is computationally efficient and flexible enough to be applied to general models of hydrogen bond.
Geometric methods in quantum computation
NASA Astrophysics Data System (ADS)
Zhang, Jun
Recent advances in the physical sciences and engineering have created great hopes for new computational paradigms and substrates. One such new approach is the quantum computer, which holds the promise of enhanced computational power. Analogous to the way a classical computer is built from electrical circuits containing wires and logic gates, a quantum computer is built from quantum circuits containing quantum wires and elementary quantum gates to transport and manipulate quantum information. Therefore, design of quantum gates and quantum circuits is a prerequisite for any real application of quantum computation. In this dissertation we apply geometric control methods from differential geometry and Lie group representation theory to analyze the properties of quantum gates and to design optimal quantum circuits. Using the Cartan decomposition and the Weyl group, we show that the geometric structure of nonlocal two-qubit gates is a 3-Torus. After further reducing the symmetry, the geometric representation of nonlocal gates is seen to be conveniently visualized as a tetrahedron. Each point in this tetrahedron except on the base corresponds to a different equivalent class of nonlocal gates. This geometric representation is one of the cornerstones for the discussion on quantum computation in this dissertation. We investigate the properties of those two-qubit operations that can generate maximal entanglement. It is an astonishing finding that if we randomly choose a two-qubit operation, the probability that we obtain a perfect entangler is exactly one half. We prove that given a two-body interaction Hamiltonian, it is always possible to explicitly construct a quantum circuit for exact simulation of any arbitrary nonlocal two-qubit gate by turning on the two-body interaction for at most three times, together with at most four local gates. We also provide an analytic approach to construct a universal quantum circuit from any entangling gate supplemented with local gates
Ho, P Shing
2015-01-01
Halogens are atypical elements in biology, but are common as substituents in ligands, including thyroid hormones and inhibitors, which bind specifically to proteins and nucleic acids. The short-range, stabilizing interactions of halogens - now seen as relatively common in biology - conform generally to halogen bonds characterized in small molecule systems and as described by the σ-hole model. The unique properties of biomolecular halogen bonds (BXBs), particularly in their geometric and energetic relationship to classic hydrogen bonds, make them potentially powerful tools for inhibitor design and molecular engineering. This chapter reviews the current research on BXBs, focusing on experimental studies on their structure-energy relationships, how these studies inform the development of computational methods to model BXBs, and considers how BXBs can be applied to the rational design of more effective inhibitors against therapeutic targets and of new biological-based materials.
Abad, E; Reingruber, J; Sansom, M S P
2009-02-28
We present a novel rate theory based on the notions of splitting probability and mean first passage time to describe single-ion conduction in narrow, effectively one-dimensional membrane channels. In contrast to traditional approaches such as transition state theory or Kramers theory, transitions between different conduction states in our model are governed by rates which depend on the full geometry of the potential of mean force (PMF) resulting from the superposition of an equilibrium free energy profile and a transmembrane potential induced by a nonequilibrium constraint. If a detailed theoretical PMF is available (e.g., from atomistic molecular dynamics simulations), it can be used to compute characteristic conductance curves in the framework of our model, thereby bridging the gap between the atomistic and the mesoscopic level of description. Explicit analytic solutions for the rates, the ion flux, and the associated electric current can be obtained by approximating the actual PMF by a piecewise linear potential. As illustrative examples, we consider both a theoretical and an experimental application of the model. The theoretical example is based on a hypothetical channel with a fully symmetric sawtooth equilibrium PMF. For this system, we explore how changes in the spatial extent of the binding sites affect the rate of transport when a linear voltage ramp is applied. Already for the case of a single binding site, we find that there is an optimum size of the site which maximizes the current through the channel provided that the applied voltage exceeds a threshold value given by the binding energy of the site. The above optimization effect is shown to arise from the complex interplay between the channel structure and the applied electric field, expressed by a nonlinear dependence of the rates with respect to the linear size of the binding site. In studying the properties of current-voltage curves, we find a double crossover between sublinear and superlinear
Geometric Reasoning for Automated Planning
NASA Technical Reports Server (NTRS)
Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel
2012-01-01
An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.
Geometric sensitivity of ClearPET™ Neuro
NASA Astrophysics Data System (ADS)
Gundlich, Brigitte; Weber, Simone
2007-02-01
ClearPET™ Neuro is a small-animal positron emission tomography (PET) scanner dedicated to brain studies on rats and primates. The design of ClearPET™ Neuro leads to a specific geometric sensitivity, characterized by inhomogeneous and, depending on the measurement setup, even incomplete data. With respect to reconstruction techniques, homogeneous and complete data sets are a 'must' for analytical reconstruction methods, whereas iterative methods take the geometrical sensitivity into account during the reconstruction process. Nevertheless, here a homogeneous geometric sensitivity over the field of view is highly desirable. Therefore, this contribution aims at studying the impact of different scanner geometries and measurement setups on the geometric sensitivity. A data set of coincident events is computed for certain settings that contains each possible crystal combination once. The lines of response are rebinned into normalizing sinograms and backprojected into sensitivity images. Both, normalizing sinograms and sensitivity images mirror the geometric sensitivity and therefore, provide information which setting enables most complete and homogeneous data sets. An optimal measurement setup and scanner geometry in terms of homogeneous geometric sensitivity is found by analyzing the sensitivity images.
Inflation from geometrical tachyons
Thomas, Steven; Ward, John
2005-10-15
We propose an alternative formulation of tachyon inflation using the geometrical tachyon arising from the time dependent motion of a BPS D3-brane in the background geometry due to k parallel NS5-branes arranged around a ring of radius R. Because of the fact that the mass of this geometrical tachyon field is {radical}(2/k) times smaller than the corresponding open-string tachyon mass, we find that the slow-roll conditions for inflation and the number of e-foldings can be satisfied in a manner that is consistent with an effective 4-dimensional model and with a perturbative string coupling. We also show that the metric perturbations produced at the end of inflation can be sufficiently small and do not lead to the inconsistencies that plague the open-string tachyon models. Finally we argue for the existence of a minimum of the geometrical tachyon potential which could give rise to a traditional reheating mechanism.
Chiral models: Geometrical aspects
NASA Astrophysics Data System (ADS)
Perelomov, A. M.
1987-02-01
Two-dimensional classical chiral models of field theory are considered, the main attention being paid on geometrical aspects of such theories. A characteristic feature of these models is that the interaction is inserted not by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the manifold. These models are in many respects analogous to non-Abelian gauge theories and as became clear recently, they are also important for the superstring theory which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.
ERIC Educational Resources Information Center
Frazier, Laura Corbin
2000-01-01
Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)
Kang, Hyeon-Ju; Kim, Hye-Jin; Jung, Mun-Sik; Han, Jae-Kyu; Cha, Sang-Hoon
2017-04-01
Development of novel bi-functional or even tri-functional Fab-effector fusion proteins would have a great potential in the biomedical sciences. However, the expression of Fab-effector fusion proteins in Escherichia coli is problematic especially when a eukaryotic effector moiety is genetically linked to a Fab due to the lack of proper chaperone proteins and an inappropriate physicochemical environment intrinsic to the microbial hosts. We previously reported that a human Fab molecule, referred to as SL335, reactive to human serum albumin has a prolonged in vivo serum half-life in rats. We, herein, tested six discrete SL335-human growth hormone (hGH) fusion constructs as a model system to define an optimal Fab-effector fusion format for E. coli expression. We found that one variant, referred to as HserG/Lser, outperformed the others in terms of a soluble expression yield and functionality in that HserG/Lser has a functional hGH bioactivity and possesses an serum albumin-binding affinity comparable to SL335. Our results clearly demonstrated that the genetic linkage of an effector domain to the C-terminus of Fd (VH+CH1) and the removal of cysteine (Cys) residues responsible for an interchain disulfide bond (IDB) ina Fab molecule optimize the periplasmic expression of a Fab-effector fusion protein in E. coli. We believe that our approach can contribute the development of diverse bi-functional Fab-effector fusion proteins by providing a simple strategy that enables the reliable expression of a functional fusion proteins in E. coli.
Sakhavand, Navid; Muthuramalingam, Prakash; Shahsavari, Rouzbeh
2013-06-25
The geometry and material property mismatch across the interface of hybrid materials with dissimilar building blocks make it extremely difficult to fully understand the lateral chemical bonding processes and design nanocomposites with optimal performance. Here, we report a combined first-principles study, molecular dynamics modeling, and theoretical derivations to unravel the detailed mechanisms of H-bonding, deformation, load transfer, and failure at the interface of polyvinyl alcohol (PVA) and silicates, as an example of hybrid materials with geometry and property mismatch across the interface. We identify contributing H-bonds that are key to adhesion and demonstrate a specific periodic pattern of interfacial H-bond network dictated by the interface mismatch and intramolecular H-bonding. We find that the maximum toughness, incorporating both intra- and interlayer strain energy contributions, govern the existence of optimum overlap length and thus the rupture of interfacial (interlayer) H-bond assemblies in natural and synthetic hybrid materials. This universally valid result is in contrast to the previous reports that correlate shear strength with rupture of H-bonds assemblies at a finite overlap length. Overall, this work establishes a unified understanding to explain the interplay between geometric constraints, interfacial H-bonding, materials characteristics, and optimal mechanical properties in hybrid organic-inorganic materials.
Geometric optimization for prey-predator strategies.
Alshamary, Bader; Calin, Ovidiu
2011-11-01
This paper investigates several strategies for prey and predator in both bounded and unbounded domains, assuming they have the same speed. The work describes how the prey should move to escape from the predator and how predator should move to catch the prey. The approach is agent-based and explicitly tracks movement of individuals as prey and predator. We show that the prey escapes one or two competing predators, while might be caught in the case of three predators. The paper also describes a strategy for finding a well camouflaged static prey which emits signals.
PREFACE: Geometrically frustrated magnetism Geometrically frustrated magnetism
NASA Astrophysics Data System (ADS)
Gardner, Jason S.
2011-04-01
Frustrated magnetism is an exciting and diverse field in condensed matter physics that has grown tremendously over the past 20 years. This special issue aims to capture some of that excitement in the field of geometrically frustrated magnets and is inspired by the 2010 Highly Frustrated Magnetism (HFM 2010) meeting in Baltimore, MD, USA. Geometric frustration is a broad phenomenon that results from an intrinsic incompatibility between some fundamental interactions and the underlying lattice geometry based on triangles and tetrahedra. Most studies have centred around the kagomé and pyrochlore based magnets but recent work has looked at other structures including the delafossite, langasites, hyper-kagomé, garnets and Laves phase materials to name a few. Personally, I hope this issue serves as a great reference to scientist both new and old to this field, and that we all continue to have fun in this very frustrated playground. Finally, I want to thank the HFM 2010 organizers and all the sponsors whose contributions were an essential part of the success of the meeting in Baltimore. Geometrically frustrated magnetism contents Spangolite: an s = 1/2 maple leaf lattice antiferromagnet? T Fennell, J O Piatek, R A Stephenson, G J Nilsen and H M Rønnow Two-dimensional magnetism and spin-size effect in the S = 1 triangular antiferromagnet NiGa2S4 Yusuke Nambu and Satoru Nakatsuji Short range ordering in the modified honeycomb lattice compound SrHo2O4 S Ghosh, H D Zhou, L Balicas, S Hill, J S Gardner, Y Qi and C R Wiebe Heavy fermion compounds on the geometrically frustrated Shastry-Sutherland lattice M S Kim and M C Aronson A neutron polarization analysis study of moment correlations in (Dy0.4Y0.6)T2 (T = Mn, Al) J R Stewart, J M Hillier, P Manuel and R Cywinski Elemental analysis and magnetism of hydronium jarosites—model kagome antiferromagnets and topological spin glasses A S Wills and W G Bisson The Herbertsmithite Hamiltonian: μSR measurements on single crystals
Geometric Series via Probability
ERIC Educational Resources Information Center
Tesman, Barry
2012-01-01
Infinite series is a challenging topic in the undergraduate mathematics curriculum for many students. In fact, there is a vast literature in mathematics education research on convergence issues. One of the most important types of infinite series is the geometric series. Their beauty lies in the fact that they can be evaluated explicitly and that…
ERIC Educational Resources Information Center
Smart, Julie; Marshall, Jeff
2007-01-01
Children possess a genuine curiosity for exploring the natural world around them. One third grade teacher capitalized on this inherent trait by leading her students on "A Geometric Scavenger Hunt." The four-lesson inquiry investigation described in this article integrates mathematics and science. Among the students' discoveries was the fact that…
NASA Technical Reports Server (NTRS)
Ives, David
1995-01-01
This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.
ERIC Educational Resources Information Center
Burgess, Claudia R.
2014-01-01
Designed for a broad audience, including educators, camp directors, afterschool coordinators, and preservice teachers, this investigation aims to help individuals experience mathematics in unconventional and exciting ways by engaging them in the physical activity of building geometric shapes using ropes. Through this engagement, the author…
Pragmatic geometric model evaluation
NASA Astrophysics Data System (ADS)
Pamer, Robert
2015-04-01
Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to
MM Algorithms for Geometric and Signomial Programming.
Lange, Kenneth; Zhou, Hua
2014-02-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.
Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.
2010-01-01
Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998
Algebraic and geometric spread in finite frames
NASA Astrophysics Data System (ADS)
King, Emily J.
2015-08-01
When searching for finite unit norm tight frames (FUNTFs) of M vectors in FN which yield robust representations, one is concerned with finding frames consisting of frame vectors which are in some sense as spread apart as possible. Algebraic spread and geometric spread are the two most commonly used measures of spread. A frame with optimal algebraic spread is called full spark and is such that any subcollection of N frame vectors is a basis for FN. A Grassmannian frame is a FUNTF which satisfies the Grassmannian packing problem; that is, the frame vectors are optimally geometrically spread given fixed M and N. A particular example of a Grassmannian frame is an equiangular frame, which is such that the absolute value of all inner products of distinct vectors is equal. The relationship between these two types of optimal spread is complicated. The folk knowledge for many years was that equiangular frames were full spark; however, this is now known not to hold for an infinite class of equiangular frames. The exact relationship between these types of spread will be further explored in this talk, as well as Plücker coordinates and coherence, which are measures of how much a frame misses being optimally algebraically or geometrically spread.
CAM - Geometric systems integration
NASA Astrophysics Data System (ADS)
Dunlap, G. C.
The integration of geometric and nongeometric information for efficient use of CAM is examined. Requirements for engineering drawings requested by management are noted to involve large volumes of nongeometric data to define the materials and quantity variables which impinge on the required design, so that the actual design may be the last and smaller step in the CAM process. Geometric classification and coding are noted to offer an alpha/numeric identifier for integrating the engineering design, manufacturing, and quality assurance functions. An example is provided of a turbine gear part coding in terms of polycode and monocode displays, showing a possible covering of more than 10 trillion features. Software is stressed as the key to integration of company-wide data.
Geometric measures of entanglement
Uyanik, K.; Turgut, S.
2010-03-15
The geometric measure of entanglement, which expresses the minimum distance to product states, has been generalized to distances to sets that remain invariant under the stochastic reducibility relation. For each such set, an associated entanglement monotone can be defined. The explicit analytical forms of these measures are obtained for bipartite entangled states. Moreover, the three-qubit case is discussed and it is argued that the distance to the W states is a new monotone.
Geometrical deuteron stripping revisited
Neoh, Y. S.; Yap, S. L.
2014-03-05
We investigate the reality of the idea of geometrical deuteron stripping originally envisioned by Serber. By taking into account of realistic deuteron wavefunction, nuclear density, and nucleon stopping mean free path, we are able to estimate inclusive deuteron stripping cross section for deuteron energy up to before pion production. Our semiclassical model contains only one global parameter constant for all nuclei which can be approximated by Woods-Saxon or any other spherically symmetric density distribution.
Geometrical structure, stability and electronic properties of AunHg(1 ≤ n ≤ 12) clusters
NASA Astrophysics Data System (ADS)
Wan, Wei; Kuang, Xiangjun
2016-08-01
The geometrical structures, relative stabilities, electronic properties and chemical hardness of AunHg( n=1-12) clusters are systematically investigated using the density functional theory with relativistic all-electron methods. The optimized low-lying energy geometries exhibit two-dimensional and three-dimensional structures. Furthermore, all the lowest-energy structures of AunHg( n=1-12) clusters favor planar geometries with slight distortion, in which the dopant Hg atom prefers to occupy a peripheral site with a lower coordination. The geometrical, electronic and chemical stabilities of the AunHg cluster with even number of valence electrons are higher than those of the neighboring AunHg cluster with odd number of valence electrons. Besides, 5 d valence electrons of impurity Hg atom in the AunHg cluster hardly join in the orbital interactions compared with 5 d valence electrons of corresponding Au atom in Aun+1 cluster. Au-Hg bonds in AunHg clusters are weaker and have more obviously ionic-like characteristics than the corresponding Au-Au bonds in Aun+1 clusters.
Perspective: Geometrically frustrated assemblies
NASA Astrophysics Data System (ADS)
Grason, Gregory M.
2016-09-01
This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.
Effect of bonding on the performance of a piezoactuator-based active control system
NASA Technical Reports Server (NTRS)
Baz, A.; Poh, S.
1987-01-01
The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is studied. A Modified Independent Modal Space Control (MIMSC) method is devised to select the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The presented method accounts for the effects that the piezoelectric actuators and the bonding layers have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the MIMSC method and to demonstrate the effect of the physical and geometrical properties of the bonding layer on the dynamic performance of the actively controlled beams. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general.
Quantum computation using geometric algebra
NASA Astrophysics Data System (ADS)
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
Geometric diffusion of quantum trajectories
Yang, Fan; Liu, Ren-Bao
2015-01-01
A quantum object can acquire a geometric phase (such as Berry phases and Aharonov–Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects. PMID:26178745
Representing geometrical knowledge.
Anderson, J A
1997-08-29
This paper introduces perspex algebra which is being developed as a common representation of geometrical knowledge. A perspex can currently be interpreted in one of four ways. First, the algebraic perspex is a generalization of matrices, it provides the most general representation for all of the interpretations of a perspex. The algebraic perspex can be used to describe arbitrary sets of coordinates. The remaining three interpretations of the perspex are all related to square matrices and operate in a Euclidean model of projective space-time, called perspex space. Perspex space differs from the usual Euclidean model of projective space in that it contains the point at nullity. It is argued that the point at nullity is necessary for a consistent account of perspective in top-down vision. Second, the geometric perspex is a simplex in perspex space. It can be used as a primitive building block for shapes, or as a way of recording landmarks on shapes. Third, the transformational perspex describes linear transformations in perspex space that provide the affine and perspective transformations in space-time. It can be used to match a prototype shape to an image, even in so called 'accidental' views where the depth of an object disappears from view, or an object stays in the same place across time. Fourth, the parametric perspex describes the geometric and transformational perspexes in terms of parameters that are related to everyday English descriptions. The parametric perspex can be used to obtain both continuous and categorical perception of objects. The paper ends with a discussion of issues related to using a perspex to describe logic.
Representing geometrical knowledge.
Anderson, J A
1997-01-01
This paper introduces perspex algebra which is being developed as a common representation of geometrical knowledge. A perspex can currently be interpreted in one of four ways. First, the algebraic perspex is a generalization of matrices, it provides the most general representation for all of the interpretations of a perspex. The algebraic perspex can be used to describe arbitrary sets of coordinates. The remaining three interpretations of the perspex are all related to square matrices and operate in a Euclidean model of projective space-time, called perspex space. Perspex space differs from the usual Euclidean model of projective space in that it contains the point at nullity. It is argued that the point at nullity is necessary for a consistent account of perspective in top-down vision. Second, the geometric perspex is a simplex in perspex space. It can be used as a primitive building block for shapes, or as a way of recording landmarks on shapes. Third, the transformational perspex describes linear transformations in perspex space that provide the affine and perspective transformations in space-time. It can be used to match a prototype shape to an image, even in so called 'accidental' views where the depth of an object disappears from view, or an object stays in the same place across time. Fourth, the parametric perspex describes the geometric and transformational perspexes in terms of parameters that are related to everyday English descriptions. The parametric perspex can be used to obtain both continuous and categorical perception of objects. The paper ends with a discussion of issues related to using a perspex to describe logic. PMID:9304680
Geometric phase in Bohmian mechanics
Chou, Chia-Chun; Wyatt, Robert E.
2010-10-15
Using the quantum kinematic approach of Mukunda and Simon, we propose a geometric phase in Bohmian mechanics. A reparametrization and gauge invariant geometric phase is derived along an arbitrary path in configuration space. The single valuedness of the wave function implies that the geometric phase along a path must be equal to an integer multiple of 2{pi}. The nonzero geometric phase indicates that we go through the branch cut of the action function from one Riemann sheet to another when we locally travel along the path. For stationary states, quantum vortices exhibiting the quantized circulation integral can be regarded as a manifestation of the geometric phase. The bound-state Aharonov-Bohm effect demonstrates that the geometric phase along a closed path contains not only the circulation integral term but also an additional term associated with the magnetic flux. In addition, it is shown that the geometric phase proposed previously from the ensemble theory is not gauge invariant.
NASA Astrophysics Data System (ADS)
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2013-09-01
In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2013-09-01
In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the N-H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H···S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.
NASA Astrophysics Data System (ADS)
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2014-06-01
In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.
Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih
2014-06-05
In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400cm(-1)) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the NH stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular NH⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.
Characteristics of hydrogen bond revealed from water clusters
NASA Astrophysics Data System (ADS)
Song, Yan; Chen, Hongshan; Zhang, Cairong; Zhang, Yan; Yin, Yuehong
2014-09-01
The hydrogen bond network is responsible for the exceptional physical and chemical properties of water, however, the description of hydrogen bond remains a challenge for the studies of condensed water. The investigation of structural and binding properties of water clusters provides a key for understanding the H-bonds in bulk water. In this paper, a new set of geometric parameters are defined to describe the extent of the overlap between the bonding orbital of the donor OH and the nonbonding orbital of the lone-pair of the acceptor molecule. This orbital overlap plays a dominant role for the strength of H-bonds. The dependences of the binding energy of the water dimer on these parameters are studied. The results show that these parameters properly describe the H-bond strength. The ring, book, cage and prism isomers of water hexamer form 6, 7, 8 and 9 H-bonds, and the strength of the bonding in these isomers changes markedly. The internally-solvated and the all-surface structures of (H2O) n for n = 17, 19 and 21 are nearly isoenergetic. The internally-solvated isomers form fewer but stronger H-bonds. The hydrogen bonding in the above clusters are investigated in detail. The geometric parameters can well describe the characters of the H-bonds, and they correlate well with the H-bond strength. For the structures forming stronger H-bonds, the H-bond lengths are shorter, the angle parameters are closer to the optimum values, and their rms deviations are smaller. The H-bonds emanating from DDAA and DDA molecules as H-donor are relatively weak. The vibrational spectra of (H2O) n ( n = 17, 19 and 21) are studied as well. The stretching vibration of the intramolecular OH bond is sensitive to its bonding environment. The H-bond strength judged from the geometric parameters is in good agreement with the bonding strength judged from the stretching frequencies.
Methods and apparatuses for signaling with geometric constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2012-01-01
Communication systems are described that use signal constellations, which have unequally spaced (i.e. geometrically shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.
Denault, Kristin A.; Brgoch, Jakoah; Gaultois, Michael W.; Mikhailovsky, Alexander; Petry, Ralf; Winkler, Holger; DenBaars, Steven P.; Seshadri, Ram
2014-08-19
The orthosilicate phosphors Sr_{x}Ba_{2–x}SiO_{4}:Eu^{2+} have now been known for over four decades and have found extensive recent use in solid-state white lighting. It is well-recognized in the literature and in practice that intermediate compositions in the solid-solutions between the orthosilicates Sr_{2}SiO_{4} and Ba_{2}SiO_{4} yield the best phosphor hosts when the thermal stability of luminescence is considered. We employ a combination of synchrotron X-ray diffraction, total scattering measurements, density functional theory calculations, and low-temperature heat capacity measurements, in conjunction with detailed temperature- and time-resolved studies of luminescence properties to understand the origins of the improved luminescence properties. We observe that in the intermediate compositions, the two cation sites in the crystal structure are optimally bonded as determined from bond valence sum calculations. Optimal bonding results in a more rigid lattice, as established by the intermediate compositions possessing the highest Debye temperature, which are determined experimentally from low-temperature heat capacity measurements. Greater rigidity in turn results in the highest luminescence efficiency for intermediate compositions at elevated temperatures.
Goldberg, P.W.
1993-04-01
In this paper we consider the problem of learning the positions of spheres in metric spaces, given as data randomly drawn points classified according to whether they are internal or external to an unknown sphere. The particular metrics under consideration are geometrical shape metrics, and the results are intended to be applicable to the problem of learning to identify a shape from related shapes classified according to whether they resemble it visually. While it is typically NP-hard to locate a central point for a hypothesis sphere, we find that it is however often possible to obtain a non-spherical hypothesis which can accurately predict whether further random points lie within the unknown sphere. We exhibit algorithms which achieve this, and in the process indicate useful general techniques for computational learning. Finally we exhibit a natural shape metric and show that it defines a class of spheres not predictable in this sense, subject to standard cryptographic assumptions.
NASA Astrophysics Data System (ADS)
Moosavi-Tekyeh, Zainab; Taherian, Fatemeh; Tayyari, Sayyed Faramarz
2016-05-01
The structural parameters, and vibrational frequencies of 5-nitrosalicylaldehyde (5NSA) were studied by the FT-IR and Raman spectra and the quantum chemical calculations carried out at the B3LYP/6-311++G(d,p) level of theory in order to investigate the intramolecular hydrogen bonding (IHB) present in its structure. The strength and nature of IHB in the optimized structure of 5NSA were studied in detail by means of the atoms in molecules (AIM) and the natural bond orbital (NBO) approaches. The results obtained were then compared with the corresponding data for its parent molecule, salicylaldehyde (SA). Comparisons made between the geometrical structures for 5NSA and SA, their OH/OD stretching and out-of-plane bending modes, their enthalpies for the hydrogen bond, and their AIM parameters demonstrated a stronger H-bonding in 5NSA compared with that in SA. The calculated binding enthalpy (ΔHbind) for 5NSA was -10.92 kcal mol-1. The observed νOH and γOH appeared at about 3120 cm-1 and 786 cm-1 respectively. The stretching frequency shift of H-bond formation was 426 cm-1 which is consistent with ΔHbind and the strength of H-bond in 5NSA. The delocalization energies and electron delocalization indices derived by the NBO and AIM approaches indicate that the resonance effects were responsible for the stronger IHB in 5NSA than in SA.
Generalized Geometric Quantum Speed Limits
NASA Astrophysics Data System (ADS)
Pires, Diego Paiva; Cianciaruso, Marco; Céleri, Lucas C.; Adesso, Gerardo; Soares-Pinto, Diogo O.
2016-04-01
The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.
Witnessed entanglement and the geometric measure of quantum discord
NASA Astrophysics Data System (ADS)
Debarba, Tiago; Maciel, Thiago O.; Vianna, Reinaldo O.
2012-08-01
We establish relations between geometric quantum discord and entanglement quantifiers obtained by means of optimal witness operators. In particular, we prove a relation between negativity and geometric discord in the Hilbert-Schmidt norm, which has been conjectured before [D. Girolami and G. Adesso, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.052110 84, 052110 (2011)]. We also show that, redefining the geometric discord with the trace norm, better bounds can be obtained. We illustrate our results numerically for Werner states and for families of bound entangled states.
Geometric Mechanics of Periodic Pleated Origami
NASA Astrophysics Data System (ADS)
Wei, Z. Y.; Guo, Z. V.; Dudte, L.; Liang, H. Y.; Mahadevan, L.
2013-05-01
Origami structures are mechanical metamaterials with properties that arise almost exclusively from the geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we characterize the geometry and planar and nonplanar effective elastic response of a simple periodically folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and out-of-plane Poisson’s ratios are equal in magnitude, but opposite in sign, independent of material properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we solve the inverse design problem of determining the geometric parameters for the optimal geometric and mechanical response of these extreme structures.
Geometric mechanics of periodic pleated origami.
Wei, Z Y; Guo, Z V; Dudte, L; Liang, H Y; Mahadevan, L
2013-05-24
Origami structures are mechanical metamaterials with properties that arise almost exclusively from the geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we characterize the geometry and planar and nonplanar effective elastic response of a simple periodically folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and out-of-plane Poisson's ratios are equal in magnitude, but opposite in sign, independent of material properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we solve the inverse design problem of determining the geometric parameters for the optimal geometric and mechanical response of these extreme structures.
Gieseking, Rebecca L; Risko, Chad; Brédas, Jean-Luc
2015-06-18
Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries.
Delaney, P. )
1993-10-01
Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.
Halogen bonds in crystal engineering: like hydrogen bonds yet different.
Mukherjee, Arijit; Tothadi, Srinu; Desiraju, Gautam R
2014-08-19
The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen···halogen interactions (X···X) and halogen···heteroatom interactions (X···B). Many X···X and almost all X···B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms-halogen and hydrogen-are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X···X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen···halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be
Aerospace plane guidance using geometric control theory
NASA Technical Reports Server (NTRS)
Van Buren, Mark A.; Mease, Kenneth D.
1990-01-01
A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.
Anderson, Robert C.
1976-06-22
1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.
Geometric phase shifting digital holography.
Jackin, Boaz Jessie; Narayanamurthy, C S; Yatagai, Toyohiko
2016-06-01
A new phase shifting digital holographic technique using a purely geometric phase in Michelson interferometric geometry is proposed. The geometric phase in the system does not depend upon either optical path length or wavelength, unlike dynamic phase. The amount of geometric phase generated is controllable through a rotating wave plate. The new approach has unique features and major advantages in holographic measurement of transparent and reflecting three-dimensional (3D) objects. Experimental results on surface shape measurement and imaging of 3D objects are presented using the proposed method.
Geometric Effects on Electron Cloud
Wang, L
2007-07-06
The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit the machine performances by inducing beam instabilities, beam emittance increase, beam loss, vacuum pressure increases and increased heat load on the vacuum chamber wall. The electron multipacting is a kind of geometric resonance phenomenon and thus is sensitive to the geometric parameters such as the aperture of the beam pipe, beam shape and beam bunch fill pattern, etc. This paper discusses the geometric effects on the electron cloud build-up in a beam chamber and examples are given for different beams and accelerators.
Cırak, Cağrı; Koç, Nurettin
2012-09-01
In the present work, the experimental and the theoretical vibrational spectra of trifluorothymine were investigated. The FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of trifluorothymine in the solid phase were recorded. The geometric parameters (bond lengths and bond angles) and vibrational frequencies of the title molecule in the ground state were calculated using ab initio Hartree-Fock (HF) method and density functional theory (B3LYP) method with the 6-31++G(d,p) and 6-311++G(d,p) basis sets for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with results found in the literature. Vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of trifluorothymine was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H⋯O hydrogen bonds.
Activities: Geometric Transformations. Part 2.
ERIC Educational Resources Information Center
Eddins, Susan K.; And Others
1994-01-01
Presents a lesson that connects basic transformational concepts with transformations on a Cartesian-coordinate system, culminating with the application of matrix operations to perform geometric transformations. Includes reproducible student worksheets and assessment activities. (MKR)
Guitars, Violins, and Geometric Sequences
ERIC Educational Resources Information Center
Barger, Rita; Haehl, Martha
2007-01-01
This article describes middle school mathematics activities that relate measurement, ratios, and geometric sequences to finger positions or the placement of frets on stringed musical instruments. (Contains 2 figures and 2 tables.)
Rangelov, Miroslav A; Petrova, Galina P; Yomtova, Vihra M; Vayssilov, Georgi N
2011-09-01
The study reports a computational analysis of the influence of proton donor group adjacent to the reaction center during ester ammonolysis of an acylated diol as a model reaction for peptide bond formation. This analysis was performed using catalytic maps constructed after a detailed scanning of the available space around the reaction centers in different transition states, a water molecule acting as a typical proton donor. The calculations suggest that an adjacent proton donor center can reduce the activation barrier of the rate determining transition states by up to 7.2 kcal/mol, while no inhibition of the reaction can be achieved by such a group.
NASA Astrophysics Data System (ADS)
Hosoi, Anette
2006-11-01
In this talk we will discuss two optimization topics related to low Reynolds number locomotion: optimal stroke patterns in linked swimmers and optimal fluid material properties in adhesive locomotion. In contrast to many optimization problems, we do not consider geometry, rather we optimize the swimming kinematics or fluid material properties for a given geometrical configuration. In the first case, we begin by optimizing stroke patterns for Purcell's 3-link swimmer. We model the swimmer as a jointed chain of three slender links moving in an inertialess flow. The swimmer is optimized for both efficiency and speed. In the second case, we analyze the adhesive locomotion used by common gastropods such as snails and slugs. Such organisms crawl on a solid substrate by propagating muscular waves of shear stress on a viscoelastic mucus. Using a simple mechanical model, we derive criteria for favorable fluid material properties to lower the energetic cost of locomotion.
Pi Bond Orders and Bond Lengths
ERIC Educational Resources Information Center
Herndon, William C.; Parkanyi, Cyril
1976-01-01
Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)
Antenna with Dielectric Having Geometric Patterns
NASA Technical Reports Server (NTRS)
Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)
2013-01-01
An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.
Roumeli, Eleftheria; Papageorgiou, Dimitrios G; Tsanaktsis, Vasilios; Terzopoulou, Zoe; Chrissafis, Konstantinos; Avgeropoulos, Apostolos; Bikiaris, Dimitrios N
2015-06-03
In this work, the synthesis, structural characteristics, interfacial bonding, and mechanical properties of poly(ε-caprolactone) (PCL) nanocomposites with small amounts (0.5, 1.0, and 2.5 wt %) of amino-functionalized multiwalled carbon nanotubes (f-MWCNTs) prepared by ring-opening polymerization (ROP) are reported. This method allows the creation of a covalent-bonding zone on the surface of nanotubes, which leads to efficient debundling and therefore satisfactory dispersion and effective load transfer in the nanocomposites. The high covalent grafting extent combined with the higher crystallinity provide the basis for a significant enhancement of the mechanical properties, which was detected in the composites with up to 1 wt % f-MWCNTs. Increasing filler concentration encourages intrinsic aggregation forces, which allow only minor grafting efficiency and poorer dispersion and hence inferior mechanical performance. f-MWCNTs also cause a significant improvement on the polymerization reaction of PCL. Indeed, the in situ polymerization kinetics studies reveal a significant decrease in the reaction temperature, by a factor of 30-40 °C, combined with accelerated the reaction kinetics during initiation and propagation and a drastically reduced effective activation energy.
Geometric Exponents of Dilute Loop Models
NASA Astrophysics Data System (ADS)
Provencher, Guillaume; Saint-Aubin, Yvan; Pearce, Paul A.; Rasmussen, Jørgen
2012-04-01
The fractal dimensions of the hull, the external perimeter and of the red bonds are measured through Monte Carlo simulations for dilute minimal models, and compared with predictions from conformal field theory and SLE methods. The dilute models used are those first introduced by Nienhuis. Their loop fugacity is β=-2 \\cos(π/bar{kappa}) where the parameter bar{kappa} is linked to their description through conformal loop ensembles. It is also linked to conformal field theories through their central charges c(bar{kappa})=13-6(bar{kappa}+bar{kappa}^{-1}) and, for the minimal models of interest here, bar{kappa}=p/p' where p and p' are two coprime integers. The geometric exponents of the hull and external perimeter are studied for the pairs ( p, p')=(1,1),(2,3),(3,4),(4,5),(5,6),(5,7), and that of the red bonds for ( p, p')=(3,4). Monte Carlo upgrades are proposed for these models as well as several techniques to improve their speeds. The measured fractal dimensions are obtained by extrapolation on the lattice size H, V→∞. The extrapolating curves have large slopes; despite these, the measured dimensions coincide with theoretical predictions up to three or four digits. In some cases, the theoretical values lie slightly outside the confidence intervals; explanations of these small discrepancies are proposed.
NASA Technical Reports Server (NTRS)
1977-01-01
Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.
Algebraic, geometric, and stochastic aspects of genetic operators
NASA Technical Reports Server (NTRS)
Foo, N. Y.; Bosworth, J. L.
1972-01-01
Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.
Superatoms: Electronic and Geometric Effects on Reactivity.
Reber, Arthur C; Khanna, Shiv N
2017-02-21
filling concepts serve as valuable organizational principles that explain a wide variety of phenomena in the reactivity of clusters. These concepts help to explain the fundamental interactions that allow for specific clusters to be described as superatoms. Superatoms are clusters that exhibit a well-defined valence. A superatom cluster's properties may be intuitively understood and predicted based on the energy gained when the cluster obtains its optimal electronic and geometric structure. This concept has been found to be a unifying principle among a wide variety of metal clusters ranging from free aluminum clusters to ligand protected noble metal clusters and even metal-chalcogenide ligand protected clusters. Thus, the importance of electronic and geometric shell closing concepts supports the superatom concept, because the properties of certain clusters with well-defined valence are controlled by the stability that is enhanced when they retain their closed electronic and geometric shells.
Soydaş, Emine; Bozkaya, Uğur
2015-04-14
An assessment of orbital-optimized MP2.5 (OMP2.5) [ Bozkaya, U.; Sherrill, C. D. J. Chem. Phys. 2014, 141, 204105 ] for thermochemistry and kinetics is presented. The OMP2.5 method is applied to closed- and open-shell reaction energies, barrier heights, and aromatic bond dissociation energies. The performance of OMP2.5 is compared with that of the MP2, OMP2, MP2.5, MP3, OMP3, CCSD, and CCSD(T) methods. For most of the test sets, the OMP2.5 method performs better than MP2.5 and CCSD, and provides accurate results. For barrier heights of radical reactions and aromatic bond dissociation energies OMP2.5-MP2.5, OMP2-MP2, and OMP3-MP3 differences become obvious. Especially, for aromatic bond dissociation energies, standard perturbation theory (MP) approaches dramatically fail, providing mean absolute errors (MAEs) of 22.5 (MP2), 17.7 (MP2.5), and 12.8 (MP3) kcal mol(-1), while the MAE values of the orbital-optimized counterparts are 2.7, 2.4, and 2.4 kcal mol(-1), respectively. Hence, there are 5-8-folds reductions in errors when optimized orbitals are employed. Our results demonstrate that standard MP approaches dramatically fail when the reference wave function suffers from the spin-contamination problem. On the other hand, the OMP2.5 method can reduce spin-contamination in the unrestricted Hartree-Fock (UHF) initial guess orbitals. For overall evaluation, we conclude that the OMP2.5 method is very helpful not only for challenging open-shell systems and transition-states but also for closed-shell molecules. Hence, one may prefer OMP2.5 over MP2.5 and CCSD as an O(N(6)) method, where N is the number of basis functions, for thermochemistry and kinetics. The cost of the OMP2.5 method is comparable with that of CCSD for energy computations. However, for analytic gradient computations, the OMP2.5 method is only half as expensive as CCSD.
Coathup, M J; Bates, P; Cool, P; Walker, P S; Blumenthal, N; Cobb, J P; Blunn, G W
1999-04-01
The purpose of this investigation was to determine which geometric and surface properties encouraged optimal ingrowth and bonding of bone to an extra-cortical plate. Forty-eight titanium extra-cortical plates were attached onto the left and right femora of adult rabbits. The plates were of six different designs and the osseoconductive effects of four surfaces were examined. A roughened titanium surface, a plasma sprayed HA coating of low crystallinity (57%) and a solution precipitated calcium phosphate coating were compared with a plasma sprayed crystalline hydroxyapatite coating (crystallinity 85%). Thin sections were prepared by grinding and polishing. Bone formation and the interface around the plates were investigated histologically and computer and morphometric analyses were used to quantify new bone formation, bone apposition onto the plate, bone porosity and the condition of the HA coating. The study found that a hydroxyapatite coating (with the exception of the solution precipitated coating) had significantly greater interfacial contact with bone when compared to a roughened titanium surface, and that significantly more bone attached to a crystalline HA coating compared with the HA coating of lower crystallinity although significantly more bone formed in the vicinity of the lower crystalline HA coating. Differences in the bony reaction induced by the various geometric designs were evident and the optimal plate design requires either holes or slots along its length as this encouraged bone ingrowth into the plate.
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach
Arrieta, Jorge; Cartwright, Julyan H. E.; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2015-01-01
Mixing fluid in a container at low Reynolds number— in an inertialess environment—is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the “belly phase,” peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing. PMID:26154384
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.
Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2015-01-01
Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.
Guiding light via geometric phases
NASA Astrophysics Data System (ADS)
Slussarenko, Sergei; Alberucci, Alessandro; Jisha, Chandroth P.; Piccirillo, Bruno; Santamato, Enrico; Assanto, Gaetano; Marrucci, Lorenzo
2016-09-01
All known methods for transverse confinement and guidance of light rely on modification of the refractive index, that is, on the scalar properties of electromagnetic radiation. Here, we disclose the concept of a dielectric waveguide that exploits vectorial spin-orbit interactions of light and the resulting geometric phases. The approach relies on the use of anisotropic media with an optic axis that lies orthogonal to the propagation direction but is spatially modulated, so that the refractive index remains constant everywhere. A spin-controlled cumulative phase distortion is imposed on the beam, balancing diffraction for a specific polarization. As well as theoretical analysis, we present an experimental demonstration of the guidance using a series of discrete geometric-phase lenses made from liquid crystal. Our findings show that geometric phases may determine the optical guiding behaviour well beyond a Rayleigh length, paving the way to a new class of photonic devices. The concept is applicable to the whole electromagnetic spectrum.
Geometric scalar theory of gravity
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
Geometrical modelling of textile reinforcements
NASA Technical Reports Server (NTRS)
Pastore, Christopher M.; Birger, Alexander B.; Clyburn, Eugene
1995-01-01
The mechanical properties of textile composites are dictated by the arrangement of yarns contained with the material. Thus to develop a comprehensive understanding of the performance of these materials, it is necessary to develop a geometrical model of the fabric structure. This task is quite complex, as the fabric is made form highly flexible yarn systems which experience a certain degree of compressability. Furthermore there are tremendous forces acting on the fabric during densification typically resulting in yarn displacement and misorientation. The objective of this work is to develop a methodology for characterizing the geometry of yarns within a fabric structure including experimental techniques for evaluating these models. Furthermore, some applications of these geometric results to mechanical prediction models are demonstrated. Although more costly than its predecessors, the present analysis is based on the detailed architecture developed by one of the authors and his colleagues and accounts for many of the geometric complexities that other analyses ignore.
Geometric scaling as traveling waves.
Munier, S; Peschanski, R
2003-12-05
We show the relevance of the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (KPP) equation to the problem of high energy evolution of the QCD amplitudes. We explain how the traveling wave solutions of this equation are related to geometric scaling, a phenomenon observed in deep-inelastic scattering experiments. Geometric scaling is for the first time shown to result from an exact solution of nonlinear QCD evolution equations. Using general results on the KPP equation, we compute the velocity of the wave front, which gives the full high energy dependence of the saturation scale.
Supersymmetric chiral models: Geometrical aspects
NASA Astrophysics Data System (ADS)
Perelomov, A. M.
1989-03-01
We consider classical supersymmetric chiral models of field theory and focus our attention on the geometrical aspects of such theories. A characteristic feature of such models is that the interaction is not introduced by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the target manifold. In many aspects these models are analogous to gauge theories and, as became clear recently, they are also important for superstring theory, which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.
Pauling bond strength, bond length and electron density distribution
Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.
2014-01-18
A power law regression equation, /r)-0.21, determined for a large number of oxide crystals at ambient conditions and /r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, <ρ(rc)> = r[(1.41)/
NASA Astrophysics Data System (ADS)
Hirn, Ulrich; Schennach, Robert
2015-05-01
The process of papermaking requires substantial amounts of energy and wood consumption, which contributes to larger environmental costs. In order to optimize the production of papermaking to suit its many applications in material science and engineering, a quantitative understanding of bonding forces between the individual pulp fibers is of importance. Here we show the first approach to quantify the bonding energies contributed by the individual bonding mechanisms. We calculated the impact of the following mechanisms necessary for paper formation: mechanical interlocking, interdiffusion, capillary bridges, hydrogen bonding, Van der Waals forces, and Coulomb forces on the bonding energy. Experimental results quantify the area in molecular contact necessary for bonding. Atomic force microscopy experiments derive the impact of mechanical interlocking. Capillary bridges also contribute to the bond. A model based on the crystal structure of cellulose leads to values for the chemical bonds. In contrast to general believe which favors hydrogen bonding Van der Waals bonds play the most important role according to our model. Comparison with experimentally derived bond energies support the presented model. This study characterizes bond formation between pulp fibers leading to insight that could be potentially used to optimize the papermaking process, while reducing energy and wood consumption.
Failure analysis of adhesively bonded composite joint: an elasto-plastic approach
NASA Astrophysics Data System (ADS)
Pradhan, S. C.; Kishore, N. N.; Iyengar, N. G. R.
1993-09-01
Joints are important load transferring members in large assembled structures. In joining similar and dissimilar materials, the use of adhesives offers many advantages when compared to other conventional methods. Most commonly used adhesives are the polymers, which exhibit nonlinear behavior. Finite element analysis with paired nodes along the crack path is employed to predict the crack initiation and growth leading to failure. The bond strength is predicted by investigating the possibility of propagation of a crack at the interface of adherend and adhesive. Paired nodes are opened in a sequence, modelling the crack growth. The adhesive is treated to be elasto-plastic for its response. Effect of the parameters such as, stacking sequences in composite adherend, crack growth locations, bond length, bond thicknesses and adhesive stiffnesses on the failure load is studied. The growth of plastic zone as the crack propagates is also examined. On the basis of this study optimal geometrical and material parameters are suggested. The elasto-plastic analysis predicts higher failure loads as compared to linear elastic analysis. The computed bond strength assuming elastic behavior for the adhesive shows satisfactory comparison with experimental results.
Platonic Symmetry and Geometric Thinking
ERIC Educational Resources Information Center
Zsombor-Murray, Paul
2007-01-01
Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…
The geometric oblateness of Uranus
NASA Technical Reports Server (NTRS)
Franklin, F. A.; Avis, C. C.; Colombo, G.; Shapiro, I. I.
1980-01-01
The paper considers photographs of Uranus obtained by the Stratoscope II balloon-borne telescope in 1970. These data have been redigitized and reanalyzed, and the geometric oblateness of Uranus was determined from the isophotes near the limb using an expression in terms of the equatorial and polar radii.
Geometric Quantum Noise of Spin
NASA Astrophysics Data System (ADS)
Shnirman, Alexander; Gefen, Yuval; Saha, Arijit; Burmistrov, Igor S.; Kiselev, Mikhail N.; Altland, Alexander
2015-05-01
The presence of geometric phases is known to affect the dynamics of the systems involved. Here, we consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described by a Langevin equation with quantum noise. We show that geometric phases enter the stochastic noise terms. Specifically, we consider small ferromagnetic particles (nanomagnets) or quantum dots close to Stoner instability, and investigate the dynamics of the total magnetization in the presence of tunneling coupling to the metallic leads. We generalize the Ambegaokar-Eckern-Schön effective action and the corresponding semiclassical equations of motion from the U(1) case of the charge degree of freedom to the SU(2) case of the magnetization. The Langevin forces (torques) in these equations are strongly influenced by the geometric phase. As a first but nontrivial application, we predict low temperature quantum diffusion of the magnetization on the Bloch sphere, which is governed by the geometric phase. We propose a protocol for experimental observation of this phenomenon.
Celestial mechanics with geometric algebra
NASA Technical Reports Server (NTRS)
Hestenes, D.
1983-01-01
Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.
Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers
NASA Astrophysics Data System (ADS)
Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian
2016-07-01
Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers.
Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers.
Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian
2016-07-12
Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers.
Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers
Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian
2016-01-01
Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers. PMID:27403589
NASA Astrophysics Data System (ADS)
Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei; Xu, Shenbo
2015-08-01
Plastic planar nanofluidic chips are becoming increasingly important for biological and chemical applications. However, the majority of the present bonding methods for planar nanofluidic chips suffer from high dimension loss and low bonding strength. In this work, a novel thermal bonding technique based on O2 plasma and ethanol treatment was proposed. With the assistance of O2 plasma and ethanol, the PET (polyethylene terephthalate) planar nanofluidic chip can be bonded at a low bonding temperature of 50 °C. To increase the bonding rate and bonding strength, the O2 plasma parameters and thermal bonding parameters were optimized during the bonding process. The tensile test indicates that the bonding strength of the PET planar nanofluidic chip can reach 0.954 MPa, while the auto-fluorescence test demonstrates that there is no leakage or blockage in any of the bonded micro- or nanochannels.
Random broadcast on random geometric graphs
Bradonjic, Milan; Elsasser, Robert; Friedrich, Tobias
2009-01-01
In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.
Monolithic geometric anti-spring blades
NASA Astrophysics Data System (ADS)
Cella, G.; Sannibale, V.; DeSalvo, R.; Márka, S.; Takamori, A.
2005-03-01
In this article we investigate the principle and properties of a vertical passive seismic noise attenuator conceived for ground based gravitational wave interferometers. This mechanical attenuator based on a particular geometry of cantilever blades called monolithic geometric anti springs (MGAS) permits the design of mechanical harmonic oscillators with very low resonant frequency (below 10 mHz). Here we address the theoretical description of the mechanical device, focusing on the most important quantities for the low-frequency regime, on the distribution of internal stresses, and on the thermal stability. In order to obtain physical insight of the attenuator peculiarities, we devise some simplified models, rather than use the brute force of finite element analysis. Those models have been used to optimize the design of a seismic attenuation system prototype for LIGO advanced configurations and for the next generation of the TAMA interferometer.
A geometrical perspective for the bargaining problem.
Wong, Kelvin Kian Loong
2010-04-26
A new treatment to determine the Pareto-optimal outcome for a non-zero-sum game is presented. An equilibrium point for any game is defined here as a set of strategy choices for the players, such that no change in the choice of any single player will increase the overall payoff of all the players. Determining equilibrium for multi-player games is a complex problem. An intuitive conceptual tool for reducing the complexity, via the idea of spatially representing strategy options in the bargaining problem is proposed. Based on this geometry, an equilibrium condition is established such that the product of their gains over what each receives is maximal. The geometrical analysis of a cooperative bargaining game provides an example for solving multi-player and non-zero-sum games efficiently.
Diffusion bonding of copper to niobium
NASA Astrophysics Data System (ADS)
Wagner, Adrian R.
Processes used to join metal to ceramic at low temperatures have proven to be inefficient because multiple brazing cycles with different brazing temperatures and braze filler metals are required. Even though this is reproducible and robust, it is not ideal due to the manufacturing time and cost associated with multiple brazing cycles. A more efficient and cost effective process is to utilize the diffusion bonding technique to join different metallic layers prior to joining the entire ceramic assembly in one brazing cycle. In this study, the diffusion bonding of copper to niobium was examined. To the author's knowledge, the diffusion bonding of Cu to Nb has not been researched, and the diffusion of Cu into Nb or Nb into Cu has not been observed. A series of diffusion bonding experiments were conducted to determine the optimal bonding time, temperature, and pressure for the Cu-Nb system. The diffusion bonded samples were evaluated using mechanical testing and microscopy. Results from characterization indicate that diffusion of Nb into Cu occurs, and a robust bond with no interfacial voids is formed using different combinations of bonding parameters. The diffusion of Nb into Cu and with failure occurring outside the diffusion bonded region during all mechanical testing indicate that Cu can be bonded to Nb via the diffusion bonding technique.
Geometrical Phases in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Christian, Joy Julius
In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a
ERIC Educational Resources Information Center
Sanderson, R. T.
1972-01-01
The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)
What Determines Bond Costs. Municipal Bonds Series.
ERIC Educational Resources Information Center
Young, Douglas; And Others
Public officials in small towns who participate infrequently in the bond market need information about bond financing. This publication, one in a series of booklets published by the Western Rural Development Center using research gathered between 1967-77, discusses factors influencing the marketability and cost of bond financing for towns and…
Tetrel bond-σ-hole bond as a preliminary stage of the SN2 reaction.
Grabowski, Sławomir J
2014-02-07
MP2/aug-cc-pVTZ calculations were carried out on complexes of ZH4, ZFH3 and ZF4 (Z = C, Si and Ge) molecules with HCN, LiCN and Cl(-) species acting as Lewis bases through nitrogen centre or chlorine ion. Z-Atoms in these complexes usually act as Lewis acid centres forming σ-hole bonds with Lewis bases. Such noncovalent interactions may adopt a name of tetrel bonds since they concern the elements of the group IV. There are exceptions for complexes of CH4 and CF4, as well as for the F4SiNCH complex where the tetrel bond is not formed. The energetic and geometrical parameters of the complexes were analyzed and numerous correlations between them were found. The Quantum Theory of 'Atoms in Molecules' and Natural Bonds Orbital (NBO) method used here should deepen the understanding of the nature of the tetrel bond. An analysis of the electrostatic potential surfaces of the interacting species is performed. The electron charge redistribution, being the result of the tetrel bond formation, is the same as that of the SN2 reaction. The energetic and geometrical parameters of the complexes analyzed here correspond to different stages of the SN2 process.
Geometrical modelling of textile reinforcements
NASA Technical Reports Server (NTRS)
Pastore, Christopher M.; Birger, Alexander B.; Clyburn, Eugene
1995-01-01
The mechanical properties of textile composites are dictated by the arrangement of yarns contained within the material. Thus, to develop a comprehensive understanding of the performance of these materials, it is necessary to develop a geometrical model of the fabric structure. This task is quite complex, as the fabric is made from highly flexible yarn systems which experience a certain degree of compressibility. Furthermore there are tremendous forces acting on the fabric during densification typically resulting in yarn displacement and misorientation. The objective of this work is to develop a methodology for characterizing the geometry of yarns within a fabric structure including experimental techniques for evaluating these models. Furthermore, some applications of these geometric results to mechanical property predictions models are demonstrated.
The verdict geometric quality library.
Knupp, Patrick Michael; Ernst, C.D. (Elemental Technologies, Inc., American Fork, UT); Thompson, David C.; Stimpson, C.J.; Pebay, Philippe Pierre
2006-03-01
Verdict is a collection of subroutines for evaluating the geometric qualities of triangles, quadrilaterals, tetrahedra, and hexahedra using a variety of metrics. A metric is a real number assigned to one of these shapes depending on its particular vertex coordinates. These metrics are used to evaluate the input to finite element, finite volume, boundary element, and other types of solvers that approximate the solution to partial differential equations defined over regions of space. The geometric qualities of these regions is usually strongly tied to the accuracy these solvers are able to obtain in their approximations. The subroutines are written in C++ and have a simple C interface. Each metric may be evaluated individually or in combination. When multiple metrics are evaluated at once, they share common calculations to lower the cost of the evaluation.
Geometric Landau-Zener interferometry.
Gasparinetti, S; Solinas, P; Pekola, J P
2011-11-11
We propose a new type of interferometry, based on geometric phases accumulated by a periodically driven two-level system undergoing multiple Landau-Zener transitions. As a specific example, we study its implementation in a superconducting charge pump. We find that interference patterns appear as a function of the pumping frequency and the phase bias, and clearly manifest themselves in the pumped charge. We also show that the effects described should persist in the presence of realistic decoherence.
Geometrical interpretation of optical absorption
Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L.; Montesinos-Amilibia, J. M.
2011-08-15
We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.
Geometrical modeling of fibrous materials under compression
NASA Astrophysics Data System (ADS)
Maze, Benoit; Vahedi Tafreshi, Hooman; Pourdeyhimi, Behnam
2007-10-01
Many fibrous materials such as nonwovens are consolidated via compaction rolls in a so-called calendering process. Hot rolls compress the fiber assembly and cause fiber-to-fiber bonding resulting in a strong yet porous structure. In this paper, we describe an algorithm for generating three dimensional virtual fiberwebs and simulating the geometrical changes that happen to the structure during the calendering process. Fibers are assumed to be continuous filaments with square cross sections lying randomly in the x or y direction. The fibers are assumed to be flexible to allow bending over one another during the compression process. Lateral displacement is not allowed during the compaction process. The algorithm also does not allow the fibers to interpenetrate or elongate and so the mass of the fibers is conserved. Bending of the fibers is modeled either by considering a constant "slope of bending" or constant "span of bending." The influence of the bending parameters on the propagation of compression through the material's thickness is discussed. In agreement with our experimental observations, it was found that the average solid volume fraction profile across the thickness becomes U shaped after the calendering. The application of these virtual structures in studying transport phenomena in fibrous materials is also demonstrated.
Polar metals by geometric design
NASA Astrophysics Data System (ADS)
Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.
2016-05-01
Gauss’s law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals—it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra—the structural signatures of perovskites—owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.
Polar Metals by Geometric Design
Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J. -W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.
2016-05-05
Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions(1). Quantum physics supports this view(2), demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals(3)-it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases(4). Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO(3) perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements(5). We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra-the structural signatures of perovskites-owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported(6-10), non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.
Students' Perceptions of Parental Bonding Styles and Their Academic Burnout
ERIC Educational Resources Information Center
Shin, Hyojung; Lee, Jayoung; Kim, Boyoung; Lee, Sang Min
2012-01-01
This study investigated how parental bonding style affects academic burnout in Korean adolescents. Participants were 447 middle school students, who completed the Parental Bonding Instrument and the Maslach Burnout Inventory-Student Survey. MANCOVA results confirmed that adolescents reporting the optimal bonding parental style, for both mother and…
Geometrical and FEA study on Millipede Forming
NASA Astrophysics Data System (ADS)
Kong, Lingran; Tang, Di; Ding, Shichao; Zhang, Yuankun
2013-12-01
Millipede Forming is an innovative sheet metal forming approach that has been proposed and developed in Australia. U-channels, Z-channels or tubular products can be made by Millipede Forming. While a strip moves through an optimal transitional surface between the entry to exit of a forming stand, the redundant longitudinal membrane strain can be significantly reduced compared to the conventional roll forming, which is the essential principle to obtaining high quality products. The incremental forming process studied has demonstrated major advantages on space efficiency, power consumption and materials sensitivities. The purpose of this study is to investigate the effects of main geometrical parameters and their optimization, in order to minimize the redundant longitudinal strains into elastic to avoid the redundant plastic deformations at flange during forming. In this study, a mild-steel U-channel sample with 10 mm flange width, fabricated by Millipede Forming in a forming length of 200 mm has been studied. Theoretical longitudinal membrane strains at profile's edge of different transitional surfaces and downhill pass are also analyzed. The results showed that obtaining an optimal transitional surface is essential and necessary in controlling the peak longitudinal strain to an acceptable amount and that by increasing downhill pass, longitudinal strain can be significantly reduced. The optimized transitional surface and downhill pass flow were simulated by Abaqus, and the peak longitudinal strain was finally less than 0.2% through a very short forming length of 200 mm. The results prove that Millipede Forming can achieve a better product quality in a much shorter forming distance than conventional roll forming.
Geometric and Electronic Properties of Edge-decorated Graphene Nanoribbons
Chang, Shen-Lin; Lin, Shih-Yang; Lin, Shih-Kang; Lee, Chi-Hsuan; Lin, Ming-Fa
2014-01-01
Edge-decorated graphene nanoribbons are investigated with the density functional theory; they reveal three stable geometric structures. The first type is a tubular structure formed by the covalent bonds of decorating boron or nitrogen atoms. The second one consists of curved nanoribbons created by the dipole-dipole interactions between two edges when decorated with Be, Mg, or Al atoms. The final structure is a flat nanoribbon produced due to the repulsive force between two edges; most decorated structures belong to this type. Various decorating atoms, different curvature angles, and the zigzag edge structure are reflected in the electronic properties, magnetic properties, and bonding configurations. Most of the resulting structures are conductors with relatively high free carrier densities, whereas a few are semiconductors due to the zigzag-edge-induced anti-ferromagnetism. PMID:25123103
Development of a Geometric Spatial Visualization Tool
ERIC Educational Resources Information Center
Ganesh, Bibi; Wilhelm, Jennifer; Sherrod, Sonya
2009-01-01
This paper documents the development of the Geometric Spatial Assessment. We detail the development of this instrument which was designed to identify middle school students' strategies and advancement in understanding of four geometric concept domains (geometric spatial visualization, spatial projection, cardinal directions, and periodic patterns)…
Elastic swimming I: Optimization
NASA Astrophysics Data System (ADS)
Lauga, Eric; Yu, Tony; Hosoi, Anette
2006-03-01
We consider the problem of swimming at low Reynolds number by oscillating an elastic filament in a viscous liquid, as investigated by Wiggins and Goldstein (1998, Phys Rev Lett). In this first part of the study, we characterize the optimal forcing conditions of the swimming strategy and its optimal geometrical characteristics.
Using Multiple Bonding Strategies.
Larson, Thomas D
2015-01-01
There are many ways to bond to tooth structure, some micro-mechanical some chemical, some a combination. Different dentin bonding materials have different bonding strengths to differently prepared surfaces, and because of differences in their nature, different areas of tooth structure present peculiar bonding challenges. This paper will review a variety of material types, elucidating their particular bonding strengths and commenting on improved bonding strategies to increase durability, strength, and favorable pulpal response. In this discussion, resin dentin bonding systems, glass ionomers, Gluma, resin cements, and newer combined products will br reviewed.
Geometrically Induced Interactions and Bifurcations
NASA Astrophysics Data System (ADS)
Binder, Bernd
2010-01-01
In order to evaluate the proper boundary conditions in spin dynamics eventually leading to the emergence of natural and artificial solitons providing for strong interactions and potentials with monopole charges, the paper outlines a new concept referring to a curvature-invariant formalism, where superintegrability is given by a special isometric condition. Instead of referring to the spin operators and Casimir/Euler invariants as the generator of rotations, a curvature-invariant description is introduced utilizing a double Gudermann mapping function (generator of sine Gordon solitons and Mercator projection) cross-relating two angular variables, where geometric phases and rotations arise between surfaces of different curvature. Applying this stereographic projection to a superintegrable Hamiltonian can directly map linear oscillators to Kepler/Coulomb potentials and/or monopoles with Pöschl-Teller potentials and vice versa. In this sense a large scale Kepler/Coulomb (gravitational, electro-magnetic) wave dynamics with a hyperbolic metric could be mapped as a geodesic vertex flow to a local oscillator singularity (Dirac monopole) with spherical metrics and vice versa. Attracting fixed points and dynamic constraints are given by special isometries with magic precession angles. The nonlinear angular encoding directly provides for a Shannon mutual information entropy measure of the geodesic phase space flow. The emerging monopole patterns show relations to spiral Fresnel holography and Berry/Aharonov-Bohm geometric phases subject to bifurcation instabilities and singularities from phase ambiguities due to a local (entropy) overload. Neutral solitons and virtual patterns emerging and mediating in the overlap region between charged or twisted holographic patterns are visualized and directly assigned to the Berry geometric phase revealing the role of photons, neutrons, and neutrinos binding repulsive charges in Coulomb, strong and weak interaction.
An alternative near-neighbor definition of hydrogen bonding in water.
Hammerich, A D; Buch, V
2008-03-21
A definition of hydrogen bonding in water is proposed in which an H...O pair forms a hydrogen bond if (a) an oxygen atom is the nearest nonchemically bonded neighbor of a hydrogen atom; and (b) the hydrogen is the first or the second intermolecular near-neighbor of the oxygen. Unlike the commonly employed hydrogen-bond definitions, this definition does not depend on the choice of geometric or energetic cutoffs applied to continuous distributions of properties. With the present definition, the distribution of O...H bond lengths decays smoothly to zero in a physically reasonable range. After correction for the presence of intermittent hydrogen bonds, this definition appears to provide a more stable description of hydrogen bonds and coordination shells than the more conventional cutoff-based definition. "Partial" H bonds satisfying only one of the two bonding requirements serve as transition states in the H-bond network evolution.
Geometric Theory of Hinged Devices
NASA Astrophysics Data System (ADS)
Kovalev, M. D.
1995-02-01
This article contains results connected with engineering mechanics. Among them are: a theorem "on the nonuniqueness of a statically determinable truss", a classification of hinged mechanisms and their schemes, and an example of a hinged mechanism with variable number of degrees of freedom. The study of general geometric properties is based on the concept, introduced here, of an abstract hinged device in Rd. This concept formalizes a well-known approach in the theory of mechanisms. The formalization gives rise to a number of interesting mathematical questions.
Geometric reasoning and spatial understanding
Binford, T.O.
1982-01-01
Progress has been made on extensions to ACRONYM which include: representation and reasoning with time, events, and sequences; collaboration with MIT to develop geometric learning: representation of function, and reasoning between structure and function. A new ribbon finder for ACRONYM is under construction. Work in figure/ground separation is underway as a basis for the ribbon finder. Preliminary results are shown in grouping operations to determine regularities in images. A stereo system has been completed which combines edge-based stereo matching with surface interpolation utilizing correspondence of gray levels. Design of a new stereo vision system is underway.
Geometric morphology of granular materials
NASA Astrophysics Data System (ADS)
Schlei, Bernd R.; Prasad, Lakshman; Skourikhine, Alexei N.
2000-10-01
We present a new method to transform the spectral pixel information of a micrograph into an affine geometric description, which allows us to analyze the morphology of granular materials. We use spectral and pulse-coupled neural network based segmentation techniques to generate blobs, and a newly developed algorithm to extract dilated contours. A constrained Delaunay tessellation of the contour points results in a triangular mesh. This mesh is the basic ingredient of the Chodal Axis Transform, which provides a morphological decomposition of shapes. Such decomposition allows for grain separation and the efficient computation of the statistical features of granular materials.
Graphene with geometrically induced vorticity.
Pachos, Jiannis K; Stone, Michael; Temme, Kristan
2008-04-18
At half filling, the electronic structure of graphene can be modeled by a pair of free two-dimensional Dirac fermions. We explicitly demonstrate that in the presence of a geometrically induced gauge field an everywhere-real Kekulé modulation of the hopping matrix elements can correspond to a nonreal Higgs field with nontrivial vorticity. This provides a natural setting for fractionally charged vortices with localized zero modes. For fullerenelike molecules we employ the index theorem to demonstrate the existence of six low-lying states that do not depend strongly on the Kekulé-induced mass gap.
Evolution: geometrical and dynamical aspects.
Freguglia, Paolo; Bazzani, Armando
2003-01-01
We develop a possible axiomatic approach to the evolution theory that has been previously discussed in Freguglia [2002]. The axioms synthesize the fundamental ideas of evolution theory and allow a geometrical and dynamical interpretation of the generation law. Using the axioms we derive a simple reaction-diffusion model which introduces the species as self-organized stationary distribution of a finite population and simulates the evolution of a phenotypic character under the effect of an external perturbing action. The dynamical properties of the model are briefly presented using numerical simulations.
Moving walls and geometric phases
NASA Astrophysics Data System (ADS)
Facchi, Paolo; Garnero, Giancarlo; Marmo, Giuseppe; Samuel, Joseph
2016-09-01
We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.
Science, art and geometrical imagination
NASA Astrophysics Data System (ADS)
Luminet, Jean-Pierre
2011-06-01
From the geocentric, closed world model of Antiquity to the wraparound universe models of relativistic cosmology, the parallel history of space representations in science and art illustrates the fundamental rôle of geometric imagination in innovative findings. Through the analysis of works of various artists and scientists like Plato, Dürer, Kepler, Escher, Grisey or the author, it is shown how the process of creation in science and in the arts rests on aesthetical principles such as symmetry, regular polyhedra, laws of harmonic proportion, tessellations, group theory, etc., as well as on beauty, conciseness and an emotional approach of the world.
SQCD Vacua and Geometrical Engineering
Tatar, Radu; Wetenhall, Ben
2008-11-23
We consider the geometrical engineering constructions for the N = 1 SQCD vacua. After one T-duality, these geometries with wrapped D5 branes become N = 1 brane configurations with NS-branes and D4-branes. After performing a flop, the geometries contain branes, antibranes and branes wrapped on non-holomorphic cycles. The various tachyon condensations between pairs of wrapped D5 branes and anti-D5 branes together with deformations of the cycles give rise to a variety of supersymmetric and metastable non-supersymmetric vacua.
Hegde, Mithra N; Bhandary, Shruti
2008-01-01
The purpose of this study was to assess the shear bond strength of Total etch Prime and Bond NT and self etch newer dentin bonding agents Clearfil S3, Xeno III Bond, Clearfil Protect Bond and G Bond used to bond composite resin to dentin, and to compare the difference in the shear bond strengths of the self etch newer dentin bonding agents. Hundred freshly extracted noncarious human maxillary premolar teeth were selected. The occlusal surfaces of each tooth were ground to prepare flat dentin surfaces at a depth of 1.5 mm and were randomly grouped, with twenty specimens in each: Group I - Prime and Bond NT, Group II - Clearfil Protect Bond, Group III - Xeno III Bond, Group IV - Clearfil S3 Bond, Group V - G Bond. Each group was treated with its respective bonding agents, as per the manufacturers' instructions Clearfill – Kuraray, Japan, G bond – GC Tokyo, Japan, Xeno- De Trey Densply, Germany. Blocks or Cylinders of composite resin were built up using Teflon mold and cured. Shear bond strengths were tested using Instron Universal testing machine and recorded in Mpa. The results were statistically analyzed using One-way anova and Tukeys HSD test. The total etch adhesive showed higher shear bond strength than self etching adhesives (P < 0.001). Within the limitations of this in vitro study, it can be concluded that all the adhesive agents evaluated showed optimal shear bond strength 17-20 Mpa, except G bond. However, shear bond strength of composite resin to dentin is better with one bottle total etch adhesive than with the newer self etching bonding agents. PMID:20142888
π-Hole aerogen bonding interactions.
Bauzá, Antonio; Frontera, Antonio
2015-10-14
In this manuscript we combine high level ab initio calculations (RI-MP2/aug-cc-pVTZ) and the analysis of several crystal structures to demonstrate the existence of π-hole aerogen bonding interactions in Xe(iv) compounds. The ability of XeF4 and Xe(OMe)4 to interact with electron rich molecules is rationalized using several computational tools, including molecular electrostatic potential surfaces, energetic and geometric features of the complexes and "atoms in molecules" (AIM) and Natural Bond Orbital (NBO) analyses. We have found support for the π-hole interaction involving the xenon atom from the solid state architecture of several X-ray structures retrieved from the crystal structural depot. Particularly, π-hole aerogen bonding interactions are quite common in the solid state of Xe(IV) compounds.
From geometric optics to plants: the eikonal equation for buckling
NASA Astrophysics Data System (ADS)
Nechaev, Sergei; Polovnikov, Kirill
Optimal embedding in the three-dimensional space of exponentially growing squeezed surfaces, like plants leaves, or 2D colonies of exponentially reproducing cells, is considered in the framework of conformal approach. It is shown that the boundary profile of a growing tissue is described by the 2D eikonal equation, which provides the geometric optic approximation for the wave front propagating in the media with inhomogeneous refraction coefficient. The variety of optimal surfaces embedded in 3D is controlled by spatial dependence of the refraction coefficient which, in turn, is dictated by the local growth protocol.
From geometric optics to plants: the eikonal equation for buckling.
Nechaev, Sergei; Polovnikov, Kirill
2017-02-15
Optimal buckling of a tissue, e.g. a plant leaf, growing by means of exponential division of its peripheral cells, is considered in the framework of a conformal approach. It is shown that the boundary profile of a tissue is described by the 2D eikonal equation, which provides the geometric optic approximation for the wavefront propagating in a medium with an inhomogeneous refraction coefficient. A variety of optimal surfaces embedded in 3D is controlled by spatial dependence of the refraction coefficient which, in turn, is dictated by the local growth protocol.
Oxidative addition of the C-I bond on aluminum nanoclusters
NASA Astrophysics Data System (ADS)
Sengupta, Turbasu; Das, Susanta; Pal, Sourav
2015-07-01
sensitive to the geometrical shapes and electronic structures of the clusters rather than their size, imposing the fact that comprehensive studies on aluminum clusters can be beneficial for nanoscience and nanotechnology. To understand the possible reaction mechanism in detail, the reaction pathway is investigated with the ab initio Born Oppenheimer Molecular Dynamics (BOMD) simulation and the Natural Bond Orbital (NBO) analysis. In short, our theoretical study highlights the thermodynamic and kinetic details of C-I bond dissociation on aluminum clusters for future endeavors in cluster chemistry. Electronic supplementary information (ESI) available: Cartesian coordinates for the optimized structures and harmonic frequencies, sample IRC data and plot, grid data for three dimensional potential energy surface and contour plot and data for BOMD simulation. See DOI: 10.1039/c5nr02278a
NPP VIIRS Geometric Performance Status
NASA Technical Reports Server (NTRS)
Lin, Guoqing; Wolfe, Robert E.; Nishihama, Masahiro
2011-01-01
Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.
Geometric effects in tomographic reconstruction
Barnes, F.L.; Azevedo, S.G.; Martz, H.E. Jr.; Roberson, G.P.; Schneberk, D.J.; Skeate, M.F.
1990-01-08
In x-ray and ion-beam computerized tomography, there are a number of reconstruction effects, manifested as artifacts, that can be attributed to the geometry of the experimental setup and of the object being scanned. In this work, we will examine four geometric effects that are common to first-and third-generation (parallel beam, 180 degree) computerized tomography (CT) scanners and suggest solutions for each problem. The geometric effects focused on in this paper are: X-pattern'' artifacts (believed to be caused by several errors), edge-generated ringing artifacts (due to improper choice of the reconstruction filter and cutoff frequency), circular-ring artifacts (caused by employing uncalibrated detectors), and tuning-fork artifacts (generated by an incorrectly specified center-of-rotation). Examples of four effects are presented. The X-pattern and edge-generated ringing artifacts are presented with actual experimental data introducing the artifact. given the source of the artifact, we present simulated data designed to replicate the artifact. Finally, we suggest ways to reduce or completely remove these artifacts. The circular-ring and tuning-fork artifacts are introduced with actual experimental data as well, while digital signal processing solutions are employed to remove the artifacts from the data. 15 refs., 12 figs.
Image coding with geometric wavelets.
Alani, Dror; Averbuch, Amir; Dekel, Shai
2007-01-01
This paper describes a new and efficient method for low bit-rate image coding which is based on recent development in the theory of multivariate nonlinear piecewise polynomial approximation. It combines a binary space partition scheme with geometric wavelet (GW) tree approximation so as to efficiently capture curve singularities and provide a sparse representation of the image. The GW method successfully competes with state-of-the-art wavelet methods such as the EZW, SPIHT, and EBCOT algorithms. We report a gain of about 0.4 dB over the SPIHT and EBCOT algorithms at the bit-rate 0.0625 bits-per-pixels (bpp). It also outperforms other recent methods that are based on "sparse geometric representation." For example, we report a gain of 0.27 dB over the Bandelets algorithm at 0.1 bpp. Although the algorithm is computationally intensive, its time complexity can be significantely reduced by collecting a "global" GW n-term approximation to the image from a collection of GW trees, each constructed separately over tiles of the image.
Chemically-bonded brick production based on burned clay by means of semidry pressing
NASA Astrophysics Data System (ADS)
Voroshilov, Ivan; Endzhievskaya, Irina; Vasilovskaya, Nina
2016-01-01
We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick were shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg m3, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W m * °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.
NASA Astrophysics Data System (ADS)
Mihaylov, Tzvetan; Georgieva, Ivelina; Bauer, Günther; Kostova, Irena; Manolov, Ilia; Trendafilova, Natasha
Geometry optimization of ortho-, meta-, and para-pyridyl-substituted di(4-hydroxycoumarin) [di(4-HC)] was performed with the density functional theory (DFT) [B3LYP/6-31G(d)] method. Two asymmetrical intramolecular O bond H?O hydrogen bonds (HBs) stabilized the structures. The calculated single HB energies varied from -62.56 to -47.53 kJ mol-1 and pointed to a relative strong hydrogen bond in the systems studied. The 2- and 6-pyridyl substituents produced the largest geometrical changes in di(4-hydroxycoumarin) fragment. The highest total HB energy was found for 2-pyridyl-substituted and the lowest one for 6-pyridyl-substituted di(4-hydroxycoumarin). The HB energy variations were confirmed with rotational barrier method calculations. Both steric and electrostatic factors were found to be responsible for the HB asymmetry in the compounds studied. According to the molecular electrostatic potential (MEP) calculations the most preferred reactive site for electrophilic attack of pyridyl-substituted di(4-hydroxycoumarin)s are the pyridine nitrogen and the carbonyl oxygens, followed by the hydroxyl oxygens.
Chemically-bonded brick production based on burned clay by means of semidry pressing
Voroshilov, Ivan Endzhievskaya, Irina Vasilovskaya, Nina
2016-01-15
We presented a study on the possibility of using the burnt rocks of the Krasnoyarsk Territory for production of chemically-bonded materials in the form of bricks which are so widely used in multistory housing and private house construction. The radiographic analysis of the composition of burnt rock was conducted and a modifier to adjust the composition uniformity was identified. The mixing moisture content was identified and optimal amount at 13-15% was determined. The method of semidry pressing has been chosen. The process of obtaining moldings has been theoretically proved; the advantages of chemically-bonded wall materials compared to ceramic brick were shown. The production of efficient artificial stone based on material burnt rocks, which is comparable with conventionally effective ceramic materials or effective with cell tile was proved, the density of the burned clay-based cell tile makes up to 1630-1785 kg \\ m{sup 3}, with compressive strength of 13.6-20.0 MPa depending on the compression ratio and cement consumption, frost resistance index is F50, and the thermal conductivity in the masonry is λ = 0,459-0,546 W \\ m {sup *} °C. The clear geometric dimensions of pressed products allow the use of the chemically-bonded brick based on burnt clay as a facing brick.
NASA Technical Reports Server (NTRS)
Gwo, Dz-Hung (Inventor)
2003-01-01
A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.
Zhu, Xiang; Lu, Yunxiang; Peng, Changjun; Hu, Jun; Liu, Honglai; Hu, Ying
2011-04-14
In recent years, several novel halogenated liquids with characteristics of ionic liquids (ILs) were reported. To explore their performance in the absorption of CO(2), in this work, quantum chemical calculations at DFT level have been carried out to investigate halogen bonding interactions between experimentally available brominated ion pairs and CO(2) molecules. It is shown that, as compared to B3LYP, the functional PBE yields geometrical and energetic data more close to those of MP2 for cation-CO(2) systems. The cation of brominated ILs under study can interact with CO(2) molecules through Br···O interactions, possibly making an important impact on the physical solubility of CO(2) in brominated ILs. The optimized geometries of the complexes of the ion pair with CO(2) molecules are quite similar to those of the corresponding complexes of the cation, especially for the essentially linear C-Br···O contacts. However, much weaker halogen bonds are predicted in the former systems, as indicated by the longer intermolecular distances and the smaller interaction energies. Charges derived from NBO analysis reveal the origin of the different optimized conformations and halogen bonding interactions for the CO(2) molecule. Based on the electrostatic potential results, the substitution of hydrogen atoms with fluorine atoms constituting the cation is then applied to enhance halogen bond strength. The QTAIM analysis further validates the existence of halogen bonding interaction in all complexes. The topological properties at the halogen bond critical points indicate that the Br···O interactions in the complexes are basically electrostatic in nature and belong to conventional weak halogen bonds. This study would be helpful for designing new and effective ILs for CO(2) physical absorption.
Wang, Lili; Gao, Jun; Bi, Fuzhen; Song, Bo; Liu, Chengbu
2014-10-02
As noncovalent intermolecular interactions, hydrogen bond (HB) and halogen bond (XB) are attracting increasing attention. In this work, the potential energy surfaces (PESs) of hydrogen and halogen bonds are compared. Twelve halogen-bonded and three hydrogen-bonded models are scanned for analysis using the MP2 level of theory. This work indicates that potential energy surfaces of both HB and XB have angular distortion. The potential well of XB is narrower than that of HB. With the elongation of the bond length, the potential energy surfaces get flatter. The best fitting functions for angular distortion and the flattening character of angular terms are also combined into a modified Buckingham potential. The testing results show that the essential features of the PES, including angular distortion and flattening character, have been reproduced. These results provide a better understanding of halogen and hydrogen bonds and the optimization of halogen bond force fields.
Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin
2000-01-01
A methodology is presented for determining the fatigue life of bonded composite skin/stringer structures based on delamination fatigue characterization data and geometric nonlinear finite element analyses. Results were compared to fatigue tests on stringer flange/skin specimens to verify the approach.
An algorithm for converting a virtual-bond chain into a complete polypeptide backbone chain
NASA Technical Reports Server (NTRS)
Luo, N.; Shibata, M.; Rein, R.
1991-01-01
A systematic analysis is presented of the algorithm for converting a virtual-bond chain, defined by the coordinates of the alpha-carbons of a given protein, into a complete polypeptide backbone. An alternative algorithm, based upon the same set of geometric parameters used in the Purisima-Scheraga algorithm but with a different "linkage map" of the algorithmic procedures, is proposed. The global virtual-bond chain geometric constraints are more easily separable from the loal peptide geometric and energetic constraints derived from, for example, the Ramachandran criterion, within the framework of this approach.
Geometric asymmetry driven Janus micromotors.
Zhao, Guanjia; Pumera, Martin
2014-10-07
The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a "coconut" micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.
Wrinkled flames and geometrical stretch
NASA Astrophysics Data System (ADS)
Denet, Bruno; Joulin, Guy
2011-07-01
Localized wrinkles of thin premixed flames subject to hydrodynamic instability and geometrical stretch of uniform intensity (S) are studied. A stretch-affected nonlinear and nonlocal equation, derived from an inhomogeneous Michelson-Sivashinsky equation, is used as a starting point, and pole decompositions are used as a tool. Analytical and numerical descriptions of isolated (centered or multicrested) wrinkles with steady shapes (in a frame) and various amplitudes are provided; their number increases rapidly with 1/S>0. A large constant S>0 weakens or suppresses all localized wrinkles (the larger the wrinkles, the easier the suppression), whereas S<0 strengthens them; oscillations of S further restrict their existence domain. Self-similar evolutions of unstable many-crested patterns are obtained. A link between stretch, nonlinearity, and instability with the cutoff size of the wrinkles in turbulent flames is suggested. Open problems are evoked.
Optimized actuators for ultrathin deformable primary mirrors.
Laslandes, Marie; Patterson, Keith; Pellegrino, Sergio
2015-05-20
A novel design and selection scheme for surface-parallel actuators for ultrathin, lightweight mirrors is presented. The actuation system consists of electrodes printed on a continuous layer of piezoelectric material bonded to an optical-quality substrate. The electrodes provide almost full coverage of the piezoelectric layer, in order to maximize the amount of active material that is available for actuation, and their shape is optimized to maximize the correctability and stroke of the mirror for a chosen number of independent actuators and for a dominant imperfection mode. The starting point for the design of the electrodes is the observation that the correction of a figure error that has at least two planes of mirror symmetry is optimally done with twin actuators that have the same optimized shape but are rotated through a suitable angle. Additional sets of optimized twin actuators are defined by considering the intersection between the twin actuators, and hence an arbitrarily fine actuation pattern can be generated. It is shown that this approach leads to actuator systems with better performance than simple, geometrically based actuators. Several actuator patterns to correct third-order astigmatism aberrations are presented, and an experimental demonstration of a 41-actuator mirror is also presented.
The driving force for Π-bond localization and bond alternation in trisannelated benzenes.
Lin, Xuhui; Chen, Zhenhua; Wu, Wei
2017-01-25
To investigate the factors that may cause bond length alternation and π-bond localization in annelated benzenes, ab initio valence bond calculations were performed. The results reveal that the bond length alternation of annelated benzene is determined by the strain-induced hybridization change from the partially optimized geometries, in which the central benzene ring is constrained to a regular hexagon, to the equilibrium geometries rather than the previously recognized re-hybridization effect that the carbon atoms in the central ring are deviated from sp(2) hybridization. Meanwhile, the π-π interaction also provides a sort of driving force, which facilitates bond length alternation, which in turn magnifies π-bond localization. A subsequent potential energy curve study shows that σ-strain and π-π interactions have different mechanisms for the effect.
DeBlase, Andrew; Licata, Megan; Galbraith, John Morrison
2008-12-18
Three-center four-electron (3c4e) pi bonding systems analogous to that of the ozone molecule have been studied using modern valence bond theory. Molecules studied herein consist of combinations of first row atoms C, N, and O with the addition of H atoms where appropriate in order to preserve the 3c4e pi system. Breathing orbital valence bond (BOVB) calculations were preformed at the B3LYP/6-31G**-optimized geometries in order to determine structural weights, pi charge distributions, resonance energies, and pi bond energies. It is found that the most weighted VB structure depends on atomic electronegativity and charge distribution, with electronegativity as the dominant factor. By nature, these systems are delocalized, and therefore, resonance energy is the main contributor to pi bond energies. Molecules with a single dominant VB structure have low resonance energies and therefore low pi bond energies.
Geometric solitons of Hamiltonian flows on manifolds
Song, Chong; Sun, Xiaowei; Wang, Youde
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Treatment of geometric singularities in implicit solvent models
NASA Astrophysics Data System (ADS)
Yu, Sining; Geng, Weihua; Wei, G. W.
2007-06-01
Geometric singularities, such as cusps and self-intersecting surfaces, are major obstacles to the accuracy, convergence, and stability of the numerical solution of the Poisson-Boltzmann (PB) equation. In earlier work, an interface technique based PB solver was developed using the matched interface and boundary (MIB) method, which explicitly enforces the flux jump condition at the solvent-solute interfaces and leads to highly accurate biomolecular electrostatics in continuum electric environments. However, such a PB solver, denoted as MIBPB-I, cannot maintain the designed second order convergence whenever there are geometric singularities, such as cusps and self-intersecting surfaces. Moreover, the matrix of the MIBPB-I is not optimally symmetrical, resulting in the convergence difficulty. The present work presents a new interface method based PB solver, denoted as MIBPB-II, to address the aforementioned problems. The present MIBPB-II solver is systematical and robust in treating geometric singularities and delivers second order convergence for arbitrarily complex molecular surfaces of proteins. A new procedure is introduced to make the MIBPB-II matrix optimally symmetrical and diagonally dominant. The MIBPB-II solver is extensively validated by the molecular surfaces of few-atom systems and a set of 24 proteins. Converged electrostatic potentials and solvation free energies are obtained at a coarse grid spacing of 0.5Å and are considerably more accurate than those obtained by the PBEQ and the APBS at finer grid spacings.
Hydrogen bonding definitions and dynamics in liquid water.
Kumar, R; Schmidt, J R; Skinner, J L
2007-05-28
X-ray and neutron diffractions, vibrational spectroscopy, and x-ray Raman scattering and absorption experiments on water are often interpreted in terms of hydrogen bonding. To this end a number of geometric definitions of hydrogen bonding in water have been developed. While all definitions of hydrogen bonding are to some extent arbitrary, those involving one distance and one angle for a given water dimer are unnecessarily so. In this paper the authors develop a systematic procedure based on two-dimensional potentials of mean force for defining cutoffs for a given pair of distance and angular coordinates. They also develop an electronic structure-based definition of hydrogen bonding in liquid water, related to the electronic occupancy of the antibonding OH orbitals. This definition turns out to be reasonably compatible with one of the distance-angle geometric definitions. These two definitions lead to an estimate of the number of hydrogen bonds per molecule in liquid simple point charge/extended (SPC/E) water of between 3.2 and 3.4. They also used these and other hydrogen-bond definitions to examine the dynamics of local hydrogen-bond number fluctuations, finding an approximate long-time decay constant for SPC/E water of between 0.8 and 0.9 ps, which corresponds to the time scale for local structural relaxation.
2009-07-31
cleanliness (foreign particles) and surface morphology (roughness). Two silicon wafers, when properly cleaned, can easily bond at room temperature because of...4 Figure IV data for nSi-nGaN bond. Structure is similar to that shown in Figure Difficulties and Knowledge Added Surface Morphology and...Particles One of the most important features of materials in determining whether they will bond is the quality of the bonding surfaces , in both
Diffusion bonding aeroengine components
NASA Astrophysics Data System (ADS)
Fitzpatrick, G. A.; Broughton, T.
1988-10-01
The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.
Geometric view of adaptive optics control
NASA Astrophysics Data System (ADS)
Wiberg, Donald M.; Max, Claire E.; Gavel, Donald T.
2005-05-01
The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures.
Hansen, D Flemming; Westler, William M; Kunze, Micha B A; Markley, John L; Weinhold, Frank; Led, Jens J
2012-03-14
A natural bond orbital (NBO) analysis of unpaired electron spin density in metalloproteins is presented, which allows a fast and robust calculation of paramagnetic NMR parameters. Approximately 90% of the unpaired electron spin density occupies metal-ligand NBOs, allowing the majority of the density to be modeled by only a few NBOs that reflect the chemical bonding environment. We show that the paramagnetic relaxation rate of protons can be calculated accurately using only the metal-ligand NBOs and that these rates are in good agreement with corresponding rates measured experimentally. This holds, in particular, for protons of ligand residues where the point-dipole approximation breaks down. To describe the paramagnetic relaxation of heavy nuclei, also the electron spin density in the local orbitals must be taken into account. Geometric distance restraints for (15)N can be derived from the paramagnetic relaxation enhancement and the Fermi contact shift when local NBOs are included in the analysis. Thus, the NBO approach allows us to include experimental paramagnetic NMR parameters of (15)N nuclei as restraints in a structure optimization protocol. We performed a molecular dynamics simulation and structure determination of oxidized rubredoxin using the experimentally obtained paramagnetic NMR parameters of (15)N. The corresponding structures obtained are in good agreement with the crystal structure of rubredoxin. Thus, the NBO approach allows an accurate description of the geometric structure and the dynamics of metalloproteins, when NMR parameters are available of nuclei in the immediate vicinity of the metal-site.
Wouters, J.M.; Doe, P.J.
1991-02-01
The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.
Rapid adhesive bonding concepts
NASA Technical Reports Server (NTRS)
Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.
1984-01-01
Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.
NASA Technical Reports Server (NTRS)
Burkett, F. S.
1978-01-01
Report makes it relatively easy for hybrid-circuit manufacturers to convert integrated circuit chips with aluminum bead leads. Report covers: techniques for handling tiny chips; proper geometries for ultrasonic bonding tips; best combinations of pressure, pulse time, and ultrasonic energy for bonding; and best thickness for metal films to which beam leads are bonded.
NASA Astrophysics Data System (ADS)
Zentel, Tobias; Kühn, Oliver
2016-12-01
The applicability of the density functional based tight binding (DFTB) method to the description of hydrogen bond dynamics and infrared (IR) spectroscopy is addressed for the exemplary protic ionic liquid triethylammonium nitrate. Potential energy curves for proton transfer in gas and liquid phases are shown to be comparable to the high level coupled cluster theory in the thermally accessible range of bond lengths. Geometric correlations in the hydrogen bond dynamics are analyzed for a cluster of six ion pairs. Comparing DFTB and DFT data lends further support for the reliability of the DFTB method. Therefore, DFTB bulk simulations are performed to quantify the extent of geometric correlations in terms of Pauling's bond order model. Further, IR absorption spectra are obtained using DFTB and analyzed putting emphasis on the signatures of hydrogen bonding in the NH-stretching and far IR hydrogen bond range.
A wire scanning based method for geometric calibration of high resolution CT system
NASA Astrophysics Data System (ADS)
Jiang, Ruijie; Li, Guang; Gu, Ning; Chen, Gong; Luo, Shouhua
2015-03-01
This paper is about geometric calibration of the high resolution CT (Computed Tomography) system. Geometric calibration refers to the estimation of a set of parameters that describe the geometry of the CT system. Such parameters are so important that a little error of them will degrade the reconstruction images seriously, so more accurate geometric parameters are needed in the higher-resolution CT systems. But conventional calibration methods are not accurate enough for the current high resolution CT system whose resolution can reach sub-micrometer or even tens of nanometers. In this paper, we propose a new calibration method which has higher accuracy and it is based on the optimization theory. The superiority of this method is that we build a new cost function which sets up a relationship between the geometrical parameters and the binary reconstruction image of a thin wire. When the geometrical parameters are accurate, the cost function reaches its maximum value. In the experiment, we scanned a thin wire as the calibration data and a thin bamboo stick as the validation data to verify the correctness of the proposed method. Comparing with the image reconstructed with the geometric parameters calculated by using the conventional calibration method, the image reconstructed with the parameters calculated by our method has less geometric artifacts, so it can verify that our method can get more accurate geometric calibration parameters. Although we calculated only one geometric parameter in this paper, the geometric artifacts are still eliminated significantly. And this method can be easily generalized to all the geometrical parameters calibration in fan-beam or cone-beam CT systems.
Point-process principal components analysis via geometric optimization.
Solo, Victor; Pasha, Syed Ahmed
2013-01-01
There has been a fast-growing demand for analysis tools for multivariate point-process data driven by work in neural coding and, more recently, high-frequency finance. Here we develop a true or exact (as opposed to one based on time binning) principal components analysis for preliminary processing of multivariate point processes. We provide a maximum likelihood estimator, an algorithm for maximization involving steepest ascent on two Stiefel manifolds, and novel constrained asymptotic analysis. The method is illustrated with a simulation and compared with a binning approach.
Geometric Effects on the Amplification of First Mode Instability Waves
NASA Technical Reports Server (NTRS)
Kirk, Lindsay C.; Candler, Graham V.
2013-01-01
The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.
Geometric Quantization and Foliation Reduction
NASA Astrophysics Data System (ADS)
Skerritt, Paul
A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether "quantization commutes with reduction." Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kahler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kahler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds. In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kahler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or "admissible", values of momentum. We first propose a reduction procedure for the prequantum geometric structures that "covers" symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems. We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces. Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees
Geometric asymmetry driven Janus micromotors
NASA Astrophysics Data System (ADS)
Zhao, Guanjia; Pumera, Martin
2014-09-01
The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S
Bonding thermoplastic polymers
Wallow, Thomas I.; Hunter, Marion C.; Krafcik, Karen Lee; Morales, Alfredo M.; Simmons, Blake A.; Domeier, Linda A.
2008-06-24
We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.
Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites
NASA Astrophysics Data System (ADS)
Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja
2016-09-01
Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.
Gary S. Groenewold
2005-08-01
Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.
Janotti, Anderson; Van de Walle, Chris G
2007-01-01
The concept of a chemical bond stands out as a major development in the process of understanding how atoms are held together in molecules and solids. Lewis' classical picture of chemical bonds as shared-electron pairs evolved to the quantum-mechanical valence-bond and molecular-orbital theories, and the classification of molecules and solids in terms of their bonding type: covalent, ionic, van der Waals and metallic. Along with the more complex hydrogen bonds and three-centre bonds, they form a paradigm within which the structure of almost all molecules and solids can be understood. Here, we present evidence for hydrogen multicentre bonds-a generalization of three-centre bonds-in which a hydrogen atom equally bonds to four or more other atoms. When substituting for oxygen in metal oxides, hydrogen bonds equally to all the surrounding metal atoms, becoming fourfold coordinated in ZnO, and sixfold coordinated in MgO. These multicentre bonds are remarkably strong despite their large hydrogen-metal distances. The calculated local vibration mode frequency in MgO agrees with infrared spectroscopy measurements. Multicoordinated hydrogen also explains the dependence of electrical conductivity on oxygen partial pressure, resolving a long-standing controversy on the role of point defects in unintentional n-type conductivity of ZnO (refs 8-10).
Geometrical aspects of quantum spaces
Ho, Pei -Ming
1996-05-11
Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S_{1}^{2} and the quantum complex projective space CP{sub q}(N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S_{q}^{2} and CP_{q}(N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP_{q}(N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given.
Geometric reasoning about assembly tools
Wilson, R.H.
1997-01-01
Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.
Geometric aspects of ordering phenomena
NASA Astrophysics Data System (ADS)
Cugliandolo, Leticia F.
2017-01-01
A macroscopic system prepared in a disordered phase and quenched across a second-order phase transition into an ordered phase undergoes a coarsening process whereby it orders locally in one of the equilibrium states. The study of the evolution of the morphology of the ordered structures in two dimensions has recently unveiled two interesting and generic features. On the one hand, the dynamics first approach a critical percolating state via the growth of a new lengthscale and satisfying scaling properties with respect to it. The time needed to reach the critical percolating state diverges with the system size, though more weakly than the equilibration time. On the other hand, once the critical percolating structures established, the geometrical and statistical properties at larger scales than the one established by the usual dynamic growing length remain the ones of critical percolation. These observations are common to different microscopic dynamics (single spin flip, local and non-local spin exchange, voter) in pure or weakly disordered systems. We discuss these results and we refer to the relevant publications for details. xml:lang="fr"
Geometric programming prediction of design trends for OMV protective structures
NASA Technical Reports Server (NTRS)
Mog, R. A.; Horn, J. R.
1990-01-01
The global optimization trends of protective honeycomb structural designs for spacecraft subject to hypervelocity meteroid and space debris are presented. This nonlinear problem is first formulated for weight minimization of the orbital maneuvering vehicle (OMV) using a generic monomial predictor. Five problem formulations are considered, each dependent on the selection of independent design variables. Each case is optimized by considering the dual geometric programming problem. The dual variables are solved for in terms of the generic estimated exponents of the monomial predictor. The primal variables are then solved for by conversion. Finally, parametric design trends are developed for ranges of the estimated regression parameters. Results specify nonmonotonic relationships for the optimal first and second sheet mass per unit areas in terms of the estimated exponents.
Control of tree water networks: A geometric programming approach
NASA Astrophysics Data System (ADS)
Sela Perelman, L.; Amin, S.
2015-10-01
This paper presents a modeling and operation approach for tree water supply systems. The network control problem is approximated as a geometric programming (GP) problem. The original nonlinear nonconvex network control problem is transformed into a convex optimization problem. The optimization model can be efficiently solved to optimality using state-of-the-art solvers. Two control schemes are presented: (1) operation of network actuators (pumps and valves) and (2) controlled demand shedding allocation between network consumers with limited resources. The dual of the network control problem is formulated and is used to perform sensitivity analysis with respect to hydraulic constraints. The approach is demonstrated on a small branched-topology network and later extended to a medium-size irrigation network. The results demonstrate an intrinsic trade-off between energy costs and demand shedding policy, providing an efficient decision support tool for active management of water systems.
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-06
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.
Geometric Growing Patterns: What's the Rule?
ERIC Educational Resources Information Center
Hourigan, Mairéad; Leavy, Aisling
2015-01-01
While within a geometric repeating pattern, there is an identifiable core which is made up of objects that repeat in a predictable manner, a geometric growing pattern (also called visual or pictorial growing patterns in other curricula) "is a pattern that is made from a sequence of figures [or objects] that change from one term to the next in…
Early Sex Differences in Weighting Geometric Cues
ERIC Educational Resources Information Center
Lourenco, Stella F.; Addy, Dede; Huttenlocher, Janellen; Fabian, Lydia
2011-01-01
When geometric and non-geometric information are both available for specifying location, men have been shown to rely more heavily on geometry compared to women. To shed insight on the nature and developmental origins of this sex difference, we examined how 18- to 24-month-olds represented the geometry of a surrounding (rectangular) space when…
Geometrical splitting and reduction of Feynman diagrams
NASA Astrophysics Data System (ADS)
Davydychev, Andrei I.
2016-10-01
A geometrical approach to the calculation of N-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.
Second-quantized formulation of geometric phases
Deguchi, Shinichi; Fujikawa, Kazuo
2005-07-15
The level crossing problem and associated geometric terms are neatly formulated by the second-quantized formulation. This formulation exhibits a hidden local gauge symmetry related to the arbitrariness of the phase choice of the complete orthonormal basis set. By using this second-quantized formulation, which does not assume adiabatic approximation, a convenient exact formula for the geometric terms including off-diagonal geometric terms is derived. The analysis of geometric phases is then reduced to a simple diagonalization of the Hamiltonian, and it is analyzed both in the operator and path-integral formulations. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial (and thus no monopole singularity) for arbitrarily large but finite time interval T. The integrability of Schroedinger equation and the appearance of the seemingly nonintegrable phases are thus consistent. The topological proof of the Longuet-Higgins' phase-change rule, for example, fails in the practical Born-Oppenheimer approximation where a large but finite ratio of two time scales is involved and T is identified with the period of the slower system. The difference and similarity between the geometric phases associated with level crossing and the exact topological object such as the Aharonov-Bohm phase become clear in the present formulation. A crucial difference between the quantum anomaly and the geometric phases is also noted.
Ozkanlar, Abdullah Zhou, Tiecheng; Clark, Aurora E.
2014-12-07
The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the use of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed.
Geometric Hamiltonian quantum mechanics and applications
NASA Astrophysics Data System (ADS)
Pastorello, Davide
2016-08-01
Adopting a geometric point of view on Quantum Mechanics is an intriguing idea since, we know that geometric methods are very powerful in Classical Mechanics then, we can try to use them to study quantum systems. In this paper, we summarize the construction of a general prescription to set up a well-defined and self-consistent geometric Hamiltonian formulation of finite-dimensional quantum theories, where phase space is given by the Hilbert projective space (as Kähler manifold), in the spirit of celebrated works of Kibble, Ashtekar and others. Within geometric Hamiltonian formulation quantum observables are represented by phase space functions, quantum states are described by Liouville densities (phase space probability densities), and Schrödinger dynamics is induced by a Hamiltonian flow on the projective space. We construct the star-product of this phase space formulation and some applications of geometric picture are discussed.
NASA Astrophysics Data System (ADS)
Mercier, Patrick H. J.
Seventy-five synthetic powder trioctahedral mica samples (between Mg, Co, Ni, and Fe end members, with different degrees of oxidation, vacancy and Al/Si contents, and including an OH/F substitution series) were studied by room-temperature powder X-ray diffraction. The iron-bearing samples were studied by 57Fe Mossbauer spectroscopy. Subsets of the samples were also characterized by scanning electron microscopy combined with energy dispersive spectroscopy, optical microscopy, X-ray fluorescence spectroscopy, and gas chromatography. Lattice parameters (refined under the 1M stacking polytype, space group C2/m) were determined for all powder samples and iron site populations ([4]Fe 3+, [6]Fe2+, and [6]Fe 2+) were obtained from Mossbauer spectroscopy. The relation (c/a)cosbeta* = 113 was found to hold exactly (within experimental error) for all synthetic powders whereas it does not hold in general for synthetic and natural 1M single-crystals. The above relation is predicted to hold for geometric home-octahedral sheets (having equal M1 and M2 site bond lengths) and not to hold for geometric meso-octahedral sheets (having unequal M1 and M2 site bond lengths). The counter-rotation of the M2 site of 1M single-crystals exactly (within experimental error) follows the geometric meso-octahedral sheet model, which, assuming a uniform octahedral sheet height and site-specific M1 and M2 bond lengths, predicts site-specific flattening angles and a counter-rotation angle for the M2 site which is uniquely determined by the bond length difference between the M1 and M2 sites. A geometric meso-octahedral 2:1 layer silicate was shown to require corrugated tetrahedral sheets composed of bond-distorted tetrahedra. Key geometric meso-octahedral distortions in 1M single-crystals were identified and elucidated: (i) intra-layer top-bottom displacements within a TOT layer; and (ii) a tetrahedral bending angle between the apical bond and the pyramidal base formed by the three basal bonds. Plots
Theoretical investigation on multiple bonds in terminal actinide nitride complexes.
Wu, Qun-Yan; Wang, Cong-Zhi; Lan, Jian-Hui; Xiao, Cheng-Liang; Wang, Xiang-Ke; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun
2014-09-15
A series of actinide (An) species of L-An-N compounds [An = Pa-Pu, L = [N(CH2CH2NSiPr(i)3)3](3-), Pr(i) = CH(CH3)2] have been investigated using scalar relativistic density functional theory (DFT) without considering spin-orbit coupling effects. The ground state geometric and electronic structures and natural bond orbital (NBO) analysis of actinide compounds were studied systematically in neutral and anionic forms. It was found that with increasing actinide atomic number, the bond length of terminal multiple An-N1 bond decreases, in accordance with the actinide contraction. The Mayer bond order of An-N1 decreases gradually from An = Pa to Pu, which indicates a decrease in bond strength. The terminal multiple bond for L-An-N compounds contains one σ and two π molecular orbitals, and the contributions of the 6d orbital to covalency are larger in magnitude than the 5f orbital based on NBO analysis and topological analysis of electron density. This work may help in understanding of the bonding nature of An-N multiple bonds and elucidating the trends and electronic structure changes across the actinide series. It can also shed light on the construction of novel An-N multiple bonds.
NASA Astrophysics Data System (ADS)
Gibbs, G. V.; Ross, N. L.; Cox, D. F.
2017-03-01
The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.
Mobility in geometrically confined membranes.
Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia
2011-08-02
Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion.
Mobility in geometrically confined membranes
Domanov, Yegor A.; Aimon, Sophie; Toombes, Gilman E. S.; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S.; Bassereau, Patricia
2011-01-01
Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the “membrane size” for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111—3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman–Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion. PMID:21768336
An improved measurement model of binocular vision using geometrical approximation
NASA Astrophysics Data System (ADS)
Wang, Qiyue; Wang, Zhongyu; Yao, Zhenjian; Forrest, Jeffrey; Zhou, Weihu
2016-12-01
In order to improve the precision of a binocular vision measurement system, an effective binocular vision measurement method, named geometrical approximation, is proposed. This method can optimize the measurement results by geometrical approximation operation based on the principles of optimization theory and spatial geometry. To evaluate the properties of the proposed method, both simulative and practical experiments are carried out. The influence of image noise and focal length error on measurement results is discussed. The results show that measurement performance of the proposed method is manifested well. Besides, the proposed method is also compared with Bundle adjustment and least squares method in a practical experiment. The experiment results indicate that the average error, calculated by using the proposed method, is 0.076 mm less than Bundle adjustment’s 0.085 mm, and only half of the least squares method’s 0.146 mm. At the meantime, the proposed method enjoys a high level of computational efficiency when compared to Bundle adjustment. Since no nonlinear iteration optimization is involved, this method can be applied readily to real time on-line measurements.
Bonded semiconductor substrate
Atwater, Jr.; Harry A. , Zahler; James M.
2010-07-13
Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.
Electronic, magnetic, and geometric structure of metallo-carbohedrenes
Reddy, B.V.; Khanna, S.N.; Jena, P. )
1992-12-04
The energetics and the electronic, magnetic, and geometric structure of the metallocarbohedrene Ti[sub 8]C[sub 12] have been calculated self-consistently in the density functional formulation. The structure of Ti[sub 8]C[sub 12] is a distorted dodecahedron with a binding energy of 6.1 electron volts per atom. The unusual stability is derived from covalent-like bonding between carbon atoms and between titanium and carbon atoms with no appreciable interaction between titanium atoms. The density of states at the Fermi energy is high and is derived from a strong hybridization between titanium 3d and carbon sp electrons. Titanium sites carry a small magnetic moment of 0.35 Bohr magneton per atom and the cluster is only weakly magnetic. 13 refs., 3 figs., 1 tab.
Conceptual aspects of geometric quantum computation
NASA Astrophysics Data System (ADS)
Sjöqvist, Erik; Azimi Mousolou, Vahid; Canali, Carlo M.
2016-10-01
Geometric quantum computation is the idea that geometric phases can be used to implement quantum gates, i.e., the basic elements of the Boolean network that forms a quantum computer. Although originally thought to be limited to adiabatic evolution, controlled by slowly changing parameters, this form of quantum computation can as well be realized at high speed by using nonadiabatic schemes. Recent advances in quantum gate technology have allowed for experimental demonstrations of different types of geometric gates in adiabatic and nonadiabatic evolution. Here, we address some conceptual issues that arise in the realizations of geometric gates. We examine the appearance of dynamical phases in quantum evolution and point out that not all dynamical phases need to be compensated for in geometric quantum computation. We delineate the relation between Abelian and non-Abelian geometric gates and find an explicit physical example where the two types of gates coincide. We identify differences and similarities between adiabatic and nonadiabatic realizations of quantum computation based on non-Abelian geometric phases.
On geometric factors for neutral particle analyzers.
Stagner, L; Heidbrink, W W
2014-11-01
Neutral particle analyzers (NPA) detect neutralized energetic particles that escape from plasmas. Geometric factors relate the counting rate of the detectors to the intensity of the particle source. Accurate geometric factors enable quick simulation of geometric effects without the need to resort to slower Monte Carlo methods. Previously derived expressions [G. R. Thomas and D. M. Willis, "Analytical derivation of the geometric factor of a particle detector having circular or rectangular geometry," J. Phys. E: Sci. Instrum. 5(3), 260 (1972); J. D. Sullivan, "Geometric factor and directional response of single and multi-element particle telescopes," Nucl. Instrum. Methods 95(1), 5-11 (1971)] for the geometric factor implicitly assume that the particle source is very far away from the detector (far-field); this excludes applications close to the detector (near-field). The far-field assumption does not hold in most fusion applications of NPA detectors. We derive, from probability theory, a generalized framework for deriving geometric factors that are valid for both near and far-field applications as well as for non-isotropic sources and nonlinear particle trajectories.
On geometric factors for neutral particle analyzers
Stagner, L.; Heidbrink, W. W.
2014-11-15
Neutral particle analyzers (NPA) detect neutralized energetic particles that escape from plasmas. Geometric factors relate the counting rate of the detectors to the intensity of the particle source. Accurate geometric factors enable quick simulation of geometric effects without the need to resort to slower Monte Carlo methods. Previously derived expressions [G. R. Thomas and D. M. Willis, “Analytical derivation of the geometric factor of a particle detector having circular or rectangular geometry,” J. Phys. E: Sci. Instrum. 5(3), 260 (1972); J. D. Sullivan, “Geometric factor and directional response of single and multi-element particle telescopes,” Nucl. Instrum. Methods 95(1), 5–11 (1971)] for the geometric factor implicitly assume that the particle source is very far away from the detector (far-field); this excludes applications close to the detector (near-field). The far-field assumption does not hold in most fusion applications of NPA detectors. We derive, from probability theory, a generalized framework for deriving geometric factors that are valid for both near and far-field applications as well as for non-isotropic sources and nonlinear particle trajectories.
Noland, R.A.; Walker, D.E.
1961-06-13
A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.
NASA Technical Reports Server (NTRS)
Plueddemann, E.
1986-01-01
Primers employed in bonding together the various material interfaces in a photovoltaic module are being developed. The approach develops interfacial adhesion by generating actual chemical bonds between the various materials bonded together. The current status of the program is described along with the progress toward developing two general purpose primers for ethylene vinyl acetate (EVA), one for glass and metals, and another for plastic films.
Bond strength of repaired amalgam restorations.
Rey, Rosalia; Mondragon, Eduardo; Shen, Chiayi
2015-01-01
This in vitro study investigated the interfacial flexural strength (FS) of amalgam repairs and the optimal combination of repair materials and mechanical retention required for a consistent and durable repair bond. Amalgam bricks were created, each with 1 end roughened to expose a fresh surface before repair. Four groups followed separate repair protocols: group 1, bonding agent with amalgam; group 2, bonding agent with composite resin; group 3, mechanical retention (slot) with amalgam; and group 4, slot with bonding agent and amalgam. Repaired specimens were stored in artificial saliva for 1, 10, 30, 120, or 360 days before being loaded to failure in a 3-point bending test. Statistical analysis showed significant changes in median FS over time in groups 2 and 4. The effect of the repair method on the FS values after each storage period was significant for most groups except the 30-day storage groups. Amalgam-amalgam repair with adequate condensation yielded the most consistent and durable bond. An amalgam bonding agent could be beneficial when firm condensation on the repair surface cannot be achieved or when tooth structure is involved. Composite resin can be a viable option for amalgam repair in an esthetically demanding region, but proper mechanical modification of the amalgam surface and selection of the proper bonding system are essential.
Rapid bonding of Pyrex glass microchips.
Akiyama, Yoshitake; Morishima, Keisuke; Kogi, Atsuna; Kikutani, Yoshikuni; Tokeshi, Manabu; Kitamori, Takehiko
2007-03-01
A newly developed vacuum hot press system has been specially designed for the thermal bonding of glass substrates in the fabrication process of Pyrex glass microchemical chips. This system includes a vacuum chamber equipped with a high-pressure piston cylinder and carbon plate heaters. A temperature of up to 900 degrees C and a force of as much as 9800 N could be applied to the substrates in a vacuum atmosphere. The Pyrex substrates bonded with this system under different temperatures, pressures, and heating times were evaluated by tensile strength tests, by measurements of thickness, and by observations of the cross-sectional shapes of the microchannels. The optimal bonding conditions of the Pyrex glass substrates were 570 degrees C for 10 min under 4.7 N/mm(2) of applied pressure. Whereas more than 16 h is required for thermal bonding with a conventional furnace, the new system could complete the whole bonding processes within just 79 min, including heating and cooling periods. Such improvements should considerably enhance the production rate of Pyrex glass microchemical chips. Whereas flat and dust-free surfaces are required for conventional thermal bonding, especially without long and repeated heating periods, our hot press system could press a fine dust into glass substrates so that even the areas around the dust were bonded. Using this capability, we were able to successfully integrate Pt/Ti thin film electrodes into a Pyrex glass microchip.
The promise of geometric morphometrics.
Richtsmeier, Joan T; DeLeon, Valerie Burke; Lele, Subhash R
2002-01-01
Nontraditional or geometric morphometric methods have found wide application in the biological sciences, especially in anthropology, a field with a strong history of measurement of biological form. Controversy has arisen over which method is the "best" for quantifying the morphological difference between forms and for making proper statistical statements about the detected differences. This paper explains that many of these arguments are superfluous to the real issues that need to be understood by those wishing to apply morphometric methods to biological data. Validity, the ability of a method to find the correct answer, is rarely discussed and often ignored. We explain why demonstration of validity is a necessary step in the evaluation of methods used in morphometrics. Focusing specifically on landmark data, we discuss the concepts of size and shape, and reiterate that since no unique definition of size exists, shape can only be recognized with reference to a chosen surrogate for size. We explain why only a limited class of information related to the morphology of an object can be known when landmark data are used. This observation has genuine consequences, as certain morphometric methods are based on models that require specific assumptions, some of which exceed what can be known from landmark data. We show that orientation of an object with reference to other objects in a sample can never be known, because this information is not included in landmark data. Consequently, a descriptor of form difference that contains information on orientation is flawed because that information does not arise from evidence within the data, but instead is a product of a chosen orientation scheme. To illustrate these points, we apply superimposition, deformation, and linear distance-based morphometric methods to the analysis of a simulated data set for which the true differences are known. This analysis demonstrates the relative efficacy of various methods to reveal the true
The role of bond tangency and bond gap in hard sphere crystallization of chains.
Karayiannis, Nikos Ch; Foteinopoulou, Katerina; Laso, Manuel
2015-03-07
We report results from Monte Carlo simulations on dense packings of linear, freely-jointed chains of hard spheres of uniform size. In contrast to our past studies where bonded spheres along the chain backbone were tangent, in the present work a finite tolerance in the bond is allowed. Bond lengths are allowed to fluctuate in the interval [σ, σ + dl], where σ is the sphere diameter. We find that bond tolerance affects the phase behaviour of hard-sphere chains, especially in the close vicinity of the melting transition. First, a critical dl(crit) exists marking the threshold for crystallization, whose value decreases with increasing volume fraction. Second, bond gaps enhance the onset of phase transition by accelerating crystal nucleation and growth. Finally, bond tolerance has an effect on crystal morphologies: in the tangent limit the majority of structures correspond to stack-faulted random hexagonal close packing (rhcp). However, as bond tolerance increases a wealth of diverse structures can be observed: from single fcc (or hcp) crystallites to random hcp/fcc stackings with multiple directions. By extending the simulations over trillions of MC steps (10(12)) we are able to observe crystal-crystal transitions and perfection even for entangled polymer chains in accordance to the Ostwald's rule of stages in crystal polymorphism. Through simple geometric arguments we explain how the presence of rigid or flexible constraints affects crystallization in general atomic and particulate systems. Based on the present results, it can be concluded that proper tuning of bond gaps and of the connectivity network can be a controlling factor for the phase behaviour of model, polymer-based colloidal and granular systems.
Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara
2014-01-01
The natural bases of nucleic acids have a strong preference for one tautomer form, guaranteeing fidelity in their hydrogen bonding potential. However, base pairs observed in recent crystal structures of polymerases and ribosomes are best explained by an alternative base tautomer, leading to the formation of base pairs with Watson-Crick-like geometries. These observations set limits to geometric selection in molecular recognition of complementary Watson-Crick pairs for fidelity in replication and translation processes.
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.; Chen, Xiang; Zhang, Ning-Tian
1988-01-01
The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future.
Geometric symmetries in superfluid vortex dynamics
Kozik, Evgeny; Svistunov, Boris
2010-10-01
Dynamics of quantized vortex lines in a superfluid feature symmetries associated with the geometric character of the complex-valued field, w(z)=x(z)+iy(z), describing the instant shape of the line. Along with a natural set of Noether's constants of motion, which - apart from their rather specific expressions in terms of w(z) - are nothing but components of the total linear and angular momenta of the fluid, the geometric symmetry brings about crucial consequences for kinetics of distortion waves on the vortex lines, the Kelvin waves. It is the geometric symmetry that renders Kelvin-wave cascade local in the wave-number space. Similar considerations apply to other systems with purely geometric degrees of freedom.
Heat transfer in geometrically similar cylinders
NASA Technical Reports Server (NTRS)
Riekert, P; Held, A
1941-01-01
The power and heat-stress conditions of geometrically similar engines are discussed. The advantages accruing from smaller cylinder dimensions are higher specific horsepower, lower weight per horsepower, lower piston temperature, and less frontal area, with reduced detonation tendency.
Hidden geometric correlations in real multiplex networks
NASA Astrophysics Data System (ADS)
Kleineberg, Kaj-Kolja; Boguñá, Marián; Ángeles Serrano, M.; Papadopoulos, Fragkiskos
2016-11-01
Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the layers. We find that these correlations are significant in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers. They also enable accurate trans-layer link prediction, meaning that connections in one layer can be predicted by observing the hidden geometric space of another layer. And they allow efficient targeted navigation in the multilayer system using only local knowledge, outperforming navigation in the single layers only if the geometric correlations are sufficiently strong.
The perception of geometrical structure from congruence
NASA Technical Reports Server (NTRS)
Lappin, Joseph S.; Wason, Thomas D.
1989-01-01
The principle function of vision is to measure the environment. As demonstrated by the coordination of motor actions with the positions and trajectories of moving objects in cluttered environments and by rapid recognition of solid objects in varying contexts from changing perspectives, vision provides real-time information about the geometrical structure and location of environmental objects and events. The geometric information provided by 2-D spatial displays is examined. It is proposed that the geometry of this information is best understood not within the traditional framework of perspective trigonometry, but in terms of the structure of qualitative relations defined by congruences among intrinsic geometric relations in images of surfaces. The basic concepts of this geometrical theory are outlined.
Concepts and Figures in Geometric Reasoning.
ERIC Educational Resources Information Center
Fischbein, Efraim; Nachlieli, Talli
1998-01-01
Opens with the theoretical construct of figural concepts. Argues that geometrical figures are characterized by both conceptual and sensorial properties. Investigates the effects of interaction between conceptual and figural components. Contains 19 references. (DDR)
Synchronization waves in geometric networks.
Leyva, I; Navas, A; Sendiña-Nadal, I; Buldú, J M; Almendral, J A; Boccaletti, S
2011-12-01
We report synchronization of networked excitable nodes embedded in a metric space, where the connectivity properties are mostly determined by the distance between units. Such a high clustered structure, combined with the lack of long-range connections, prevents full synchronization and yields instead the emergence of synchronization waves. We show that this regime is optimal for information transmission through the system, as it enhances the options of reconstructing the topology from the dynamics. Measurements of topological and functional centralities reveal that the wave-synchronization state allows detection of the most structurally relevant nodes from a single observation of the dynamics, without any a priori information on the model equations ruling the evolution of the ensemble.
Activation of C-H and B-H bonds through agostic bonding: an ELF/QTAIM insight.
Zins, Emilie-Laure; Silvi, Bernard; Alikhani, M Esmaïl
2015-04-14
Agostic bonding is of paramount importance in C-H bond activation processes. The reactivity of the σ C-H bond thus activated will depend on the nature of the metallic center, the nature of the ligand involved in the interaction and co-ligands, as well as on geometric parameters. Because of their importance in organometallic chemistry, a qualitative classification of agostic bonding could be very much helpful. Herein we propose descriptors of the agostic character of bonding based on the electron localization function (ELF) and Quantum Theory of Atoms in Molecules (QTAIM) topological analysis. A set of 31 metallic complexes taken, or derived, from the literature was chosen to illustrate our methodology. First, some criteria should prove that an interaction between a metallic center and a σ X-H bond can indeed be described as "agostic" bonding. Then, the contribution of the metallic center in the protonated agostic basin, in the ELF topological description, may be used to evaluate the agostic character of bonding. A σ X-H bond is in agostic interaction with a metal center when the protonated X-H basin is a trisynaptic basin with a metal contribution strictly larger than the numerical uncertainty, i.e. 0.01 e. In addition, it was shown that the weakening of the electron density at the X-Hagostic bond critical point with respect to that of X-Hfree well correlates with the lengthening of the agostic X-H bond distance as well as with the shift of the vibrational frequency associated with the νX-H stretching mode. Furthermore, the use of a normalized parameter that takes into account the total population of the protonated basin, allows the comparison of the agostic character of bonding involved in different complexes.
ERIC Educational Resources Information Center
Pearce, Joseph Chilton
1994-01-01
Examines the nature of mother-child bonding from the prenatal stage through early infancy, discussing how the mother's actions, even before birth, stimulate her child's senses. Explains the crucial role that physical contact, breastfeeding, and visual stimuli have on mother-child bonding in human and animal newborns. (MDM)
NASA Technical Reports Server (NTRS)
Boerio, J.
1984-01-01
Interfacial bonding stability by in situ ellipsometry was investigated. It is found that: (1) gamma MPS is an effective primer for bonding ethylene vinyl acetate (EVA) to aluminum; (2) ellipsometry is an effective in situ technique for monitoring the stability of polymer/metal interfaces; (3) the aluminized back surface of silicon wafers contain significant amounts of silicon and may have glass like properties.
ERIC Educational Resources Information Center
Sanderson, R. T.
1972-01-01
Chemical bonding is discussed from a bond energy, rather than a wave mechanics, viewpoint. This approach is considered to be more suitable for the average student. (The second part of the article will appear in a later issue of the journal.) (AL)
The Geometric Grids of the Hieratic Numeral.
NASA Astrophysics Data System (ADS)
Aboulfotouh, Hossam M. K.
The paper discusses the geometrical designs of the hieratic numeral signs. It shows the regular-grid-patterns of squares upon which, the shapes of the already decoded hieratic numeral-signs, have been designed. Also, it shows the design of some hieratic numeral signs, based on subdividing the circle; and the hieratic signs of modular notation. It might reveal the basic geometrical level of understanding of anonymous ancient Egyptians who designed them some four thousand years ago.
NASA Astrophysics Data System (ADS)
Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.
2013-01-01
In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.
Bauzá, Antonio; Mooibroek, Tiddo J; Frontera, Antonio
2016-02-01
Tetrel (Tr) bonding is first placed into perspective as a σ-hole bonding interaction with atoms of the Tr family. An sp(3) R4Tr unit has four σ-holes with which a Lewis base can form a complex. We then highlight some inspiring crystal structures where Tr bonding is obvious, followed by an account of our own work. We have shown that Tr bonding is ubiquitous in the solid state and we have highlighted that Tr bonding with carbon is possible when C is placed in the appropriate chemical context. We hope that this account serves as an initial guide and source of inspiration for others wishing to exploit this vastly underexplored interaction.
NASA Technical Reports Server (NTRS)
1989-01-01
A joint development program between Hartford Steam Boiler Inspection Technologies and The Weyerhaeuser Company resulted in an internal bond analyzer (IBA), a device which combines ultrasonics with acoustic emission testing techniques. It is actually a spinoff from a spinoff, stemming from a NASA Lewis invented acousto-ultrasonic technique that became a system for testing bond strength of composite materials. Hartford's parent company, Acoustic Emission Technology Corporation (AET) refined and commercialized the technology. The IBA builds on the original system and incorporates on-line process control systems. The IBA determines bond strength by measuring changes in pulsar ultrasonic waves injected into a board. Analysis of the wave determines the average internal bond strength for the panel. Results are displayed immediately. Using the system, a mill operator can adjust resin/wood proportion, reduce setup time and waste, produce internal bonds of a consistent quality and automatically mark deficient products.
NASA Technical Reports Server (NTRS)
Pontius, James T. (Inventor)
2010-01-01
The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.
Dynamics and Control of a Quadrotor with Active Geometric Morphing
NASA Astrophysics Data System (ADS)
Wallace, Dustin A.
Quadrotors are manufactured in a wide variety of shapes, sizes, and performance levels to fulfill a multitude of roles. Robodub Inc. has patented a morphing quadrotor which will allow active reconfiguration between various shapes for performance optimization across a wider spectrum of roles. The dynamics of the system are studied and modeled using Newtonian Mechanics. Controls are developed and simulated using both Linear Quadratic and Numerical Nonlinear Optimal control for a symmetric simplificiation of the system dynamics. Various unique vehicle capabilities are investigated, including novel single-throttle flight control using symmetric geometric morphing, as well as recovery from motor loss by reconfiguring into a trirotor configuration. The system dynamics were found to be complex and highly nonlinear. All attempted control strategies resulted in controllability, suggesting further research into each may lead to multiple viable control strategies for a physical prototype.
Efficient hyperspectral image segmentation using geometric active contour formulation
NASA Astrophysics Data System (ADS)
Albalooshi, Fatema A.; Sidike, Paheding; Asari, Vijayan K.
2014-10-01
In this paper, we present a new formulation of geometric active contours that embeds the local hyperspectral image information for an accurate object region and boundary extraction. We exploit self-organizing map (SOM) unsupervised neural network to train our model. The segmentation process is achieved by the construction of a level set cost functional, in which, the dynamic variable is the best matching unit (BMU) coming from SOM map. In addition, we use Gaussian filtering to discipline the deviation of the level set functional from a signed distance function and this actually helps to get rid of the re-initialization step that is computationally expensive. By using the properties of the collective computational ability and energy convergence capability of the active control models (ACM) energy functional, our method optimizes the geometric ACM energy functional with lower computational time and smoother level set function. The proposed algorithm starts with feature extraction from raw hyperspectral images. In this step, the principal component analysis (PCA) transformation is employed, and this actually helps in reducing dimensionality and selecting best sets of the significant spectral bands. Then the modified geometric level set functional based ACM is applied on the optimal number of spectral bands determined by the PCA. By introducing local significant spectral band information, our proposed method is capable to force the level set functional to be close to a signed distance function, and therefore considerably remove the need of the expensive re-initialization procedure. To verify the effectiveness of the proposed technique, we use real-life hyperspectral images and test our algorithm in varying textural regions. This framework can be easily adapted to different applications for object segmentation in aerial hyperspectral imagery.
Application of geometric algebra for the description of polymer conformations.
Chys, Pieter
2008-03-14
In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.
Void-free wafer-level adhesive bonding utilizing modified poly (diallyl phthalate)
NASA Astrophysics Data System (ADS)
Zhong, Fang; Dong, Tao; Yong, He; Yan, Su; Wang, Kaiying
2013-12-01
A new thermosetting polymer, modified poly (diallyl phthalate) (PDAP), is used as intermediate layer to realize a void-free wafer-level transfer bonding, in which the bonding interface contains patterned metal. Through glass-silicon bonding experiments, bonding defects are easily recognized with light microscopy. Three typical defect types are identified as: uneven flow defect, particle defect and bubble defect. The processing parameters, such as bonding pressure, pre-baking temperature, polymer thickness and coating conditions, have been optimized based on analysis of the defect formation. The optimized conditions have yielded a void-free wafer-level adhesive bonding. Then, the die shearing test indicates a good bonding strength. Additionally, the transfer bonding process is applied in SOI-silicon bonding as a practical example of MEMS fabrication.
NASA Astrophysics Data System (ADS)
Siva, V.; Suresh Kumar, S.; Suresh, M.; Raja, M.; Athimoolam, S.; Asath Bahadur, S.
2017-04-01
The new semi-organic crystal of 4-methoxyanilinium trifluoroacetate (4MATFA) was designed through strong Nsbnd H⋯O hydrogen bonds in the perspective of its nonlinear optical (NLO) properties. The crystalline state of 4MATFA was successfully attained by slow evaporation solution growth method at room temperature. The molecular structure of the grown crystal was determined by single crystal X-ray diffraction technique which confirms the importance of Nsbnd H⋯O hydrogen bonds in the molecular assembly. The amino group of the cation and carboxylate group of the anion are hydrogen bonded through two primary chains C12(4) and C22(6) motifs and a secondary ring R44(12) motif leading to alternate hydrophobic and hydrophilic layers at z = 0 or 1 and at z = 1/2, respectively. The molecular geometry was optimized theoretically by Hartree-Fock (HF) and Density Functional Theory (DFT) methods with 6-311++G(d,p) basis set. The optimized molecular geometrical parameters and computed vibrational spectra demonstrated the presence of Nsbnd H⋯O hydrogen bonds and the absence of expected Nsbnd H⋯F hydrogen bonds. The strong Nsbnd H⋯O tendency between the ions are observed as strong intensity isolated peak in computed IR spectra and strong intensity broad peak in experimental IR spectrum. Further, the calculated first (β) and second order hyperpolarizability (γ) values showed that the compound is good candidate for NLO applications. The chemical hardness, electro-negativity and chemical potential of the molecule were computed by HOMO - LUMO plot. The frontier orbital has lower band gap value, which indicate the possible optical activity of the molecule. The thermal stability of the grown crystals were confirmed by TG/DTA which showed the thermal stability of the compound upto 150 °C.
Mirror profile optimization for nano-focusing KB mirror
Zhang Lin; Baker, Robert; Barrett, Ray; Cloetens, Peter; Dabin, Yves
2010-06-23
A KB focusing mirror width profile has been optimized to achieve nano-focusing for the nano-imaging end-station ID22NI at the ESRF. The complete mirror and flexure bender assembly has been modeled in 3D with finite element analysis using ANSYS. Bender stiffness, anticlastic effects and geometrical non-linear effects have been considered. Various points have been studied: anisotropy and crystal orientation, stress in the mirror and bender, actuator resolution and the mirror-bender adhesive bonding... Extremely high performance of the mirror is expected with residual slope error smaller than 0.6 {mu}rad, peak-to-valley, compared to the bent slope of 3000 {mu}rad.
NASA Astrophysics Data System (ADS)
Pathak, Biswarup; Umayal, Muthaiah; Jemmis, Eluvathingal D.
The unusual shortness of the bond length in several main group and transition metal compounds is explained on the basis of their π-alone bonding. The detailed electronic structure calculation on C2, HBBH, and Fe2(CO)6 shows that each of them has two π-alone bonds (unsupported by an underlying σ-bond), whereas B2 has two-half π-bonds. The C-C bond length in C2 is 1.240 Å, shorter than any C-C double (σ + π, in C2H4, C-C=1.338 Å) bonded species. The B-B bond distance in B2 (1.590 Å, two half-π bonds) is shorter than any B-B single σ-bonded (~1.706 Å) species. The calculated Fe-Fe bond distance of 2.002 Å in Fe2(CO)6 is shorter than those of some experimentally known M-M single bonded compounds in the range of 2.904-3.228 Å. Here, our detailed studies on the second and third row diatomics (five, six, seven and eight valence electrons species) and transition metal complexes show that π-alone bonds left to themselves are shorter than σ-bonds; in many ways, σ-bonds prevent π-bonds from adopting their optimal shorter distances.
The variational subspace valence bond method.
Fletcher, Graham D
2015-04-07
The variational subspace valence bond (VSVB) method based on overlapping orbitals is introduced. VSVB provides variational support against collapse for the optimization of overlapping linear combinations of atomic orbitals (OLCAOs) using modified orbital expansions, without recourse to orthogonalization. OLCAO have the advantage of being naturally localized, chemically intuitive (to individually model bonds and lone pairs, for example), and transferrable between different molecular systems. Such features are exploited to avoid key computational bottlenecks. Since the OLCAO can be doubly occupied, VSVB can access very large problems, and calculations on systems with several hundred atoms are presented.
The variational subspace valence bond method
Fletcher, Graham D.
2015-04-07
The variational subspace valence bond (VSVB) method based on overlapping orbitals is introduced. VSVB provides variational support against collapse for the optimization of overlapping linear combinations of atomic orbitals (OLCAOs) using modified orbital expansions, without recourse to orthogonalization. OLCAO have the advantage of being naturally localized, chemically intuitive (to individually model bonds and lone pairs, for example), and transferrable between different molecular systems. Such features are exploited to avoid key computational bottlenecks. Since the OLCAO can be doubly occupied, VSVB can access very large problems, and calculations on systems with several hundred atoms are presented.
Cavallo, Gabriella; Metrangolo, Pierangelo; Milani, Roberto; Pilati, Tullio; Priimagi, Arri; Resnati, Giuseppe; Terraneo, Giancarlo
2016-02-24
The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
2016-01-01
The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185
Geometric effects on stress wave propagation.
Johnson, K L; Trim, M W; Horstemeyer, M F; Lee, N; Williams, L N; Liao, J; Rhee, H; Prabhu, R
2014-02-01
The present study, through finite element simulations, shows the geometric effects of a bioinspired solid on pressure and impulse mitigation for an elastic, plastic, and viscoelastic material. Because of the bioinspired geometries, stress wave mitigation became apparent in a nonintuitive manner such that potential real-world applications in human protective gear designs are realizable. In nature, there are several toroidal designs that are employed for mitigating stress waves; examples include the hyoid bone on the back of a woodpecker's jaw that extends around the skull to its nose and a ram's horn. This study evaluates four different geometries with the same length and same initial cross-sectional diameter at the impact location in three-dimensional finite element analyses. The geometries in increasing complexity were the following: (1) a round cylinder, (2) a round cylinder that was tapered to a point, (3) a round cylinder that was spiraled in a two dimensional plane, and (4) a round cylinder that was tapered and spiraled in a two-dimensional plane. The results show that the tapered spiral geometry mitigated the greatest amount of pressure and impulse (approximately 98% mitigation) when compared to the cylinder regardless of material type (elastic, plastic, and viscoelastic) and regardless of input pressure signature. The specimen taper effectively mitigated the stress wave as a result of uniaxial deformational processes and an induced shear that arose from its geometry. Due to the decreasing cross-sectional area arising from the taper, the local uniaxial and shear stresses increased along the specimen length. The spiral induced even greater shear stresses that help mitigate the stress wave and also induced transverse displacements at the tip such that minimal wave reflections occurred. This phenomenon arose although only longitudinal waves were introduced as the initial boundary condition (BC). In nature, when shearing occurs within or between materials
NASA Astrophysics Data System (ADS)
Wang, Qi; Suzuki, Kimichi; Nagashima, Umpei; Tachikawa, Masanori; Yan, Shiwei
2013-11-01
The geometric isotope effects on the structures of hydrated chloride ionic hydrogen bonded clusters are explored by carrying out path integral molecular dynamics simulations. First, an outer shell coordinate is selected to display the rearrangement of single and multi hydration shell cluster structures. Next, to show the competition of intramolecular and intermolecular nuclear quantum effects, the intramolecular OH∗ stretching and intermolecular ion-water wagging motions are studied for single and multi shell structures, respectively. The results indicate that the intermolecular nuclear quantum effects stabilize the ionic hydrogen bonds in single shell structures, while they are destabilized through the competition with intramolecular nuclear quantum effects in multi shell structures. In addition, the correlations between ion-water stretching motion and other cluster vibrational coordinates are discussed. The results indicate that the intermolecular nuclear quantum effects on the cluster structures are strongly related to the cooperation of the water-water hydrogen bond interactions.
Zhao, Qiang
2016-01-01
Quantum chemical calculations were carried out to investigate interplay between halogen bonds and pnicogen bonds in XBr∙∙∙OFH2P∙∙∙NH3 (X = F, Cl, CN, NC, OH, and NO2) complexes at the M06-2X/aug-cc-pVDZ level. Cooperative effects are observed when halogen bonds and pnicogen bonds coexist in the same complex. These effects are analyzed in terms of geometric and energetic properties of the complexes. The mechanism of cooperative effects is analyzed in view with molecular electrostatic potential, natural bond orbital, and density difference of molecule formation analyses.
Geometric phases in self-induced transparency
Sen, T; Milovich, J
1991-05-01
We consider the geometric phases arising in the lossless propagation of light pulses through a medium composed of near resonant two-level atoms. A reformulation of the coupled Maxwell-Schroedinger equations allows us to construct conservation laws in a general context. There exist periodic solutions of these equations which lead to the possibility of cyclical evolution of the state vector and the appearance of a geometric phase. We first show that if the ground state is the initial state of the system, then it acquires a geometric phase after the passage of the soliton pulses of McCall and Hahn. More generally if the initial state is a superposition of the two levels, continuous pulse trains can propagate without appreciable loss. We also find in this case that the state vector develops a geometric phase provided the parameters take on the particular values required for cyclical evolution. In both cases we exhibit the geometric character of the calculated phases by showing that they equal half the solid angle subtended by a closed curve traced by the Bloch, vector on the Bloch sphere. We verify a recent assertion of Anandan and Aharonov that the energy uncertainty in the state is directly related to the speed at which the tip of the Bloch vector moves along the curve on the Bloch sphere (or in more general terms the energy uncertainty is related to the speed in the projective Hilbert space).
Morphing of geometric composites via residual swelling.
Pezzulla, Matteo; Shillig, Steven A; Nardinocchi, Paola; Holmes, Douglas P
2015-08-07
Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.
Geometric modeling of pelvic organs with thickness
NASA Astrophysics Data System (ADS)
Bay, T.; Chen, Z.-W.; Raffin, R.; Daniel, M.; Joli, P.; Feng, Z.-Q.; Bellemare, M.-E.
2012-03-01
Physiological changes in the spatial configuration of the internal organs in the abdomen can induce different disorders that need surgery. Following the complexity of the surgical procedure, mechanical simulations are necessary but the in vivo factor makes complicate the study of pelvic organs. In order to determine a realistic behavior of these organs, an accurate geometric model associated with a physical modeling is therefore required. Our approach is integrated in the partnership between a geometric and physical module. The Geometric Modeling seeks to build a continuous geometric model: from a dataset of 3D points provided by a Segmentation step, surfaces are created through a B-spline fitting process. An energy function is built to measure the bidirectional distance between surface and data. This energy is minimized with an alternate iterative Hoschek-like method. A thickness is added with an offset formulation, and the geometric model is finally exported in a hexahedral mesh. Afterward, the Physical Modeling tries to calculate the properties of the soft tissues to simulate the organs displacements. The physical parameters attached to the data are determined with a feedback loop between finite-elements deformations and ground-truth acquisition (dynamic MRI).
Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas
2007-01-01
A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.
Young Children's Understanding of Geometric Shapes: The Role of Geometric Models
ERIC Educational Resources Information Center
Elia, Iliada; Gagatsis, Athanasios; Kyriakides, Leonidas
2003-01-01
In this paper, we explore the role of polygonal shapes as geometrical models in teaching mathematics, so as to elicit and interpret children's geometric conceptions and understanding about shapes. Primary pupils were asked to draw a stairway of figures (triangles, squares and rectangles) each one bigger than the preceding one. Pupils use two…
Avron, J E; Elgart, A; Graf, G M; Sadun, L
2001-12-03
We study adiabatic quantum pumps on time scales that are short relative to the cycle of the pump. In this regime the pump is characterized by the matrix of energy shift which we introduce as the dual to Wigner's time delay. The energy shift determines the charge transport, the dissipation, the noise, and the entropy production. We prove a general lower bound on dissipation in a quantum channel and define optimal pumps as those that saturate the bound. We give a geometric characterization of optimal pumps and show that they are noiseless and transport integral charge in a cycle. Finally we discuss an example of an optimal pump related to the Hall effect.
Optimal domain decomposition strategies
NASA Technical Reports Server (NTRS)
Yoon, Yonghyun; Soni, Bharat K.
1995-01-01
The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.
Quantification of Osteon Morphology Using Geometric Histomorphometrics.
Dillon, Scott; Cunningham, Craig; Felts, Paul
2016-03-01
Many histological methods in forensic anthropology utilize combinations of traditional histomorphometric parameters which may not accurately describe the morphology of microstructural features. Here, we report the novel application of a geometric morphometric method suitable when considering structures without anatomically homologous landmarks for the quantification of complete secondary osteon size and morphology. The method is tested for its suitability in the measurement of intact secondary osteons using osteons digitized from transverse femoral diaphyseal sections prepared from two human individuals. The results of methodological testing demonstrate the efficacy of the technique when applied to intact secondary osteons. In providing accurate characterization of micromorphology within the robust mathematical framework of geometric morphometrics, this method may surpass traditional histomorphometric variables currently employed in forensic research and practice. A preliminary study of the intersectional histomorphometric variation within the femoral diaphysis is made using this geometric histomorphometric method to demonstrate its potential.
The geometric phase controls ultracold chemistry
Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.
2015-07-30
In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + O_{2} reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.
Geometric spin echo under zero field
Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo
2016-01-01
Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors. PMID:27193936
The Geometric Phase of Stock Trading
2016-01-01
Geometric phases describe how in a continuous-time dynamical system the displacement of a variable (called phase variable) can be related to other variables (shape variables) undergoing a cyclic motion, according to an area rule. The aim of this paper is to show that geometric phases can exist also for discrete-time systems, and even when the cycles in shape space have zero area. A context in which this principle can be applied is stock trading. A zero-area cycle in shape space represents the type of trading operations normally carried out by high-frequency traders (entering and exiting a position on a fast time-scale), while the phase variable represents the cash balance of a trader. Under the assumption that trading impacts stock prices, even zero-area cyclic trading operations can induce geometric phases, i.e., profits or losses, without affecting the stock quote. PMID:27556642
Geometric spin echo under zero field
NASA Astrophysics Data System (ADS)
Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo
2016-05-01
Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors.
Overview on METEOSAT geometrical image data processing
NASA Technical Reports Server (NTRS)
Diekmann, Frank J.
1994-01-01
Digital Images acquired from the geostationary METEOSAT satellites are processed and disseminated at ESA's European Space Operations Centre in Darmstadt, Germany. Their scientific value is mainly dependent on their radiometric quality and geometric stability. This paper will give an overview on the image processing activities performed at ESOC, concentrating on the geometrical restoration and quality evaluation. The performance of the rectification process for the various satellites over the past years will be presented and the impacts of external events as for instance the Pinatubo eruption in 1991 will be explained. Special developments both in hard and software, necessary to cope with demanding tasks as new image resampling or to correct for spacecraft anomalies, are presented as well. The rotating lens of MET-5 causing severe geometrical image distortions is an example for the latter.
The geometric phase controls ultracold chemistry
Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.
2015-01-01
The geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O+OH→H+O2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity. PMID:26224326
Geometric uncertainty relation for mixed quantum states
Andersson, Ole Heydari, Hoshang
2014-04-15
In this paper we use symplectic reduction in an Uhlmann bundle to construct a principal fiber bundle over a general space of unitarily equivalent mixed quantum states. The bundle, which generalizes the Hopf bundle for pure states, gives in a canonical way rise to a Riemannian metric and a symplectic structure on the base space. With these we derive a geometric uncertainty relation for observables acting on quantum systems in mixed states. We also give a geometric proof of the classical Robertson-Schrödinger uncertainty relation, and we compare the two. They turn out not to be equivalent, because of the multiple dimensions of the gauge group for general mixed states. We give examples of observables for which the geometric relation provides a stronger estimate than that of Robertson and Schrödinger, and vice versa.
Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images
2009-04-01
GEOMETRIC COMPUTATION OF HUMAN GYRIFICATION INDEXES FROM MAGNETIC RESONANCE IMAGES By Shu Su Tonya White Marcus Schmidt Chiu-Yen Kao and Guillermo...00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Geometric Computation of Human Gyrification Indexes from Magnetic Resonance Images 5a. CONTRACT NUMBER... Geometric Computation of Gyrification Indexes Chiu-Yen Kao 1 Geometric Computation of Human Gyrification
Primary School Teacher Candidates' Geometric Habits of Mind
ERIC Educational Resources Information Center
Köse, Nilu¨fer Y.; Tanisli, Dilek
2014-01-01
Geometric habits of mind are productive ways of thinking that support learning and using geometric concepts. Identifying primary school teacher candidates' geometric habits of mind is important as they affect the development of their future students' geometric thinking. Therefore, this study attempts to determine primary school teachers' geometric…
Diffusion Bonding of Silicon Carbide Ceramics using Titanium Interlayers
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.
2006-01-01
Robust joining approaches for silicon carbide ceramics are critically needed to fabricate leak free joints with high temperature mechanical capability. In this study, titanium foils and physical vapor deposited (PVD) titanium coatings were used to form diffusion bonds between SiC ceramics using hot pressing. Silicon carbide substrate materials used for bonding include sintered SiC and two types of CVD SiC. Microscopy results show the formation of well adhered diffusion bonds. The bond strengths as determined from pull tests are on the order of several ksi, which is much higher than required for a proposed application. Microprobe results show the distribution of silicon, carbon, titanium, and other minor elements across the diffusion bond. Compositions of several phases formed in the joint region were identified. Potential issues of material compatibility and optimal bond formation will also be discussed.
Methods of geometrical integration in accelerator physics
NASA Astrophysics Data System (ADS)
Andrianov, S. N.
2016-12-01
In the paper we consider a method of geometric integration for a long evolution of the particle beam in cyclic accelerators, based on the matrix representation of the operator of particles evolution. This method allows us to calculate the corresponding beam evolution in terms of two-dimensional matrices including for nonlinear effects. The ideology of the geometric integration introduces in appropriate computational algorithms amendments which are necessary for preserving the qualitative properties of maps presented in the form of the truncated series generated by the operator of evolution. This formalism extends both on polarized and intense beams. Examples of practical applications are described.
Classical light beams and geometric phases.
Mukunda, N; Chaturvedi, S; Simon, R
2014-06-01
We present a study of geometric phases in classical wave and polarization optics using the basic mathematical framework of quantum mechanics. Important physical situations taken from scalar wave optics, pure polarization optics, and the behavior of polarization in the eikonal or ray limit of Maxwell's equations in a transparent medium are considered. The case of a beam of light whose propagation direction and polarization state are both subject to change is dealt with, attention being paid to the validity of Maxwell's equations at all stages. Global topological aspects of the space of all propagation directions are discussed using elementary group theoretical ideas, and the effects on geometric phases are elucidated.
Model-based vision using geometric hashing
NASA Astrophysics Data System (ADS)
Akerman, Alexander, III; Patton, Ronald
1991-04-01
The Geometric Hashing technique developed by the NYU Courant Institute has been applied to various automatic target recognition applications. In particular, I-MATH has extended the hashing algorithm to perform automatic target recognition ofsynthetic aperture radar (SAR) imagery. For this application, the hashing is performed upon the geometric locations of dominant scatterers. In addition to being a robust model-based matching algorithm -- invariant under translation, scale, and 3D rotations of the target -- hashing is of particular utility because it can still perform effective matching when the target is partially obscured. Moreover, hashing is very amenable to a SIMD parallel processing architecture, and thus potentially realtime implementable.
Quantum gates and their coexisting geometric phases
Wu Lianao; Bishop, C. Allen; Byrd, Mark S.
2011-08-15
Geometric phases arise naturally in a variety of quantum systems with observable consequences. They also arise in quantum computations when dressed states are used in gating operations. Here we show how they arise in these gating operations and how one may take advantage of the dressed states producing them. Specifically, we show that for a given, but arbitrary Hamiltonian, and at an arbitrary time {tau}, there always exists a set of dressed states such that a given gate operation can be performed by the Hamiltonian up to a phase {phi}. The phase is a sum of a dynamical phase and a geometric phase. We illustrate the dressed phase for several systems.
Geometric Integration of Weakly Dissipative Systems
NASA Astrophysics Data System (ADS)
Modin, K.; Führer, C.; Soöderlind, G.
2009-09-01
Some problems in mechanics, e.g. in bearing simulation, contain subsystems that are conservative as well as weakly dissipative subsystems. Our experience is that geometric integration methods are often superior for such systems, as long as the dissipation is weak. Here we develop adaptive methods for dissipative perturbations of Hamiltonian systems. The methods are "geometric" in the sense that the form of the dissipative perturbation is preserved. The methods are linearly explicit, i.e., they require the solution of a linear subsystem. We sketch an analysis in terms of backward error analysis and numerical comparisons with a conventional RK method of the same order is given.
Local Geometrical Machinery for Complexity and Control
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
In this Chapter, we present local geometrical machinery for studying complexity and control, consisting of dynamics on Kähler manifolds, which combine three geometrical structures-Riemannian, symplectic and complex (Hermitian)-in a mutually compatible way. In other words, every Kähler manifold is simultaneously Riemannian, symplectic and complex (Hermitian). It is well known that Riemannian manifolds represent the stage on which Lagrangian dynamics is set, symplectic manifolds represent the stage for Hamiltonian dynamics, and complex (Hermitian) varieties comprise the stage for quantum dynamics. Therefore, Kähler manifolds represent the richest dynamical stage available where Lagrangian, Hamiltonian, and quantum dynamics all dance together.
30 CFR 281.33 - Bonds and bonding requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF... SHELF Financial Considerations § 281.33 Bonds and bonding requirements. (a) When the leasing...
30 CFR 281.33 - Bonds and bonding requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF... Bonds and bonding requirements. (a) When the leasing notice specifies that payment of a portion of...
27 CFR 24.147 - Operations bond or unit bond.
Code of Federal Regulations, 2012 CFR
2012-04-01
... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Establishment and Operations Bonds and Consents of Surety § 24.147 Operations bond or unit bond. Notwithstanding the provisions of § 24.146, each person intending to commence or to continue business as the proprietor of a bonded wine premises with an...
Mapping the Geometric Evolution of Protein Folding Motor
Hazam, Prakash Kishore; Shekhar, Shashi
2016-01-01
Polypeptide chain has an invariant main-chain and a variant side-chain sequence. How the side-chain sequence determines fold in terms of its chemical constitution has been scrutinized extensively and verified periodically. However, a focussed investigation on the directive effect of side-chain geometry may provide important insights supplementing existing algorithms in mapping the geometrical evolution of protein chains and its structural preferences. Geometrically, folding of protein structure may be envisaged as the evolution of its geometric variables: ϕ, and ψ dihedral angles of polypeptide main-chain directed by χ1, and χ2 of side chain. In this work, protein molecule is metaphorically modelled as a machine with 4 rotors ϕ, ψ, χ1 and χ2, with its evolution to the functional fold is directed by combinations of its rotor directions. We observe that differential rotor motions lead to different secondary structure formations and the combinatorial pattern is unique and consistent for particular secondary structure type. Further, we found that combination of rotor geometries of each amino acid is unique which partly explains how different amino acid sequence combinations have unique structural evolution and functional adaptation. Quantification of these amino acid rotor preferences, resulted in the generation of 3 substitution matrices, which later on plugged in the BLAST tool, for evaluating their efficiency in aligning sequences. We have employed BLOSUM62 and PAM30 as standard for primary evaluation. Generation of substitution matrices is a logical extension of the conceptual framework we attempted to build during the development of this work. Optimization of matrices following the conventional routines and possible application with biologically relevant data sets are beyond the scope of this manuscript, though it is a part of the larger project design. PMID:27716851
Fundamentals of fiber bonding in thermally point-bonded nonwovens
NASA Astrophysics Data System (ADS)
Chidambaram, Aparna
Thermal point bonding (TPB) uses heat and pressure to bond a web of fibers at discrete points imparting strength to the manufactured fabric. This process significantly reduces the strength and elongation of the bridging fibers between bond points while strengthening the web. Single fiber experiments were performed with four structurally different polypropylene fibers to analyze the inter-relationships between fiber structure, fiber properties and bonding process. Two fiber types had a low birefringence sheath or surface layer while the remaining had uniform birefringence profiles through their thickness. Bonds were formed between isolated pairs of fibers by subjecting the fibers to a calendering process and simulating TPB process conditions. The dependence of bond strength on bonding temperature and on the type of fiber used was evaluated. Fiber strengths before and after bonding were measured and compared to understand the effect of bonding on fiber strength. Additionally, bonded fiber strength was compared to the strength of single fibers which had experienced the same process conditions as the bonded pairs. This comparison estimated the effect of mechanical damage from pressing fibers together with steel rolls while creating bonds in TPB. Interfiber bond strength increased with bonding temperature for all fiber types. Fiber strength decreased with increasing bonding temperature for all fiber types except for one type of low birefringent sheath fibers. Fiber strength degradation was unavoidable at temperatures required for successful bonding. Mechanical damage from compression of fibers between rolls was an insignificant factor in this strength loss. Thermal damage during bonding was the sole significant contributor to fiber strength degradation. Fibers with low birefringence skins formed strong bonds with minimal fiber strength loss and were superior to fibers without such surface layers in TPB performance. A simple model to predict the behavior of a two-bond
Methods and Apparatuses for Signaling with Geometric Constellations in a Raleigh Fading Channel
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2015-01-01
Communication systems are described that use signal constellations, which have unequally spaced (i.e., `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR (signal to noise ratio). In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d (sub min) (i.e. minimum distance between constellations) are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.
Physical understanding through variational reasoning: electron sharing and covalent bonding.
Ruedenberg, Klaus; Schmidt, Michael W
2009-03-12
Energy changes of stationary states resulting from geometric parameter changes in the Hamiltonian can be understood by variational reasoning in terms of the physical attributes of the kinetic and the potential energy functionals. In atoms as well as molecules, the energy minimization determines the ground state as the optimal compromise between the potential pull of the nuclear attractions and the localization-resisting kinetic pressure of the electron cloud. This variational competition is analyzed for the exact ab initio ground-state wave function of the hydrogen molecule ion to elucidate the formation of the bond. Its electronic wave function is shown to differ from the ground-state wave function of the hydrogen atom by polarization, sharing, and contraction, and the corresponding contributions to the binding energy are examined in detail. All told, the critical feature is that a molecular orbital, contracting (in the variational context) toward two nuclei simultaneously, can lower its potential energy while maintaining a certain degree of delocalization. As a consequence, its kinetic energy functional has a lower value than that of an orbital contracting toward a single nucleus equally closely. By contrast, the potential energy functional is lowered equally effectively whether the orbital contracts toward one nucleus or simultaneously toward two nuclei. Because of this weaker kinetic energy pressure, the electrostatic potential pull of the nuclei in the molecule is able to attach the orbital more tightly to each of the nuclei than the pull of the single nucleus in the atom is able to do. The role of the virial theorem is clarified. Generalizations to other molecules are discussed.
Integral representation for geometric optics solutions
NASA Astrophysics Data System (ADS)
Hazak, G.; Bernstein, I. B.; Smith, T. M.
1983-03-01
An integral representation of the geometric optics solutions for the field of dressed particles in inhomogeneous plasma is derived. The representation is a natural generalization of the Fourier integral used for homogeneous systems. The set of plane waves is replaced by a complete orthogonal set of 'quasi-plane waves' which in practice may be constructed by using the existing ray tracing codes.
Geometric Transformations in Middle School Mathematics Textbooks
ERIC Educational Resources Information Center
Zorin, Barbara
2011-01-01
This study analyzed treatment of geometric transformations in presently available middle grades (6, 7, 8) student mathematics textbooks. Fourteen textbooks from four widely used textbook series were evaluated: two mainline publisher series, Pearson (Prentice Hall) and Glencoe (Math Connects); one National Science Foundation (NSF) funded curriculum…
Geometric Models for Collaborative Search and Filtering
ERIC Educational Resources Information Center
Bitton, Ephrat
2011-01-01
This dissertation explores the use of geometric and graphical models for a variety of information search and filtering applications. These models serve to provide an intuitive understanding of the problem domains and as well as computational efficiencies to our solution approaches. We begin by considering a search and rescue scenario where both…
Geometrizing the Quantum - A Toy Model
Koch, Benjamin
2009-12-15
It is shown that the equations of relativistic Bohmian mechanics for multiple bosonic particles have a dual description in terms of a classical theory of conformally 'curved' space-time. This shows that it is possible to formulate quantum mechanics as a purely classical geometrical theory. The results are further generalized to interactions with an external electromagnetic field.
On Arithmetic-Geometric-Mean Polynomials
ERIC Educational Resources Information Center
Griffiths, Martin; MacHale, Des
2017-01-01
We study here an aspect of an infinite set "P" of multivariate polynomials, the elements of which are associated with the arithmetic-geometric-mean inequality. In particular, we show in this article that there exist infinite subsets of probability "P" for which every element may be expressed as a finite sum of squares of real…
Estimation on Geometric Measure of Quantum Coherence
NASA Astrophysics Data System (ADS)
Zhang, Hai-Jun; Chen, Bin; Li, Ming; Fei, Shao-Ming; Long, Gui-Lu
2017-02-01
We study the geometric measure of quantum coherence recently proposed in [Phys. Rev. Lett. 115, 020403 (2015)]. Both lower and upper bounds of this measure are provided. These bounds are shown to be tight for a class of important coherent states -- maximally coherent mixed states. The trade-off relation between quantum coherence and mixedness for this measure is also discussed.
More Meaning from the Geometric Mean.
ERIC Educational Resources Information Center
Dorner, Bryan C.
2003-01-01
Provides classroom suggestions for combining numerical, algebraic, and geometric techniques with the understanding of a simple method for computing square roots. Historical origins of the method illustrate the debt owed to ancient minds living in what are now India, Pakistan, Iraq, and Egypt. (Author/NB)
Geometric Probability and the Areas of Leaves
ERIC Educational Resources Information Center
Hoiberg, Karen Bush; Sharp, Janet; Hodgson, Ted; Colbert, Jim
2005-01-01
This article describes how a group of fifth-grade mathematics students measured irregularly shaped objects using geometric probability theory. After learning how to apply a ratio procedure to find the areas of familiar shapes, students extended the strategy for use with irregularly shaped objects, in this case, leaves. (Contains 2 tables and 8…
Using geometric algebra to study optical aberrations
Hanlon, J.; Ziock, H.
1997-05-01
This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.
Impossible Geometric Constructions: A Calculus Writing Project
ERIC Educational Resources Information Center
Awtrey, Chad
2013-01-01
This article discusses a writing project that offers students the opportunity to solve one of the most famous geometric problems of Greek antiquity; namely, the impossibility of trisecting the angle [pi]/3. Along the way, students study the history of Greek geometry problems as well as the life and achievements of Carl Friedrich Gauss. Included is…
A Geometric Approach to Fair Division
ERIC Educational Resources Information Center
Barbanel, Julius
2010-01-01
We wish to divide a cake among some collection of people (who may have very different notions of the comparative value of pieces of cake) in a way that is both "fair" and "efficient." We explore the meaning of these terms, introduce two geometric tools to aid our analysis, and present a proof (due to Dietrich Weller) that establishes the existence…
Plato alleges that God forever geometrizes
NASA Astrophysics Data System (ADS)
Ne'Eman, Yuval
1996-05-01
Since 1961, the experimental exploration at the fundamental level of physical reality has surprised physists by revealing to them a highly geometric scenery. Like Einstein's (classical) theory of gravity, the “standard model,” describing the strong, weak, and electromagnetic interaction, testifies in favor of Plato's reported allegation.
Geometric Interpretations of Some Psychophysical Results.
ERIC Educational Resources Information Center
Levine, Michael V.
A theory of psychophysics is discussed that enlarges the classical theory in three general ways: (1) the multidimensional nature of perception is made explicit; (2) the transformations of the theory are interpreted geometrically; and (3) attributes are distinguished from sensations and only partially ordered. It is shown that, with the enlarged…
How Do Young Children Learn Geometric Concepts.
ERIC Educational Resources Information Center
Ohe, Pia
Twenty children (ages 5 and 6) from each of seven cultural groups (Caucasian, Black, Jewish, Puerto Rican, Chinese, Korean-American and native Korean) were given a copying task of 21 geometric shapes to test the cultural invariancy of Piaget's topological-projective-Euclidean concept acquisition sequence. All subjects were either middle or lower…
Modern Geometric Algebra: A (Very Incomplete!) Survey
ERIC Educational Resources Information Center
Suzuki, Jeff
2009-01-01
Geometric algebra is based on two simple ideas. First, the area of a rectangle is equal to the product of the lengths of its sides. Second, if a figure is broken apart into several pieces, the sum of the areas of the pieces equals the area of the original figure. Remarkably, these two ideas provide an elegant way to introduce, connect, and…
Geometric interpretations for resonances of plasmonic nanoparticles
Liu, Wei; Oulton, Rupert F.; Kivshar, Yuri S.
2015-01-01
The field of plasmonics can be roughly categorized into two branches: surface plasmon polaritons (SPPs) propagating in waveguides and localized surface plasmons (LSPs) supported by scattering particles. Investigations along these two directions usually employ different approaches, resulting in more or less a dogma that the two branches progress almost independently of each other, with few interactions. Here in this work we interpret LSPs from a Bohr model based geometric perspective relying on SPPs, thus establishing a connection between these two sub-fields. Besides the clear explanations of conventional scattering features of plasmonic nanoparticles, based on this geometric model we further demonstrate other anomalous scattering features (higher order modes supported at lower frequencies, and blueshift of the resonance with increasing particle sizes) and multiple electric resonances of the same order supported at different frequencies, which have been revealed to originate from backward SPP modes and multiple dispersion bands supported in the corresponding plasmonic waveguides, respectively. Inspired by this geometric model, it is also shown that, through solely geometric tuning, the absorption of each LSP resonance can be maximized to reach the single channel absorption limit, provided that the scattering and absorption rates are tuned to be equal. PMID:26173797
An underlying geometrical manifold for Hamiltonian mechanics
NASA Astrophysics Data System (ADS)
Horwitz, L. P.; Yahalom, A.; Levitan, J.; Lewkowicz, M.
2017-02-01
We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture), that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamiltonian-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical picture and establish a correspondence which provides a basis for understanding how the instability in the geometrical picture is manifested in the instability of the the original Hamiltonian motion.
Calculation of Geometric Dilution of Precision
NASA Astrophysics Data System (ADS)
Zhu, Jijie
1992-07-01
In this short communication, a very simple closed-form formula for the calculation of the Geometric Dilution of Precision (GDOP) in Global Positioning System (GPS) navigation and in Global Navigation Satellite System (GLONASS) navigation is presented, which requires less than 40 multiplications.
Geometric Representations for Discrete Fourier Transforms
NASA Technical Reports Server (NTRS)
Cambell, C. W.
1986-01-01
Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.
Reflections on representing non-geometric data
NASA Technical Reports Server (NTRS)
Emnett, R. F.; Shu, H. H.
1984-01-01
The American National Standard Y14.26M-1981 on Digital Representation for Communication of Product Definition Data includes an introduction, three sections corresponding to IGES (Initial Graphics Exchange Specification) Version 1.0, and Section 5, which is a constructive, relational, language based representation for geometric and topological entitles.
NASA Technical Reports Server (NTRS)
Christian, Jerry D.
1973-01-01
Students are not generally made aware of the extraordinary magnitude of the strengths of chemical bonds in terms of the forces required to pull them apart. Molecular bonds are usually considered in terms of the energies required to break them, and we are not astonished at the values encountered. For example, the Cl2 bond energy, 57.00 kcal/mole, amounts to only 9.46 x 10(sup -20) cal/molecule, a very small amount of energy, indeed, and impossible to measure directly. However, the forces involved in realizing the energy when breaking the bond operate over a very small distance, only 2.94 A, and, thus, f(sub ave) approx. equals De/(r - r(sub e)) must be very large. The forces involved in dissociating the molecule are discussed in the following. In consideration of average forces, the molecule shall be assumed arbitrarily to be dissociated when the atoms are far enough separated so that the potential, relative to that of the infinitely separated atoms, is reduced by 99.5% from the potential of the molecule at the equilibrium bond length (r(sub e)) for Cl2 of 1.988 A this occurs at 4.928 A.
Mechanics of tunable helices and geometric frustration in biomimetic seashells
NASA Astrophysics Data System (ADS)
Guo, Qiaohang; Chen, Zi; Li, Wei; Dai, Pinqiang; Ren, Kun; Lin, Junjie; Taber, Larry A.; Chen, Wenzhe
2014-03-01
Helical structures are ubiquitous in nature and engineering, ranging from DNA molecules to plant tendrils, from sea snail shells to nanoribbons. While the helical shapes in natural and engineered systems often exhibit nearly uniform radius and pitch, helical shell structures with changing radius and pitch, such as seashells and some plant tendrils, add to the variety of this family of aesthetic beauty. Here we develop a comprehensive theoretical framework for tunable helical morphologies, and report the first biomimetic seashell-like structure resulting from mechanics of geometric frustration. In previous studies, the total potential energy is everywhere minimized when the system achieves equilibrium. In this work, however, the local energy minimization cannot be realized because of the geometric incompatibility, and hence the whole system deforms into a shape with a global energy minimum whereby the energy in each segment may not necessarily be locally optimized. This novel approach can be applied to develop materials and devices of tunable geometries with a range of applications in nano/biotechnology.
Ritchie, Andrew W; Webb, Lauren J
2014-07-17
We have examined the effects of including explicit, near-probe solvent molecules in a continuum electrostatics strategy using the linear Poisson-Boltzmann equation with the Adaptive Poisson-Boltzmann Solver (APBS) to calculate electric fields at the midpoint of a nitrile bond both at the surface of a monomeric protein and when docked at a protein-protein interface. Results were compared to experimental vibrational absorption energy measurements of the nitrile oscillator. We examined three methods for selecting explicit water molecules: (1) all water molecules within 5 Å of the nitrile nitrogen; (2) the water molecule closest to the nitrile nitrogen; and (3) any single water molecule hydrogen-bonding to the nitrile. The correlation between absolute field strengths with experimental absorption energies were calculated and it was observed that method 1 was only an improvement for the monomer calculations, while methods 2 and 3 were not significantly different from the purely implicit solvent calculations for all protein systems examined. Upon taking the difference in calculated electrostatic fields and comparing to the difference in absorption frequencies, we typically observed an increase in experimental correlation for all methods, with method 1 showing the largest gain, likely due to the improved absolute monomer correlations using that method. These results suggest that, unlike with quantum mechanical methods, when calculating absolute fields using entirely classical models, implicit solvent is typically sufficient and additional work to identify hydrogen-bonding or nearest waters does not significantly impact the results. Although we observed that a sphere of solvent near the field of interest improved results for relative field calculations, it should not be consider a panacea for all situations.
A GEOMETRICAL HEIGHT SCALE FOR SUNSPOT PENUMBRAE
Puschmann, K. G.; Ruiz Cobo, B.; MartInez Pillet, V. E-mail: brc@iac.e
2010-09-10
Inversions of spectropolarimetric observations of penumbral filaments deliver the stratification of different physical quantities in an optical depth scale. However, without establishing a geometrical height scale, their three-dimensional geometrical structure cannot be derived. This is crucial in understanding the correct spatial variation of physical properties in the penumbral atmosphere and to provide insights into the mechanism capable of explaining the observed penumbral brightness. The aim of this work is to determine a global geometrical height scale in the penumbra by minimizing the divergence of the magnetic field vector and the deviations from static equilibrium as imposed by a force balance equation that includes pressure gradients, gravity, and the Lorentz force. Optical depth models are derived from the inversion of spectropolarimetric data of an active region observed with the Solar Optical Telescope on board the Hinode satellite. We use a genetic algorithm to determine the boundary condition for the inference of geometrical heights. The retrieved geometrical height scale permits the evaluation of the Wilson depression at each pixel and the correlation of physical quantities at each height. Our results fit into the uncombed penumbral scenario, i.e., a penumbra composed of flux tubes with channeled mass flow and with a weaker and more horizontal magnetic field as compared with the background field. The ascending material is hotter and denser than their surroundings. We do not find evidence of overturning convection or field-free regions in the inner penumbral area analyzed. The penumbral brightness can be explained by the energy transfer of the ascending mass carried by the Evershed flow, if the physical quantities below z = -75 km are extrapolated from the results of the inversion.
Insulation bonding test system
NASA Technical Reports Server (NTRS)
Beggs, J. M.; Johnston, G. D.; Coleman, A. D.; Portwood, J. N.; Saunders, J. M.; Redmon, J. W.; Porter, A. C. (Inventor)
1984-01-01
A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact.
Anisotropy of bond projections in simple crystal structures
NASA Astrophysics Data System (ADS)
Šimůnek, Antonín
2011-10-01
The nearest-neighbor bond distances represented by the stick-and-ball model of a crystal are projected into planes in order to find the directions from where the projections have maximum or minimum values. The projection directions and their corresponding values of the maxima and minima are presented for simple cubic, body-centered-cubic, face-centered-cubic, sodium chloride, zinc sulfide, diamond, fluorite, cesium chloride, hexagonal close-packed, tungsten carbide, wurtzite, graphite, graphene, and aluminum boride structures. The purely geometrical considerations quantitatively reflect an anisotropy of the bond projections and provide data for a large amount of materials crystallizing in these structures. The presented results can be applied to the description, analysis, and understanding of anisotropic effects related to bond projection in 14 crystal structures. The application of hardness anisotropy for BN, SiC, and TiC is shown.
Geometrical Aberration Suppression for Large Aperture Sub-THz Lenses
NASA Astrophysics Data System (ADS)
Rachon, M.; Liebert, K.; Siemion, A.; Bomba, J.; Sobczyk, A.; Knap, W.; Coquillat, D.; Suszek, J.; Sypek, M.
2017-03-01
Advanced THz setups require high performance optical elements with large numerical apertures and small focal lengths. This is due to the high absorption of humid air and relatively low efficiency of commercially available detectors. Here, we propose a new type of double-sided sub-THz diffractive optical element with suppressed geometrical aberration for narrowband applications (0.3 THz). One side of the element is designed as thin structure in non-paraxial approach which is the exact method, but only for ideally flat elements. The second side will compensate phase distribution differences between ideal thin structure and real volume one. The computer-aided optimization algorithm is performed to design an additional phase distribution of correcting layer assuming volume designing of the first side of the element. The experimental evaluation of the proposed diffractive component created by 3D printing technique shows almost two times larger performance in comparison with uncorrected basic diffractive lens.
Geometrical Aberration Suppression for Large Aperture Sub-THz Lenses
NASA Astrophysics Data System (ADS)
Rachon, M.; Liebert, K.; Siemion, A.; Bomba, J.; Sobczyk, A.; Knap, W.; Coquillat, D.; Suszek, J.; Sypek, M.
2016-11-01
Advanced THz setups require high performance optical elements with large numerical apertures and small focal lengths. This is due to the high absorption of humid air and relatively low efficiency of commercially available detectors. Here, we propose a new type of double-sided sub-THz diffractive optical element with suppressed geometrical aberration for narrowband applications (0.3 THz). One side of the element is designed as thin structure in non-paraxial approach which is the exact method, but only for ideally flat elements. The second side will compensate phase distribution differences between ideal thin structure and real volume one. The computer-aided optimization algorithm is performed to design an additional phase distribution of correcting layer assuming volume designing of the first side of the element. The experimental evaluation of the proposed diffractive component created by 3D printing technique shows almost two times larger performance in comparison with uncorrected basic diffractive lens.
Differential geometric treewidth estimation in adiabatic quantum computation
NASA Astrophysics Data System (ADS)
Wang, Chi; Jonckheere, Edmond; Brun, Todd
2016-10-01
The D-Wave adiabatic quantum computing platform is designed to solve a particular class of problems—the Quadratic Unconstrained Binary Optimization (QUBO) problems. Due to the particular "Chimera" physical architecture of the D-Wave chip, the logical problem graph at hand needs an extra process called minor embedding in order to be solvable on the D-Wave architecture. The latter problem is itself NP-hard. In this paper, we propose a novel polynomial-time approximation to the closely related treewidth based on the differential geometric concept of Ollivier-Ricci curvature. The latter runs in polynomial time and thus could significantly reduce the overall complexity of determining whether a QUBO problem is minor embeddable, and thus solvable on the D-Wave architecture.
1988-05-01
fabricated using P?-’r;est11 bur)ld II19 te(hnll I Oly with 6 cIsL nqs. The cast a lumi num alloy used was A357 . The sur- face preparation was phosphoric acid...from a cast aluminum alloy designated A357 . The bonding surfaces of the adherends were prepared using PAA. One primer and two adhesives considered...System, Cast Aluminum Lap Shear 18 11 Bond Area of 350°F Adhesive System, Cast Aluminum Lap Shear 19 vi LIST OF TABLES TABLE PAGE 1 A357 Chemical
NASA Technical Reports Server (NTRS)
Ferrante, J.; Smith, J. R.; Rose, J. H.
1984-01-01
Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.
29 CFR 2580.412-20 - Use of existing bonds, separate bonds and additional bonding.
Code of Federal Regulations, 2010 CFR
2010-07-01
... bonding. 2580.412-20 Section 2580.412-20 Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules § 2580.412-20 Use of existing...
29 CFR 2580.412-20 - Use of existing bonds, separate bonds and additional bonding.
Code of Federal Regulations, 2011 CFR
2011-07-01
... bonding. 2580.412-20 Section 2580.412-20 Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules § 2580.412-20 Use of existing...
Geometric frustration on a 1/9th site depleted triangular lattice
NASA Astrophysics Data System (ADS)
Hopkinson, John; Beck, Jarrett
2013-03-01
In the searches both for new spin liquid and spin ice (artificial and macroscopic) candidates, geometrically frustrated two-dimensional spin systems have played a prominent role. Here we present a study of the classical antiferromagnetic Ising (AFI) model on the sorrel net, a 1/9th site depleted and 1/7th bond depleted triangular lattice. The AFI model on this corner-shared triangle net is found to have a large residual entropy per spin S/N = 0 . 48185 +/- 0 . 00008 , indicating the sorrel net is highly geometrically frustrated. Anticipating that it may be difficult to achieve perfect bond depletion, we investigate the physics resulting from turning back on the depleted bonds (J2). We present the phase diagram, analytic expressions for the long range partially ordered ground state spin structure for antiferromagnetic J2 and the short range ordered ground state spin structure for ferromagnetic J2, the magnetic susceptibility and the static structure factor. We briefly comment on the possibility that artificial spin ice on the sorrel lattice could by made, and on a recent report [T. D. Keene et al., Dalton Trans. 40 2983 (2011)] of the creation of a 1/9th depleted cobalt hydroxide oxalate. This work was supported by NSERC (JMH) and NSERC USRA (JJB)
NASA Astrophysics Data System (ADS)
Chan, Matthew Wei-Jen
Complex engineering systems ranging from automobile engines to geothermal wells require specialized sensors to monitor conditions such as pressure, acceleration and temperature in order to improve efficiency and monitor component lifetime in what may be high temperature, corrosive, harsh environments. Microelectromechanical systems (MEMS) have demonstrated their ability to precisely and accurately take measurements under such conditions. The systems being monitored are typically made from metals, such as steel, while the MEMS sensors used for monitoring are commonly fabricated from silicon, silicon carbide and aluminum nitride, and so there is a sizable thermal expansion mismatch between the two. For these engineering applications the direct bonding of MEMS sensors to the components being monitored is often required. This introduces several challenges, namely the development of a bond that is capable of surviving high temperature harsh environments while mitigating the thermally induced strains produced during bonding. This project investigates the development of a robust packaging and bonding process, using the gold-tin metal system and the solid-liquid interdiffusion (SLID) bonding process, to join silicon carbide substrates directly to type-316 stainless steel. The SLID process enables bonding at lower temperatures while producing a bond capable of surviving higher temperatures. Finite element analysis was performed to model the thermally induced strains generated in the bond and to understand the optimal way to design the bond. The cross-sectional composition of the bonds has been analyzed and the bond strength has been investigated using die shear testing. The effects of high temperature aging on the bond's strength and the metallurgy of the bond were studied. Additionally, loading of the bond was performed at temperatures over 415 °C, more than 100 °C, above the temperature used for bonding, with full survival of the bond, thus demonstrating the benefit of
An improved image compression algorithm using binary space partition scheme and geometric wavelets.
Chopra, Garima; Pal, A K
2011-01-01
Geometric wavelet is a recent development in the field of multivariate nonlinear piecewise polynomials approximation. The present study improves the geometric wavelet (GW) image coding method by using the slope intercept representation of the straight line in the binary space partition scheme. The performance of the proposed algorithm is compared with the wavelet transform-based compression methods such as the embedded zerotree wavelet (EZW), the set partitioning in hierarchical trees (SPIHT) and the embedded block coding with optimized truncation (EBCOT), and other recently developed "sparse geometric representation" based compression algorithms. The proposed image compression algorithm outperforms the EZW, the Bandelets and the GW algorithm. The presented algorithm reports a gain of 0.22 dB over the GW method at the compression ratio of 64 for the Cameraman test image.
ERIC Educational Resources Information Center
Common Ground: Archeology and Ethnography in the Public Interest, 1998
1998-01-01
An interview with Linda Mayro, archaeologist and cultural resources manager for Pima County, Arizona, discusses efforts of local groups to preserve local Native-American and Mexican cultural-heritage sites in oppositon to commercial land developers. A public information campaign led to passage of a $6.4 million historic preservation bond. (SAS)
King, L.D.P.
1964-02-25
A process for bonding or joining graphite members together in which a thin platinum foil is placed between the members, heated in an inert atmosphere to a temperature of 1800 deg C, and then cooled to room temperature is described. (AEC)
... can take nearly all of your attention and energy — especially for a breastfeeding mom. Bonding will be much easier if you aren't exhausted by all of the other things going on at home, such as housework, meals, and laundry. It's helpful ...
Redmond, Robert W [Brookline, MA; Kochevar, Irene E [Charlestown, MA
2012-01-10
Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.
ERIC Educational Resources Information Center
Akeroyd, F. Michael
1982-01-01
Discusses merits of using sigma-pi model of ethylene as a teaching aid in introductory organic chemistry. The nonmathematical treatment of sigma-pi bonding is then extended to such phenomena as conjugation, hyperconjugation, Markovnikoff addition, aromaticity, and aromatic substitution. (SK)
NASA Astrophysics Data System (ADS)
Rocha, Mariana; Di Santo, A.; Echeverría, G. A.; Piro, O. E.; Cukiernik, F. D.; Ulic, S. E.; Gil, Diego M.
2017-04-01
The compound 4-(4-dimethylaminobenzylidene)aminoacetophenone was synthesized by condensation of 4-aminoacetophenone and 4-(dimethylamino) benzaldehyde in ethanol. This compound was characterized by CG-MS, infrared, Raman, UV-Vis, 1H and 13C NMR spectroscopy. The crystal structure was solved by single-crystal X-ray diffraction methods. The crystallographic data reveals that there are four independent molecules per asymmetric unit, that mainly differ from one another in rotations around the σ-bond of the azomethine N-atom with the phenyl ring. A detailed analysis of the intermolecular interactions in the four conformers of the compound has been performed using Hirshfeld surfaces and their associated two-dimensional fingerprint plots. The optimized geometrical parameters and calculated spectroscopic features obtained by quantum chemical calculations at B3LYP method show a very good agreement with the experimental data. Moreover, Natural Bond Orbital (NBO) analysis confirms the strong hyper-conjugative LP N(n1)→ σ* C(n9)sbnd H interaction between the lone pair located in the N-atom of the azomethine group and the Csbnd H bond. Liquid crystalline properties of the Schiff base were studied by differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and Powder X-ray diffraction techniques. Mesomorphic behaviour was observed in this unsymmetrical azomethine. Based on POM and DSC measurements, the hexatic Smetic B phase was detected.
Joint geometric and photometric direct image registration based on Lie algebra parameterization
NASA Astrophysics Data System (ADS)
Li, Chenxi; Shi, Zelin; Liu, Yunpeng
2016-10-01
In this paper, we consider direct image registration problem which estimate the geometric and photometric transformations between two images. The efficient second-order minimization method (ESM) is based on a second-order Taylor series of image differences without computing the Hessian under brightness constancy assumption. This can be done due to the fact that the considered geometric transformations is Lie group and can be parameterized by its Lie algebra. In order to deal with lighting changes, we extend ESM to the compositional dual efficient second-order minimization method (CDESM). In our approach, the photometric transformations is parameterized by its Lie algebra with compositional operation, which is similar to that of geometric transformations. Our algorithm can give a second-order approximation of image differences with respect to geometric and photometric parameters. The geometric and photometric parameters are simultaneously obtained by non-linear least-square optimization. Our algorithm preserves the advantages of the original ESM method which has high convergence rate and large capture radius. Experimental results show that our algorithm is more robust to lighting changes and has higher registration accuracy compared to previous algorithms.
The bouncing ball through a geometrical series
NASA Astrophysics Data System (ADS)
Flores, Sergio; Alfaro, Luis L.; Chavez, Juan E.; Bastarrachea, Aztlan; Hurtado, Jazmin
2008-10-01
The mathematical representation of the physical situation related to a bouncing ball on the floor is an important understanding difficulty for most of the students during the introductory mechanics and mathematics courses. The research group named Physics and mathematics in context from the University of Ciudad Juarez is concerned about the versatility in the change from a mathematical representation to the own physical context of any problem under a traditional instruction. In this case, the main idea is the association of the physical properties of the bouncing ball situation to the nearest mathematical model based on a geometrical series. The proposal of the cognitive development is based on a geometrical series that shows the time the ball takes to stop. In addition, we show the behavior of the ratio of the consecutive heights during the motion.
Geometric stability of topological lattice phases
Jackson, T. S.; Möller, Gunnar; Roy, Rahul
2015-01-01
The fractional quantum Hall (FQH) effect illustrates the range of novel phenomena which can arise in a topologically ordered state in the presence of strong interactions. The possibility of realizing FQH-like phases in models with strong lattice effects has attracted intense interest as a more experimentally accessible venue for FQH phenomena which calls for more theoretical attention. Here we investigate the physical relevance of previously derived geometric conditions which quantify deviations from the Landau level physics of the FQHE. We conduct extensive numerical many-body simulations on several lattice models, obtaining new theoretical results in the process, and find remarkable correlation between these conditions and the many-body gap. These results indicate which physical factors are most relevant for the stability of FQH-like phases, a paradigm we refer to as the geometric stability hypothesis, and provide easily implementable guidelines for obtaining robust FQH-like phases in numerical or real-world experiments. PMID:26530311
Small-on-large geometric anelasticity
NASA Astrophysics Data System (ADS)
Sadik, Souhayl; Yavari, Arash
2016-11-01
In this paper, we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics, this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems. This geometric formulation can be thought of as a material analogue of the classical small-on-large theory in nonlinear elasticity. We use the present small-on-large anelasticity theory to find exact solutions for the stress fields of some non-symmetric distributions of screw dislocations in incompressible isotropic solids.
Topological minimally entangled states via geometric measure
NASA Astrophysics Data System (ADS)
Buerschaper, Oliver; García-Saez, Artur; Orús, Román; Wei, Tzu-Chieh
2014-11-01
Here we show how the Minimally Entangled States (MES) of a 2d system with topological order can be identified using the geometric measure of entanglement. We show this by minimizing this measure for the doubled semion, doubled Fibonacci and toric code models on a torus with non-trivial topological partitions. Our calculations are done either quasi-exactly for small system sizes, or using the tensor network approach in Orús et al (arXiv:1406.0585) for large sizes. As a byproduct of our methods, we see that the minimisation of the geometric entanglement can also determine the number of Abelian quasiparticle excitations in a given model. The results in this paper provide a very efficient and accurate way of extracting the full topological information of a 2d quantum lattice model from the multipartite entanglement structure of its ground states.
A geometric description of human intestine.
Coşkun, Ihsaniye; Yildiz, Hüseyin; Arslan, Kadri; Yildiz, Bahri
2007-01-01
Mathematical models of natural phenomena play a central role in the physical sciences. Moreover, modeling of the organs draws from some beautiful areas of mathematics, such as nonlinear dynamics, multiscale transforms and stability analysis. In this study, a geometric recognition of the separate intestine sections (duodenum, jejunum, ileum, cecum and colon) of the human is presented. The human intestine was considered a tubular shape along a special curve and two male Turkish men were used for the modeling study. The length (cm) and diameter (mm) of the intestines were measured with a digital compass and formulated. These models were compared with their original photographs. It has been concluded that the geometric modeling and experimental work were consistent. These kinds of organ modeling techniques will also profit to medical lecturers to show 3-D figures to their students.
a Modular Geometric Model for Underwater Photogrammetry
NASA Astrophysics Data System (ADS)
Maas, H.-G.
2015-04-01
Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are broken at interfaces between optical media with different refrative indices according to Snell's Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more plane parallel glass interfaces, as it allows for some simplifications here.
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.
1993-01-01
Over the past several years, it has been the primary goal of this grant to design and implement software to be used in the conceptual design of aerospace vehicles. The work carried out under this grant was performed jointly with members of the Vehicle Analysis Branch (VAB) of NASA LaRC, Computer Sciences Corp., and Vigyan Corp. This has resulted in the development of several packages and design studies. Primary among these are the interactive geometric modeling tool, the Solid Modeling Aerospace Research Tool (smart), and the integration and execution tools provided by the Environment for Application Software Integration and Execution (EASIE). In addition, it is the purpose of the personnel of this grant to provide consultation in the areas of structural design, algorithm development, and software development and implementation, particularly in the areas of computer aided design, geometric surface representation, and parallel algorithms.
Orlov, Nikolay V; Chistyakov, Igor V; Khemchyan, Levon L; Ananikov, Valentine P; Beletskaya, Irina P; Starikova, Zoya A
2014-12-19
A unique Ni-catalyzed transformation is reported for the one-pot highly selective synthesis of previously unknown monoseleno-substituted 1,3-dienes starting from easily available terminal alkynes and benzeneselenol. The combination of a readily available catalyst precursor, Ni(acac)2, and an appropriately tuned phosphine ligand, PPh2Cy, resulted in the exclusive assembly of the s-gauche diene skeleton via the selective formation of C-C and C-Se bonds. The unusual diene products were stable under regular experimental conditions, and the products maintained the s-gauche geometry both in the solid state and in solution, as confirmed by X-ray analysis and NMR spectroscopy. Thorough mechanistic studies using ESI-MS revealed the key Ni-containing species involved in the reaction.
Kim, Hwi; Min, Sung-Wook; Lee, Byoungho
2008-12-01
Geometrical optics analysis of the structural imperfection of retroreflection corner cubes is described. In the analysis, a geometrical optics model of six-beam reflection patterns generated by an imperfect retroreflection corner cube is developed, and its structural error extraction is formulated as a nonlinear optimization problem. The nonlinear conjugate gradient method is employed for solving the nonlinear optimization problem, and its detailed implementation is described. The proposed method of analysis is a mathematical basis for the nondestructive optical inspection of imperfectly fabricated retroreflection corner cubes.
Geometric continuum regularization of quantum field theory
Halpern, M.B. . Dept. of Physics)
1989-11-08
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.
Geometric Phases in Sensing and Control
2003-01-01
this idea with an equal-sided, spring-jointed, four-bar mechanism and then apply the technique to a vibrating ring gyroscope. In physical systems the...Douglas Sparks of Delco Au- tomotive Systems ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Equal-Sided Four-Bar Mechanism ...Landsberg in [48, 49]. Many researchers have investigated the role of the geometric phase in mechan - ical systems . In problems of this type, changes
Chirality: a relational geometric-physical property.
Gerlach, Hans
2013-11-01
The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term.
Multiphase flow in geometrically simple fracture intersections
Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,
2006-01-01
A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.
Geometric Factors in Target Positioning and Tracking
2009-07-01
used in active management of distributed sensor resources and sensor path planning. Keywords: Ranging & Bearing-Only Sensors, Geometry, LOS, GDOP ... GDOP ) A scalar value that characterizes the position solution is the geometrical dilution of precision ( GDOP ) defined as [4, 13]: ))((traceGDOP 11...HRHT (14a) ))((trace 1−= HHT when R = I (14b) For the case with two ranging sensors, the GDOP can be written as: )(sin GDOP 21 2 2 2 2 1
Geometric Attributes of Retaining Glycosyltransferase Enzymes Favor an Orthogonal Mechanism
Schuman, Brock; Evans, Stephen V.; Fyles, Thomas M.
2013-01-01
Retaining glycosyltransferase enzymes retain the stereochemistry of the donor glycosidic linkage after transfer to an acceptor molecule. The mechanism these enzymes utilize to achieve retention of the anomeric stereochemistry has been a matter of much debate. Re-analysis of previously released structural data from retaining and inverting glycosyltransferases allows competing mechanistic proposals to be evaluated. The binding of metal-nucleotide-sugars between inverting and retaining enzymes is conformationally unique and requires the donor substrate to occupy two different orientations in the two types of glycosyltransferases. The available structures of retaining glycosyltransferases lack appropriately positioned enzymatic dipolar residues to initiate or stabilize the intermediates of a dissociative mechanism. Further, available structures show that the acceptor nucleophile and anomeric carbon of the donor sugar are in close proximity. Structural features support orthogonal (front-side) attack from a position lying ≤90° from the C1-O phosphate bond for retaining enzymes. These structural conclusions are consistent with the geometric conclusions of recent kinetic and computational studies. PMID:23936487
The geometric phase controls ultracold chemistry
Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.
2015-07-30
In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + O2more » reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.« less
Salt bridges: geometrically specific, designable interactions.
Donald, Jason E; Kulp, Daniel W; DeGrado, William F
2011-03-01
Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms.
Time as a geometric property of space
NASA Astrophysics Data System (ADS)
Chappell, James; Hartnett, John; Iannella, Nicolangelo; Iqbal, Azhar; Abbott, Derek
2016-11-01
The proper description of time remains a key unsolved problem in science. Newton conceived of time as absolute and universal which `flows equably without relation to anything external'. In the nineteenth century, the four-dimensional algebraic structure of the quaternions developed by Hamilton, inspired him to suggest that they could provide a unified representation of space and time. With the publishing of Einstein's theory of special relativity these ideas then lead to the generally accepted Minkowski spacetime formulation in 1908. Minkowski, though, rejected the formalism of quaternions suggested by Hamilton and adopted rather an approach using four-vectors. The Minkowski framework is indeed found to provide a versatile formalism for describing the relationship between space and time in accordance with Einstein's relativistic principles, but nevertheless fails to provide more fundamental insights into the nature of time itself. In order to answer this question we begin by exploring the geometric properties of three-dimensional space that we model using Clifford geometric algebra, which is found to contain sufficient complexity to provide a natural description of spacetime. This description using Clifford algebra is found to provide a natural alternative to the Minkowski formulation as well as providing new insights into the nature of time. Our main result is that time is the scalar component of a Clifford space and can be viewed as an intrinsic geometric property of three-dimensional space without the need for the specific addition of a fourth dimension.
Light polarization: A geometric-algebra approach
NASA Astrophysics Data System (ADS)
Baylis, W. E.; Bonenfant, J.; Derbyshire, J.; Huschilt, J.
1993-06-01
The geometric algebra of three-dimensional space (the ``Pauli algebra'') is known to provide an efficient geometric description of electromagnetic phenomena. Here, it is applied to the three-dimensional Stokes subspace to describe the polarization of an approximately monochromatic collimated beam of electromagnetic radiation. The coherency density ρ is a real element of the algebra whose components are the four Stokes parameters: a scalar representing the total photon flux density plus a three-dimensional vector whose direction and length in the Poincaré sphere give the type and degree of polarization. The detection of the radiation and the incoherent and coherent modification of the polarization by various optical elements are calculated by algebraic multiplication which has faithful representations in 2×2 matrices. One matrix representation of ρ is the coherency matrix with which Jones and Mueller matrices are related whereas another representation is the spin density matrix. However, the calculations are simplest to perform and interpret in the algebraic form independent of any particular matrix representation. It is shown that any possible change in the Stokes parameters can be treated algebraically by a combination of attenuation, depolarization, polarization, and rotation transformations of ρ. The geometric algebra thus unifies Stokes parameters, the Poincaré sphere, Jones and Mueller matrices, and the coherency and density matrices in a single, simple formalism.
Geometric Morphometrics of Rodent Sperm Head Shape
Varea Sánchez, María; Bastir, Markus; Roldan, Eduardo R. S.
2013-01-01
Mammalian spermatozoa, particularly those of rodent species, are extremely complex cells and differ greatly in form and dimensions. Thus, characterization of sperm size and, particularly, sperm shape represents a major challenge. No consensus exists on a method to objectively assess size and shape of spermatozoa. In this study we apply the principles of geometric morphometrics to analyze rodent sperm head morphology and compare them with two traditional morphometry methods, that is, measurements of linear dimensions and dimensions-derived parameters calculated using formulae employed in sperm morphometry assessments. Our results show that geometric morphometrics clearly identifies shape differences among rodent spermatozoa. It is also capable of discriminating between size and shape and to analyze these two variables separately. Thus, it provides an accurate method to assess sperm head shape. Furthermore, it can identify which sperm morphology traits differ between species, such as the protrusion or retraction of the base of the head, the orientation and relative position of the site of flagellum insertion, the degree of curvature of the hook, and other distinct anatomical features and appendices. We envisage that the use of geometric morphometrics may have a major impact on future studies focused on the characterization of sperm head formation, diversity of sperm head shape among species (and underlying evolutionary forces), the effects of reprotoxicants on changes in cell shape, and phenotyping of genetically-modified individuals. PMID:24312234
A Geometric Theory of Nonlinear Morphoelastic Shells
NASA Astrophysics Data System (ADS)
Sadik, Souhayl; Angoshtari, Arzhang; Goriely, Alain; Yavari, Arash
2016-08-01
Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms, are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.
Landsat-5 bumper-mode geometric correction
Storey, J.C.; Choate, Michael J.
2004-01-01
The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.
Geometric simulation of structures containing rigid units
NASA Astrophysics Data System (ADS)
Wells, Stephen
2005-03-01
Much insight into the behaviour of the framework silicates can be obtained from the Rigid Unit model. I review results from geometric analyses [1] of framework structures, quantifying the significance of rigid unit motion in thermal disorder and in defect accomodation, and from a method of simulation [2,3] based on a whole-body `geometric potential' rather than on interatomic potentials. I show the application of the geometric potential to the symmetry-constrained generation of hypothetical zeolite frameworks [4], and to the rapid generation of protein conformations using insights from rigid cluster decomposition [5]. 1. Wells, Dove and Tucker, Journal of Applied Crystallography, 37:536--544 (2004). 2. G.D. Gatta and S.A. Wells, Phys. Chem. Min. 31:1--10 (2004). 3. A. Sartbaeva, S. A. Wells, S. A. T. Redfern, J. Phys.: Condens. Matter 16, 8173 (2004) 4. M. M. J. Treacy, I. Rivin, E. Balkovsky, K. H. Randall and M. D. Foster, Micropor. Mesopor. Mater. 74, 121-132 (2004). 5. M.F. Thorpe, Ming Lei, A.J. Rader, Donald J. Jacobs, and Leslie A. Kuhn, Journal of Molecular Graphics and Modelling 19, 1:60 - 69, (2001).
Geometric phase effects in ultracold chemistry
NASA Astrophysics Data System (ADS)
Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.
2016-05-01
In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).
Bond strength testing--what does it mean?
Oilo, G
1993-10-01
In this paper, bond strength and various important factors in bond strength testing are discussed as well as the limitations in the interpretation and clinical relevance of such tests. Standardisation of bond strength testing is needed, and the solutions found in the new ISO document, ISO CD TR 11405 Dental Materials--Guidance on testing of adhesion to tooth structure, are referred to. Tensile and shear test methods are discussed and the bond strength values obtained with these methods compared. The influence of dentine substrate variations, such as remaining dentine thickness and surface treatment or removal of smear layer, are discussed as well as the storage conditions of specimens for in vitro tests, that is, short term, long term and thermocycling, and their relevance to the clinical situation. The information obtained from microscopical studies of fractured surfaces indicates that some adhesives may, under optimal conditions, obtain a bond strength sufficient to fracture the dentine.
Global-Local Finite Element Analysis for Thermo-Mechanical Stresses in Bonded Joints
NASA Technical Reports Server (NTRS)
Shkarayev, S.; Madenci, Erdogan; Camarda, C. J.
1997-01-01
An analysis of adhesively bonded joints using conventional finite elements does not capture the singular behavior of the stress field in regions where two or three dissimilar materials form a junction with or without free edges. However, these regions are characteristic of the bonded joints and are prone to failure initiation. This study presents a method to capture the singular stress field arising from the geometric and material discontinuities in bonded composites. It is achieved by coupling the local (conventional) elements with global (special) elements whose interpolation functions are constructed from the asymptotic solution.
A Micromachined Geometric Moire Interferometric Floating-Element Shear Stress Sensor
NASA Technical Reports Server (NTRS)
Horowitz, S.; Chen, T.; Chandrasekaran, V.; Tedjojuwono, K.; Nishida, T.; Cattafesta, L.; Sheplak, M.
2004-01-01
This paper presents the development of a floating-element shear stress sensor that permits the direct measurement of skin friction based on geometric Moir interferometry. The sensor was fabricated using an aligned wafer-bond/thin-back process producing optical gratings on the backside of a floating element and on the top surface of the support wafer. Experimental characterization indicates a static sensitivity of 0.26 microns/Pa, a resonant frequency of 1.7 kHz, and a noise floor of 6.2 mPa/(square root)Hz.
Geometric Approaches to Quadratic Equations from Other Times and Places.
ERIC Educational Resources Information Center
Allaire, Patricia R.; Bradley, Robert E.
2001-01-01
Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)
The Calculation of Accurate Metal-Ligand Bond Energies
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W.; Partridge, Harry, III; Ricca, Alessandra; Arnold, James O. (Technical Monitor)
1997-01-01
The optimization of the geometry and calculation of zero-point energies are carried out at the B3LYP level of theory. The bond energies are determined at this level, as well as at the CCSD(T) level using very large basis sets. The successive OH bond energies to the first row transition metal cations are reported. For most systems there has been an experimental determination of the first OH. In general, the CCSD(T) values are in good agreement with experiment. The bonding changes from mostly covalent for the early metals to mostly electrostatic for the late transition metal systems.
Design of geometric phase measurement in EAST Tokamak
NASA Astrophysics Data System (ADS)
Lan, T.; Liu, H. Q.; Liu, J.; Jie, Y. X.; Wang, Y. L.; Gao, X.; Qin, H.
2016-07-01
The optimum scheme for geometric phase measurement in EAST Tokamak is proposed in this paper. The theoretical values of geometric phase for the probe beams of EAST Polarimeter-Interferometer (POINT) system are calculated by path integration in parameter space. Meanwhile, the influences of some controllable parameters on geometric phase are evaluated. The feasibility and challenge of distinguishing geometric effect in the POINT signal are also assessed in detail.
NASA Technical Reports Server (NTRS)
Altshuller, Aubrey P
1955-01-01
The average bond energies D(gm)(B-Z) for boron-containing molecules have been calculated by the Pauling geometric-mean equation. These calculated bond energies are compared with the average bond energies D(exp)(B-Z) obtained from experimental data. The higher values of D(exp)(B-Z) in comparison with D(gm)(B-Z) when Z is an element in the fifth, sixth, or seventh periodic group may be attributed to resonance stabilization or double-bond character.
How geometric details can affect the strength of adhesive lap joints
Metzinger, K.E.; Guess, T.R.
1996-12-31
The durability of adhesively bonded joints--when utilized as blade attachments--has a significant impact on the performance of wind turbines. Accordingly, there is interest in determining how geometric details affect the strength of these joints. Finite element analyses were performed to aid in the selection of three composite-to-metal joint geometries for compressive axial testing. Both monotonic and low-cycle fatigue tests were conducted. Analysis and testing of these joints provide insight into the effects of adding extra adhesive to the end of the bond or tapering the metal adherend. The issue of whether the relative performance of different joints in monotonic tests can be used to predict the relative fatigue strength of these joints is also addressed.
Monte Carlo based geometrical model for efficiency calculation of an n-type HPGe detector.
Cabal, Fatima Padilla; Lopez-Pino, Neivy; Bernal-Castillo, Jose Luis; Martinez-Palenzuela, Yisel; Aguilar-Mena, Jimmy; D'Alessandro, Katia; Arbelo, Yuniesky; Corrales, Yasser; Diaz, Oscar
2010-12-01
A procedure to optimize the geometrical model of an n-type detector is described. Sixteen lines from seven point sources ((241)Am, (133)Ba, (22)Na, (60)Co, (57)Co, (137)Cs and (152)Eu) placed at three different source-to-detector distances (10, 20 and 30 cm) were used to calibrate a low-background gamma spectrometer between 26 and 1408 keV. Direct Monte Carlo techniques using the MCNPX 2.6 and GEANT 4 9.2 codes, and a semi-empirical procedure were performed to obtain theoretical efficiency curves. Since discrepancies were found between experimental and calculated data using the manufacturer parameters of the detector, a detail study of the crystal dimensions and the geometrical configuration is carried out. The relative deviation with experimental data decreases from a mean value of 18-4%, after the parameters were optimized.
NASA Astrophysics Data System (ADS)
Zhou, Pan-Pan; Qiu, Wen-Yuan
2009-08-01
Standard Watson-Crick adenine-thymine (AT) base pair has been investigated by using the B3LYP functional with 6-31G(d, p) basis set, at which level of theory the geometrical characteristics of the AT base pair are the best in agreement with the experiment. It exhibits simultaneously red-shifted N-H···O and N-H···N hydrogen bonds as well as a blue-shifted C-H···O contact. AIM analysis suggests that the blue-shifted C-H···O contact exists as van der Waals interaction, and the electron density ρ that reflects the strength of a bond has been used to explain the red- and blue-shifted. By means of NBO analysis, we report a method to estimate the effect of hyperconjugation quantitatively, which combines the electron density in the X-H (X = N, C) σ bonding orbital with that in the σ* antibonding orbital. The effect of structural reorganization on the origins of the red- and blue-shifted has been considered by the partial optimization, its behavior on the X-H (X = N, C) bond is quite different. Rehybridization and repolarization models are employed, and they act as bond-shortening effects. The competition between the electrostatic attractions and Pauli/nucleus repulsions is present in the two typical red-shifted N-H···O and N-H···N hydrogen bonds as well as in the blue-shifted C-H···O van der Waals contact. Electrostatic attraction between H and Y atoms (Y = O, N) is an important reason for the red shift, while the nucleus-nucleus repulsion between H and O atoms may be a factor leading to the C-H bond contraction and its blue shift. The electric field effect induced by the acceptor O atom on the C-H bond is also discussed.
Low temperature reactive bonding
Makowiecki, Daniel M.; Bionta, Richard M.
1995-01-01
The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.
The two faces of hydrogen-bond strength on triple AAA-DDD arrays.
Lopez, Alfredo Henrique Duarte; Caramori, Giovanni Finoto; Coimbra, Daniel Fernando; Parreira, Renato Luis Tame; da Silva, Éder Henrique
2013-12-02
Systems that are connected through multiple hydrogen bonds are the cornerstone of molecular recognition processes in biology, and they are increasingly being employed in supramolecular chemistry, specifically in molecular self-assembly processes. For this reason, the effects of different substituents (NO2, CN, F, Cl, Br, OCH3 and NH2) on the electronic structure, and consequently on the magnitude of hydrogen bonds in triple AAA-DDD arrays (A=acceptor, D=donor) were evaluated in the light of topological [electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM)], energetic [Su-Li energy-decomposition analysis (EDA) and natural bond orbital analysis (NBO)], and geometrical analysis. The results based on local H-bond descriptors (geometries, QTAIM, ELF, and NBO) indicate that substitutions with electron-withdrawing groups on the AAA module tend to strengthen, whereas electron-donating substituents tend to weaken the covalent character of the AAA-DDD intermolecular H-bonds, and also indicate that the magnitude of the effect is dependent on the position of substitution. In contrast, Su-Li EDA results show an opposite behavior when compared to local H-bond descriptors, indicating that electron-donating substituents tend to increase the magnitude of H-bonds in AAA-DDD arrays, and thus suggesting that the use of local H-bond descriptors describes the nature of H bonds only partially, not providing enough insight about the strength of such H bonds.
Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions.
Dong, Kun; Zhang, Suojiang; Wang, Jianji
2016-05-21
Ionic liquids (ILs) have many potential applications in the chemical industry. In order to understand ILs, their molecular details have been extensively investigated. Intuitively, electrostatic forces are solely important in ILs. However, experiments and calculations have provided strong evidence for the existence of H-bonds in ILs and their roles in the properties and applications of ILs. As a structure-directing force, H-bonds are responsible for ionic pairing, stacking and self-assembling. Their geometric structure, interaction energy and electronic configuration in the ion-pairs of imidazolium-based ILs and protic ionic liquids (PILs) show a great number of differences compared to conventional H-bonds. In particular, their cooperation with electrostatic, dispersion and π interactions embodies the physical nature of H-bonds in ILs, which anomalously influences their properties, leading to a decrease in their melting points and viscosities and thus fluidizing them. Using ILs as catalysts and solvents, many reactions can be activated by the presence of H-bonds, which reduce the reaction barriers and stabilize the transition states. In the dissolution of lignocellulosic biomass by ILs, H-bonds exhibit a most important role in disrupting the H-bonding network of cellulose and controlling microscopic ordering into domains. In this article, a critical review is presented regarding the structural features of H-bonds in ILs and PILs, the correlation between H-bonds and the properties of ILs, and the roles of H-bonds in typical reactions.
Design of geometric phase measurement in EAST Tokamak
NASA Astrophysics Data System (ADS)
Lan, Ting; Liu, Haiqing; Liu, Jian; Qin, Hong
2016-10-01
The aim of this work is to propose the optimum scheme for geometric phase measurement in EAST Tokamak. On the one hand, the experimental observation of geometric phase in plasma systems is an essential verification of the geometric phase theory by a new experimental technique. On the other hand, the measurement of geometric phase confirms geometric effect as a new system error in the existing diagnostics. The geometric phase in Faraday rotation angle for linearly polarized electromagnetic waves propagating in non-uniform magnetized plasmas is a good candidate for the first identification of geometric phase in plasma. In this work, the theoretical values of geometric phase for the probe beams of EAST Polarimeter-Interferometer (POINT) system are calculated by path integration in parameter space. Several schemes are proposed for the measurement of the geometric phase in POINT system by amplifying the geometric phase and enhancing the diagnostic resolution. To reach the conditions of the designed scheme for geometric phase measurement, the feasibility of replacing individual retro reflectors (RRs) with retro reflector array (RRA) in POINT system is verified experimentally. Corresponding results are beneficial for geometric phase measurement in EAST Tokamak.
Identifying and Fostering Higher Levels of Geometric Thinking
ERIC Educational Resources Information Center
Škrbec, Maja; Cadež, Tatjana Hodnik
2015-01-01
Pierre M. Van Hiele created five levels of geometric thinking. We decided to identify the level of geometric thinking in the students in Slovenia, aged 9 to 11 years. The majority of students (60.7%) are at the transition between the zero (visual) level and the first (descriptive) level of geometric thinking. Nearly a third (31.7%) of students is…
NASA Astrophysics Data System (ADS)
Elliott, Robert J.; Richards, W. Graham
A method for obtaining precise charge densities in defined regions of space from ab initio molecular wavefunctions is employed to place the concept of bond order on a firm theoretical footing. The bond orders obtained for carbon—carbon bonds in a range of organic compounds are assessed: those for buta-1,3-diene confirm that it consists of essentially localised double and single bonds.
Padgett, E.V. Jr.; Warf, D.H.
1964-04-28
An improved process of bonding aluminum to aluminum without fusion by ultrasonic vibrations plus pressure is described. The surfaces to be bonded are coated with an aqueous solution of alkali metal stearate prior to assembling for bonding. (AEC) O H19504 Present information is reviewed on steady state proliferation, differentiation, and maturation of blood cells in mammals. Data are cited from metabolic tracer studies, autoradiographic studies, cytologic studies, studies of hematopoietic response to radiation injuries, and computer analyses of blood cell production. A 3-step model for erythropoiesis and a model for granulocyte kinetics are presented. New approaches to the study of lymphocytopoiesis described include extracorporeal blood irradiation to deplete lymphocytic tissue without direct injury to the formative tissues as a means to study the stressed system, function control, and rates of proliferation. It is pointed out that present knowledge indicates that lymphocytes comprise a mixed family, with diverse life spans, functions, and migration patterns with apparent aimless recycling from modes to lymph to blood to nodes that has not yet been quantitated. Areas of future research are postulated. (70 references.) (C.H.)
Coulombic Models in Chemical Bonding.
ERIC Educational Resources Information Center
Sacks, Lawrence J.
1986-01-01
Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)
Rapid Adhesive Bonding of Composites
NASA Technical Reports Server (NTRS)
Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.
1986-01-01
Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.
NASA Technical Reports Server (NTRS)
Dunbar, P. M.; Hauser, J. R.
1976-01-01
This paper presents the results of continued studies of silicon solar cell operation and limitations. The objective of this paper is to report on geometrical and doping changes in silicon solar cells which result in predictions of high efficiencies. Efficiencies as high as 20 per cent (uncorrected for metal coverage and ohmic sheet resistance) have been calculated for optimized cells. The conditions required to achieve these efficiency values are discussed.
The relative roles of electrostatics and dispersion in the stabilization of halogen bonds.
Riley, Kevin E; Hobza, Pavel
2013-11-07
In this work we highlight recent work aimed at the characterization of halogen bonds. Here we discuss the origins of the σ-hole, the modulation of halogen bond strength by changing of neighboring chemical groups (i.e. halogen bond tuning), the performance of various computational methods in treating halogen bonds, and the strength and character of the halogen bond, the dihalogen bond, and two hydrogen bonds in bromomethanol dimers (which serve as model complexes) are compared. Symmetry adapted perturbation theory analysis of halogen bonding complexes indicates that halogen bonds strongly depend on both dispersion and electrostatics. The electrostatic interaction that occurs between the halogen σ-hole and the electronegative halogen bond donor is responsible for the high degree of directionality exhibited by halogen bonds. Because these noncovalent interactions have a strong dispersion component, it is important that the computational method used to treat a halogen bonding system be chosen very carefully, with correlated methods (such as CCSD(T)) being optimal. It is also noted here that most forcefield-based molecular mechanics methods do not describe the halogen σ-hole, and thus are not suitable for treating systems with halogen bonds. Recent attempts to improve the molecular mechanics description of halogen bonds are also discussed.
An expert system for optimal gear design
Lin, K.C.
1988-01-01
By properly developing the mathematical model, numerical optimization can be used to seek the best solution for a given set of geometric constraints. The process of determining the non-geometric design variables is automated by using symbolic computation. This gear-design system is built according to the AGMA standards and a survey of gear-design experts. The recommendations of gear designers and the information provided by AGMA standards are integrated into knowledge bases and data bases. By providing fast information retrieval and design guidelines, this expert system greatly streamlines the spur gear design process. The concept of separating the design space into geometric and non-geometric variables can also be applied to the design process for general mechanical elements. The expert-system techniques is used to simulate a human designer to optimize the process of determining non-geometric parameters, and the numerical optimization is used to identify for the best geometric solution. The combination of the expert-system technique with numerical optimization essentially eliminates the deficiencies of both methods and thus provides a better way of modeling the engineering design process.
Kernel density estimation applied to bond length, bond angle, and torsion angle distributions.
McCabe, Patrick; Korb, Oliver; Cole, Jason
2014-05-27
We describe the method of kernel density estimation (KDE) and apply it to molecular structure data. KDE is a quite general nonparametric statistical method suitable even for multimodal data. The method generates smooth probability density function (PDF) representations and finds application in diverse fields such as signal processing and econometrics. KDE appears to have been under-utilized as a method in molecular geometry analysis, chemo-informatics, and molecular structure optimization. The resulting probability densities have advantages over histograms and, importantly, are also suitable for gradient-based optimization. To illustrate KDE, we describe its application to chemical bond length, bond valence angle, and torsion angle distributions and show the ability of the method to model arbitrary torsion angle distributions.
Geometric incompatibility in a fault system.
Gabrielov, A; Keilis-Borok, V; Jackson, D D
1996-01-01
Interdependence between geometry of a fault system, its kinematics, and seismicity is investigated. Quantitative measure is introduced for inconsistency between a fixed configuration of faults and the slip rates on each fault. This measure, named geometric incompatibility (G), depicts summarily the instability near the fault junctions: their divergence or convergence ("unlocking" or "locking up") and accumulation of stress and deformations. Accordingly, the changes in G are connected with dynamics of seismicity. Apart from geometric incompatibility, we consider deviation K from well-known Saint Venant condition of kinematic compatibility. This deviation depicts summarily unaccounted stress and strain accumulation in the region and/or internal inconsistencies in a reconstruction of block- and fault system (its geometry and movements). The estimates of G and K provide a useful tool for bringing together the data on different types of movement in a fault system. An analog of Stokes formula is found that allows determination of the total values of G and K in a region from the data on its boundary. The phenomenon of geometric incompatibility implies that nucleation of strong earthquakes is to large extent controlled by processes near fault junctions. The junctions that have been locked up may act as transient asperities, and unlocked junctions may act as transient weakest links. Tentative estimates of K and G are made for each end of the Big Bend of the San Andreas fault system in Southern California. Recent strong earthquakes Landers (1992, M = 7.3) and Northridge (1994, M = 6.7) both reduced K but had opposite impact on G: Landers unlocked the area, whereas Northridge locked it up again. Images Fig. 1 Fig. 2 PMID:11607673
Geometric Evaluation of Systematic Transrectal Ultrasound Guided Prostate Biopsy
Han, Misop; Chang, Doyoung; Kim, Chunwoo; Lee, Brian J.; Zuo, Yihe; Kim, Hyung-Joo; Petrisor, Doru; Trock, Bruce; Partin, Alan W.; Rodriguez, Ronald; Carter, H. Ballentine; Allaf, Mohamad; Kim, Jongwon; Stoianovici, Dan
2013-01-01
Purpose Transrectal ultrasound guided prostate biopsy results rely on physician ability to target the gland according to the biopsy schema. However, to our knowledge it is unknown how accurately the freehand, transrectal ultrasound guided biopsy cores are placed in the prostate and how the geometric distribution of biopsy cores may affect the prostate cancer detection rate. Materials and Methods To determine the geometric distribution of cores, we developed a biopsy simulation system with pelvic mock-ups and an optical tracking system. Mock-ups were biopsied in a freehand manner by 5 urologists and by our transrectal ultrasound robot, which can support and move the transrectal ultrasound probe. We compared 1) targeting errors, 2) the accuracy and precision of repeat biopsies, and 3) the estimated significant prostate cancer (0.5 cm3 or greater) detection rate using a probability based model. Results Urologists biopsied cores in clustered patterns and under sampled a significant portion of the prostate. The robot closely followed the predefined biopsy schema. The mean targeting error of the urologists and the robot was 9.0 and 1.0 mm, respectively. Robotic assistance significantly decreased repeat biopsy errors with improved accuracy and precision. The mean significant prostate cancer detection rate of the urologists and the robot was 36% and 43%, respectively (p <0.0001). Conclusions Systematic biopsy with freehand transrectal ultrasound guidance does not closely follow the sextant schema and may result in suboptimal sampling and cancer detection. Repeat freehand biopsy of the same target is challenging. Robotic assistance with optimized biopsy schemas can potentially improve targeting, precision and accuracy. A clinical trial is needed to confirm the additional benefits of robotic assistance. PMID:23088974
The Electromagnetic Duality Formulation of Geometric Phases
NASA Astrophysics Data System (ADS)
Zhang, Yuchao; Li, Kang
2015-06-01
This paper focuses on the electromagnetic(EM) duality formulation of geometric phases of Aharonov-Bohm(A-B) effect and Aharonov-Casher(A-C) effect. Through the two four-vector potential formulation of electromagnetic theory, we construct a EM duality formulation for both A-B effect and A-C effect. The He-McKellar-Wilkens(HMW) effect is included as a EM duality counterpart of the A-C effect, and also the EM duality counterpart of the A-B effect is also predicted.
Toroidal Precession as a Geometric Phase
J.W. Burby and H. Qin
2012-09-26
Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.
CMOS-integrated geometrically tunable optical filters.
Lerose, Damiana; Hei, Evie Kho Siaw; Ching, Bong Ching; Sterger, Martin; Yaw, Liau Chu; Schulze, Frank Michael; Schmidt, Frank; Schmidt, Andrei; Bach, Konrad
2013-03-10
We present a method for producing monolithically integrated complementary metal-oxide-semiconductor (CMOS) optical filters with different and customer-specific responses. The filters are constituted by a Fabry-Perot resonator formed by two Bragg mirrors separated by a patterned cavity. The filter response can be tuned by changing the geometric parameters of the patterning, and consequently the cavity effective refractive index. In this way, many different filters can be produced at once on a single chip, allowing multichanneling. The filter has been designed, produced, and characterized. The results for a chip with 24 filters are presented.
In the Realm of Geometric Transitions
Alexander, S
2004-09-09
We complete the duality cycle by constructing the geometric transition duals in the type IIB, type I and heterotic theories. We show that in the type IIB theory the background on the closed string side is a Kahler deformed conifold, as expected, even though the mirror type IIA backgrounds are non-Kahler (both before and after the transition). On the other hand, the Type I and heterotic backgrounds are non-Kahler. Therefore, on the heterotic side these backgrounds give rise to new torsional manifolds that have not been studied before. We show the consistency of these backgrounds by verifying the torsional equation.
Minimal representations, geometric quantization, and unitarity.
Brylinski, R; Kostant, B
1994-01-01
In the framework of geometric quantization we explicitly construct, in a uniform fashion, a unitary minimal representation pio of every simply-connected real Lie group Go such that the maximal compact subgroup of Go has finite center and Go admits some minimal representation. We obtain algebraic and analytic results about pio. We give several results on the algebraic and symplectic geometry of the minimal nilpotent orbits and then "quantize" these results to obtain the corresponding representations. We assume (Lie Go)C is simple. PMID:11607478
Advances in Geometric Acoustic Propagation Modeling Methods
NASA Astrophysics Data System (ADS)
Blom, P. S.; Arrowsmith, S.
2013-12-01
Geometric acoustics provides an efficient numerical method to model propagation effects. At leading order, one can identify ensonified regions and calculate celerities of the predicted arrivals. Beyond leading order, the solution of the transport equation provides a means to estimate the amplitude of individual acoustic phases. The auxiliary parameters introduced in solving the transport equation have been found to provide a means of identifying ray paths connecting source and receiver, or eigenrays, for non-planar propagation. A detailed explanation of the eigenray method will be presented as well as an application to predicting azimuth deviations for infrasonic data recorded during the Humming Roadrunner experiment of 2012.
FOLD LENS FLUX ANOMALIES: A GEOMETRIC APPROACH
Goldberg, David M.; Chessey, Mary K.; Harris, Wendy B.; Richards, Gordon T.
2010-06-01
We develop a new approach for studying flux anomalies in quadruply imaged fold lens systems. We show that in the absence of substructure, microlensing, or differential absorption, the expected flux ratios of a fold pair can be tightly constrained using only geometric arguments. We apply this technique to 11 known quadruple lens systems in the radio and infrared and compare our estimates to the Monte Carlo based results of Keeton et al. We show that a robust estimate for a flux ratio from a smoothly varying potential can be found, and at long wavelengths those lenses deviating from this ratio almost certainly contain significant substructure.
Fold Lens Flux Anomalies: A Geometric Approach
NASA Astrophysics Data System (ADS)
Goldberg, David M.; Chessey, Mary K.; Harris, Wendy B.; Richards, Gordon T.
2010-06-01
We develop a new approach for studying flux anomalies in quadruply imaged fold lens systems. We show that in the absence of substructure, microlensing, or differential absorption, the expected flux ratios of a fold pair can be tightly constrained using only geometric arguments. We apply this technique to 11 known quadruple lens systems in the radio and infrared and compare our estimates to the Monte Carlo based results of Keeton et al. We show that a robust estimate for a flux ratio from a smoothly varying potential can be found, and at long wavelengths those lenses deviating from this ratio almost certainly contain significant substructure.
Geometric extension through Schwarzschild R = 0
NASA Astrophysics Data System (ADS)
Lynden-Bell, D.; Katz, J.
1990-12-01
A very simple conservation theorem pertaining to embeddings of Tolman solutions into flat space has been found which, in nonsingular regions of space-time, follows from Einstein's equations and the equations that define the embedding. If the conservation is extended to cover the singular 'surface' r = 0, it furnishes the requisite physical and geometrical supplement to Einstein's equations at the singularity; by thus bridging the singular region, a unique extension is found beyond the singularity. The passage of an extended particle through the singularity is illustrated by a classical toy model that demonstrates both the expected crushing and the emergence into extended space.
Geometrical Wake of a Smooth Flat Collimator
Stupakov, G.V.; /SLAC
2011-09-09
A transverse geometrical wake generated by a beam passing through a smooth flat collimator with a gradually varying gap between the upper and lower walls is considered. Based on generalization of the approach recently developed for a smooth circular taper we reduce the electromagnetic problem of the impedance calculation to the solution of two much simpler static problems - a magnetostatic and an electrostatic ones. The solution shows that in the limit of not very large frequencies, the impedance increases with the ratio h/d where h is the width and d is the distance between the collimating jaws. Numerical results are presented for the NLC Post Linac collimator.
Overview of geometrical room acoustic modeling techniques.
Savioja, Lauri; Svensson, U Peter
2015-08-01
Computerized room acoustics modeling has been practiced for almost 50 years up to date. These modeling techniques play an important role in room acoustic design nowadays, often including auralization, but can also help in the construction of virtual environments for such applications as computer games, cognitive research, and training. This overview describes the main principles, landmarks in the development, and state-of-the-art for techniques that are based on geometrical acoustics principles. A focus is given to their capabilities to model the different aspects of sound propagation: specular vs diffuse reflections, and diffraction.
Geometric formalism for DNA quadruplex folding.
Webba da Silva, Mateus
2007-01-01
Understanding the control of self-assembly and stereochemical properties of DNA higher order architectural folds is of fundamental importance in biology as well as biochemical technological applications. Guanine-rich DNA sequences can form tetrahelical architectures termed quadruplexes. A formalism is presented describing the interdependency of a set of structural descriptors as a geometric basis for folding of unimolecular quadruplex topologies. It represents a standard for interpretation of structural characteristics of quadruplexes, and is comprehensive in explicitly harmonizing the results of published literature with a unified language. The formalism is a fundamental step towards prediction of unimolecular quadruplex folding topologies from primary sequence.
Supersymmetric QCD vacua and geometrical engineering
Tatar, Radu; Wetenhall, Ben
2008-02-15
We consider the geometrical engineering constructions for the N=1 supersymmetric QCD vacua recently proposed by Giveon and Kutasov. After 1 T-duality, the geometries with wrapped D5 branes become N=1 brane configurations with NS branes and D4 branes. The field theories encoded by the geometries contain extra massive adjoint fields for the flavor group. After performing a flop, the geometries contain branes, antibranes and branes wrapped on nonholomorphic cycles. The various tachyon condensations between pairs of wrapped D5 branes and anti-D5 branes together with deformations of the cycles give rise to a variety of supersymmetric and metastable nonsupersymmetric vacua.
Finite octree meshing through topologically driven geometric operators
NASA Technical Reports Server (NTRS)
Grice, Kurt R.
1987-01-01
The octree technique is developed into the finite octree, and an overview is given. Modeler requirements are given. The octree discretization is discussed along with geometric communication operators. Geometric communication operators returning topological associativity and geometric communication operators returning spatial data are also discussed and illustrated. The advantages are given of the boundary representation and of geometric communication operators. The implementation plays an important role in the integration with a variety of geometric modelers. The capabilities of closed loop processes within a complete finite element system are presented.
Hydrogen bonding in ionic liquids.
Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P
2015-03-07
Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak
Flexible printed circuit boards laser bonding using a laser beam homogenization process
NASA Astrophysics Data System (ADS)
Kim, Joohan; Choi, Haewoon
2012-11-01
A laser micro-bonding process using laser beam shaping is successfully demonstrated for flexible printed circuit boards. A CW Ytterbium fiber laser with a wavelength of 1070 nm and a laser power density of 1-7 W/mm2 is employed as a local heat source for bonding flexible printed circuit boards to rigid printed circuit boards. To improve the bonding quality, a micro-lens array is used to modify the Gaussian laser beam for the bonding process. An electromagnetic modeling and heat transfer simulation is conducted to verify the effect of the micro-lens array on the laser bonding process. The optimal bonding parameters are found experimentally. As the measured temperature ramp rate of the boards exceeds 1100 K/s, bonding occurs within 100-200 ms at a laser power density of 5 W/mm2. The bonding quality of the FPCB is verified with a shear strength test. Process characteristics are also discussed.
Zhang, Zongbo; Wang, Xiaodong; Luo, Yi; He, Shengqiang; Wang, Liding
2010-06-15
A thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices has been presented. The substrates were preheated to 20-30 degrees C lower than glass transition temperature (T(g)) of the polymer. Then low amplitude ultrasonic vibration was employed to generate facial heat at the interface of PMMA substrates. PMMA microfluidic chips were successfully bonded with bulk temperature well below T(g) of the material and with pressure two orders lower than conventional thermal bonding, which was of great benefit to reduce the deformation of microstructures. The bonding process was optimized by Taguchi method. This bonding technique showed numerous superiorities including high bonding strength (0.95MPa), low dimension loss (0.3-0.8%) and short bonding time. Finally, a micromixer was successfully bonded by this method and its performance was demonstrated.
On the bond distance in methane
NASA Technical Reports Server (NTRS)
Bowen-Jenkins, Philippa; Pettersson, Lars G. M.; Siegbahn, Per; Almloef, Jan; Taylor, Peter R.
1987-01-01
The equilibrium bond distance in methane was optimized using coupled-pair functional and contracted CI wave functions, and a Gaussian basis that includes g-type functions on carbon and d-type functions on hydrogen. The resulting bond distance, when corrected for core-valence correlation effects, agrees with the experimental value of 2.052 a(0) to within the experimental uncertainty of 0.002 a(0). The main source of error in the best previous studies, which showed discrepancies with experiment of 0.007 a(0) is shown to be basis set incompleteness. In particular, it is important that the basis set be close to saturation, at least for the lower angular quantum numbers.
On the bond distance in methane
NASA Technical Reports Server (NTRS)
Bowen-Jenkins, Philippa; Pettersson, Lars G. M.; Siegbahn, Per; Almlof, Jan; Taylor, Peter R.
1988-01-01
The equilibrium bond distance in methane has been optimized using coupled-pair functional and contracted CI wave functions, and a Gaussian basis that includes g-type functions on carbon and d-type functions on hydrogen. The resulting bond distance, when corrected for core-valance correlation effects, agrees with the experimental value of 2.052 a(0) to within the experimental uncertainty of 0.002 a(0). The main source of error in the best previous studies, which showed discrepancies with experiment of 0.007 a(0) is shown to be basis set incompleteness. In particular, it is important that the basis set be close to saturation, at least for the lower angular quantum numbers.
Geometric spin Hall effect of light with inhomogeneous polarization
NASA Astrophysics Data System (ADS)
Ling, Xiaohui; Zhou, Xinxing; Yi, Xunong
2017-01-01
The spin Hall effect of light originates from spin-orbit interaction of light, which manifests two types of geometric phases. In this paper, we report the observation of a geometric spin Hall effect by generating a light beam with inhomogeneous polarization distribution. Unlike the previously reported geometric spin Hall effect observed in a tilted beam-detector system, which is believed to result from an effective spin-redirection Berry geometric phase, the geometric spin Hall effect demonstrated here is attributed to an effective, spatially varying Pancharatnam-Berry geometric phase generated by the inhomogeneous polarization geometry. Our further experiments show that the geometric spin Hall effect can be tuned by tailoring the polarization geometry of light, demonstrating the spin states of photons can be steered with a great flexibility.
Evaluation of composite bonded joints
Whitworth, H.A.; Othieno, M.; Yin, S.W.
1995-12-31
The present investigation evaluates the influence of joining technique on the static and fatigue behavior of composite bonded joints. Specimens used in this investigation were LDF AS4/PEKK graphite/thermoplastic composites and IM6/3501-6 graphite/poxy composite laminates. Joints were made by either adhesive bonding or fusing bonding. For the adhesive bonded joints, in some cases specimens were bonded without any surface pretreatment while in other cases the surfaces were either grit blast or corona. treated prior to bonding. For the fusion bonded joints, joints were prepared by either induction welding or thermabonding. In addition, some specimens were conditioned in a wet environment for thirty days in order to observe the influence of moisture on the static strengths. During fatigue testing, the residual stiffness was continually monitored in order to assess the extent of fatigue damage development.
Bond strength of direct and indirect bonded brackets after thermocycling.
Daub, Jacob; Berzins, David W; Linn, Brandon James; Bradley, Thomas Gerard
2006-03-01
Thermocycling simulates the temperature dynamics in the oral environment. With direct bonding, thermocycling reduces the bond strength of orthodontic adhesives to tooth structure. The purpose of this study was to evaluate the shear bond strengths (SBS) of one direct and two indirect bonding methods/adhesives after thermocycling. Sixty human premolars were divided into three groups. Teeth in group 1 were bonded directly with Transbond XT. Teeth in group 2 were indirect bonded with Transbond XT/Sondhi Rapid Set, which is chemically cured. Teeth in group 3 were indirect bonded with Enlight LV/Orthosolo and light cured. Each sample was thermocycled between 5 degrees C and 55 degrees C for 500 cycles. Mean SBS in groups 1, 2, and 3 were not statistically significantly different (13.6 +/- 2.9, 12.3 +/- 3.0, and 11.6 +/- 3.2 MPa, respectively; P > .05). However, when these values were compared with the results of a previous study using the same protocol, but without thermocycling, the SBS was reduced significantly (P = .001). Weibull analysis further showed that group 3 had the lowest bonding survival rate at the minimum clinically acceptable bond-strength range. The Adhesive Remnant Index was also determined, and group 2 had a significantly (P < .05) higher percentage of bond failures at the resin/enamel interface.
Constrained geometric simulation of diffusive motion in proteins
NASA Astrophysics Data System (ADS)
Wells, Stephen; Menor, Scott; Hespenheide, Brandon; Thorpe, M. F.
2005-12-01
We describe a new computational method, FRODA (framework rigidity optimized dynamic algorithm), for exploring the internal mobility of proteins. The rigid regions in the protein are first determined, and then replaced by ghost templates which are used to guide the movements of the atoms in the protein. Using random moves, the available conformational phase space of a 100 residue protein can be well explored in approximately 10-100 min of computer time using a single processor. All of the covalent, hydrophobic and hydrogen bond constraints are maintained, and van der Waals overlaps are avoided, throughout the simulation. We illustrate the results of a FRODA simulation on barnase, and show that good agreement is obtained with nuclear magnetic resonance experiments. We additionally show how FRODA can be used to find a pathway from one conformation to another. This directed dynamics is illustrated with the protein dihydrofolate reductase.
Geometric and Radiometric Evaluation of Rasat Images
NASA Astrophysics Data System (ADS)
Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar
2016-06-01
RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.
Geometric Observers for Dynamically Evolving Curves
Niethammer, Marc; Vela, Patricio A.; Tannenbaum, Allen
2009-01-01
This paper proposes a deterministic observer design for visual tracking based on nonparametric implicit (level-set) curve descriptions. The observer is continuous discrete with continuous-time system dynamics and discrete-time measurements. Its state-space consists of an estimated curve position augmented by additional states (e.g., velocities) associated with every point on the estimated curve. Multiple simulation models are proposed for state prediction. Measurements are performed through standard static segmentation algorithms and optical-flow computations. Special emphasis is given to the geometric formulation of the overall dynamical system. The discrete-time measurements lead to the problem of geometric curve interpolation and the discrete-time filtering of quantities propagated along with the estimated curve. Interpolation and filtering are intimately linked to the correspondence problem between curves. Correspondences are established by a Laplace-equation approach. The proposed scheme is implemented completely implicitly (by Eulerian numerical solutions of transport equations) and thus naturally allows for topological changes and subpixel accuracy on the computational grid. PMID:18421113
Geometric-optical illusions at isoluminance.
Hamburger, Kai; Hansen, Thorsten; Gegenfurtner, Karl R
2007-12-01
The idea of a largely segregated processing of color and form was initially supported by observations that geometric-optical illusions vanish under isoluminance. However, this finding is inconsistent with some psychophysical studies and also with physiological evidence showing that color and luminance are processed together by largely overlapping sets of neurons in the LGN, in V1, and in extrastriate areas. Here we examined the strength of nine geometric-optical illusions under isoluminance (Delboeuf, Ebbinghaus, Hering, Judd, Müller-Lyer, Poggendorff, Ponzo, Vertical, Zöllner). Subjects interactively manipulated computer-generated line drawings to counteract the illusory effect. In all cases, illusions presented under isoluminance (both for colors drawn from the cardinal L-M or S-(L+M) directions of DKL color space) were as effective as the luminance versions (both for high and low contrast). The magnitudes of the illusion effects were highly correlated across subjects for the different conditions. In two additional experiments we determined that the strong illusions observed under isoluminance were not due to individual deviations from the photometric point of isoluminance or due to chromatic aberrations. Our findings show that our conscious percept is affected similarly for both isoluminance and luminance conditions, suggesting that the joint processing for chromatic and luminance defined contours may extend well beyond early visual areas.
Geometrical effects in X-mode scattering
Bretz, N.
1986-10-01
One technique to extend microwave scattering as a probe of long wavelength density fluctuations in magnetically confined plasmas is to consider the launching and scattering of extraordinary (X-mode) waves nearly perpendicular to the field. When the incident frequency is less than the electron cyclotron frequency, this mode can penetrate beyond the ordinary mode cutoff at the plasma frequency and avoid significant distortions from density gradients typical of tokamak plasmas. In the more familiar case, where the incident and scattered waves are ordinary, the scattering is isotropic perpendicular to the field. However, because the X-mode polarization depends on the frequency ratios and the ray angle to the magnetic field, the coupling between the incident and scattered waves is complicated. This geometrical form factor must be unfolded from the observed scattering in order to interpret the scattering due to density fluctuations alone. The geometrical factor is calculated here for the special case of scattering perpendicular to the magnetic field. For frequencies above the ordinary mode cutoff the scattering is relatively isotropic, while below cutoff there are minima in the forward and backward directions which go to zero at approximately half the ordinary mode cutoff density.
Geometrically nonlinear behavior of piezoelectric laminated plates
NASA Astrophysics Data System (ADS)
Rabinovitch, Oded
2005-08-01
The geometrically nonlinear behavior of piezo-laminated plates actuated with isotropic or anisotropic piezoelectric layers is analytically investigated. The analytical model is derived using the variational principle of virtual work along with the lamination and plate theories, the von Karman large displacement and moderate rotation kinematic relations, and the anisotropic piezoelectric constitutive laws. A solution strategy that combines the approach of the method of lines, the advantages of the finite element concept, and the variational formulation is developed. This approach yields a set of nonlinear ordinary differential equations with nonlinear boundary conditions, which are solved using the multiple-shooting method. Convergence and verification of the model are examined through comparison with linear and nonlinear results of other approximation methods. The nonlinear response of two active plate structures is investigated numerically. The first plate is actuated in bending using monolithic piezoceramic layers and the second one is actuated in twist using macro-fiber composites. The results quantitatively reveal the complicated in-plane stress state associated with the piezoelectric actuation and the geometrically nonlinear coupling of the in-plane and out-of-plane responses of the plate. The influence of the nonlinear effects ranges from significant stiffening in certain combinations of electrical loads and boundary conditions to amplifications of the induced deflections in others. The paper closes with a summary and conclusions.
Geometric Modelling of Octagonal Lamp Poles
NASA Astrophysics Data System (ADS)
Chan, T. O.; Lichti, D. D.
2014-06-01
Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.
Translating cosmological special relativity into geometric algebra
NASA Astrophysics Data System (ADS)
Horn, Martin Erik
2012-11-01
Geometric algebra and Clifford algebra are important tools to describe and analyze the physics of the world we live in. Although there is enormous empirical evidence that we are living in four dimensional spacetime, mathematical worlds of higher dimensions can be used to present the physical laws of our world in an aesthetical and didactical more appealing way. In physics and mathematics education we are therefore confronted with the question how these high dimensional spaces should be taught. But as an immediate confrontation of students with high dimensional compactified spacetimes would expect too much from them at the beginning of their university studies, it seems reasonable to approach the mathematics and physics of higher dimensions step by step. The first step naturally is the step from four dimensional spacetime of special relativity to a five dimensional spacetime world. As a toy model for this artificial world cosmological special relativity, invented by Moshe Carmeli, can be used. This five dimensional non-compactified approach describes a spacetime which consists not only of one time dimension and three space dimensions. In addition velocity is regarded as a fifth dimension. This model very probably will not represent physics correctly. But it can be used to discuss and analyze the consequences of an additional dimension in a clear and simple way. Unfortunately Carmeli has formulated cosmological special relativity in standard vector notation. Therefore a translation of cosmological special relativity into the mathematical language of Grassmann and Clifford (Geometric algebra) is given and the physics of cosmological special relativity is discussed.
Geometrical Monte Carlo simulation of atmospheric turbulence
NASA Astrophysics Data System (ADS)
Yuksel, Demet; Yuksel, Heba
2013-09-01
Atmospheric turbulence has a significant impact on the quality of a laser beam propagating through the atmosphere over long distances. Turbulence causes intensity scintillation and beam wander from propagation through turbulent eddies of varying sizes and refractive index. This can severely impair the operation of target designation and Free-Space Optical (FSO) communications systems. In addition, experimenting on an FSO communication system is rather tedious and difficult. The interferences of plentiful elements affect the result and cause the experimental outcomes to have bigger error variance margins than they are supposed to have. Especially when we go into the stronger turbulence regimes the simulation and analysis of the turbulence induced beams require delicate attention. We propose a new geometrical model to assess the phase shift of a laser beam propagating through turbulence. The atmosphere along the laser beam propagation path will be modeled as a spatial distribution of spherical bubbles with refractive index discontinuity calculated from a Gaussian distribution with the mean value being the index of air. For each statistical representation of the atmosphere, the path of rays will be analyzed using geometrical optics. These Monte Carlo techniques will assess the phase shift as a summation of the phases that arrive at the same point at the receiver. Accordingly, there would be dark and bright spots at the receiver that give an idea regarding the intensity pattern without having to solve the wave equation. The Monte Carlo analysis will be compared with the predictions of wave theory.
Geometric representation of fundamental particles' inertial mass
Schachter, L.; Spencer, James
2015-07-22
A geometric representation of the (N = 279) masses of quarks, leptons, hadrons and gauge bosons was introduced by employing a Riemann Sphere facilitating the interpretation of the N masses in terms of a single particle, the Masson, which might be in one of the N eigen-states. Geometrically, its mass is the radius of the Riemann Sphere. Dynamically, its derived mass is near the mass of the nucleon regardless of whether it is determined from all N particles of only the hadrons, the mesons or the baryons separately. Ignoring all the other properties of these particles, it is shown that the eigen-values, the polar representation θ_{ν} of the masses on the Sphere, satisfy the symmetry θ_{ν} + θ_{N+1-ν} = π within less than 1% relative error. In addition, these pair correlations include the pairs θ_{γ} + θ_{top} ≃ π and θ_{gluon} + θ_{H} ≃ π as well as pairing the weak gauge bosons with the three neutrinos.
Geometric Phases in Single Molecule Magnets
NASA Astrophysics Data System (ADS)
Fenochio, Brian Canchola
The characterization of the material properties of Single Molecule Magnets (SMMs) has grown in importance over the last few decades with the rise of novel applications such as high-density magnetic storage and quantum computation. Many of the applications require the probing of SMMs with spectroscopic methods that make use of electromagnetic radiation. The interaction with these time-dependent fields leads to energy shifts, which can be attributed to the geometric phase acquired by the system or the Bloch-Siegert shift. We model an SMM by a giant spin Hamiltonian, and use Floquet perturbation theory to find the geometric phase shifts. The locations where the phase shift between two levels is zero is useful for performing accurate spectroscopies, whereas the regions where relative phase differences exist are useful in applications like quantum computing. Using the same giant spin Hamiltonian, we can use Floquet theory and Salwen perturbation theory to determine the Bloch-Siegert shift and derive a modified version of the Rabi formula for transition probabilities between the energy states Ealpha → Ealpha+/-1, Ealpha → Ealpha+/-3, and Ealpha → Ealpha+/-5 , where alpha is the index of an arbitrary initial state. The shifted eigenvalues and modified transition probabilities can be useful in spectroscopies where accurate values for the energy-splitting between magnetic states needs to be determined.
Geometric similarity between protein-RNA interfaces.
Zhou, Peng; Zou, Jianwei; Tian, Feifei; Shang, Zhicai
2009-12-01
A new method is described to measure the geometric similarity between protein-RNA interfaces quantitatively. The method is based on a procedure that dissects the interface geometry in terms of the spatial relationships between individual amino acid nucleotide pairs. Using this technique, we performed an all-on-all comparison of 586 protein-RNA interfaces deposited in the current Protein Data Bank, as the result, an interface-interface similarity score matrix was obtained. Based upon this matrix, hierarchical clustering was carried out which yielded a complete clustering tree for the 586 protein-RNA interfaces. By investigating the organizing behavior of the clustering tree and the SCOP classification of protein partners in complexes, a geometrically nonredundant, diverse data set (representative data set) consisting of 45 distinct protein-RNA interfaces was extracted for the purpose of studying protein-RNA interactions, RNA regulations, and drug design. We classified protein-RNA interfaces into three types. In type I, the families and interface structural classes of the protein partners, as well as the interface geometries are all similar. In type II, the interface geometries and the interface structural classes are similar, whereas the protein families are different. In type III, only the interface geometries are similar but the protein families and the interface structural classes are distinct. Furthermore, we also show two new RNA recognition themes derived from the representative data set.
Geometric defects in quantum Hall states
NASA Astrophysics Data System (ADS)
Gromov, Andrey
2016-08-01
We describe a geometric (or gravitational) analog of the Laughlin quasiholes in fractional quantum Hall states. Analogously to the quasiholes, these defects can be constructed by an insertion of an appropriate vertex operator into the conformal block representation of a trial wave function; however, unlike the quasiholes these defects are extrinsic and do not correspond to true excitations of the quantum fluid. We construct a wave function in the presence of such defects and explain how to assign an electric charge and a spin to each defect and calculate the adiabatic, non-Abelian statistics of the defects. The defects turn out to be equivalent to the genons in that their adiabatic exchange statistics can be described in terms of representations of the mapping class group of an appropriate higher genus Riemann surface. We present a general construction that, in principle, makes it possible to calculate the statistics of Zn genons for any "parent" topological phase. We illustrate the construction on the example of the Laughlin state and perform an explicit calculation of the braiding matrices. In addition to non-Abelian statistics, geometric defects possess a universal Abelian overall phase, determined by the gravitational anomaly.
Geometrical acoustics and transonic helicopter sound
NASA Technical Reports Server (NTRS)
Isom, Morris; Purcell, Timothy W.; Strawn, Roger C.
1987-01-01
A new method is presented for predicting the impulsive noise generated by a transonic rotor blade. The method is a combined approach involving computational fluid dynamics and geometrical acoustics. A full-potential finite-difference method is used to obtain the pressure field close to the blade. A Kirchhoff integral formulation is then used to extend these finite-difference results into the far field. This Kirchhoff formula is based on geometrical acoustics approximations. It requires initial data across a plane at the sonic radius in a blade-fixed coordinate system. This data is provided by the finite-difference solution. Acoustic pressure predictions show good agreement with hover experimental data for cases with hover tip Mach numbers of 0.88 through 0.96. The cases above 0.92 tip Mach number are dominated by non-linear transonic effects seen as strong shocks on and off the blade tip. This paper gives the first successful predictions of far-field acoustic pressures for high-speed impulsive noise over a range of Mach numbers after delocalization.
Dual geometric worm algorithm for two-dimensional discrete classical lattice models
NASA Astrophysics Data System (ADS)
Hitchcock, Peter; Sørensen, Erik S.; Alet, Fabien
2004-07-01
We present a dual geometrical worm algorithm for two-dimensional Ising models. The existence of such dual algorithms was first pointed out by Prokof’ev and Svistunov [
Dey, Abhishek; Chow, Marina; Taniguchi, Kayoko; Lugo-Mas, Priscilla; Davin, Steven; Maeda, Mizuo; Kovacs, Julie A.; Odaka, Masafumi; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC, SSRL
2006-09-28
The geometric and electronic structure of the active site of the non-heme iron enzyme nitrile hydratase (NHase) is studied using sulfur K-edge XAS and DFT calculations. Using thiolate (RS{sup -})-, sulfenate (RSO{sup -})-, and sulfinate (RSO{sub 2}{sup -})-ligated model complexes to provide benchmark spectral parameters, the results show that the S K-edge XAS is sensitive to the oxidation state of S-containing ligands and that the spectrum of the RSO- species changes upon protonation as the S-O bond is elongated (by {approx}0.1 {angstrom}). These signature features are used to identify the three cysteine residues coordinated to the low-spin Fe{sup III} in the active site of NHase as CysS{sup -}, CysSOH, and CysSO{sub 2}{sup -} both in the NO-bound inactive form and in the photolyzed active form. These results are correlated to geometry-optimized DFT calculations. The pre-edge region of the X-ray absorption spectrum is sensitive to the Z{sub eff} of the Fe and reveals that the Fe in [FeNO]{sup 6} NHase species has a Z{sub eff} very similar to that of its photolyzed Fe{sup III} counterpart. DFT calculations reveal that this results from the strong {pi} back-bonding into the {pi}* antibonding orbital of NO, which shifts significant charge from the formally t{sub 2}{sup 6} low-spin metal to the coordinated NO.
Geometric Toys in the Attic? A Corpus Analysis of Early Exposure to Geometric Shapes
ERIC Educational Resources Information Center
Resnick, Ilyse; Verdine, Brian; Golinkoff, Roberta; Hirsh-Pasek, Kathy
2016-01-01
Preschoolers' experiences with shapes are important because geometry is foundational to aspects of mathematics and it is now part of the Common Core for school-readiness. Exposure to shapes also provides experiences that are key to developing spatial thinking more broadly. Yet achieving a strong conceptual understanding of geometric categories can…
Comparison of Bond in Roll-bonded and Adhesively Bonded Aluminums
NASA Technical Reports Server (NTRS)
Schwensfeir, R. J., Jr.; Trenkler, G.; Delagi, R. G.; Forster, J. A.
1985-01-01
Lap-shear and peel test measurements of bond strength have been carried out as part of an investigation of roll bonding of 2024 and 7075 aluminum alloys. Shear strengths of the bonded material in the F temper are in the range of 14 to 16 ksi. Corresponding peel strengths are 120 to 130 lb/inch. These values, which are three to five times those reported in the literature for adhesively bonded 2024 and 7075, are a result of the true metallurgical bond achieved. The effects of heat-treating the bonded material are described and the improvements in bond strength discussed relative to the shear strength of the parent material. The significance of the findings for aerospace applications is discussed.
Methodology and method and appartus for signaling with capacity optimized constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2012-01-01
Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel.
Aerospace plane guidance using time-scale decomposition - A geometric approach
NASA Technical Reports Server (NTRS)
Van Buren, Mark A.; Mease, Kenneth D.
1991-01-01
A method is proposed for developing the necessary guidance logic to steer single-stage vehicles into orbit. The minimum-fuel ascent problem is first considered to analyze the effects of dynamic pressure, acceleration, and heating constraints on guidance systems to thereby develop the guidance logic. The optimal solution consists of behavior with two time scales, and the control law is used to develop near-optimal guidance. The solution uses the slow manifold to delineate the control for minimum-fuel reduced-order trajectory and a separate control for tracking the optimal reduced-order trajectory. A family of fast manifolds is then employed to resolve the tracking problem via the feedback linearization methodology from nonlinear geometric control theory. The two-time-scale decomposition is found to produce a near-optimal ascent by tracking the applicable state-constraint boundary, as well as to simplify the control-design task.
[SIBSytem: innovation for bracket bonding?].
Moreau, Alexis
2013-06-01
The orthodontic bracket placement has known two major improvements these last fifty years: first with the ability of bonding brackets directly on the enamel (Newmann 1965); second with the indirect bonding procedure introduced by Silvermann and Cohen in 1972. If we put aside the technological evolutions of bonding materials (brackets and adhesives), few refinements have occurred regarding the protocols in this period of time. Furthermore, direct bonding procedure seems to be used by a majority of orthodontists despite the rapidity, accuracy and ergonomics promised by indirect bonding protocol. The main originality of the system detailed in this article is to bond orthodontic brackets in a virtually predetermined position with indirect bonding advantages but with the efficiency of direct bonding because the adhesive is applied directly on the bracket base without pre-bonding necessity. This innovation has been allowed by the use of up-to-date CFAO technology. The article first describes the two components of the SIBSystem (SIBClip and SIBTray) and details the manufacturing stages. The clinical use is then evoked as well as the cautions and limits of this innovative bonding system.
27 CFR 28.66 - Strengthening bonds.
Code of Federal Regulations, 2010 CFR
2010-04-01
... bonds. In all cases where the penal sum of any bond becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum, or give a new bond to... of any bond to less than its full penal sum. Strengthening bonds shall show the current date...
Thematic mapper: detailed radiometric and geometric characteristics
Kieffer, Hugh
1983-01-01
Those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration of spectral data have been examined. Subscenes of radiometric all raw data (B-data) were examined on an individual detector basis: areas of uniform radiance were used to characterize subtle radiometric differences and noise problems. A variety of anomalies have been discovered with magnitude of a few digital levels or less: the only problem not addressable by ground processing is irregular width of the digital levels. Essentially all of this non-ideal performance is incorporated in the fully processed (P-type) images, but disguised by the geometric resampling procedure. The overall performance of the Thematic Mapper is a great improvement over previous Landsat scanners. The effective resolution in radiance is degraded by about a factor of two by irregular width of the digital levels. Several detectors have a change of gain with a period of several scans, the largest effect is about 4%. These detectors appear to switch between two response levels during scan direction reversal; there is no apparent periodicity to these changes. This can cause small apparent difference between forward and reverse scans for portions of an image. The high-frequency noise level of each detector was characterized by the standard deviation of the first derivative in the sample direction across a flat field. Coherent sinusoidal noise patterns were determined using one-dimensional Fourier transforms. A "stitching" pattern in Band 1 has a period of 13.8 samples with a peak-to-peak amplitude ranging from 1 to 5 DN. Noise with a period of 3.24 samples is pronounced for most detectors in band 1, to a lesser extent in bands 2, 3, and 4, and below background noise levels in bands 5, 6, and 7. The geometric fidelity of the GSFC film writer used for Thematic Mapper (TM) images was assessed by measurement with accuracy bette than three micrometers of a test grid. A set of 55
NASA Astrophysics Data System (ADS)
Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng
2016-06-01
The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.
Solder extrusion pressure bonding process and bonded products produced thereby
Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.
1992-01-01
Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.
Solder extrusion pressure bonding process and bonded products produced thereby
Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.
1992-06-16
Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.
Fatigue strength of a single lap joint SPR-bonded
NASA Astrophysics Data System (ADS)
Di Franco, G.; Fratini, L.; Pasta, A.
2011-05-01
In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints. The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.
NASA Astrophysics Data System (ADS)
Suresh Kumar, S.; Athimoolam, S.; Sridhar, B.
2015-10-01
6-Mercaptopurine (an anti cancer drug), is coming under the class II Biopharmaceutics Classification System (BCS). In order to enhance the solubility with retained physiochemical/pharmaceutical properties, the present work was attempted with its salt form. The single crystals of 6-mercaptopurinium chloride (6MPCl) were successfully grown by slow evaporation technique under ambient temperature. The X-ray diffraction study shows that the crystal packing is dominated by N-H⋯Cl classical hydrogen bonds leading to corrugated laminar network. The hydrogen bonds present in the lamina can be dismantled as three chain C21(6), C21(7) and C21(8) motifs running along ab-diagonal of the unit cell. These primary chain motifs are interlinked to each other forming ring R63(21) motifs. These chain and ring motifs are aggregated like a dendrimer structure leading to the above said corrugated lamina. This low dimensional molecular architecture differs from the ladder like arrays in pure drug though it possess lattice water molecule in lieu of the chloride anion in the present compound. Geometrical optimizations of 6MPCl were done by Density Functional Theory (DFT) using B3LYP function with two different basis sets. The optimized molecular geometries and computed vibrational spectra are compared with their experimental counterparts. The Natural Bond Orbital (NBO) analysis was carried out to interpret hyperconjugative interaction and Intramolecular Charge Transfer (ICT). The chemical hardness, electronegativity, chemical potential and electrophilicity index of 6MPCl were found along with the HOMO-LUMO plot. The lower band gap value obtained from the Frontier Molecular Orbital (FMO) analysis reiterates the pharmaceutical activity of the compound. The anticancer studies show that 6MPCl retains its activity against human cervical cancer cell line (HeLa). Hence, this anticancer efficacy and improved solubility demands 6MPCl towards the further pharmaceutical applications.