Science.gov

Sample records for optimized liquid culture

  1. Optimization of liquid culture conditions of Philippine wild edible mushrooms as potential source of bioactive lipids

    USDA-ARS?s Scientific Manuscript database

    With remarkable bioactivities and delightful taste, mushrooms have been a commercial nutraceutical around the world. Mushrooms are cultivated on solid materials. Here we report the successful cultivation of four Philippine edible mushrooms in liquid medium. This work highlights the optimal liquid cu...

  2. Optimization of conditions for the efficient production of mutan in streptococcal cultures and post-culture liquids.

    PubMed

    Wiater, A; Szczodrak, J; Pleszczyńska, M

    2005-01-01

    The strain Streptococcus sobrinus CCUG 21020 was found to produce water-insoluble and adhesive mutan. The factors influencing both stages of the mutan production, i.e. streptococcal cultures and glucan synthesis in post-culture supernatants were standardized. The application of optimized process parameters for mutan production on a larger scale made it possible to obtain approximately 2.2 g of water-insoluble glucan per 11 of culture supernate--this productivity was higher than the best reported in the literature. It was shown that some of the tested beet sugars might be successfully utilized as substitutes for pure sucrose in the process of mutan synthesis. Nuclear magnetic resonance analyses confirmed that the insoluble biopolymer synthesized by a mixture of crude glucosyltransferases was a mixed-linkage (1-->3), (1-->6)-alpha-D-glucan (the so-called mutan) with a greater proportion of 1,3 to 1,6 linkages.

  3. Optimization of Large-Scale Culture Conditions for the Production of Cordycepin with Cordyceps militaris by Liquid Static Culture

    PubMed Central

    Kang, Chao; Wen, Ting-Chi; Kang, Ji-Chuan; Meng, Ze-Bing; Li, Guang-Rong; Hyde, Kevin D.

    2014-01-01

    Cordycepin is one of the most important bioactive compounds produced by species of Cordyceps sensu lato, but it is hard to produce large amounts of this substance in industrial production. In this work, single factor design, Plackett-Burman design, and central composite design were employed to establish the key factors and identify optimal culture conditions which improved cordycepin production. Using these culture conditions, a maximum production of cordycepin was 2008.48 mg/L for 700 mL working volume in the 1000 mL glass jars and total content of cordycepin reached 1405.94 mg/bottle. This method provides an effective way for increasing the cordycepin production at a large scale. The strategies used in this study could have a wide application in other fermentation processes. PMID:25054182

  4. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions.

    PubMed

    Henríquez, Mirtha; González, Ernesto; Marshall, Sergio H; Henríquez, Vitalia; Gómez, Fernando A; Martínez, Irene; Altamirano, Claudia

    2013-01-01

    Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free) medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L(-1) were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23-27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium.

  5. Study on optimization of proportion between fermented liquid and traditional cultural medium of bioflocculant production and its flocculant performance considering the aerobic fermentation of rice straw as substrate.

    PubMed

    Zhao, Zhen; Wei, Li; Li, Chun-Ying; Wang, Zhe; Hu, Yi-Wen; Liu, Chang-Chao; Ma, Fang

    2014-11-01

    High cost of traditional culture medium of flocculant is the key element to limit the bioflocculant production. It's therefore much crucial to seek the economic production materials. In this research, part of the traditional culture medium of bioflocculant is replaced by the fermented liquid of rice straw to conduct the discussion on fermentation matching, optimization of fermentation condition and ability of flocculant production. The optimal proportion of aerobic saccharification liquid and traditional cultural medium of flocculant production is 1: 3. The flocculant rates of the economic culture medium of flocculant production are the highest, 65.49% and 71.24%, which are combined by 67d and 109d fermented saccharification liquid and the traditional cultural medium of flocculant production. The growth of flocculant production bacterium is in better situation for composite culture medium of flocculant production. The amount of bioflocculant is 40kg from per ton. The fermentation cost of flocculant saves by 25% comparing with the traditional culture medium. The simple aerobic fermentation technique opens up a new road for low-cost culture medium of flocculant production.

  6. Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals.

    PubMed

    Krakowska, Agata; Reczyński, Witold; Muszyńska, Bożena

    2016-09-01

    Agaricus bisporus species (J.E. Lange) Imbach one of the most popular Basidiomycota species was chosen for the research because of its dietary and medicinal value. The presented herein studies included determination of essential mineral accumulation level in the mycelium of A. bisporus, cultivated on liquid cultures in the medium supplemented with addition of the chosen metals' salts. Quantitative analyses of Zn, Cu, Mg, and Fe in liquid cultures made it possible to determine the relationship between accumulation of the selected mineral in A. bisporus mycelium and the culture conditions. Monitoring of the liquid cultures and determination of the elements' concentrations in mycelium of A. bisporus were performed using the flame technique of AAS method. Concentration of Zn in the mycelium, maintained in the medium with the addition of its salt, was in a very wide range from 95.9 to 4462.0 mg/g DW. In the analyzed A. bisporus mycelium, cultured in the medium enriched with copper salt, this metal concentration changed from 89.79 to 7491.50 mg/g DW; considering Mg in liquid cultured mycelium (medium with Mg addition), its concentration has changed from 0.32 to 10.55 mg/g DW. The medium enriched with iron salts has led to bioaccumulation of Fe in mycelia of A. bisporus. Determined Fe concentration was in the range from 0.62 to 161.28 mg/g DW. The proposed method of liquid A. bisporus culturing on medium enriched with the selected macro- and microelements in proper concentrations ratio have led to obtaining maximal growth of biomass, characterized by high efficiency of the mineral accumulation. As a result, a dietary component of increased nutritive value was obtained.

  7. Liquid Culture Production of Fungal Microsclerotia.

    PubMed

    Jackson, Mark A; Payne, Angela R

    2016-01-01

    Fungal microsclerotia ("small" sclerotia) are compact hyphal aggregates, typically 50-600 μm in diameter, that are formed under unfavorable nutritional and/or environmental conditions. These structures are often melanized and desiccated to some degree containing endogenous nutritional reserves for use when favorable conditions return. Many fungi, mostly plant pathogens, produce microsclerotia as a survival structure. Liquid culture methods have been developed for producing microsclerotia of the Ascomycota Metarhizium spp, Colletotrichum truncatum, Mycoleptodiscus terrestris, and Trichoderma spp. While these fungi have varying culture conditions that optimize microsclerotia production, all share common nutritional and environmental requirements for microsclerotia formation. Described are the general liquid culture techniques, media components, and harvesting and drying methods necessary to produce stable microsclerotial granules of these fungi.

  8. Optimized Liquid-Liquid Extractive Rerefining of Spent Lubricants

    PubMed Central

    Kamal, Muhammad Ashraf; Khan, Fasihullah

    2014-01-01

    Central composite design methodology has been employed to model the sludge yield data obtained during liquid-liquid extractive rerefining of spent lubricants using an alcohol (1-butanol) and a ketone (methyl ethyl ketone) as prospective solvents. The study has resulted in two reasonably accurate multivariate process models that relate the sludge yield (R 2 = 0.9065 and 0.9072 for alcohol and ketone, resp.) to process variables (settling time t, operating temperature T, and oil to solvent ratio r). Construction of such models has allowed the maximization of the sludge yield (more than 8% and 3% in case of alcohol and ketone, resp.) so that the extraction of useable oil components from spent lubricants can economically be performed under extremely mild conditions (t = 16.7 h, T = 10°C, and r = 2) and fairly moderate conditions (t = 26.6 h, T = 10°C, and r = 5) established for the alcohol and ketone correspondingly. Based on these performance parameters alcohol appears to be superior over ketone for this extraction process. Additionally extractive treatment results in oil stocks with lesser quantity of environmentally hazardous polyaromatic hydrocarbons that are largely left in the separated sludge. PMID:24688388

  9. Optimized liquid-liquid extractive rerefining of spent lubricants.

    PubMed

    Kamal, Muhammad Ashraf; Naqvi, Syed Mumtaz Danish; Khan, Fasihullah

    2014-01-01

    Central composite design methodology has been employed to model the sludge yield data obtained during liquid-liquid extractive rerefining of spent lubricants using an alcohol (1-butanol) and a ketone (methyl ethyl ketone) as prospective solvents. The study has resulted in two reasonably accurate multivariate process models that relate the sludge yield (R (2) = 0.9065 and 0.9072 for alcohol and ketone, resp.) to process variables (settling time t, operating temperature T, and oil to solvent ratio r). Construction of such models has allowed the maximization of the sludge yield (more than 8% and 3% in case of alcohol and ketone, resp.) so that the extraction of useable oil components from spent lubricants can economically be performed under extremely mild conditions (t = 16.7 h, T = 10°C, and r = 2) and fairly moderate conditions (t = 26.6 h, T = 10°C, and r = 5) established for the alcohol and ketone correspondingly. Based on these performance parameters alcohol appears to be superior over ketone for this extraction process. Additionally extractive treatment results in oil stocks with lesser quantity of environmentally hazardous polyaromatic hydrocarbons that are largely left in the separated sludge.

  10. Optimization of Cultural Conditions for Antioxidant Exopolysaccharides from Xerocomus badius Grown in Shrimp Byproduct

    PubMed Central

    Gao, Xiujun; Yan, Peisheng; Liu, Xin; Wang, Jianbing; Yu, Jiajia

    2016-01-01

    To optimize the production conditions for exopolysaccharides with higher antioxidant activities from Xerocomus badius cultured in shrimp byproduct medium, Plackett-Burman design, path of steepest ascent, and response surface methodology were explored. Based on the results of Plackett-Burman design and path of steepest ascent, a Box-Behnken design was applied to optimization and the regression models. The optimal cultural condition for high yield and antioxidant activity of the exopolysaccharides was determined to be 10.347% of solid-to-liquid ratio, a 4.322% content of bran powder, and a 1.217% concentration of glacial acetic acid. Culturing with the optimal cultural conditions resulted in an exopolysaccharides yield of 4.588 ± 0.346 g/L and a total antioxidant activity of 2.956 ± 0.105 U/mg. These values are consistent with the values predicted by the corresponding regression models (RSD < 5%). PMID:26998481

  11. Liquid culture methods for the production of fumonisin.

    PubMed

    Keller, S E; Sullivan, T M

    1996-01-01

    Currently, fumonisin B1 is obtained primarily by using solid culture methods. Although fumonisin B1 concentrations obtained in solid culture are typically quite high, subsequent extraction and purification present problems. In addition, current methods utilize complex media which makes analysis of biosynthetic pathways and control mechanisms difficult. Liquid culture methods of production could eliminate many problems associated with production in solid culture. However, in the past, concentrations obtained in liquid culture have been relatively low. In this work, factors affecting the production of fumonisin B1 from a shake flask scale of 100 ml to a fermenter scale of 100 liters were examined. Best results were obtained by using a fed batch method that is nitrogen limited, with pH control. With this method, concentrations in excess of 1000 ppm can be obtained.

  12. Thin sheets achieve optimal wrapping of liquids

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph; Démery, Vincent; Davidovitch, Benny; Santangelo, Christian; Russell, Thomas; Menon, Narayanan

    2015-03-01

    A liquid drop can wrap itself in a sheet using capillary forces [Py et al., PRL 98, 2007]. However, the efficiency of ``capillary origami'' at covering the surface of a drop is hampered by the mechanical cost of bending the sheet. Thinner sheets deform more readily by forming small-scale wrinkles and stress-focussing patterns, but it is unclear how coverage efficiency competes with mechanical cost as thickness is decreased, and what wrapping shapes will emerge. We place a thin (~ 100 nm) polymer film on a drop whose volume is gradually decreased so that the sheet covers an increasing fraction of its surface. The sheet exhibits a complex sequence of axisymmetric and polygonal partially- and fully- wrapped shapes. Remarkably, the progression appears independent of mechanical properties. The gross shape, which neglects small-scale features, is correctly predicted by a simple geometric approach wherein the exposed area is minimized. Thus, simply using a thin enough sheet results in maximal coverage.

  13. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    NASA Astrophysics Data System (ADS)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  14. Efficiency of neural network-based combinatorial model predicting optimal culture conditions for maximum biomass yields in hairy root cultures.

    PubMed

    Mehrotra, Shakti; Prakash, O; Khan, Feroz; Kukreja, A K

    2013-02-01

    KEY MESSAGE : ANN-based combinatorial model is proposed and its efficiency is assessed for the prediction of optimal culture conditions to achieve maximum productivity in a bioprocess in terms of high biomass. A neural network approach is utilized in combination with Hidden Markov concept to assess the optimal values of different environmental factors that result in maximum biomass productivity of cultured tissues after definite culture duration. Five hidden Markov models (HMMs) were derived for five test culture conditions, i.e. pH of liquid growth medium, volume of medium per culture vessel, sucrose concentration (%w/v) in growth medium, nitrate concentration (g/l) in the medium and finally the density of initial inoculum (g fresh weight) per culture vessel and their corresponding fresh weight biomass. The artificial neural network (ANN) model was represented as the function of these five Markov models, and the overall simulation of fresh weight biomass was done with this combinatorial ANN-HMM. The empirical results of Rauwolfia serpentina hairy roots were taken as model and compared with simulated results obtained from pure ANN and ANN-HMMs. The stochastic testing and Cronbach's α-value of pure and combinatorial model revealed more internal consistency and skewed character (0.4635) in histogram of ANN-HMM compared to pure ANN (0.3804). The simulated results for optimal conditions of maximum fresh weight production obtained from ANN-HMM and ANN model closely resemble the experimentally optimized culture conditions based on which highest fresh weight was obtained. However, only 2.99 % deviation from the experimental values could be observed in the values obtained from combinatorial model when compared to the pure ANN model (5.44 %). This comparison showed 45 % better potential of combinatorial model for the prediction of optimal culture conditions for the best growth of hairy root cultures.

  15. Docetaxel-loaded thermosensitive liquid suppository: optimization of rheological properties.

    PubMed

    Yeo, Woo Hyun; Ramasamy, Thiruganesh; Kim, Dong-Wuk; Cho, Hyuk Jun; Kim, Yong-Il; Cho, Kwan Hyung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2013-12-01

    The main purpose of this work was to optimize the rheological properties of docetaxel (DCT)-loaded thermosensitive liquid suppositories for rectal administration. DCT-loaded liquid suppositories were prepared by a cold method and characterized in terms of physicochemical and viscoelastic properties. Major formulation parameters including poloxamer (P407) and Tween 80 were optimized to adjust the thermogelling and mucoadhesive properties for rectal administration. Notably, the gel strength and mucoadhesive force significantly increased with the increase in these variables. Furthermore, DCT incorporation did not alter the viscoelastic behavior, and the mean particle size of nanomicelles in it was approximately 16 nm with a distinct spherical shape. The formulation existed as liquid at room temperature and transformed into gel at physiological temperature through the reverse gelation phenomenon. Thus, DCT-loaded thermosensitive liquid suppositories [DCT/P407/P188/Tween 80 (0.25/11/15/10 %)] with optimal gel properties were easy to prepare and administer rectally, and might enable the gel to stay in the rectum without getting out from rectum.

  16. Trends in High Performance Liquid Chromatography for Cultural Heritage.

    PubMed

    Degano, Ilaria; La Nasa, Jacopo

    2016-04-01

    The separation, detection and quantitation of specific species contained in a sample in the field of Cultural Heritage requires selective, sensitive and reliable methods. Procedures based on liquid chromatography fulfil these requirements and offer a wide range of applicability in terms of analyte types and concentration range. The main applications of High Performance Liquid Chromatography in this field are related to the separation and detection of dyestuffs in archaeological materials and paint samples by reversed-phase liquid chromatography with suitable detectors. The relevant literature will be revised, with particular attention to sample treatment strategies and future developments. Reversed phase chromatography has also recently gained increasing importance in the analysis of lipid binders and lipid materials in archaeological residues: the main advantages and disadvantages of the new approaches will be discussed. Finally, the main applications of ion chromatography and size exclusion chromatography in the field of Cultural Heritage will be revised in this chapter.

  17. Optimized determination of polybrominated diphenyl ethers by ultrasound-assisted liquid-liquid extraction and high-performance liquid chromatography.

    PubMed

    He, Kuang; Lv, YuanCai; Chen, YuanCai

    2014-10-01

    A method based on ultrasound-assisted liquid-liquid extraction and high-performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound-assisted liquid-liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R(2) > 0.9962 over a concentration range of 1-100 μg/L) and repeatability (relative standard deviation < 6.3%). Furthermore, the detection limit (S/N = 3) of the method were ranged from 0.02 to 0.13 μg/L and the quantification limit (S/N = 10) ranged from 0.07 to 0.35 μg/L. Finally, the proposed method was applied to spiked samples and satisfactory results were achieved. These results indicate that ultrasound-assisted liquid-liquid extraction coupled with high-performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimized suspension culture: the rotating-wall vessel

    NASA Technical Reports Server (NTRS)

    Hammond, T. G.; Hammond, J. M.

    2001-01-01

    Suspension culture remains a popular modality, which manipulates mechanical culture conditions to maintain the specialized features of cultured cells. The rotating-wall vessel is a suspension culture vessel optimized to produce laminar flow and minimize the mechanical stresses on cell aggregates in culture. This review summarizes the engineering principles, which allow optimal suspension culture conditions to be established, and the boundary conditions, which limit this process. We suggest that to minimize mechanical damage and optimize differentiation of cultured cells, suspension culture should be performed in a solid-body rotation Couette-flow, zero-headspace culture vessel such as the rotating-wall vessel. This provides fluid dynamic operating principles characterized by 1) solid body rotation about a horizontal axis, characterized by colocalization of cells and aggregates of different sedimentation rates, optimally reduced fluid shear and turbulence, and three-dimensional spatial freedom; and 2) oxygenation by diffusion. Optimization of suspension culture is achieved by applying three tradeoffs. First, terminal velocity should be minimized by choosing microcarrier beads and culture media as close in density as possible. Next, rotation in the rotating-wall vessel induces both Coriolis and centrifugal forces, directly dependent on terminal velocity and minimized as terminal velocity is minimized. Last, mass transport of nutrients to a cell in suspension culture depends on both terminal velocity and diffusion of nutrients. In the transduction of mechanical culture conditions into cellular effects, several lines of evidence support a role for multiple molecular mechanisms. These include effects of shear stress, changes in cell cycle and cell death pathways, and upstream regulation of secondary messengers such as protein kinase C. The discipline of suspension culture needs a systematic analysis of the relationship between mechanical culture conditions and

  19. Optimized suspension culture: the rotating-wall vessel

    NASA Technical Reports Server (NTRS)

    Hammond, T. G.; Hammond, J. M.

    2001-01-01

    Suspension culture remains a popular modality, which manipulates mechanical culture conditions to maintain the specialized features of cultured cells. The rotating-wall vessel is a suspension culture vessel optimized to produce laminar flow and minimize the mechanical stresses on cell aggregates in culture. This review summarizes the engineering principles, which allow optimal suspension culture conditions to be established, and the boundary conditions, which limit this process. We suggest that to minimize mechanical damage and optimize differentiation of cultured cells, suspension culture should be performed in a solid-body rotation Couette-flow, zero-headspace culture vessel such as the rotating-wall vessel. This provides fluid dynamic operating principles characterized by 1) solid body rotation about a horizontal axis, characterized by colocalization of cells and aggregates of different sedimentation rates, optimally reduced fluid shear and turbulence, and three-dimensional spatial freedom; and 2) oxygenation by diffusion. Optimization of suspension culture is achieved by applying three tradeoffs. First, terminal velocity should be minimized by choosing microcarrier beads and culture media as close in density as possible. Next, rotation in the rotating-wall vessel induces both Coriolis and centrifugal forces, directly dependent on terminal velocity and minimized as terminal velocity is minimized. Last, mass transport of nutrients to a cell in suspension culture depends on both terminal velocity and diffusion of nutrients. In the transduction of mechanical culture conditions into cellular effects, several lines of evidence support a role for multiple molecular mechanisms. These include effects of shear stress, changes in cell cycle and cell death pathways, and upstream regulation of secondary messengers such as protein kinase C. The discipline of suspension culture needs a systematic analysis of the relationship between mechanical culture conditions and

  20. Analysis and optimization of Love wave liquid sensors.

    PubMed

    Jakoby, B; Vellekoop, M J

    1998-01-01

    Love wave sensors are highly sensitive microacoustic devices, which are well suited for liquid sensing applications thanks to the shear polarization of the wave. The sensing mechanism thereby relies on the mechanical (or acoustic) interaction of the device with the liquid. The successful utilization of Love wave devices for this purpose requires proper shielding to avoid unwanted electric interaction of the liquid with the wave and the transducers. In this work we describe the effects of this electric interaction and the proper design of a shield to prevent it. We present analysis methods, which illustrate the impact of the interaction and which help to obtain an optimized design of the proposed shield. We also present experimental results for devices that have been fabricated according to these design rules.

  1. Optimal design of porous structures for the fastest liquid absorption.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu; Fu, Kunkun

    2014-01-14

    Porous materials engineered for rapid liquid absorption are useful in many applications, including oil recovery, spacecraft life-support systems, moisture management fabrics, medical wound dressings, and microfluidic devices. Dynamic absorption in capillary tubes and porous media is driven by the capillary pressure, which is inversely proportional to the pore size. On the other hand, the permeability of porous materials scales with the square of the pore size. The dynamic competition between these two superimposed mechanisms for liquid absorption through a heterogeneous porous structure may lead to an overall minimum absorption time. In this work, we explore liquid absorption in two different heterogeneous porous structures [three-dimensional (3D) circular tubes and porous layers], which are composed of two sections with variations in radius/porosity and height. The absorption time to fill the voids of porous constructs is expressed as a function of radius/porosity and height of local sections, and the absorption process does not follow the classic Washburn's law. Under given height and void volume, these two-section structures with a negative gradient of radius/porosity against the absorption direction are shown to have faster absorption rates than control samples with uniform radius/porosity. In particular, optimal structural parameters, including radius/porosity and height, are found that account for the minimum absorption time. The liquid absorption in the optimized porous structure is up to 38% faster than in a control sample. The results obtained can be used a priori for the design of porous structures with excellent liquid management property in various fields.

  2. [Influence of liquid or solid culture conditions on the volatile components of mycelia of Isariacateinannulata].

    PubMed

    Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin

    2011-12-01

    To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.

  3. Liquid Handling Optimization in High-Throughput Biodosimetry Tool.

    PubMed

    Bian, Dakai; Tsui, Jason C; Repin, Mikhail; Garty, Guy; Turner, Helen; Lawrence Yao, Y; Brenner, David J

    2016-12-01

    Due to the need of high-speed and efficient biodosimetric assays for triage and therapy in the event of radiological or nuclear attack, a robotically based automated biodosimetry tool (RABiT) has been developed over the past few years. Adapting the micronucleus assay from filter plates to V-shaped plates presented challenges in the liquid handling, namely, cell splashing out of the V-shaped well plate during the cell harvesting, poor cell distribution on the bottom of the image plate during the dispensing, and cell loss from the image plate during the aspiration in the liquid handling process. Experimental and numerical investigations were carried out to better understand the phenomena and mitigate the problems. Surface tension and contact angle among the fluids and the plate wall were accounted for in the discrete and multiphase numerical models. Experimental conditions were optimized based on the numerical results showing the relationship between nozzle speed and amount of splashed liquid, and the relationship between aspiration speed and number of escaped cells. Using these optimized parameters, numbers of micronuclei in binucleated cells showed the same dose dependence in the RABiT-prepared samples as those in the manually prepared ones. Micronucleus assay protocol was fully realized on RABiT.

  4. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    NASA Astrophysics Data System (ADS)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  5. A protocol for axenic liquid cell cultures of a woody leguminous mangrove, Caesalpinia crista, and their amino acids profiling.

    PubMed

    Inoue, Aya; Ogita, Shinjiro; Tsuchiya, Shinpei; Minagawa, Reiko; Sasamoto, Hamako

    2015-05-01

    Callus induction, maintenance and protoplast cultures were achieved from immature seeds of a woody leguminous mangrove, Caesalpinia crista. Axenic cultures were possible during 1.5 months of pod storage in 0.1% benzalkonium chloride solution. Callus induction was achieved using 1 mL liquid medium in a 10 mL flat-bottomed culture tube. Protoplasts were isolated using Cellulase R10, Hemicellulase, and Driselase 20 in 0.6 M mannitol solution and sub-culturable calluses were obtained in 50 μL liquid medium using a 96-microplate method. The optimal hormonal concentration was 10 μM each of 2,4-dichlorophenoxyacetic acid and benzyladenine in liquid Murashige and Skoog's basal medium for both callus induction and maintenance, and protoplast cultures. Similarities and differences in amino acid profiles and culture conditions are discussed among woody mangrove species and non-mangrove leguminous species. Caesalpinia crista cultures were unique as they secreted a large amount of amino acids, including proline, into the liquid culture medium.

  6. Optimization of pressurized liquid extraction of Piper gaudichaudianum Kunth leaves.

    PubMed

    Péres, Valéria Flores; Saffi, Jenifer; Melecchi, Maria Inês S; Abad, Fernanda C; Martinez, Migdalia M; Oliveira, Eniz Conceição; Jacques, Rosângela Assis; Caramão, Elina B

    2006-02-10

    Piperaceae family is original from tropical regions and it shows more than 700 species around the world. Piper gaudichaudianum Kunth is the specie more abundant in Brazil, occurring from Northeast to South Brazil. In this paper, it was investigated the influence of some experimental parameters on the pressurized liquid extraction (PLE) of P. gaudichaudianum Kunth leaves, using petroleum ether as extractor solvent. The optimization of the main variables involved in the PLE process (extraction temperature and time) has been done by response surface methodology (RSM) using, as responses, the extraction yield and the chromatographic profile (GC/MS) of the extracts. The optimized procedure employed 3 g of ground leaves, 10 min of extraction and one cycle of extraction at 85 degrees C. The major compounds present in the petroleum ether extracts were: palmitic acid, stearic acid and nerolidol. The results presented in this work show the possibility of using a fast and easy process to recover compounds from P. gaudichaudianum Kunth.

  7. Inorganic selenium speciation analysis in Allium and Brassica vegetables by ionic liquid assisted liquid-liquid microextraction with multivariate optimization.

    PubMed

    Castro Grijalba, Alexander; Martinis, Estefanía M; Wuilloud, Rodolfo G

    2017-03-15

    A highly sensitive vortex assisted liquid-liquid microextraction (VA-LLME) method was developed for inorganic Se [Se(IV) and Se(VI)] speciation analysis in Allium and Brassica vegetables. Trihexyl(tetradecyl)phosphonium decanoate phosphonium ionic liquid (IL) was applied for the extraction of Se(IV)-ammonium pyrrolidine dithiocarbamate (APDC) complex followed by Se determination with electrothermal atomic absorption spectrometry. A complete optimization of the graphite furnace temperature program was developed for accurate determination of Se in the IL-enriched extracts and multivariate statistical optimization was performed to define the conditions for the highest extraction efficiency. Significant factors of IL-VA-LLME method were sample volume, extraction pH, extraction time and APDC concentration. High extraction efficiency (90%), a 100-fold preconcentration factor and a detection limit of 5.0ng/L were achieved. The high sensitivity obtained with preconcentration and the non-chromatographic separation of inorganic Se species in complex matrix samples such as garlic, onion, leek, broccoli and cauliflower, are the main advantages of IL-VA-LLME. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Skull-bound perception and precision optimization through culture.

    PubMed

    Paton, Bryan; Skewes, Josh; Frith, Chris; Hohwy, Jakob

    2013-06-01

    Clark acknowledges but resists the indirect mind-world relation inherent in prediction error minimization (PEM). But directness should also be resisted. This creates a puzzle, which calls for reconceptualization of the relation. We suggest that a causal conception captures both aspects. With this conception, aspects of situated cognition, social interaction and culture can be understood as emerging through precision optimization.

  9. Optimal wrapping of liquid droplets with ultrathin sheets.

    PubMed

    Paulsen, Joseph D; Démery, Vincent; Santangelo, Christian D; Russell, Thomas P; Davidovitch, Benny; Menon, Narayanan

    2015-12-01

    Elastic sheets offer a path to encapsulating a droplet of one fluid in another that is different from that of traditional molecular or particulate surfactants. In wrappings of fluids by sheets of moderate thickness with petals designed to curl into closed shapes, capillarity balances bending forces. Here, we show that, by using much thinner sheets, the constraints of this balance can be lifted to access a regime of high sheet bendability that brings three major advantages: ultrathin sheets automatically achieve optimally efficient shapes that maximize the enclosed volume of liquid for a fixed area of sheet; interfacial energies and mechanical properties of the sheet are irrelevant within this regime, thus allowing for further functionality; and complete coverage of the fluid can be achieved without special sheet designs. We propose and validate a general geometric model that captures the entire range of this new class of wrapped and partially wrapped shapes.

  10. Optimization of Pulse Shape Discrimination of PROSPECT Liquid Scintillator Signals

    NASA Astrophysics Data System (ADS)

    Han, Ke; Prospect Collaboration

    2015-04-01

    PROSPECT, A Precision Oscillation and Spectrum Experiment, will use a segmented Li-6 doped liquid scintillator detector for precision measurement of the reactor anti-neutrino spectrum at the High Flux Isotope Reactor at Oak Ridge National Laboratory. PROSPECT also searches for very short baseline neutrino oscillation, an indication of the existence of eV-scale sterile neutrinos. Pulse shape analysis of the prompt anti-neutino signal and delayed neutron capture on Li-6 signal will greatly suppress background sources such as fast neutrons and accidental coincidence of gammas. In this talk, I will discuss different pulse shape parameters used in PROSPECT prototype detectors and multivariate optimization of event selection cuts based on those parameters.

  11. Optimization to the Culture Conditions for Phellinus Production with Regression Analysis and Gene-Set Based Genetic Algorithm

    PubMed Central

    Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui

    2016-01-01

    Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365

  12. Optimization to the Culture Conditions for Phellinus Production with Regression Analysis and Gene-Set Based Genetic Algorithm.

    PubMed

    Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui; Zhu, Hu

    2016-01-01

    Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization.

  13. Optimal Culture Conditions for Mycelial Growth of Lignosus rhinocerus

    PubMed Central

    Siti Murni, M.J.; Fauzi, D.; Abas Mazni, O.; Saleh, N.M.

    2011-01-01

    Lignosus rhinocerus is a macrofungus that belongs to Polyporaceae and is native to tropical regions. This highly priced mushroom has been used as folk medicine to treat diseases by indigenous people. As a preliminary study to develop a culture method for edible mushrooms, the cultural characteristics of L. rhinocerus were investigated in a range of culture media under different environmental conditions. Mycelial growth of this mushroom was compared on culture media composed of various carbon and nitrogen sources in addition to C/N ratios. The optimal conditions for mycelial growth were 30℃ at pH 6 and 7. Rapid mycelial growth of L. rhinocerus was observed on glucose-peptone and yeast extract peptone dextrose media. Carbon and nitrogen sources promoting mycelial growth of L. rhinocerus were glucose and potassium nitrate, respectively. The optimum C/N ratio was approximately 10 : 1 using 2% glucose supplemented as a carbon source in the basal media. PMID:22783083

  14. Optimal Culture Conditions for Mycelial Growth of Lignosus rhinocerus.

    PubMed

    Lai, W H; Siti Murni, M J; Fauzi, D; Abas Mazni, O; Saleh, N M

    2011-06-01

    Lignosus rhinocerus is a macrofungus that belongs to Polyporaceae and is native to tropical regions. This highly priced mushroom has been used as folk medicine to treat diseases by indigenous people. As a preliminary study to develop a culture method for edible mushrooms, the cultural characteristics of L. rhinocerus were investigated in a range of culture media under different environmental conditions. Mycelial growth of this mushroom was compared on culture media composed of various carbon and nitrogen sources in addition to C/N ratios. The optimal conditions for mycelial growth were 30℃ at pH 6 and 7. Rapid mycelial growth of L. rhinocerus was observed on glucose-peptone and yeast extract peptone dextrose media. Carbon and nitrogen sources promoting mycelial growth of L. rhinocerus were glucose and potassium nitrate, respectively. The optimum C/N ratio was approximately 10 : 1 using 2% glucose supplemented as a carbon source in the basal media.

  15. Babies, brains and culture: optimizing neurodevelopment on the savanna.

    PubMed

    de Vries, M W

    1999-05-01

    Cross-cultural child development research has demonstrated the influence of infant experience as well as constitutional, neurodevelopmental influences in infant outcomes. African infant precocity found in a number of studies is examined in the light of developmental models and in the context of the enriched child-rearing environment of pre-industrial societies. Examples are drawn from fieldwork in East Africa that demonstrate the different contributions of pregnancy, nutrition, early learning and cultural factors on developmental outcomes. The multiple enhancing infant rearing and nutritional factors are postulated to optimize the rate of neuro-development thereby contributing to psychomotor precocity.

  16. Orthogonal array designs for the optimization of liquid-liquid-liquid microextraction of nonsteroidal anti-inflammatory drugs combined with high-performance liquid chromatography-ultraviolet detection.

    PubMed

    Wu, Jingming; Lee, Hian Kee

    2005-10-28

    Orthogonal array designs (OADs) were applied for the first time to optimize liquid-liquid-liquid microextraction (LLLME) conditions for the analysis of three nonsteroidal anti-inflammatory drug residues (2-(4-chlorophenoxy)-2-methylpropionic acid, ketoprofen, and naproxen) in wastewater samples. Six relevant factors were investigated: type of organic solvent, composition of donor phase and acceptor phase, stirring speed, extraction time and salt concentration. In the first stage, mixed-level orthogonal array design, an OA16 (4(1) x 2(12)) matrix was employed to study the effect of six factors, by which the effect of each factor was estimated using individual contributions as response functions. Based on the results of the first stage, 1-octanol was chosen as organic solvent for extraction. The other five factors were selected for further optimization using an OA16 (4(5)) matrix and a 4 x 4 table to locate more exact levels for each variable. The relative standard deviations for the reproducibility of optimized LLLME varied from 6.2 to 7.1%. The coefficients of determination for calibration curves were higher than 0.9950. The method detection limits for drugs spiked in ultrapure water were in the range of 0.03-0.3 ng/mL. The final optimized conditions were applied to the analysis of drug residues in three wastewater samples in Singapore.

  17. Hyperhydricity and flavonoid content of Scutellaria species in vitro on polyester-supported liquid culture systems

    USDA-ARS?s Scientific Manuscript database

    Three Scutellaria species (Scutellaria lateriflora, S. costaricana and S. baicalensis) were grown in different in vitro physical environments: agar, liquid culture, and liquid culture with fiber-supported paper (with initial media volumes of 20 mL and 30 mL). During an eight-week time course, tiss...

  18. Optimization of lycopene extraction from tomato cell suspension culture by response surface methodology.

    PubMed

    Lu, Chi-Hua; Engelmann, Nancy J; Lila, Mary Ann; Erdman, John W

    2008-09-10

    Radioisotope-labeled lycopene is an important tool for biomedical research but currently is not commercially available. A tomato cell suspension culture system for the production of radioisotope-labeled lycopene was previously developed in our laboratory. In the current study, the goal was to optimize the lycopene extraction efficiency from tomato cell cultures for preparatory high-performance liquid chromatography (HPLC) separation. We employed response surface methodology (RSM), which combines fractional factorial design and a second-degree polynomial model. Tomato cells were homogenized with ethanol, saponified by KOH, and extracted with hexane, and the lycopene content was analyzed by HPLC-PDA. We varied five factors at five levels: ethanol volume (1.33-4 mL/g); homogenization period (0-40 s/g); saturated KOH solution volume (0-0.67 mL/g); hexane volume (1.67-3 mL/g); and vortex period (5-25 s/g). Ridge analysis by SAS suggested that the optimal extraction procedure to extract 1 g of tomato cells was at 1.56 mL of ethanol, 28 s homogenization, 0.29 mL of KOH, 2.49 mL of hexane, and 17.5 s vortex. These optimal conditions predicted by RSM were confirmed to enhance lycopene yield from standardized tomato cell cultures by more than 3-fold.

  19. Optimizing liquid effluent monitoring at a large nuclear complex.

    PubMed

    Chou, Charissa J; Barnett, D Brent; Johnson, Vernon G; Olson, Phil M

    2003-12-01

    Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US dollars 223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk.

  20. Optimizing the performance of a solar liquid piston pump

    NASA Astrophysics Data System (ADS)

    Murphy, C. L.

    The 0.1-m solar liquid piston pump (SLPP) model is shown to exhibit stable operation over a wide range of conditions, provided the heat input (at T = 85 C) and the heat rejected (at T = 22 C) are maintained above the critical values for stalling. Under these conditions, the pumps operation is affected primarily by the heating coil position and the geometries of the inlet and outlet water tubes. It is found that the optimum output power of the model SLPP is 4.5 W at a pumping heat of 2 m, a mass flow rate of 0.23 kg/s, and an overall efficiency of 1%. It is noted that further optimization of the model would at best only marginally increase the output power and efficiency. It is thought that larger mass flow rates can be obtained by increasing the cross sectional area of the working tube and/or staging a number of pumps in parallel. It is possible to increase the pump head by staging a number of pumps in series.

  1. Optimizing culture medium for meristem tissue culture of several Saccharum species and commercial hybrids

    USDA-ARS?s Scientific Manuscript database

    The optimal range of medium nutrients and plant growth regulators (PGR) was investigated for in vitro culture of diverse sugarcane species and cultivars. Macro-nutrients, nitrogen (N), phosphorous (P) and potassium (K), were essential for growth of leaf primordia. Although the best concentration of ...

  2. Improvement of Aconitum napellus micropropagation by liquid culture on floating membrane rafts.

    PubMed

    Watad, A A; Kochba, M; Nissim, A; Gaba, V

    1995-03-01

    An efficient method was developed using floating membrane rafts (Liferaft(™)) for the micropropagation of Aconitum napellus (Ranunculaceae), a cut flower crop with a low natural propagation rate. This was achieved by introducing shoot tips into culture on Murashige and Skoog's (1962) solid medium, or liquid medium-supported rafts, supplemented by different levels of benzyl adenine (BA). Optimum shoot proliferation on solid medium required 4mg/l BA, whereas for expiants supported on rafts optimal proliferation was achieved at 0.25mg/l BA. Maximum shoot proliferation was found using the floating rafts (propagation ratio of 4.2 per month), 45% higher than the maximum value on solid medium. A similar value could be obtained on solid medium after a period of 2 months. The optimal response to BA was similar for fresh weight gain and shoot length. Growth in a shallow layer of liquid in shake flasks gives a similar shoot multiplication rate to that on floating rafts; however, submerged leaves brown and die.

  3. Optimization of the liquid biofertilizer production in batch fermentation with by-product from MSG

    NASA Astrophysics Data System (ADS)

    Namfon, Panjanapongchai; Ratchanok, Sahaworarak; Chalida, Daengbussade

    2017-03-01

    The long term use of chemical fertilizers destroyed the friability of soil which obviously decreased quantity and quality of crops and especially affect microorganisms living in soils. The bio-fertilizer with microbial consortium is an environmental friendly alternative to solve this bottleneck due to harboring soil microorganisms such as Bacillus sp., Micrococcus sp., Pseudomonas sp., Staphylococcus sp. and Deinococcus sp. produced with natural by-product or waste from industries that is alternative and sustainable such as nutrient-rich (by-product) from Mono Sodium Glutamate (MSG) for producing liquid biofertilizer by batch fermentation. In this work, the concentration of reducing sugar from substrate as main carbon source was evaluated in shake flask with mixed cultures. The optimal conditions were studied comparing with two levels of reducing sugar concentration (10, 20 g/L) and inoculums concentration (10, 20 %v/v) with using (2×2) full factorial design. The results indicated that the by-product from monosodium glutamate is feasible for fermentation and inoculums concentration is mainly influenced the batch fermentation process. Moreover, the combined 20 g/L and 10%v/v were considerably concluded as an optimal condition, of which the concentration of vegetative cells and spores attained at 8.29×109 CFU/mL and 1.97×105 CFU/mL, respectively. Their spores cell yields from reducing sugar (Yx/s) were obtained at 1.22×106 and 3.34×105 CFU/g were markedly different. In conclusion, the liquid Biofertilizer was produced satisfactorily at 20 g/L reducing sugar and 10% v/v inoculums in shake flask culture. Moreover, these results suggested that the by-product from monosodium glutamate is feasible for low-cost substrate in economical scale and environmental-friendly.

  4. An effective device for gas-liquid oxygen removal in enclosed microalgae culture.

    PubMed

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2010-01-01

    A high-performance gas-liquid transmission device (HPTD) was described in this paper. To investigate the HPTD mass transfer characteristics, the overall volumetric mass transfer coefficients, K(A)(La,CO(2)) for the absorption of gaseous CO(2) and K(A)(La,O(2)) for the desorption of dissolved O(2) were determined, respectively, by titration and dissolved oxygen electrode. The mass transfer capability of carbon dioxide was compared with that of dissolved oxygen in the device, and the operating conditions were optimized to suit for the large-scale enclosed micro-algae cultivation. Based on the effectiveness evaluation of the HPTD applied in one enclosed flat plate Spirulina culture system, it was confirmed that the HPTD can satisfy the demand of the enclosed system for carbon supplement and excessive oxygen removal.

  5. Use of immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex from liquid culture

    PubMed Central

    Považan, Anika; Vukelić, Anka; Savković, Tijana; Kurucin, Tatjana

    2012-01-01

    A new, simple immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex in liquid cultures has been developed. The principle of the assay is binding of the Mycobacterium tuberculosis complex specific antigen to the monoclonal antibody conjugated on the test strip. The aim of this study is evaluation of the performance of immunochromatographic assay in identification of Mycobacterium tuberculosis complex in primary positive liquid cultures of BacT/Alert automated system. A total of 159 primary positive liquid cultures were tested using the immunochromatographic assay (BD MGIT TBc ID) and the conventional subculture, followed by identification using biochemical tests. Of 159 positive liquid cultures, using the conventional method, Mycobacterium tuberculos is was identified in 119 (74.8%), nontuberculous mycobacteria were found in 4 (2.5%), 14 (8.8%) cultures were contaminated and 22 (13.8%) cultures were found to be negative. Using the immunochromatographic assay, Mycobacterium tuberculosis complex was detected in 118 (74.2%) liquid cultures, and 41 (25.8%) tests were negative. Sensitivity, specificity, positive and negative predictive values of the test were 98.3%; 97.5%; 99.15%; 95.12%, respectively. The value of kappa test was 0.950, and McNemar test was 1.00. The immunochromatographic assay is a simple and rapid test which represents a suitable alternative to the conventional subculture method for the primary identification of Mycobacterium tuberculosis complex in liquid cultures of BacT/Alert automated system. PMID:22364301

  6. Scale-up of a liquid static culture process for hyperproduction of ganoderic acid by the medicinal mushroom Ganoderma lucidum.

    PubMed

    Tang, Ya-Jie; Zhong, Jian-Jiang

    2003-01-01

    Scale-up of a liquid static culture process was studied for hyperproduction of ganoderic acid (GA) by a famous Chinese traditional medicinal mushroom, Ganoderma lucidum. Initial volumetric oxygen transfer coefficient (K(L)a) and area of liquid surface per liquid volume (A(s)) were identified as key factors affecting cell growth and GA accumulation in liquid static cultures of G. lucidum, on the basis of which a multilayer static bioreactor was designed. At a low initial K(L)a level of 2.1 h(-1), a thick layer of white mycelia was formed on the liquid surface, and an optimal production of total GA (i.e., GA production in the liquid and on the liquid surface) was obtained. Both the formation of white mycelia and production of GA on the liquid surface were enhanced with an increase of A(s) within the range as investigated (0.24-1.53 cm(2)/mL). At an A(s) value of 0.90 cm(2)/mL, the total GA production reached maximum. A successful scale-up from a 20-mL static T-flask to a 7.5-L three-layer static bioreactor was achieved based on initial K(L)a. The maximum biomass (20.8 +/- 0.1 g DW/L), GA content (4.96 +/- 0.13 mg/100 mg DW), and total GA production (976 +/- 35 mg/L) were attained in static bioreactors. Not only GA content but also its production obtained in this work were the highest ever reported.

  7. Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation*

    PubMed Central

    Li, Ya-qian; Song, Kai; Li, Ya-chai; Chen, Jie

    2016-01-01

    Trichoderma-based formulations are applied as commercial biocontrol agents for soil-borne plant pathogens. Chlamydospores are active propagules in Trichoderma spp., but their production is currently limited due to a lack of optimal liquid fermentation technology. In this study, we explored response surface methodologies for optimizing fermentation technology in Trichoderma SH2303. Our initial studies, using the Plackett-Burman design, identified cornmeal, glycerol, and initial pH levels as the most significant factors (P<0.05) for enhancing the production of chlamydospores. Subsequently, we applied the Box-Behnken design to study the interactions between, and optimal levels of, a number of factors in chlamydospore production. These statistically predicted results indicated that the highest number of chlamydospores (3.6×108 spores/ml) would be obtained under the following condition: corn flour 62.86 g/L, glycerol 7.54 ml/L, pH 4.17, and 6-d incubation in liquid fermentation. We validated these predicted values via three repeated experiments using the optimal culture and achieved maximum chlamydospores of 4.5×108 spores/ml, which approximately a 8-fold increase in the number of chlamydospores produced by T. harzianum SH2303 compared with that before optimization. These optimized values could help make chlamydospore production cost-efficient in the future development of novel biocontrol agents. PMID:27487807

  8. Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica

    PubMed Central

    Bouquet, Jean-Marie; Spriet, Endy; Troedsson, Christofer; Otterå, Helen; Chourrout, Daniel; Thompson, Eric M.

    2009-01-01

    The pan-global marine appendicularian, Oikopleura dioica, shows considerable promise as a candidate model organism for cross-disciplinary research ranging from chordate genetics and evolution to molecular ecology research. This urochordate, has a simplified anatomical organization, remains transparent throughout an exceptionally short life cycle of less than 1 week and exhibits high fecundity. At 70 Mb, the compact, sequenced genome ranks among the smallest known metazoan genomes, with both gene regulatory and intronic regions highly reduced in size. The organism occupies an important trophic role in marine ecosystems and is a significant contributor to global vertical carbon flux. Among the short list of bona fide biological model organisms, all share the property that they are amenable to long-term maintenance in laboratory cultures. Here, we tested diet regimes, spawn densities and dilutions and seawater treatment, leading to optimization of a detailed culture protocol that permits sustainable long-term maintenance of O. dioica, allowing continuous, uninterrupted production of source material for experimentation. The culture protocol can be quickly adapted in both coastal and inland laboratories and should promote rapid development of the many original research perspectives the animal offers. PMID:19461862

  9. Water permeability of primary mouse keratinocyte cultures grown at the air-liquid interface

    SciTech Connect

    Cumpstone, M.B.; Kennedy, A.H.; Harmon, C.S.; Potts, R.O.

    1989-04-01

    In order to study the development of the epidermal permeability barrier in vitro, tritiated water (HTO) flux was measured across murine keratinocytes cultured at the air-liquid interface. Using a micro-diffusion technique, it was shown that air-liquid cultures form areas where the water diffusion is comparable to that of intact neonatal mouse skin. When water permeability is measured over a large area of the culture surface, however, significantly higher flux is obtained. These results show that under the culture conditions used, areas of water barrier comparable to intact neonatal mouse skin coexist with regions of less complete barrier formation.

  10. Dissolved oxygen levels affect microsclerotia formation by liquid cultures of metarhizium brunneum

    USDA-ARS?s Scientific Manuscript database

    Sclerotia, overwintering propagules formed by some fungi when faced with adverse nutritional or environmental conditions, are composed of melanized hyphal aggregates capable of withstanding desiccation, oxidative stress, and UV radiation. Using liquid culture fermentation, we identified nutritional...

  11. Optimizing in vitro culture conditions leads to a significantly shorter production time of human dermo-epidermal skin substitutes.

    PubMed

    Pontiggia, Luca; Klar, Agnieszka; Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Meuli, Martin; Reichmann, Ernst

    2013-03-01

    Autologous dermo-epidermal skin substitutes (DESS) generated in vitro represent a promising therapeutic means to treat full-thickness skin defects in clinical practice. A serious drawback with regard to acute patients is the relatively long production time of 3-4 weeks. With this experimental study we aimed to decrease the production time of DESS without compromising their quality. Two in vitro steps of DESS construction were varied: the pre-cultivation time of fibroblasts in hydrogels (1, 3, and 6 days), and the culture time of keratinocytes (3, 6, and 12 days) before transplantation of DESS on nude rats. Additionally, the impact of the air-liquid interface culture during 3 days before transplantation was investigated. 3 weeks after transplantation, the macroscopic appearance was evaluated and histological sections were produced to analyze structure and thickness of epidermis and dermis, the stratification of the epidermis, and the presence of a basal lamina. Optimal DESS formation was obtained with a fibroblast pre-cultivation time of 6 days. The minimal culture time of keratinocytes on hydrogels was also 6 days. The air-liquid interface culture did not improve graft quality. By optimizing our in vitro culture conditions, it was possible to very substantially reduce the production time for DESS from 21 to 12 days. However, pre-cultivation of fibroblasts in the dermal equivalent and proliferation of keratinocytes before transplantation remain crucial for an equilibrated maturation of the epidermis and cannot be completely skipped.

  12. Culture Conditions for Production of Biomass, Adenosine, and Cordycepin from Cordyceps sinensis CS1197: Optimization by Desirability Function Method

    PubMed Central

    Ghatnur, Shashidhar M.; Parvatam, Giridhar; Balaraman, Manohar

    2015-01-01

    Background: Cordyceps sinensis (CS) is a traditional Chinese medicine contains potent active metabolites such as nucleosides and polysaccharides. The submerged cultivation technique is studied for the large scale production of CS for biomass and metabolites production. Objective: To optimize culture conditions for large-scale production of CS1197 biomass and metabolites production. Materials and Methods: The CS1197 strain of CS was isolated from dead larvae of natural CS and the authenticity was assured by the presence of two major markers adenosine and cordycepin by high performance liquid chromatography and mass spectrometry. A three-level Box-Behnken design was employed to optimize process parameters culturing temperature, pH, and inoculum volume for the biomass yield, adenosine and cordycepin. The experimental results were regressed to a second-order polynomial equation by a multiple regression analysis for the prediction of biomass yield, adenosine and cordycepin production. Multiple responses were optimized based on desirability function method. Results: The desirability function suggested the process conditions temperature 28°C, pH 7 and inoculum volume 10% for optimal production of nutraceuticals in the biomass. The water extracts from dried CS1197 mycelia showed good inhibition for 2 diphenyl-1-picrylhydrazyl and 2,2-azinobis-(3-ethyl-benzo-thiazoline-6-sulfonic acid-free radicals. Conclusion: The result suggests that response surface methodology-desirability function coupled approach can successfully optimize the culture conditions for CS1197. SUMMARY Authentication of CS1197 strain by the presence of adenosine and cordycepin and culturing period was determined to be for 14 daysContent of nucleosides in natural CS was found higher than in cultured CS1197 myceliumBox-Behnken design to optimize critical cultural conditions: temperature, pH and inoculum volumeWater extract showed better antioxidant activity proving credible source of natural antioxidants

  13. An Optimized Method for the Measurement of Acetaldehyde by High-Performance Liquid Chromatography

    PubMed Central

    Guan, Xiangying; Rubin, Emanuel; Anni, Helen

    2011-01-01

    Background Acetaldehyde is produced during ethanol metabolism predominantly in the liver by alcohol dehydrogenase, and rapidly eliminated by oxidation to acetate via aldehyde dehydrogenase. Assessment of circulating acetaldehyde levels in biological matrices is performed by headspace gas chromatography and reverse phase high-performance liquid chromatography (RP-HPLC). Methods We have developed an optimized method for the measurement of acetaldehyde by RP-HPLC in hepatoma cell culture medium, blood and plasma. After sample deproteinization, acetaldehyde was derivatized with 2,4-dinitrophenylhydrazine (DNPH). The reaction was optimized for pH, amount of derivatization reagent,, time and temperature. Extraction methods of the acetaldehyde-hydrazone (AcH-DPN) stable derivative and product stability studies were carried out. Acetaldehyde was identified by its retention time in comparison to AcH-DPN standard, using a new chromatography gradient program, and quantitated based on external reference standards and standard addition calibration curves in the presence and absence of ethanol. Results Derivatization of acetaldehyde was performed at pH 4.0 with a 80-fold molar excess of DNPH. The reaction was completed in 40 min at ambient temperature, and the product was stable for 2 days. A clear separation of AcH-DNP from DNPH was obtained with a new 11-min chromatography program. Acetaldehyde detection was linear up to 80 μM. The recovery of acetaldehyde was >88% in culture media, and >78% in plasma. We quantitatively determined the ethanol-derived acetaldehyde in hepatoma cells, rat blood and plasma with a detection limit around 3 μM. The accuracy of the method was <9% for intraday and <15% for interday measurements, in small volume (70 μl) plasma sampling. Conclusions An optimized method for the quantitative determination of acetaldehyde in biological systems was developed using derivatization with DNPH, followed by a short RP-HPLC separation of AcH-DNP. The method has

  14. Regulation for Optimal Liquid Products during Biomass Pyrolysis: A Review

    NASA Astrophysics Data System (ADS)

    Wang, F.; Hu, L. J.; Zheng, Y. W.; Huang, Y. B.; Yang, X. Q.; Liu, C.; Kang, J.; Zheng, Z. F.

    2016-08-01

    The liquid product obtained from biomass pyrolysis is very valuable that it could be used for extraction of chemicals as well as for liquid fuel. The desire goal is to obtain the most bio-oil with desired higher heating value (HHV), high physicochemical stability. The yields and chemical composition of products from biomass pyrolysis are closely related to the feedstock, pyrolysis parameters and catalysts. Current researches mainly concentrated on the co-pyrolysis of different biomass and introduce of novel catalysts as well as the combined effect of catalysts and pyrolysis parameters. This review starts with the chemical composition of biomass and the fundamental parameters and focuses on the influence of catalysts on bio-oil. What is more, the pyrolysis facilities at commercial scales were also involved. The classic researches and the current literature about the yield and composition of products (mainly liquid products) are summarized.

  15. Design Optimization of Liquid Nitrogen Based IQF Tunnel

    NASA Astrophysics Data System (ADS)

    Datye, A. B.; Narayankhedkar, K. G.; Sharma, G. K.

    2006-04-01

    A design methodology for an Individual Quick Freezing (IQF) tunnel using liquid nitrogen is developed and the design based on this methodology is validated using the data of commercial tunnels. The design takes care of heat gains due to the conveyor belt which is exposed to atmosphere at the infeed and outfeed ends. The design also considers the heat gains through the insulation as well as due to circulating fans located within the tunnel. For minimum liquid nitrogen consumption, the ratio of the length of the belt, L (from infeed to out feed) to the width of the belt, W can be considered as a parameter. The comparison of predicted and reported liquid nitrogen (experimental data) consumption shows good agreement and is within 10 %.

  16. Optimization of digitization procedures in cultural heritage preservation

    NASA Astrophysics Data System (ADS)

    Martínez, Bea; Mitjà, Carles; Escofet, Jaume

    2013-11-01

    The digitization of both volumetric and flat objects is the nowadays-preferred method in order to preserve cultural heritage items. High quality digital files obtained from photographic plates, films and prints, paintings, drawings, gravures, fabrics and sculptures, allows not only for a wider diffusion and on line transmission, but also for the preservation of the original items from future handling. Early digitization procedures used scanners for flat opaque or translucent objects and camera only for volumetric or flat highly texturized materials. The technical obsolescence of the high-end scanners and the improvement achieved by professional cameras has result in a wide use of cameras with digital back to digitize any kind of cultural heritage item. Since the lens, the digital back, the software controlling the camera and the digital image processing provide a wide range of possibilities, there is necessary to standardize the methods used in the reproduction work leading to preserve as high as possible the original item properties. This work presents an overview about methods used for camera system characterization, as well as the best procedures in order to identify and counteract the effect of the lens residual aberrations, sensor aliasing, image illumination, color management and image optimization by means of parametric image processing. As a corollary, the work shows some examples of reproduction workflow applied to the digitization of valuable art pieces and glass plate photographic black and white negatives.

  17. Cytotoxic and Genotoxic Effects of Electronic Cigarette Liquids on Human Mucosal Tissue Cultures of the Oropharynx.

    PubMed

    Welz, Christian; Canis, Martin; Schwenk-Zieger, Sabina; Becker, Sven; Stucke, Vincent; Ihler, Friedrich; Baumeister, Philipp

    2016-01-01

    The popularity of electronic cigarettes (ECs) is rapidly growing and ECs are claimed to be an uncritically regarded alternative to conventional cigarettes. The mucosal tissue of the upper aerodigestive tract (UADT) is the first contact organ for xenobiotics such as liquids of ECs. The aim of this study is to investigate the bimolecular effects of e-liquids on human pharyngeal tissue cultures to evaluate whether e-liquids and their components present a risk factor for head and neck squamous cell carcinoma. Fresh tissue samples of healthy oropharyngeal mucosa were assembled into mucosal tissue cultures. Two fruit-flavored liquids (FLs), one tobacco-flavored liquid (TL) (all containing nicotine), and the corresponding base mixtures (free of nicotine and flavor) were used in three different dilutions. Cytotoxicity was assessed using the water-soluble tetrazolium-8 assay. DNA fragmentation was quantified using alkaline microgel electrophoresis. All liquids caused a significant reduction in cell viability. FLs especially showed a higher toxicity than TL. DNA fragmentation significantly increased by incubation with FL, whereas treatment with TL did not show serious DNA damage. E-liquids are cytotoxic to oropharyngeal tissue, and some liquids can induce relevant DNA damage. Thus, mutagenicity for mucosa of the UADT and e-liquids as risk factors for head and neck cancer cannot entirely be ruled out. Only the implementation of standards and regulations for liquid production and distribution can ensure a valid scientific investigation and assessment of carcinogenic potential of long-term EC use.

  18. An Air-Liquid Interface Culture System for 3D Organoid Culture of Diverse Primary Gastrointestinal Tissues.

    PubMed

    Li, Xingnan; Ootani, Akifumi; Kuo, Calvin

    2016-01-01

    Conventional in vitro analysis of gastrointestinal epithelium usually relies on two-dimensional (2D) culture of epithelial cell lines as monolayer on impermeable surfaces. However, the lack of context of differentiation and tissue architecture in 2D culture can hinder the faithful recapitulation of the phenotypic and morphological characteristics of native epithelium. Here, we describe a robust long-term three-dimensional (3D) culture methodology for gastrointestinal culture, which incorporates both epithelial and mesenchymal/stromal components into a collagen-based air-liquid interface 3D culture system. This system allows vigorously expansion of primary gastrointestinal epithelium for over 60 days as organoids with both proliferation and multilineage differentiation, indicating successful long-term intestinal culture within a microenvironment accurately recapitulating the stem cell niche.

  19. Gas-liquid chromatography in routine processing of blood cultures for detecting anaerobic bacteraemia.

    PubMed Central

    Reig, M; Molina, D; Loza, E; Ledesma, M A; Meseguer, M A

    1981-01-01

    Gas-liquid chromatography was performed on 233 positive blood cultures and findings were compared with culture results. Obligate anaerobic bacteria were recovered from 78 out of 79 blood cultures containing butyric or iso-valeric acids, or both; from 28 out of 69 blood cultures containing succinic acid; and from only one out of 41 blood cultures containing succinic but not butyric or iso-valeric acid. Good correlations (88%) were found for the recovery of anaerobic bacteria and the detection of butyric and/or iso-valeric acids. Detecting volatile fatty acids by gas-liquid chromatography performed on blood cultures at the first signs of growth can therefore provide an early and reliable indication of the presence of anaerobic bacteria. PMID:7014645

  20. Orthogonal array design for the optimization of ionic liquid-based dispersive liquid-liquid microextraction of benzophenone-type UV filters.

    PubMed

    Ye, Lei; Liu, Juanjuan; Yang, Xin; Peng, Yan; Xu, Li

    2011-03-01

    In the present study, dispersive liquid-liquid microextraction (DLLME) using an ionic liquid (IL) as the extractant was successfully developed to extract four benzophenone-type UV filters from the different water matrices. Orthogonal array experimental design (OAD), based on five factors and four levels (L(16)(4(5))), was employed to optimize IL-dispersive liquid-liquid microextraction procedure. The five factors included pH of sample solution, the volume of IL and methanol addition, extraction time and the amount of salt added. The optimal extraction condition was as follows. Sample solution was at a pH of 2.63 in the presence of 60 mg/mL sodium chloride; 30 μL IL and 15 μL methanol were used as extractant and disperser solvent, respectively; extraction was achieved by vortexing for 4 min. Using high-performance liquid chromatography-UV analysis, the limits of detection of the target analytes ranged between 1.9 and 6.4 ng/mL. The linear ranges were between 10 or 20 ng/mL and 1000 ng/mL. This procedure afforded a convenient, fast and cost-saving operation with high extraction efficiency for the model analytes. Spiked waters from two rivers and one lake were examined by the developed method. For the swimming pool water, the standard addition method was employed to determine the actual concentrations of the UV filters.

  1. Role of liquid culture media in the laboratory diagnosis of microbial keratitis.

    PubMed

    Bhadange, Yogesh; Sharma, Savitri; Das, Sujata; Sahu, Srikant K

    2013-10-01

    To determine whether liquid culture media are helpful in the diagnosis of infectious keratitis. Retrospective noncomparative case series. This is a retrospective review of microbiology records of 114 corneal scraping samples from infectious keratitis patients. Samples were processed by corneal smear microscopy (potassium hydroxide with calcofluor white and Gram stains) and culture examination (5% sheep blood agar, sheep blood chocolate agar, Sabouraud dextrose agar, brain heart infusion, thioglycolate broth, and Robertson's cooked meat broth. Cases where at least 1 liquid medium was taken were included in the study and all cases were required to have significant growth in culture as per the institutional criteria. Results of smear examination and culture growth were analyzed. Out of 114 cases, 44 (38.59%) were bacterial, 62 (54.38%) fungal, and 8 (7.01%) were mixed (bacteria + fungus) infection. Thirty-eight out of 44 cases of bacterial keratitis (86.36%) were diagnosed by solid media alone (criterion 1) and 6 of 44 (13.63%) required liquid media for diagnosis (P < .001). In fungal keratitis, 61 of 62 cases (98.38%) were diagnosed using solid media alone (criterion 1) while 1 case required liquid media for diagnosis. In mixed infection, none of the cases required liquid media for diagnosis of fungal component; however, all 8 cases required liquid media for establishing bacterial component. Liquid culture media increase the chance of isolation of bacteria in pure bacterial and/or mixed infection; however, their role in isolating fungus is limited. Owing to overlap in clinical diagnosis of bacterial and fungal keratitis, we recommend inclusion of both solid and liquid culture media in the laboratory diagnosis of nonviral keratitis. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Optimization of culture conditions for porcine corneal endothelial cells.

    PubMed

    Proulx, Stéphanie; Bourget, Jean-Michel; Gagnon, Nicolas; Martel, Sophie; Deschambeault, Alexandre; Carrier, Patrick; Giasson, Claude J; Auger, François A; Brunette, Isabelle; Germain, Lucie

    2007-04-03

    To optimize the growth condition of porcine corneal endothelial cells (PCEC), we evaluated the effect of coculturing with a feeder layer (irradiated 3T3 fibroblasts) with the addition of various exogenous factors, such as epidermal growth factor (EGF), nerve growth factor (NGF), bovine pituitary extract (BPE), ascorbic acid, and chondroitin sulfate, on cell proliferation, size, and morphology. PCEC cultures were seeded at an initial cell density of 400 cells/cm(2) in the presence or absence of 20,000 murine-irradiated 3T3 fibroblast/cm(2) in the classic media Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 20% fetal bovine serum (FBS). Mean cell size and bromodeoxyuridine incorporation was assessed at various passages. Growth-promoting factors were studies by seeding PCEC at 8,000 cells/cm(2) in DMEM with 20% FBS or Opti-MEM I supplemented with 4% FBS and one of the following additives: EGF (0.5, 5, 25 ng/ml), NGF (5, 20, 50 ng/ml), BPE (25, 50, 100, 200 microg/ml), ascorbic acid (10, 20, 40 microg/ml) and chondroitin sulfate (0.03, 0.08, 1.6%), alone or in combination. Cell number, size and morphology of PCEC were assessed on different cell populations. Each experiment was repeated at least twice in three sets. In some cases, cell cultures were maintained after confluence to observe post-confluence changes in cell morphology. Co-cultures of PCEC grown in DMEM 20% FBS with a 3T3 feeder layer improved the preservation of small polygonal cell shape. EGF, NGF, and chondroitin sulfate did not induce proliferation above basal level nor did these additives help maintain a small size. However, chondroitin sulfate did help preserve a good morphology. BPE and ascorbic acid had dose-dependent effects on proliferation. The combination of BPE, chondroitin sulfate, and ascorbic acid significantly increased cell numbers above those achieved with serum alone. No noticeable changes were observed when PCEC were cocultured with a 3T3 feeder layer in the final selected

  3. Optimization of culture conditions for porcine corneal endothelial cells

    PubMed Central

    Proulx, Stéphanie; Bourget, Jean-Michel; Gagnon, Nicolas; Martel, Sophie; Deschambeault, Alexandre; Carrier, Patrick; Giasson, Claude J.; Auger, François A.; Brunette, Isabelle

    2007-01-01

    Purpose To optimize the growth condition of porcine corneal endothelial cells (PCEC), we evaluated the effect of coculturing with a feeder layer (irradiated 3T3 fibroblasts) with the addition of various exogenous factors, such as epidermal growth factor (EGF), nerve growth factor (NGF), bovine pituitary extract (BPE), ascorbic acid, and chondroitin sulfate, on cell proliferation, size, and morphology. Methods PCEC cultures were seeded at an initial cell density of 400 cells/cm2 in the presence or absence of 20,000 murine-irradiated 3T3 fibroblast/cm2 in the classic media Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 20% fetal bovine serum (FBS). Mean cell size and bromodeoxyuridine incorporation was assessed at various passages. Growth-promoting factors were studies by seeding PCEC at 8,000 cells/cm2 in DMEM with 20% FBS or Opti-MEM I supplemented with 4% FBS and one of the following additives: EGF (0.5, 5, 25 ng/ml), NGF (5, 20, 50 ng/ml), BPE (25, 50, 100, 200 μg/ml), ascorbic acid (10, 20, 40 μg/ml) and chondroitin sulfate (0.03, 0.08, 1.6%), alone or in combination. Cell number, size and morphology of PCEC were assessed on different cell populations. Each experiment was repeated at least twice in three sets. In some cases, cell cultures were maintained after confluence to observe post-confluence changes in cell morphology. Results Co-cultures of PCEC grown in DMEM 20% FBS with a 3T3 feeder layer improved the preservation of small polygonal cell shape. EGF, NGF, and chondroitin sulfate did not induce proliferation above basal level nor did these additives help maintain a small size. However, chondroitin sulfate did help preserve a good morphology. BPE and ascorbic acid had dose-dependent effects on proliferation. The combination of BPE, chondroitin sulfate, and ascorbic acid significantly increased cell numbers above those achieved with serum alone. No noticeable changes were observed when PCEC were cocultured with a 3T3 feeder layer in the final

  4. Optimization of ultrasound assisted dispersive liquid-liquid microextraction of six antidepressants in human plasma using experimental design.

    PubMed

    Fernández, P; Taboada, V; Regenjo, M; Morales, L; Alvarez, I; Carro, A M; Lorenzo, R A

    2016-05-30

    A simple Ultrasounds Assisted-Dispersive Liquid Liquid Microextraction (UA-DLLME) method is presented for the simultaneous determination of six second-generation antidepressants in plasma by Ultra Performance Liquid Chromatography with Photodiode Array Detector (UPLC-PDA). The main factors that potentially affect to DLLME were optimized by a screening design followed by a response surface design and desirability functions. The optimal conditions were 2.5 mL of acetonitrile as dispersant solvent, 0.2 mL of chloroform as extractant solvent, 3 min of ultrasounds stirring and extraction pH 9.8.Under optimized conditions, the UPLC-PDA method showed good separation of antidepressants in 2.5 min and good linearity in the range of 0.02-4 μg mL(-1), with determination coefficients higher than 0.998. The limits of detection were in the range 4-5 ng mL(-1). The method precision (n=5) was evaluated showing relative standard deviations (RSD) lower than 8.1% for all compounds. The average recoveries ranged from 92.5% for fluoxetine to 110% for mirtazapine. The applicability of DLLME/UPLC-PDA was successfully tested in twenty nine plasma samples from antidepressant consumers. Real samples were analyzed by the proposed method and the results were successfully submitted to comparison with those obtained by a Liquid Liquid Extraction-Gas Chromatography - Mass Spectrometry (LLE-GC-MS) method. The results confirmed the presence of venlafaxine in most cases (19 cases), followed by sertraline (3 cases) and fluoxetine (3 cases) at concentrations below toxic levels.

  5. Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity.

    PubMed

    Williams, G R; Doran, P M

    2000-01-01

    A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved

  6. Optimal synthesis and characterization of Ag nanofluids by electrical explosion of wires in liquids.

    PubMed

    Ju Park, Eun; Won Lee, Seung; Bang, In Cheol; Park, Hyung Wook

    2011-03-15

    Silver nanoparticles were produced by electrical explosion of wires in liquids with no additive. In this study, we optimized the fabrication method and examined the effects of manufacturing process parameters. Morphology and size of the Ag nanoparticles were determined using transmission electron microscopy and field-emission scanning electron microscopy. Size and zeta potential were analyzed using dynamic light scattering. A response optimization technique showed that optimal conditions were achieved when capacitance was 30 μF, wire length was 38 mm, liquid volume was 500 mL, and the liquid type was deionized water. The average Ag nanoparticle size in water was 118.9 nm and the zeta potential was -42.5 mV. The critical heat flux of the 0.001-vol.% Ag nanofluid was higher than pure water.

  7. Optimal synthesis and characterization of Ag nanofluids by electrical explosion of wires in liquids

    PubMed Central

    2011-01-01

    Silver nanoparticles were produced by electrical explosion of wires in liquids with no additive. In this study, we optimized the fabrication method and examined the effects of manufacturing process parameters. Morphology and size of the Ag nanoparticles were determined using transmission electron microscopy and field-emission scanning electron microscopy. Size and zeta potential were analyzed using dynamic light scattering. A response optimization technique showed that optimal conditions were achieved when capacitance was 30 μF, wire length was 38 mm, liquid volume was 500 mL, and the liquid type was deionized water. The average Ag nanoparticle size in water was 118.9 nm and the zeta potential was -42.5 mV. The critical heat flux of the 0.001-vol.% Ag nanofluid was higher than pure water. PMID:21711757

  8. Studies in Optimizing the Film Flow Rate for Liquid Film Cooling

    DTIC Science & Technology

    2011-07-19

    in order to investigate the effects of gas stream momentum flux on the optimal liquid flow rate. This paper summarizes the results of these tests...investigates the ability of laser focus displacement meter (LFD) to measure the thickness of shear-driven liquid films driven by gas -phase momentum...Approved for public release; distribution unlimited Subscripts 1 = property in gas 2 = property in liqud film a = air ave = average D

  9. Solid matrix and liquid culture procedures for growth of potatoes

    NASA Astrophysics Data System (ADS)

    Tibbitts, T. W.; Cao, W.

    1994-11-01

    This report discusses the advantages and limitations of several different procedures for growth of potatoes for CELSS. Solution culture, in which roots and stolons are submerged, and aeroponic culture were not found useful for potatoes because stolons did not produce tubers unless a severe stress was applied to the plants. In detailed comparison studies, three selected culture systems were compared, nutrient film technique (NFT), NFT with shallow media, and pot culture with deep media. For the NFT and NFT plus shallow media, plants were grown in 0.3 m2 trays and for the deep medium culture, in 20 liter pots. A 1 cm depth of arcillite, a baked montmorillonite clay, was used as shallow media (NFT-arc). Peatvermiculite mixture was used to fill the pots for the deep media. Nutrient solution, modified half-strength Hoagland's was recirculated among the tray culture plants with pH automatically controlled at 5.5, and conductivity maintained ~ 1100 μS cm-1 by adding stock nutrients or renewing the solution. A separate nutrient solution was used to water the pot plants four times daily to excess and the excess was discarded. Plants of Norland cv. were utilized and transplanted from sterile-propagated stem cutting plantlets. The plants were grown for 66 days under 12 h photoperiod in a first study and grown for 54 days under 24 h photoperiod in a second study. Under both photoperiods, total plant growth was greater in NFT-arc than in either NFT or pot culture. Under 12 h photoperiod, tuber dry weight was 30% higher with NFT-arc, but 50% lower with NFT, than with pot culture. Under 24 h photoperiod, however, tuber dry weight in both NFT and NFT-arc was only 20% of that in pot culture. The NFT and NFT-arc produced a greater shoot growth and larger number of small tubers than pot culture, especially with 24 h photoperiod. It is concluded that there are serious limitations to the use of NFT alone for growth of potatoes in a CELSS system. These limitations can be minimized by

  10. Solid matrix and liquid culture procedures for growth of potatoes.

    PubMed

    Tibbitts, T W; Cao, W

    1994-11-01

    This report discusses the advantages and limitations of several different procedures for growth of potatoes for CELSS. Solution culture, in which roots and stolons are submerged, and aeroponic culture were not found useful for potatoes because stolons did not produce tubers unless a severe stress was applied to the plants. In detailed comparison studies, three selected culture systems were compared, nutrient film technique (NFT), NFT with shallow media, and pot culture with deep media. For the NFT and NFT plus shallow media, plants were grown in 0.3 m2 trays and for the deep medium culture, in 20 liter pots. A 1 cm depth of arcillite, a baked montmorillonite clay, was used as shallow media (NFT-arc). Peat-vermiculite mixture was used to fill the pots for the deep media. Nutrient solution, modified half-strength Hoagland's, was recirculated among the tray culture plants with pH automatically controlled at 5.5, and conductivity maintained at approximately 1100 microS cm-1 by adding stock nutrients or renewing the solution. A separate nutrient solution was used to water the pot plants four times daily to excess and the excess was discarded. Plants of Norland cv. were utilized and transplanted from sterile-propagated stem cutting plantlets. The plants were grown for 66 days under 12 h photoperiod in a first study and grown for 54 days under 24 h photoperiod in a second study. Under both photoperiods, total plant growth was greater in NFT-arc than in either NFT or pot culture. Under 12 h photoperiod, tuber dry weight was 30% higher with NFT-arc, but 50% lower with NFT, than with pot culture. Under 24 h photoperiod, however, tuber dry weight in both NFT and NFT-arc was only 20% of that in pot culture. The NFT and NFT-arc produced a greater shoot growth and larger number of small tubers than pot culture, especially with 24 h photoperiod. It is concluded that there are serious limitations to the use of NFT alone for growth of potatoes in a CELSS system. These limitations

  11. Human Performance Optimization: Culture Change and Paradigm Shift.

    PubMed

    Deuster, Patricia A; OʼConnor, Francis G

    2015-11-01

    The term "Human Performance Optimization" (HPO) emerged across the Department of Defense (DoD) around 2006 when the importance of human performance for military success on the battlefield was acknowledged. Likewise, the term Total Force Fitness (TFF) arose as a conceptual framework within DoD in response to the need for a more holistic approach to the unparalleled operational demands with multiple deployments and strains on the United States Armed Forces. Both HPO and TFF are frameworks for enhancing and sustaining the health, well-being, and performance among our warriors and their families; they are fundamental to accomplishing our nation's mission. A demands-resources model for HPO is presented within the context of TFF to assist in operationalizing actions to enhance performance. In addition, the role leaders can serve is discussed; leaders are uniquely postured in the military chain of command to directly influence a culture of fitness for a ready force, and promote the concept that service members are ultimately responsible for their fitness and performance.

  12. Accumulation of dibenzocyclooctadiene lignans in agar cultures and in stationary and agitated liquid cultures of Schisandra chinensis (Turcz.) Baill.

    PubMed

    Szopa, Agnieszka; Kokotkiewicz, Adam; Marzec-Wróblewska, Urszula; Bucinski, Adam; Luczkiewicz, Maria; Ekiert, Halina

    2016-05-01

    Schisandra chinensis plant in vitro cultures were maintained on Murashige and Skoog (MS) medium supplemented with 3 mg/l 6-benzyladenine (BA) and 1 mg/l 1-naphthaleneacetic acid (NAA) in an agar system and also in two different liquid systems: stationary and agitated. Liquid cultures were grown in batch (30 and 60 days) and fed-batch modes. In the methanolic extracts from lyophilized biomasses and in the media, quantification of fourteen dibenzocyclooctadiene lignans identified based on co-chromatography with authentic standards using high-performance liquid chromatography with diode array detection (HPLC-DAD) and/or liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI-MS) methods. For comparison purposes, phytochemical analyses were performed of lignans in the leaves and fruits of the parent plant. The main lignans detected in the biomass extracts from all the tested systems were schisandrin (max. 65.62 mg/100 g dry weight (DW)), angeloyl-/tigloylgomisin Q (max. 49.73 mg/100 g DW), deoxyschisandrin (max. 43.65 mg/100 g DW), and gomisin A (max. 34.36 mg/100 g DW). The highest total amounts of lignans in the two tested stationary systems were found in extracts from the biomass harvested after 30 days of batch cultivation: 237.86 mg/100 g DW and 274.65 mg/100 g DW, respectively. In the agitated culture, the total content reached a maximum value of 244.80 mg/100 g DW after 60 days of the fed-batch mode of cultivation. The lignans were not detected in the media. This is the first report which documents the potential usefulness of S. chinensis shoot cultures cultivated in liquid systems for practical purposes.

  13. Optimizing the performance of a solar liquid piston pump

    NASA Astrophysics Data System (ADS)

    Murphy, C. L.

    Utilization of solar energy for pumping water for irrigation or storage is discussed. Oscillations of a Freon 113 liquid column are generated in a working tube when a continuous flow of hot water, and cooling water, are supplied to heated and cooling coils located in the tube. The oscillations are converted into a pump (SLPP) model exhibited self starting, stable operation over a wide range of conditions, provides the inlet hot water heat source and inlet cooling water heat sink are above and below the critical values for stalling at a given pump head. The operation of the SLPP model, is primarily affected by the heating coil position within the working tube, and the geometries of the inlet and outlet water tubes.

  14. Formation and changes of the subembryonic liquid from turned, unturned, and cultured Japanese quail eggs.

    PubMed

    Wittmann, J; Kaltner, H

    1988-08-01

    Japanese quail eggs belonging to the same flock of hens were incubated under different conditions: group 1 eggs were turned 3 times a day, group 2 eggs were left unturned, and group 3 eggs were cultured and left unturned. The results indicate that failure to turn eggs results in a delayed efflux of liquid and glucose from albumen and from the subembryonic liquid. Furthermore, the major difference between unturned and cultured eggs was that in the first group the glucose levels and in the second group the lactate levels of the subembryonic liquid were increased. It is suggested that reduced glucose supply may be involved in the disturbance of development of unturned and cultured eggs.

  15. Optimization of screening for radioactivity in urine by liquid scintillation.

    SciTech Connect

    Shanks, Sonoya Toyoko; Reese, Robert P.; Preston, Rose T.

    2007-08-01

    Numerous events have or could have resulted in the inadvertent uptake of radionuclides by fairly large populations. Should a population receive an uptake, valuable information could be obtained by using liquid scintillation counting (LSC) techniques to quickly screen urine from a sample of the affected population. This study investigates such LSC parameters as discrimination, quench, volume, and count time to yield guidelines for analyzing urine in an emergency situation. Through analyzing variations of the volume and their relationships to the minimum detectable activity (MDA), the optimum ratio of sample size to scintillating chemical cocktail was found to be 1:3. Using this optimum volume size, the alpha MDA varied from 2100 pCi/L for a 30-second count time to 35 pCi/L for a 1000-minute count time. The typical count time used by the Sandia National Laboratories Radiation Protection Sample Diagnostics program is 30 minutes, which yields an alpha MDA of 200 pCi/L. Because MDA is inversely proportional to the square root of the count time, count time can be reduced in an emergency situation to achieve the desired MDA or response time. Note that approximately 25% of the response time is used to prepare the samples and complete the associated paperwork. It was also found that if the nuclide of interest is an unknown, pregenerated discriminator settings and efficiency calibrations can be used to produce an activity value within a factor of two, which is acceptable for a screening method.

  16. Designing & Optimizing a Moving Magnet Pump for Liquid Sodium Systems

    NASA Astrophysics Data System (ADS)

    Hvasta, Michael G.

    Advanced materials such as NF-616, NF-709, HT-UPS, and silicon carbide (SiC) have greater strength than traditional structural materials such as 316-SS. Thus, using these high-strength materials to build sodium-cooled fast reactors (SFRs) could potentially reduce construction costs by lessening the required amount of material, and increase the efficiency of electromagnetic pumps by limiting ohmic heating within the pump duct walls. However, information pertaining to the sodium-compatibility of these alloys and ceramics is very sparse. Therefore, two separate test facilities were built to study the impact of both static and dynamic sodium corrosion The dynamic test facility enabled sodium corrosion to be studied under prototypic SFR operating conditions (T = 500 [C], V = 9.35 [m/s], CO = 2-3 [wppm]). The oxygen concentration, CO, within the dynamic test facility was maintained using a cold trap and measured with a plugging meter. The flow rate of the sodium was measured using a calibrated electromagnetic flowmeter. A moving magnet pump (MMP) was used to move the liquid sodium past the corrosion samples at a high velocity. Using newly developed theory, it was found that MMP performance could be accurately modeled and predicted for a wide variety of pump configurations.

  17. Optimization of fast breeder reactors employing innovative liquid metal coolants

    SciTech Connect

    Pilarski, Stevan

    2007-07-01

    In this paper we propose a comparative assessment of fast breeder reactor core concepts employing Pb, Pb- Mg and Pb-{sup 7}Li as primary coolants and oxide and nitride fuels. Starting from a common reference core to make the comparison relevant, each coolant candidate is associated to an optimized design that takes into account its specific physical properties. For each core, we perform a neutronic analysis and an assessment of its safety potential. In comparison with the case of Pb, the use of Pb-Mg and Pb-{sup 7}Li increases the void reactivity effect. On the other hand, the breeding gain also increases, and the Doppler effect is enhanced, leading to a favorable behaviour concerning safety. (author)

  18. Optimization of extraction of phenolic acids from a vegetable waste product using a pressurized liquid extractor

    USDA-ARS?s Scientific Manuscript database

    Potato tubers are eaten worldwide for their nutritional value, but potato peels are often disposed as waste. This study identified the phenolic acids content in potato peels, tuber, and developed an optimized method for extraction of phenolic acids from potato peels using a pressurized liquid extrac...

  19. Optimal strengthening of particle-loaded liquid foams

    NASA Astrophysics Data System (ADS)

    Gorlier, F.; Khidas, Y.; Fall, A.; Pitois, O.

    2017-04-01

    Foams made of complex fluids such as particle suspensions have a great potential for the development of advanced aerated materials. In this paper, we study the rheological behavior of liquid foams loaded with granular suspensions. We focus on the effect of small particles, i.e., particle-to-bubble size ratio smaller than 0.1, and we measure the complex modulus as a function of particle size and particle volume fraction. With respect to previous work, the results highlight a new elastic regime characterized by unequaled modulus values as well as independence of size ratio. A careful investigation of the material microstructure reveals that particles organize through the network between the gas bubbles and form a granular skeleton structure with tightly packed particles. The latter is proven to be responsible for the reported new elastic regime. Rheological probing performed by strain sweep reveals a two-step yielding of the material: The first one occurs at small strain and is clearly attributed to yielding of the granular skeleton; the second one corresponds to the yielding of the bubble assembly, as observed for particle-free foams. Moreover, the elastic modulus measured at small strain is quantitatively described by models for solid foams in assuming that the granular skeleton possesses a bulk elastic modulus of order 100 kPa. Additional rheology experiments performed on the bulk granular material indicate that this surprisingly high value can be understood as soon as the magnitude of the confinement pressure exerted by foam bubbles on packed grains is considered.

  20. Stationary phase optimized selectivity liquid chromatography: Basic possibilities of serially connected columns using the "PRISMA" principle.

    PubMed

    Nyiredy, Sz; Szucs, Zoltán; Szepesy, L

    2007-07-20

    A new procedure (stationary phase optimized selectivity liquid chromatography: SOS-LC) is described for the optimization of the HPLC stationary phase, using serially connected columns and the principle of the "PRISMA" model. The retention factors (k) of the analytes were determined on three different stationary phases. By use of these data the k values were predicted applying theoretically combined stationary phases. These predictions resulted in numerous intermediate theoretical separations from among which only the optimal one was assembled and tested. The overall selectivity of this separation was better than that of any individual base stationary phase. SOS-LC is independent of the mechanism and the scale of separation.

  1. Impact of Implementation of an Automated Liquid Culture System on Diagnosis of Tuberculous Pleurisy.

    PubMed

    Lee, Byung Hee; Yoon, Seong Hoon; Yeo, Hye Ju; Kim, Dong Wan; Lee, Seung Eun; Cho, Woo Hyun; Lee, Su Jin; Kim, Yun Seong; Jeon, Doosoo

    2015-07-01

    This study was conducted to evaluate the impact of implementation of an automated liquid culture system on the diagnosis of tuberculous pleurisy in an HIV-uninfected patient population. We retrospectively compared the culture yield, time to positivity, and contamination rate of pleural effusion samples in the BACTEC Mycobacteria Growth Indicator Tube 960 (MGIT) and Ogawa media among patients with tuberculous pleurisy. Out of 104 effusion samples, 43 (41.3%) were culture positive on either the MGIT or the Ogawa media. The culture yield of MGIT was higher (40.4%, 42/104) than that of Ogawa media (18.3%, 19/104) (P<0.001). One of the samples was positive only on the Ogawa medium. The median time to positivity was faster in the MGIT (18 days, range 8-32 days) than in the Ogawa media (37 days, range 20-59 days) (P<0.001). No contamination or growth of nontuberculous mycobacterium was observed on either of the culture media. In conclusion, the automated liquid culture system could provide approximately twice as high yields and fast results in effusion culture, compared to solid media. Supplemental solid media may have a limited impact on maximizing sensitivity in effusion culture; however, further studies are required.

  2. Technique for the optimization of the powerhead configuration and performance of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    St. Germain, Brad David

    The development and optimization of liquid rocket engines is an integral part of space vehicle design, since most Earth-to-orbit launch vehicles to date have used liquid rockets as their main propulsion system. Rocket engine design tools range in fidelity from very simple conceptual level tools to full computational fluid dynamics (CFD) simulations. The level of fidelity of interest in this research is a design tool that determines engine thrust and specific impulse as well as models the powerhead of the engine. This is the highest level of fidelity applicable to a conceptual level design environment where faster running analyses are desired. The optimization of liquid rocket engines using a powerhead analysis tool is a difficult problem, because it involves both continuous and discrete inputs as well as a nonlinear design space. Example continuous inputs are the main combustion chamber pressure, nozzle area ratio, engine mixture ratio, and desired thrust. Example discrete variable inputs are the engine cycle (staged-combustion, gas generator, etc.), fuel/oxidizer combination, and engine material choices. Nonlinear optimization problems involving both continuous and discrete inputs are referred to as Mixed-Integer Nonlinear Programming (MINLP) problems. Many methods exist in literature for solving MINLP problems; however none are applicable for this research. All of the existing MINLP methods require the relaxation of the discrete variables as part of their analysis procedure. This means that the discrete choices must be evaluated at non-discrete values. This is not possible with an engine powerhead design code. Therefore, a new optimization method was developed that uses modified response surface equations to provide lower bounds of the continuous design space for each unique discrete variable combination. These lower bounds are then used to efficiently solve the optimization problem. The new optimization procedure was used to find optimal rocket engine designs

  3. Microbial transformation and sorption of anthracene in liquid culture.

    PubMed

    Hadibarata, Tony; Zubir, Meor Mohd Fikri Ahmad; Rubiyatno; Chuang, Teh Zee

    2013-09-01

    Armillaria sp. F022, a white-rot fungus isolated from decayed wood in tropical rain forest was used to biodegrade anthracene in cultured medium. The percentage of anthracene removal by Armillaria sp. F022 reached 13 % after 7 days and at the end of the experiment, anthracene removal level was at 87 %. The anthracene removal through sorption and transformation was investigated. 69 % of eliminated anthracene was transformed by Armillaria sp. F022 to form other organic structure, while only 18 % was absorbed in the mycelia. In the kinetic experiment, anthracene dissipation will not stop even though the biomass had stopped growing. Anthracene removal by Armillaria sp. F022 was correlated with protein concentration (whole biomass) in the culture. The production of enzyme was affected by biomass production. Anthracene was transformed to two stable metabolic products. The metabolites were extracted in ethyl-acetate, isolated by column chromatography, and then identified using gas chromatography-mass spectrometry (GC-MS).

  4. Optimization of culture conditions for Gardnerella vaginalis biofilm formation.

    PubMed

    Machado, Daniela; Palmeira-de-Oliveira, Ana; Cerca, Nuno

    2015-11-01

    Bacterial vaginosis is the leading vaginal disorder in women in reproductive age. Although bacterial vaginosis is related with presence of a biofilm composed predominantly by Gardnerella vaginalis, there has not been a detailed information addressing the environmental conditions that influence the biofilm formation of this bacterial species. Here, we evaluated the influence of some common culture conditions on G. vaginalis biofilm formation, namely inoculum concentration, incubation period, feeding conditions and culture medium composition. Our results showed that culture conditions strongly influenced G. vaginalis biofilm formation and that biofilm formation was enhanced when starting the culture with a higher inoculum, using a fed-batch system and supplementing the growth medium with maltose.

  5. A study of optical design and optimization of zoom optics with liquid lenses through modified genetic algorithm.

    PubMed

    Fang, Yi-Chin; Tsai, Cheng-Mu; Chung, Cheng-Lun

    2011-08-15

    A new concept for the optimization and optical design of miniature digital zoom optics with liquid lens elements is proposed in this research. The liquid lens elements are limited to the discrete configuration in order to obtain the optimal performance for digital zoom. We propose a newly developed digital zoom layout and optimization with a modified genetic algorism (GA) method, in order to meet the demands of a certain specification. The results show that we achieve a successful optical design and the optimization of the digital zoom optics with liquid optics, whose performance is greatly improved up to 48.68%, from the standpoint of on-axis spot size.

  6. Transcriptomic Analysis of Liquid Non-Sporulating Streptomyces coelicolor Cultures Demonstrates the Existence of a Complex Differentiation Comparable to That Occurring in Solid Sporulating Cultures

    PubMed Central

    Yagüe, Paula; Rodríguez-García, Antonio; López-García, María Teresa; Rioseras, Beatriz; Martín, Juan Francisco; Sánchez, Jesús; Manteca, Angel

    2014-01-01

    Streptomyces species produce many clinically relevant secondary metabolites and exhibit a complex development that includes hyphal differentiation and sporulation in solid cultures. Industrial fermentations are usually performed in liquid cultures, conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that no differentiation took place. The aim of this work was to compare the transcriptomes of S. coelicolor growing in liquid and solid cultures, deepening the knowledge of Streptomyces differentiation. Microarrays demonstrated that gene expression in liquid and solid cultures were comparable and data indicated that physiological differentiation was similar for both conditions. Eighty-six percent of all transcripts showed similar abundances in liquid and solid cultures, such as those involved in the biosynthesis of actinorhodin (actVA, actII-4) and undecylprodigiosin (redF); activation of secondary metabolism (absR1, ndsA); genes regulating hydrophobic cover formation (aerial mycelium) (bldB, bldC, bldM, bldN, sapA, chpC, chpD, chpE, chpH, ramA, ramC, ramS); and even some genes regulating early stages of sporulation (wblA, whiG, whiH, whiJ). The two most important differences between transcriptomes from liquid and solid cultures were: first, genes related to secondary metabolite biosynthesis (CDA, CPK, coelichelin, desferrioxamine clusters) were highly up-regulated in liquid but not in solid cultures; and second, genes involved in the final stages of hydrophobic cover/spore maturation (chpF, rdlA, whiE, sfr) were up-regulated in solid but not in liquid cultures. New information was also provided for several non-characterized genes differentially expressed in liquid and solid cultures which might be regulating, at least in part, the metabolic and developmental differences observed between liquid and solid cultures. PMID:24466012

  7. Transcriptomic analysis of liquid non-sporulating Streptomyces coelicolor cultures demonstrates the existence of a complex differentiation comparable to that occurring in solid sporulating cultures.

    PubMed

    Yagüe, Paula; Rodríguez-García, Antonio; López-García, María Teresa; Rioseras, Beatriz; Martín, Juan Francisco; Sánchez, Jesús; Manteca, Angel

    2014-01-01

    Streptomyces species produce many clinically relevant secondary metabolites and exhibit a complex development that includes hyphal differentiation and sporulation in solid cultures. Industrial fermentations are usually performed in liquid cultures, conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that no differentiation took place. The aim of this work was to compare the transcriptomes of S. coelicolor growing in liquid and solid cultures, deepening the knowledge of Streptomyces differentiation. Microarrays demonstrated that gene expression in liquid and solid cultures were comparable and data indicated that physiological differentiation was similar for both conditions. Eighty-six percent of all transcripts showed similar abundances in liquid and solid cultures, such as those involved in the biosynthesis of actinorhodin (actVA, actII-4) and undecylprodigiosin (redF); activation of secondary metabolism (absR1, ndsA); genes regulating hydrophobic cover formation (aerial mycelium) (bldB, bldC, bldM, bldN, sapA, chpC, chpD, chpE, chpH, ramA, ramC, ramS); and even some genes regulating early stages of sporulation (wblA, whiG, whiH, whiJ). The two most important differences between transcriptomes from liquid and solid cultures were: first, genes related to secondary metabolite biosynthesis (CDA, CPK, coelichelin, desferrioxamine clusters) were highly up-regulated in liquid but not in solid cultures; and second, genes involved in the final stages of hydrophobic cover/spore maturation (chpF, rdlA, whiE, sfr) were up-regulated in solid but not in liquid cultures. New information was also provided for several non-characterized genes differentially expressed in liquid and solid cultures which might be regulating, at least in part, the metabolic and developmental differences observed between liquid and solid cultures.

  8. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture.

    PubMed

    Tan, Kah Yong; Teo, Kim Leng; Lim, Jessica F Y; Chen, Allen K L; Choolani, Mahesh; Reuveny, Shaul; Chan, Jerry; Oh, Steve Kw

    2015-08-01

    Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of carbohydrates in natural and cultured Cordyceps by pressurized liquid extraction and gas chromatography coupled with mass spectrometry.

    PubMed

    Guan, Jia; Yang, Feng-Qing; Li, Shao-Ping

    2010-06-11

    Free and polymeric carbohydrates in Cordyceps, a valued edible mushroom and well-known traditional Chinese medicine, were determined using stepwise pressurized liquid extraction (PLE) extraction and GC-MS. Based on the optimized PLE conditions, acid hydrolysis and derivatization, ten monosaccharides, namely rhamnose, ribose, arabinose, xylose, mannose, glucose, galactose, mannitol, fructose and sorbose in 13 samples of natural and cultured Cordyceps were qualitatively and quantitatively analyzed and compared with myo-inositol hexaacetate as internal standard. The results showed that natural C. sinensis contained more than 7.99% free mannitol and a small amount of glucose, while its polysaccharides were usually composed of mannose, glucose and galactose with a molar ratio of 1.00:16.61-3.82:1.60-1.28. However, mannitol in cultured C. sinensis and cultured C. militaris were less than 5.83%, and free glucose was only detected in a few samples, while their polysaccharides were mainly composed of mannose, glucose and galactose with molar ratios of 1.00:3.01-1.09:3.30-1.05 and 1.00:2.86-1.28:1.07-0.78, respectively. Natural and cultured Cordyceps could be discriminated by hierarchical clustering analysis based on its free carbohydrate contents.

  10. Optimization of Liquid Fermentation Conditions and Protein Nutrition Evaluation of Mycelium from the Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes).

    PubMed

    Gang, Jie; Liu, Han; Liu, Yanhong

    2016-01-01

    Cordyceps militaris is a well-known traditional Chinese medicinal mushroom. In this study, the mycelium of C. militaris was cultured using liquid fermentation technology and the culture medium components were optimized by the orthogonal test method. Our results showed that the optimal medium combination for the mycelium growth is 3% glucose, 3% peptone, 0.1% MgSO4, and 0.2% KH2PO4 The international general nutritional assessment method was applied to the overall evaluation of the protein nutrition value of submerged cultivated mycelium and fruit body of C. militaris. The protein contents in C. militaris mycelium and fruit body are 21.10% and 18.47%, respectively. The first limiting amino acids of C. militaris mycelium and fruit bodies are the sulfur-containing amino acids (methionine and cysteine), and the second limiting amino acid is isoleucine. The quality of amino acids from submerged cultivated mycelium and fruit body from C. militaris was also evaluated by amino acid score (AAS), chemical score (CS), essential amino acid index (EAAI), biological value (BV), nutritional index (NI), and score of ratio coefficient of amino acid (SRCAA). Our data demonstrate that AAS, CS, EAAI, BV, NI, and SRCAA scores of the submerged cultivated mycelium proteins are 62.41, 38.74, 88.37, 84.63, 18.61, and 25.57, respectively, whereas the fruit body proteins are 37.11, 34.59, 61.92, 55.79, 11.44, and 68.51, respectively. The protein content of C. militaris mycelium has higher nutrition value than that of fruit body protein, which holds the promise for future further development. Our study provides the optimal culture conditions and the essential nutritional information of medicinal species, C. militaris.

  11. Liquid perfluorochemical-supported hybrid cell culture system for proliferation of chondrocytes on fibrous polylactide scaffolds.

    PubMed

    Pilarek, Maciej; Grabowska, Iwona; Senderek, Ilona; Wojasiński, Michał; Janicka, Justyna; Janczyk-Ilach, Katarzyna; Ciach, Tomasz

    2014-09-01

    CP5 bovine chondrocytes were cultured on biodegradable electrospun fibrous polylactide (PLA) scaffolds placed on a flexible interface formed between two immiscible liquid phases: (1) hydrophobic perfluorochemical (PFC) and (2) aqueous culture medium, as a new way of cartilage implant development. Robust and intensive growth of CP5 cells was achieved in our hybrid liquid-solid-liquid culture system consisting of the fibrous PLA scaffolds in contrast to limited growth of the CP5 cells in traditional culture system with PLA scaffold placed on solid surface. The multicellular aggregates of CP5 cells covered the surface of PLA scaffolds and the chondrocytes migrated through and overgrew internal fibers of the scaffolds. Our hybrid culture system simultaneously allows the adhesion of adherent CP5 cells to fibers of PLA scaffolds as well as, due to use of phase of PFC, enhances the mass transfer in the case of supplying/removing of respiratory gases, i.e., O2 and CO2. Our flexible (independent of vessel shape) system is simple, ready-to-use and may utilize a variety of polymer-based scaffolds traditionally proposed for implant development.

  12. Optimal light for greenhouse culture of American ginseng seedlings.

    PubMed

    Proctor, John T A; Palmer, John W

    2017-07-01

    Three greenhouse experiments with American ginseng seedlings growing under light levels from 4.8% to 68% showed a quadratic response for root dry weight, giving an optimal root dry weight of 239 mg (range 160-415 mg) at an optimal light level of 35.6% (range 30.6-43.2%).

  13. Optimization and application of homogeneous liquid-liquid extraction in preconcentration of copper (II) in a ternary solvent system.

    PubMed

    Farajzadeh, Mir Ali; Bahram, Morteza; Zorita, Saioa; Mehr, Behzad Ghorbani

    2009-01-30

    In this study a homogeneous liquid-liquid extraction based on the Ph-dependent phase-separation process was investigated using a ternary solvent system (water-acetic acid-chloroform) for the preconcentration of Cu(2+) ions. 8-Hydroxy quinoline was used as the chelating agent prior to its extraction. Flame atomic absorption spectrophotometry using acetylene-air flame was used for the quantitation of analyte after preconcentration. The effect of various experimental parameters in extraction step was investigated using two optimization methods, one variable at a time and central composite design. The experimental design was done at five levels of operating parameters. Nearly the same optimized results were obtained using both methods: sample size, 5 mL; volume of NaOH 10 M, 2 mL; chloroform volume, 300 microL; 8-hydroxy quinoline concentration more than 0.01 M and salt amount did not affect the extraction significantly. Under the optimum conditions the calibration graph was linear over the range 10-2000 microg L(-1). The relative standard deviation was 7.6% for six repeated determinations (C = 500 microg L(-1)). Furthermore, the limit of detection (S/N=3) and limit of quantification (S/N=10) of the method were obtained as 1.74 and 6 microg L(-1), respectively.

  14. Geometry optimization method versus predictive ability in QSPR modeling for ionic liquids.

    PubMed

    Rybinska, Anna; Sosnowska, Anita; Barycki, Maciej; Puzyn, Tomasz

    2016-02-01

    Computational techniques, such as Quantitative Structure-Property Relationship (QSPR) modeling, are very useful in predicting physicochemical properties of various chemicals. Building QSPR models requires calculating molecular descriptors and the proper choice of the geometry optimization method, which will be dedicated to specific structure of tested compounds. Herein, we examine the influence of the ionic liquids' (ILs) geometry optimization methods on the predictive ability of QSPR models by comparing three models. The models were developed based on the same experimental data on density collected for 66 ionic liquids, but with employing molecular descriptors calculated from molecular geometries optimized at three different levels of the theory, namely: (1) semi-empirical (PM7), (2) ab initio (HF/6-311+G*) and (3) density functional theory (B3LYP/6-311+G*). The model in which the descriptors were calculated by using ab initio HF/6-311+G* method indicated the best predictivity capabilities ([Formula: see text] = 0.87). However, PM7-based model has comparable values of quality parameters ([Formula: see text] = 0.84). Obtained results indicate that semi-empirical methods (faster and less expensive regarding CPU time) can be successfully employed to geometry optimization in QSPR studies for ionic liquids.

  15. Culture conditions and medium components for the production of mycelial biomass and exo-polysaccharides with Paecilomyces japonica in liquid culture.

    PubMed

    Lee, Jong Seok; Jung, Woo Chul; Park, Seok Jae; Lee, Keun Eok; Shin, Won Cheol; Hong, Eock Kee

    2013-04-01

    In this study, the liquid culture conditions were optimized for maximal production of mycelial biomass and exo-polysaccharide by Paecilomyces japonica. The effects of medium composition, C/N ratio and physical parameters were investigated. From these experiments, 30 g glucose, 20 g yeast extract, 0.5 g KH2PO4, and 0.1 g CuCl2 2H2O in 1-l distilled water were found to be the most suitable carbon, nitrogen, and mineral sources, respectively. The optimal temperature, initial pH, agitation, and aeration were determined to be 27°C, uncontrolled pH, 400 rpm, and 1.0 vvm, respectively. Under these optimal conditions, the maximum mycelial growth and polysaccharides production were 23.1 g/l and 2.5 g/l, respectively. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Rapid Mycobacterial Liquid Culture-Screening Method for Mycobacterium avium Complex Based on Secreted Antigen-Capture Enzyme-Linked Immunosorbent Assay▿

    PubMed Central

    Shin, Sung Jae; Anklam, Kelly; Manning, Elizabeth J. B.; Collins, Michael T.

    2009-01-01

    Sensors in automated liquid culture systems for mycobacteria, such as MGIT, BacT/Alert 3D, and Trek ESP II, flag growth of any type of bacteria; a positive signal does not mean that the target mycobacteria are present. All signal-positive cultures thus require additional and often laborious testing. An immunoassay was developed to screen liquid mycobacterial cultures for evidence of Mycobacterium avium complex (MAC). The method, called the MAC-enzyme-linked immunosorbent assay (ELISA), relies on detection of MAC-specific secreted antigens in liquid culture. Secreted MAC antigens were captured by the MAC-ELISA with polyclonal anti- Mycobacterium avium subsp. paratuberculosis chicken immunoglobulin Y (IgY), detected using rabbit anti-MAC IgG, and then revealed using horseradish peroxidase-conjugated goat anti-rabbit IgG. When the MAC-ELISA was evaluated using pure cultures of known mycobacterial (n = 75) and nonmycobacterial (n = 17) organisms, no false-positive or false-negative MAC-ELISA results were found. By receiver operator characteristic (ROC) analysis of 1,275 previously identified clinical isolates, at the assay optimal cutoff the diagnostic sensitivity and specificity of the MAC-ELISA were 92.6% (95% confidence interval [95% CI], 90.3 to 94.5) and 99.9% (95% CI, 99.2 to 100), respectively, with an area under the ROC curve of 0.992. Prospective evaluation of the MAC-ELISA with an additional 652 clinical samples inoculated into MGIT ParaTB medium and signaling positive per the manufacturer's instructions found that the MAC-ELISA was effective in determining those cultures that actually contained MAC species and warranting the resources required to identify the organism by PCR. Of these 652 MGIT-positive cultures, the MAC-ELISA correctly identified 96.8% (of 219 MAC-ELISA-positive cultures) as truly containing MAC mycobacteria, based on PCR or high-performance liquid chromatography (HPLC) as reference tests. Only 6 of 433 MGIT signal-positive cultures (1

  17. Rapid mycobacterial liquid culture-screening method for Mycobacterium avium complex based on secreted antigen-capture enzyme-linked immunosorbent assay.

    PubMed

    Shin, Sung Jae; Anklam, Kelly; Manning, Elizabeth J B; Collins, Michael T

    2009-05-01

    Sensors in automated liquid culture systems for mycobacteria, such as MGIT, BacT/Alert 3D, and Trek ESP II, flag growth of any type of bacteria; a positive signal does not mean that the target mycobacteria are present. All signal-positive cultures thus require additional and often laborious testing. An immunoassay was developed to screen liquid mycobacterial cultures for evidence of Mycobacterium avium complex (MAC). The method, called the MAC-enzyme-linked immunosorbent assay (ELISA), relies on detection of MAC-specific secreted antigens in liquid culture. Secreted MAC antigens were captured by the MAC-ELISA with polyclonal anti- Mycobacterium avium subsp. paratuberculosis chicken immunoglobulin Y (IgY), detected using rabbit anti-MAC IgG, and then revealed using horseradish peroxidase-conjugated goat anti-rabbit IgG. When the MAC-ELISA was evaluated using pure cultures of known mycobacterial (n = 75) and nonmycobacterial (n = 17) organisms, no false-positive or false-negative MAC-ELISA results were found. By receiver operator characteristic (ROC) analysis of 1,275 previously identified clinical isolates, at the assay optimal cutoff the diagnostic sensitivity and specificity of the MAC-ELISA were 92.6% (95% confidence interval [95% CI], 90.3 to 94.5) and 99.9% (95% CI, 99.2 to 100), respectively, with an area under the ROC curve of 0.992. Prospective evaluation of the MAC-ELISA with an additional 652 clinical samples inoculated into MGIT ParaTB medium and signaling positive per the manufacturer's instructions found that the MAC-ELISA was effective in determining those cultures that actually contained MAC species and warranting the resources required to identify the organism by PCR. Of these 652 MGIT-positive cultures, the MAC-ELISA correctly identified 96.8% (of 219 MAC-ELISA-positive cultures) as truly containing MAC mycobacteria, based on PCR or high-performance liquid chromatography (HPLC) as reference tests. Only 6 of 433 MGIT signal-positive cultures (1

  18. Optimization of liquid-liquid extraction of biosurfactants from corn steep liquor.

    PubMed

    Vecino, X; Barbosa-Pereira, L; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2015-09-01

    In this work, the optimization of the operational conditions for the chloroform-based extraction of surface-active compounds from corn steep liquor (CSL) was carried out and the nutritional properties of the remnant aqueous phase (CSL-less biosurfactant) was evaluated as microbial fermentation medium. The optimal conditions to obtain biosurfactants from CSL were as follows: chloroform/CSL ratio 2 (v/v), 56 °C at extraction times >30 min. At the optima conditions, 100 % of biosurfactant extract can be obtained from CSL, obtaining 12.0 ± 0.5 g of biosurfactant extract/Kg of CSL. The critical micelle concentration (CMC) of the biosurfactant extract was 399.4 mg L(-1). This value is similar to the CMC of cetrimonium bromide (CTAB), a cationic surfactant used in the formulation of nanoparticles. The extraction of biosurfactant can be also carried out at room temperature although in this case, the extraction yield decreased about 15 %. The extraction of surface-active compounds from agroindustrial streams can suppose important advances for the bio-based surfactants industry. Biosurfactants obtained in this work are not only more eco-friendly than chemical detergents but also can be cost competitive with its chemical counterparts. Furthermore, after the extraction of surface-active compounds, CSL-less biosurfactant was found to be suitable as nutritional supplement for lactic acid bacteria, maintaining its nutritional properties in comparison with regular CSL.

  19. Optimization of Culture of Leptospira from Humans with Leptospirosis▿

    PubMed Central

    Wuthiekanun, Vanaporn; Chierakul, Wirongrong; Limmathurotsakul, Direk; Smythe, Lee D.; Symonds, Meegan L.; Dohnt, Michael F.; Slack, Andrew T.; Limpaiboon, Roongreung; Suputtamongkol, Yupin; White, Nicholas J.; Day, Nicholas P. J.; Peacock, Sharon J.

    2007-01-01

    A prospective study of 989 patients with acute febrile illness was performed in northeast Thailand to define the yield of Leptospira from four different types of blood sample. Based on a comparison of the yields from whole blood, surface plasma, deposit from spun plasma, and clotted blood samples from 80 patients with culture-proven leptospirosis, we suggest a sampling strategy in which culture is performed using whole blood and deposit from spun plasma. PMID:17301285

  20. Optical design and multiobjective optimization of miniature zoom optics with liquid lens element.

    PubMed

    Sun, Jung-Hung; Hsueh, Bo-Ren; Fang, Yi-Chin; MacDonald, John; Hu, Chao-Chang

    2009-03-20

    We propose an optical design for miniature 2.5x zoom fold optics with liquid elements. First, we reduce the volumetric size of the system. Second, this newly developed design significantly reduces the number of moving groups for this 2.5x miniature zoom optics (with only two moving groups compared with the four or five groups of the traditional zoom lens system), thanks to the assistance of liquid lens elements in particular. With regard to the extended optimization of this zoom optics, relative illuminance (RI) and the modulation transfer function (MTF) are considered because the more rays passing through the edge of the image, the lower will be the MTF, at high spatial frequencies in particular. Extended optimization employs the integration of the Taguchi method and the robust multiple criterion optimization (RMCO) approach. In this approach, a Pareto optimal robust design solution is set with the aid of a certain design of the experimental set, which uses analysis of variance results to quantify the relative dominance and significance of the design factors. It is concluded that the Taguchi method and RMCO approach is successful in optimizing the RI and MTF values of the fold 2.5x zoom lens system and yields better and more balanced performance, which is very difficult for the traditional least damping square method to achieve.

  1. Multi-residue method for determination of selected neonicotinoid insecticides in honey using optimized dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry.

    PubMed

    Jovanov, Pavle; Guzsvány, Valéria; Franko, Mladen; Lazić, Sanja; Sakač, Marijana; Šarić, Bojana; Banjac, Vojislav

    2013-07-15

    The objective of this study was to develop analytical method based on optimized dispersive liquid-liquid microextraction (DLLME) as a pretreatment procedure combined with reversed phase liquid chromatographic separation on C18 column and isocratic elution for simultaneous MS/MS determination of selected neonicotinoid insecticides in honey. The LC-MS/MS parameters were optimized to unequivocally provide good chromatographic separation, low detection (LOD, 0.5-1.0 μg kg(-1)) and quantification (LOQ, 1.5-2.5 μg kg(-1)) limits for acetamiprid, clothianidin, thiamethoxam, imidacloprid, dinotefuran, thiacloprid and nitenpyram in honey samples. Using different types (chloroform, dichloromethane) and volumes of extraction (0.5-3.0 mL) and dispersive (acetonitrile; 0.0-1.0 mL) solvent and by mathematical modeling it was possible to establish the optimal sample preparation procedure. Matrix-matched calibration and blank honey sample spiked in the concentration range of LOQ-100.0 μg kg(-1) were used to compensate the matrix effect and to fulfill the requirements of SANCO/12495/2011 for the accuracy (R 74.3-113.9%) and precision (expressed in terms of repeatability (RSD 2.74-11.8%) and within-laboratory reproducibility (RSDs 6.64-16.2%)) of the proposed method. The rapid (retention times 1.5-9.9 min), sensitive and low solvent consumption procedure described in this work provides reliable, simultaneous, and quantitative method applicable for the routine laboratory analysis of seven neonicotinoid residues in real honey samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Optimal 3-D culture of primary articular chondrocytes for use in the Rotating Wall Vessel Bioreactor

    PubMed Central

    Mellor, Liliana F.; Baker, Travis L.; Brown, Raquel J.; Catlin, Lindsey W.; Oxford, Julia Thom

    2014-01-01

    INTRODUCTION Reliable culturing methods for primary articular chondrocytes are essential to study the effects of loading and unloading on joint tissue at the cellular level. Due to the limited proliferation capacity of primary chondrocytes and their tendency to dedifferentiate in conventional culture conditions, long-term culturing conditions of primary chondrocytes can be challenging. The goal of this study was to develop a suspension culturing technique that not only would retain the cellular morphology but also maintain gene expression characteristics of primary articular chondrocytes. METHODS Three-dimensional culturing methods were compared and optimized for primary articular chondrocytes in the rotating wall vessel bioreactor, which changes the mechanical culture conditions to provide a form of suspension culture optimized for low shear and turbulence. We performed gene expression analysis and morphological characterization of cells cultured in alginate beads, Cytopore-2 microcarriers, primary monolayer culture, and passaged monolayer cultures using reverse transcription-PCR and laser scanning confocal microscopy. RESULTS Primary chondrocytes grown on Cytopore-2 microcarriers maintained the phenotypical morphology and gene expression pattern observed in primary bovine articular chondrocytes, and retained these characteristics for up to 9 days. DISCUSSION Our results provide a novel and alternative culturing technique for primary chondrocytes suitable for studies that require suspension such as those using the rotating wall vessel bioreactor. In addition, we provide an alternative culturing technique for primary chondrocytes that can impact future mechanistic studies of osteoarthritis progression, treatments for cartilage damage and repair, and cartilage tissue engineering. PMID:25199120

  3. Growth of plant root cultures in liquid- and gas-dispersed reactor environments.

    PubMed

    McKelvey, S A; Gehrig, J A; Hollar, K A; Curtis, W R

    1993-01-01

    The growth of Agrobacterium transformed "hairy root" cultures of Hyoscyamus muticus was examined in various liquid- and gas-dispersed bioreactor configurations. Reactor runs were replicated to provide statistical comparisons of nutrient availability on culture performance. Accumulated tissue mass in submerged air-sparged reactors was 31% of gyratory shake-flask controls. Experiments demonstrate that poor performance of sparged reactors is not due to bubble shear damage, carbon dioxide stripping, settling, or flotation of roots. Impaired oxygen transfer due to channeling and stagnation of the liquid phase are the apparent causes of poor growth. Roots grown on a medium-perfused inclined plane grew at 48% of gyratory controls. This demonstrates the ability of cultures to partially compensate for poor liquid distribution through vascular transport of nutrients. A reactor configuration in which the medium is sprayed over the roots and permitted to drain down through the root tissue was able to provide growth rates which are statistically indistinguishable (95% T-test) from gyratory shake-flask controls. In this type of spray/trickle-bed configuration, it is shown that distribution of the roots becomes a key factor in controlling the rate of growth. Implications of these results regarding design and scale-up of bioreactors to produce fine chemicals from root cultures are discussed.

  4. Application of response surface methodology for optimization of ionic liquid-based dispersive liquid-liquid microextraction of cadmium from water samples.

    PubMed

    Rajabi, M; Kamalabadi, M; Jamali, M R; Zolgharnein, J; Asanjarani, N

    2013-06-01

    A new, rapid, and simple method for the determination of cadmium in water samples was developed using ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME) coupled to flame atomic absorption spectrometry (FAAS). In the proposed approach, 2-(5-boromo-2-pyridylazo)-5-(diethyamino) phenol was used as a chelating agent and 1-hexyl-3-methylimidazolium bis(trifluoro methylsulfonyl)imide and acetone were selected as extraction and dispersive solvents, respectively. Sample pH, concentration of chelating agent, amount of ionic liquid (extraction solvent), disperser solvent volume, extraction time, salt effect, and centrifugation speed were selected as interested variables in IL-DLLME process. The significant variables affecting the extraction efficiency were determined using a Placket-Burman design. Thereafter, the significant variables were optimized using a Box-Behnken design and the quadratic model between the dependent and the independent variables was built. The optimum experimental conditions obtained from this statistical evaluation included: pH: 6.7; concentration of chelating agent: 1.1 10(-) (3) mol L(-1); and ionic liquid: 50.0 mg. Under the optimum conditions, the preconcentration factor obtained was 100. Calibration graph was linear in the range of 0.2-60 µg L(-1) with correlation coefficient of 0.9992. The limit of detection was 0.06 µg L(-) (1), which is lower than other reported approaches applied to the determination of cadmium using FAAS. The relative SD (n = 8) was 2.4%. The proposed method was successfully applied to the determination of trace amounts of cadmium in the real water samples with satisfactory results.

  5. Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum.

    PubMed

    Zárate-Chaves, Carlos Andrés; Romero-Rodríguez, María Camila; Niño-Arias, Fabián Camilo; Robles-Camargo, Jorge; Linares-Linares, Melva; Rodríguez-Bocanegra, María Ximena; Gutiérrez-Rojas, Ivonne

    2013-01-01

    The present work was aimed at optimizing a culture medium for biomass production and phenolic compounds by using Ganoderma lucidum. The culture was optimized in two stages; a Plackett-Burman design was used in the first one for identifying key components in the medium and a central composite design was used in the second one for optimizing their concentration. Both responses (biomass and phenolic compounds) were simultaneously optimized by the latter methodology regarding desirability, and the optimal concentrations obtained were 50.00 g/L sucrose, 13.29 g/L yeast extract and 2.99 g/L olive oil. Maximum biomass production identified in these optimal conditions was 9.5 g/L and that for phenolic compounds was 0.0452 g/L, this being 100% better than that obtained in the media usually used in the laboratory. Similar patterns regarding chemical characterization and biological activity towards Aspergillus sp., from both fruiting body and mycelium-derived secondary metabolites and extracts obtained in the proposed medium were observed. It was shown that such statistical methodologies are useful for optimizing fermentation and, in the specific case of G. lucidum, optimizing processes for its production and its metabolites in submerged culture as an alternative to traditional culture.

  6. Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum

    PubMed Central

    Zárate-Chaves, Carlos Andrés; Romero-Rodríguez, María Camila; Niño-Arias, Fabián Camilo; Robles-Camargo, Jorge; Linares-Linares, Melva; Rodríguez-Bocanegra, María Ximena; Gutiérrez-Rojas, Ivonne

    2013-01-01

    The present work was aimed at optimizing a culture medium for biomass production and phenolic compounds by using Ganoderma lucidum. The culture was optimized in two stages; a Plackett-Burman design was used in the first one for identifying key components in the medium and a central composite design was used in the second one for optimizing their concentration. Both responses (biomass and phenolic compounds) were simultaneously optimized by the latter methodology regarding desirability, and the optimal concentrations obtained were 50.00 g/L sucrose, 13.29 g/L yeast extract and 2.99 g/L olive oil. Maximum biomass production identified in these optimal conditions was 9.5 g/L and that for phenolic compounds was 0.0452 g/L, this being 100% better than that obtained in the media usually used in the laboratory. Similar patterns regarding chemical characterization and biological activity towards Aspergillus sp., from both fruiting body and mycelium-derived secondary metabolites and extracts obtained in the proposed medium were observed. It was shown that such statistical methodologies are useful for optimizing fermentation and, in the specific case of G. lucidum, optimizing processes for its production and its metabolites in submerged culture as an alternative to traditional culture. PMID:24159308

  7. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  8. Liquid scintillator composition optimization for use in ultra-high energy cosmic ray detector systems

    NASA Astrophysics Data System (ADS)

    Beznosko, Dmitriy; Batyrkhanov, Ayan; Iakovlev, Alexander; Yelshibekov, Khalykbek

    2017-06-01

    The Horizon-T (HT) detector system and the currently under R&D HT-KZ detector system are designed for the detection of Extensive Air Showers (EAS) with energies above ˜1016 eV (˜1017 eV for HT-KZ). The main challenges in both detector systems are the fast time resolutions needed for studying the temporary structure of EAS, and the extremely wide dynamic range needed to study the spatial distribution of charged particles in EAS disks. In order to detect the low-density of charged particles far from the EAS axis, a large-area detector is needed. Liquid scintillator with low cost would be a possible solution for such a detector, including the recently developed safe and low-cost water-based liquid scintillators. Liquid organic scintillators give a fast and high light yield (LY) for charged particle detection. It is similar to plastic scintillator in properties but is cost effective for large volumes. With liquid scintillator, one can create detection volumes that are symmetric and yet retain high LY detection. Different wavelength shifters affect the scintillation light by changing the output spectrum into the best detection region. Results of the latest studies of the components optimization in the liquid scintillator formulae are presented.

  9. Pre-culturing of nodal explants in thidiazuron supplemented liquid medium improves in vitro shoot multiplication of Cassia angustifolia.

    PubMed

    Siddique, I; Abdullwahab Bukhari, N; Perveen, K; Siddiqui, I; Anis, M

    2013-09-01

    An in vitro propagation system for Cassia angustifolia Vahl. has been developed. Due to the presence of sennosides, the demand of this plant has increased manyfold in global market. Multiple shoots were induced by culturing nodal explants excised from mature plants on a liquid Murashige and Skoog [8] medium supplemented with 5-100 μM of thidiazuron (TDZ) for different treatment duration (4, 8, 12 and 16 d). The optimal level of TDZ supplemented to the culture medium was 75 μM for 12 d induction period followed by subculturing in MS medium devoid of TDZ as it produced maximum regeneration frequency (87%), mean number of shoots (9.6 ± 0.33) and shoot length (4.4 ± 0.46 cm) per explant. A culture period longer than 12 d with TDZ resulted in the formation of fasciated or distorted shoots. Ex vitro rooting was achieved when the basal cut end of regenerated shoots was dipped in 200 μM indole-3-butyric acid (IBA) for half an hour followed by their transplantation in plastic pots filled with sterile soilrite where 85% plantlets grew well and all exhibited normal development. The present findings describe an efficient and rapid plant regeneration protocol that can further be used for genetic transformation studies.

  10. The Benefits of Social Influence in Optimized Cultural Markets

    PubMed Central

    Abeliuk, Andrés; Berbeglia, Gerardo; Cebrian, Manuel; Van Hentenryck, Pascal

    2015-01-01

    Social influence has been shown to create significant unpredictability in cultural markets, providing one potential explanation why experts routinely fail at predicting commercial success of cultural products. As a result, social influence is often presented in a negative light. Here, we show the benefits of social influence for cultural markets. We present a policy that uses product quality, appeal, position bias and social influence to maximize expected profits in the market. Our computational experiments show that our profit-maximizing policy leverages social influence to produce significant performance benefits for the market, while our theoretical analysis proves that our policy outperforms in expectation any policy not displaying social signals. Our results contrast with earlier work which focused on showing the unpredictability and inequalities created by social influence. Not only do we show for the first time that, under our policy, dynamically showing consumers positive social signals increases the expected profit of the seller in cultural markets. We also show that, in reasonable settings, our profit-maximizing policy does not introduce significant unpredictability and identifies “blockbusters”. Overall, these results shed new light on the nature of social influence and how it can be leveraged for the benefits of the market. PMID:25831093

  11. The benefits of social influence in optimized cultural markets.

    PubMed

    Abeliuk, Andrés; Berbeglia, Gerardo; Cebrian, Manuel; Van Hentenryck, Pascal

    2015-01-01

    Social influence has been shown to create significant unpredictability in cultural markets, providing one potential explanation why experts routinely fail at predicting commercial success of cultural products. As a result, social influence is often presented in a negative light. Here, we show the benefits of social influence for cultural markets. We present a policy that uses product quality, appeal, position bias and social influence to maximize expected profits in the market. Our computational experiments show that our profit-maximizing policy leverages social influence to produce significant performance benefits for the market, while our theoretical analysis proves that our policy outperforms in expectation any policy not displaying social signals. Our results contrast with earlier work which focused on showing the unpredictability and inequalities created by social influence. Not only do we show for the first time that, under our policy, dynamically showing consumers positive social signals increases the expected profit of the seller in cultural markets. We also show that, in reasonable settings, our profit-maximizing policy does not introduce significant unpredictability and identifies "blockbusters". Overall, these results shed new light on the nature of social influence and how it can be leveraged for the benefits of the market.

  12. Analysis of acetoin and diacetyl in bacterial culture supernatants by gas-liquid chromatography.

    PubMed Central

    Lee, S M; Drucker, D B

    1975-01-01

    The acetoin and diacetyl contents of culture supernatants of Voges-Proskauer-positive "viridans" streptotocci, Klebsiella pneumoniae and Staphylococcus aureus, were determined by a gas liquid chromatographic procedure, in which supernatants were extracted with diethyl ether and diacetyl was measured on columns of 10% (wt/wt) polyethylene glycol 400 (PEG 400) at 73 C. Acetoin was converted to diacetyl, before analysis, by a simple oxidation procedure with ferric chloride and without a distillation step. Streptococcal culture supernatants were shown by this method to contain only acetoin; supernatants of K. pneumoniae and S. aureus contained both acetoin and diacetyl. PMID:1100672

  13. Toxoplasma gondii from liquid nitrogen for continuous cell culture: methods to maximise efficient retrieval.

    PubMed

    Mavin, S; Evans, R; Chatterton, J M W; Ashburn, D; Joss, A W L; Ho-Yen, D O

    2003-01-01

    This study aims to increase the efficiency of continuous growth of Toxoplasma gondii in HeLa cells from tachyzoite stocks frozen in liquid nitrogen. Freezing and retrieval of tachyzoites for continuous cell culture requires more stringent protocols than those published for animal culture. The freezing and retrieval conditions are optimised so that a quality harvest (> or = 1 x 10(6) tachyzoites/mL, > or = 90% viability) can be produced using T. gondii recovered from liquid nitrogen as fast and reliably as possible. Retrieval success rate increased from 36% to 100%. An improved freezing procedure using chilled reagents and freshly harvested parasites, and adoption of an effective recovery protocol with retrieval of 3 x 10(7) tachyzoites into 75 cm2 flasks, change of maintenance media after six hours and subsequent blind passage all contributed to this success. The result is faster and more dependable production of T. gondii for diagnostic and experimental use.

  14. Toxoplasma gondii from liquid nitrogen for continuous cell culture:methods to maximise efficient retrieval.

    PubMed

    Mavin, S; Evans, R; Chatterton, J M W; Ashburn, D; Joss, A W L; Ho-Yen, D O

    2003-01-01

    This study aims to increase the efficiency of continuous growth of Toxoplasma gondii in HeLa cells from tachyzoite stocks frozen in liquid nitrogen. Freezing and retrieval of tachyzoites for continuous cell culture requires more stringent protocols than those published for animal culture. The freezing and retrieval conditions are optimised so that a quality harvest (≥ 1 x 10(6) tachyzoites/mL, ≥ 90% viability) can be produced using T. gondii recovered from liquid nitrogen as fast and reliably as possible. Retrieval success rate increased from 36% to 100%. An improved freezing procedure using chilled reagents and freshly harvested parasites, and adoption of an effective recovery protocol with retrieval of 3 x 10(7) tachyzoites into 75cm(2) flasks, change of maintenance media after six hours and subsequent blind passage all contributed to this success. The result is faster and more dependable production of T. gondii for diagnostic and experimental use.

  15. Reversed-phase dispersive liquid-liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein.

    PubMed

    Hashemi, Payman; Raeisi, Fatemeh; Ghiasvand, Ali Reza; Rahimi, Akram

    2010-03-15

    A reversed-phase dispersive liquid-liquid microextraction (RP-DLLME) method was developed for the preconcentration and direct HPLC determination of oleuropein in olive's processing wastewater (OPW) and olive leaves extracts. In conventional DLLME, the sedimented phase is a micro-drop of a chlorinated organic solvent that is not compatible with RP-HPLC. Therefore, solvent evaporation and reconstitution with an appropriate solvent is often required. In RP-DLLME, this problem was overcome by overturning the solvent polarity in the ordinary DLLME and replacing the organic solvent with water. A central composite chemometrics design was used for multivariate optimization of the effects of five different parameters influencing the extraction efficiency of the method. In the optimized conditions, a mixture of 1.4 mL of an ethyl acetate extract of sample and 40 microL water (pH 5.0) was rapidly injected into 5.3 mL of cyclohexane. After centrifugation of the formed cloudy mixture, a micro-drop of the aqueous phase was sedimented at the conical bottom of the centrifuge tube. This phase, that contained the preconcentrated and partially purified analyte, was directly injected into an RP-HPLC column for analysis. A mean extraction recovery of 102.5 (+/-4.5) % with enrichment factors exceeding 38, was obtained for five replicated analysis. The detection limit of the method (3 sigma) for OE was 0.02 microg L(-1) for OPW and 2 x 10(-3) mg kg(-1) for olive leaves samples. The results showed that, RP-DLLME is a promising technique which is quick, easily operated and can be directly coupled to HPLC.

  16. Response surface methodology for the optimization of dispersive liquid-liquid microextraction of chloropropanols in human plasma.

    PubMed

    Gonzalez-Siso, Paula; Lorenzo, Rosa A; Regenjo, María; Fernández, Purificación; Carro, Antonia M

    2015-10-01

    Chloropropanols are processing toxicants with a potential risk to human health due to the increased intake of processed foods. A rapid and efficient method for the determination of three chloropropanols in human plasma was developed using ultrasound-assisted dispersive liquid-liquid microextraction. The method involved derivatization and extraction in one step followed by gas chromatography with tandem mass spectrometry analysis. Parameters affecting extraction, such as sample pH, ionic strength, type and volume of dispersive and extraction solvents were optimized by response surface methodology using a pentagonal design. The linear range of the method was 5-200 ng/mL for 1,3-dichloro-2-propanol, 10-200 ng/mL for 2,3-dichloro-2-propanol and 10-400 ng/mL for 3-chloropropane-1,2-diol with the determination coefficients between 0.9989 and 0.9997. The limits of detection were in the range of 0.3-3.2 ng/mL. The precision varied from 1.9 to 10% relative standard deviation (n = 9). The recovery of the method was between 91 and 101%. Advantages such as low consumption of organic solvents and short time of analysis make the method suitable for the biomonitoring of chloropropanols.

  17. Cognitive optimization of microbial PHB production in an optimally dispersed bioreactor by single and mixed cultures.

    PubMed

    Patnaik, Pratap R

    2009-06-01

    Cognitive (or intelligent) models are often superior to mechanistic models for nonideal bioreactors. Two kinds of cognitive models--cybernetic and neural--were applied recently to fed-batch fermentation by Ralstonia eutropha in a bioreactor with optimum finite dispersion. In the present work, these models have been applied in simulation studies of co-cultures of R. eutropha and Lactobacillus delbrueckii. The results for both cognitive and mechanistic models have been compared with single cultures. Neural models were the most effective for both types of cultures and mechanistic models the least effective. Simulations with co-culture fermentations predicted more PHB than single cultures with all three types of models. Significantly, the predicted enhancements in PHB concentration by cognitive methods for mixed cultures were four to five times larger than the corresponding increases in biomass concentration. Further improvements are possible through a hybrid combination of all three types of models.

  18. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of benzoate and sorbate in yogurt drinks and method optimization by central composite design.

    PubMed

    Kamankesh, Marzieh; Mohammadi, Abdorreza; Tehrani, Zohreh Modarres; Ferdowsi, Roohallah; Hosseini, Hedayat

    2013-05-15

    A new method based on dispersive liquid-liquid microextraction (DLLME) followed by high-performance liquid chromatography (HPLC) for determination of benzoate and sorbate salts in yogurt drinks was developed. The effective parameters in DLLME process, including volume of extraction and disperser solvents, pH and salt effect, were optimized using response surface methodology (RSM) based on central composite design. The yogurt drink samples were extracted using NaOH and Carrez solutions (potassium hexaferrocyanide and zinc acetate) were used for sedimentation of proteins. For DLLME, a mixture of extraction solvent (1-octanol) and disperser solvent (ethanol) was rapidly injected into the sample solution by syringe and cloudy solution is formed. Subsequently, the upper 1-octanol layer was analyzed by HPLC. The detection limits for benzoate and sorbate were 0.06 ng mL(-1) and 0.15 ng mL(-1), respectively. The relative standard deviations (RSD) for seven analyses were 4.96% for benzoate and 4.58% for sorbate. The proposed method demonstrated good linearity and high enrichment factor. A clean separation and good chromatogram is readily achieved without the presence of matrix interference. A comparison of this method with previous methods demonstrated that the proposed method is an accurate, rapid and reliable sample-pretreatment method that gives very good enrichment factors and detection limits for extracting and determining sorbate and benzoate in yogurt drink samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Direct identification of clinical pathogens from liquid culture media by MALDI-TOF MS analysis.

    PubMed

    Oviaño, Marina; Rodríguez-Sánchez, Belén; Gómara, Marta; Alcalá, Luis; Zvezdanova, Estrella; Ruíz, Adrián; Velasco, David; José Gude, María; Bouza, Emilio; Bou, Germán

    2017-09-26

    We propose using MALDI-TOF MS as a tool for identifying microorganisms directly from liquid cultures after enrichment of the clinical sample in the media, in order to obtain a rapid microbiological diagnosis and an adequate administration of the antibiotic therapy in a clinical setting. To evaluate this approach, a series of quality control isolates, were grown in thioglycollate (TG) broth and brain heart infusion (BHI) broth and extracted under 4 different protocols before finally being identified by MALDI-TOF MS. After establishing the best extraction protocol, we validated the method in a total of 300 liquid cultures (150 in TG broth and 150 in BHI broth) of different types of clinical samples obtained from two tertiary Spanish hospitals. The initial evaluation showed that the extraction protocol including a 5 min sonication step yielded 100% valid identifications, with an average score value of 2.305. In the clinical validation of the procedure, 98 % of the microorganisms identified from the TG broth were correctly identified relative to 97 % of those identified from the BHI broth. In 24 % of the samples analysed, growth by direct sowing was only successful in the liquid medium, and no growth was observed in the direct solid agar cultures. Use of MALDI-TOF-MS plus the sonication-based extraction method enabled direct and accurate identification of microorganisms in liquid culture media in 15 min, in contrast to the 24 hours of subculture required for conventional identification, allowing the administration of a targeted antimicrobial therapy. Copyright © 2017. Published by Elsevier Ltd.

  20. Monitoring utilizations of amino acids and vitamins in culture media and Chinese hamster ovary cells by liquid chromatography tandem mass spectrometry.

    PubMed

    Qiu, Jinshu; Chan, Pik Kay; Bondarenko, Pavel V

    2016-01-05

    Monitoring amino acids and vitamins is important for understanding human health, food nutrition and the culture of mammalian cells used to produce therapeutic proteins in biotechnology. A method including ion pairing reversed-phase liquid chromatography with tandem mass spectrometry was developed and optimized to quantify 21 amino acids and 9 water-soluble vitamins in Chinese hamster ovary (CHO) cells and culture media. By optimizing the chromatographic separation, scan time, monitoring time window, and sample preparation procedure, and using isotopically labeled (13)C, (15)N and (2)H internal standards, low limits of quantitation (≤0.054 mg/L), good precision (<10%) and good accuracy (100±10%) were achieved for nearly all the 30 compounds. Applying this method to CHO cell extracts, statistically significant differences in the metabolite levels were measured between two cell lines originated from the same host, indicating differences in genetic makeup or metabolic activities and nutrient supply levels in the culture media. In a fed-batch process of manufacturing scale bioreactors, two distinguished trends for changes in amino acid concentrations were identified in response to feeding. Ten essential amino acids showed a zigzag pattern with maxima at the feeding days, and 9 non-essential amino acids displayed a smoothly changing profile as they were mainly products of cellular metabolism. Five of 9 vitamins accumulated continuously during the culture period, suggesting that they were fed in access. The method serves as an effective tool for the development and optimization of mammalian cell cultures.

  1. High Efficiency Secondary Somatic Embryogenesis in Hovenia dulcis Thunb. through Solid and Liquid Cultures

    PubMed Central

    Yang, Jingli; Wu, Songquan; Li, Chenghao

    2013-01-01

    Embryogenic callus was obtained from mature seed explants on medium supplemented with 2,4-dichlorophenoxyacetic acid. Primary somatic embryos (SEs) can only develop into abnormal plants. Well-developed SEs could be obtained through secondary somatic embryogenesis both in solid and liquid cultures. Temperature strongly affected induction frequency of secondary embryogenesis. Relatively high temperature (30°C) and germinated SEs explants were effective for induction of secondary somatic embryos, and low temperature (20°C) was more suitable for further embryo development, plantlet conversion, and transplant survival. Somatic embryos formed on agar medium had larger cotyledons than those of embryos formed in liquid medium. Supplementing 0.1 mg L−1 6-benzyladenine (BA) was effective for plant conversion; the rate of plant conversion was 43.3% in somatic embryos from solid culture and 36.5% in embryos from liquid culture. In vitro plants were successfully acclimatized in the greenhouse. The protocol established in this study will be helpful for large-scale vegetative propagation of this medicinal tree. PMID:23818829

  2. High efficiency secondary somatic embryogenesis in Hovenia dulcis Thunb. through solid and liquid cultures.

    PubMed

    Yang, Jingli; Wu, Songquan; Li, Chenghao

    2013-01-01

    Embryogenic callus was obtained from mature seed explants on medium supplemented with 2,4-dichlorophenoxyacetic acid. Primary somatic embryos (SEs) can only develop into abnormal plants. Well-developed SEs could be obtained through secondary somatic embryogenesis both in solid and liquid cultures. Temperature strongly affected induction frequency of secondary embryogenesis. Relatively high temperature (30°C) and germinated SEs explants were effective for induction of secondary somatic embryos, and low temperature (20°C) was more suitable for further embryo development, plantlet conversion, and transplant survival. Somatic embryos formed on agar medium had larger cotyledons than those of embryos formed in liquid medium. Supplementing 0.1 mg L(-1) 6-benzyladenine (BA) was effective for plant conversion; the rate of plant conversion was 43.3% in somatic embryos from solid culture and 36.5% in embryos from liquid culture. In vitro plants were successfully acclimatized in the greenhouse. The protocol established in this study will be helpful for large-scale vegetative propagation of this medicinal tree.

  3. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability

    PubMed Central

    Dijkstra, Camelia E.; Larkin, Oliver J.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence; Rees, Catherine E. D.; Hill, Richard J. A.

    2011-01-01

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:20667843

  4. Separation characteristics of liquid nematode cultures and the design of recovery operations.

    PubMed

    Young, John M; Dunnill, Peter; Pearce, Jeremy D

    2002-01-01

    Production of nematode-based pesticides involves the recovery of a viable nematode life stage known as the infective juvenile (IJ) from fermentation broth. Waste components to be separated from the IJs include non-IJ life stages, dead nematodes, nematode debris, spent media, and the nematode's associated bacteria. This paper reports separation characteristics of liquid cultures and suspensions of the nematodes Phasmarhabditis hermaphrodita, Steinernema feltiae, and Heterorhabditis megidis measured at small scale. Separation characteristics were determined for dead-end filtration, gravity settling and flotation. Results were used to identify large-scale recovery procedures. Separation of culture liquid by dead-end filtration of the crude fermentation broth was not possible due to rapid blinding of filters. However, nematode-water suspensions prepared by gravity settling could be concentrated using this separation method. Settling tests indicated that IJs could be efficiently separated from culture liquid by centrifugation but not by gravity settling. Examination of the effects of nematode concentration indicated an optimum concentration for gravity settling that may entail modest dilution of the fermentation broth. Flocculation of insoluble spent media in suspensions of P. hermaphrodita prevented its separation from nematodes by gravity settling. However, attachment of air bubbles to spent media allowed removal by flotation. Finally, adjustment of continuous phase density using sucrose allowed separation of non-IJ life stages, dead nematodes, and discarded cuticles from the IJs by flotation. The efficiency of this separation decreased with increasing nematode-solute contact time.

  5. Growth of Physarum gyrosum on Agar Plates and in Liquid Culture1

    PubMed Central

    Taylor, Richard L.; Mallette, M. F.

    1976-01-01

    The physical and nutritional requirements of the antibiotic-producing slime mold Physarum gyrosum were examined to develop a liquid medium for this myxomycete. Liquid culture is desired to expedite a useful scale of production of antibiotic materials for ease of isolation and structure study. Culture conditions were selected to favor antibiotic production rather than maximum growth. The medium devised consisted of 0.010 M potassium phosphate buffer (pH 6.0), 2% bakers' yeast, and 0.2% glucose and was supplemented with either 10−7 M hemoglobin (preferred) or 2.0 ml of live Escherichia coli per 100 ml of culture medium grown to a steady-state population in nutrient broth. The slime mold, which contained some E. coli carried along with the inoculum, was allowed to grow as a surface plasmodium at 20°C in the dark with weekly subculturing for stocks or for 10 days for antibiotic production. P. gyrosum produced the same antibiotic materials when grown in liquid medium as it did when grown on agar plates. A seeded plate disk assay against Bacillus cereus was employed to follow antibiotic activity. PMID:10830

  6. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability.

    PubMed

    Dijkstra, Camelia E; Larkin, Oliver J; Anthony, Paul; Davey, Michael R; Eaves, Laurence; Rees, Catherine E D; Hill, Richard J A

    2011-03-06

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  7. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation.

    PubMed

    Perrier, Frédéric; Aupiais, Jean; Girault, Frédéric; Przylibski, Tadeusz A; Bouquerel, Hélène

    2016-06-01

    Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L(-1) and 10% for 10 mBq L(-1). While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L(-1), a conservative experimental estimate is rather 5 mBq L(-1), corresponding to 0.14 fg g(-1). The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported.

  8. Deceleration-stats save much time during phototrophic culture optimization.

    PubMed

    Hoekema, Sebastiaan; Rinzema, Arjen; Tramper, Johannes; Wijffels, René H; Janssen, Marcel

    2014-04-01

    In case of phototrophic cultures, photobioreactor costs contribute significantly to the total operating costs. Therefore one of the most important parameters to be determined is the maximum biomass production rate, if biomass or a biomass associated product is the desired product. This is traditionally determined in time consuming series of chemostat cultivations. The goal of this work is to assess the experimental time that can be saved by applying the deceleration stat (D-stat) technique to assess the maximum biomass production rate of a phototrophic cultivation system, instead of a series of chemostat cultures. A mathematical model developed by Geider and co-workers was adapted in order to describe the rate of photosynthesis as a function of the local light intensity. This is essential for the accurate description of biomass productivity in phototrophic cultures. The presented simulations demonstrate that D-stat experiments executed in the absence of pseudo steady-state (i.e., the arbitrary situation that the observed specific growth rate deviates <5% from the dilution rate) can still be used to accurately determine the maximum biomass productivity of the system. Moreover, this approach saves up to 94% of the time required to perform a series of chemostat experiments that has the same accuracy. In case more information on the properties of the system is required, the reduction in experimental time is reduced but still significant. © 2013 Wiley Periodicals, Inc.

  9. Optimization of culture conditions to improve Helicobacter pylori growth in Ham's F-12 medium by response surface methodology.

    PubMed

    Bessa, L J; Correia, D M; Cellini, L; Azevedo, N F; Rocha, I

    2012-01-01

    Helicobacter pylori is a gastroduodenal pathogen that colonizes the human stomach and is the causal agent of gastric diseases. From the clinical and epidemiological point of view, enhancing and improving the growth of this bacterium in liquid media is an important goal to achieve in order to allow the performance of accurate physiological studies. The aim of this work was to optimize three culture conditions that influence the growth of H. pylori in the defined medium Ham s F-12 supplemented with 5 percent fetal bovine serum by using response surface methodology as a statistical technique to obtain the optimal conditions. The factors studied in this experimental design (Box-Behnken design) were the pH of the medium, the shaking speed (rpm) and the percentage of atmospheric oxygen, in a total of 17 experiments. The biomass specific growth rate was the response measured. The model was validated for pH and shaking speed. The percentage of atmospheric oxygen did not influence the growth for the range of values studied. At the optimal values found for pH and shaking speed, 8 and 130 rpm, respectively, a specific growth rate value of 0.164 h-1, corresponding to a maximal concentration of approximately 1.5x108 CFU/ml, was reached after 8 h. The experimental design strategy allowed, for the first time, the optimization of H. pylori growth in a semi-synthetic medium, which may be important to improve physiological and metabolic studies of this fastidious bacterium.

  10. Simultaneous determination of drugs in human autopsy material using phase-optimized liquid chromatography.

    PubMed

    Oertel, R; Pietsch, J; Arenz, N; Zeitz, S G; Goltz, L; Kirch, W

    2012-12-01

    In legal medicine in many cases drugs are detected in autopsy material without connection to the cause of death, and until now no further investigations have taken place. In our study more than 50 drugs were measured directly in several compartments. The deceased had received continual therapeutic treatment, treatment during an operation or an unsuccessful emergency therapy. Liquid-liquid extraction and an LC-MS/MS method were developed for the determination of these drug concentrations. When measuring many transitions in a biological matrix, two problems should be excluded: ion suppression and too few measurement points per peak. A relatively short operation time and sufficient separation were achieved by column, eluent and gradient optimization with POPLC (phase-optimized liquid chromatography). Various autopsy materials from about 170 cases were investigated. In particular, in nine cases with four or more simultaneously determined drugs, their distribution in the compartments is very interesting for pharmacokinetic examinations. The distribution patterns of the drugs in the compartments of one individual deceased were compared. This meant that the great differences between subjects that are normally encountered these studies could be excluded. Measurements of drug concentrations in human autopsy material deepens knowledge of the respective drugs' pharmacokinetics. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Optimization of oligomeric enzyme activity in ionic liquids using Rhodotorula glutinis yeast phenylalanine ammonia lyase.

    PubMed

    Barron, Christiaan C; Sponagle, Brandon J D; Arivalagan, Pugazhendhi; D'Cunha, Godwin B

    2017-01-01

    Phenylalanine ammonia lyase (E.C.4.3.1.24, PAL) activity of Rhodotorula glutinis yeast has been demonstrated in four commonly used ionic liquids. PAL forward reaction was carried out in 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO4]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) and 1-butyl-3-methylimidazolium lactate ([BMIM][lactate]). Our experiments have revealed that PAL is catalytically active in ionic liquids and the enzyme activity in ([BMIM][PF6]) is comparable to that obtained in aqueous buffer medium. Different conditions were optimized for maximal PAL forward activity including time of incubation (30.0min)L-phenylalanine substrate concentration (30.0mM), nature of buffer (50.0mM Tris-HCl), pH (9.0), temperature (37°C), and speed of agitation (100 rev min(-1)). Under these optimized conditions, about 83% conversion of substrate to product was obtained for the PAL forward reaction that was determined using UV spectroscopy at 290nm. PAL reverse reaction in ([BMIM][PF6]) was determined spectrophotometrically at 520nm; and about 59% substrate conversion was obtained. This data provides further knowledge in enzyme biocatalysis in non-aqueous media, and may be of importance when studying the function of other oligomeric/multimeric proteins and enzymes in ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.

    PubMed

    Hindersin, Stefan; Leupold, Marco; Kerner, Martin; Hanelt, Dieter

    2013-03-01

    Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m(-2) d(-1) on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m(-2) d(-1) (by rotation out of direct irradiance) to 79 mol photons m(-2) d(-1) (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L(-1), photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m(-2) s(-1) photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L(-1)), the culture was irradiated up to 2,000 μmol photons m(-2) s(-1) to overcome light limitation with biomass yields of 0.7 g CDW mol photons(-1) and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.

  13. Culture Conditions Affecting the Optimal Mycelial Growth of Cystoderma amianthinum

    PubMed Central

    Shim, Sung Mi; Oh, Yun Hee; Lee, Kyung Rim; Kim, Seong Hwan; Im, Kyung Hoan; Kim, Jung Wan; Lee, U Youn; Shim, Jae Ouk; Shim, Mi Ja; Lee, Min Woong; Ro, Hyeon Su; Lee, Hyun Sook

    2005-01-01

    Cystoderma amianthinum, one of edible fungi belongs to Agaricaceae of Basidiomycota, has a good taste and flavor. This study was carried out to obtain the basic informations for the optimum mycelial growth of C. amianthinum. The optimal conditions for the mycelial growth were 25℃ and pH 5 in potato dextrose agar (PDA). C. amianthinum showed the favorable growth in the PDA and yeast malt extract agar (YMA). The favorable carbon and nitrogen sources promoting mycelial growth were fructose and histidine, respectively. The optimum C/N ratio was about 30 : 1 in case that 1% glucose was supplemented to the basal medium as a carbon source. PMID:24049476

  14. Optimization of dispersive liquid-liquid microextraction for preconcentration and spectrophotometric determination of phenols in Chabahar Bay seawater after derivatization with 4-aminoantipyrine.

    PubMed

    Nassiri, Mahmoud; Zahedi, Mir Mahdi; Pourmortazavi, Seied Mahdi; Yousefzade, Mehdi

    2014-09-15

    We have optimized dispersive liquid-liquid microextraction to preconcentrate trace phenolic compounds after derivatization with 4-aminoantipyrine in artificial sea water for spectrophotometric determination. Factors such as reaction time (7.5 min), pH (9.5), solvent (chloroform), dispersing solvent (ethanol), and volume ratio of dispersing to organic phase (11:1) were optimized. Under optimum conditions, the limit of detection was 0.18 μg/L and the linearity range 1-900 μg/L. The relative standard deviation and enrichment factor were 6% (n=7) and 920, respectively. The results demonstrate the efficiency of coupling the 5530 APHA standard for derivation and dispersive liquid-liquid microextraction of phenolic compounds from seawater samples. Using this method, total phenol content in seawater from several locations in Chabahar Bay (southeast Iran) was estimated at 27.8-74.8 μg/L. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Spore Yield and Microcycle Conidiation of Colletotrichum gloeosporioides in Liquid Culture

    PubMed Central

    Cascino, J. J.; Harris, R. F.; Smith, C. S.; Andrews, J. H.

    1990-01-01

    The effect of V8 juice concentration (5 to 40%, vol/vol), spore inoculum density (105 and 107 spores per ml), and liquid batch or fed-batch culture condition on mycelium and spore production by Colletotrichum gloeosporioides was evaluated. The amount of mycelium produced, the time required for initiation of sporulation following attainment of maximum mycelium, and the time for attainment of maximum spore concentration increased with increasing V8 juice concentration in batch culture. Cultures containing V8 juice at >10% achieved a similar spore density (apparent spore-carrying capacity) of about 0.8 mg of spores per ml (1 × 107 to 2 × 107 spores per ml) independent of inoculum density and V8 juice concentration. The relative spore yield decreased from a high of 64% of the total biomass for the low-inoculum 5% V8 culture, through 13% for the analogous 40% V8 culture, to a low of 2% for the high-inoculum 27% V8 culture. Fed-batch cultures were used to establish conditions of high spore density and low substrate availability but high substrate flux. The rate of addition of V8 juice was adjusted to approximate the rate of substrate utilization by the (increasing) biomass. The final spore concentration was about four times higher (3.0 mg of spores per ml) than the apparent spore-carrying capacity in batch culture. This high spore yield was obtained at the expense of greatly reduced mycelium, resulting in a high relative spore yield (62% of the total biomass). Microcycle conidiation occurred in the fed-batch but not batch systems. These data indicate that substrate-limited, fed-batch culture can be used to increase the amount and efficiency of spore production by C. gloeosporioides by maintaining microcycle conidiation conditions favoring allocation of nutrients to spore rather than mycelium production. PMID:16348245

  16. Molecular simulations of imidazolium-based tricyanomethanide ionic liquids using an optimized classical force field.

    PubMed

    Vergadou, Niki; Androulaki, Eleni; Hill, Jörg-Rüdiger; Economou, Ioannis G

    2016-03-07

    Imidazolium-based ionic liquids (ILs) incorporating the tricyanomethanide ([TCM(-)]) anion are studied using an optimized classical force field. These ILs are very promising candidates for use in a wide range of cutting-edge technologies and, to our knowledge, it is the first time that this IL family is subject to a molecular simulation study with the use of a classical atomistic force field. The [C4mim(+)][TCM(-)] ionic liquid at 298.15 K and at atmospheric pressure was used as the basis for force field optimization which primarily involved the determination of the Lennard-Jones parameters of [TCM(-)] and the implementation of three quantum mechanical schemes for the calculation of the partial charge distribution and the identification of the appropriate scaling factor for the reduction of the total ionic charge. The optimized force field was validated by performing simulations of the 1-alkyl-3-methylimidazolium tricyanomethanide ([Cnmim(+)][TCM(-)], n = 2, 4, 6, and 8) IL family at various temperatures. The results for density, self-diffusivity and viscosity are in very good agreement with the available experimental data for all ILs verifying that the force field reliably reproduces the behaviour of the imidazolium-based [TCM(-)] IL family in a wide temperature range. Furthermore, a detailed analysis of the microscopic structure and the complex dynamic behaviour of the ILs under study was performed.

  17. Enzyme-assisted extraction and ionic liquid-based dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of patulin in apple juice and method optimization using central composite design.

    PubMed

    Mohammadi, Abdorreza; Tavakoli, Rouya; Kamankesh, Marzieh; Rashedi, Hamid; Attaran, Abdolmohammad; Delavar, Mostafa

    2013-12-04

    A simple and highly sensitive analytical methodology for isolation and determination of patulin in apple-juice samples, based on enzyme-assisted extraction (EAE) and ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME) was developed and optimized. Enzymes play essential roles in eliminating interference and increasing the extraction efficiency of patulin. Apple-juice samples were treated with pectinase and amylase. A mixture of 80 μL ionic liquid and 600 μL methanol (disperser solvent) was used for the IL-DLLME process. The sedimented phase was analyzed by high-performance liquid chromatography (HPLC). Experimental parameters controlling the performance of DLLME, were optimized using response surface methodology (RSM) based on central composite design (CCD). Under optimum conditions, the calibration curves showed high levels of linearity (R(2)>0.99) for patulin in the range of 1-200 ng g(-1). The relative standard deviation (RSD) for the seven analyses was 7.5%. The limits of detection (LOD) and limits of quantification (LOQ) were 0.15 ng g(-1) and 0.5 ng g(-1), respectively. The merit figures, compared with other methods, showed that new proposed method is an accurate, precise and reliable sample-pretreatment method that substantially reduces sample matrix interference and gives very good enrichment factors and detection limits for investigation trace amount of patulin in apple-juice samples.

  18. Dispositional optimism and physical wellbeing: the relevance of culture, gender, and socioeconomic status.

    PubMed

    Khallad, Yacoub

    2013-01-01

    The present study examined the relationship between dispositional optimism and physical wellbeing (as reflected in physical symptom reporting) in two groups of American and Jordanian college students. It also assessed moderation effects of culture, gender, and socioeconomic status (SES). Participants were administered a questionnaire consisting of items pertaining to dispositional optimism (as measured by the Revised Life Orientation Test, LOT-R) along with items assessing physical symptom reporting and sociodemographic factors (e.g., gender, socioeconomic status). The results revealed significant negative correlations between dispositional optimism and physical symptom reporting for both American and Jordanian participants, although the magnitude of the correlation for the American group was noticeably larger than that for the Jordanian group. The results also showed that women, especially Jordanians, were more likely than men to report physical symptoms. Among Jordanians, physical symptom reporting was more common among those of lower SES. No statistically significant differences in physical symptom reporting were found between American men and women or between the two cultural groups. Multiple regression analyses revealed no statistically significant interactions between optimism and cultural background, optimism and gender, or optimism and SES. Overall, the results suggest that optimism is the factor most predictive of physical symptom reporting, followed by SES and gender. These results corroborate previous findings on the relationship between dispositional optimism and physical wellbeing, and point to crosscultural differences in relationship patterns. These differences suggest that although personality characteristics such as optimism may play an important role in the physical wellbeing of both Western and non-Western groups, the influence of sociodemographic factors such as gender and SES and their interaction with cultural variables must not be overlooked.

  19. Dispersive liquid-liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design.

    PubMed

    Vera-Candioti, Luciana; Teglia, Carla M; Cámara, María S

    2016-10-01

    A dispersive liquid-liquid microextraction procedure was developed to extract nine fluoroquinolones in porcine blood, six of which were quantified using a univariate calibration method. Extraction parameters including type and volume of extraction and dispersive solvent and pH, were optimized using a full factorial and a central composite designs. The optimum extraction parameters were a mixture of 250 μL dichloromethane (extract solvent) and 1250 μL ACN (dispersive solvent) in 500 μL of porcine blood reached to pH 6.80. After shaking and centrifugation, the upper phase was transferred in a glass tube and evaporated under N2 steam. The residue was resuspended into 50 μL of water-ACN (70:30, v/v) and determined by CE method with DAD, under optimum separation conditions. Consequently, a tenfold enrichment factor can potentially be reached with the pretreatment, taking into account the relationship between initial sample volume and final extract volume. Optimum separation conditions were as follows: BGE solution containing equal amounts of sodium borate (Na2 B4 O7 ) and di-sodium hydrogen phosphate (Na2 HPO4 ) with a final concentration of 23 mmol/L containing 0.2% of poly (diallyldimethylammonium chloride) and adjusted to pH 7.80. Separation was performed applying a negative potential of 25 kV, the cartridge was maintained at 25.0°C and the electropherograms were recorded at 275 nm during 4 min. The hydrodynamic injection was performed in the cathode by applying a pressure of 50 mbar for 10 s.

  20. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System

    PubMed Central

    Conway, Michael K.; Gerger, Michael J.; Balay, Erin E.; O'Connell, Rachel; Hanson, Seth; Daily, Neil J.; Wakatsuki, Tetsuro

    2015-01-01

    Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications. PMID:26068617

  1. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System.

    PubMed

    Conway, Michael K; Gerger, Michael J; Balay, Erin E; O'Connell, Rachel; Hanson, Seth; Daily, Neil J; Wakatsuki, Tetsuro

    2015-05-14

    Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.

  2. Optically optimized transmittive and reflective bistable twisted nematic liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Tang, S. T.; Chiu, H. W.; Kwok, H. S.

    2000-01-01

    A new Mueller matrix approach is developed for the design of optical modes for all nematic liquid crystal displays (LCD). In particular, for linearly polarized light going into the LC cell, conditions for linear polarization and circular polarization outputs are obtained. By considering the switching between different polarization modes, new transmittive and reflective bistable twisted nematic (BTN) LCD operating conditions with optimized contrast and brightness are discovered. A passive matrix driven single polarizer reflective BTN display was fabricated with reasonably good measured optical performance and fast selection time.

  3. Liquid chromatographic method for determination of water in soils and the optimization of anion separations by capillary zone electrophoresis

    SciTech Connect

    Benz, Nancy

    1994-01-01

    A liquid chromatographic method for the determination of water in soil or clay samples is presented. In a separate study, the optimization of electrophoretic separation of alkylated phenolate ions was optimized by varying the pH and acetonitrile concentration of the buffer solutions.

  4. a System which Uses a Continuous Optimization Approach for the Design of AN Optimum Extractant Molecule for Use in Liquid-Liquid Extraction.

    NASA Astrophysics Data System (ADS)

    Naser, Samer Fahim

    The design of an extractant molecule for use in liquid-liquid extraction, traditionally a combinatorial optimization problem, has been solved using continuous optimization. UNIFAC, a thermodynamic group contribution method which allows the calculation of an activity coefficient of a component from its chemical structure, was used as the basis for all calculations. A computer system was developed which employs a three step procedure. First, the error in the liquid-liquid equilibrium relations resulting from the specification of a target separation criteria is minimized by continuously varying the functional groups in the design group pool. Second, the theoretical molecule obtained from the first step is used as a starting point to optimize up to seven separation criteria by variation of functional groups and mole fractions to obtain the optimum theoretical extractant molecule which satisfies the equilibrium relations. Third, the theoretical molecule is used to generate alternative extractant molecules which contain integer functional group values only. Numeric molecular structure constraints were developed which help maintain the feasibility of molecules in the first two steps, and allow the rejection of infeasible molecules in the third step. These constraints include limits on boiling point and molecular weight. The system developed was successfully tested on several separation problems and has suggested extractants as good or better than ones currently in use. This is the first reported use of continuous optimization in molecular design. For large design pools, this approach, as opposed to combinatorial optimization, is several orders of magnitude faster.

  5. Globally-Optimized Local Pseudopotentials for (Orbital-Free) Density Functional Theory Simulations of Liquids and Solids.

    PubMed

    Del Rio, Beatriz G; Dieterich, Johannes M; Carter, Emily A

    2017-08-08

    The accuracy of local pseudopotentials (LPSs) is one of two major determinants of the fidelity of orbital-free density functional theory (OFDFT) simulations. We present a global optimization strategy for LPSs that enables OFDFT to reproduce solid and liquid properties obtained from Kohn-Sham DFT. Our optimization strategy can fit arbitrary properties from both solid and liquid phases, so the resulting globally optimized local pseudopotentials (goLPSs) can be used in solid and/or liquid-phase simulations depending on the fitting process. We show three test cases proving that we can (1) improve solid properties compared to our previous bulk-derived local pseudopotential generation scheme; (2) refine predicted liquid and solid properties by adding force matching data; and (3) generate a from-scratch, accurate goLPS from the local channel of a non-local pseudopotential. The proposed scheme therefore serves as a full and improved LPS construction protocol.

  6. Optimization of liquid scintillation measurements applied to smears and aqueous samples collected in industrial environments

    NASA Astrophysics Data System (ADS)

    Chapon, Arnaud; Pigrée, Gilbert; Putmans, Valérie; Rogel, Gwendal

    Search for low-energy β contaminations in industrial environments requires using Liquid Scintillation Counting. This indirect measurement method supposes a fine control from sampling to measurement itself. Thus, in this paper, we focus on the definition of a measurement method, as generic as possible, for both smears and aqueous samples' characterization. That includes choice of consumables, sampling methods, optimization of counting parameters and definition of energy windows, using the maximization of a Figure of Merit. Detection limits are then calculated considering these optimized parameters. For this purpose, we used PerkinElmer Tri-Carb counters. Nevertheless, except those relative to some parameters specific to PerkinElmer, most of the results presented here can be extended to other counters.

  7. On-line optimal control for fed-batch culture of baker's yeast production

    SciTech Connect

    Wu, W.T.; Chen, K.C.; Chiou, H.W.

    1985-05-01

    A method of on-line optimal control for fed-batch culture of bakers yeast production is proposed. The feed rate is taken as the control variable. The specific growth rate of the yeast is the output variable and is determined from the balance equation of oxygen. A moving model is obtained by using the data from the feed rate and the specific growth rate. Based on the moving model, an optimal feed rate for fed-batch culture is then achieved. 11 references.

  8. Application of multivariate analysis to optimize function of cultured hepatocytes.

    PubMed

    Chan, Christina; Hwang, Daehee; Stephanopoulos, Gregory N; Yarmush, Martin L; Stephanopoulos, George

    2003-01-01

    Understanding the metabolic and regulatory pathways of hepatocytes is important for biotechnological applications involving liver cells, including the development of bioartificial liver (BAL) devices. To characterize intermediary metabolism in the hepatocytes, metabolic flux analysis (MFA) was applied to elucidate the changes in intracellular pathway fluxes of primary rat hepatocytes exposed to human plasma and to provide a comprehensive snapshot of the hepatic metabolic profile. In the current study, the combination of preconditioning and plasma supplementation produced distinct metabolic states. Combining the metabolic flux distribution obtained by MFA with methodologies such as Fisher discriminant analysis (FDA) and partial least squares or projection to latent structures (PLS) provided insights into the underlying structure and causal relationship within the data. With the aid of these analyses, patterns in the cellular response of the hepatocytes that contributed to the separation of the different hepatic states were identified. Of particular interest was the recognition of distal pathways that strongly correlated with a particular hepatic function. The hepatic functions investigated were intracellular triglyceride accumulation and urea production. This study illustrates a framework for optimizing hepatic function and a possibility of identifying potential targets for improving hepatic functions.

  9. Characterization of biogenic iron oxides collected by the newly designed liquid culture method using diffusion chambers.

    PubMed

    Kikuchi, S; Makita, H; Takai, K; Yamaguchi, N; Takahashi, Y

    2014-03-01

    We designed a new culture method for neutrophilic iron-oxidizing bacteria using liquid medium (i) to study the formation and mineralogical characteristics of biogenic iron oxides (BIOS) and (ii) to apply BIOS to various scientific and engineering applications. An iron-oxidizing bacterium, Mariprofundus ferrooxydans PV-1(T) (ATCC, BAA-1020), was cultured using a set of diffusion chambers to prepare a broad anoxic-oxic interface, upon which BIOS formation is typically observed in natural environments. Iron oxide precipitates were generated in parallel with bacterial growth. A scanning electron microscopy analysis indicated that the morphological features of the iron oxide precipitates in the medium (in vitro BIOS) were similar to those of BIOS collected from natural deep-sea hydrothermal environments in the Northwest Eifuku Seamount field in the northern Mariana Arc (in situ BIOS). Further chemical speciation of both the in vitro and in situ BIOS was examined with X-ray absorption fine structure (XAFS). A bulk XAFS analysis showed that the minerals in both BIOS were mainly ferrihydrite and oligomeric stages of amorphous iron oxyhydroxides with edge-sharing octahedral linkages. The amount of in vitro BIOS produced with the diffusion-chamber method was greater than those produced previously with other culture methods, such as gel-stabilized gradient and batch liquid culture methods. The larger yields of BIOS produced with the new culture method will allow us to clarify in the future the mineralization mechanisms during bacterial growth and to examine the physicochemical properties of BIOS, such as their adsorption to and coprecipitation with various elements and substances. © 2014 John Wiley & Sons Ltd.

  10. Joint optimization: Merging a new culture with a new physical environment.

    PubMed

    Stichler, Jaynelle F; Ecoff, Laurie

    2009-04-01

    Nearly $200 billion of healthcare construction is expected by the year 2015, and nurse leaders must expand their knowledge and capabilities in healthcare design. This bimonthly department prepares nurse leaders to use the evidence-based design process to ensure that new, expanded, and renovated hospitals facilitate optimal patient outcomes, enhance the work environment for healthcare providers, and improve organizational performance. In this article, the authors discuss the concept of joint optimization of merging organizational culture with a new hospital facility.

  11. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments

    NASA Astrophysics Data System (ADS)

    Balogh-Brunstad, Zsuzsanna; Kent Keller, C.; Thomas Dickinson, J.; Stevens, Forrest; Li, C. Y.; Bormann, Bernard T.

    2008-06-01

    Ectomycorrhiza-forming fungi (EMF) alter the nutrient-acquisition capabilities of vascular plants, and may play an important role in mineral weathering and the partitioning of products of weathering in soils under nutrient-limited conditions. In this study, we isolated the weathering function of Suillus tomentosus in liquid-cultures with biotite micas incubated at room temperature. We hypothesized that the fungus would accelerate weathering by hyphal attachment to biotite surfaces and transmission of nutrient cations via direct exchange into the fungal biomass. We combined a mass-balance approach with scanning electron microscopy (SEM) and atomic force microscopy (AFM) to estimate weathering rates and study dissolution features on biotite surfaces. Weathering of biotite flakes was about 2-3 orders of magnitude faster in shaken liquid-cultures with fungus compared to shaken controls without fungus, but with added inorganic acids. Adding fungus in nonshaken cultures caused a higher dissolution rate than in inorganic pH controls without fungus, but it was not significantly faster than organic pH controls without fungus. The K +, Mg 2+ and Fe 2+ from biotite were preferentially partitioned into fungal biomass in the shaken cultures, while in the nonshaken cultures, K + and Mg 2+ was lost from biomass and Fe 2+ bioaccumulated much less. Fungal hyphae attached to biotite surfaces, but no significant surface changes were detected by SEM. When cultures were shaken, the AFM images of basal planes appeared to be rougher and had abundant dissolution channels, but such channel development was minor in nonshaken conditions. Even under shaken conditions the channels only accounted for only 1/100 of the total dissolution rate of 2.7 × 10 -10 mol of biotite m -2 s -1. The results suggest that fungal weathering predominantly occurred not by attachment and direct transfer of nutrients via hyphae, but because of the acidification of the bulk liquid by organic acids, fungal

  12. Optimizing enrichment culture conditions for detecting Helicobacter pylori in foods.

    PubMed

    Jiang, Xiuping; Doyle, Michael P

    2002-12-01

    The survival and growth of Helicobacter pylori under enrichment conditions in fresh, autoclaved and irradiated ground beef were determined. H. pylori grew in autoclaved ground beef at 37 degrees C under microaerobic conditions in brain heart infusion broth with 7% horse serum at pH 7.3 after 3 to 7 days of lag time but did not grow within 7 days in irradiated (10 kGy) ground beef under the same enrichment conditions. Adjustment of the enrichment broth to pH 5.5 enabled the growth (ca. 2 log10 CFU/ml) of H. pylori within 7 days in the presence of irradiated ground beef and the prolific growth (ca. 3 to 4 log10 CFU/ml) of H. pylori within 3 days in the presence of autoclaved beef. H. pylori in fresh ground beef could not be isolated from enrichment media with antibiotics; however. H. pylori ureA could be detected by polymerase chain reaction (PCR) in such enrichment media after 1 to 3 days of incubation at 37 degrees C. The addition of supplements, i.e., 0.3% mucin, 0.05% ferrous sulfate, and 0.05% sodium pyruvate or 0.008 M urea, or the adjustment of the enrichment broth pH to 5.5 or 4.5 enabled the detection of H. pylori ureA in enrichment media incubated for 1, 2, 3, and/or 7 days at 37 degrees C. H. pylori in sterile milk refrigerated at 4 degrees C at an initial level of 10(6) CFU/ml was inactivated to an undetectable level within 6 days; however, H. pylori was not detected either by a PCR assay or by the plating of enrichment cultures of 120 raw bovine milk samples.

  13. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Skočovská, Katarína; Novotný, Jan; Prochazka, David; Pořízka, Pavel; Novotný, Karel; Kaiser, Jozef

    2016-04-01

    A complex optimization of geometrical and temporal parameters of a jet system (developed in Laser-induced breakdown spectroscopy (LIBS) laboratory of Brno University of Technology) for direct elemental analysis of samples in a liquid state of matter using LIBS was carried out. First, the peristaltic pump was synchronized with the flashlamp of the ablation laser, which reduced variation of the ablated sample amount. Also, the fluctuation of the laser ray angle incident on the jet surface was diminished. Such synchronization reduced signal standard deviations and thus increased repeatability of the measurements. Then, laser energy and distance of the focusing lens from the sample were optimized. The gate delay time and the gate width were optimized for single pulse (SP) experiments; the gate delay time and the inter-pulse delay were optimized for the use of double pulse (DP) variant. Results were assessed according to the highest signal to noise ratios and the lowest relative standard deviations of the signal. The sensitivity of the single pulse and the double pulse LIBS for the detection of heavy metals traces, copper (Cu i at 324.754 nm) and lead (Pb i at 405.781 nm), in aqueous solution of copper (ii) sulfate and lead (ii) acetate, was estimated in terms of limits of detection (LODs). As a result, sensitivity improvement of DP LIBS system was observed, the LOD of Cu obtained with DP was calculated 40% lower than LOD gained from SP technique.

  14. Application of Sigmoidal Transformation Functions in Optimization of Micellar Liquid Chromatographic Separation of Six Quinolone Antibiotics.

    PubMed

    Hadjmohammadi, Mohammadreza; Salary, Mina

    2016-03-01

    A chemometrics approach has been used to optimize the separation of six quinolone compounds by micellar liquid chromatography (MLC). A Derringer's desirability function, a multicriteria decision-making (MCDM) method, was tested for evaluation of two different measures of chromatographic performance (resolution and analysis time). The effect of three experimental parameters on a chromatographic response function (CRF) expressed as a product of two sigmoidal desirability functions was investigated. The sigmoidal functions were used to transform the optimization criteria, resolution and analysis time into the desirability values. The factors studied were the concentration of sodium dodecyl sulfate, butanol content and pH of the mobile phase. The experiments were done according to the face-centered cube central composite design, and the calculated CRF values were fitted to a polynomial model to correlate the CRF values with the variables and their interactions. The developed regression model showed good descriptive and predictive ability (R(2) = 0.815, F = 6.919, SE = 0.038, [Formula: see text]) and used, by a grid search algorithm, to optimize the chromatographic conditions for the separation of the mixture. The efficiency of prediction of polynomial model was confirmed by performing the experiment under the optimal conditions.

  15. OPTIMIZED DETERMINATION OF TRACE JET FUEL VOLATILE ORGANIC COMPOUNDS IN HUMAN BLOOD USING IN-FIELD LIQUID-LIQUID EXTRACTION WITH SUBSEQUENT LABORATORY GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC ANALYSIS AND ON-COLUMN LARGE VOLUME INJECTION

    EPA Science Inventory

    A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...

  16. OPTIMIZED DETERMINATION OF TRACE JET FUEL VOLATILE ORGANIC COMPOUNDS IN HUMAN BLOOD USING IN-FIELD LIQUID-LIQUID EXTRACTION WITH SUBSEQUENT LABORATORY GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC ANALYSIS AND ON-COLUMN LARGE VOLUME INJECTION

    EPA Science Inventory

    A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...

  17. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide.

    PubMed

    Verma, Purnima; Ahuja, Munish

    2016-10-01

    The purpose of this study was to investigate the potential of cubic liquid crystalline nanoparticles for ocular delivery of tropicamide. Ultrasound-assisted fragmentation of cubic liquid crystalline bulk phases resulted in cubic liquid crystalline nanoparticles employing Pluronic F127 as dispersant. The effects of process variables such as sonication time, sonication amplitude, sonication depth, and pre-mixing time on particle size and polydispersity index was investigated using central composite design. The morphology of tropicamide-loaded nanoparticles was found to be nearly cubical in shape by transmission electron microscopy observation. Further, small angle X-ray scattering experiment confirmed the presence of D and P phase cubic structures in coexistence. The optimized tropicamide-loaded cubic nanoparticles showed in vitro corneal permeation of tropicamide across isolated porcine cornea comparable to its commercial preparation, Tropicacyl®. Ocular tolerance was evaluated by Hen's egg-chorioallantoic membrane test and histological studies. The results of in vivo mydriatic response study demonstrated a remarkably higher area under mydriatic response curve (AUC0→1440 min) values of cubic nanoparticles over Tropicacyl® indicating better therapeutic value of cubic nanoparticles. Furthermore, tropicamide-loaded cubic nanoparticles exhibited prolonged mydriatic effect on rabbits as compared to commercial conventional aqueous ophthalmic solution.

  18. Curcumin-Loaded Lipid Cubic Liquid Crystalline Nanoparticles: Preparation, Optimization, Physicochemical Properties and Oral Absorption.

    PubMed

    He, Xiuli; Li, Qinghua; Liu, Xiuju; Wu, Guangsheng; Zhai, Guangxi

    2015-08-01

    In order to improve the oral absorption of curcumin, curcumin-loaded lipid cubic liquid crystalline nanoparticles were prepared and evaluated in vitro and in vivo. The hot and high-pressure homogenization method was used to prepare the nanoparticles. The formulation and process were optimized by uniform design with drug loading and entrapment efficiency as index, and physicochemical properties were also investigated. Spherical nanoparticles were observed under transmission electron microscope (TEM), with average particle size of 176.1 nm, zeta potential of -25.19 mV, average drug loading of (1.5 ± 0.2)% and entrapment efficiency of (95 ± 1.8)%. The in vitro release of curcumin from the nanoparticle formulation showed a sustained property, while the pharmacokinetics results after oral administration of curcumin loaded lipid cubic liquid crystalline nanoparticles in rat showed that the oral absorption of curcumin fitted one-compartment model and relative bioavailability was 395.56% when compared to crude curcumin. It can be concluded from these results that the lipid cubic liquid crystalline nanoparticles, as carriers, can markedly improve the oral absorption of curcumin.

  19. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation.

    PubMed

    Milton, Harry; Brimicombe, Paul; Morgan, Philip; Gleeson, Helen; Clamp, John

    2012-05-07

    A multigrid computational model has been developed to assess the performance of refractive liquid crystal lenses, which is up to 40 times faster than previous techniques. Using this model, the optimum geometries producing an ideal parabolic voltage distribution were deduced for refractive liquid crystal lenses with diameters from 1 to 9 mm. The ratio of insulation thickness to lens diameter was determined to be 1:2 for small diameter lenses, tending to 1:3 for larger lenses. The model is used to propose a new method of lens operation with lower operating voltages needed to induce specific optical powers. The operating voltages are calculated for the induction of optical powers between + 1.00 D and + 3.00 D in a 3 mm diameter lens, with the speed of the simulation facilitating the optimization of the refractive index profile. We demonstrate that the relationship between additional applied voltage and optical power is approximately linear for optical powers under + 3.00 D. The versatility of the computational simulation has also been demonstrated by modeling of in-plane electrode liquid crystal devices.

  20. A high-throughput template for optimizing Drosophila organ culture with response-surface methods.

    PubMed

    Zartman, Jeremiah; Restrepo, Simon; Basler, Konrad

    2013-02-01

    The Drosophila wing imaginal disc is a key model organ for molecular developmental genetics. Wing disc studies are generally restricted to end-point analyses of fixed tissues. Recently several studies have relied on limited data from discs cultured in uncharacterized conditions. Systematic efforts towards developing Drosophila organ culture techniques are becoming crucial for further progress. Here, we have designed a multi-tiered, high-throughput pipeline that employs design-of-experiment methods to design a culture medium for wing discs. The resulting formula sustains high levels of proliferation for more than 12 hours. This approach results in a statistical model of proliferation as a function of extrinsic growth supplements and identifies synergies that improve insulin-stimulated growth. A more dynamic view of organogenesis emerges from the optimized culture system that highlights important facets of growth: spatiotemporal clustering of cell divisions and cell junction rearrangements. The same approach could be used to improve culture conditions for other organ systems.

  1. [Optimization of induction and culture conditions for hairy roots of Salvia miltiorrhiza].

    PubMed

    Tan, Rong-Hui; Zhang, Jin-Jia; Zhao, Shu-Juan

    2014-08-01

    To establish induction and liquid culture system for hairy roots of Danshen (Salvia miltiorrhiza), Agrobacterium rhizogenes A4, LBA9402, 15834 as test bacterium were used to infect aseptic leaves of Danshen. The hairy roots were induced and positive transgenic hairy roots were selected with PCR using rolB and rolC as the target gene. Then hairy roots of S. miltiorrhiza were harvested and salvianolic acids were extracted with 70% methanol containing 1% formic acid. The content of salvianolic acid B (SalB) and rosmarinic acid (RA) were determined by HPLC. According to the above research results, the Danshen hairy roots induced by A. rhizogenes LBA9402 were inoculated into the following group of culture media: MSOH, MS, B5, and 6,7-V liquid media. Then the same methods of extraction and determination for the content of Danshen hairy roots were adopted. Last, the hairy roots of S. miltiorrhiza induced by A. rhizogenes LBA9402 were inoculated into the MSOH liquid media with different pH values. The content of salvianolic acid were extracted with 70% methanol containing 1% formic acid and determined by HPLC. As a result, three kinds of A. rhizogenes A4, LBA9402, 15834 could induce hairy roots and Ri plasmids were integrated into the genome of S. miltiorrhiza by PCR. Danshen hairy roots induced by A. rhizogenes LBA9402 and A4 produced much more salvianolic acid, which were (3.27 ± 0.37)% [including (1.04 ±0.36)% of RA and (2.22 ± 0.29)% of SalB] and (3.17 ± 0.20)% [including (0.92 ± 0.31)% of RA and (2.25 ± 0.26)% of SalB], respectively. Hairy roots induced by A. rhizogenes LBA9402 when they were cultured in MSOH liquid media produced much more salvianolic acid, which was (4.56 ± 0.36)%, including (1.12 ± 0.26)% of RA and (3.44 ± 0.23)% of SalB. Hairy roots induced by A. rhizogenes LBA9402 produced the most salvianolic acid when they were cultured in MSOH liquid media with the pH value 4.81, which was 4.85%, including 1.16% of RA and 3.69% of SalB. So Danshen

  2. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates.

    PubMed

    Herrera-Posada, Stephany; Mora-Navarro, Camilo; Ortiz-Bermudez, Patricia; Torres-Lugo, Madeline; McElhinny, Kyle M; Evans, Paul G; Calcagno, Barbara O; Acevedo, Aldo

    2016-08-01

    Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic-isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Development and optimization of a new culture media using extruded bean as nitrogen source.

    PubMed

    Batista, Karla A; Fernandes, Kátia F

    2015-01-01

    The composition of a culture medium is one of the most important parameters to be analyzed in biotechnological processes with industrial purposes, because around 30-40% of the production costs were estimated to be accounted for the cost of the growth medium [1]. Since medium optimization using a one-factor-at-a-time approach is time-consuming, expensive, and often leads to misinterpretation of results, statistical experimental design has been applied to medium optimization for growth and metabolite production [2-5]. In this scenario, the use of mixture design to develop a culture medium containing a cheaper nitrogen source seems to be more appropriate and simple. In this sense, the focus of this work is to present a detailed description of the steps involved in the development of a optimized culture medium containing extruded bean as nitrogen source. •In a previous work we tested a development of new culture media based on the composition of YPD medium, aiming to reduce bioprocess costs as well as to improve the biomass production and heterologous expression.•The developed medium was tested for growth of Saccharomyces cerevisiae and Pichia pastoris (GS 115).•The use of culture media containing extruded bean as sole nitrogen source showed better biomass production and protein expression than those observed in the standard YPD medium.

  4. Development and optimization of a new culture media using extruded bean as nitrogen source

    PubMed Central

    Batista, Karla A.; Fernandes, Kátia F.

    2015-01-01

    The composition of a culture medium is one of the most important parameters to be analyzed in biotechnological processes with industrial purposes, because around 30–40% of the production costs were estimated to be accounted for the cost of the growth medium [1]. Since medium optimization using a one-factor-at-a-time approach is time-consuming, expensive, and often leads to misinterpretation of results, statistical experimental design has been applied to medium optimization for growth and metabolite production [2], [3], [4], [5]. In this scenario, the use of mixture design to develop a culture medium containing a cheaper nitrogen source seems to be more appropriate and simple. In this sense, the focus of this work is to present a detailed description of the steps involved in the development of a optimized culture medium containing extruded bean as nitrogen source. • In a previous work we tested a development of new culture media based on the composition of YPD medium, aiming to reduce bioprocess costs as well as to improve the biomass production and heterologous expression. • The developed medium was tested for growth of Saccharomyces cerevisiae and Pichia pastoris (GS 115). • The use of culture media containing extruded bean as sole nitrogen source showed better biomass production and protein expression than those observed in the standard YPD medium. PMID:26150984

  5. Biocompatible, biodegradable and porous liquid crystal elastomer scaffolds for spatial cell cultures.

    PubMed

    Sharma, Anshul; Neshat, Abdollah; Mahnen, Cory J; Nielsen, Alek D; Snyder, Jacob; Stankovich, Tory L; Daum, Benjamin G; LaSpina, Emily M; Beltrano, Gabrielle; Gao, Yunxiang; Li, Shuo; Park, Byung-Wook; Clements, Robert J; Freeman, Ernest J; Malcuit, Christopher; McDonough, Jennifer A; Korley, LaShanda T J; Hegmann, Torsten; Hegmann, Elda

    2015-02-01

    Here we report on the modular synthesis and characterization of biodegradable, controlled porous, liquid crystal elastomers (LCE) and their use as three-dimensional cell culture scaffolds. The elastomers were prepared by cross-linking of star block-co-polymers with pendant cholesterol units resulting in the formation of smectic-A LCEs as determined by polarized optical microscopy, DSC, and X-ray diffraction. Scanning electron microscopy revealed the porosity of the as-prepared biocompatible LCEs, making them suitable as 3D cell culture scaffolds. Biodegradability studies in physiological buffers at varying pH show that these scaffolds are intact for about 11 weeks after which degradation sets in at an exponential rate. Initial results from cell culture studies indicate that these smectic LCEs are compatible with growth, survival, and expansion of cultured neuroblastomas and myoblasts when grown on the LCEs for extended time periods (about a month). These preliminary cell studies focused on characterizing the elastomer-based scaffolds' biocompatibility and the successful 3D incorporation as well as growth of cells in 60 to 150-μm thick elastomer sheets.

  6. Biodegradation of Endocrine Disruptors in Solid-Liquid Two-Phase Partitioning Systems by Enrichment Cultures

    PubMed Central

    dos Santos, Silvia Cristina Cunha; Ouellette, Julianne; Juteau, Pierre; Lépine, François; Déziel, Eric

    2013-01-01

    Naturally occurring and synthetic estrogens and other molecules from industrial sources strongly contribute to the endocrine disruption of urban wastewater. Because of the presence of these molecules in low but effective concentrations in wastewaters, these endocrine disruptors (EDs) are only partially removed after most wastewater treatments, reflecting the presence of these molecules in rivers in urban areas. The development of a two-phase partitioning bioreactor (TPPB) might be an effective strategy for the removal of EDs from wastewater plant effluents. Here, we describe the establishment of three ED-degrading microbial enrichment cultures adapted to a solid-liquid two-phase partitioning system using Hytrel as the immiscible water phase and loaded with estrone, estradiol, estriol, ethynylestradiol, nonylphenol, and bisphenol A. All molecules except ethynylestradiol were degraded in the enrichment cultures. The bacterial composition of the three enrichment cultures was determined using 16S rRNA gene sequencing and showed sequences affiliated with bacteria associated with the degradation of these compounds, such as Sphingomonadales. One Rhodococcus isolate capable of degrading estrone, estradiol, and estriol was isolated from one enrichment culture. These results highlight the great potential for the development of TPPB for the degradation of highly diluted EDs in water effluents. PMID:23728808

  7. Pseudomonas aeruginosa PAO1 Preferentially Grows as Aggregates in Liquid Batch Cultures and Disperses upon Starvation

    PubMed Central

    Schleheck, David; Barraud, Nicolas; Klebensberger, Janosch; Webb, Jeremy S.; McDougald, Diane; Rice, Scott A.; Kjelleberg, Staffan

    2009-01-01

    In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or ‘suspended biofilms’, by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10–400 µm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa. PMID:19436737

  8. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation.

    PubMed

    Schleheck, David; Barraud, Nicolas; Klebensberger, Janosch; Webb, Jeremy S; McDougald, Diane; Rice, Scott A; Kjelleberg, Staffan

    2009-01-01

    In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or 'suspended biofilms', by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10-400 microm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa.

  9. Optimization of culture conditions of Fusarium solani for the production of neoN-methylsansalvamide.

    PubMed

    Lee, Hee-Seok; Phat, Chanvorleak; Nam, Woo-Seon; Lee, Chan

    2014-01-01

    The aim of this study was to optimize the culture conditions of Fusarium solani KCCM90040 on cereal grain for the production of neoN-methylsansalvamide, a novel low-molecular-weight cyclic pentadepsipeptide exhibiting cytotoxic and multidrug resistance reversal effects. From the analysis of variance results using response surface methodology, temperature, initial moisture content, and growth time were shown to be important parameters for the production of neoN-methylsansalvamide on cereal grain. A model was established in the present study to describe the relationship between environmental conditions and the production of neoN-methylsansalvamide on rice, the selected cereal grain. The optimal culture conditions were determined at 25.79 °C with the initial moisture content of 40.79%, and 16.19 days of growth time. This report will give important information concerning the optimization of environmental conditions using statistic methodology for the production of a new cyclic pentadepsipeptide from fungi.

  10. Antifatigue Activity of Liquid Cultured Tricholoma matsutake Mycelium Partially via Regulation of Antioxidant Pathway in Mouse

    PubMed Central

    Li, Quan; Wang, Yanzhen; Cai, Guangsheng; Kong, Fange; Wang, Xiaohan; Liu, Yang; Yang, Chuanbin; Wang, Di; Teng, Lirong

    2015-01-01

    Tricholoma matsutake has been popular as food and biopharmaceutical materials in Asian countries for its various pharmacological activities. The present study aims to analyze the antifatigue effects on enhancing exercise performance of Tricholoma matsutake fruit body (ABM) and liquid cultured mycelia (TM) in mouse model. Two-week Tricholoma matsutake treatment significantly enhances the exercise performance in weight-loaded swimming, rotating rod, and forced running test. In TM- and ABM-treated mice, some factors were observed at 60 min after swimming compared with nontreated mice, such as the increased levels of adenosine triphosphate (ATP), antioxidative enzymes, and glycogen and the reduced levels of malondialdehyde and reactive oxygen species in muscle, liver, and/or serum. Further data obtained from western blot show that CM and ABM have strongly enhanced the activation of 5′-AMP-activated protein kinase (AMPK), and the expressions of peroxisome proliferator have activated receptor γ coactivator-1α (PGC-1α) and phosphofructokinase-1 (PFK-1) in liver. Our data suggest that both Tricholoma matsutake fruit body and liquid cultured mycelia possess antifatigue effects related to AMPK-linked antioxidative pathway. The information uncovered in our study may serve as a valuable resource for further identification and provide experimental evidence for clinical trials of Tricholoma matsutake as an effective agent against fatigue related diseases. PMID:26697489

  11. Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space

    NASA Astrophysics Data System (ADS)

    Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.

    2014-11-01

    NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.

  12. Organizational transformation: a model for joint optimization of culture change and evidence-based design.

    PubMed

    Hamilton, D Kirk; Orr, Robin Diane; Raboin, W Ellen

    2008-01-01

    Healthcare organizations face continuous and accelerating external change and thus must be prepared to manage their own change initiatives proactively. Given that many believe that the U.S. healthcare system is broken and most healthcare organizations are dealing with pervasive problems, some organizations may choose to seek transformational change to achieve the six aims identified by the Institute of Medicine: healthcare that is safe, effective, patient-centered, timely, efficient, and equitable. Transformational change will almost certainly involve organizational culture. Culture change may be most effective when linked to other organizational change initiatives such as organizational strategy, structure, policies, procedures, and recruiting. Significant organizational change often requires accompanying facility change. There is an interdependent relationship between facility design and organizational culture. They affect each other and both impact organizational performance. Sociotechnical theory promotes joint optimization of the social (culture) and technical (facilities) aspects of an organization to achieve sustained positive change. To achieve organizational transformation and to sustain positive change, organizations must be prepared to adopt collaborative efforts in culture change and facility design. The authors propose a model for accomplishing joint optimization of culture change and evidence-based facility design.

  13. Cultural Effects on Cancer Prevention Behaviors: Fatalistic Cancer Beliefs and Risk Optimism Among Asians in Singapore.

    PubMed

    Kim, Hye Kyung; Lwin, May O

    2016-09-09

    Although culture is acknowledged as an important factor that influences health, little is known about cultural differences pertaining to cancer-related beliefs and prevention behaviors. This study examines two culturally influenced beliefs-fatalistic beliefs about cancer prevention, and optimistic beliefs about cancer risk-to identify reasons for cultural disparity in the engagement of cancer prevention behaviors. We utilized data from national surveys of European Americans in the United States (Health Information National Trends Survey 4, Cycle3; N = 1,139) and Asians in Singapore (N = 1,200) to make cultural comparisons. The odds of an Asian adhering to prevention recommendations were less than half the odds of a European American, with the exception of smoking avoidance. Compared to European Americans, Asians were more optimistic about their cancer risk both in an absolute and a comparative sense, and held stronger fatalistic beliefs about cancer prevention. Mediation analyses revealed that fatalistic beliefs and absolute risk optimism among Asians partially explain their lower engagement in prevention behaviors, whereas comparative risk optimism increases their likelihood of adhering to prevention behaviors. Our findings underscore the need for developing culturally targeted interventions in communicating cancer causes and prevention.

  14. Optimization and robustness analysis of hybridoma cell fed-batch cultures using the overflow metabolism model.

    PubMed

    Amribt, Z; Dewasme, L; Vande Wouwer, A; Bogaerts, Ph

    2014-08-01

    The maximization of biomass productivity in fed-batch cultures of hybridoma cells is analyzed based on the overflow metabolism model. Due to overflow metabolism, often attributed to limited oxygen capacity, lactate and ammonia are formed when the substrate concentrations (glucose and glutamine) are above a critical value, which results in a decrease in biomass productivity. Optimal feeding rate, on the one hand, for a single feed stream containing both glucose and glutamine and, on the other hand, for two separate feed streams of glucose and glutamine are determined using a Nelder-Mead simplex optimization algorithm. The optimal multi exponential feed rate trajectory improves the biomass productivity by 10 % as compared to the optimal single exponential feed rate. Moreover, this result is validated by the one obtained with the analytical approach in which glucose and glutamine are fed to the culture so as to control the hybridoma cells at the critical metabolic state, which allows maximizing the biomass productivity. The robustness analysis of optimal feeding profiles obtained with different optimization strategies is considered, first, with respect to parameter uncertainties and, finally, to model structure errors.

  15. Approaches to optimizing animal cell culture process: substrate metabolism regulation and protein expression improvement.

    PubMed

    Zhang, Yuanxing

    2009-01-01

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  16. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  17. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  18. Selective breeding for desiccation tolerance in liquid culture provides genetically stable inbred lines of the entomopathogenic nematode Heterorhabditis bacteriophora.

    PubMed

    Anbesse, Samuel; Sumaya, Nanette Hope; Dörfler, Anna Verena; Strauch, Olaf; Ehlers, Ralf-Udo

    2013-01-01

    The entomopathogenic nematode (EPN) Heterorhabditis bacteriophora is used in biological plant protection to control pest insects. In the past, several attempts targeted at an enhancement of the desiccation tolerance of EPN by genetic selection in order to improve their storage stability. The subsequent loss of improved beneficial traits after release of selection pressure has often been reported. In order to stabilize progress of selective breeding, selection during liquid culturing was tested against propagation in host insects. After release of the selection pressure, the tolerance was monitored over additional reproductive cycles in vivo and in vitro to compare the stability of the trait. Furthermore, it was tested whether the virulence of the selected strains would be impaired. Exposure to desiccation stress prior to propagation, in vivo or in vitro, both resulted in increasing desiccation tolerance. When selection pressure was released, the gained tolerance was lost again during in vivo production, whereas the tolerance was maintained at a high level when EPNs were cultured in liquid culture. In Heterorhabditis sp., liquid culture conditions produce highly homozygous, genetically stable inbred lines. The investigation provides easily applicable methods to improve and stabilize beneficial traits of heterorhabditid EPNs through selective breeding in liquid culture. Compared to nematodes from in vivo propagation, production in liquid media yielded EPN of higher virulence.

  19. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development.

    PubMed

    Lu, Franklin; Toh, Poh Choo; Burnett, Iain; Li, Feng; Hudson, Terry; Amanullah, Ashraf; Li, Jincai

    2013-01-01

    Current industry practices for large-scale mammalian cell cultures typically employ a standard platform fed-batch process with fixed volume bolus feeding. Although widely used, these processes are unable to respond to actual nutrient consumption demands from the culture, which can result in accumulation of by-products and depletion of certain nutrients. This work demonstrates the application of a fully automated cell culture control, monitoring, and data processing system to achieve significant productivity improvement via dynamic feeding and media optimization. Two distinct feeding algorithms were used to dynamically alter feed rates. The first method is based upon on-line capacitance measurements where cultures were fed based on growth and nutrient consumption rates estimated from integrated capacitance. The second method is based upon automated glucose measurements obtained from the Nova Bioprofile FLEX® autosampler where cultures were fed to maintain a target glucose level which in turn maintained other nutrients based on a stoichiometric ratio. All of the calculations were done automatically through in-house integration with a Delta V process control system. Through both media and feed strategy optimization, a titer increase from the original platform titer of 5 to 6.3 g/L was achieved for cell line A, and a substantial titer increase of 4 to over 9 g/L was achieved for cell line B with comparable product quality. Glucose was found to be the best feed indicator, but not all cell lines benefited from dynamic feeding and optimized feed media was critical to process improvement. Our work demonstrated that dynamic feeding has the ability to automatically adjust feed rates according to culture behavior, and that the advantage can be best realized during early and rapid process development stages where different cell lines or large changes in culture conditions might lead to dramatically different nutrient demands. Copyright © 2012 Wiley Periodicals, Inc.

  20. Optimizing the electrochemical performance of imidazolium-based polymeric ionic liquids by varying tethering groups

    NASA Astrophysics Data System (ADS)

    Jia, Zhe

    candidates for this purpose, were attached as tethering groups to imidazolium cations in order to optimize the Tg and ionic conductivities. Previous research on oligomer/polymer electrolytes showed that attaching PEO to the imidazolium cation lowered the Tg of ILs and increased their conductivity. PEO is also chemically stable, dissolves metal ions, and when incorporated into ionic liquids, provides a solvent free electrolyte. A series of IL model compounds and PILs were first synthesized with various lengths of PEO attached on the imidazole. The thermophysical and electrochemical properties of ILs and PILs, including density, viscosity, conductivity and thermal properties were characterized in order to investigate the effect of tethering groups.

  1. Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization.

    PubMed

    Egorova, Ksenia S; Ananikov, Valentine P

    2014-02-01

    Rapid progress in the field of ionic liquids in recent decades led to the development of many outstanding energy-conversion processes, catalytic systems, synthetic procedures, and important practical applications. Task-specific optimization emerged as a sharpening stone for the fine-tuning of structure of ionic liquids, which resulted in unprecedented efficiency at the molecular level. Ionic-liquid systems showed promising opportunities in the development of green and sustainable technologies; however, the chemical nature of ionic liquids is not intrinsically green. Many ionic liquids were found to be toxic or even highly toxic towards cells and living organisms. In this Review, we show that biological activity and cytotoxicity of ionic liquids dramatically depend on the nature of a biological system. An ionic liquid may be not toxic for particular cells or organisms, but may demonstrate high toxicity towards another target present in the environment. Thus, a careful selection of biological activity data is a must for the correct assessment of chemical technologies involving ionic liquids. In addition to the direct biological activity (immediate response), several indirect effects and aftereffects are of primary importance. The following principal factors were revealed to modulate toxicity of ionic liquids: i) length of an alkyl chain in the cation; ii) degree of functionalization in the side chain of the cation; iii) anion nature; iv) cation nature; and v) mutual influence of anion and cation.

  2. Design and optimization of photonic crystal fiber for liquid sensing applications

    NASA Astrophysics Data System (ADS)

    Arif, Md. Faizul Huq; Ahmed, Kawsar; Asaduzzaman, Sayed; Azad, Md. Abul Kalam

    2016-09-01

    This paper proposes a hexagonal photonic crystal fiber (H-PCF) structure with high relative sensitivity for liquid sensing; in which both core and cladding are microstructures. Numerical investigation is carried out by employing the full vectorial finite element method (FEM). The analysis has been done in four stages of the proposed structure. The investigation shows that the proposed structure achieves higher relative sensitivity by increasing the diameter of the innermost ring air holes in the cladding. Moreover, placing a single channel instead of using a group of tiny channels increases the relative sensitivity effectively. Investigating the effects of different parameters, the optimized structure shows significantly higher relative sensitivity with a low confinement loss.

  3. Optoelectronic optimization of mode selective converter based on liquid crystal on silicon

    NASA Astrophysics Data System (ADS)

    Wang, Yongjiao; Liang, Lei; Yu, Dawei; Fu, Songnian

    2016-03-01

    We carry out comprehensive optoelectronic optimization of mode selective converter used for the mode division multiplexing, based on liquid crystal on silicon (LCOS) in binary mode. The conversion error of digital-to-analog (DAC) is investigated quantitatively for the purpose of driving the LCOS in the application of mode selective conversion. Results indicate the DAC must have a resolution of 8-bit, in order to achieve high mode extinction ratio (MER) of 28 dB. On the other hand, both the fast axis position error of half-wave-plate (HWP) and rotation angle error of Faraday rotator (FR) have negative influence on the performance of mode selective conversion. However, the commercial products provide enough angle error tolerance for the LCOS-based mode selective converter, taking both of insertion loss (IL) and MER into account.

  4. Optimization method for the study of the properties of Al-Sn binary liquid alloys

    NASA Astrophysics Data System (ADS)

    Shrestha, G. K.; Singh, B. K.; Jha, I. S.; Singh, B. P.; Adhikari, D.

    2017-06-01

    The best fit value of order energy parameter (W) has been estimated over the entire range of concentration in Al-Sn binary liquid alloy at a specified temperature to determine the thermodynamic properties and concentration fluctuations, obtained by a theoretical formalism in which the combined effect of size ratio, entropic and enthalpic effect is considered. The values of W at different temperatures have been determined by finding the temperature derivative of W which are then used for the optimization procedure in order to determine the corresponding values of excess free energy of mixing, partial excess free energy of mixing and activity of the components involved in the alloy. These parameters have been used to calculate the concentration fluctuations in long wavelength limit {Scc(0)} at different temperatures over the entire range of concentration which predict the stability of the alloy at different temperatures.

  5. Optimization of a variable flow allocation scheme in heterogeneous liquid-metal fast breeder reactors

    SciTech Connect

    Tzanos, C.P.

    1981-12-01

    Maximum cladding temperatures in heterogeneous liquid-metal fast breeder reactors (LMFBRs) can be reduced if the flow allocation between core and blanket assemblies is continuously varied during burnup. An analytical model has been developed that optimizes the time variation of the flow such that the reduction in maximum cladding temperatures is maximized. In addition, the concept of continuously varying the flow allocation between core and blanket assemblies has been evaluated for different fuel management schemes in a low sodium void reactivity 3000-MW heterogeneous LMFBR. This evaluation shows that the reduction in maximum cladding midwall temperatures is small ( about 10/sup 0/C) if the reactor is partially refueled at the end of each burnup cycle (cycle length of one year), and this reduction is increased to 20/sup 0/C if a straight burn fuel scheme is used with a core and internal blanket fuel residence time of two years.

  6. Optimizing ultraperformance liquid chromatographic analysis of 10 diterpenoid compounds in Salvia miltiorrhiza using central composite design.

    PubMed

    Li, Peng; Xu, Gang; Li, Shao-Ping; Wang, Yi-Tao; Fan, Tai-Ping; Zhao, Qin-Shi; Zhang, Qing-Wen

    2008-02-27

    A rapid, sensitive, reproducible, and accurate ultraperformance liquid chromatographic (UPLC) method was developed for the simultaneous determination of 10 diterpenoid compounds (tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone I, 1,2-dihydrotanshinquinone, methylenetanshinquinone, miltirone, 5,6-dehydrosugiol, sugiol, and przewalskin) in Salvia miltiorrhiza for the first time. Central composite design was applied as a powerful tool to optimize the most dominant parameters that influence the resolution of UPLC, that is, gradient, flow rate, and column temperature. Under optimum conditions, all peaks except 1,2-dihydrotanshinquinone and methylenetanshinquinone could be baseline separated within 8 min. Furthermore, the contents of these compounds in S. miltiorrhiza samples collected from different provinces of China have also been compared. The results showed that UPLC is one of the most efficient methods for the analysis of diterpenoid compounds in S. miltiorrhiza and that it is a potential method for quality control of this valuable traditional Chinese medicine.

  7. Effects of carbon and nitrogen sources, carbon-to-nitrogen ratio, and initial pH on the growth of nematophagous fungus Pochonia chlamydosporia in liquid culture.

    PubMed

    Mo, Minghe; Xu, Chuankun; Zhang, Keqin

    2005-04-01

    The effects of carbon and nitrogen sources, carbon-to-nitrogen ratio (C:N) and initial pH value on the growth and sporulation of the nematophagous fungus Pochonia chlamydosporia in liquid culture were examined. Among the 21 carbon sources and 15 nitrogen compounds tested, the optimal carbon and nitrogen sources for mycelial growth were sweet potato and L: -tyrosine, and for sporulation were sweet potato and casein peptone. A C:N ratio of 10:1 at pH 3.7 gave the maximum yield of conidia and a C:N ratio of 40:1 at pH 6.8 gave the maximum biomass. The initial pH value had a significant effect on mycelial growth and conidial production, with the optimal ranges being 3.5-4.5 for sporulation and 5-6 for growth. Maximum conidial production was obtained at an initial pH of 4.0 and the maximum biomass at pH 6.0. The results also showed that the final pH after 7 days cultivation was always higher than the initial value. The variability in growth and sporulation of seven strains of P. chlamydosporia in liquid culture was also compared and discussed.

  8. Impact of oxygen level in gaseous phase on gene transcription and ganoderic acid biosynthesis in liquid static cultures of Ganoderma lucidum.

    PubMed

    Zhang, Wen-Xian; Tang, Ya-Jie; Zhong, Jian-Jiang

    2010-08-01

    Liquid static cultivation of Ganoderma lucidum was previously found to be very efficient for improving the production of its valuable antitumor compound ganoderic acid (GA) (Fang and Zhong in Biotechnol Prog 18:51-54, 2002). In this work, effects of oxygen concentration within the range of 21-100% (v/v) in the gaseous phase on the mycelia growth, GA production, and gene transcription of key enzymes for GA biosynthesis in liquid static cultures of G. lucidum were investigated. A high cell density of 29.8 +/- 1.7 g/l DW and total GA production of 1427.2 +/- 74.2 mg/l were obtained under an optimal gaseous O(2) level of 80%. The expression of 3-hydroxy-3-methyl-glutaryl-CoA reductase, squalene synthase and lanosterol synthase genes of GA biosynthetic pathway as detected by quantitative real-time PCR was also affected by the gaseous oxygen concentration in the liquid static culture. H(2)O(2) was generated as reactive oxygen species in response to high oxygen concentrations in the gas phase, and it seemed to be involved in the regulation of GA biosynthesis. The information obtained in this study provided an insight into the role of gaseous O(2) in the GA production and it will be helpful for further enhancing its productivity.

  9. Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis.

    PubMed

    Fábregas, J; Domínguez, A; Regueiro, M; Maseda, A; Otero, A

    2000-05-01

    The freshwater microalga Haematococcus pluvialis is one of the best microbial sources of the carotenoid astaxanthin, but this microalga shows low growth rates and low final cell densities when cultured with traditional media. A single-variable optimization strategy was applied to 18 components of the culture media in order to maximize the productivity of vegetative cells of H. pluvialis in semicontinuous culture. The steady-state cell density obtained with the optimized culture medium at a daily volume exchange of 20% was 3.77 x 10(5) cells ml(-1), three times higher than the cell density obtained with Bold basal medium and with the initial formulation. The formulation of the optimal Haematococcus medium (OHM) is (in g l(-1)) KNO3 0.41, Na2HPO4 0.03, MgSO4 x 7H2O 0.246, CaCl2 x 2H2O 0.11, (in mg l(-1)) Fe(III)citrate x H2O 2.62, CoCl2 x 6H2O 0.011, CuSO4 x 5H2O 0.012, Cr2O3 0.075, MnCl2 x 4H2O 0.98, Na2MoO4 x 2H2O 0.12, SeO2 0.005 and (in microg l(-1)]) biotin 25, thiamine 17.5 and B12 15. Vanadium, iodine, boron and zinc were demonstrated to be non-essential for the growth of H. pluvialis. Higher steady-state cell densities were obtained by a three-fold increase of all nutrient concentrations but a high nitrate concentration remained in the culture medium under such conditions. The high cell productivities obtained with the new optimized medium can serve as a basis for the development of a two-stage technology for the production of astaxanthin from H. pluvialis.

  10. Parametric study for the optimization of ionic liquid pretreatment of corn stover.

    PubMed

    Papa, Gabriella; Feldman, Taya; Sale, Kenneth L; Adani, Fabrizio; Singh, Seema; Simmons, Blake A

    2017-10-01

    A parametric study of the efficacy of the ionic liquid (IL) pretreatment (PT) of corn stover (CS) using 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and cholinium lysinate ([Ch][Lys]) was conducted. The impact of 50% and 15% biomass loading for milled and non-milled CS on IL-PT was evaluated, as well the impact of 20 and 5mg enzyme/g glucan on saccharification efficiency. The glucose and xylose released were generated from 32 conditions - 2 ionic liquids (ILs), 2 temperatures, 2 particle sizes (S), 2 solid loadings, and 2 enzyme loadings. Statistical analysis indicates that sugar yields were correlated with lignin and xylan removal and depends on the factors, where S did not explain variation in sugar yields. Both ILs were effective in pretreating large particle sized CS, without compromising sugar yields. The knowledge from material and energy balances is an essential step in directing optimization of sugar recovery at desirable process conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Optimized setup for two-dimensional convection experiments in thin liquid films

    SciTech Connect

    Winkler, Michael; Abel, Markus

    2016-06-15

    We present a novel experimental setup to investigate two-dimensional thermal convection in a freestanding thin liquid film. Such films can be produced in a controlled way on the scale of 5–1000 nm. Our primary goal is to investigate convection patterns and the statistics of reversals in Rayleigh-Bénard convection with varying aspect ratio. Additionally, questions regarding the physics of liquid films under controlled conditions can be investigated, like surface forces, or stability under varying thermodynamical parameters. The film is suspended in a frame which can be adjusted in height and width to span an aspect ratio range of Γ = 0.16–10. The top and bottom frame elements can be set to specific temperature within T = 15 °C to 55 °C. A thickness to area ratio of approximately 10{sup 8} enables only two-dimensional fluid motion in the time scales relevant for turbulent motion. The chemical composition of the film is well-defined and optimized for film stability and reproducibility and in combination with carefully controlled ambient parameters allows the comparison to existing experimental and numerical data.

  12. Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass

    2015-11-01

    Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  13. Openly accessible microfluidic liquid handlers for automated high-throughput nanoliter cell culture.

    PubMed

    Zhou, Ying; Pang, Yuhong; Huang, Yanyi

    2012-03-06

    Cell culture is typically performed in Petri dishes, with a few million cells growing together, or in microwell plates with thousands of cells in each compartment. When the throughput of each experiment, especially of screening based assays, is increased, even using microliter solution per well will cost a considerable amount of cells and reagents. We took a rational approach to reduce the volume of each cell culture chamber. We designed and fabricated a poly(dimethylsiloxane) based liquid pipet chip to deliver and transfer nanoliter (50-500 nL) samples and reagents with high accuracy and robustness. A few tens to a few hundreds of cells can be successfully seeded, transferred, passaged, transfected, and stimulated by drugs on a microwell chip using this pipet chip automatically. We have used this system to test the cell growth dynamically, observed the correlation between the culture conditions and cell viabilities, and quantitatively evaluated cell apoptosis induced by cis-diammineplatinum(II) dichloride (cisplatin). This system shows great potential to facilitate large-scale screening and high-throughput cell-array based bioassays with the volume of each individual cell colony at the nanoliter level.

  14. Optimization of NRU assay in primary cultures of Eisenia fetida for metal toxicity assessment.

    PubMed

    Irizar, Amaia; Duarte, Daniel; Guilhermino, Lucia; Marigómez, Ionan; Soto, Manu

    2014-09-01

    Coelomocytes, immunocompetent cells of lumbricids, have received special attention for ecotoxicological studies due to their sensibility to pollutants. Their in vitro responses are commonly quantified after in vivo exposure to real or spiked soils. Alternatively, quantifications of in vitro responses after in vitro exposure are being studied. Within this framework, the present study aimed at optimizing the neutral red uptake (NRU) assay in primary culture of Eisenia fetida coelomocytes for its application in soil toxicity testing. Optimized assay conditions were: earthworm depuration for 24 h before retrieving coelomocytes by electric extrusion; 2 × 10(5) seeded cells/well (200 µl) for the NRU assay and incubation for 1 h with neutral red dye. Supplementation of the culture medium with serum was not compatible with the NRU assay, but coelomocytes could be maintained with high viability for 3 days in a serum-free medium without replenishment. Thus, primary cultures were used for 24 h in vitro toxicity testing after exposure to different concentrations of Cd, Cu, Ni and Pb (ranging from 0.1 to 100 μg/ml). Primary cultures were sensitive to metals, the viability declining in a dose-dependent manner. The toxicity rank was, from high to low, Pb > Ni > Cd > Cu. Therefore, it can be concluded that the NRU assay in coelomocytes in primary cultures provides a sensitive and prompt response after in vitro exposure to metals.

  15. Optimization of Conditions for In Vitro Culture of the Microphallid Digenean Gynaecotyla adunca.

    PubMed

    West, Jenna; Mitchell, Alexandra; Pung, Oscar J

    2014-01-01

    In vitro cultivation of digeneans would aid the development of effective treatments and studies of the biology of the parasites. The goal of this study was to optimize culture conditions for the trematode, Gynaecotyla adunca. Metacercariae of the parasite from fiddler crabs, Uca pugnax, excysted in trypsin, were incubated overnight to permit fertilization, and were cultured in different conditions to find those that resulted in maximum worm longevity and egg production. When cultured in media lacking serum, worms lived longer in Hanks balanced salt solution and Dulbecco's Modified Eagle medium/F-12 (DME/F-12) than in RPMI-1640 but produced the most eggs in DME/F-12. Worm longevity and egg production increased when worms were grown in DME/F-12 supplemented with 20% chicken, horse, or newborn calf serum but the greatest number of eggs was deposited in cultures containing horse or chicken serum. Horse serum was chosen over chicken serum due to the formation of a precipitate in chicken serum. The optimal concentration of horse serum with respect to egg production ranged from 5 to 20%. Infectivity of eggs deposited by worms in culture was tested by feeding eggs to mud snails, Ilyanassa obsoleta. None of these snails produced G. adunca cercariae.

  16. Optimization of culture conditions for flexirubin production by Chryseobacterium artocarpi CECT 8497 using response surface methodology.

    PubMed

    Venil, Chidambaram Kulandaisamy; Zakaria, Zainul Akmar; Ahmad, Wan Azlina

    2015-01-01

    Flexirubins are the unique type of bacterial pigments produced by the bacteria from the genus Chryseobacterium, which are used in the treatment of chronic skin disease, eczema etc. and may serve as a chemotaxonomic marker. Chryseobacterium artocarpi CECT 8497, an yellowish-orange pigment producing strain was investigated for maximum production of pigment by optimizing medium composition employing response surface methodology (RSM). Culture conditions affecting pigment production were optimized statistically in shake flask experiments. Lactose, l-tryptophan and KH2PO4 were the most significant variables affecting pigment production. Box Behnken design (BBD) and RSM analysis were adopted to investigate the interactions between variables and determine the optimal values for maximum pigment production. Evaluation of the experimental results signified that the optimum conditions for maximum production of pigment (521.64 mg/L) in 50 L bioreactor were lactose 11.25 g/L, l-tryptophan 6 g/L and KH2PO4 650 ppm. Production under optimized conditions increased to 7.23 fold comparing to its production prior to optimization. Results of this study showed that statistical optimization of medium composition and their interaction effects enable short listing of the significant factors influencing maximum pigment production from Chryseobacterium artocarpi CECT 8497. In addition, this is the first report optimizing the process parameters for flexirubin type pigment production from Chryseobacterium artocarpi CECT 8497.

  17. On the model-based optimization of secreting mammalian cell (GS-NS0) cultures.

    PubMed

    Kiparissides, A; Pistikopoulos, E N; Mantalaris, A

    2015-03-01

    The global bio-manufacturing industry requires improved process efficiency to satisfy the increasing demands for biochemicals, biofuels, and biologics. The use of model-based techniques can facilitate the reduction of unnecessary experimentation and reduce labor and operating costs by identifying the most informative experiments and providing strategies to optimize the bioprocess at hand. Herein, we investigate the potential of a research methodology that combines model development, parameter estimation, global sensitivity analysis, and selection of optimal feeding policies via dynamic optimization methods to improve the efficiency of an industrially relevant bioprocess. Data from a set of batch experiments was used to estimate values for the parameters of an unstructured model describing monoclonal antibody (mAb) production in GS-NS0 cell cultures. Global Sensitivity Analysis (GSA) highlighted parameters with a strong effect on the model output and data from a fed-batch experiment were used to refine their estimated values. Model-based optimization was used to identify a feeding regime that maximized final mAb titer. An independent fed-batch experiment was conducted to validate both the results of the optimization and the predictive capabilities of the developed model. The successful integration of wet-lab experimentation and mathematical model development, analysis, and optimization represents a unique, novel, and interdisciplinary approach that addresses the complicated research and industrial problem of model-based optimization of cell based processes.

  18. Habitus and Flow in Primary School Musical Practice: Relations between Family Musical Cultural Capital, Optimal Experience and Music Participation

    ERIC Educational Resources Information Center

    Valenzuela, Rafael; Codina, Nuria

    2014-01-01

    Based on Bourdieu's idea that cultural capital is strongly related to family context, we describe the relations between family musical cultural capital and optimal experience during compulsory primary school musical practice. We analyse whether children from families with higher levels of musical cultural capital, and specifically with regard to…

  19. Habitus and Flow in Primary School Musical Practice: Relations between Family Musical Cultural Capital, Optimal Experience and Music Participation

    ERIC Educational Resources Information Center

    Valenzuela, Rafael; Codina, Nuria

    2014-01-01

    Based on Bourdieu's idea that cultural capital is strongly related to family context, we describe the relations between family musical cultural capital and optimal experience during compulsory primary school musical practice. We analyse whether children from families with higher levels of musical cultural capital, and specifically with regard to…

  20. Evaluation of BioFM liquid medium for culture of cerebrospinal fluid in tuberculous meningitis to identify Mycobacterium tuberculosis.

    PubMed

    Kashyap, R S; Ramteke, S S; Gaherwar, H M; Deshpande, P S; Purohit, H J; Taori, G M; Daginawala, H

    2010-01-01

    The present study was designed to evaluate the sensitivity and specificity of liquid culture medium (BioFM broth) for the diagnosis of tuberculous meningitis (TBM) in cerebrospinal fluid (CSF). CSF samples from 200 patients (TBM group = 150 and non-TBM group = 50) were tested for culture of Mycobacterium tuberculosis in BioFM liquid culture medium. Out of 150 TBM cases, 120 were found to be culture positive, indicating a sensitivity of 80% in BioFM broth within 2-3 weeks of inoculation. Positive cultures were also observed for CSF from 32 (64%) out of 50 non-TBM patients in BioFM liquid culture medium within 4 days of sample inoculation. Therefore, according to our study, BioFM broth system yielded 80% sensitivity [95% confidence interval (CI): 67-93%] and 36% specificity (95% CI: 57-98%) for TBM diagnosis. Our results indicate that although BioFM broth allows the detection of positive cultures within a shorter time, it has a high potential for contamination or for the coexistence of M. tuberculosis and non-tuberculous meningitis (NTM). This coexistence may go undetected or potentially lead to erroneous reporting of results.

  1. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    PubMed

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  2. Mitigation of dynamic wavefront distortions using a nematic liquid crystal spatial light modulator and simplex optimization

    NASA Astrophysics Data System (ADS)

    Khandekar, Rahul M.; Nikulin, Vladimir V.

    2006-02-01

    Laser beam propagating through the atmosphere is subjected to severe wavefront distortions due to the optical turbulence. This leads to reduction in the received power, ultimately resulting in the BER degradation, even for short ranges. Optical properties of the atmospheric channel change over time; hence, maintaining a reliable link requires dynamic wavefront control to mitigate the effects of the atmospheric turbulence. An electrically addressed programmable nematic liquid crystal spatial light modulator (SLM) is proposed to perform this task. Wavefront correction is achieved by computing a phase shift for each pixel of the SLM, which could be a rigorous and time-consuming procedure. Hence, the goal is to obtain a stable and relatively simple approach to dynamically control the modulator elements. The phase profile of the distorted beam can be approximated using Zernike formalism or another type of wavefront polynomial, which provides efficient mapping between a large number of SLM pixels and a much smaller number of approximation coefficients. Furthermore, wavefront correction needs to be performed in real-time; hence the Simplex method by Nelder and Mead, known for fast improvement of an optimization metric, is used to adjust the approximation coefficients. The phase profile obtained from the optimization procedure is imposed on the received beam by the SLM. This facilitates the reduction of the optical path difference (OPD) present in the distorted wavefront by applying an inverse OPD, and mitigating the effects of the optical turbulence. This paper presents a basic algorithm as well as the experimental results.

  3. Pressurized liquid extraction of anthocyanins and biflavonoids from Schinus terebinthifolius Raddi: A multivariate optimization.

    PubMed

    Feuereisen, Michelle M; Gamero Barraza, Mariana; Zimmermann, Benno F; Schieber, Andreas; Schulze-Kaysers, Nadine

    2017-01-01

    Response surface methodology was employed to investigate the effects of pressurized liquid extraction (PLE) parameters on the recovery of phenolic compounds (anthocyanins, biflavonoids) from Brazilian pepper (Schinus terebinthifolius Raddi) fruits. The effects of temperature, static time, and ethanol as well as acid concentration on the polyphenol yield were described well by quadratic models (p<0.0001). A significant influence of the ethanol concentration (p<0.0001) and several interactions (p<0.05) were identified. Identification of the biflavonoid I3',II8-binaringenin in drupes of S. terebinthifolius was achieved by UHPLC-MS(2). Interestingly, at high extraction temperatures (>75°C), an artifact occurred and was tentatively identified as a diastereomer of I3',II8-binaringenin. Multivariate optimization led to high yields of phenolic compounds from the exocarp/drupes at 100/75°C, 10/10min, 54.5/54.2% ethanol, and 5/0.03% acetic acid. This study demonstrates that PLE is well suited for the extraction of phenolic compounds from S. terebinthifolius and can efficiently be optimized by response surface methodology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Optimization of a polyurethane dermal matrix and experience with a polymer-based cultured composite skin.

    PubMed

    Dearman, Bronwyn L; Li, Amy; Greenwood, John E

    2014-01-01

    The aims were to (1) describe the in vivo studies leading to an optimized model of the biodegradable temporizing matrix (BTM), (2) describe our efforts in effecting closure over this optimized matrix after integration with a cultured composite skin (CCS), and (3) reexamine the ability of the CCS to definitively close fresh wounds (without BTM). Foam scaffolds of biodegradable polyurethane were created to allow in vivo tissue ingrowth or in vitro co-culture. Using the porcine surgical model, multiple BTM optimization studies took place before the BTM-CCS main study was conducted. For the CCS study, optimized sealed 2 mm matrices were implanted into 6-mm deep, 8 × 8 cm wounds (three per pig) and allowed to integrate for 21 days, whereas collected blood and harvested skin tissue were used to prepare autologous composite skins in similar (unsealed) 1 mm matrices. These were then applied at day 21 either over the integrated BTMs or into a freshly created fourth wound. All of the optimized matrices integrated fully, without loss, and were found to resist wound contraction effectively until the composites were ready for application at day 21. The composites demonstrated the ability to generate a bilayer repair with robust epidermis anchored by a basement membrane visible from day 7 after application. The final optimized sealed BTM delaminates easily to produce a clean, temporized wound bed and will be used in the upcoming burn clinical trial. Although the CCS is a magnitude away from human trials, it is still capable of generating a bilayer repair in both BTM-integrated and fresh wounds (onto fat), and with further refinement and optimization of foam structure, seeding densities, and timing, consistent success should be possible.

  5. Liquid culture and growth quantification of the seagrass pathogen, Labyrinthula spp.

    PubMed

    Martin, Daniel L; Boone, Emily; Caldwell, Melanie M; Major, Kelly M; Boettcher, Anne A

    2009-01-01

    Symptoms characteristic of wasting disease, thought to result from infection by protozoan pathogens (i.e. Labyrinthula spp.), are a common phenomenon affecting seagrass species worldwide. However relatively little is known about factors that control the survival and success of Labyrinthula in part due to the difficulty associated with quantifying the growth of this organism. Here we describe a simple and inexpensive method for measuring growth of Labyrinthula in liquid culture that takes into consideration both cell density and areal spread. The technique allows for examination of the effects of both abiotic and biotic factors on the growth of Labyrinthula apart from its seagrass host, separating the effects of environmental condition on the host from their effects on the pathogen.

  6. [Automated methods of culture determination of M. tuberculosis in liquid media].

    PubMed

    Irtuganova, O A; Smirnova, N S; Slogotskaia, L V; Moroz, A M; Litvinov, V I

    2001-01-01

    A hundred and seventy respiratory samples from patients with different forms of tuberculosis were used to test the efficiency of the automatic liquid culture systems BACTEC MGIT 960 and MB/BacT with inoculation into the standard dense media. All these media provided 47 M. tuberculous isolates, of them 41 (87.2%), 38 (80.9%), and 76.6% on the BACTER 960, MB/BacT, and dense media, respectively. The average time of detection of mycobacterial growth by means of automatic systems was much shorter and equal to 10.7 days on the BACTEC 960 and 18.7 days on the MB/BacT versus 33.2 days on the standard dense medium. In terms of their sensitivity and detection rate, the automatic systems were superior to the dense media widely used in laboratory practice.

  7. Determination of volatile components of green, black, oolong and white tea by optimized ultrasound-assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography.

    PubMed

    Sereshti, Hassan; Samadi, Soheila; Jalali-Heravi, Mehdi

    2013-03-08

    Ultrasound assisted extraction (UAE) followed by dispersive liquid-liquid microextraction (DLLME) was used for extraction and preconcentration of volatile constituents of six tea plants. The preconcentrated compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Totally, 42 compounds were identified and caffeine was quantitatively determined. The main parameters (factors) of the extraction process were optimized by using a central composite design (CCD). Methanol and chloroform were selected as the extraction solvent and preconcentration solvent, respectively .The optimal conditions were obtained as 21 in for sonication time; 32°C for temperature; 27 L for volume of extraction solvent and 7.4% for salt concentration (NaCl/H(2)O). The determination coefficient (R(2)) was 0.9988. The relative standard deviation (RSD %) was 4.8 (n=5), and the enhancement factors (EFs) were 4.0-42.6.

  8. Degradation characteristics of methyl ethyl ketone by Pseudomonas sp. KT-3 in liquid culture and biofilter.

    PubMed

    Lee, Tae Ho; Kim, Jaisoo; Kim, Min-Joo; Ryu, Hee Wook; Cho, Kyung-Suk

    2006-04-01

    With ketone pollution forming an ever-growing problem, it is important to identify a ketone-degrading microorganism and establish its effect. Here, a methyl ethyl ketone (MEK)-degrading bacterium, Pseudomonas sp. KT-3, was isolated and its MEK degradation characteristics were examined in liquid cultures and a polyurethane-packed biofilter. In liquid cultures, strain KT-3 could degrade other ketone solvents, including diethyl ketone (DK), methyl propyl ketone (MPK), methyl isopropyl ketone (MIPK), methyl isobutyl ketone (MIBK), methyl butyl ketone (MBK) and methyl isoamyl ketone (MIAK). The maximum specific growth rate (mumax) of the isolate was 0.136 h(-1) in MEK medium supplemented with MEK as a sole carbon source, and kinetically, the maximum removal rate (Vm) and saturation constant (Km) for MEK were 12.28 mM g(-1)DCW h(-1) (DCW: dry cell weight) and 1.64 mM, respectively. MEK biodegradation by KT-3 was suppressed by the addition of MIBK or acetone, but not by toluene. In the tested biofilter, KT-3 exhibited a>90% removal efficiency for MEK inlet concentrations of around 500 ppmv at a space velocity (SV) of 150 h(-1). The elimination capacity of MEK was more influenced by SV than by the inlet concentration. Kinetic analysis showed that the maximum MEK removal rate (Vm) was 690 g m(-3) h(-1) and the saturation constant (Km) was 490 ppmv. Collectively, these results indicate the polyurethane sequencing batch biofilter with Pseudomonas sp. KT-3 will provide an excellent performance in the removal of gaseous MEK.

  9. [Contribution to the early diagnosis of bacteremia: microbial growth detection in liquid culture media by ultrasound].

    PubMed

    Maestre, J R; Montero de Espinosa, F R

    2001-04-01

    Nosocomial infection is an important problem because the number of patients daily affected in big hospitals. A big effort exists to develop techniques able to early detect the micro-organisms which cause the infection. The ultrasound is a mechanical radiology technique widely used in Medicine for diagnosis and therapy. It is also well known that this radiation can be used to control relative changes of several physico-chemical parameters in liquids. As an example, the velocity an attenuation of acoustic waves coming through a liquid can be accurately measured. The developed technique consists of an ultrasonic chamber immersed into a thermostatized water bath with two transducers operating in through-transmission. Different culture bottles were placed in between the transducers to live the ultrasound to come across the sample. Several micro-organisms with controlled concentrations, chosen between the most common in sepsis clinical, were used to inoculate each bottle. In the case of aerobic metabolism, the carbon dioxide gas produced by bacteria introduce elastic changes into the liquid which modify both the propagation velocity and the attenuation of the ultrasound. The continuous monitoring of the time-of-flight and the amplitude of an ultrasonic pulse coming through the sample give us a clear indication of the metabolism process. The signatures observed permits the identification of algorithms to early define the positive cases. The developed technique is faster than other commercial systems. The intrinsically non-invasive characteristic of the ultrasound and the relative cheapness of the technique open new attractive possibilities in microbiological diagnosis.

  10. Liquid biopsy and therapeutic response: Circulating tumor cell cultures for evaluation of anticancer treatment

    PubMed Central

    Khoo, Bee Luan; Grenci, Gianluca; Jing, Tengyang; Lim, Ying Bena; Lee, Soo Chin; Thiery, Jean Paul; Han, Jongyoon; Lim, Chwee Teck

    2016-01-01

    The lack of a robust anticancer drug screening system to monitor patients during treatment delays realization of personalized treatment. We demonstrate an efficient approach to evaluate drug response using patient-derived circulating tumor cell (CTC) cultures obtained from liquid biopsy. Custom microfabricated tapered microwells were integrated with microfluidics to allow robust formation of CTC clusters without pre-enrichment and subsequent drug screening in situ. Rapid feedback after 2 weeks promotes immediate intervention upon detection of drug resistance or tolerance. The procedure was clinically validated with blood samples (n = 73) from 55 patients with early-stage, newly diagnosed, locally advanced, or refractory metastatic breast cancer. Twenty-four of these samples were used for drug evaluation. Cluster formation potential correlated inversely with increased drug concentration and therapeutic treatment. This new and robust liquid biopsy technique can potentially evaluate patient prognosis with CTC clusters during treatment and provide a noninvasive and inexpensive assessment that can guide drug discovery development or therapeutic choices for personalized treatment. PMID:27453941

  11. Liquid biopsy and therapeutic response: Circulating tumor cell cultures for evaluation of anticancer treatment.

    PubMed

    Khoo, Bee Luan; Grenci, Gianluca; Jing, Tengyang; Lim, Ying Bena; Lee, Soo Chin; Thiery, Jean Paul; Han, Jongyoon; Lim, Chwee Teck

    2016-07-01

    The lack of a robust anticancer drug screening system to monitor patients during treatment delays realization of personalized treatment. We demonstrate an efficient approach to evaluate drug response using patient-derived circulating tumor cell (CTC) cultures obtained from liquid biopsy. Custom microfabricated tapered microwells were integrated with microfluidics to allow robust formation of CTC clusters without pre-enrichment and subsequent drug screening in situ. Rapid feedback after 2 weeks promotes immediate intervention upon detection of drug resistance or tolerance. The procedure was clinically validated with blood samples (n = 73) from 55 patients with early-stage, newly diagnosed, locally advanced, or refractory metastatic breast cancer. Twenty-four of these samples were used for drug evaluation. Cluster formation potential correlated inversely with increased drug concentration and therapeutic treatment. This new and robust liquid biopsy technique can potentially evaluate patient prognosis with CTC clusters during treatment and provide a noninvasive and inexpensive assessment that can guide drug discovery development or therapeutic choices for personalized treatment.

  12. Optimal control of inspired perfluorocarbon temperature for induction of hypothermia by total liquid ventilation in juvenile lamb model.

    PubMed

    Nadeau, Mathieu; Sage, Michael; Praud, Jean-Paul; Tissier, Renaud; Walti, Herve; Micheau, Philippe; Nadeau, Mathieu; Sage, Michael; Praud, Jean-Paul; Tissier, Renaud; Walti, Herve; Micheau, Philippe; Sage, Michael; Micheau, Philippe; Praud, Jean-Paul; Nadeau, Mathieu; Walti, Herve; Tissier, Renaud

    2016-08-01

    Mild hypothermia is well known for its therapeutic value in cardio- and neuroprotection. Many recent experimental studies have shown that the swiftness of the cooling offered by total liquid ventilation (TLV) holds great promise in achieving maximal therapeutic effect. TLV is an emerging ventilation technique in which the lungs are filled with breathable liquids, namely perfluorocarbons (PFCs). A liquid ventilator ensures subject ventilation by periodically renewing a volume of oxygenated, CO2-free and temperature-controlled breathable PFC. The substantial difference between breathing air and liquid is related to the fact that PFCs have over 500 times the volumetric thermal capacity of air 100% relative humidity. The PFC-filled lungs thus turn into an efficient heat exchanger with pulmonary circulation. The objective of the present study was to compute a posteriori the optimal inspired PFC temperature for ultrafast induction of mild hypothermia by TLV in a juvenile lamb experimentation using direct optimal control. The continuous time model and the discretized cycle-by-cycle model are presented. The control objectives of the direct optimal control are also presented and the results are compared with experimental data in order to validate the improved control performances. The computed direct optimal control showed that the inspired PFC temperature command can be improved to avoid temperature undershoots without altering the cooling performances.

  13. Genotypes-Independent Optimization of Nitrogen Supply for Isolated Microspore Cultures in Barley

    PubMed Central

    Lu, Ruiju; Chen, Zhiwei; Gao, Runhong; He, Ting; Wang, Yifei; Xu, Hongwei; Guo, Guimei; Li, Yingbo

    2016-01-01

    To establish a high-efficiency system of isolated microspore culture for different barley genotypes, we investigated the effects of nitrogen sources and concentrations on callus induction and plant regeneration in different barley genotypes. The results showed that the organic nitrogen sources greatly increased the callus induction, and the great reduction of total nitrogen sources would significantly decrease the callus induction. And the further optimization experiments revealed that the increasing of organic nitrogen sources was much important in callus induction while it seemed different in plant regeneration. Based on the great effects of organic nitrogen on callus induction, the medium of N6-ANO1/4-2000 might be the best choice for the microspore culture system. In addition, the phylogenetic analysis indicated that there were clear differences of genetic backgrounds among these barley genotypes, and it also suggested that this medium for microspore culture had widespread utilization in different barley genotypes. PMID:27525264

  14. Optimization of neuronal cultures from rat superior cervical ganglia for dual patch recording

    PubMed Central

    Amendola, Julien; Boumedine, Norah; Sangiardi, Marion; El Far, Oussama

    2015-01-01

    Superior cervical ganglion neurons (SCGN) are often used to investigate neurotransmitter release mechanisms. In this study, we optimized the dissociation and culture conditions of rat SCGN cultures for dual patch clamp recordings. Two weeks in vitro are sufficient to achieve a significant CNTF-induced cholinergic switch and to develop mature and healthy neuronal profiles suited for detailed patch clamp analysis. One single pup provides sufficient material to prepare what was formerly obtained from 12 to 15 animals. The suitability of these cultures to study neurotransmitter release mechanisms was validated by presynaptically perturbing the interaction of the v-SNARE VAMP2 with the vesicular V-ATPase V0c subunit. PMID:26399440

  15. Modelling of Microalgae Culture Systems with Applications to Control and Optimization.

    PubMed

    Bernard, Olivier; Mairet, Francis; Chachuat, Benoît

    2016-01-01

    Mathematical modeling is becoming ever more important to assess the potential, guide the design, and enable the efficient operation and control of industrial-scale microalgae culture systems (MCS). The development of overall, inherently multiphysics, models involves coupling separate submodels of (i) the intrinsic biological properties, including growth, decay, and biosynthesis as well as the effect of light and temperature on these processes, and (ii) the physical properties, such as the hydrodynamics, light attenuation, and temperature in the culture medium. When considering high-density microalgae culture, in particular, the coupling between biology and physics becomes critical. This chapter reviews existing models, with a particular focus on the Droop model, which is a precursor model, and it highlights the structure common to many microalgae growth models. It summarizes the main developments and difficulties towards multiphysics models of MCS as well as applications of these models for monitoring, control, and optimization purposes.

  16. Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis.

    PubMed

    Zhang, Jun; Dong, Ya-chen; Fan, Lin-lin; Jiao, Zhi-hua; Chen, Qi-he

    2015-01-22

    The effect of culture medium compositions on gellan gum production produced by fermentation with a halobacterium Sphingomonas paucimobilis QHZJUJW CGMCC2428 was studied. In this work, a fractional factorial design was applied to investigate the main factors that affected gellan gum production by S. paucimobilis QHZJUJW CGMCC2428. Sucrose was the best carbon source for gellan gum and peptone displayed better inducing effect. Central composite design and response surface methodology were adopted to derive a statistical model for optimizing submerged culture medium composition. These experimental results showed that the optimum culture medium for producing gellan gum was composed of 40.00 (w/v) sucrose, 3.00% peptone (w/v), MgSO4 (w/v), 9.20% KH2PO4 (w/v), 7.50% Na2HPO4 (w/v), 4.30% K2SO4 (w/v), pH 6.8-7.0. The maximal gellan gum was 19.89±0.68 g/L, which was agreed closely with the predicated value (20.12 g/L). After incubated for 72 h under the optimized culture medium in 5-L bioreactor, the gellan gum fermentation reached about 19.90±0.68 g/L, which was higher than that in the initial cultivation medium.

  17. Optimization of methyl jasmonate and β-cyclodextrin for enhanced production of taraxerol and taraxasterol in (Taraxacum officinale Weber) cultures.

    PubMed

    Sharma, Kiran; Zafar, Rasheeduz

    2016-06-01

    Taraxacum officinale Weber (TO) commonly known as "dandelion", is a tropical Asian medicinal plant which contains taraxasterol (TX) and taraxerol (TA) in its roots, which are reported to be commercially important anticancer compounds. The main objective of the present study was to evaluate the increase in yield of TX and TA through elicitation by addition of abiotic elictors like methyl jasmonate (MJ) and β-cyclodextrin (CD), to the root callus suspension cultures of TO. The root callus suspension was maintained on Murashige and Skoog's (MS) medium MS + IAA + BA + 2, 4-D (0.5 ppm + 1 ppm + 0.5 ppm). The concentrations of the abiotic elicitors MJ and CD were optimized using central composite design (CCD) and quantification of TA and TX in elicited cultures was done by High Performance Liquid Chromatography (HPLC) analysis. It was observed that MJ at a concentration of 0.2 mM showed good increase in content of TX to 0.032% w/w and at concentrations 0.05 mM, 0.1 mM and 0.2 mM showed similar increase in TA content to 0.018% w/w, whereas CD at the concentration of 25 mM showed highest increase in TX content to 0.036% w/w and at the concentrations of 25 mM, 50 mM showed increase in TA content to 0.023% w/w as compared to the plant root (PR) which showed content of TX as 0.0299% w/w and TA as 0.0169% w/w. From the present investigation it was concluded that out of the two abiotic elicitors MJ and CD, CD was found to be more effective to increase TA and TX content in Dandelion cell cultures. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Mutagenesis breeding of high echinocandin B producing strain and further titer improvement with culture medium optimization.

    PubMed

    Zou, Shu-Ping; Zhong, Wei; Xia, Chao-Jie; Gu, Ya-Nan; Niu, Kun; Zheng, Yu-Guo; Shen, Yin-Chu

    2015-10-01

    A combination of microbial strain improvement and statistical optimization is investigated to maximize echinocandin B (ECB) production from Aspergillus nidulans ZJB-0817. A classical sequential mutagenesis was studied first by using physical (ultraviolet irradiation at 254 nm) and chemical mutagens (lithium chloride and sodium nitrite). Mutant strain ULN-59 exhibited 2.1-fold increase in ECB production to 1583.1 ± 40.9 mg/L when compared with the parent strain (750.8 ± 32.0 mg/L). This is the first report where mutagenesis is applied in Aspergillus to improve ECB production. Further, fractional factorial design and central composite design were adopted to optimize the culture medium for increasing ECB production by the mutant ULN-59. Results indicated that four culture media including peptone, K2HPO4, mannitol and L-ornithine had significant effects on ECB production. The optimized medium provided another 1.4-fold increase in final ECB concentration to 2285.6 ± 35.6 mg/L compared to the original medium. The results of this study indicated the combined application of a classical mutation and medium optimization can improve effectively ECB production from A. nidulans and could be a promising tool to improve other secondary metabolites production by fungal strains.

  19. Initial eye movements during face identification are optimal and similar across cultures

    PubMed Central

    Or, Charles C.-F.; Peterson, Matthew F.; Eckstein, Miguel P.

    2015-01-01

    Culture influences not only human high-level cognitive processes but also low-level perceptual operations. Some perceptual operations, such as initial eye movements to faces, are critical for extraction of information supporting evolutionarily important tasks such as face identification. The extent of cultural effects on these crucial perceptual processes is unknown. Here, we report that the first gaze location for face identification was similar across East Asian and Western Caucasian cultural groups: Both fixated a featureless point between the eyes and the nose, with smaller between-group than within-group differences and with a small horizontal difference across cultures (8% of the interocular distance). We also show that individuals of both cultural groups initially fixated at a slightly higher point on Asian faces than on Caucasian faces. The initial fixations were found to be both fundamental in acquiring the majority of information for face identification and optimal, as accuracy deteriorated when observers held their gaze away from their preferred fixations. An ideal observer that integrated facial information with the human visual system's varying spatial resolution across the visual field showed a similar information distribution across faces of both races and predicted initial human fixations. The model consistently replicated the small vertical difference between human fixations to Asian and Caucasian faces but did not predict the small horizontal leftward bias of Caucasian observers. Together, the results suggest that initial eye movements during face identification may be driven by brain mechanisms aimed at maximizing accuracy, and less influenced by culture. The findings increase our understanding of the interplay between the brain's aims to optimally accomplish basic perceptual functions and to respond to sociocultural influences. PMID:26382003

  20. Vision Marker-Based In Situ Examination of Bacterial Growth in Liquid Culture Media

    PubMed Central

    Kim, Kyukwang; Choi, Duckyu; Lim, Hwijoon; Kim, Hyeongkeun; Jeon, Jessie S.

    2016-01-01

    The detection of bacterial growth in liquid media is an essential process in determining antibiotic susceptibility or the level of bacterial presence for clinical or research purposes. We have developed a system, which enables simplified and automated detection using a camera and a striped pattern marker. The quantification of bacterial growth is possible as the bacterial growth in the culturing vessel blurs the marker image, which is placed on the back of the vessel, and the blurring results in a decrease in the high-frequency spectrum region of the marker image. The experiment results show that the FFT (fast Fourier transform)-based growth detection method is robust to the variations in the type of bacterial carrier and vessels ranging from the culture tubes to the microfluidic devices. Moreover, the automated incubator and image acquisition system are developed to be used as a comprehensive in situ detection system. We expect that this result can be applied in the automation of biological experiments, such as the Antibiotics Susceptibility Test or toxicity measurement. Furthermore, the simple framework of the proposed growth measurement method may be further utilized as an effective and convenient method for building point-of-care devices for developing countries. PMID:27999349

  1. Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture.

    PubMed

    Dai, Yu-Jie; Li, Jing; Wei, Shu-Mei; Chen, Nan; Xiao, Yu-Peng; Tan, Zhi-Lei; Jia, Shi-Ru; Yuan, Nan-Nan; Tan, Ning; Song, Yi-Jie

    2013-04-01

    The effects of lights with different wavelengths on the growth and the yield of extracellular polysaccharides of Nostoc flagelliforme cells were investigated in a liquid cultivation. N. flagelliforme cells were cultured for 16 days in 500 ml conical flasks containing BG11 culture medium under 27 micromol·m-2·s-1 of light intensity and 25 degrees C on a rotary shaker (140 rpm). The chlorophyll a, phycocyanin, allophycocyanin, and phycoerythrin contents in N. flagelliforme cells under the lights of different wavelengths were also measured. It was found that the cell biomass and the yield of polysaccharide changed with different wavelengths of light. The biomass and the yield of extracellular polysaccharides under the red or violet light were higher than those under other light colors. Chlorophyll a, phycocyanin, and allophycocyanin are the main pigments in N. flagelliforme cells. The results showed that N. flagelliforme, like other cyanobacteria, has the ability of adjusting the contents and relative ratio of its pigments with the light quality. As a conclusion, N. flagelliforme cells favor red and violet lights and perform the complementary chromatic adaptation ability to acclimate to the changes of the light quality in the environment.

  2. Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase.

    PubMed

    Amaral, Priscilla F F; Freire, Mara G; Rocha-Leão, Maria Helena M; Marrucho, Isabel M; Coutinho, João A P; Coelho, Maria Alice Z

    2008-02-15

    Oxygenation is an important parameter involved in the design and operation of mixing-sparging bioreactors and it can be analyzed by means of the oxygen mass transfer coefficient (k(L)a). The operational conditions of a stirred, submerged aerated 2-L bioreactor have been optimized by studying the influence of a second liquid phase with higher oxygen affinity (perfluorodecalin or olive oil) in the k(L)a. Using k(L)a measurements, the influence of the following parameters on the oxygen transfer rate was evaluated: the volume of working medium, the type of impellers and their position, the organic phase concentration, the aqueous phase composition, and the concentration of inactive biomass. This study shows that the best experimental conditions were achieved with a perfluorodecalin volume fraction of 0.20, mixing using two Rushton turbines with six vertical blades and in the presence of YPD medium as the aqueous phase, with a k(L)a value of 64.6 h(-1). The addition of 20% of perfluorodecalin in these conditions provided a k(L)a enhancement of 25% when pure water was the aqueous phase and a 230% enhancement when YPD medium was used in comparison to their respective controls (no perfluorodecalin). Furthermore it is shown that the presence of olive oil as a second liquid phase is not beneficial to the oxygen transfer rate enhancement, leading to a decrease in the k(L)a values for all the concentrations studied. It was also observed that the magnitude of the enhancement of the k(L)a values by perfluorodecalin depends on the biomass concentration present.

  3. Liquid semen storage in elephants (Elephas maximus and Loxodonta africana): species differences and storage optimization.

    PubMed

    Kiso, Wendy K; Brown, Janine L; Siewerdt, Frank; Schmitt, Dennis L; Olson, Deborah; Crichton, Elizabeth G; Pukazhenthi, Budhan S

    2011-01-01

    Artificial insemination plays a key role in the genetic management of elephants in zoos. Because freshly extended semen is typically used for artificial insemination in elephants, it has become imperative to optimize conditions for liquid storage and semen transport. The objectives of this study were to examine the interactions between different extenders and storage temperatures on sperm total motility, progressive motility, and acrosomal integrity in Asian (Elephas maximus) and African (Loxodonta africana) elephants. Ejaculates were collected by rectal massage, diluted using a split-sample technique in 5 semen extenders: TL-Hepes (HEP), Modena (MOD), Biladyl (BIL), TEST refrigeration medium (TES), and INRA96 (INR), maintained at 35°C, 22°C, or 4°C. At 0, 4, 6, 12, and 24 hours, aliquots were removed and assessed for sperm total motility, progressive motility, and acrosomal integrity. After 24 hours of storage, African elephant spermatozoa exhibited greater longevity and higher values in sperm quality parameters compared with those of Asian elephants. In both species, semen storage at 35°C resulted in a sharp decline in all sperm quality parameters after 4 hours of storage, whereas storage at 22°C and 4°C facilitated sperm survival. In Asian elephants, MOD and HEP were most detrimental, whereas BIL, TES, and INR maintained motility up to 12 hours when spermatozoa were cooled to 22°Cor4°C. In African elephants, there were no differences among extenders. All media maintained good sperm quality parameters at 22°C or 4°C. However, although MOD, BIL, and INR were most effective at lower temperatures, HEP and TES maintained sperm motility at all storage temperatures. This study demonstrated sperm sensitivity to components of various semen extenders and storage temperatures and offers recommendations for semen extender choices for liquid semen storage for both Asian and African elephants.

  4. Optimization of Pressurized Liquid Extraction of Three Major Acetophenones from Cynanchum bungei Using a Box-Behnken Design

    PubMed Central

    Li, Wei; Zhao, Li-Chun; Sun, Yin-Shi; Lei, Feng-Jie; Wang, Zi; Gui, Xiong-Bin; Wang, Hui

    2012-01-01

    In this work, pressurized liquid extraction (PLE) of three acetophenones (4-hydroxyacetophenone, baishouwubenzophenone, and 2,4-dihydroxyacetophenone) from Cynanchum bungei (ACB) were investigated. The optimal conditions for extraction of ACB were obtained using a Box-Behnken design, consisting of 17 experimental points, as follows: Ethanol (100%) as the extraction solvent at a temperature of 120 °C and an extraction pressure of 1500 psi, using one extraction cycle with a static extraction time of 17 min. The extracted samples were analyzed by high-performance liquid chromatography using an UV detector. Under this optimal condition, the experimental values agreed with the predicted values by analysis of variance. The ACB extraction yield with optimal PLE was higher than that obtained by soxhlet extraction and heat-reflux extraction methods. The results suggest that the PLE method provides a good alternative for acetophenone extraction. PMID:23203079

  5. Optimal Boundary Control of a Simplified Ericksen-Leslie System for Nematic Liquid Crystal Flows in 2D

    NASA Astrophysics Data System (ADS)

    Cavaterra, Cecilia; Rocca, Elisabetta; Wu, Hao

    2017-02-01

    In this paper, we investigate an optimal boundary control problem for a two dimensional simplified Ericksen-Leslie system modelling the incompressible nematic liquid crystal flows. The hydrodynamic system consists of the Navier-Stokes equations for the fluid velocity coupled with a convective Ginzburg-Landau type equation for the averaged molecular orientation. The fluid velocity is assumed to satisfy a no-slip boundary condition, while the molecular orientation is subject to a time-dependent Dirichlet boundary condition that corresponds to the strong anchoring condition for liquid crystals. We first establish the existence of optimal boundary controls. Then we show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables.

  6. In vitro optimization of the Gallus domesticus oviduct epithelial cells culture.

    PubMed

    Kasperczyk, K; Bajek, A; Joachimiak, R; Walasik, K; Marszalek, A; Drewa, T; Bednarczyk, M

    2012-06-01

    The aim of this experiment was to establish an efficient method for isolation and further culture in vitro of the normal chicken oviduct epithelial cells (COEC) for cell-based research models. Different factors were tested to optimize COEC primary culture for repeatable results: the origin of isolated cells (oviduct Infundibulum or Magnum section); the oviduct tissue dissociation procedure (mechanical scrapping or mincing), tissue digestion times (15, 30 and 45 min), the culture plates coating (colagene I, polystyrene surface or 3T3 feeder layer), the growth media (classic DMEM/Ham's F12 and defined serum-free medium, Lonza Switzerland), incubation temperature (37 °C vs 41°C) and different cell seeding numbers: 0.2M, 0.5M and 1.0M cells/well. The COEC isolated by mincing the Infundibular neck and digestion of tissue for 30 min formed cell aggregates of bright colour and gave proliferating colonies of epithelial-like character which was the best result obtained from all applied procedures in our studies. The fibroblast-like cells considered as contaminants occurred only sporadically up to day 7 of culture. Seeding about 1M cells in 1 mL of serum-free medium onto 12-well dishes gave the optimal growth of colonies resulting in 5 to 7 confluent culture wells from a single oviduct sample. Feeder layer and collagen I did not improve adhesion of the COEC to the culture vessel. Adoption of 37 °C and 41 °C did not reveal apparent differences to the condition of cultured COEC. Cell differentiation and proliferation potential depends on number and replicative capacity of isolated progenitors. The progenitors are responsible for holoclones formation and good culture growth. The percentage of colonies developed from the cells isolated from Infundibulum was greater than that of other samples in our studies. We conclude that the model of COEC primary cultures from different segments of oviduct, in particular infundibulum, should be incorporated to the range of avian cells

  7. Development and population dynamics of Steinernema yirgalemense (Rhabditida: Steinernematidae) and growth characteristics of its associated Xenorhabdus indica symbiont in liquid culture.

    PubMed

    Ferreira, T; Addison, M F; Malan, A P

    2016-05-01

    Entomopathogenic nematodes have become a valuable addition to the range of biological control agents available for insect control. An endemic nematode, Steinernema yirgalemense, has been found to be effective against a wide range of key insect pests. The next step would be the mass production this nematode for commercial application. This requires the establishment of monoxenic cultures of both the nematode and the symbiotic bacterium Xenorhabdus indica. First-stage juveniles of S. yirgalemense were obtained from eggs, while X. indica was isolated from nematode-infected wax moth larvae. The population density of the various life stages of S. yirgalemense during the developmental phase in liquid culture was determined. The recovery of infective juveniles (IJs) to the third-stage feeding juveniles, was 67 ± 10%, reaching a maximum population density of 75,000 IJs ml- 1 on day 13 after inoculation. Adult density increased after 8 days, with the maximum female density being 4600 ml- 1 on day 15, whereas the maximum male density was 4300 ml- 1 on day 12. Growth curves for X. indica showed that the exponential phase was reached 15 h after inoculation to the liquid medium. The stationary phase was reached after 42 h, with an average of 51 × 107 colony-forming units ml- 1. Virulence tests showed a significant difference in insect mortality between in vitro- and in vivo-produced nematodes. The success obtained with the production of S. yirgalemense in liquid culture can serve as the first step in the optimizing and upscaling of the commercial production of nematodes in fermenters.

  8. High performance liquid chromatographic determination of ultra traces of two tricyclic antidepressant drugs imipramine and trimipramine in urine samples after their dispersive liquid-liquid microextraction coupled with response surface optimization.

    PubMed

    Shamsipur, Mojtaba; Mirmohammadi, Mehrosadat

    2014-11-01

    Dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography by ultraviolet detection (HPLC-UV) as a fast and inexpensive technique was applied to the determination of imipramine and trimipramine in urine samples. Response surface methodology (RSM) was used for multivariate optimization of the effects of seven different parameters influencing the extraction efficiency of the proposed method. Under optimized experimental conditions, the enrichment factors and extraction recoveries were between 161.7-186.7 and 97-112%, respectively. The linear range and limit of detection for both analytes found to be 5-100ng mL(-1) and 0.6ng mL(-1), respectively. The relative standard deviations for 5ng mL(-1) of the drugs in urine samples were in the range of 5.1-6.1 (n=5). The developed method was successfully applied to real urine sample analyses.

  9. Optimizing culture conditions for free-living stages of the nematode parasite Strongyloides ratti.

    PubMed

    Dulovic, Alex; Puller, Vadim; Streit, Adrian

    2016-09-01

    The rat parasitic nematode Strongyloides ratti (S. ratti) has recently emerged as a model system for various aspects of parasite biology and evolution. In addition to parasitic parthenogenetic females, this species can also form facultative free-living generations of sexually reproducing adults. These free-living worms are bacteriovorous and grow very well when cultured in the feces of their host. However, in fecal cultures the worms are rather difficult to find for observation and experimental manipulation. Therefore, it has also been attempted to raise S. ratti on Nematode Growth Media (NGM) plates with Escherichia coli OP50 as food, exactly as described for the model nematode Caenorhabditis elegans. Whilst worms did grow on these plates, their longevity and reproductive output compared to fecal cultures were dramatically reduced. In order to improve the culture success we tested other plates occasionally used for C. elegans and, starting from the best performing one, systematically varied the plate composition, the temperature and the food in order to further optimize the conditions. Here we present a plate culturing protocol for free-living stages of S. ratti with strongly improved reproductive success and longevity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Evaluation of a liquid chromatographic method for the determination of fumonisins in corn, poultry feed, and Fusarium culture material.

    PubMed

    Rice, L G; Ross, P F; Dejong, J; Plattner, R D; Coats, J R

    1995-01-01

    The performance of a liquid chromatographic method for determining fumonisins in corn, animal feeds, and culture material was evaluated. Efficiencies of extractions with the following solvent systems were determined: acetonitrile-water (50 + 50, v/v), methanol-water (75 + 25, v/v), and 100% water. The acetonitrile solvent gave both higher extraction efficiencies and faster extraction times than the other 2 solvents. Extraction was followed by C18 solid-phase extraction column cleanup. Fumonisin B1 (FB1), fumonisin B2 (FB2), and fumonisin B3 (FB3) were measured by precolumn derivatization with o-phthalaldehyde followed by isocratic separation on a C18 reversed-phase column with a mobile phase of 50 mM potassium dihydrogen phosphate (pH 3.3)-acetonitrile (60 + 40). Commercially prepared poultry feed, corn, and Fusarium spp. corn cultures were analyzed at the following levels: FB1, 1.5 to 15,000 micrograms/g; FB2, 0.5 to 4000 micrograms/g; FB3, and 0.17 to 1,500 micrograms/g. Recoveries were 91-94%, 90-100%, and 81-93% for FB1, FB2, and FB3, respectively. Precision (coefficient of variation) was determined with pooled field samples and ranged from 2% at 19 micrograms/g for FB1 to 9% at 0.17 microgram/g for FB3. Time and pH studies of the formation of the fluorescent derivative and its stability were conducted. Complete reaction occurred at pHs above 7.9, with optimal pH for chromatography between 8.0 and 8.5. No statistically significant response differences were detected for reaction times ranging from 4 to 40 min; however, the detector signal was significantly reduced when reaction times were shorter than 4 min. Chromatograms of samples were free of interferences for all feeds, corn, and culture material tested.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Optimization of culture media of pathogenic Mycoplasma hyopneumoniae by a response surface methodology

    PubMed Central

    Hwang, Mi-Hyun; Damte, Dereje; Cho, Min-Hee; Kim, Young-Hoan

    2010-01-01

    Composition of culture medium for mass production of Mycoplasma hyopneumoniae was optimized using a response surface methodology (RSM). Initially, the influence of glucose, thallium acetate, fresh yeast extract, horse serum, and porcine serum on the production of mycoplasmal protein was assessed using a 'one factor at a time' technique. Next, factors with a significant effect, including fresh yeast extract, and horse and porcine sera, were selected for further optimization using a central composite design (CCD) of RSM. The experimental results were fitted into a second order polynomial model equation. Estimated optimal condition of the factors for maximum production of mycoplasmal protein (i.e., triple-fold increase from 0.8 mg/L produced by basal mycoplasma media to 2.5 mg/L) was 10.9% fresh yeast extract, 15% horse serum, and 31.5% porcine serum (v/v). For the optimized conditions, a 2.96 mg/L experimental result was observed, similar to the estimated optimal conditions result of the CCD. PMID:21113102

  12. Optimal control for nonlinear dynamical system of microbial fed-batch culture

    NASA Astrophysics Data System (ADS)

    Liu, Chongyang

    2009-10-01

    In fed-batch culture of glycerol bio-dissimilation to 1, 3-propanediol (1, 3-PD), the aim of adding glycerol is to obtain as much 1, 3-PD as possible. So a proper feeding rate is required during the process. Taking the concentration of 1, 3-PD at the terminal time as the performance index and the feeding rate of glycerol as the control function, we propose an optimal control model subject to a nonlinear dynamical system and constraints of continuous state and non-stationary control. A computational approach is constructed to seek the solution of the above model in two aspects. On the one hand we transcribe the optimal control model into an unconstrained one based on the penalty functions and an extension of the state space; on the other hand, by approximating the control function with simple functions, we transform the unconstrained optimal control problem into a sequence of nonlinear programming problems, which can be solved using gradient-based optimization techniques. The convergence analysis of this approximation is also investigated. Numerical results show that, by employing the optimal control policy, the concentration of 1, 3-PD at the terminal time can be increased considerably.

  13. Insights into an Optimization of Plasmodium vivax Sal-1 In Vitro Culture: The Aotus Primate Model

    PubMed Central

    Obaldía, Nicanor; Nuñez, Marlon; Dutary, Sahir; Lim, Caeul; Barnes, Samantha; Kocken, Clemens H. M.; Duraisingh, Manoj T.; Adams, John H.; Pasini, Erica M.

    2016-01-01

    Malaria is one of the most significant tropical diseases, and of the Plasmodium species that cause human malaria, P. vivax is the most geographically widespread. However, P. vivax remains a relatively neglected human parasite since research is typically limited to laboratories with direct access to parasite isolates from endemic field settings or from non-human primate models. This restricted research capacity is in large part due to the lack of a continuous P. vivax in vitro culture system, which has hampered the ability for experimental research needed to gain biological knowledge and develop new therapies. Consequently, efforts to establish a long-term P. vivax culture system are confounded by our poor knowledge of the preferred host cell and essential nutrients needed for in vitro propagation. Reliance on very heterogeneous P. vivax field isolates makes it difficult to benchmark parasite characteristics and further complicates development of a robust and reliable culture method. In an effort to eliminate parasite variability as a complication, we used a well-defined Aotus-adapted P. vivax Sal-1 strain to empirically evaluate different short-term in vitro culture conditions and compare them with previous reported attempts at P. vivax in vitro culture Most importantly, we suggest that reticulocyte enrichment methods affect invasion efficiency and we identify stabilized forms of nutrients that appear beneficial for parasite growth, indicating that P. vivax may be extremely sensitive to waste products. Leuko-depletion methods did not significantly affect parasite development. Formatting changes such as shaking and static cultures did not seem to have a major impact while; in contrast, the starting haematocrit affected both parasite invasion and growth. These results support the continued use of Aotus-adapted Sal-1 for development of P. vivax laboratory methods; however, further experiments are needed to optimize culture conditions to support long-term parasite

  14. Determination of the optimal culture conditions for detecting thermophilic campylobacters in environmental water.

    PubMed

    Lévesque, Simon; St-Pierre, Karen; Frost, Eric; Arbeit, Robert D; Michaud, Sophie

    2011-07-01

    This study evaluated alternative protocols for culturing thermophilic campylobacters in environmental water. All samples were filtered through a sterile 0.45μm pore-size membrane, which was then incubated in Preston enrichment broth. Four variables were compared: water sample volume (2000mL vs. 500mL), enrichment broth volume (25mL vs. 100mL), enrichment incubation duration (24h vs. 48h), and number of enrichment passages (one vs. two). In addition, DNA extracts were prepared from all final broths and analyzed using three rRNA PCR assays. River water was collected at 3 sampling sites weekly for 9 weeks. Among these 27 collections, 25 (93%) yielded Campylobacter spp. under at least one of the 16 culture conditions. By univariate analysis, yields were significantly better for the 2000mL sample volume (68.5% vs. 43.0%, p<0.0001) and the 25mL enrichment broth volume (64.5% vs. 47.0%, p<0.0004). Neither of the enrichment period had a significant effect, although there was a trend in favor of 48h incubation (59.5% vs. 52.0%, p=0.13). The three PCR methods gave concordant results for 66 (33%) of the culture-negative samples and 103 (50%) of the culture-positive samples. Compared with culture results, Lubeck's 16S PCR assay had the best performance characteristics, with a sensitivity of 82% and a specificity of 94%. Of the 12 culture-negative samples positive by Lubeck's PCR assay, 11 (92%) samples were also positive by Denis' 16S PCR assay, suggesting that in these cases the culture might have been falsely negative. Based on our results, we conclude that the optimal conditions for detecting Campylobacter spp. in natural waters include 2000mL sample volume and a single enrichment broth of 25mL PB incubated for 48h.

  15. Insights into an Optimization of Plasmodium vivax Sal-1 In Vitro Culture: The Aotus Primate Model.

    PubMed

    Shaw-Saliba, Kathryn; Thomson-Luque, Richard; Obaldía, Nicanor; Nuñez, Marlon; Dutary, Sahir; Lim, Caeul; Barnes, Samantha; Kocken, Clemens H M; Duraisingh, Manoj T; Adams, John H; Pasini, Erica M

    2016-07-01

    Malaria is one of the most significant tropical diseases, and of the Plasmodium species that cause human malaria, P. vivax is the most geographically widespread. However, P. vivax remains a relatively neglected human parasite since research is typically limited to laboratories with direct access to parasite isolates from endemic field settings or from non-human primate models. This restricted research capacity is in large part due to the lack of a continuous P. vivax in vitro culture system, which has hampered the ability for experimental research needed to gain biological knowledge and develop new therapies. Consequently, efforts to establish a long-term P. vivax culture system are confounded by our poor knowledge of the preferred host cell and essential nutrients needed for in vitro propagation. Reliance on very heterogeneous P. vivax field isolates makes it difficult to benchmark parasite characteristics and further complicates development of a robust and reliable culture method. In an effort to eliminate parasite variability as a complication, we used a well-defined Aotus-adapted P. vivax Sal-1 strain to empirically evaluate different short-term in vitro culture conditions and compare them with previous reported attempts at P. vivax in vitro culture Most importantly, we suggest that reticulocyte enrichment methods affect invasion efficiency and we identify stabilized forms of nutrients that appear beneficial for parasite growth, indicating that P. vivax may be extremely sensitive to waste products. Leuko-depletion methods did not significantly affect parasite development. Formatting changes such as shaking and static cultures did not seem to have a major impact while; in contrast, the starting haematocrit affected both parasite invasion and growth. These results support the continued use of Aotus-adapted Sal-1 for development of P. vivax laboratory methods; however, further experiments are needed to optimize culture conditions to support long-term parasite

  16. Effect of egg yolk on the detection of Mycobacterium avium subsp. paratuberculosis using the ESP II liquid culture system.

    PubMed

    Harris, N Beth; Robbe-Austerman, Suelee; Payeur, Janet B

    2005-11-01

    Rapid diagnosis of paratuberculosis in infected cattle is important for the successful control of Johne disease within herds. Thus, improving culture methods for Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) will aid in the identification of asymptomatic animals. Egg yolk is a component of the media used for growing M. paratuberculosis, but its requirement as a supplement has not been reported. Using the ESP II liquid culture system, 2 different sources and 5 concentrations (3.3%, 1.6%, 0.8%, 0.4%, and 0%) of egg yolk were analyzed. Egg yolk source did not affect either recovery rate or time to detection, but both parameters were significantly improved when the 3.3% egg yolk concentrations (final volume) were used over media containing no egg yolk. This study also assessed the recovery of M. paratuberculosis from fecal samples that were cultured multiple times using Herrold egg yolk agar (HEY). Specimens containing greater than 70 cfu/g feces could routinely be identified as positive for M. paratuberculosis after only 1 culture attempt, whereas specimens with fewer bacteria were only intermittently positive, even after 5 replicate cultures. Therefore, this study indicates that the sensitivity of the Trek Diagnostic ESP II liquid culture system for M. paratuberculosis is affected by egg yolk concentration and that single culture attempts using HEY solid media may not identify specimens containing low numbers of bacteria.

  17. Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization.

    PubMed

    Márquez, A; Moreno, I; Iemmi, C; Lizana, A; Campos, J; Yzuel, M J

    2008-02-04

    In this paper we characterize the polarimetric properties of a liquid crystal on silicon display (LCoS), including depolarization and diattenuation which are usually not considered when applying the LCoS in diffractive or adaptive optics. On one hand, we have found that the LCoS generates a certain degree (that can be larger than a 10%) of depolarized light, which depends on the addressed gray level and on the incident state of polarization (SOP), and can not be ignored in the above mentioned applications. The main origin of the depolarized light is related with temporal fluctuations of the SOP of the light reflected by the LCoS. The Mueller matrix of the LCoS is measured as a function of the gray level, which enables for a numerical optimization of the intensity modulation configurations. In particular we look for maximum intensity contrast modulation or for constant intensity modulation. By means of a heuristic approach we show that, using elliptically polarized light, amplitude-mostly or phase-mostly modulation can be obtained at a wavelength of 633 nm.

  18. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris.

    PubMed

    Cha, Kwang Hyun; Lee, Hee Ju; Koo, Song Yi; Song, Dae-Geun; Lee, Dong-Un; Pan, Cheol-Ho

    2010-01-27

    Pressurized liquid extraction (PLE) was applied to the extraction of carotenoids and chlorophylls from the green microalga Chlorella vulgaris. Four extraction techniques such as maceration (MAC), Soxhlet extraction (SOX), ultrasound assisted extraction (UAE), and PLE were compared, and both the extraction temperature (50, 105, and 160 degrees C) and the extraction time (8, 19, and 30 min), which are the two main factors for PLE, were optimized with a central composite design to obtain the highest extraction efficiency. The extraction solvent (90% ethanol/water) could adequately extract the functional components from C. vulgaris. PLE showed higher extraction efficiencies than MAC, SOX, and UAE. Temperature was the key parameter having the strongest influence on the extraction of carotenoids and chlorophylls from chlorella. In addition, high heat treatment (>110 degrees C) by PLE minimized the formation of pheophorbide a, a harmful chlorophyll derivative. These results indicate that PLE may be a useful extraction method for the simultaneous extraction of carotenoids and chlorophylls from C. vulgaris.

  19. Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids.

    PubMed

    Herrero, Miguel; Jaime, Laura; Martín-Alvarez, Pedro J; Cifuentes, Alejandro; Ibáñez, Elena

    2006-07-26

    In this work, extraction of antioxidant compounds from Dunaliella salina microalga is optimized by combining pressurized liquid extraction (PLE) and experimental design (three-level factorial design) with three different solvents (hexane, ethanol, and water). Two main factors were considered, the extraction temperature (40, 100, and 160 degrees C) and the extraction time (5, 17.5, and 30 min). As response variables, the extraction yield (percent dry weight/initial weight) and the antioxidant activity of the extracts (determined using the TEAC method) were used. The parameters of the model were estimated by multiple linear regression. Results showed that the extraction temperature was the factor having the strongest influence (positive) on the two response variables. The best yields were obtained with ethanol at the higher extraction temperature and time tested. Besides, although hexane extracts provided the best antioxidant activity, ethanol extracts were also very active. The chemical characterization of ethanol extracts was carried out using HPLC-DAD, and attempts have been made to correlate their chemical composition with the antioxidant activity measured. Results pointed out that the extracts contained, besides all-trans-beta-carotene and isomers, several different minor carotenoids that seemed to make a contribution to the antioxidant activity of the extracts.

  20. Optimized liquid chromatography tandem mass spectrometry approach for the determination of diquat and paraquat herbicides.

    PubMed

    Hao, Chunyan; Zhao, Xiaoming; Morse, David; Yang, Paul; Taguchi, Vince; Morra, Franca

    2013-08-23

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) determination of quaternary ammonium herbicides diquat (DQ) and paraquat (PQ) can be very challenging due to their complicated chromatographic and mass spectrometric behaviors. Various multiple reaction monitoring (MRM) transitions from radical cations M(+) and singly charged cations [M-H](+), have been reported for LC-MS/MS quantitation under different chromatographic and mass spectrometric conditions. However, interference peaks were observed for certain previously reported MRM transitions in our study. Using a Dionex Acclaim(®) reversed-phase and HILIC mixed-mode LC column, we evaluated the most sensitive MRM transitions from three types of quasi-molecular ions of DQ and PQ, elucidated the cross-interference phenomena, and demonstrated that the rarely mentioned MRM transitions from dications M(2+) offered the best selectivity for LC-MS/MS analysis. Experimental parameters, such as IonSpray (IS) voltage, source temperature, declustering potential (DP), column oven temperature, collision energy (CE), acid and salt concentrations in the mobile phases were also optimized and an uncommon electrospray ionization (ESI) capillary voltage of 1000V achieved the highest sensitivity. Employing the proposed dication transitions 92/84.5 for DQ and 93/171 for PQ, the direct aqueous injection LC-MS/MS method developed was able to provide a method detection limit (MDL) of 0.1μg/L for the determination of these two herbicides in drinking water. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Sample volume optimization for radon-in-water detection by liquid scintillation counting.

    PubMed

    Schubert, Michael; Kopitz, Juergen; Chałupnik, Stanisław

    2014-08-01

    Radon is used as environmental tracer in a wide range of applications particularly in aquatic environments. If liquid scintillation counting (LSC) is used as detection method the radon has to be transferred from the water sample into a scintillation cocktail. Whereas the volume of the cocktail is generally given by the size of standard LSC vials (20 ml) the water sample volume is not specified. Aim of the study was an optimization of the water sample volume, i.e. its minimization without risking a significant decrease in LSC count-rate and hence in counting statistics. An equation is introduced, which allows calculating the ²²²Rn concentration that was initially present in a water sample as function of the volumes of water sample, sample flask headspace and scintillation cocktail, the applicable radon partition coefficient, and the detected count-rate value. It was shown that water sample volumes exceeding about 900 ml do not result in a significant increase in count-rate and hence counting statistics. On the other hand, sample volumes that are considerably smaller than about 500 ml lead to noticeably lower count-rates (and poorer counting statistics). Thus water sample volumes of about 500-900 ml should be chosen for LSC radon-in-water detection, if 20 ml vials are applied.

  2. Optimization of culturing conditions of recombined Escherichia coli to produce umami octopeptide-containing protein.

    PubMed

    Zhang, Yin; Wei, Xiong; Lu, Zhou; Pan, Zhongli; Gou, Xinhua; Venkitasamy, Chandrasekar; Guo, Siya; Zhao, Liming

    2017-07-15

    Using synthesized peptides to verify the taste of natural peptides was probably the leading cause for tasting disputes regarding umami peptides. A novel method was developed to prepare the natural peptide which could be used to verify the taste of umami peptide. A controversial octopeptide was selected and gene engineering was used to structure its Escherichia coli. expressing vector. A response surface method was adopted to optimize the expression conditions of the recombinant protein. The results of SDS-PAGE for the recombinant protein indicated that the recombinant expression system was successfully structured. The fitting results of the response surface experiment showed that the OD600 value was the key factor which influenced the expression of the recombinant protein. The optimal culturing process conditions predicted with the fitting model were an OD600 value of 0.5, an IPTG concentration of 0.6mM, a culturing temperature of 28.75°C and a culturing time of 5h.

  3. Development of an optimized medium, strain and high-throughput culturing methods for Methylobacterium extorquens.

    PubMed

    Delaney, Nigel F; Kaczmarek, Maria E; Ward, Lewis M; Swanson, Paige K; Lee, Ming-Chun; Marx, Christopher J

    2013-01-01

    Methylobacterium extorquens strains are the best-studied methylotrophic model system, and their metabolism of single carbon compounds has been studied for over 50 years. Here we develop a new system for high-throughput batch culture of M. extorquens in microtiter plates by jointly optimizing the properties of the organism, the growth media and the culturing system. After removing cellulose synthase genes in M. extorquens strains AM1 and PA1 to prevent biofilm formation, we found that currently available lab automation equipment, integrated and managed by open source software, makes possible reliable estimates of the exponential growth rate. Using this system, we developed an optimized growth medium for M. extorquens using response surface methodologies. We found that media that used EDTA as a metal chelator inhibited growth and led to inconsistent culture conditions. In contrast, the new medium we developed with a PIPES buffer and metals chelated by citrate allowed for fast and more consistent growth rates. This new Methylobacterium PIPES ('MP') medium was also robust to large deviations in its component ingredients which avoided batch effects from experiments that used media prepared at different times. MP medium allows for faster and more consistent growth than other media used for M. extorquens.

  4. Evaluation and optimization of hepatocyte culture media factors by design of experiments (DoE) methodology.

    PubMed

    Dong, Jia; Mandenius, Carl-Fredrik; Lübberstedt, Marc; Urbaniak, Thomas; Nüssler, Andreas K N; Knobeloch, Daniel; Gerlach, Jörg C; Zeilinger, Katrin

    2008-07-01

    Optimization of cell culture media based on statistical experimental design methodology is a widely used approach for improving cultivation conditions. We applied this methodology to refine the composition of an established culture medium for growth of a human hepatoma cell line, C3A. A selection of growth factors and nutrient supplements were systematically screened according to standard design of experiments (DoE) procedures. The results of the screening indicated that the medium additives hepatocyte growth factor, oncostatin M, and fibroblast growth factor 4 significantly influenced the metabolic activities of the C3A cell line. Surface response methodology revealed that the optimum levels for these factors were 30 ng/ml for hepatocyte growth factor and 35 ng/ml for oncostatin M. Additional experiments on primary human hepatocyte cultures showed high variance in metabolic activities between cells from different individuals, making determination of optimal levels of factors more difficult. Still, it was possible to conclude that hepatocyte growth factor, epidermal growth factor, and oncostatin M had decisive effects on the metabolic functions of primary human hepatocytes.

  5. Optimization of cultural conditions for conversion of glycerol to ethanol by Enterobacter aerogenes S012

    PubMed Central

    2013-01-01

    The aim of this research is to optimize the cultural conditions for the conversion of glycerol to ethanol by Enterobacter aerogenes S012. Taguchi method was used to screen the cultural conditions based on their signal to noise ratio (SN). Temperature (°C), agitation speed (rpm) and time (h) were found to have the highest influence on both glycerol utilization and ethanol production by the organism while pH had the lowest. Full factorial design, statistical analysis, and regression model equation were used to optimize the selected cultural parameters for maximum ethanol production. The result showed that fermentation at 38°C and 200 rpm for 48 h would be ideal for the bacteria to produce maximum amount of ethanol from glycerol. At these optimum conditions, ethanol production, yield and productivity were 25.4 g/l, 0.53 g/l/h, and 1.12 mol/mol-glycerol, repectively. Ethanol production increased to 26.5 g/l while yield and productivity decreased to 1.04 mol/mol-glycerol and 0.37 g/l/h, respectively, after 72 h. Analysis of the fermentation products was performed using HPLC, while anaerobic condition was created by purging the fermentation vessel with nitrogen gas. PMID:23388539

  6. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.

    1992-01-01

    The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.

  7. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.

    1992-01-01

    The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.

  8. Serum and supplement optimization for EU GMP-compliance in cardiospheres cell culture

    PubMed Central

    Chimenti, Isotta; Gaetani, Roberto; Forte, Elvira; Angelini, Francesco; De Falco, Elena; Zoccai, Giuseppe Biondi; Messina, Elisa; Frati, Giacomo; Giacomello, Alessandro

    2014-01-01

    Cardiac progenitor cells (CPCs) isolated as cardiospheres (CSs) and CS-derived cells (CDCs) are a promising tool for cardiac cell therapy in heart failure patients, having CDCs already been used in a phase I/II clinical trial. Culture standardization according to Good Manufacturing Practices (GMPs) is a mandatory step for clinical translation. One of the main issues raised is the use of xenogenic additives (e.g. FBS, foetal bovine serum) in cell culture media, which carries the risk of contamination with infectious viral/prion agents, and the possible induction of immunizing effects in the final recipient. In this study, B27 supplement and sera requirements to comply with European GMPs were investigated in CSs and CDCs cultures, in terms of process yield/efficiency and final cell product gene expression levels, as well as phenotype. B27− free CS cultures produced a significantly reduced yield and a 10-fold drop in c-kit expression levels versus B27+ media. Moreover, autologous human serum (aHS) and two different commercially available GMP AB HSs were compared with standard research-grade FBS. CPCs from all HSs explants had reduced growth rate, assumed a senescent-like morphology with time in culture, and/or displayed a significant shift towards the endothelial phenotype. Among three different GMP gamma-irradiated FBSs (giFBSs) tested, two provided unsatisfactory cell yields, while one performed optimally, in terms of CPCs yield/phenotype. In conclusion, the use of HSs for the isolation and expansion of CSs/CDCs has to be excluded because of altered proliferation and/or commitment, while media supplemented with B27 and the selected giFBS allows successful EU GMP-complying CPCs culture. PMID:24444305

  9. Development of an ionic-liquid-based dispersive liquid-liquid microextraction method for the determination of antichagasic drugs in human breast milk: Optimization by central composite design.

    PubMed

    Padró, Juan M; Pellegrino Vidal, Rocío B; Echevarria, Romina N; Califano, Alicia N; Reta, Mario R

    2015-05-01

    Chagas disease constitutes a major public health problem in Latin America. Human breast milk is a biological sample of great importance for the analysis of therapeutic drugs, as unwanted exposure through breast milk could result in pharmacological effects in the nursing infant. Thus, the goal of breast milk drug analysis is to inquire to which extent a neonate may be exposed to a drug during lactation. In this work, we developed an analytical technique to quantify benznidazole and nifurtimox (the two antichagasic drugs currently available for medical treatment) in human breast milk, with a simple sample pretreatment followed by an ionic-liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and UV detection. For this technique, the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate has been used as the "extraction solvent." A central composite design was used to find the optimum values for the significant variables affecting the extraction process: volume of ionic liquid, volume of dispersant solvent, ionic strength, and pH. At the optimum working conditions, the average recoveries were 77.5 and 89.7%, the limits of detection were 0.06 and 0.09 μg/mL and the interday reproducibilities were 6.25 and 5.77% for benznidazole and nifurtimox, respectively. The proposed methodology can be considered sensitive, simple, robust, accurate, and green.

  10. Optimization of dispersive liquid-liquid microextraction for the selective determination of trace amounts of palladium by flame atomic absorption spectroscopy.

    PubMed

    Kokya, Taher Ahmadzadeh; Farhadi, Khalil

    2009-09-30

    A new simple and reliable method for rapid and selective extraction and determination of the trace levels of Pd(2+) ion was developed by dispersive liquid-liquid microextraction preconcentration and flame atomic absorption spectrometry detection. In the proposed approach, thioridazine HCl (TRH) was used as a Pd(2+) ion selective complexing agent. The effective parameters on the extraction recovery were studied and optimized utilizing two decent optimization methods; factorial design and central composite design (CCD). Through factorial design the best efficiency of extraction acquired using ethanol and chloroform as dispersive and extraction solvents respectively. CCD optimization resulted in 1.50 mL of dispersive solvent; 0.15 mL of extraction solvent; 0.45 mg of TRH and 250 mg of potassium chloride salt per 5 mL of sample solution. Under the optimum conditions the calibration graph was linear over the range 100-2000 microgL(-1). The average relative standard deviation was 0.7% for five repeated determinations. The limit of detection was 90 microg L(-1). The average enrichment factor and recovery reached 45.7% and 74.2% respectively. The method was successfully applied to the determination of trace amounts of palladium in the real water samples.

  11. Optimization of a pressurized liquid extraction method by experimental design methodologies for the determination of fluoroquinolone residues in infant foods by liquid chromatography.

    PubMed

    Rodriguez, E; Villoslada, F Navarro; Moreno-Bondi, M C; Marazuela, M D

    2010-01-29

    In the present study, we have developed a method based on pressurized liquid extraction (PLE) and liquid chromatography with fluorescence detection (LC-FLD) for the determination of residues of fluoroquinolones (FQs) in infant food products. PLE extraction has been optimized by the application of experimental design methodologies. Initially, a fractional factorial design (FFD) was used to screen the significance of four extraction parameters: solvent composition, temperature, pressure and number of cycles. The most significant factors, identified by ANOVA analysis, were the solvent composition, temperature and pressure, which were further optimized with the aid of a face centred design (FCD) and the desirability function. The optimized operating PLE conditions were as follows: ACN/o-phosphoric acid 50mM pH 3.0 (80:20, v/v), 80 degrees C, 2000psi and three extraction cycles of 5min. Under these conditions, recoveries of the target FQs varied between 69% and 107% with RSDs below 9%. The whole method was validated according to the Commission Decision 2002/657/EC guidelines. The proposed method has been successfully applied to the analysis of different infant food products bought in local supermarkets and pharmacies. The results showed the presence of residues of enrofloxacin in a non-compliant baby food sample corresponding to a chicken-based formulation, which were also confirmed and quantified by LC-MS/MS analysis. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  12. Optimization of Culturing Conditions for Improved Production of Bioactive Metabolites by Pseudonocardia sp. VUK-10

    PubMed Central

    Usha Kiranmayi, Mangamuri; Sudhakar, Poda; Sreenivasulu, Kamma

    2011-01-01

    The purpose of the present study was to investigate the influence of cultural and environmental parameters affecting the growth and bioactive metabolite production of the rare strain VUK-10 of actinomycete Pseudonocardia, which exhibits a broad spectrum of in vitro antimicrobial activity against bacteria and fungi. Production of bioactive metabolites by the strain was high the in modified yeast extract-malt extract-dextrose (ISP-2) broth, as compared to other tested media. Glucose (1%) and tryptone (0.25%) were found to be the most suitable carbon and nitrogen sources, respectively, for optimum production of growth and bioactive metabolites. Maximum production of bioactive metabolites was found in the culture medium with initial pH 7 incubated with the strain for four days at 30℃, under shaking conditions. This is the first report on the optimization of bioactive metabolites by Pseudonocardia sp. VUK-10. PMID:22783100

  13. Statistical optimization of culture condition for enhanced hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16.

    PubMed

    Cao, Guang-li; Ren, Nan-qi; Wang, Ai-jie; Guo, Wan-qian; Yao, Jing; Feng, Yu-jie; Zhao, Qing-liang

    2010-03-01

    The optimization of culture condition for enhanced hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16 was conducted using statistical experimental design and analysis. Plackett-Burman design was first used to screen the most important variables influencing hydrogen production, and subsequently central composite design was adopted to investigate the optimum value of the selected factors for achieving maximum hydrogen yield. Experimental results showed that xylose, phosphate buffer, and yeast extract had significant influence on hydrogen production and the maximum hydrogen yield of 2.39 mol/mol xylose was predicted when the concentrations of xylose, phosphate buffer, and yeast extract were 12.24 g/L, 0.170 M, and 4.11 g/L, respectively. The results were further verified by repeated experiments under optimal conditions. The excellent correlation between predicted and measured values further confirmed the validity and practicability of this statistical optimum strategy. Crown Copyright (c) 2009. Published by Elsevier Ltd. All rights reserved.

  14. Monitoring the oleuropein content of olive leaves and fruits using ultrasound- and salt-assisted liquid-liquid extraction optimized by response surface methodology and high-performance liquid chromatography.

    PubMed

    Ismaili, Ahmad; Heydari, Rouhollah; Rezaeepour, Reza

    2016-01-01

    A novel and rapid ultrasound- and salt-assisted liquid-liquid extraction coupled with high-performance liquid chromatography has been optimized by response surface methodology for the determination of oleuropein from olive leaves. Box-Behnken design was used for optimizing the main parameters including ultrasound time (A), pH (B), salt concentration (C), and volume of miscible organic solvent (D). In this technique, a mixture of plant sample and extraction solvent was subjected to ultrasound waves. After ultrasound-assisted extraction, phase separation was performed by the addition of salt to the liquid phase. The optimal conditions for the highest extraction yield of oleuropein were ultrasound time, 30 min; volume of organic solvent, 2.5 mL; salt concentration, 25% w/v; and sample pH, 4. Experimental data were fitted with a quadratic model. Analysis of variance results show that BC interaction, A(2) , B(2) , C(2) , and D(2) are significant model terms. Unlike the conventional extraction methods for plant extracts, no evaporation and reconstitution operations were needed in the proposed technique.

  15. Rapid DNA, RNA and protein extraction protocols optimized for slow continuously growing yeast cultures.

    PubMed

    Sasidharan, Kalesh; Amariei, Cornelia; Tomita, Masaru; Murray, Douglas B

    2012-08-01

    Conventional extraction protocols for yeast have been developed for relatively rapid-growing low cell density cultures of laboratory strains and often do not have the integrity for frequent sampling of cultures. Therefore, these protocols are usually inefficient for cultures under slow growth conditions or of non-laboratory strains. We have developed a combined mechanical and chemical disruption procedure using vigorous bead-beating that can consistently disrupt yeast cells (> 95%), irrespective of cell cycle and metabolic state. Using this disruption technique coupled with quenching, we have developed DNA, RNA and protein extraction protocols that are optimized for a large number of samples from slow-growing high-density industrial yeast cultures. Additionally, sample volume, the use of expensive reagents/enzymes, handling times and incubations were minimized. We have tested the reproducibility of our methods using triplicate/time-series extractions and compared these with commonly used protocols or commercially available kits. Moreover, we utilized a simple flow-cytometric approach to estimate the mitochondrial DNA copy number. Based on the results, our methods have shown higher reproducibility, yield and quality. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Optimal site for throat culture: tonsillar surface versus posterior pharyngeal wall.

    PubMed

    van der Veen, E L; Sanders, E A M; Videler, W J M; van Staaij, B K; van Benthem, P P G; Schilder, A G M

    2006-08-01

    To determine the optimal site of throat culture for the detection of potential pathogens by comparing culture results from the tonsillar surface and the posterior pharyngeal wall in children selected for adenotonsillectomy and in children without upper respiratory disease. Cotton culture swabs were taken from the tonsillar surface and the posterior pharyngeal wall of 50 children selected for adenotonsillectomy for symptoms of recurrent tonsillitis and/or adenotonsillar hypertrophy and of 50 children without upper respiratory disease. Potential respiratory pathogens were identified. In the overall group (n = 100), positive culture results were found in 67 posterior pharyngeal wall samples and 47 tonsillar surface samples (P = 0.001). Haemophilus influenzae was the most frequently isolated micro-organism both in the posterior pharyngeal wall and the tonsillar surface samples; 55 and 35%, respectively (P = 0.001). Group A beta-haemolytic streptococci were found in the samples of the posterior pharyngeal wall and the tonsillar surface in 17 and 13%, respectively (P = 0.2). When dealing with patients with sore throat, sampling both tonsillar surfaces is enough for the detection of group A beta-haemolytic streptococci. When detection of other bacteria is also important, such as for research purposes, the posterior pharyngeal wall should be sampled as well.

  17. Application of response surface method for optimization of dispersive liquid-liquid microextraction of water-soluble components of Rosa damascena Mill. essential oil.

    PubMed

    Sereshti, Hassan; Karimi, Maryam; Samadi, Soheila

    2009-01-09

    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied for the determination of Rose water constituents. The effective parameters such as volume of extraction and disperser solvents, temperature, and salt effect were inspected by a full factorial design to identify important parameters and their interactions. It showed that salt addition had no effect on the efficiency. Next, a central composite design was applied to obtain optimum point of the important parameters. The optimal condition was obtained as 37.0 microL for extractor, 0.42 mL for disperser and temperature for 48 degrees C. The main components that were extracted at the optimum point were benzeneethanol (24.87%), geraniol (23.07%), beta-citronellol (22.38%), nerol (8.48%), eugenol (5.98%) and linalool (5.62%).

  18. Optimizing N-Fixing cyanobacteria culture to restore arid degraded soils

    NASA Astrophysics Data System (ADS)

    Roncero-Ramos, Beatriz; Román, Raúl; Gómez, Cintia; Chamizo, Sonia; Rodriguez-Caballero, Emilio; Cantón, Yolanda

    2017-04-01

    Cyanobacteria present several metabolic activities and mechanisms of adaptation which enable them to colonize different habitats, in almost all biome and continents, especially under extreme environmental conditions, as on the surface of the most arid soils and under the highest temperatures. In drylands, they are usually found among plants, cohabiting with organisms such as algae, lichens, mosses, bacteria and fungi, and in association with soil surface particles, forming communities known as biocrusts. Because they can survive under water stress and are considered ecosystem engineers, facilitating the establishment of other organisms, they can play a key role in the development of a successful restoration approach to recover the functionality of soils in arid and semiarid regions. In addition cyanobacteria can be cultured "ex-situ" obtaining high quantities of biomass to be used as soil inoculum at large scale. For these reasons, the inoculation of degrades soils with cyanobacteria can be considered an alternative to traditional restoration. This approach is expected to promote: the stabilization of the soil surface and the decrease of water and wind erosion; the increase of soil fertility by fixing N and C; and the succession of more developed organisms as mosses or vascular and annual plants. The objectives were: to evaluate the potential of a soil native cyanobacteria strain to be artificially cultured and the optimization of the process, and to analyze the effects of the inoculation of the biomass on soil under laboratory conditions. Cyanobacteria were isolated from biocrusts sampled on a limestone quarry located at the southeastern edge of the Sierra de Gádor massif (Spain). It was genetically and morphological identified as belonging to the nitrogen-fixing genera Nostoc. Essays were accomplished in bubble columns reactors (0.25 L), using different culture media: BG11+N, BG110, and two media made with fertilizers. Illumination simulated a circadian cycle

  19. Cross-Cultural Comparison of the Effects of Optimism, Intrinsic Motivation, and Family Relations on Vocational Identity

    ERIC Educational Resources Information Center

    Shin, Yun-Jeong; Kelly, Kevin R.

    2013-01-01

    This study explored the effects of optimism, intrinsic motivation, and family relations on vocational identity in college students in the United States and South Korea. The results yielded support for the hypothesized multivariate model. Across both cultures, optimism was an important contributing factor to vocational identity, and intrinsic…

  20. Cross-Cultural Comparison of the Effects of Optimism, Intrinsic Motivation, and Family Relations on Vocational Identity

    ERIC Educational Resources Information Center

    Shin, Yun-Jeong; Kelly, Kevin R.

    2013-01-01

    This study explored the effects of optimism, intrinsic motivation, and family relations on vocational identity in college students in the United States and South Korea. The results yielded support for the hypothesized multivariate model. Across both cultures, optimism was an important contributing factor to vocational identity, and intrinsic…

  1. Long-term storage of aerobic granules in liquid media: viable but non-culturable status.

    PubMed

    Wan, Chunli; Zhang, Qinlan; Lee, Duu-Jong; Wang, Yayi; Li, Jieni

    2014-08-01

    Long-term storage and successful reactivation after storage are essential for practical applications of aerobic granules on wastewater treatment. This study cultivated aerobic granules (SI) in sequencing batch reactors and then stored the granules at 4 °C in five liquid media (DI water (SW), acetone (SA), acetone/isoamyl acetate mix (SAA), saline water (SS), and formaldehyde (SF)) for over 1 year. The first four granules were then successfully reactivated in 24h cultivation. The specific oxygen uptake rates (SOUR) of the granules followed SI>SS>SA>SAA>SW>SF; and the corresponding granular strengths (10 min ultrasound) followed SI>SA=SS>SAA>SW>SF. During storage the granular cells secreted excess quantities of cyclic-diguanylate (c-di-GMP) and pentaphosphate (ppGpp) as responses to the stringent challenges. We proposed that to force cells in granules (Alphaproteobacteria, Flavobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Sphingobacteria, and Clostridia) entering viable but non-culturable (VBNC) status is the key of success for extended period storage of granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Study on Hydroxyurea Response in Hemoglobinopathies Patients Using Genetic Markers and Liquid Erythroid Cultures

    PubMed Central

    Sclafani, Serena; Agrigento, Veronica; Troia, Antonio; Di Maggio, Rosario; Sacco, Massimiliano; Maggio, Aurelio; D’Alcamo, Elena; Di Marzo, Rosalba

    2016-01-01

    Increased expression of fetal hemoglobin (HbF) may ameliorate the clinical course of hemoglobinopathies. Hydroxyurea (HU) is the only inducer approved for the treatment of these diseases able to stimulate HbF production but patients’ response is highly variable indicating the utility of the identification of pharmacogenomic biomarkers in order to predict pharmacological treatment efficacy. To date few studies to evaluate the role of genetic determinants in HU response have been conducted showing contradictory results. In this study we analyzed BCL11A, GATA-1, KLF-1 genes and γ-globin promoter in 60 alleles from 30 hemoglobinopathies patients under HU treatment to assess the role of these markers in HU response. We did not find any association between these genetic determinants and HU response. Before treatment started, the same patients were analyzed in vitro using liquid erythroid cultures in a test able to predict their response to HU. The results of our analysis confirm the absence of pharmacogenomic biomarker associated to HU response indicating that, the quantification of γ-globin mRNA fold increase remains the only method able to predict in vivo patients response to the drug. PMID:28053695

  3. Optimization of an air–liquid interface exposure system for assessing toxicity of airborne nanoparticles

    PubMed Central

    Latvala, Siiri; Hedberg, Jonas; Möller, Lennart; Odnevall Wallinder, Inger; Karlsson, Hanna L.

    2016-01-01

    Abstract The use of refined toxicological methods is currently needed for characterizing the risks of airborne nanoparticles (NPs) to human health. To mimic pulmonary exposure, we have developed an air–liquid interface (ALI) exposure system for direct deposition of airborne NPs on to lung cell cultures. Compared to traditional submerged systems, this allows more realistic exposure conditions for characterizing toxicological effects induced by airborne NPs. The purpose of this study was to investigate how the deposition of silver NPs (AgNPs) is affected by different conditions of the ALI system. Additionally, the viability and metabolic activity of A549 cells was studied following AgNP exposure. Particle deposition increased markedly with increasing aerosol flow rate and electrostatic field strength. The highest amount of deposited particles (2.2 μg cm–2) at cell‐free conditions following 2 h exposure was observed for the highest flow rate (390 ml min–1) and the strongest electrostatic field (±2 kV). This was estimated corresponding to deposition efficiency of 94%. Cell viability was not affected after 2 h exposure to clean air in the ALI system. Cells exposed to AgNPs (0.45 and 0.74 μg cm–2) showed significantly (P < 0.05) reduced metabolic activities (64 and 46%, respectively). Our study shows that the ALI exposure system can be used for generating conditions that were more realistic for in vitro exposures, which enables improved mechanistic and toxicological studies of NPs in contact with human lung cells.Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. PMID:26935862

  4. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.

    PubMed

    Latvala, Siiri; Hedberg, Jonas; Möller, Lennart; Odnevall Wallinder, Inger; Karlsson, Hanna L; Elihn, Karine

    2016-10-01

    The use of refined toxicological methods is currently needed for characterizing the risks of airborne nanoparticles (NPs) to human health. To mimic pulmonary exposure, we have developed an air-liquid interface (ALI) exposure system for direct deposition of airborne NPs on to lung cell cultures. Compared to traditional submerged systems, this allows more realistic exposure conditions for characterizing toxicological effects induced by airborne NPs. The purpose of this study was to investigate how the deposition of silver NPs (AgNPs) is affected by different conditions of the ALI system. Additionally, the viability and metabolic activity of A549 cells was studied following AgNP exposure. Particle deposition increased markedly with increasing aerosol flow rate and electrostatic field strength. The highest amount of deposited particles (2.2 μg cm(-2) ) at cell-free conditions following 2 h exposure was observed for the highest flow rate (390 ml min(-1) ) and the strongest electrostatic field (±2 kV). This was estimated corresponding to deposition efficiency of 94%. Cell viability was not affected after 2 h exposure to clean air in the ALI system. Cells exposed to AgNPs (0.45 and 0.74 μg cm(-2) ) showed significantly (P < 0.05) reduced metabolic activities (64 and 46%, respectively). Our study shows that the ALI exposure system can be used for generating conditions that were more realistic for in vitro exposures, which enables improved mechanistic and toxicological studies of NPs in contact with human lung cells.Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.

  5. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project.

  6. Optimized flexoelectric response in a chiral liquid-crystal phase device

    NASA Astrophysics Data System (ADS)

    Broughton, B. J.; Clarke, M. J.; Blatch, A. E.; Coles, H. J.

    2005-08-01

    In this paper, a device type is presented in which the conventional geometry for the flexoelectro-optic effect is rotated, utilizing planar-aligned short-pitch chiral nematic and in-plane electric fields. The cell is optically neutral at zero applied field due to having its helix axis lie in the direction of light propagation, and at optical communication wavelengths (1550nm) polarization rotation is insignificant due to the helical pitch of the material being shorter than the illuminating wavelength. An electric field, applied in the plane of the cell, has been found to induce a birefringence via a combination of dielectric helix unwinding and flexoelectric deformation of the director helix. The magnitude of the birefringence and direction of the induced optic axis in the plane of the cell are dependent on the amplitude and direction of the applied electric field, providing potential for use in a fast endlessly rotatable polarization controller. Herein, the chiral nematic materials utilized in the cell are bimesogenic liquid crystals designed to optimize the contribution from the flexoelectro-optic effect, and eliminate dielectric helix unwinding. The materials are also polymer network stabilized to preserve the texture against degradation in the applied fields. The results presented show a progression from a combined dielectric and flexoelectrically induced birefringence of 0.016 at field strengths up to 6.8V/μm, to a purely flexoelectric-induced birefringence of 0.0135, sufficient for a quarter wave plate in a 29-μm-thick cell. Response times are of the order of hundreds of microseconds for both reaction to an applied field and relaxation upon removal.

  7. Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Liu, Yonggang; Peng, Zenghui; Yang, Qingyun; Meng, Haoran; Yao, Lishuang; Xuan, Li

    2012-08-13

    A waveband-splitting method is proposed for open-loop liquid crystal adaptive optics systems (LC AOSs). The proposed method extends the working waveband, splits energy flexibly, and improves detection capability. Simulated analysis is performed for a waveband in the range of 350 nm to 950 nm. The results show that the optimal energy split is 7:3 for the wavefront sensor (WFS) and for the imaging camera with the waveband split into 350 nm to 700 nm and 700 nm to 950 nm, respectively. A validation experiment is conducted by measuring the signal-to-noise ratio (SNR) of the WFS and the imaging camera. The results indicate that for the waveband-splitting method, the SNR of WFS is approximately equal to that of the imaging camera with a variation in the intensity. On the other hand, the SNR of the WFS is significantly different from that of the imaging camera for the polarized beam splitter energy splitting scheme. Therefore, the waveband-splitting method is more suitable for an open-loop LC AOS. An adaptive correction experiment is also performed on a 1.2-meter telescope. A star with a visual magnitude of 4.45 is observed and corrected and an angular resolution ability of 0.31″ is achieved. A double star with a combined visual magnitude of 4.3 is observed as well, and its two components are resolved after correction. The results indicate that the proposed method can significantly improve the detection capability of an open-loop LC AOS.

  8. Development and Optimization of a Flocculation Procedure for Improved Solid-Liquid Separation of Digested Biomass

    SciTech Connect

    Patton, Caroline; Lischeske, James J.; Sievers, David A.

    2015-11-03

    One viable treatment method for conversion of lignocellulosic biomass to biofuels begins with saccharification (thermochemical pretreatment and enzymatic hydrolysis), followed by fermentation or catalytic upgrading to fuels such as ethanol, butanol, or other hydrocarbons. The post-hydrolysis slurry is typically 4-8 percent insoluble solids, predominantly consisting of lignin. Suspended solids are known to inhibit fermentation as well as poison catalysts and obstruct flow in catalyst beds. Thus a solid-liquid separation following enzymatic hydrolysis would be highly favorable for process economics, however the material is not easily separated by filtration or gravimetric methods. Use of a polyacrylamide flocculant to bind the suspended particles in a corn stover hydrolyzate slurry into larger flocs (1-2mm diameter) has been found to be extremely helpful in improving separation. Recent and ongoing research on novel pretreatment methods yields hydrolyzate material with diverse characteristics. Therefore, we need a thorough understanding of rapid and successful flocculation design in order to quickly achieve process design goals. In this study potential indicators of flocculation performance were investigated in order to develop a rapid analysis method for flocculation procedure in the context of a novel hydrolyzate material. Flocculation conditions were optimized on flocculant type and loading, pH, and mixing time. Filtration flux of the hydrolyzate slurry was improved 170-fold using a cationic polyacrylamide flocculant with a dosing of approximately 22 mg flocculant/g insoluble solids at an approximate pH of 3. With cake washing, sugar recovery exceeded 90 percent with asymptotic yield at 15 L wash water/kg insoluble solids.

  9. Determination of optimal ionic liquid for organic single-crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ono, S.; Miwa, K.; Seki, S.

    2016-02-01

    We investigate organic single-crystal field-effect transistors with various ionic liquids as gate dielectric. We find that the mobility of the field-effect transistors for both p-type and n-type organic semiconductors increases with decreasing total capacitance of the ionic liquid. However, it does not depend on the ion species at the interface between the organic semiconductor and the ionic liquid. By choosing an appropriate ionic liquid, a high carrier mobility of 12.4 cm2/V s in rubrene single crystals (p-type) and 0.13 cm2/V s in 7.7.8.8-Tetracyanoquinodimethane single crystals (n-type) are achieved. This study clarifies the influence of ionic liquids on the device performance of organic field-effect transistors and shows a way to maximize carrier mobility at the solid/liquid interface.

  10. Surviving death-anxieties in liquid modern times: examining Zygmunt Bauman's cultural theory of death and dying.

    PubMed

    Higo, Masa

    2012-01-01

    Despite his prominence as a leading contemporary social theorist, Zygmunt Bauman's long-term writing on the cultural theory of death and dying has largely been overlooked in the sociological literature of death and dying, particularly in the United States. Bauman uniquely theorizes how we survive death-anxieties today: Contemporary, liquid modern culture has engaged us in ceaseless pursuit of the unattainable consumer sensation of bodily fitness as a way to suppress and thus survive our death-anxieties. Bauman also argues that the prevalence of this cultural formula to survive death-anxieties has simultaneously increased, more than ever before in social history, the volume of individual responsibility for restlessly coping with existential anxieties in the societies of consumers. While unique and insightful, his theoretical argument has a limitation; largely succeeding Freud's classic view of mortality, Bauman's contemporary theory may lead us to neglect potentially important social, cultural, and historical variations in how mortality has been understood.

  11. Optimization of polyhydroxybutyrate production by marine Bacillus megaterium MSBN04 under solid state culture.

    PubMed

    Sathiyanarayanan, G; Kiran, G Seghal; Selvin, Joseph; Saibaba, G

    2013-09-01

    A marine sponge-associated bacterium Bacillus megaterium MSBN04 was used for the production of polyhydroxybutyrate (PHB) under solid state culture (SSC). A central composite design (CCD) was employed to optimize the production medium and to find out the interactive effects of four independent variables, viz. tapioca industry waste, palm jaggery, horse gram flour and trace element solution on PHB production. The maximum yield of PHB 8.637 mg g(-1) of substrate (tapioca industry waste) was achieved from biomass 15.203 mg g(-1) of substrate, using statistically optimized medium. The horse gram flour (nitrogen source) and trace element solution were found to be critical control factors for PHB synthesis. The (1)H NMR analysis revealed that the polymer was a PHB monomer. PHB obtained from this study having high molecular weight (6.7×10(5) Da) with low polydispersity index (PDI) value (1.71) and produced PHB was used to synthesize PHB polymeric nanoparticles using solvent displacement approach. Therefore, B. megaterium MSBN04 is an ideal candidate that can be exploited biotechnologically for the commercial production of PHB under solid state culture.

  12. Blastocyst culture and cryopreservation to optimize clinical outcomes of warming cycles.

    PubMed

    Zhu, Lixia; Xi, Qingsong; Zhang, Hanwang; Li, Yufeng; Ai, Jihui; Jin, Lei

    2013-08-01

    Surplus embryos available for cryopreservation in fresh cycles are considered as having good potential for future use. However, the optimal stage of embryo cryopreservation remains unclear. In this study, 1190 patients with surplus embryos on day 3 were divided into two groups: cleavage-stage embryo cryopreservation (control group) and blastocyst cryopreservation (blastocyst group). The clinical outcomes of the subsequent warming cycles were evaluated. The proportion of cycles with blastocyst formation was 73.8% in the blastocyst group. Although in the blastocyst group, the cancellation rate of blastocyst transfer was increased due to lack of blastocysts available for cryopreservation, the blastocyst group achieved significantly higher rates of clinical pregnancy/cycle (43.2% versus 34.9%; P=0.003), pregnancy/transfer (59.5% versus 35.4%; P<0.001) and implantation (46.5% versus 22.2%; P<0.001) from the first warming cycle compared with the control group. In an embryo-number classified analysis, the clinical pregnancy rate was also higher in the blastocyst group. However, the cumulative pregnancy was similar between the two groups. Blastocyst culture as an embryo selection tool will not improve embryo viability but it will help patients to achieve pregnancy more quickly. Extended culture of surplus embryos to the blastocyst stage for cryopreservation optimizes the clinical outcomes.

  13. Biodegradation of alachlor in liquid and soil cultures under variable carbon and nitrogen sources by bacterial consortium isolated from corn field soil

    PubMed Central

    2013-01-01

    Alachlor, an aniline herbicide widely used in corn production, is frequently detected in water resources. The main objectives of this research were focused on isolating bacterial consortium capable of alachlor biodegradation, assessing the effects of carbon and nitrogen sources on alachlor biodegradation and evaluating the feasibility of using bacterial consortium in soil culture. Kavar corn field soil with a long history of alachlor application in Fars province of Iran has been explored for their potential of alachlor biodegradation. The influence of different carbon compounds (glucose, sodium citrate, sucrose, starch and the combination of these compounds), the effect of nitrogen sources (ammonium nitrate and urea) and different pH (5.5-8.5) on alachlor removal efficiency by the bacterial consortium in liquid culture were investigated. After a multi-step enrichment program 100 days of acclimation, a culture with the high capability of alachlor degradation was obtained (63%). Glucose and sodium citrate had the highest alachlor reduction rate (85%). Alachlor reduction rate increased more rapidly by the addition of ammonium nitrate (94%) compare to urea. Based on the data obtained in the present study, pH of 7.5 is optimal for alachlor biodegradation. After 30 days of incubation, the percent of alachlor reduction were significantly enhanced in the inoculated soils (74%) as compared to uninoculated control soils (17.67%) at the soil moisture content of 25%. In conclusion, bioaugmentation of soil with bacterial consortium may enhance the rate of alachlor degradation in a polluted soil. PMID:23452801

  14. Effect of Mixed Culture Growth Conditions on the Cellular Fatty Acids of Streptococci (Analyzed by High Performance Liquid Chromatography),

    DTIC Science & Technology

    1980-10-16

    and Streptococcus salivarius . 20 ABSTRACT (Coin~ue on rowerse &#do Ii nee..ay and identify by block number) - ’’~eeffect of mixed culture growth...conditions on the cellular fatty acids. of bacteria were examined by high performance liquid chromatography. Streptococcus salivarius grown individually in...ges 1 In c ellIulIa r taty WEc13% when--offparea7 wiTF -cIu Iai j fatty acids detected in a pure culture of Streptococcus salivarius . Growth in mixed

  15. Evaluation of OMNIgene®•SPUTUM for tuberculosis sample processing and liquid culture at a hospital laboratory in India.

    PubMed

    Nambiar, Remya; Shaw, Kaitlyn; Curry, Patricia S

    2017-10-01

    This preliminary evaluation examined the reagent OMNIgene®•SPUTUM (OM-S) as a tool to eliminate NaOH/NALC processing prior to Middlebrook liquid culture for Mycobacterium tuberculosis (MTb). Twenty-seven manually split samples (OM-S-treated vs. NaOH/NALC) showed 100% agreement: 81.5% MTb-positive and 18.5% MTb-negative. On average, OM-S-treated specimens required 1.2 additional days to culture positivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. An Axenic Plant Culture System for Optimal Growth in Long-Term Studies: Design and Maintenance

    NASA Technical Reports Server (NTRS)

    Henry, Amelia; Doucette, William; Norton, Jeanette; Jones, Scott; Chard, Julie; Bugbee, Bruce

    2006-01-01

    The symbiotic co-evolution of plants and microbes leads to difficulties in understanding which of the two components is responsible for a given environmental response. Plant-microbe studies greatly benefit from the ability to grow plants in axenic (sterile) culture. Several studies have used axenic plant culture systems, but experimental procedures are often poorly documented, the plant growth environment is not optimal, and axenic conditions are not rigorously verified. We developed a unique axenic system using inert components that promotes plant health and can be kept sterile for at least 70 d. Crested wheatgrass (Agropyron cristatum cv. DII) plants were grown in sand within flow-through glass columns that were positively pressured with filtered air. Plant health was optimized by regulating temperature, light level, CO2 concentration, humidity, and nutrients. The design incorporates several novel aspects, such as pretreatment of the sand with Fe, graduated sand layers to optimize the air-water balance of the root zone, and modification of a laminar flow hood to serve as a plant growth chamber. Adaptations of several sterile techniques were necessary for maintenance of axenic conditions. Axenic conditions were verified by plating and staining leachates as well as rhizoplane stain. This system was designed to study nutrient and water stress effects on root exudates, but is useful for assessing a broad range of plant-microbe-environment interactions. Based on total organic C analysis, 74% of exudates was recovered in the leachate, 6% was recovered in the bulk sand, and 17% was recovered in the rhizosphere sand. Carbon in the leachate after 70 d reached 255 micro-g/d. Fumaric, malic, malonic, oxalic, and succinic acids were measured as components of the root exudates.

  17. An Axenic Plant Culture System for Optimal Growth in Long-Term Studies: Design and Maintenance

    NASA Technical Reports Server (NTRS)

    Henry, Amelia; Doucette, William; Norton, Jeanette; Jones, Scott; Chard, Julie; Bugbee, Bruce

    2006-01-01

    The symbiotic co-evolution of plants and microbes leads to difficulties in understanding which of the two components is responsible for a given environmental response. Plant-microbe studies greatly benefit from the ability to grow plants in axenic (sterile) culture. Several studies have used axenic plant culture systems, but experimental procedures are often poorly documented, the plant growth environment is not optimal, and axenic conditions are not rigorously verified. We developed a unique axenic system using inert components that promotes plant health and can be kept sterile for at least 70 d. Crested wheatgrass (Agropyron cristatum cv. DII) plants were grown in sand within flow-through glass columns that were positively pressured with filtered air. Plant health was optimized by regulating temperature, light level, CO2 concentration, humidity, and nutrients. The design incorporates several novel aspects, such as pretreatment of the sand with Fe, graduated sand layers to optimize the air-water balance of the root zone, and modification of a laminar flow hood to serve as a plant growth chamber. Adaptations of several sterile techniques were necessary for maintenance of axenic conditions. Axenic conditions were verified by plating and staining leachates as well as rhizoplane stain. This system was designed to study nutrient and water stress effects on root exudates, but is useful for assessing a broad range of plant-microbe-environment interactions. Based on total organic C analysis, 74% of exudates was recovered in the leachate, 6% was recovered in the bulk sand, and 17% was recovered in the rhizosphere sand. Carbon in the leachate after 70 d reached 255 micro-g/d. Fumaric, malic, malonic, oxalic, and succinic acids were measured as components of the root exudates.

  18. An axenic plant culture system for optimal growth in long-term studies.

    PubMed

    Henry, Amelia; Doucette, William; Norton, Jeanette; Jones, Scott; Chard, Julie; Bugbee, Bruce

    2006-01-01

    The symbiotic co-evolution of plants and microbes leads to difficulties in understanding which of the two components is responsible for a given environmental response. Plant-microbe studies greatly benefit from the ability to grow plants in axenic (sterile) culture. Several studies have used axenic plant culture systems, but experimental procedures are often poorly documented, the plant growth environment is not optimal, and axenic conditions are not rigorously verified. We developed a unique axenic system using inert components that promotes plant health and can be kept sterile for at least 70 d. Crested wheatgrass (Agropyron cristatum cv. CDII) plants were grown in sand within flow-through glass columns that were positively pressured with filtered air. Plant health was optimized by regulating temperature, light level, CO2 concentration, humidity, and nutrients. The design incorporates several novel aspects, such as pretreatment of the sand with Fe, graduated sand layers to optimize the air-water balance of the root zone, and modification of a laminar flow hood to serve as a plant growth chamber. Adaptations of several sterile techniques were necessary for maintenance of axenic conditions. Axenic conditions were verified by plating and staining leachates as well as a rhizoplane stain. This system was designed to study nutrient and water stress effects on root exudates, but is useful for assessing a broad range of plant-microbe-environment interactions. Based on total organic C analysis, 74% of exudates was recovered in the leachate, 6% was recovered in the bulk sand, and 17% was recovered in the rhizosphere sand. Carbon in the leachate after 70 d reached 255 microg d(-1). Fumaric, malic, malonic, oxalic, and succinic acids were measured as components of the root exudates.

  19. Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN.

    PubMed

    Rafigh, Sayyid Mahdi; Yazdi, Ali Vaziri; Vossoughi, Manouchehr; Safekordi, Ali Akbar; Ardjmand, Mehdi

    2014-09-01

    Paenibacillus polymyxa ATCC 21830 was used for the production of curdlan gum for first time. A Box-Behnken experimental design was applied to optimize six variables of batch fermentation culture each at three levels. Statistical analyses were employed to investigate the direct and interactive effects of variables on curdlan production. Optimum cultural conditions were temperature (50°C), pH (7), fermentation time (96 h), glucose (100 g/L), yeast extract (3 g/L) and agitation speed (150 rpm). The yield of curdlan production was 6.89 g/L at optimum condition medium. Response surface methodology (RSM) and artificial neural network (ANN) were used to model cultural conditions of curdlan production. The maximum yield of curdlan production were predicted to be 6.68 and 6.85 g/L by RSM and ANN at optimum condition. The prediction capabilities of RSM and ANN were then statistically compared. The results showed that the ANN model is much more accurate in prediction as compared to the RSM. The infrared (IR) and NMR spectra, the thermogram of DSC and pattern of X-ray diffraction for the curdlan of the present study were almost identical to those of the commercial curdlan sample. The average molecular weight of the purified curdlan was determined to be 170 kDa by gel permeation chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Establishment and culture optimization of a new type of pituitary immortalized cell line

    SciTech Connect

    Kokubu, Yuko; Asashima, Makoto; Kurisaki, Akira

    2015-08-07

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.

  1. Optimization of culture conditions to obtain maximal growth of penicillin-resistant Streptococcus pneumoniae

    PubMed Central

    Restrepo, Andrea V; Salazar, Beatriz E; Agudelo, María; Rodriguez, Carlos A; Zuluaga, Andres F; Vesga, Omar

    2005-01-01

    Background Streptococcus pneumoniae, particularly penicillin-resistant strains (PRSP), constitute one of the most important causes of serious infections worldwide. It is a fastidious microorganism with exquisite nutritional and environmental requirements to grow, a characteristic that prevents the development of useful animal models to study the biology of the microorganism. This study was designed to determine optimal conditions for culture and growth of PRSP. Results We developed a simple and reproducible method for culture of diverse strains of PRSP representing several invasive serotypes of clinical and epidemiological importance in Colombia. Application of this 3-step culture protocol consistently produced more than 9 log10 CFU/ml of viable cells in the middle part of the logarithmic phase of their growth curve. Conclusion A controlled inoculum size grown in 3 successive steps in supplemented agar and broth under 5% CO2 atmosphere, with pH adjustment and specific incubation times, allowed production of great numbers of PRSP without untimely activation of autolysis mechanisms. PMID:15932633

  2. Optimization of pressurized liquid extraction using a multivariate chemometric approach for the determination of anticancer drugs in sludge by ultra high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Seira, Jordan; Claparols, Catherine; Joannis-Cassan, Claire; Albasi, Claire; Montréjaud-Vignoles, Mireille; Sablayrolles, Caroline

    2013-03-29

    The present paper describes an analytical method for the determination of 2 widely administered anticancer drugs, ifosfamide and cyclophosphamide, contained in sewage sludge. The method relies on the extraction from the solid matrix by pressurized liquid extraction, sample purification by solid-phase extraction and analysis by ultra high performance liquid chromatography coupled with tandem mass spectrometry. The different parameters affecting the extraction efficiency were optimized using an experimental design. Solvent nature was the most decisive factor for the extraction but interactions between some parameters also appeared very influent. The method was applied to seven different types of sludge for validation. The performances of the analytical method displayed high variability between sludges with limits of detection spanning more than one order of magnitude and confirming the relevance of multi-sample validation. Matrix effect has been determined as the most limiting analytical step for quantification with different extent depending on analyte and sludge nature. For each analyte, the use of deuterated standard spiked at the very beginning ensured the complete compensation of losses regardless of the sample nature. The suitability of the method between freshly spiked and aged samples has also been verified. The optimized method was applied to different sludge samples to determine the environmental levels of anticancer drugs. The compounds were detected in some samples reaching 42.5μg/kgDM in ifosfamide for the most contaminated sample.

  3. Reversed-phase dispersive liquid-liquid microextraction with multivariate optimization for sensitive HPLC determination of tyrosol and hydroxytyrosol in olive oil.

    PubMed

    Hashemi, Payman; Nazari Serenjeh, Fariba; Ghiasvand, Ali Reza

    2011-01-01

    A reversed-phase dispersive liquid-liquid microextraction (RP-DLLME) method coupled to HPLC was developed for the extraction of hydroxytyrosol (HTy) and tyrosol (Ty) from virgin olive oil. In this first application of the RP-DLLME method to non-polar samples, the phenolic compounds were directly extracted into an aqueous micro-drop, which could be injected into a chromatography column without any further pretreatment. A glass test tube with lengthened conical bottom was fitted inside a centrifuge tube in this work for more efficient withdrawal of the sedimented phase with a microsyringe. The volumes of water and ethyl acetate, the pH of water and the centrifuge time as four effective parameters on the extraction were optimized by a central composite design (response surface) method. Five replicated analyses under the optimized conditions (i.e., 0.2 mL ethyl acetate as disperser and 100 µL water at pH 11 as the extraction solvent) resulted in recoveries of 104.3 and 97.6%, and relative standard deviations of 5.75 and 4.57 for HTy and Ty, respectively. The detection limit of the method (3σ) was 0.043 mg L(-1) for HTy and 0.032 mg L(-1) for Ty. The method was successfully applied to the determination of HTy and Ty in five olive oil samples.

  4. Simultaneous optimization of variables influencing selectivity and elution strength in micellar liquid chromatography. Effect of organic modifier and micelle concentration.

    PubMed

    Strasters, J K; Breyer, E D; Rodgers, A H; Khaledi, M G

    1990-07-06

    Previously, the simultaneous enhancement of separation selectivity with elution strength was reported in micellar liquid chromatography (MLC) using the hybrid eluents of water-organic solvent-micelles. The practical implication of this phenomenon is that better separations can be achieved in shorter analysis times by using the hybrid eluents. Since both micelle concentration and volume fraction of organic modifier influence selectivity and solvent strength, only an investigation of the effects of a simultaneous variation of these parameters will disclose the full separation capability of the method, i.e. the commonly used sequential solvent optimization approach of adjusting the solvent strength first and then improving selectivity in reversed-phase liquid chromatography is inefficient for the case of MLC with the hybrid eluents. This is illustrated in this paper with two examples: the optimization of the selectivity in the separation of a mixture of phenols and the optimization of a resolution-based criterion determined for the separation of a number of amino acids and small peptides. The large number of variables involved in the separation process in MLC necessitates a structured approach in the development of practical applications of this technique. A regular change in retention behavior is observed with the variation of the surfactant concentration and the concentration of organic modifier, which enables a successful prediction of retention times. Consequently interpretive optimization strategies such as the interative regression method are applicable.

  5. Organotypic culture of human amnion cells in air-liquid interface as a potential substitute for skin regeneration.

    PubMed

    Fatimah, Simat Siti; Chua, Kienhui; Tan, Geok Chin; Azmi, Tengku Ibrahim; Tan, Ay Eeng; Abdul Rahman, Hayati

    2013-08-01

    The aim of the present study was to evaluate the effects of air-liquid interface on the differentiation potential of human amnion epithelial cells (HAECs) to skin-like substitute in organotypic culture. HAECs at passage 1-2 were seeded onto a fibrin layer populated with human amnion mesenchymal cells to form the organotypic cultures. The organotypic HAECs were then cultured for 7, 14 and 21 d in two types of culture system: the submerged culture and the air-liquid interface culture. Cell morphogenesis was examined under the light and electron microscopes (transmission and scanning) and analyzed by immunohistochemistry. Organotypic HAECs formed a single layer epithelium after 3 wk in submerged as well as air-liquid interface cultures. Ultrastructurally, desmosomes were observed in organotypic HAECs cultured in the air-liquid interface but not in the submerged culture. The presence of desmosomes marked the onset of early epidermal differentiation. Organotypic HAECs were positive against anti-CK18 and anti-CK14 in both the submerged and the air-liquid interface cultures. The co-expression of CK14 and CK18 suggested that differentiation of HAECs into skin may follow the process of embryonic skin development. However, weak expression of CK14 was observed after 2 and 3 wk of culture in air-liquid interface. CK10, involucrin, type IV collagen and laminin-5 expression was absent in organotypic HAECs. This observation reflects the initial process of embryonic epidermal differentiation and stratification. Results from the present study suggest that the air-liquid interface could stimulate early differentiation of organotypic HAECs to epidermal cells, with a potential use for skin regeneration. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3

  7. Transport of gases and liquids through dense microbial cell aggregates cultured within hollow fiber membrane bioreactors

    SciTech Connect

    Libicki, S.B.

    1985-01-01

    The transport properties of liquids and dissolved gases in microbial cell aggregates were examined. An annular hollow fiber membrane bioreactor designed for this purpose, allowed a cell aggregate of well-defined geometry to be cultured between two retaining fibers. The transport of an inert substance through a lamellar annular hollow fiber reactor has been modeled. Calculations showed that Starling flow, a weak toroidal flow in the reactor, may account for a large fraction of the solute transport. The theoretical predictions were verified experimentally. The effective diffusive permeability of a dissolved tracer (nitrous oxide) was measured in dense microbial cell aggregates (Escherichia coli) ranging from 15% to 95% cell volume fraction. The results showed that the diffusive permeability is a monotonically decreasing function of cell volume fraction and can be described by the Hashin-Shtrikman bounds on transport in a two phase material. Using these bounds, the effective diffusive permeability of nitrous oxide in E. coli cells at 37/sup 0/C was estimated to be 8.6 x 10/sup -9/ mol/m s or 0.24 +/- 0.03 that of the diffusive permeability of the surrounding interstitial fluid. Similar measurements of the diffusive permeability of nitrous oxide in artificial aggregates (compacted cells) and disrupted microbial cells yielded virtually identical results, showing that cell structure and viability have only a small effect. The Darcy permeability of the same microbial aggregates, measured under very low flow conditions, was found to be only weakly dependent on cell volume fraction. Electron micrographs indicate that this was due to clustering of the cells which increased the effective particle size within the cell aggregate.

  8. Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation.

    PubMed

    Mascarin, Gabriel Moura; Kobori, Nilce Naomi; de Jesus Vital, Rayan Carlos; Jackson, Mark Alan; Quintela, Eliane Dias

    2014-05-01

    We investigated the potential production and desiccation tolerance of microsclerotia (MS) by Brazilian strains of Metarhizium anisopliae (Ma), M. acridum (Mc) and M. robertsii (Mr). These fungi were grown in a liquid medium containing 16 g carbon l⁻¹ with a carbon:nitrogen ratio of 50:1. One hundred milliliters cultures were grown in 250 ml Erlenmeyer flasks in a rotary incubator shaker at 28 °C and 200 rpm for 5 days. Five-day-old MS were harvested, mixed with diatomaceous earth (DE) and air-dried for 2 days at 30 °C. The air-dried MS-DE granular preparations were milled by mortar + pestle and stored in centrifuged tubes at either 26 or -20 °C. Desiccation tolerance and conidia production were assessed for dried MS granules by measuring hyphal germination after incubation for 2 days on water agar plates at 26 °C and for conidia production following 7 days incubation. Yields of MS by all strains of Metarhizium were 6.1-7.3 × 10⁶ l⁻¹ after 3 days growth with maximum MS yields (0.7-1.1 × 10⁷ l⁻¹) after 5 days growth. No differences in biomass accumulation were observed after 3 days growth, whereas Ma-CG168 showed the highest biomass accumulation after 5 days growth. Dried MS-DE preparations of all fungal strains were equally tolerant to desiccation (≥93 % germination) and the highest conidia production was obtained by MS granules of Mc-CG423 (4 × 10⁹ conidia g⁻¹). All MS granules showed similar stability after storage at either 26 or -20 °C for 3.5 months.

  9. Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture.

    PubMed

    Briceño, G; Schalchli, H; Rubilar, O; Tortella, G R; Mutis, A; Benimeli, C S; Palma, G; Diez, M C

    2016-08-01

    Actinobacteria identified as Streptomyces spp. were evaluated for their ability to remove diazinon as the only carbon source from a liquid medium. Single cultures of Streptomyces strains were exposed to diazinon at a concentration of 50 mg L(-1). After 96 h incubation, six of the eight cultures grew and five strains showed an increase in their total protein concentrations and changes in their protein profile. Up to 32% of the diazinon was removed by the single Streptomyces cultures. A compatibility assay showed that the different Streptomyces species were not antagonistic. Twenty-six mixed cultures were then prepared. Diazinon removal was increased when mixed cultures were used, and maximum diazinon removal of 62% was observed when the Streptomyces spp. strains AC5, AC9, GA11 and ISP13 were mixed; this was defined as the selected mixed culture (SMC). Diazinon removal was positively influenced by the addition of glucose into the liquid medium. Our study showed a diazinon degradation rate of 0.025 h(-1), half-life of 28 h(-1) and 2-isopropyl-6-methyl-4-pyrimidinol (IMHP) production of 0.143 mg L h(-1). Rapid diazinon hydrolysis to IMHP was associated with a decrease in the pH of the medium as a consequence of microbial glucose metabolism and organic acid exudation. Moreover, the SMC of Streptomyces was able to remove IMHP. This work constitutes a new, if not the only, report on diazinon degradation by mixed cultures of Streptomyces spp. Given the high levels of diazinon removal, the SMC formed by four Streptomyces strains has the potential to be used to treat the diazinon present in environmental matrices.

  10. Establishment and Characterization of an Air-Liquid Canine Corneal Organ Culture Model To Study Acute Herpes Keratitis

    PubMed Central

    Harman, Rebecca M.; Bussche, Leen; Ledbetter, Eric C.

    2014-01-01

    ABSTRACT Despite the clinical importance of herpes simplex virus (HSV)-induced ocular disease, the underlying pathophysiology of the disease remains poorly understood, in part due to the lack of adequate virus–natural-host models in which to study the cellular and viral factors involved in acute corneal infection. We developed an air-liquid canine corneal organ culture model and evaluated its susceptibility to canine herpesvirus type 1 (CHV-1) in order to study ocular herpes in a physiologically relevant natural host model. Canine corneas were maintained in culture at an air-liquid interface for up to 25 days, and no degenerative changes were observed in the corneal epithelium during cultivation using histology for morphometric analyses, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assays, and transmission electron microscopy (TEM). Next, canine corneas were inoculated with CHV-1 for 48 h, and at that time point postinfection, viral plaques could be visualized in the corneal epithelium and viral DNA copies were detected in both the infected corneas and culture supernatants. In addition, we found that canine corneas produced proinflammatory cytokines in response to CHV-1 infection similarly to what has been described for HSV-1. This emphasizes the value of our model as a virus–natural-host model to study ocular herpesvirus infections. IMPORTANCE This study is the first to describe the establishment of an air-liquid canine corneal organ culture model as a useful model to study ocular herpesvirus infections. The advantages of this physiologically relevant model include the fact that (i) it provides a system in which ocular herpes can be studied in a virus–natural-host setting and (ii) it reduces the number of experimental animals needed. In addition, this long-term explant culture model may also facilitate research in other fields where noninfectious and infectious ocular diseases of dogs and humans are being studied. PMID

  11. LC-MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: optimization of pre-LC-MS procedure parameters.

    PubMed

    t'Kindt, Ruben; De Veylder, Lieven; Storme, Michael; Deforce, Dieter; Van Bocxlaer, Jan

    2008-08-01

    This study treats the optimization of methods for homogenizing Arabidopsis thaliana plant leaves as well as cell cultures, and extracting their metabolites for metabolomics analysis by conventional liquid chromatography electrospray ionization mass spectrometry (LC-ESI/MS). Absolute recovery, process efficiency and procedure repeatability have been compared between different pre-LC-MS homogenization/extraction procedures through the use of samples fortified before extraction with a range of representative metabolites. Hereby, the magnitude of the matrix effect observed in the ensuing LC-MS based metabolomics analysis was evaluated. Based on relative recovery and repeatability of key metabolites, comprehensiveness of extraction (number of m/z-retention time pairs) and clean-up potential of the approach (minimum matrix effects), the most appropriate sample pre-treatment was adopted. It combines liquid nitrogen homogenization for plant leaves with thermomixer based extraction using MeOH/H(2)O 80/20. As such, an efficient and highly reproducible LC-MS plant metabolomics set-up is achieved, as illustrated by the obtained results for both LC-MS (8.88%+/-5.16 versus 7.05%+/-4.45) and technical variability (12.53%+/-11.21 versus 9.31%+/-6.65) data in a comparative investigation of A. thaliana plant leaves and cell cultures, respectively.

  12. Optimization of Differential Display of Prokaryotic mRNA: Application to Pure Culture and Soil Microcosms

    PubMed Central

    Fleming, James T.; Yao, Wen-Hsiang; Sayler, Gary S.

    1998-01-01

    The differential display (DD) technique, which is widely used almost exclusively for eukaryotic gene discovery, was optimized to detect differential mRNA transcription from both pure-culture and soil-derived bacterial RNA. A model system which included toluene induction of todC1 in Pseudomonas putida F1 was used to optimize the procedure. At 24-h tod induction was determined to be approximately 8 × 107 transcripts/μg or 0.08% of the total mRNA. The primer concentration, primer length, annealing temperature, and template, deoxynucleoside triphosphate, and MgCl2 concentrations were varied to optimize amplification of a todC1 fragment. The limit of detection of todC1 by DD was found to be 0.015 ng of total RNA template or approximately 103 transcripts. Once optimized, a todC1C2 gene fragment from P. putida F1 RNA was detected by using an arbitrary primer for the reverse transcriptase step in conjunction with the same arbitrary primer and a Shine-Dalgarno primer in the PCR. To verify the results, an arbitrary primer was used to detect recovery of a new salicylate-inducible naphthalene dioxygenase in Burkholderia cepacia JS150. The method was then used to detect mRNA induction in both inoculated and uninoculated toluene-induced soil microcosms. Several putative differentially expressed partial gene sequences obtained from the uninoculated microcosms were examined, and one novel fragment was found to be differentially expressed. PMID:9758787

  13. Optimal design of scalable photo-bioreactor for phototropic culturing of Haematococcus pluvialis.

    PubMed

    Yoo, Jae Jun; Choi, Seung Phill; Kim, Byung Woo; Sim, Sang Jun

    2012-01-01

    The unicellular green microalgae, Haematococcus pluvialis, has been examined as a microbial source for the production of astaxanthin, which has been suggested as a food supplement for humans and is also prescribed as an ingredient in eye drops because of its powerful anti-oxidant properties. In this study, we estimated the effects of the slope of a V-shaped bottom design, the volumetric flow rate of air, height/diameter (H/D) ratio, and diameter of an air sparger on the performance of a photo-bioreactor. These parameters were selected because they are recognized as important factors effecting the mixing that produces increased cell density in the reactor. The mixing effect can be measured by changes in optical density in the bioreactor over a period of time. A 6 L indoor photo-bioreactor was prepared in a short time period of 24 h for the performance study. A bioreactor designed with a V-shaped bottom with a slope of 60° showed an optical density change of 0.052 at 680 nm, which was sixfold less than the change in a photo-bioreactor designed with a flat bottom. Studies exploring the effects of bioreactor configuration and a porous metal sparger with a 10 μm pore size showed the best performance at an H/D ratio of 6:1 and a sparger diameter of 1.3 cm, respectively. The optimal rate of air flow was 0.2 vvm. The indoor culture of microalgae in the photo-bioreactor was subsequently carried for an application study using the optimal values established for the important factors. The indoor culture system was composed of a light source controlled according to cell phase, a carbon dioxide feeder, a bag-type reactor with an H/D ratio of 6:1, and a temperature controller. Results demonstrated the efficient production of microalgal cells and astaxanthin in the amounts of 2.62 g/L and 78.37 mg/L, respectively, when using adequate hydrodynamic mixing. Furthermore, the optimal design of a photo-bioreactor can be applied for the phototropic culturing of other microalgae for

  14. Optimization process condition for deacidification of palm oil by liquid-liquid extraction using NADES (Natural Deep Eutectic Solvent)

    NASA Astrophysics Data System (ADS)

    Israyandi, Zahrina, Ida; Mulia, Kamarza

    2017-03-01

    One of many steps in palm oil refining process is deacidification which aims to separate free fatty acids and other compounds from the oil. The deacidification process was using a green solvent, known as NADES, that consisted of betaine monohydrate and propionic acid at molar ratio of 1:8. In this study, the process conditions were optimized using the response surface method (RSM) through central composite design in order to predict the maximum distribution coefficient of palmitic acid. The obtained regression equation of the basic model for optimization was: y = 0.717 + 0.003x1 + 0.043 x2 + 0.148x3 - 0.005 x1x1 - 0.030 x2x2 + 0.047 x3x3 - 0.008 x1x2 + 0.008 x1x3 + 0.033 x2x3. The independent variables are x1 ≡ temperature (40, 60, 80 °C), x2≡ amount of palmitic acid in the palm oil (2, 5, 8 %) and x3 ≡ mass ratios of oil to NADES (1:2, 1:1, 2:1). The optimum process condition found was temperature of 62.3°C, palmitic acid content of 8%, and NADES to palm oil mass ratio of 1:2, resulting in the maximum distribution coefficient of 0.96.

  15. Bell-shaped extraction device assisted liquid-liquid microextraction technique and its optimization using response-surface methodology.

    PubMed

    Čabala, Radomír; Bursová, Miroslava

    2012-03-23

    We have developed a new microextraction technique for equilibrium, non-exhaustive analyte preconcentration from aqueous solutions into organic solvents lighter than water. The key point of the method is application of specially designed and optimized bell-shaped extraction device, BSED. The technique has been tested and applied to the preconcentration of selected volatile and semi volatile compounds which were determined by gas chromatography/mass spectrometry in spiked water samples. The significant parameters of the extraction have been found using chemometric procedures and these parameters were optimized using the central composite design (CCD) for two solvents. The analyte preconcentration factors were in a range from 8.3 to 161.8 (repeatability from 7 to 14%) for heptane, and 50.0-105.0 (repeatability from 0 to 5%) for tert-butyl acetate. The reproducibility of the technique was within 1-8%. The values of limits of detection and determination were 0.1-3.3 ng mL(-1) for heptane and 0.3-10.7 ng mL(-1) for tert-butyl acetate. The new microextraction technique has been found to be a cheap, simple and flexible alternative to the common procedures, such as SPME or LLME. This BSED-LLME technique can also be combined with other separation methods, e.g., HPLC or CE.

  16. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal

    PubMed Central

    Elsheikh, Manal A; Elnaggar, Yosra SR; Gohar, Eman Y; Abdallah, Ossama Y

    2012-01-01

    Raloxifene hydrochloride (RLX) is a selective estrogen-receptor modulator for treatment of osteoporosis and prevention of breast and endometrial cancer. By virtue of extensive presystemic clearance, RLX bioavailability is only 2%. The current study aimed to tailor and characterize RLX-loaded self-nanoemulsifying drug-delivery systems (SNEDDS) using bioactive excipients affecting drug metabolism. The potential of oral nanocarriers to enhance RLX delivery to endocrine target organs was assessed in fasted and fed female Wistar rats using high-performance liquid chromatography. RLX was loaded in the dissolved and dispersed status in the alkalinized (A-SNEDDS) and nonalkalinized (NA-SNEDDS) systems, respectively. Optimization and assessment relied on solubility studies, emulsification efficiency, phase diagrams, dilution robustness, cloud point, particle size, zeta potential (ZP), polydispersity index (PDI), and transmission electron microscopy. In vitro release was assessed using dialysis bag versus dissolution cup methods. NA-SNEDDS were developed with suitable globule size (38.49 ± 4.30 nm), ZP (31.70 ± 3.58 mV), PDI (0.31 ± 0.02), and cloud point (85°C). A-SNEDDS exhibited good globule size (35 ± 2.80 nm), adequate PDI (0.28 ± 0.06), and lower ZP magnitude (−21.20 ± 3.46 mV). Transmission electron microscopy revealed spherical globules and contended data of size analysis. Release studies demonstrated a nonsignificant enhancement of RLX release from NA-SNEDDS compared to drug suspension with the lowest release shown by A-SNEDDS. A conflicting result was elucidated from in vivo trial. A significant enhancement in RLX uptake by endocrine organs was observed after nanocarrier administration compared to RLX suspension. In vivo studies reflected a poor in vitro/in vivo correlation, recommended nanocarrier administration before meals, and did not reveal any advantage for drug loading in the solubilized form (A-SNEDDS). To conclude, NA-SNEDDS possessed superior in

  17. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal.

    PubMed

    Elsheikh, Manal A; Elnaggar, Yosra S R; Gohar, Eman Y; Abdallah, Ossama Y

    2012-01-01

    Raloxifene hydrochloride (RLX) is a selective estrogen-receptor modulator for treatment of osteoporosis and prevention of breast and endometrial cancer. By virtue of extensive presystemic clearance, RLX bioavailability is only 2%. The current study aimed to tailor and characterize RLX-loaded self-nanoemulsifying drug-delivery systems (SNEDDS) using bioactive excipients affecting drug metabolism. The potential of oral nanocarriers to enhance RLX delivery to endocrine target organs was assessed in fasted and fed female Wistar rats using high-performance liquid chromatography. RLX was loaded in the dissolved and dispersed status in the alkalinized (A-SNEDDS) and nonalkalinized (NA-SNEDDS) systems, respectively. Optimization and assessment relied on solubility studies, emulsification efficiency, phase diagrams, dilution robustness, cloud point, particle size, zeta potential (ZP), polydispersity index (PDI), and transmission electron microscopy. In vitro release was assessed using dialysis bag versus dissolution cup methods. NA-SNEDDS were developed with suitable globule size (38.49 ± 4.30 nm), ZP (31.70 ± 3.58 mV), PDI (0.31 ± 0.02), and cloud point (85°C). A-SNEDDS exhibited good globule size (35 ± 2.80 nm), adequate PDI (0.28 ± 0.06), and lower ZP magnitude (-21.20 ± 3.46 mV). Transmission electron microscopy revealed spherical globules and contended data of size analysis. Release studies demonstrated a nonsignificant enhancement of RLX release from NA-SNEDDS compared to drug suspension with the lowest release shown by A-SNEDDS. A conflicting result was elucidated from in vivo trial. A significant enhancement in RLX uptake by endocrine organs was observed after nanocarrier administration compared to RLX suspension. In vivo studies reflected a poor in vitro/in vivo correlation, recommended nanocarrier administration before meals, and did not reveal any advantage for drug loading in the solubilized form (A-SNEDDS). To conclude, NA-SNEDDS possessed superior in

  18. Measurements with an optimized regenerator for a liquid-working-substance heat engine

    NASA Astrophysics Data System (ADS)

    Swift, G. W.; Migliori, A.; Wheatley, J.

    1983-12-01

    A regenerator for use with a liquid in a Stirling cycle heat engine is described. Because of the thermophysical characteristics of liquids, such a regenerator can be nearly ideally effective and has thermal properties that can be calculated directly without resort to empirical information. The regenerator described here is designed to minimize loss arising from three sources: thermal conductivity along the generator, viscous heating in the working fluid, and imperfect thermal contact between the working fluid and the second thermodynamic medium in the regenerator. Measurements using liquid propylene as a test fluid in the regenerator confirm the design calculations.

  19. Knockout confirmation for Hurries: rapid genotype identification of Trypanosoma cruzi transfectants by polymerase chain reaction directly from liquid culture

    PubMed Central

    Alcantara, Monica Visnieski; Fragoso, Stenio Perdigão; Picchi/, Gisele Fernanda Assine

    2014-01-01

    Gene knockout is a widely used approach to evaluate loss-of-function phenotypes and it can be facilitated by the incorporation of a DNA cassette having a drug-selectable marker. Confirmation of the correct knockout cassette insertion is an important step in gene removal validation and has generally been performed by polymerase chain reaction (PCR) assays following a time-consuming DNA extraction step. Here, we show a rapid procedure for the identification of Trypanosoma cruzi transfectants by PCR directly from liquid culture - without prior DNA extraction. This simple approach enabled us to generate PCR amplifications from different cultures varying from 106-108 cells/mL. We also show that it is possible to combine different primer pairs in a multiplex detection reaction and even to achieve knockout confirmation with an extremely simple interpretation of a real-time PCR result. Using the “culture PCR” approach, we show for the first time that we can assess different DNA sequence combinations by PCR directly from liquid culture, saving time in several tasks for T. cruzi genotype interrogation. PMID:24936912

  20. Safety Evaluation of Dry Powder Formulations by Direct Dispersion onto Air-Liquid Interface Cultured Cell Layer.

    PubMed

    Asai, Ayumu; Okuda, Tomoyuki; Yamauchi, Tomoyo; Sugiura, Yuka; Okamoto, Hirokazu

    2016-01-01

    Most safety evaluations of dry powder inhalers (DPIs) using cultured cells have been performed with dry powder formulations dissolved in a medium. However, this method is not considered to be suitable to evaluate the safety of inhaled dry powder formulations correctly since it cannot reflect the actual phenomenon on the respiratory epithelial surface. In this study, we established a novel in-vitro safety evaluation system suitable for DPIs by combining an air-liquid interface cultured cell layer and a device for dispersing dry powders, and evaluated the safety of candidate excipients of dry powders for inhalation. The safety of excipients (sugars, amino acids, cyclodextrins, and positive controls) in solutions was compared using submerged cell culture systems with a conventional 96-well plate and Transwell(®). The sensitivity of the cells grown in Transwell(®) was lower than that of those grown in the 96-well plate. Dry powders were prepared by spray-drying and we evaluated their safety with a novel in-vitro safety evaluation system using an air-liquid interface cultured cell layer. Dry powders decreased the cell viability with doses more than solutions. On the other hand, dissolving the dry powders attenuated their cytotoxicity. This suggested that the novel in-vitro safety evaluation system would be suitable to evaluate the safety of DPIs with high sensitivity.

  1. Optimized ex-ovo culturing of chick embryos to advanced stages of development.

    PubMed

    Cloney, Kellie; Franz-Odendaal, Tamara Anne

    2015-01-24

    Research in anatomy, embryology, and developmental biology has largely relied on the use of model organisms. In order to study development in live embryos model organisms, such as the chicken, are often used. The chicken is an excellent model organism due to its low cost and minimal maintenance, however they present observational challenges because they are enclosed in an opaque eggshell. In order to properly view the embryo as it develops, the shell must be windowed or removed. Both windowing and ex ovo techniques have been developed to assist researchers in the study of embryonic development. However, each of the methods has limitations and challenges. Here, we present a simple, optimized ex ovo culture technique for chicken embryos that enables the observation of embryonic development from stage HH 19 into late stages of development (HH 40), when many organs have developed. This technique is easy to adopt in both undergraduate classes and more advanced research laboratories where embryo manipulations are conducted.

  2. Mixed culture optimization for marigold flower ensilage via experimental design and response surface methodology.

    PubMed

    Navarrete-Bolaños, José Luis; Jiménez-Islas, Hugo; Botello-Alvarez, Enrique; Rico-Martínez, Ramiro

    2003-04-09

    Endogenous microorganisms isolated from the marigold flower (Tagetes erecta) were studied to understand the events taking place during its ensilage. Studies of the cellulase enzymatic activity and the ensilage process were undertaken. In both studies, the use of approximate second-order models and multiple lineal regression, within the context of an experimental mixture design using the response surface methodology as optimization strategy, determined that the microorganisms Flavobacterium IIb, Acinetobacter anitratus, and Rhizopus nigricans are the most significant in marigold flower ensilage and exhibit high cellulase activity. A mixed culture comprised of 9.8% Flavobacterium IIb, 41% A. anitratus, and 49.2% R. nigricans used during ensilage resulted in an increased yield of total xanthophylls extracted of 24.94 g/kg of dry weight compared with 12.92 for the uninoculated control ensilage.

  3. A polysaccharide isolated from the liquid culture of Lentinus edodes (shiitake) mushroom mycelia containing black rice bran protects mice against a Salmonella lipopolysaccharide-induced endotoxemia

    USDA-ARS?s Scientific Manuscript database

    Endotoxemia (sepsis, septic shock) is an inflammatory, virulent disease that results mainly from bacterial infection. The present study investigates the inhibitory effect of the bio-processed polysaccharide (BPP) isolated from the edible Lentinus edodes liquid mycelial mushroom culture supplemented...

  4. Optimization of Culture Parameters for Maximum Polyhydroxybutyrate Production by Selected Bacterial Strains Isolated from Rhizospheric Soils.

    PubMed

    Lathwal, Priyanka; Nehra, Kiran; Singh, Manpreet; Jamdagni, Pragati; Rana, Jogender S

    2015-01-01

    The enormous applications of conventional non-biodegradable plastics have led towards their increased usage and accumulation in the environment. This has become one of the major causes of global environmental concern in the present century. Polyhydroxybutyrate (PHB), a biodegradable plastic is known to have properties similar to conventional plastics, thus exhibiting a potential for replacing conventional non-degradable plastics. In the present study, a total of 303 different bacterial isolates were obtained from soil samples collected from the rhizospheric area of three crops, viz., wheat, mustard and sugarcane. All the isolates were screened for PHB (Poly-3-hydroxy butyric acid) production using Sudan Black staining method, and 194 isolates were found to be PHB positive. Based upon the amount of PHB produced, the isolates were divided into three categories: high, medium and low producers. Representative isolates from each category were selected for biochemical characterization; and for optimization of various culture parameters (carbon source, nitrogen source, C/N ratio, different pH, temperature and incubation time periods) for maximizing PHB accumulation. The highest PHB yield was obtained when the culture medium was supplemented with glucose as the carbon source, ammonium sulphate at a concentration of 1.0 g/l as the nitrogen source, and by maintaining the C/N ratio of the medium as 20:1. The physical growth parameters which supported maximum PHB accumulation included a pH of 7.0, and an incubation temperature of 30 degrees C for a period of 48 h. A few isolates exhibited high PHB accumulation under optimized conditions, thus showing a potential for their industrial exploitation.

  5. A simple colony-formation assay in liquid medium, termed 'tadpoling', provides a sensitive measure of Saccharomyces cerevisiae culture viability.

    PubMed

    Welch, Aaron Z; Koshland, Douglas E

    2013-12-01

    Here we describe the first high-throughput amenable method of quantifying Saccharomyces cerevisiae culture viability. Current high-throughput methods of assessing yeast cell viability, such as flow cytometry and SGA analysis, do not measure the percentage viability of a culture but instead measure cell vitality or colony fitness, respectively. We developed a method, called tadpoling, to quantify the percentage viability of a yeast culture, with the ability to detect as few as one viable cell amongst ~10(8) dead cells. The most important feature of this assay is the exploitation of yeast colony formation in liquid medium. Utilizing a microtiter dish, we are able to observe a range of viability of 100% to 0.0001%. Comparison of tadpoling to the traditional plating method to measure yeast culture viability reveals that, for the majority of Saccharomyces species analyzed there is no significant difference between the two methods. In comparison to flow cytometry using propidium iodide, the high-throughput method of measuring yeast culture viability, tadpoling is much more accurate at culture viabilities < 1%. Thus, we show that tadpoling provides an easy, inexpensive, space-saving method, amenable to high-throughput screens, for accurately measuring yeast cell viability.

  6. Effects of extracellular matrix proteins on macrophage differentiation, growth, and function: comparison of liquid and agar culture systems

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Both spaceflight and skeletal unloading suppress the haematopoietic differentiation of macrophages (Sonnenfeld et al., Aviat. Space Environ. Med., 61:648-653, 1990; Armstrong et al., J. Appl. Physiol., 75:2734-2739, 1993). The mechanism behind this reduction in haematopoiesis has yet to be elucidated. However, changes in bone marrow extracellular matrix (ECM) may be involved. To further understand the role of ECM products in macrophage differentiation, we have performed experiments evaluating the effects of fibronectin, laminin, collagen type I, and collagen type IV on macrophage development and function. Bone marrow-derived macrophages cultured on four different ECM substrates in liquid culture medium showed less growth than those cultured on plastic. Significant morphological differences were seen on each of the substrates used. Phenotypically and functionally, as measured by class II major histocompatibility molecule (MHCII) expression, MAC-2 expression, and the secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), these macrophages were similar. In contrast, bone marrow-derived macrophages cultured in suspension, using agar, showed no difference in growth when exposed to ECM proteins. However, IL-6 and TNF-alpha secretion was affected by fibronectin, laminin, collagen type I, and collagen type IV in a concentration-dependent manner. We conclude that the ECM products fibronectin, laminin, collagen type I, and collagen type IV have profound effects on macrophage development and function. Additionally, we suggest that an ECM-supplemented agar culture system provides an environment more analogous to in vivo bone marrow than does a traditional liquid culture system.

  7. Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Culture: Solvent Evaluation and Use of Extractants for Partitioning and Selectivity

    PubMed Central

    McPartland, Timothy J.; Patil, Rohan A.; Malone, Michael F.; Roberts, Susan C.

    2012-01-01

    A major challenge in the production of metabolites by plant cells is the separation and purification of a desired product from a number of impurities. An important application of plant cell culture is the biosynthesis of the anti-cancer agent paclitaxel. Liquid-liquid extraction plays a critical role in the recovery of paclitaxel and other valuable plant-derived products from culture broth. In this study, the extraction of paclitaxel and a major unwanted by-product, cephalomannine, from plant cell culture broth into organic solvents is quantified. Potential solvent mixtures show varying affinity and selectivity for paclitaxel over cephalomannine. The partition coefficient of paclitaxel is highest in ethyl acetate and dichloromethane, with measured values of 28 and 25, respectively; however selectivity coefficients are less than 1 for paclitaxel over cephalomannine for both solvents. Selectivity coefficient increases to 1.7 with extraction in n-hexane but the partition coefficient decreases to 1.9. Altering the pH of the aqueous phase results in an increase in both recovery and selectivity using n-hexane, but does not change the results for other solvents significantly. The addition of extractants trioctyl amine (TOA) or tributyl phosphate (TBP) to n-hexane gives significantly higher partition coefficients for paclitaxel (8.6 and 23.7, respectively), but no selectivity. Interestingly, when 20% hexafluorobenzene (HFB) is added to n-hexane, the partition coefficient remains approximately constant but the selectivity coefficient for paclitaxel over cephalomannine improves to 4.5. This significant increase in selectivity early in the purification process has the potential to simplify downstream processing steps and significantly reduce overall purification costs. PMID:22581674

  8. Optimizing NTS-Polyplex as a Tool for Gene Transfer to Cultured Dopamine Neurons

    PubMed Central

    Hernandez-Baltazar, Daniel

    2012-01-01

    The study of signal transduction in dopamine (DA)-containing neurons as well as the development of new therapeutic approaches for Parkinson's disease requires the selective expression of transgenes in such neurons. Here we describe optimization of the use of the NTS-polyplex, a gene carrier system taking advantage of neurotensin receptor internalization, to transfect mouse DA neurons in primary culture. The plasmids DsRed2 (4.7 kbp) and VGLUT2-Venus (11 kbp) were used to compare the ability of this carrier system to transfect plasmids of different sizes. We examined the impact of age of the neurons (1, 3, 5 and 8 days after seeding), of culture media used during the transfection (Neurobasal with B27 vs. conditioned medium) and of three molar ratios of plasmid DNA to carrier. While the NTS-polyplex successfully transfected both plasmids in a control N1E-115 cell line, only the pDsRed2 plasmid could be transfected in primary cultured DA neurons. We achieved 20% transfection efficiency of pDsRed2 in DA neurons, with 80% cell viability. The transfection was demonstrated pharmacologically to be dependent on activation of neurotensin receptors and to be selective for DA neurons. The presence of conditioned medium for transfection was found to be required to insure cell viability. Highest transfection efficiency was achieved in the most mature neurons. In contrast, transfection with the VGLUT2-Venus plasmid produced cell damage, most likely due to the high molar ratios required, as evidenced by a 15% cell viability of DA neurons at the three molar ratios tested (1∶36, 1∶39 and 1∶42). We conclude that, when used at molar ratios lower than 1∶33, the NTS-polyplex can selectively transfect mature cultured DA neurons with only low levels of toxicity. Our results provide evidence that the NTS-polyplex has good potential for targeted gene delivery in cultured DA neurons, an in vitro system of great use for the screening of new therapeutic approaches for Parkinson

  9. Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture.

    PubMed

    Simmons, Christopher W; Reddy, Amitha P; Vandergheynst, Jean S; Simmons, Blake A; Singer, Steven W

    2014-01-01

    The use of ionic liquids (ILs) to disrupt the recalcitrant structure of lignocellulose and make polysaccharides accessible to hydrolytic enzymes is an emerging technology for biomass pretreatment in lignocellulosic biofuel production. Despite efforts to reclaim and recycle IL from pretreated biomass, residual IL can be inhibitory to microorganisms used for downstream fermentation. As a result, pathways for IL tolerance are needed to improve the activity of fermentative organisms in the presence of IL. In this study, microbial communities from compost were cultured under high-solids and thermophilic conditions in the presence of 1-ethyl-3-methylimidazolium-based ILs to enrich for IL-tolerant microorganisms. A strain of Bacillus coagulans isolated from an IL-tolerant community was grown in liquid and solid-state culture in the presence of the ILs 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) or 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) to gauge IL tolerance. Viability and respiration varied with the concentration of IL applied and the type of IL used. B. coagulans maintained growth and respiration in the presence of 4 wt% IL, a concentration similar to that present on IL-pretreated biomass. In the presence of both [C2mim][OAc] and [C2mim][Cl] in liquid culture, B. coagulans grew at a rate approximately half that observed in the absence of IL. However, in solid-state culture, the bacteria were significantly more tolerant to [C2mim][Cl] compared with [C2mim][OAc]. B. coagulans tolerance to IL under industrially relevant conditions makes it a promising bacterium for understanding mechanisms of IL tolerance and discovering IL tolerance pathways for use in other microorganisms, particularly those used in bioconversion of IL-pretreated plant biomass.

  10. Hepatocytes cultured in alginate microspheres: an optimized technique to study enzyme induction.

    PubMed

    Ringel, M; von Mach, M A; Santos, R; Feilen, P J; Brulport, M; Hermes, M; Bauer, A W; Schormann, W; Tanner, B; Schön, M R; Oesch, F; Hengstler, J G

    2005-01-05

    An important application of hepatocyte cultures is identification of drugs acting as inducers of biotransformation enzymes that alter metabolic clearance of other therapeutic agents. In the present study we optimized an in vitro system with hepatocytes cultured in alginate microspheres that allow studies of enzyme induction with excellent sensitivity. Induction factors obtained with standard inducers, such as 3-methylcholanthrene or phenobarbital, were higher compared to those with conventional hepatocyte co-cultures on collagen coated dishes. This is illustrated by activities of 7-ethoxyresorufin-O-deethylase (EROD) after incubation with 5 microM 3-methylcholanthrene (3-MC), a standard inducer for cytochrome P4501A1 and 1A2. Mean activities for solvent controls and 3-MC exposed cells were 2.99 and 449 pmol/min/mg protein (induction factor: 150) for hepatocytes cultured in microspheres compared to 2.72 and 80.6 pmol/min/mg (induction factor: 29.6) for hepatocytes on collagen coated dishes. To compare these in vitro data to the in vivo situation male Sprague Dawley rats, the same strain that was used also for the in vitro studies, were exposed to 3-MC in vivo using a protocol that guarantees maximal induction. Activities were 29.2 and 1656 pmol/min/mg in liver homogenate of solvent and 3-MC treated animals (induction factor: 56.7). Thus, the absolute activities of 3-MC exposed hepatocytes in microspheres are lower compared to the in vivo situation. However, the induction factor in vitro was even higher compared to the in vivo situation (150-fold versus 56.7-fold). A similar scenario was observed using phenobarbital (0.75 mM) for induction of CYP2B and 3A isoenzymes: induction factors for testosterone hydroxylation in position 16beta were 127.5- and 50.4-fold for hepatocytes in microspheres and conventionally cultured hepatocytes, respectively. The new in vitro system with hepatocytes embedded in solid alginate microspheres offers several technical advantages: (i

  11. A novel buoyancy technique optimizes simulated microgravity conditions for whole sensory organ culture in rotating bioreactors.

    PubMed

    Arnold, Heinz J P; Müller, Marcus; Waldhaus, Jörg; Hahn, Hartmut; Löwenheim, Hubert

    2010-02-01

    Whole-organ culture of a sensory organ in a rotating wall vessel bioreactor provides a powerful in vitro model for physiological and pathophysiological investigation as previously demonstrated for the postnatal inner ear. The model is of specific relevance as a tool for regeneration research. In the immature inner ear explant, the density was only 1.29 g/cm(3). The high density of 1.68 g/cm(3) of the functionally mature organ resulted in enhanced settling velocity and deviation from its ideal circular orbital path causing enhanced shear stress. The morphometric and physical properties, as well as the dynamic motion patterns of explants, were analyzed and numerically evaluated by an orbital path index. Application of a novel buoyancy bead technique resulted in a 6.5- to 14.8-fold reduction of the settling velocity. The deviation of the explant from its ideal circular orbital path was adjusted as indicated by an optimum value for the orbital path index (-1.0). Shear stress exerted on the inner ear explant was consequently reduced 6.4- to 15.0-fold. The culture conditions for postnatal stages were optimized, and the preconditions for transferring this in vitro model toward mature high-density stages established. This buoyancy technique may also be useful in tissue engineering of other high-density structures.

  12. Recombinant bromelain production in Escherichia coli: process optimization in shake flask culture by response surface methodology

    PubMed Central

    2012-01-01

    Bromelain, a cysteine protease with various therapeutic and industrial applications, was expressed in Escherichia coli, BL21-AI clone, under different cultivation conditions (post-induction temperature, L-arabinose concentration and post-induction period). The optimized conditions by response surface methodology using face centered central composite design were 0.2% (w/v) L-arabinose, 8 hr and 25°C. The analysis of variance coupled with larger value of R2 (0.989) showed that the quadratic model used for the prediction was highly significant (p < 0.05). Under the optimized conditions, the model produced bromelain activity of 9.2 U/mg while validation experiments gave bromelain activity of 9.6 ± 0.02 U/mg at 0.15% (w/v) L-arabinose, 8 hr and 27°C. This study had innovatively developed cultivation conditions for better production of recombinant bromelain in shake flask culture. PMID:22336426

  13. A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture.

    PubMed

    Camacho-Rodríguez, J; Cerón-García, M C; González-López, C V; Fernández-Sevilla, J M; Contreras-Gómez, A; Molina-Grima, E

    2013-09-01

    Nannochloropsis gaditana is a microalga with a high nutritional value and a protein and polyunsaturated fatty acid (PUFA) content that makes it interesting as a feed in aquaculture. To maximize its productivity and nutritional value in large-scale culture, a well-known commercial medium was optimized to the most favorable nutrient level using commercial fertilizers. Optimal growth conditions were obtained in the alternative fertilizer-based medium at a nitrogen concentration of 11.3 mM, a phosphorus concentration of 0.16 mM, and a micronutrient concentration of 30 μL L(-1). This alternative medium allowed to obtain a biomass concentration similar to that achieved when using the commercial formula but with a reduction in Cu, Fe, and Mo content of 71%, 89%, and 99%, respectively. A maximum biomass productivity of 0.51 g L(-1) d(-1) was obtained. The eicosapentaenoic acid and protein contents of the biomass were 2.84% and 44% of dry weight, respectively.

  14. Increasing Pleurotus ostreatus laccase production by culture medium optimization and copper/lignin synergistic induction.

    PubMed

    Tinoco, Raunel; Acevedo, Abisaí; Galindo, Enrique; Serrano-Carreón, Leobardo

    2011-04-01

    Laccases have great biotechnological potential in diverse industries as they catalyze the oxidation of a broad variety of chemical compounds. Production of laccases by basidiomycetes has been broadly studied as they secrete the enzymes, grow on cheap substrates, and they generally produce more than one isoenzyme (constitutive and/or inducible). Laccase production and isoenzyme profile can be modified through medium composition and the use of inducers. The objective of this work was to increase laccase production by Pleurotus ostreatus CP-50 through culture medium optimization and the simultaneous use of copper and lignin as inducers. Increased fungal growth was obtained through the use of a factorial fractional experimental design 2⁶⁻² where the influence of the nature and concentration of carbon and nitrogen sources was assessed. Although specific laccase production (U/mg biomass) decreased when malt extract medium was supplemented with carbon and nitrogen sources, fungal growth and laccase volumetric activity increased four and sixfold, respectively. The effect of media supplementation with copper and/or lignin on laccase production by P. ostreatus CP-50 was studied. A positive synergistic effect between copper and lignin was observed on laccase production. Overall, the use of an optimized medium and the simultaneous addition of copper and lignin improved growth, laccase volumetric activity, and process productivity by 4-, 60-, and 10-fold, respectively.

  15. Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme.

    PubMed

    Han, Pei-pei; Jia, Shi-ru; Sun, Ying; Tan, Zhi-lei; Zhong, Cheng; Dai, Yu-jie; Tan, Ning; Shen, Shi-gang

    2014-09-01

    The application of antibiotic treatment with assistance of metabolomic approach in axenic isolation of cyanobacterium Nostoc flagelliforme was investigated. Seven antibiotics were tested at 1-100 mg L(-1), and order of tolerance of N. flagelliforme cells was obtained as kanamycin > ampicillin, tetracycline > chloromycetin, gentamicin > spectinomycin > streptomycin. Four antibiotics were selected based on differences in antibiotic sensitivity of N. flagelliforme and associated bacteria, and their effects on N. flagelliforme cells including the changes of metabolic activity with antibiotics and the metabolic recovery after removal were assessed by a metabolomic approach based on gas chromatography-mass spectrometry combined with multivariate analysis. The results showed that antibiotic treatment had affected cell metabolism as antibiotics treated cells were metabolically distinct from control cells, but the metabolic activity would be recovered via eliminating antibiotics and the sequence of metabolic recovery time needed was spectinomycin, gentamicin > ampicillin > kanamycin. The procedures of antibiotic treatment have been accordingly optimized as a consecutive treatment starting with spectinomycin, then gentamicin, ampicillin and lastly kanamycin, and proved to be highly effective in eliminating the bacteria as examined by agar plating method and light microscope examination. Our work presented a strategy to obtain axenic culture of N. flagelliforme and provided a method for evaluating and optimizing cyanobacteria purification process through diagnosing target species cellular state.

  16. [Optimized culture medium and fermentation conditions for lipid production by Rhodosporidium toruloides].

    PubMed

    Li, Yong-Hong; Liu, Bo; Zhao, Zong-Bao; Bai, Feng-Wu

    2006-07-01

    Culture medium and fermentation conditions for lipid production by Rhodosporidium toruloides were optimized with single factor and uniform design experiment. The best medium recipe was found with 70 g/L glucose, 0.1 g/L (NH4)2SO4, 0.75 g/L yeast extract, 1.5 g/L MgSO4. 7H2O, 0.4g/L KH2PO4, sterilized at 121 degrees C for 15 min, and then supplemented with ZnSO4 1.91 x 10(-6) mmol/L, CaCl2 1.50 mmol/L, MnCl2 1.22 x 10(-4) mmol/L and CuSO4 1.00 x 10(-4) mmol/L. The optimal fermentation conditions were as follows: 50 mL of medium (pH 6.0) in 250 mL Erlenmeyer flask with 10% inoculum (28h) under orbital shaking at 200 r/min for 120h at 30 degrees C. Under these conditions, yeast biomass accumulated lipids up to 76.1%.

  17. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    SciTech Connect

    Belfort, Georges; Grimaldi, Joseph J.

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  18. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    new avenue for stem cell culture and maintenance using an optimal organic-based chemistry.

  19. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids.

    PubMed

    Jones, J Andrew; Vernacchio, Victoria R; Sinkoe, Andrew L; Collins, Shannon M; Ibrahim, Mohammad H A; Lachance, Daniel M; Hahn, Juergen; Koffas, Mattheos A G

    2016-05-01

    Metabolic engineering and synthetic biology have enabled the use of microbial production platforms for the renewable production of many high-value natural products. Titers and yields, however, are often too low to result in commercially viable processes. Microbial co-cultures have the ability to distribute metabolic burden and allow for modular specific optimization in a way that is not possible through traditional monoculture fermentation methods. Here, we present an Escherichia coli co-culture for the efficient production of flavonoids in vivo, resulting in a 970-fold improvement in titer of flavan-3-ols over previously published monoculture production. To accomplish this improvement in titer, factors such as strain compatibility, carbon source, temperature, induction point, and inoculation ratio were initially optimized. The development of an empirical scaled-Gaussian model based on the initial optimization data was then implemented to predict the optimum point for the system. Experimental verification of the model predictions resulted in a 65% improvement in titer, to 40.7±0.1mg/L flavan-3-ols, over the previous optimum. Overall, this study demonstrates the first application of the co-culture production of flavonoids, the most in-depth co-culture optimization to date, and the first application of empirical systems modeling for improvement of titers from a co-culture system.

  20. Defined media optimization for in vitro culture of bovine somatic cell nuclear transfer (SCNT) embryos.

    PubMed

    Wang, Li-Jun; Xiong, Xian-Rong; Zhang, Hui; Li, Yan-Yan; Li, Qian; Wang, Yong-Sheng; Xu, Wen-Bing; Hua, Song; Zhang, Yong

    2012-12-01

    The objective was to establish an efficient defined culture medium for bovine somatic cell nuclear transfer (SCNT) embryos. In this study, modified synthetic oviductal fluid (mSOF) without bovine serum albumin (BSA) was used as the basic culture medium (BCM), whereas the control medium was BCM with BSA. In Experiment 1, adding polyvinyl alcohol (PVA) to BCM supported development of SCNT embryos to blastocyst stage, but blastocyst formation rate and blastocyst cell number were both lower (P < 0.05) compared to the undefined group (6.1 vs. 32.6% and 67.3 ± 3.4 vs. 109.3 ± 4.5, respectively). In Experiment 2, myo-inositol, a combination of insulin, transferrin and selenium (ITS), and epidermal growth factor (EGF) were added separately to PVA-supplemented BCM. The blastocyst formation rate and blastocyst cell number of those three groups were dramatically improved compared with that of PVA-supplemented group in Experiment 1 (18.5, 23.0, 24.1 vs. 6.1% and 82.7 ± 2.0, 84.3 ± 4.2, 95.3 ± 3.8 vs. 67.3 ± 3.4, respectively, P < 0.05), but were still lower compared with that of undefined group (33.7% and 113.8 ± 3.4, P < 0.05). In Experiment 3, when a combination of myo-inositol, ITS and EGF were added to PVA-supplemented BCM, blastocyst formation rate and blastocyst cell number were similar to that of undefined group (30.4 vs. 31.1% and 109.3 ± 4.4 vs. 112.0 ± 3.6, P > 0.05). In Experiment 4, when blastocysts were cryopreserved and subsequently thawed, there were no significant differences between the optimized defined group (Experiment 3) and undefined group in survival rate and 24 and 48 h hatching blastocyst rates. Furthermore, there were no significant differences in expression levels of H19, HSP70 and BAX in blastocysts derived from optimized defined medium and undefined medium, although the relative expression abundance of IGF-2 was significantly decreased in the former. In conclusion, a defined culture medium containing PVA, myo-inositol, ITS, and EGF

  1. Application and optimization of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for sensitive determination of polyamines in turkey breast meat samples.

    PubMed

    Bashiry, Moein; Mohammadi, Abdorreza; Hosseini, Hedayat; Kamankesh, Marzieh; Aeenehvand, Saeed; Mohammadi, Zaniar

    2016-01-01

    A novel method based on microwave-assisted extraction and dispersive liquid-liquid microextraction (MAE-DLLME) followed by high-performance liquid chromatography (HPLC) was developed for the determination of three polyamines from turkey breast meat samples. Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effective factors in DLLME process. The optimum microextraction efficiency was obtained under optimized conditions. The calibration graphs of the proposed method were linear in the range of 20-200 ng g(-1), with the coefficient determination (R(2)) higher than 0.9914. The relative standard deviations were 6.72-7.30% (n = 7). The limits of detection were in the range of 0.8-1.4 ng g(-1). The recoveries of these compounds in spiked turkey breast meat samples were from 95% to 105%. The increased sensitivity in using the MAE-DLLME-HPLC-UV has been demonstrated. Compared with previous methods, the proposed method is an accurate, rapid and reliable sample-pretreatment method.

  2. Automated Gravimetric Calibration to Optimize the Accuracy and Precision of TECAN Freedom EVO Liquid Handler.

    PubMed

    Bessemans, Laurent; Jully, Vanessa; de Raikem, Caroline; Albanese, Mathieu; Moniotte, Nicolas; Silversmet, Pascal; Lemoine, Dominique

    2016-10-01

    High-throughput screening technologies are increasingly integrated into the formulation development process of biopharmaceuticals. The performance of liquid handling systems is dependent on the ability to deliver accurate and precise volumes of specific reagents to ensure process quality. We have developed an automated gravimetric calibration procedure to adjust the accuracy and evaluate the precision of the TECAN Freedom EVO liquid handling system. Volumes from 3 to 900 µL using calibrated syringes and fixed tips were evaluated with various solutions, including aluminum hydroxide and phosphate adjuvants, β-casein, sucrose, sodium chloride, and phosphate-buffered saline. The methodology to set up liquid class pipetting parameters for each solution was to split the process in three steps: (1) screening of predefined liquid class, including different pipetting parameters; (2) adjustment of accuracy parameters based on a calibration curve; and (3) confirmation of the adjustment. The run of appropriate pipetting scripts, data acquisition, and reports until the creation of a new liquid class in EVOware was fully automated. The calibration and confirmation of the robotic system was simple, efficient, and precise and could accelerate data acquisition for a wide range of biopharmaceutical applications. © 2016 Society for Laboratory Automation and Screening.

  3. Automated Gravimetric Calibration to Optimize the Accuracy and Precision of TECAN Freedom EVO Liquid Handler

    PubMed Central

    Bessemans, Laurent; Jully, Vanessa; de Raikem, Caroline; Albanese, Mathieu; Moniotte, Nicolas; Silversmet, Pascal; Lemoine, Dominique

    2016-01-01

    High-throughput screening technologies are increasingly integrated into the formulation development process of biopharmaceuticals. The performance of liquid handling systems is dependent on the ability to deliver accurate and precise volumes of specific reagents to ensure process quality. We have developed an automated gravimetric calibration procedure to adjust the accuracy and evaluate the precision of the TECAN Freedom EVO liquid handling system. Volumes from 3 to 900 µL using calibrated syringes and fixed tips were evaluated with various solutions, including aluminum hydroxide and phosphate adjuvants, β-casein, sucrose, sodium chloride, and phosphate-buffered saline. The methodology to set up liquid class pipetting parameters for each solution was to split the process in three steps: (1) screening of predefined liquid class, including different pipetting parameters; (2) adjustment of accuracy parameters based on a calibration curve; and (3) confirmation of the adjustment. The run of appropriate pipetting scripts, data acquisition, and reports until the creation of a new liquid class in EVOware was fully automated. The calibration and confirmation of the robotic system was simple, efficient, and precise and could accelerate data acquisition for a wide range of biopharmaceutical applications. PMID:26905719

  4. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease.

    PubMed

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production.

  5. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease

    PubMed Central

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J.

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  6. Induction of a photomixotrophic plant cell culture of Helianthus annuus and optimization of culture conditions for improved α-tocopherol production.

    PubMed

    Geipel, Katja; Song, Xue; Socher, Maria Lisa; Kümmritz, Sibylle; Püschel, Joachim; Bley, Thomas; Ludwig-Müller, Jutta; Steingroewer, Juliane

    2014-03-01

    Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, which are synthesized only by photosynthetic organisms. Due to their enormous potential to protect cells from oxidative damage, tocopherols are used, e.g., as nutraceuticals and additives in pharmaceuticals. The most biologically active form of vitamin E is α-tocopherol. Most tocopherols are currently produced via chemical synthesis. Nevertheless, this always results in a racemic mixture of different and less effective stereoisomers because the natural isomer has the highest biological activity. Therefore, tocopherols synthesized in natural sources are preferred for medical purposes. The annual sunflower (Helianthus annuus L.) is a well-known source for α-tocopherol. Within the presented work, sunflower callus and suspension cultures were established growing under photomixotrophic conditions to enhance α-tocopherol yield. The most efficient callus induction was achieved with sunflower stems cultivated on solid Murashige and Skoog medium supplemented with 30 g l(-1) sucrose, 0.5 mg l(-1) of the auxin 1-naphthalene acetic acid, and 0.5 mg l(-1) of the cytokinin 6-benzylaminopurine. Photomixotrophic sunflower suspension cultures were induced by transferring previously established callus into liquid medium. The effects of light intensity, sugar concentration, and culture age on growth rate and α-tocopherol synthesis rate were characterized. A considerable increase (max. 230%) of α-tocopherol production in the cells was obtained within the photomixotrophic cell culture compared to a heterotrophic cell culture. These results will be useful for improving α-tocopherol yields of plant in vitro cultures.

  7. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods.

    PubMed

    Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah

    2015-01-25

    In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (2(4)) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL(-1) with detection limit of 6.7 ng mL(-1) (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n=7, c=50 ng mL(-1)). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination.

  8. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods

    NASA Astrophysics Data System (ADS)

    Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah

    2015-01-01

    In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (24) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL-1 with detection limit of 6.7 ng mL-1 (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n = 7, c = 50 ng mL-1). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination.

  9. Pesticides in seaweed: optimization of pressurized liquid extraction and in-cell clean-up and analysis by liquid chromatography-mass spectrometry.

    PubMed

    Lorenzo, R A; Pais, S; Racamonde, I; García-Rodríguez, D; Carro, A M

    2012-07-01

    Chemical residues, such as insecticides and anthelmintics, are frequently redistributed from the aquatic environment to marine species. This work reports on a fast validated protocol for the analysis of azamethiphos, three avermectins, two carbamates and two benzoylurea pesticides and chemotherapeutic agents in seaweeds based on pressurized liquid extraction and separation of analytes by liquid chromatography coupled with tandem mass spectrometry. The variables affecting the efficiency of pressurized liquid extraction, including temperature, number of extraction cycles, static extraction time and percent acetonitrile flush volume, were studied using a Doehlert design. The optimum parameters were 100 °C and one cycle of 3 min with 70 % acetonitrile. Adequate in-cell clean-up of the seaweeds was achieved using 0.8 g of Florisil over 0.1 g of graphitized carbon black on the bottom of the cell. The optimized method was validated using an analyte-free seaweed sample fortified at different concentrations. The limits of quantification ranged from 3.6 μg kg(-1) (azamethiphos) to 31.5 μg kg(-1) (abamectin). The recovery was from 87 to 120 % in most cases at different spiking levels. Finally, the reproducibility of the method expressed as the relative standard deviation and evaluated at concentrations of 10 and 50 μg kg(-1) was in the range 9-14.3 % and 6.1-12.3 %, respectively. The applicability of the method was evaluated with five commercial and 12 wild edible seaweeds, and four target compounds were detected in two wild seaweeds at a concentration below the quantification limit.

  10. Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food.

    PubMed

    Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan

    2017-05-10

    A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r(2): 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.

  11. Multivariate optimization of dispersive liquid-liquid microextraction for the determination of paclobutrazol and triflumizole in water by GC-MS.

    PubMed

    Chormey, Dotse Selali; Karakuş, Yeşim; Karayaka, Sena; Özsöyler, Çağla; Bozdoğan, Abdürrezzak Emin; Bakırdere, Sezgin

    2017-09-23

    A new analytical method based on dispersive liquid-liquid microextraction with gas chromatography and mass spectrometry has been optimized for the simultaneous determination of paclobutrazol and triflumizole in tap water and wastewater samples. A two-level, full-factorial design that allowed the study of main effects and factor interactions was applied to analyze the influence on microextraction process by chloroform, ethanol, potassium iodide and hand shaking. The extraction conditions selected were 200 μL of chloroform, 3.0 ml of ethanol, 2.0 g of potassium iodide and 15 s of hand shaking. The limits of detection obtained for triflumizole and paclobutrazol under optimum conditions were 0.97 and 0.29 ng mL(-1) , respectively. Calibration plots of both analytes were linear over a wide concentration range, and good precision was observed for replicate measurements. Applicability and accuracy of the method were determined by performing spiked recovery tests. Appreciable recovery results were obtained for municipal wastewater and matrix matching was used to obtain close to 100% recovery for tap water. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent.

    PubMed

    Sereshti, Hassan; Izadmanesh, Yahya; Samadi, Soheila

    2011-07-22

    Ultrasonic assisted extraction-dispersive liquid-liquid microextraction (UAE-DLLME) coupled with gas chromatography (GC) was applied for extraction and determination of essential oil constituents of the plant Oliveria decumbens Vent. Scanning electron microscopy (SEM) was used to see the effect of ultrasonic radiation on the extraction efficiency. By comparison with hydrodistillation, UAE-DLLME is fast, low cost, simple, efficient and consuming small amount of plant materials (∼1.0 g). The effects of various parameters such as temperature, ultrasonication time, volume of disperser and extraction solvents were investigated by a full factorial design to identify significant variables and their interactions. The results demonstrated that temperature and ultrasonication time had no considerable effect on the results. In the next step, a central composite design (CCD) was performed to obtain the optimum levels of significant parameters. The obtained optimal conditions were: 0.45 mL for disperser solvent (acetonitrile) and 94.84 μL for extraction solvent (chlorobenzene). The limits of detection (LODs), linear dynamic range and determination coefficients (R(2)) were 0.2-29 ng mL(-1), 1-2100 ng mL(-1) and 0.995-0.998, respectively. The main components of the essential oil were: thymol (47.06%), carvacrol (23.31%), gamma-terpinene (18.94%), p-cymene (8.71%), limonene (0.76%) and myristicin (0.63%).

  13. Optimization of Emulsification-based Liquid Phase Microextraction of Chromium in Seawater of Chabahar Bay for its Speciation by High-Performance Liquid Chromatography.

    PubMed

    Zahedi, Mir Mahdi; Rezaei, Ahmad

    2016-11-01

    After complexation of Cr(III) and Cr(VI) species with diethyldithiocarbamate (0.2 mmol/L), effective parameters of emulsification-based dispersive liquid microextraction procedure was optimized for its preconcentration in artificial seawater. Triton X-305 as the emulsifying disperser and mixture of the chloroform and carbon tetrachloride as the extraction solvents show a better behavior at sample pH of 6.5. The method was applied for extraction and UV detection (λ = 254 nm) of chromium species of the Chabahar Bay seawater prior to high-performance liquid chromatography (conditions: C18, methanol: acetic acid solution 2% v (85:15), flow rate of 0.8 mL min(-1)). Characteristics of the method such as enrichment factor (210 and 228), linear range (10-300 µg L(-1)), limit of detection (0.017 and 0.597 µg L(-1)) and repeatability, (N = 5, concentration of 100 µg L(-1) %relative standard deviation = 2.6% and 0.45%) were evaluated for Cr(III) and Cr(VI), respectively. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Optimization of a phase separation based magnetic-stirring salt-induced liquid-liquid microextraction method for determination of fluoroquinolones in food.

    PubMed

    Gao, Ming; Wang, Huili; Ma, Meiping; Zhang, Yuna; Yin, Xiaohan; Dahlgren, Randy A; Du, Dongli; Wang, Xuedong

    2015-05-15

    Herein, we developed a novel integrated apparatus to perform phase separation based on magnetic-stirring, salt-induced, liquid-liquid microextraction for determination of five fluoroquinolones in animal-based foods by HPLC analysis. The novel integrated apparatus consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 791 μL of acetone solvent, 2.5 g of Na2SO4, pH 1.7, 3.0 min of stir time, and 5.5 min centrifugation. The limits of detection were 0.07-0.53 μg kg(-1) and recoveries were 91.6-105.0% for the five fluoroquinolones from milk, eggs and honey. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinolones in animal-based foods.

  15. Optimization of processing parameter for fabrication of polylactic acid/liquid natural rubber/graphene nanoplatelet by tensile properties

    NASA Astrophysics Data System (ADS)

    Shahdan, Dalila; Ahmad, Sahrim Hj.; Chen, Ruey Shan; Ali, Adilah Mat; Zailan, Farrah Diyana

    2016-11-01

    A study on processing parameter of polylactic acid (PLA) and graphene nanoplatelet (GNP) prepared via melt blending method using Haake Rheomix internal mixer. In this study liquid natural rubber (LNR) was used as compatibilizer and at the same time introducing ductile property into the nanocomposite blending. In order to determine the optimal processing parameter, nanocomposites were fabricated from PLA: LNR with ratio of 90:10, and 0.2 wt. % of graphene nanoplatelet with different mixing parameter condition; mixing temperature, rotor speed and mixing time. The optimal processing parameter was determined from the results of tensile testing. An optimum processing parameter of polymer nanocomposite was obtained at 180 °C of mixing temperature, 100 rpm of mixing speed and 14 min of mixing time. The SEM micrographs confirmed the dispersion of GNP in the PLA matrix.

  16. Optimized nested Markov chain Monte Carlo sampling: application to the liquid nitrogen Hugoniot using density functional theory

    SciTech Connect

    Shaw, Milton Sam; Coe, Joshua D; Sewell, Thomas D

    2009-01-01

    An optimized version of the Nested Markov Chain Monte Carlo sampling method is applied to the calculation of the Hugoniot for liquid nitrogen. The 'full' system of interest is calculated using density functional theory (DFT) with a 6-31 G* basis set for the configurational energies. The 'reference' system is given by a model potential fit to the anisotropic pair interaction of two nitrogen molecules from DFT calculations. The EOS is sampled in the isobaric-isothermal (NPT) ensemble with a trial move constructed from many Monte Carlo steps in the reference system. The trial move is then accepted with a probability chosen to give the full system distribution. The P's and T's of the reference and full systems are chosen separately to optimize the computational time required to produce the full system EOS. The method is numerically very efficient and predicts a Hugoniot in excellent agreement with experimental data.

  17. Determination of occupational exposure to organotin compounds after multivariate optimization of a liquid chromatography flame atomic absorption spectrometry system

    NASA Astrophysics Data System (ADS)

    Nygren, Olle

    1993-07-01

    The detection limit, obtained with a previously developed liquid chromatography flame atomic absorption spectrometry system, was not low enough for the determination of occupational exposure to organotin compounds. Optimization of the system was thus necessary. Many experimental factors may influence the response of the system, and interaction effects between these parameters may also be expected. With optimization by multivariate methods, the response of the system was improved and a 2.5-times better detection limit for organotin compounds was obtained, which was adequate for determination of occupational exposure. The system was employed for determination of occupational exposure to organotin-based wood preservatives at an impregnation plant. No exposure to butyltin compounds above 1/10 of the threshold limit value could be measured at any sampling place. It was also found that up to 30% of the tributyltin in impregnation solutions in use was dealkylated to less fungitoxic dibutyltin compounds, which may affect the quality of the impregnation.

  18. Monoxenic liquid culture of the entomopathogenic nematode Steinernema carpocapsae using a culture medium containing whey kinetics and modeling.

    PubMed

    Chavarría-Hernández, Norberto; Espino-García, José-Jesús; Sanjuan-Galindo, René; Rodríguez-Hernández, Adriana-Inés

    2006-08-20

    The submerged culture of the entomopathogenic nematode Steinernema carpocapsae and its symbiotic bacterium, Xenorhabdus nematophila, was carried out in orbitally agitated bottles using a culture medium containing whey (in grams per litre: 500 whey, 20 yeast extract, 10 dried egg yolk-food grade, 3 sodium chloride, 37 corn oil-food grade). Maximum total viable nematode concentrations of 198,333ml(-1) were achieved within fermentations of 24 days with 64% of the nematode population within the infective juvenile stage (IJ) (126,666ml(-1)) at the end. The kinetics of the bioprocess was well modelled using the four-parameter Sigmoidal model and the corresponding maximum specific rates of nematode production (0.47 day(-1)), carbohydrates consumption (0.0008g(carbohydrates)g(nematodes)(-1)day(-1)) and nitrogen consumption (4.44g(nitrogen)g(nematodes)(-1)day(-1)) are first proposed. Besides, X. nematophila appears to have the capacity of lactose hydrolysis.

  19. Novel technique for scaling up of micropropagated Ruta graveolens shoots using liquid culture systems: a step towards commercialization.

    PubMed

    Diwan, Renuka; Malpathak, Nutan

    2008-06-01

    Wide applications of Ruta graveolens L. in pharmaceutical industry has led to increased interest in large-scale plant production, with emphasis on use of in vitro cultures. Earlier reports describe use of in vitro germinated seedlings for raising shoot cultures and not regeneration. There is only a single regeneration protocol of R. graveolens; however, it employs conventional labour intensive techniques deterring automation. The aim of present investigation was to establish a cost effective protocol for large-scale plant production. We report for the first time a one-step protocol with improved regeneration efficiency for multiple shoots induction employing liquid culture systems. Effect of polyamines (putrescine and spermine) on growth and furanocoumarin was studied. Addition of spermine enhanced the number of multiple shoots formed (2.5-fold) and reduced the time taken by half. Spermine addition resulted in 1.47-fold in furanocoumarin production. The selected shoot line, RS2 was successfully scaled up to 5L in culture vessels, with 1.53-fold increase in biomass without affecting the productivity of these cultures. This proves to be a commercially feasible alternative to bioreactors for large-scale biomass and furanocoumarin production.

  20. Optimization of human nasal epithelium primary culture conditions for optimal proton oligopeptide and organic cation transporters expression in vitro.

    PubMed

    Shao, Di; Massoud, Emad; Clarke, David; Cowley, Elizabeth; Renton, Ken; Agu, Remigius U

    2013-01-30

    To investigate the effect of key tissue culture conditions on cell growth, gene expression and functional uptake of peptide and organic cation transporter substrates in the human nasal epithelium (HNE). HNE were cultured on different growth surfaces (polystyrene plastic, collagen film, and hydrated collagen gel) and were maintained with three popular nasal tissue culture media supplements [DMEM/F12 supplemented with Ultroser(®) G (2%), FBS (10%) and NuSerum(®) (10%)], respectively. The expression of gene transcripts for organic cation and peptide transporters were screened using qPCR and substrate uptake studies. Cell growth surface (polystyrene plastic surface, dried collagen film and hydrated collagen gel) did not significantly alter gene expression levels. However, Ultroser(®) G and FBS caused significant increase in PEPT1, PEPT2, PHT1, OCT3, and OCTN1 levels (~/=2-5-fold for FBS and 2-8-fold for Ultroser(®) G). In terms of the degree to which the supplements affected gene expression, the following observations were made: effect on OCTN1>PEPT2>OCT3>PHT1>PEPT1. Functional uptake of organic cation (4-Di-1-ASP) and peptide [β-Ala-Lys (AMCA)] transporter substrates was significantly lower in cells cultured with NuSerum(®) compared to Ultroser(®) G and FBS cultured cells (p>0.05). Tissue culture media had a major effect on SLC gene expression levels of the human nasal epithelium in primary culture. Ultroser(®) G was identified as the most efficient culture supplement in maintaining SLC transporter expression under most culture conditions, whereas FBS appears to be an economical choice. We do not recommend the use of NuSerum(®) as a supplement for growing HNE for transport studies involving SLC transporters. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Design optimization of liquid scintillator cosmic-ray veto detector with BBQ shifter

    SciTech Connect

    Kruse, H.W.; Egdorf, S.S.; Simmons, D.F.

    1981-10-01

    Certain design characteristics of a liquid scintillator detector for charged cosmic particles, have been studied. These include evaluation of scintillator emission spectra, absorption in various thicknesses of BBQ shifter bars and effective transmission in long lengths of BBQ acrylic. For our BBQ sample, 12.5 mm thick with semicircular shape, the shifted light was transmitted with 2.0 m absorption length.

  2. High Quality Liquid Crystal Tunable Lenses and Optimization with Floating Electrodes

    ERIC Educational Resources Information Center

    Li, Liwei

    2013-01-01

    In addition to the display application, Liquid Crystals (LC) can be very useful in other applications such as beam steering, tunable lenses, etc. Electro-optical LC tunable lenses have been considered as an alternative to conventional glass lenses because of their ability to change their focal length with the application of a control voltage, as…

  3. High Quality Liquid Crystal Tunable Lenses and Optimization with Floating Electrodes

    ERIC Educational Resources Information Center

    Li, Liwei

    2013-01-01

    In addition to the display application, Liquid Crystals (LC) can be very useful in other applications such as beam steering, tunable lenses, etc. Electro-optical LC tunable lenses have been considered as an alternative to conventional glass lenses because of their ability to change their focal length with the application of a control voltage, as…

  4. Process development for mycelial growth and polysaccharide production in Tricholoma matsutake liquid culture.

    PubMed

    Kim, Sung Su; Lee, Jong Seok; Cho, Jae Youl; Kim, Young Eon; Hong, Eock Kee

    2010-04-01

    In this study, the effects of agitation and aeration on mycelial growth and exo-polysaccharide production were examined in batch cultures of Tricholoma matsutake. Agitation was varied from 100 to 300 rpm and aeration was varied from 0.5 to 1.5 vvm. Mycelial growth was 21.87 g/l at 150 rpm, and exo-polysaccharide production was 8.79 g/l at 1.5 vvm. When we analyzed the polysaccharide extractions from the cultured mycelium and the culture broth of T. matsutake, 1.4 g of crude polysaccharide was found per 100 g of dried weight in the cultured mycelium, and 1.47 g/l of polysaccharides was found in the culture broth. In addition, the amounts of beta-Glucan in the soluble polysaccharide fractions of the cultured mycelium and culture broth were 75.4% and 83.6%, respectively. The cultured mycelium and the culture broth contained a higher amount of beta-Glucan than that of the fruiting body.

  5. Modeling of the flow continuum and optimal design of control-oriented injection systems in liquid composite molding processes

    NASA Astrophysics Data System (ADS)

    Gokce, Ali

    Several methodologies are presented in this dissertation that aim to ensure successful filling of the mold cavity consistently, during the mold filling stage of Liquid Composite Molding (LCM) processes such as Resin Transfer Molding (RTM), Vacuum Assisted Resin Transfer Molding (VARTM) and Seemann Composites Resin Infusion Molding (SCRIMP). Key parameters that affect the resin flow in the mold cavity can be divided into two main groups as continuum-related parameters and injection-related parameters. Flow continuum, which consists of all the spaces resin can reach in the mold cavity, has two major components: the porous medium, which is made up of the fiber reinforcements, and the flow channels that are introduced into the flow continuum unintentionally and offer an easy flow path to the resin. The properties that characterize the porous medium and the unintentional flow channels are continuum-related parameters. The injection-related parameters include resin injection locations (gates), resin injection conditions and air drainage locations (vents). Modeling the flow continuum is crucial in predicting the resin flow in the mold cavity. In this study, permeability, the key property of the porous medium, is predicted using the Method of Cells, a proven method to predict macroscopic properties of heterogeneous materials. Unintentional flow channels, which are also called racetracking channels, are modeled using a probabilistic approach. Injection-related parameters are the key tools to influence the resin flow in the mold cavity. In this study, Branch and Bound Search is modified for single gate optimization. Due to its pertinence to injection system design, the parameters that govern gate effectiveness in steering the resin advance are studied. A combinatorial search algorithm is proposed for vent optimization. Vent optimization and gate optimization algorithms are integrated for simultaneous gate and vent optimization. Overall, these methodologies reduce the cycle

  6. Monitoring leachables from single-use bioreactor bags for mammalian cell culture by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography quadrupole time of flight mass spectrometry.

    PubMed

    Dorival-García, N; Bones, J

    2017-08-25

    A method for the identification of leachables in chemically defined media for CHO cell culture using dispersive liquid-liquid microextraction (DLLME) and UHPLC-MS is described. A Box-Behnken design of experiments (DoE) approach was applied to obtain the optimum extraction conditions of the target analytes. Performance of DLLME as extraction technique was studied by comparison of two commercial chemically defined media for CHO cell culture. General extraction conditions for any group of leachables, regardless of their specific chemical functionalities can be applied and similar optimum conditions were obtained with the two media. Extraction efficiency and matrix effects were determined. The method was validated using matrix-matched standard calibration followed by recovery assays with spiked samples. Finally, cell culture media was incubated in 7 single use bioreactors (SUBs) from different vendors and analysed. TBPP was not detected in any of the samples, whereas DtBP and TBPP-ox were found in all samples, with bDtBPP detected in six SUBs. This method can be used for early identification of non-satisfactory SUB films for cultivation of CHO cell lines for biopharmaceutical production. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [Optimization of two-dimensional high performance liquid chromatographic columns for highly efficient separation of intact proteins].

    PubMed

    Hong, Guangfeng; Gao, Mingxia; Yan, Guoquan; Guan, Xia; Tao, Qian; Zhang, Xiangmin

    2010-02-01

    In order to optimize two-dimensional liquid chromatographic (2D-LC) columns for highly efficient separation of proteins, several liquid chromatographic columns were investigated and evaluated. Weak anion-exchange (WAX) column was chosen as the first dimension because of its extensive protein separation power. By comparison of different WAX chromatographic columns for human liver protein separation, TSKgel DEAE-5PW column was selected as the first dimension of a 2D-LC system. For the second dimension, ten typical reversed-phase (RP) LC columns (250 mm x 4.6 mm, 5 microm, 30 nm) were investigated and evaluated. Their silica based RP stationary phases were butyl (C4), octyl (C8) or octadecyl (C18). To evaluate the retention behavior and non-specific protein adsorption ability of these ten columns, four neutral compounds (uracil, nitrobenzene, naphthalene and fluorene) and three standard proteins (cytochrome C, myoglobin and albumin from chicken egg white) were adopted and separated by RPLC. Meantime, WAX fractions were used to investigate the separation ability of different alkyl-bonded silica stationary phase columns for complex protein samples. By comparison of column separation efficiency, adsorption of intact proteins and sample analysis, Jupiter 300 C4 column was finally employed for its excellent separation ability. Optimization of WAX and RPLC columns offers reliable foundation for the construction of 2D-LC protein separation systems.

  8. Orthogonal array design for the optimization of hollow fiber protected liquid-phase microextraction of salicylates from environmental waters.

    PubMed

    Zhang, Cong; Ye, Lei; Xu, Li

    2011-03-18

    In the present study, a three phase-based hollow fiber protected liquid-phase microextraction (HF-LPME) method combined with high-performance liquid chromatography (HPLC) for the determination of salicylates in environmental waters was developed. The HF-LPME procedure was optimized by an L(16)(4(5)) orthogonal array experimental design (OAD) with five factors at four levels. Under the optimal extraction condition (pHs of donor and receiving phases of 3.0 and 6.2, respectively, extraction time of 45 min, stirring speed of 1000 rpm, and salt addition of 20% (w/v)), salicylates could be determined in a linear range from 0.025 to 1.0 μg mL(-1) with a good correlation (r(2)>0.9930). The limits of detection (LODs) ranged between 0.6 ng mL(-1) and 1.2 ng mL(-1) for the target analytes. The relative standard deviations (RSDs) of intra-day and inter-day were in the range of 0.64-14.58% and 0.16-15.45%, respectively. This procedure afforded a convenient, sensitive, accurate and cost-saving operation with high extraction efficiency for the model analytes. The method was applied satisfactorily to the determination of salicylates in two environmental waters. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants.

    PubMed

    Jurkiewicz, Anna; Ryszka, Przemyslaw; Anielska, Teresa; Waligórski, Piotr; Białońska, Dobroslawa; Góralska, Katarzyna; Tsimilli-Michael, Merope; Turnau, Katarzyna

    2010-06-01

    Arnica montana is a rare plant that needs special protection because of its intensive harvesting for medicinal purposes. The present work was aimed at finding optimal culture conditions for Arnica plants in order to enable their successful reintroduction into their natural stands. Plants were cultivated under controlled greenhouse conditions on substrata with different nitrogen (N) concentration. As Arnica is always colonized by arbuscular mycorrhizal fungi (AMF) in nature, a fact that has been overlooked in other similar projects, we, here, applied and tested different inocula. We found that they differed in their effectiveness, both in establishing symbiosis, assessed by the colonization parameters, and in improving the performance of Arnica, evaluated by the photosynthetic parameters derived from the fluorescence transients (JIP-test), with the inocula containing G. intraradices or composed of several Glomus strains being the most effective. The comparison was possible only on substrata with medium N, since high N did not permit the formation of mycorrhiza, while at low N, few nonmycorrhizal plants survived until the measurements and mycorrhizal plants, which were well growing, exhibited a high heterogeneity. Analysis of secondary metabolites showed clearly that mycorrhization was associated with increased concentrations of phenolic acids in roots. For some of the inocula used, a tendency for increase of the level of phenolic acids in shoots and of sesquiterpene lactones, both in roots and in shoots, was also observed. We also studied the interactions between A. montana and Dactylis glomerata, known to compete with Arnica under field conditions. When specimens from both species were cultured together, there was no effect on D. glomerata, but Arnica could retain a photosynthetic performance that permitted survivability only in the presence of AMF; without AMF, the photosynthetic performance was lower, and the plants were eventually totally outcompeted.

  10. Optimization of variables affecting the direct transesterification of wet biomass from Nannochloropsis oceanica using ionic liquid as a co-solvent.

    PubMed

    Lee, Hansol; Shin, Won-Sub; Jung, Joo-Young; Kim, Chul Woong; Lee, Jae W; Kwon, Jong-Hee; Yang, Ji-Won

    2015-05-01

    Ionic liquids have many applications, one of which entails their utilization as powerful solvents. In the present study, various experimental conditions of ionic liquid-mediated direct transesterification were investigated in terms of lipid-extracting ionic liquids, catalyst, reaction time, reaction temperature and volume of methanol to achieve effective FAME conversion with wet microalgal feedstock, Nannochloropsis oceanica. With ionic liquid, [Bmim][CF3SO3], highest fatty acid methyl ester (FAME) yield was shown. Among many experimental parameters, the two most critical factors to enhance FAME conversion were characteristic of ionic liquids and volume of methanol. Optimized ionic liquid-mediated direct transesterification of wet N. oceanica, compared with a control experiment using chloroform and methanol, increased the FAME conversion yield by 11-fold.

  11. Panax ginseng Adventitious Root Suspension Culture: Protocol for Biomass Production and Analysis of Ginsenosides by High Pressure Liquid Chromatography.

    PubMed

    Murthy, Hosakatte Niranjana; Paek, Kee Yoeup

    2016-01-01

    Panax ginseng C.A. Meyer (Korean ginseng) is a popular herbal medicine. It has been used in Chinese and Oriental medicines since thousands of years. Ginseng products are generally used as a tonic and an adaptogen to resist the adverse influence of a wide range of physical, chemical and biological factors, and to restore homeostasis. Ginsenosides or ginseng saponins are the principal active ingredients of ginseng. Since ginseng cultivation process is very slow and needs specific environment for field cultivation, cell and tissue cultures are sought as alternatives for the production of ginseng biomass and bioactive compounds. In this chapter, we focus on methods of induction of adventitious roots from ginseng roots, establishment of adventitious root suspension cultures using bioreactors, procedures for processing of adventitious roots, and analysis of ginsenosides by high pressure liquid chromatography.

  12. Flows of liquid and electrical current through monolayers of cultured bovine arterial endothelium.

    PubMed Central

    Turner, M R

    1992-01-01

    1. Monolayers of arterial endothelium on porous membranes were exposed to a constant pressure between 15 and 35 cmH2O. The rates of liquid flow per unit area (Jv/A) through the monolayers were monitored, together with the electrical resistance (Rm) of the endothelium. 2. At constant pressure, Jv/A decreased with an approximately exponential time course, towards a stable baseline value. This behaviour resembles the sealing previously described for cultured vascular endothelium. At 30-35 cmH2O and 37 degrees C, the mean (+/- S.E.M.) half-time (t1/2) of the decrease in Jv/A (the sealing t1/2) was 548 +/- 141 S (n = 5). The difference between the initial and baseline values of Jv/A was expressed as a fraction of the initial value. The mean (+/- S.E.M.) of this sealing fraction was 0.64 +/- 0.03 (n = 5). Mean (+/- S.E.M.) hydraulic permeability (Lp) was 23.9 +/- 6.4 x 10(-7) cm S-1 cmH2O-1 (n = 9), when measured after sealing. Endothelium appeared damaged after sealing at 30-35 cmH2O and 37 degrees C. 3. Sealing was also observed using glutaraldehyde-fixed endothelium at 30-33 cmH2O and 26-28 degrees C. There was no significant difference between the mean sealing t1/2 of these fixed monolayers, and that of unfixed endothelium at 30-35 cmH2O and 37 degrees C. However, mean sealing fraction was significantly larger for the fixed monolayers than for unfixed endothelium at 30-35 cmH2O and 37 degrees C. There were no significant difference between the post-sealing Lps of these fixed and unfixed monolayers, although the fixed monolayers appeared undamaged after sealing. 4. For unfixed endothelium, Rm was lower after sealing at 30-35 cmH2O and 37 degrees C than before pressure application. There was no significant difference between endothelial Rm before and after sealing, for glutaraldehyde-fixed monolayers. 5. Sealing was also observed at 0 degree C, using unfixed endothelium at 30 cmH2O. Mean sealing t1/2 was not significantly different from that of unfixed endothelium at

  13. Optimal inductive and cultural conditions of Polygonum multiflorum transgenic hairy roots mediated with Agrobacterium rhizogenes R1601 and an analysis of their anthraquinone constituents

    PubMed Central

    Huang, Bing; Lin, Huanjie; Yan, Chuanyan; Qiu, Hongyan; Qiu, Lipeng; Yu, Rongmin

    2014-01-01

    Background: Polygonum multiflorum is an important medicinal plant. Hairy roots systems obtained by transforming plant tissues with the natural genetic engineer Agrobacterium rhizogenes can produce valuable biological active substances, which have immense potential in the pharmaceutical industry. Objective: To optimize the inductive and cultural conditions of P. multiflorum hairy roots and to identify the major active secondary metabolites in hairy roots. Materials and Methods: P. multiflorum hairy root were mediated with A. rhizogenes R1601 to induce hairy roots. Four combinations, including Murashige–Skoog (MS), 1/2 MS, B5, and White, were investigated to optimize the culture medium. MS medium was selected for the growth measurement. The qualitative and quantitative determinations of free anthraquinone in hairy roots were compared with the calli and aseptic plantlets using high-performance liquid chromatography. Results: The inductive rates of hairy roots by leaves were higher than for any other explants. The presence of agropine in the P. multiflorum hairy roots confirmed that they were indeed transgenic. MS medium was the most suitable of the four media for hairy root growth. Meanwhile, the growth kinetics and nutrient consumption results showed that the hairy roots displayed a sigmoidal growth curve and that their optimal inoculation time was 18-21 days. The determination of the anthraquinone constituents indicated that the rhein content of the hairy roots reached 2.495 μg g−1 and was 2.55-fold higher than that of natural plants. Conclusion: Transgenic hairy roots of P. multiflorum could be one of the most potent materials for industrial-scale production of bioactive anthraquinone constituents. PMID:24696550

  14. Detection of Mycobacterium avium subspecies paratuberculosis in powdered infant formula using IS900 quantitative PCR and liquid culture media.

    PubMed

    Acharya, Kamal R; Dhand, Navneet K; Whittington, Richard J; Plain, Karren M

    2017-09-18

    Mycobacterium avium subspecies paratuberculosis (MAP) has been implicated in Crohn's disease in humans resulting in public concern over the presence of MAP in powdered infant formula, which could contribute towards early human exposure to MAP or MAP components. Testing of representative powdered infant formula samples using effective tests is required to provide information on contamination of infant formula with MAP, so that consumers can make informed decisions. This study aimed to test representative powdered infant formula samples for the presence of MAP using a quantitative PCR and liquid culture method. For this purpose, an efficient DNA extraction method was developed and an optimum decontamination protocol for culture method was identified. A total of 122 powdered infant formula samples were tested, comprising 72 brands produced by 12 manufacturers from 9 countries. Powdered infant formula samples were reconstituted and centrifuged to separate the casein pellet, cream layer and whey fraction. A sensitive qPCR test was performed on DNA extracted from the casein pellet. In addition, the cream layer and casein pellet were cultured in liquid media, following decontamination with the optimum protocol. Of the 122 samples tested, 6 were positive for MAP DNA but none were positive for growth in culture at 12 and 20 weeks. The limit of detection of the quantitative PCR was less than 5 MAP organisms per 1.5g milk powder. The methods developed in the study could be used for quality assurance testing for infant formula and calf milk replacers. The low contamination level of MAP and absence of viable forms in our study suggests a relatively low risk of exposure of infants to MAP components. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Liquid chromatography-mass spectrometry for metabolic footprinting of co-cultures of lactic and propionic acid bacteria.

    PubMed

    Honoré, Anders H; Thorsen, Michael; Skov, Thomas

    2013-10-01

    Co-cultures of specific lactic and propionic acid bacteria have been shown to have an antagonistic effect against yeast and moulds in dairy systems. In studies of these co-cultures by bioassay-guided fractionation and analysis, numerous compounds have been reported to inhibit yeast and moulds. Although active, the compounds do not account for the full effect observed. Instead, the inhibitory action in the co-culture is believed to be a result of synergy between known exo-metabolites, depletion of nutrients, and/or compounds not yet identified. Untargeted metabolomics or metabolic footprinting could be a potent approach to elucidation of the mechanism. The purpose of this review is to discuss the two pre-requisites for such a study--the compound classes expected in the co-cultures, and on the basis of these, the most suitable analytical technique(s). Ultrahigh-performance liquid chromatography (UPLC) coupled to high-resolution mass spectrometry (MS) via electrospray ionisation (ESI) operated in both positive and negative modes is regarded as the optimum instrumental technique. The applicability of a range of liquid chromatographic techniques ranging from ion-pair (IPC) and hydrophilic interaction (HILIC) to reversed-phase chromatography (RPC) is discussed in terms of the expected metabolome. Use of both HILIC and RPC is suggested, on account of the complementarity of these modes. The most promising strategy uses a combination of the two electrospray polarities and two modes of LC. The strategy recommended in this study does not include all compound classes, and suggestions for supplementary methods are listed.

  16. Optimization of lignin production from empty fruit bunch via liquefaction with ionic liquid.

    PubMed

    Sidik, Dilaeleyana Abu Bakar; Ngadi, Norzita; Amin, Nor Aishah Saidina

    2013-05-01

    The production of lignin from empty fruit bunch (EFB) has been carried out using liquefaction method with 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) ionic liquid (IL), in presence of sulfuric acid (H2SO4) as a catalyst. Response surface methodology (RSM) based on a factorial Central Composite Design (CCD) was employed to identify the optimum condition for lignin yield. The result indicated that the second order model was adequate for all the independent variables on the response with R(2)=0.8609. The optimum temperature, time, ionic liquid to EFB ratio, and catalyst concentration were 150.5 °C, 151 min, 3:1 wt/wt and 4.73 wt%, respectively for lignin yield=26.6%. The presence of lignin liquefied product was confirmed by UV-Vis and FTIR analysis. It was also demonstrated lignin extraction from lignocellulosic using recycled IL gave sufficient performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Mating and Optimization Parameters for High-Temperature Liquid Metal Wetting on Solid Substrates

    DTIC Science & Technology

    2014-04-01

    parameters will include the fluidic properties, the material properties, and the operational properties. The fluid properties include the liquid...Table 1 Preliminary Test Matrix 4.3 Test Procedures System Checkout 1. Turn on power to all equipment except the vacuum or gas pump . 2. Allow all...5. Check all sensor readings for proper ambient values. Characteristic Test 6. Turn on the vacuum pump to lower the chamber pressure. 7. Shut off

  18. Thermospray Liquid Chromatography/Mass Spectrometry (TSP LC/MS) Analysis of the Alkaloids from Cinchona in vitro Cultures.

    PubMed

    Giroud, C; van der Leer, T; van der Heijden, R; Verpoorte, R; Heeremans, C E; Niessen, W M; Vander Greef, J

    1991-04-01

    The alkaloids from CINCHONA LEDGERIANA shoot cultures and from CINCHONA ROBUSTA shoot cultures and a compact globular structure (CGS) culture were analyzed by thermospray liquid chromatography/mass spectrometry (TSP LC/MS). Because of the relative stability of the alkaloids under TSP discharge ionization conditions, a protonated molecule was observed in the mass spectra with hardly any fragmentation. When the reference compounds were available, the knowledge of the molecular mass and of the retention time was sufficient to identify most of the alkaloids. HPLC with UV photodiode-array detection complemented LC/MS perfectly by providing information about the aromatic part of the alkaloids (structure and substitution pattern). New alkaloids detected in CINCHONA IN VITRO cultures were 5-methoxytryptamine and corynantheal. In order to determine whether 5-methoxytryptamine was a precursor of the methoxylated quinolines, this indole was incubated with secologanin and several CINCHONA ROBUSTA crude protein extracts. Under all conditions tested, the coupling of 5-methoxytryptamine with secologanin remained unsuccessful. Only tryptamine condensed with secologanin to yield strictosidine. These results indicate that CINCHONA cells are able to methoxylate simple indoles like tryptamine and that 5-methoxytryptamine is very likely not used for the subsequent biosynthesis of the methoxylated quinolines.

  19. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity

    PubMed Central

    Higuchi, Akon; Kao, Shih-Hsuan; Ling, Qing-Dong; Chen, Yen-Ming; Li, Hsing-Fen; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Murugan, Kadarkarai; Chang, Shih-Chang; Lee, Hsin-Chung; Hsu, Shih-Tien; Kumar, S. Suresh; Umezawa, Akihiro

    2015-01-01

    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture. PMID:26656754

  20. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity.

    PubMed

    Higuchi, Akon; Kao, Shih-Hsuan; Ling, Qing-Dong; Chen, Yen-Ming; Li, Hsing-Fen; Alarfaj, Abdullah A; Munusamy, Murugan A; Murugan, Kadarkarai; Chang, Shih-Chang; Lee, Hsin-Chung; Hsu, Shih-Tien; Kumar, S Suresh; Umezawa, Akihiro

    2015-12-14

    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.

  1. [Identification, culture optimization and biotransformation of a stevioside-degrading bacterium].

    PubMed

    Liu, Hu; Chen, Yuru; Jiang, Zhongyu

    2010-07-01

    Our study aimed at screening and identifying a specific bacterium capable of degrading stevioside. We also studied the conditions of enzyme production and stevioside conversion. Taxonomic group of the strain was confirmed by physical characterization and phylogenetic analysis by 16S rRNA gene sequence analysis and phylogenetic tree construction of the strain. The optimum conditions of enzyme producing and stevioside degrading were studied by single factor and multi-factor statistical analysis. Degradation product was detected and identified via liquid chromatography-mass spectrometry. Based on the result of 16S rRNA gene sequence analysis, the strain named J2 shares 100% sequence identity with the sequence of the Bacillus megaterium. The activity of beta-Glucosidase produced by this Bacillus megaterium strain was up to 779.68 U/ml with 4% maize starch, 1% defatted soybean, 0.04% MgSO4 and 0.2% stevioside as culture medium when fermented under the condition of pH 7.0, 37 degrees C, 220 r/min and 10% inoculum for 36 h. The results of conversion showed that 10 mg/ml stevioside can be converted to steviolbioside by 74% after 3 days which has been identified by LC-MS. The ratio of rebaudioside A and stevioside was increased to 0.99 compared to original solution 0.38, which lead to 160.5% increasement of rebaudioside A in the relative amount. Stevioside can be converted completely after 5 days. The isolated strain J2 was identified as Bacillus megaterium. It was a novel and safe strain with high, specific conversion stevioside to steviolbioside ability.

  2. Optimized culture conditions for bacteriocin production by Pediococcus acidilactici LAB 5 and its characterization.

    PubMed

    Mandal, Vivekananda; Sen, Sukanta Kumar; Mandal, Narayan Chandra

    2008-04-01

    A strain of Pediococcus acidilactici LAB 5 was isolated from vacuum-packed fermented meat product, in order to obtain a novel bacteriocin from food-grade organisms. Optimized culture conditions for bacteriocin production in different media (viz., MRS, TGE, TGE + buffer, TGE + Tween 80, and TGE + Tween 80 + buffer) and at different temperatures and pH conditions were reported. TGE + Tween 80 + buffer medium was found to be most effective for bacteriocin production (about 2400 AU/ml) by this strain, when incubated at 37 degrees C for 24 h. Bacteriocin, partially purified by adsorption-desorption method showed molecular mass of 10.3 kDa and produced prominent inhibition zone in activity gel. It showed significant storage stability both at high as well as in low temperatures for up to 6 months and retained its activity in a number of organic solvents, except in 2-mercaptoethanol. The treatment with amylase and lysozyme did not change its activity, but it lost its activity on proteinase K treatment. Antibacterial efficacy of bacteriocin was proved against some food spoilage and human pathogenic bacteria like Enterococcus, Leuconostoc, Listeria, Staphylococcus and Streptococcus.

  3. Fast Filtration of Bacterial or Mammalian Suspension Cell Cultures for Optimal Metabolomics Results.

    PubMed

    Bordag, Natalie; Janakiraman, Vijay; Nachtigall, Jonny; González Maldonado, Sandra; Bethan, Bianca; Laine, Jean-Philippe; Fux, Elie

    2016-01-01

    The metabolome offers real time detection of the adaptive, multi-parametric response of the organisms to environmental changes, pathophysiological stimuli or genetic modifications and thus rationalizes the optimization of cell cultures in bioprocessing. In bioprocessing the measurement of physiological intracellular metabolite levels is imperative for successful applications. However, a sampling method applicable to all cell types with little to no validation effort which simultaneously offers high recovery rates, high metabolite coverage and sufficient removal of extracellular contaminations is still missing. Here, quenching, centrifugation and fast filtration were compared and fast filtration in combination with a stabilizing washing solution was identified as the most promising sampling method. Different influencing factors such as filter type, vacuum pressure, washing solutions were comprehensively tested. The improved fast filtration method (MxP® FastQuench) followed by routine lipid/polar extraction delivers a broad metabolite coverage and recovery reflecting well physiological intracellular metabolite levels for different cell types, such as bacteria (Escherichia coli) as well as mammalian cells chinese hamster ovary (CHO) and mouse myeloma cells (NS0).The proposed MxP® FastQuench allows sampling, i.e. separation of cells from medium with washing and quenching, in less than 30 seconds and is robustly designed to be applicable to all cell types. The washing solution contains the carbon source respectively the 13C-labeled carbon source to avoid nutritional stress during sampling. This method is also compatible with automation which would further reduce sampling times and the variability of metabolite profiling data.

  4. Optimization of culture medium to increase the production of desferrioxamine B (Desferal) in Streptomyces pilosus.

    PubMed

    Chiani, M; Akbarzadeh, A; Farhangi, A; Mazinani, M; Saffari, Z; Emadzadeh, K; Mehrabi, M R

    2010-06-01

    The aim of this study was optimization of culture medium in direction of increasing the production rate of desferrioxamine B. Streptomycetes are the most widely studied and well known genus of the actinomycete family. Streptomycetes usually inhabit soil and are important decomposers. The genus Streptomyces are Gram-positive and GC rich bacteria that are important for production of many antibiotics and secondary metabolites. These metabolites are important in industrial and medical fields. Deferoxamines (also known as desferrioxamine B, desferoxamine B, DFO-B, DFOA, DFB or desferal) are low-molecular-weight, iron-chelating compounds (siderophores) produced and secreted by many actinomycetes, including species of Streptomyces, Nocardia and Micromonospora. Streptomyces pilosus synthesizes the siderofore desferrioxamine B. Desferrioxamine B is used clinically to treat disorders related to iron overload and pathological iron deposition in human. Our results revealed that the use of soybean as a base medium plus additives such as Na2HPO4.12H2O, NaH2PO4, MgSO4.7H2O, ZnSO4.7H2O, FeSO4.7H2O, CaCl2.2H2O, NaCl, MnSO4, NH4Cl, KH2PO4, K2HPO4, some of the amino acids and vitamins increased the production of desferrioxamine B about 8 times in comparison with the control.

  5. Enhancement of Palmarumycins C(12) and C(13) production in liquid culture of endophytic fungus Berkleasmium sp. Dzf12 after treatments with metal ions.

    PubMed

    Mou, Yan; Luo, Haiyu; Mao, Ziling; Shan, Tijiang; Sun, Weibo; Zhou, Kaiyi; Zhou, Ligang

    2013-01-07

    The influences of eight metal ions (i.e., Na+, Ca2+, Ag+, Co2+, Cu2+, Al3+, Zn2+, and Mn4+) on mycelia growth and palmarumycins C(12) and C(13) production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12 were investigated. Three metal ions, Ca2+, Cu2+ and Al3+ were exhibited as the most effective to enhance mycelia growth and palmarumycin production. When calcium ion (Ca2+) was applied to the medium at 10.0 mmol/L on day 3, copper ion (Cu2+) to the medium at 1.0 mmol/L on day 3, aluminum ion (Al3+) to the medium at 2.0 mmol/L on day 6, the maximal yields of palmarumycins C(12) plus C(13) were obtained as 137.57 mg/L, 146.28 mg/L and 156.77 mg/L, which were 3.94-fold, 4.19-fold and 4.49-fold in comparison with that (34.91 mg/L) of the control, respectively. Al3+ favored palmarumycin C(12) production when its concentration was higher than 4 mmol/L. Ca2+ had an improving effect on mycelia growth of Berkleasmium sp. Dzf12. The combination effects of Ca2+, Cu2+ and Al3+ on palmarumycin C(13) production were further studied by employing a statistical method based on the central composite design (CCD) and response surface methodology (RSM). By solving the quadratic regression equation between palmarumycin C(13) and three metal ions, the optimal concentrations of Ca2+, Cu2+ and Al3+ in medium for palmarumycin C(13) production were determined as 7.58, 1.36 and 2.05 mmol/L, respectively. Under the optimum conditions, the predicted maximum palmarumycin C(13) yield reached 208.49 mg/L. By optimizing the combination of Ca2+, Cu2+ and Al3+ in medium, palmarumycin C(13) yield was increased to 203.85 mg/L, which was 6.00-fold in comparison with that (33.98 mg/L) in the original basal medium. The results indicate that appropriate metal ions (i.e., Ca2+, Cu2+ and Al3+) could enhance palmarumycin production. Application of the metal ions should be an effective strategy for palmarumycin production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12.

  6. Enhancement of Palmarumycins C12 and C13 Production in Liquid Culture of Endophytic Fungus Berkleasmium sp. Dzf12 after Treatments with Metal Ions

    PubMed Central

    Mou, Yan; Luo, Haiyu; Mao, Ziling; Shan, Tijiang; Sun, Weibo; Zhou, Kaiyi; Zhou, Ligang

    2013-01-01

    The influences of eight metal ions (i.e., Na+, Ca2+, Ag+, Co2+, Cu2+, Al3+, Zn2+, and Mn4+) on mycelia growth and palmarumycins C12 and C13 production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12 were investigated. Three metal ions, Ca2+, Cu2+ and Al3+ were exhibited as the most effective to enhance mycelia growth and palmarumycin production. When calcium ion (Ca2+) was applied to the medium at 10.0 mmol/L on day 3, copper ion (Cu2+) to the medium at 1.0 mmol/L on day 3, aluminum ion (Al3+) to the medium at 2.0 mmol/L on day 6, the maximal yields of palmarumycins C12 plus C13 were obtained as 137.57 mg/L, 146.28 mg/L and 156.77 mg/L, which were 3.94-fold, 4.19-fold and 4.49-fold in comparison with that (34.91 mg/L) of the control, respectively. Al3+ favored palmarumycin C12 production when its concentration was higher than 4 mmol/L. Ca2+ had an improving effect on mycelia growth of Berkleasmium sp. Dzf12. The combination effects of Ca2+, Cu2+ and Al3+ on palmarumycin C13 production were further studied by employing a statistical method based on the central composite design (CCD) and response surface methodology (RSM). By solving the quadratic regression equation between palmarumycin C13 and three metal ions, the optimal concentrations of Ca2+, Cu2+ and Al3+ in medium for palmarumycin C13 production were determined as 7.58, 1.36 and 2.05 mmol/L, respectively. Under the optimum conditions, the predicted maximum palmarumycin C13 yield reached 208.49 mg/L. By optimizing the combination of Ca2+, Cu2+ and Al3+ in medium, palmarumycin C13 yield was increased to 203.85 mg/L, which was 6.00-fold in comparison with that (33.98 mg/L) in the original basal medium. The results indicate that appropriate metal ions (i.e., Ca2+, Cu2+ and Al3+) could enhance palmarumycin production. Application of the metal ions should be an effective strategy for palmarumycin production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12. PMID:23296274

  7. Immuno-electron microscopy of primary cell cultures from genetically modified animals in liquid by atmospheric scanning electron microscopy.

    PubMed

    Kinoshita, Takaaki; Mori, Yosio; Hirano, Kazumi; Sugimoto, Shinya; Okuda, Ken-ichi; Matsumoto, Shunsuke; Namiki, Takeshi; Ebihara, Tatsuhiko; Kawata, Masaaki; Nishiyama, Hidetoshi; Sato, Mari; Suga, Mitsuo; Higashiyama, Kenichi; Sonomoto, Kenji; Mizunoe, Yoshimitsu; Nishihara, Shoko; Sato, Chikara

    2014-04-01

    High-throughput immuno-electron microscopy is required to capture the protein-protein interactions realizing physiological functions. Atmospheric scanning electron microscopy (ASEM) allows in situ correlative light and electron microscopy of samples in liquid in an open atmospheric environment. Cells are cultured in a few milliliters of medium directly in the ASEM dish, which can be coated and transferred to an incubator as required. Here, cells were imaged by optical or fluorescence microscopy, and at high resolution by gold-labeled immuno-ASEM, sometimes with additional metal staining. Axonal partitioning of neurons was correlated with specific cytoskeletal structures, including microtubules, using primary-culture neurons from wild type Drosophila, and the involvement of ankyrin in the formation of the intra-axonal segmentation boundary was studied using neurons from an ankyrin-deficient mutant. Rubella virus replication producing anti-double-stranded RNA was captured at the host cell's plasma membrane. Fas receptosome formation was associated with clathrin internalization near the surface of primitive endoderm cells. Positively charged Nanogold clearly revealed the cell outlines of primitive endoderm cells, and the cell division of lactic acid bacteria. Based on these experiments, ASEM promises to allow the study of protein interactions in various complexes in a natural environment of aqueous liquid in the near future.

  8. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells

    PubMed Central

    Zhao, Shuting; Agarwal, Pranay; Rao, Wei; Huang, Haishui; Zhang, Renliang; Liu, Zhenguo; Yu, Jianhua; Weisleder, Noah; Zhang, Wujie; He, Xiaoming

    2014-01-01

    A novel coaxial electrospray technology is developed to generate microcapsules with a hydrogel shell of alginate and an aqueous liquid core of living cells using two aqueous fluids in one step. Approximately 50 murine embryonic stem (ES) cells encapsulated in the core with high viability (92.3 ± 2.9%) can proliferate to form a single ES cell aggregate of 128.9 ± 17.4 μm in each microcapsule within 7 days. Quantitative analyses of gene and protein expression indicate that ES cells cultured in the miniaturized 3D liquid core of the core-shell microcapsules have significantly higher pluripotency on average than the cells cultured on 2D substrate or in the conventional 3D alginate hydrogel microbeads without a core-shell architecture. The higher pluripotency is further suggested by their significantly higher capability of differentiation into beating cardiomyocytes and higher expression of cardiomyocyte specific gene markers on average after directed differentiation under the same conditions. Considering its wide availability, easiness to set up and operate, reusability, and high production rate, the novel coaxial electrospray technology together with the microcapsule system is of importance for mass production of ES cells with high pluripotency to facilitate translation of the emerging pluripotent stem cell-based regenerative medicine into the clinic. PMID:25036382

  9. High-performance liquid chromatographic determination of multi-mycotoxin in cereals and bean foodstuffs using interference-removal solid-phase extraction combined with optimized dispersive liquid-liquid microextraction.

    PubMed

    Zhou, Jian; Xu, Jiao-Jiao; Huang, Bai-Fen; Cai, Zeng-Xuan; Ren, Yi-Ping

    2017-05-01

    A novel pre-treatment was proposed for the simultaneous determination of aflatoxins, ochratoxin A and zearalenone in foodstuffs using high-performance liquid chromatography with fluorescence detection. The analytical procedure was based on a first step using a quick, easy, cheap, effective, rugged, and safe based extraction procedure, followed by salting out and purification with a C18 solid-phase extraction column as interference removal clean-up. Subsequently, collected supernatant was subjected to dispersive liquid-liquid microextraction. Response surface methodology based on central composite design was employed to optimize conditions in the microextraction procedure. Under the optimum conditions, satisfactory analytical performance with recoveries ranging from 63.22 to 107.6% were achieved in different types of cereals and beans, as well as desirable precisions (0.81-8.13%). Limits of detections and quantifications for these six mycotoxins ranging from 0.03 to 13 μg/kg and 0.22 to 44 μg/kg, respectively, were obtained. Finally, the established method was successfully validated by four certified reference materials (P = 0.897 > 0.05) and applied to 79 samples from local markets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Production of microsclerotia by brazilian strains of metarhizium spp. using submerged liquid culture fermentation

    USDA-ARS?s Scientific Manuscript database

    We investigated the potential production and desiccation tolerance of microsclerotia (MS) by Brazilian strains of Metarhizium. anisopliae [Ma], M. acridum [Mc] and M. robertsii [Mr]. These fungi were grown in a liquid medium containing 16 g carbon l-1 with a carbon:nitrogen ratio of 50:1. One hundre...

  11. Efficient Generation of Multipotent Mesenchymal Stem Cells from Umbilical Cord Blood in Stroma-Free Liquid Culture

    PubMed Central

    van den Broek, Maries; Nuvolone, Mario; Dannenmann, Stefanie; Stieger, Bruno; Rapold, Reto; Konrad, Daniel; Rubin, Arnold; Bertino, Joseph R.; Aguzzi, Adriano; Heikenwalder, Mathias; Knuth, Alexander K.

    2010-01-01

    Background Haematopoiesis is sustained by haematopoietic (HSC) and mesenchymal stem cells (MSC). HSC are the precursors for blood cells, whereas marrow, stroma, bone, cartilage, muscle and connective tissues derive from MSC. The generation of MSC from umbilical cord blood (UCB) is possible, but with low and unpredictable success. Here we describe a novel, robust stroma-free dual cell culture system for long-term expansion of primitive UCB-derived MSC. Methods and Findings UCB-derived mononuclear cells (MNC) or selected CD34+ cells were grown in liquid culture in the presence of serum and cytokines. Out of 32 different culture conditions that have been tested for the efficient expansion of HSC, we identified one condition (DMEM, pooled human AB serum, Flt-3 ligand, SCF, MGDF and IL-6; further denoted as D7) which, besides supporting HSC expansion, successfully enabled long-term expansion of stromal/MSC from 8 out of 8 UCB units (5 MNC-derived and 3 CD34+ selected cells). Expanded MSC displayed a fibroblast-like morphology, expressed several stromal/MSC-related antigens (CD105, CD73, CD29, CD44, CD133 and Nestin) but were negative for haematopoietic cell markers (CD45, CD34 and CD14). MSC stemness phenotype and their differentiation capacity in vitro before and after high dilution were preserved throughout long-term culture. Even at passage 24 cells remained Nestin+, CD133+ and >95% were positive for CD105, CD73, CD29 and CD44 with the capacity to differentiate into mesodermal lineages. Similarly we show that UCB derived MSC express pluripotency stem cell markers despite differences in cell confluency and culture passages. Further, we generated MSC from peripheral blood (PB) MNC of 8 healthy volunteers. In all cases, the resulting MSC expressed MSC-related antigens and showed the capacity to form CFU-F colonies. Conclusions This novel stroma-free liquid culture overcomes the existing limitation in obtaining MSC from UCB and PB enabling so far unmet therapeutic

  12. Bioavailability of benzo[a]pyrene during NAPL-enhanced biodegradation in soil and in liquid culture.

    PubMed

    Kanaly, R A; Watanabe, K; Matsui, S

    2006-01-01

    The high molecular weight polycyclic aromatic hydrocarbon (HMW PAH) benzo[a]pyrene is generally persistent in the environment and its persistence may be due to bioavailability limitations. However, the presence of degradation-capable microorganisms and a suitable cosubstrate are also necessary. This is especially the case for benzo[a]pyrene because it may only be degraded by fortuitous metabolism. Non-aqueous phase liquid (NAPL)-enhanced benzo[a]pyrene biodegradation and indicators of bioavailability were measured in soil and liquid culture. In soil, 14CO2 from 7-[14C]benzo[a]pyrene mineralisation and overall CO2 production were monitored for 83 d after treatment with different types of NAPLs in biometer flasks. Monitoring was followed by soil extraction and measurement of 14C residues and of the remaining NAPL by gravimetry. In liquid culture, 7-[14C]benzo[a]pyrene mineralisation was monitored after treatment with different NAPLs and followed by a radiocarbon mass balance of 14C residues. Results indicated that although benzo[a]pyrene may have been bioavailable in both media types, benzo[a]pyrene mineralisation only occurred when a suitable NAPL cosubstrate was present to facilitate biodegradation. In soil, rapid increases in the rate and onset of benzo[a]pyrene mineralisation were shown to occur in benzo[a]pyrene-contaminated soils that were treated with mineral oil, which was a relatively non-biodegradable NAPL cosolvent, plus a hexane fraction-NAPL which was biodegradable and contained suitable cosubstrate(s).

  13. Extraction of tetracyclinic antibiotic residues from fish filet: comparison and optimization of different procedures using liquid chromatography with fluorescence detection.

    PubMed

    Orlando, Eduardo Adilson; Simionato, Ana Valéria C

    2013-09-13

    Anti-microbials have been used to control the quality of the aquatic environment for both prophylactic and therapeutic purposes. Tetracyclines are among the main antimicrobials used in aquaculture, and present a particular difficulty for extraction, due to a complex structure and high interaction with components of the biological matrix. In this study, different techniques of extraction and clean-up of antimicrobials of the tetracycline class in tilapia filets have been optimized and compared, followed by validation of the methodology using the best procedure. Oxytetracycline, doxycycline, tetracycline and chlortetracycline were analyzed by HPLC-fluorescence under the following conditions: organic mobile phase composed of methanol:acetonitrile (1:1, v/v) and aqueous mobile phase containing sodium acetate (0.0375molL(-1)), calcium chloride (0.0175molL(-1)) and EDTA (0.0125molL(-1)) at pH 7.00. The chromatographic analysis was performed using a mobile phase gradient with a flow rate of 1mLmin(-1) and detection wavelength of 385/528nm (λexc/λem). Four extraction methods have been evaluated, namely: liquid-liquid partition; solid phase extraction (SPE) using phenyl, C18 and polymeric Oasis-HLB stationary phases; dispersive SPE (dSPE) using polymeric adsorbent XAD 16 resin; and QuEChERS. The methods have been optimized with fractional factorial experimental design and compared by the extraction efficiency. The liquid-liquid extraction and the QuEChERS methods showed low extraction efficiencies (14-30%) for the analytes. The use of dSPE showed good efficiency (40-60%), but with low precision and high consumption of time. Among the evaluated extraction techniques the use of SPE showed the best results, with emphasis on the phenyl phase (58-76%), and has been validated for analysis of residues of tetracyclines in tilapia muscle regarding selectivity, linearity, precision and limits of detection and quantification. The validated method was adequate for the investigation

  14. Shape optimization of a sheet swimming over a thin liquid layer

    SciTech Connect

    Wilkening, J.; Hosoi, A.E.

    2008-12-10

    Motivated by the propulsion mechanisms adopted by gastropods, annelids and other invertebrates, we consider shape optimization of a flexible sheet that moves by propagating deformation waves along its body. The self-propelled sheet is separated from a rigid substrate by a thin layer of viscous Newtonian fluid. We use a lubrication approximation to model the dynamics and derive the relevant Euler-Lagrange equations to simultaneously optimize swimming speed, efficiency and fluid loss. We find that as the parameters controlling these quantities approach critical values, the optimal solutions become singular in a self-similar fashion and sometimes leave the realm of validity of the lubrication model. We explore these singular limits by computing higher order corrections to the zeroth order theory and find that wave profiles that develop cusp-like singularities are appropriately penalized, yielding non-singular optimal solutions. These corrections are themselves validated by comparison with finite element solutions of the full Stokes equations, and, to the extent possible, using recent rigorous a-priori error bounds.

  15. Optimal design of a tuned liquid damper using a magnetic fluid with one electromagnet.

    PubMed

    Ohno, K; Shimoda, M; Sawada, T

    2008-05-21

    Characteristics of a tuned magnetic fluid damper are examined. The optimal depth of a magnetic fluid in a cylindrical container is calculated using a linear analysis of a magnetic fluid sloshing. In order to avoid swirling in lower depth fluids, several experiments using greater fluid depths are carried out and a good damping range is obtained.

  16. Optimizing the network topology of block copolymer liquid crystal elastomers for enhanced extensibility and toughness

    NASA Astrophysics Data System (ADS)

    Nowak, Christian; Escobedo, Fernando A.

    2017-08-01

    Molecular simulations are used to study the effect of synthesis conditions on the tensile response of liquid-crystalline elastomers formed by block copolymer chains. Remarkably, it is found that despite the significant presence of trapped entanglements, these networks can exhibit the sawtooth tensile response previously predicted for ideal unentangled networks. It is also found that the monomer concentration during crosslinking can be tuned to limit the extent of entanglements and inhomogeneities while also maximizing network extensibility. It is predicted that networks synthesized at a "critical" concentration will have the greatest toughness.

  17. Optimization of culture medium for lactosucrose ( G-beta-D-galactosylsucrose) Production by Sterigmatomyces elviae mutant using statistical analysis.

    PubMed

    Lee, Jong Ho; Lim, Jung Soo; Song, Yoon Seok; Kang, Seong Woo; Park, Chulhwan; Kim, Seung Wook

    2007-12-01

    In this study, the optimization of culture medium using a Sterigmatomyces elviae mutant was investigated using statistical analysis to increase the cell mass and lactosucrose ((4)G-beta-D-galactosylsucrose) production. In basal medium, the cell mass and lactosucrose production were 4.12 g/l and 140.91 g/l, respectively. However, because of the low cell mass and lactosucrose production, optimization of culture medium was carried out to increase the cell mass and lactosucrose production. Culture media were optimized by the S. elviae mutant using analysis of variance (ANOVA) and response surface methodology (RSM). Central composite designs using RSM were utilized in this investigation. Quadratic models were obtained for cell mass and lactosucrose production. In the case of cell mass, optimal components of the medium were as follows: sucrose 1.13%, yeast extract 0.99%, bactopeptone 2.96%, and ammonium sulfate 0.40%. The predicted maximum value of cell mass was about 5.20 g/l and its experimental value was 5.08 g/l. In the case of lactosucrose production, optimal components of the medium were as follows: sucrose 0.96%, yeast extract 1.2%, bactopeptone 3.0%, and ammonium sulfate 0.48%. Then, the predicted maximum value of lactosucrose production was about 194.12 g/l and the corresponding experimental value was about 183.78 g/l. Therefore, by culturing using predicted conditions, the real cell mass and lactosucrose production increased to 23.3% and 30.42%, respectively.

  18. Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways?

    PubMed Central

    Kesimer, Mehmet; Kirkham, Sara; Pickles, Raymond J.; Henderson, Ashley G.; Alexis, Neil E.; DeMaria, Genevieve; Knight, David; Thornton, David J.; Sheehan, John K.

    2009-01-01

    Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces “mucus” with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products. PMID:18931053

  19. [Influence of different gelatin concentration and lymphocyte isolation liquid on primary culture of umbilical cord blood derived adhesive cells].

    PubMed

    Zhang, Cheng; Chen, Xing-Hua; Zhang, Xi; Gao, Lei; Kong, Pei-Yan; Liu, Hong; Liang, Xue; Peng, Xian-Gui; Wang, Qing-Yu

    2008-12-01

    In order to study the influence of different gelatin concentrations, and lymphocyte isolation liquid on primary culture of umbilical cord blood-derived adhesive cells (hCBACs), the red blood cells of umbilical cord blood was separated by 3% and 6 % gelatin for detecting the effectiveness of sedimentation, then the adhesion rate at 48 hours, the day of initial expansion and the rate of culture success were detected for hCBACs cultured with CD34(+) cells after the mononuclear cells were separated by 6% gelatin followed by Ficoll and Percoll, and the morphological characteristics and growth status were observed by invert microscopy. Cytochemistry stain for nonspecific esterase stain (NSE), peroxidase (POX), periodic acid Schiff reaction (PAS) and alkali phosphatase (ALP) and immunocytochemistry labeling for CD31, CD45, CD68 and fibronectin (Fn) were detected. The results showed that 6 % gelatin was better than that 3% gelatin for red blood sedimentation. The Percoll was predominant over Ficoll in adhesion rate at 48 hours, the day of initial expansion, the time of initial formation of adhesive cell colony units, the time of maximal numbers of adhesive cell colony units, the the cell fusion time and ratio of culture success. 60% fibroblast-liked cells, 36% macrophage liked cells and 4% small-round cells were observed in cells isolated by both isolated methods. The cytochemistry stain for NSE, POX, PAS and ALP was similar in two groups, the difference was not statistically significant between these two groups. The immunocytochemistry labeling for CD31, CD45, CD68 and Fn was also similar in both groups and the difference was also not statistically significant between these two groups. It is concluded that the combination of 6% gelatin with Percoll is an ideal separation method for primary culture of hCBACs, which provides basic information for clinical application.

  20. Optimization of pressurized liquid extraction of inositols from pine nuts (Pinus pinea L.).

    PubMed

    Ruiz-Aceituno, L; Rodríguez-Sánchez, S; Sanz, J; Sanz, M L; Ramos, L

    2014-06-15

    Pressurized liquid extraction (PLE) has been used for the first time to extract bioactive inositols from pine nuts. The influence of extraction time, temperature and cycles of extraction in the yield and composition of the extract was studied. A quadratic lineal model using multiple linear regression in the stepwise mode was used to evaluate possible trends in the process. Under optimised PLE conditions (50°C, 18 min, 3 cycles of 1.5 mL water each one) at 10 MPa, a noticeable reduction in extraction time and solvent volume, compared with solid-liquid extraction (SLE; room temperature, 2h, 2 cycles of 5 mL water each one) was achieved; 5.7 mg/g inositols were extracted by PLE, whereas yields of only 3.7 mg/g were obtained by SLE. Subsequent incubation of PLE extracts with Saccharomyces cerevisiae (37°C, 5h) allowed the removal of other co-extracted low molecular weight carbohydrates which may interfere in the bioactivity of inositols.

  1. Optimization of liquid crystal devices based on weakly conductive layers for lensing and beam steering

    NASA Astrophysics Data System (ADS)

    Beeckman, Jeroen; Nys, Inge; Willekens, Oliver; Neyts, Kristiaan

    2017-01-01

    Liquid crystals are mostly known for their use in displays, but over the past decade these materials have been applied in a number of other devices such as tunable lenses or beam steering devices. A common technique to realize a gradual electric field profile as is required to obtain a gradual refractive index profile in these applications is the use of weakly conductive materials. The weakly conductive layers are able to spread the voltage profile which is applied through well-conductive electrodes at the side of the weakly conductive layer. The simulation and design of such structures is not trivial because two or three dimensional quasi-static electric field profiles need to be calculated. This is due to the fact that the resistivity of the conductive layers and the dielectric properties of the liquid crystal are coupled. An exact solution requires solving a number of coupled differential equations. In this paper, we develop a model to simulate the RC-effects with an approximate model.

  2. Liquid Crystal Formulation and Optimization of Anti-Microbial Polyherbal Ointment.

    PubMed

    Choi, Jae-Hwan; Cho, Cheong-Weon; Kim, Jae-Hun; Park, Soo Hyun; Chang, Suhwan; Yu, Young-Beob

    2015-08-01

    We examined the formulation of liquid crystalline systems (LCS) including 5% TSE extracts and analyzed marker substances of the 5% TSE ointment by HPLC-DAD. The TSE extracts were evaluated for its anti-bacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. We found the extracts showed predominant activity against selected bacterial species. The result of the polarized light microscopy, differential scanning calorimetry (DSC), small-angle X-ray diffraction (SXRD), and rheology analysis indicated the presence of LCS structures with lamellar arrangement. DSC of the TSE formulas showed higher transition peak temperature at 60 °c for the phase. SXRD observation of the LCS formulas showed that the structures of the LCS formulas were in the lamellar liquid crystalline phase. Further, to ensure the quality and purity of the TSE ointment, HPLC analysis was performed by measuring the. content of 2 marker substances. The contents of marker substances in the TSE ointment were calculated as 0.078% (paeoniflorin) and 0.031% (glycyrrhizin), respectively. Taken altogether, our study report successful generation of LCS made of 5% TSE ointment and its antimicrobial activity. Moreover, the quantitation of the two active components enable a proper quality control of the TSE extracts, that is essential for the development of ointment products.

  3. Layered Plant-Growth Media for Optimizing Gaseous, Liquid and Nutrient Requirements: Modeling, Design and Monitoring

    NASA Astrophysics Data System (ADS)

    Heinse, R.; Jones, S. B.; Bingham, G.; Bugbee, B.

    2006-12-01

    Rigorous management of restricted root zones utilizing coarse-textured porous media greatly benefits from optimizing the gas-water balance within plant-growth media. Geophysical techniques can help to quantify root- zone parameters like water content, air-filled porosity, temperature and nutrient concentration to better address the root systems performance. The efficiency of plant growth amid high root densities and limited volumes is critically linked to maintaining a favorable water content/air-filled porosity balance while considering adequate fluxes to replenish water at decreasing hydraulic conductivities during uptake. Volumes adjacent to roots also need to be optimized to provide adequate nutrients throughout the plant's life cycle while avoiding excessive salt concentrations. Our objectives were to (1) design and model an optimized root zone system using optimized porous media layers, (2) verify our design by monitoring the water content distribution and tracking nutrient release and transport, and (3) mimic water and nutrient uptake using plants or wicks to draw water from the root system. We developed a unique root-zone system using layered Ottawa sands promoting vertically uniform water contents and air-filled porosities. Watering was achieved by maintaining a shallow saturated layer at the bottom of the column and allowing capillarity to draw water upward, where coarser particle sizes formed the bottom layers with finer particles sizes forming the layers above. The depth of each layer was designed to optimize water content based on measurements and modeling of the wetting water retention curves. Layer boundaries were chosen to retain saturation between 50 and 85 percent. The saturation distribution was verified by dual-probe heat-pulse water-content sensors. The nutrient experiment involved embedding slow release fertilizer in the porous media in order to detect variations in electrical resistivity versus time during the release, diffusion and uptake of

  4. Insights into large-scale cell-culture reactors: I. Liquid mixing and oxygen supply.

    PubMed

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael; Lübbert, Andreas

    2011-12-01

    In the pharmaceutical industry, it is state of the art to produce recombinant proteins and antibodies with animal-cell cultures using bioreactors with volumes of up to 20 m(3) . Recent guidelines and position papers for the industry by the US FDA and the European Medicines Agency stress the necessity of mechanistic insights into large-scale bioreactors. A detailed mechanistic view of their practically relevant subsystems is required as well as their mutual interactions, i.e., mixing or homogenization of the culture broth and sufficient mass and heat transfer. In large-scale bioreactors for animal-cell cultures, different agitation systems are employed. Here, we discuss details of the flows induced in stirred tank reactors relevant for animal-cell cultures. In addition, solutions of the governing fluid dynamic equations obtained with the so-called computational fluid dynamics are presented. Experimental data obtained with improved measurement techniques are shown. The results are compared to previous studies and it is found that they support current hypotheses or models. Progress in improving insights requires continuous interactions between more accurate measurements and physical models. The paper aims at promoting the basic mechanistic understanding of transport phenomena that are crucial for large-scale animal-cell culture reactors.

  5. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis.

    PubMed

    Yi, Xinzhu; Bayen, Stéphane; Kelly, Barry C; Li, Xu; Zhou, Zhi

    2015-12-01

    A solid-phase extraction/liquid chromatography/electrospray ionization/multi-stage mass spectrometry (SPE-LC-ESI-MS/MS) method was optimized in this study for sensitive and simultaneous detection of multiple antibiotics in urban surface waters and soils. Among the seven classes of tested antibiotics, extraction efficiencies of macrolides, lincosamide, chloramphenicol, and polyether antibiotics were significantly improved under optimized sample extraction pH. Instead of only using acidic extraction in many existing studies, the results indicated that antibiotics with low pK a values (<7) were extracted more efficiently under acidic conditions and antibiotics with high pK a values (>7) were extracted more efficiently under neutral conditions. The effects of pH were more obvious on polar compounds than those on non-polar compounds. Optimization of extraction pH resulted in significantly improved sample recovery and better detection limits. Compared with reported values in the literature, the average reduction of minimal detection limits obtained in this study was 87.6% in surface waters (0.06-2.28 ng/L) and 67.1% in soils (0.01-18.16 ng/g dry wt). This method was subsequently applied to detect antibiotics in environmental samples in a heavily populated urban city, and macrolides, sulfonamides, and lincomycin were frequently detected. Antibiotics with highest detected concentrations were sulfamethazine (82.5 ng/L) in surface waters and erythromycin (6.6 ng/g dry wt) in soils. The optimized sample extraction strategy can be used to improve the detection of a variety of antibiotics in environmental surface waters and soils.

  6. Electro-thermal treatment optimization of high concentration ammonia nitrogen by gaseous oxidation in liquid phase (GOLP).

    PubMed

    Cao, Li Mei; Yang, Ji; Jia, Jin Ping

    2011-01-01

    This study is focused on optimizing the treatment parameters for high concentration ammonia using gaseous oxidation in liquid phase (GOLP). The conversion of ammonia was achieved electrothermally over mono-crystalline silicon supported CoOx catalyst. The experimental results demonstrated that factors including the co-anions, pH of the solutions, air flowrate and the current showed apparent influences on the ammonia removal. The higher the Cl(-) concentration and/or current, the better the efficiency of ammonia degradation. The increase of the air flowrate would increase the ammonia removal accordingly. And it was also observed that the pH declined during the ammonia conversion, and the neutral and alkaline pH were beneficial to the ammonia removal. The preliminary cost analysis based on lab data was also provided for future reference.

  7. How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State-of-the Art.

    PubMed

    Lamy, Brigitte; Dargère, Sylvie; Arendrup, Maiken C; Parienti, Jean-Jacques; Tattevin, Pierre

    2016-01-01

    Bloodstream infection (BSI) is a major cause of death in developed countries and the detection of microorganisms is essential in managing patients. Despite major progress has been made to improve identification of microorganisms, blood culture (BC) remains the gold standard and the first line tool for detecting BSIs. Consensus guidelines are available to ensure optimal BSI procedures, but BC practices often deviate from the recommendations. This review provides an update on clinical and technical issues related to blood collection and to BC performance, with a special focus on the blood sample strategy to optimize the sensitivity and specificity of BCs.

  8. How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State-of-the Art

    PubMed Central

    Lamy, Brigitte; Dargère, Sylvie; Arendrup, Maiken C.; Parienti, Jean-Jacques; Tattevin, Pierre

    2016-01-01

    Bloodstream infection (BSI) is a major cause of death in developed countries and the detection of microorganisms is essential in managing patients. Despite major progress has been made to improve identification of microorganisms, blood culture (BC) remains the gold standard and the first line tool for detecting BSIs. Consensus guidelines are available to ensure optimal BSI procedures, but BC practices often deviate from the recommendations. This review provides an update on clinical and technical issues related to blood collection and to BC performance, with a special focus on the blood sample strategy to optimize the sensitivity and specificity of BCs. PMID:27242721

  9. Fast Filtration of Bacterial or Mammalian Suspension Cell Cultures for Optimal Metabolomics Results

    PubMed Central

    Bordag, Natalie; Janakiraman, Vijay; Nachtigall, Jonny; González Maldonado, Sandra; Bethan, Bianca; Laine, Jean-Philippe; Fux, Elie

    2016-01-01

    The metabolome offers real time detection of the adaptive, multi-parametric response of the organisms to environmental changes, pathophysiological stimuli or genetic modifications and thus rationalizes the optimization of cell cultures in bioprocessing. In bioprocessing the measurement of physiological intracellular metabolite levels is imperative for successful applications. However, a sampling method applicable to all cell types with little to no validation effort which simultaneously offers high recovery rates, high metabolite coverage and sufficient removal of extracellular contaminations is still missing. Here, quenching, centrifugation and fast filtration were compared and fast filtration in combination with a stabilizing washing solution was identified as the most promising sampling method. Different influencing factors such as filter type, vacuum pressure, washing solutions were comprehensively tested. The improved fast filtration method (MxP® FastQuench) followed by routine lipid/polar extraction delivers a broad metabolite coverage and recovery reflecting well physiological intracellular metabolite levels for different cell types, such as bacteria (Escherichia coli) as well as mammalian cells chinese hamster ovary (CHO) and mouse myeloma cells (NS0).The proposed MxP® FastQuench allows sampling, i.e. separation of cells from medium with washing and quenching, in less than 30 seconds and is robustly designed to be applicable to all cell types. The washing solution contains the carbon source respectively the 13C-labeled carbon source to avoid nutritional stress during sampling. This method is also compatible with automation which would further reduce sampling times and the variability of metabolite profiling data. PMID:27438065

  10. Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida).

    PubMed

    Hirao, Ayako; Ehlers, Ralf-Udo

    2010-01-01

    For improvement of mass production of the rhabditid biocontrol nematodes Steinernema carpocapsae and Steinernema feltiae in monoxenic liquid culture with their bacterial symbionts Xenorhabdus nematophila and Xenorhabdus bovienii, respectively, the effect of the initial nematode inoculum density on population development and final concentration of dauer juveniles (DJs) was investigated. Symbiotic bacterial cultures are pre-incubated for 1 day prior to inoculation of DJs. DJs are developmentally arrested and recover development as a reaction to food signals provided by their symbionts. After development to adults, the nematodes produce DJ offspring. Inoculum density ranged from 1 to 10 x 10(3) DJ per milliliter for S. carpocapsae and 1 to 8 x 10(3) DJs per milliliter for S. feltiae. No significant influence of the inoculum density on the final DJ yields in both nematode species was recorded, except for S. carpocapsae cultures with a parental female density <2 x 10(3) DJs per milliliter, in which the yields increased with increasing inoculation density. A strong negative response of the parental female fecundity to increasing DJ inoculum densities was recorded for both species with a maximum offspring number per female of >300 for S. carpocapsae and almost 200 for S. feltiae. The compensative adaptation of fecundity to nematode population density is responsible for the lack of an inoculum (or parental female) density effect on DJ yields. At optimal inoculation density of S. carpocapsae, offspring were produced by the parental female population, whereas S. feltiae always developed a F1 female population, which contributed to the DJ yields and was the reason for a more scattered distribution of the yields. The F1 female generation was accompanied by a second peak in X. bovienii density. The optimal DJ inoculum density for S. carpocapsae is 3-6 x 10(3) DJs per milliliter in order to obtain >10(3) parental females per milliliter. Density-dependent effects were neither

  11. Optimizing immobilized enzyme performance in cell-free environments to produce liquid fuels.

    SciTech Connect

    Kumar, Sanat

    2015-02-05

    The overall goal of this project was to optimize enzyme performance for the production of bio-diesel fuel. Enzyme immobilization has attracted much attention as a means to increase productivity. Mesorporous silica materials have been known to be best suited for immobilizing enzymes. A major challenge is to ensure that the enzymatic activity is retained after immobilization. Two major factors which drive enzymatic deactivation are protein-surface and inter-protein interactions. Previously, we studied protein stability inside pores and how to optimize protein-surface interactions to minimize protein denaturation. In this work we studied eh effect of surface curvature and chemistry on inter-protein interactions. Our goal was to find suitable immobilization supports which minimize these inter-protein interactions. Our studies carried out in the frame work of Hydrophobic-Polar (HP) model showed that enzymes immobilized inside hydrophobic pores of optimal sizes are best suited to minimize these inter-protein interactions. Besides, this study is also of biological importance to understand the role of chaperonins in protein disaggregation. Both of these aspects profited immensely with collaborations with our experimental colleague, Prof. Georges Belfort (RPI), who performed the experimental analog of our theoretical works.

  12. Impedance magnitude optimization of the regenerator in Stirling pulse tube cryocoolers working at liquid-helium temperatures

    NASA Astrophysics Data System (ADS)

    Cao, Q.; Qiu, L. M.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Zhang, X. B.; Zhang, X. J.; Sun, D. M.

    2013-12-01

    The impedance magnitude is important for the design and operation of a Stirling pulse tube cryocooler (SPTC). However, the influence of the impedance magnitude on the SPTC working at liquid-helium temperatures is still not clear due to the complexity of refrigeration mechanism at this temperature range. In this study, the influence of the impedance magnitude on the viscous and thermal losses has been investigated, which contributes to the overall refrigeration efficiency. Different from the previous study at liquid nitrogen temperatures, it has been found and verified experimentally that a higher impedance magnitude may result in a larger mass flow rate accompanied with larger losses in the warmer region, hence the refrigeration efficiency is lowered. Numerical simulation is carried out in SPTCs of different geometry dimensions and working parameters, and the experimental study is carried out in a three-stage SPTC. A minimum no-load refrigeration temperature is achieved with an appropriate impedance magnitude that is determined by the combination of frequency and precooling temperature. A lowest temperature of 4.76 K is achieved at 28 Hz and a precooling temperature of 22.6 K, which is the lowest temperature ever achieved with He-4 for SPTCs. Impedance magnitude optimization is clearly an important consideration for the design of a 4 K SPTC.

  13. Modeling optimal process conditions for UV-heat inactivation of foodborne pathogens in liquid foods.

    PubMed

    Gayán, Elisa; Serrano, María Jesús; Álvarez, Ignacio; Condón, Santiago

    2016-12-01

    The combination of ultraviolet radiation and heat (UV-H treatment) has been demonstrated as a promising strategy to overcome the limited UV germicidal effect in fruit juices. Nonetheless, there are so far no data regarding the efficacy of the combined process for the inactivation of bacterial foodborne pathogens in other liquid foods with different pH and composition. In this investigation, the optimum UV-H processing conditions for the inactivation of Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and S. aureus in chicken and vegetable broth, in addition to juices, were determined. From these data models that accurately predict the most advantageous UV-H treatment temperature and the expected synergistic lethal effect from UV and heat resistance data separately were constructed. Equations demonstrated that the optimum UV-H treatment temperature mostly depended on heat resistance, whereas the maximum synergistic lethal effect also was affected by the UV resistance of the microorganism of concern in a particular food.

  14. [The surgical tactic optimization in local accumulations of liquid in patients with severe acute pancreatitis].

    PubMed

    Sheĭko, V D; Oganezian, A H

    2013-12-01

    The results of examination and treatment of 56 patients, having local accumulations of liquid (IAL) in severe acute pancreatitis (SAP), were analyzed. Transcutaneous puncture-draining sanation was performed in 47 (83.9%) patients; 7 (12.5%)--were treated without surgical intervention; in 2 (3.6%)--open operative interventions were done. SIRS was revealed in 31 (55.4%) patients, the signs of the LAL infectioning in accordance to the ultrasonographic investigation data, computeric tomography (CT) without SIRS was observed in 2 (93.6%), the compression features--in 45 (80.4%). Application of surgical tactics proposed in accordance to the data of the ultrasonographic monitoring of LAL, the signs of compression and the SIRS presence with determination of contents and infectioning have had permitted to improve the treatment results in patients, suffering SAP.

  15. Optimization of drug viscosity used in gas-powered liquid jet injectors.

    PubMed

    Portaro, Rocco; Nakayama, Haruka; Ng, Hoi Dick

    2015-01-01

    This paper describes the effect of drug viscosity on the performance of gas powered liquid jet injectors. The analysis is accomplished utilizing a Computational Fluid Dynamics (CFD) model that obtains the stagnation pressure at the nozzle outlet. The technique is based on previous work used to predict gas power driven injector piston velocity with time. The results depict the variation in average and peak injector stagnation pressure for three different driven pressures; driving injections which vary from 0.2 cP to 87 cP in viscosity. Furthermore, a numerical representation of jet shape is also obtained to verify the effect of viscosity on jet geometry. These results demonstrate that increasing viscosity by 10 times that of water produces only a slight decrease in injector stagnation pressure and produces jets with greater confinement, which will display better characteristics for puncturing the skin.

  16. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed.

    PubMed

    Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah

    2015-02-01

    Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Optimal concentration of hyaluronan and plant protein in different culture systems for in vitro maturation of bovine oocytes.

    PubMed

    Opiela, Jolanta; Latasiewicz, Ewa; Smorag, Zdzisław

    2012-12-01

    With a view to search for optimal concentration of hyaluronan (HA) and plant protein (PP) in different culture systems for in vitro maturation of bovine oocytes, cumulus-oocyte complexes (COCs) were matured in vitro in 2 culture systems (first co-cultured with granulose cells and estrus calf serum (ECS) in 2 mL volume, second without co-culture where ECS was replaced by exogenous hormones and BSA or PP in 100 microL dose under mineral oil). Seven types of media were used; 3 in first system and 4 in second system. To evaluate HA and PP effect on oocytes after in vitro culture an estimation of meiosis stage and a level of DNA fragmentation was performed by TUNEL staining. The highest meiotic maturation (84%) was observed in oocytes cultured in medium enriched with ECS in co-culture with granulose cells (1st system). The lowest meiotic maturation was noted in medium with addition of BSA (43%). The addition of HA in the medium enriched with BSA significantly increased the rate of matured oocytes (67%) and also didn't affect the chromatin quality of individual oocytes. The addition of HA to the culture medium supplemented with a PP decreased the rate of matured oocytes to 54% but no statistical differences were noted. The results of the present study showed that HA supplementation didn't have a detrimental impact on oocyte chromatin integrity and improved bovine oocytes' meiotic maturation in medium supplemented only with BSA without co-culture of granulose cells.

  18. Optimization of hydrophilic interaction LC by univariate and multivariate methods and its combination with salting-out liquid-liquid extraction for the determination of antihypertensive drugs in the environmental waters.

    PubMed

    Wang, Qing; Yin, Chen-ru; Xu, Li

    2013-03-01

    Hydrophilic interaction LC for the separation of four antihypertensive drugs was optimized by both univariate and multivariate methods. The column efficiency, resolution, and separation time were used as the three assessment parameters. The best separation condition of 97% ACN with 3% aqueous buffer containing 50 mM ammonium acetate at a pH of 3.0 was obtained by the two optimization methods. The multivariate optimization, orthogonal array design herein, was demonstrated to be a little tedious, but afforded a much better understanding of underlying separation factors. The content of ACN in the mobile phase contributed most significantly to separation. Furthermore, sample diluent and injection volume were found to influence the chromatographic performance. To match the hydrophilic interaction LC mobile phase, a proper sample pretreatment method, salting-out liquid-liquid extraction, in which ACN was the extractant, was chosen. Since reserpine was unstable under both acidic and alkaline conditions, it was not studied in this part. The optimal salting-out liquid-liquid extraction parameters were as follows: 400 μL ACN was added to 1 mL sample solution containing 500 mg NH4 Cl at a pH of 14.0. The linearity ranged from 0.01 to 1.00 μg/mL with r(2) > 0.9937. The LODs were between 1.9 and 2.5 ng/mL. The developed method was applied to the environmental water sample with good performance.

  19. Retention prediction and separation optimization under multilinear gradient elution in liquid chromatography with Microsoft Excel macros.

    PubMed

    Fasoula, S; Zisi, Ch; Gika, H; Pappa-Louisi, A; Nikitas, P

    2015-05-22

    A package of Excel VBA macros have been developed for modeling multilinear gradient retention data obtained in single or double gradient elution mode by changing organic modifier(s) content and/or eluent pH. For this purpose, ten chromatographic models were used and four methods were adopted for their application. The methods were based on (a) the analytical expression of the retention time, provided that this expression is available, (b) the retention times estimated using the Nikitas-Pappa approach, (c) the stepwise approximation, and (d) a simple numerical approximation involving the trapezoid rule for integration of the fundamental equation for gradient elution. For all these methods, Excel VBA macros have been written and implemented using two different platforms; the fitting and the optimization platform. The fitting platform calculates not only the adjustable parameters of the chromatographic models, but also the significance of these parameters and furthermore predicts the analyte elution times. The optimization platform determines the gradient conditions that lead to the optimum separation of a mixture of analytes by using the Solver evolutionary mode, provided that proper constraints are set in order to obtain the optimum gradient profile in the minimum gradient time. The performance of the two platforms was tested using experimental and artificial data. It was found that using the proposed spreadsheets, fitting, prediction, and optimization can be performed easily and effectively under all conditions. Overall, the best performance is exhibited by the analytical and Nikitas-Pappa's methods, although the former cannot be used under all circumstances. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Lytic enzyme production optimization using low-cost substrates and its application in the clarification of xanthan gum culture broth.

    PubMed

    da Silva, Cíntia Reis; Silva, Marilia Lordelo Cardoso; Kamida, Helio Mitoshi; Goes-Neto, Aristoteles; Koblitz, Maria Gabriela Bello

    2014-07-01

    Lytic enzymes are widely used in industrial biotechnology as they are able to hydrolyze the bacterial cell wall. One application of these enzymes is the clarification of the culture broth for the production of xanthan gum, because of its viability in viscous media and high specificity. The screening process for filamentous fungi producing lytic enzymes, the optimization of production of these enzymes by the selected microorganism, and the optimization of the application of the enzymes produced in the clarification of culture broth are presented in this article. Eleven fungal isolates were tested for their ability to produce enzymes able to increase the transmittance of the culture broth containing cells of Xanthomonas campestris. To optimize the secretion of lytic enzymes by the selected microorganism the following variables were tested: solid substrate, initial pH, incubation temperature, and addition of inducer (gelatin). Thereafter, secretion of the enzymes over time of incubation was assessed. To optimize the clarification process a central composite rotational design was applied in which the pH of the reaction medium, the dilution of the broth, and the reaction temperature were evaluated. The isolate identified as Aspergillus tamarii was selected for increasing the transmittance of the broth from 2.1% to 54.8%. The best conditions for cultivation of this microorganism were: use of coconut husk as solid substrate, with 90% moisture, at 30°C for 20 days. The lytic enzymes produced thereby were able to increase the transmittance of the culture broth from 2.1% to 70.6% at 65°C, without dilution and without pH adjustment.

  1. Lytic enzyme production optimization using low-cost substrates and its application in the clarification of xanthan gum culture broth

    PubMed Central

    da Silva, Cíntia Reis; Silva, Marilia Lordelo Cardoso; Kamida, Helio Mitoshi; Goes-Neto, Aristoteles; Koblitz, Maria Gabriela Bello

    2014-01-01

    Lytic enzymes are widely used in industrial biotechnology as they are able to hydrolyze the bacterial cell wall. One application of these enzymes is the clarification of the culture broth for the production of xanthan gum, because of its viability in viscous media and high specificity. The screening process for filamentous fungi producing lytic enzymes, the optimization of production of these enzymes by the selected microorganism, and the optimization of the application of the enzymes produced in the clarification of culture broth are presented in this article. Eleven fungal isolates were tested for their ability to produce enzymes able to increase the transmittance of the culture broth containing cells of Xanthomonas campestris. To optimize the secretion of lytic enzymes by the selected microorganism the following variables were tested: solid substrate, initial pH, incubation temperature, and addition of inducer (gelatin). Thereafter, secretion of the enzymes over time of incubation was assessed. To optimize the clarification process a central composite rotational design was applied in which the pH of the reaction medium, the dilution of the broth, and the reaction temperature were evaluated. The isolate identified as Aspergillus tamarii was selected for increasing the transmittance of the broth from 2.1% to 54.8%. The best conditions for cultivation of this microorganism were: use of coconut husk as solid substrate, with 90% moisture, at 30°C for 20 days. The lytic enzymes produced thereby were able to increase the transmittance of the culture broth from 2.1% to 70.6% at 65°C, without dilution and without pH adjustment. PMID:25473487

  2. Trade-off between learning and exploitation: the Pareto-optimal versus evolutionarily stable learning schedule in cumulative cultural evolution.

    PubMed

    Wakano, Joe Yuichiro; Miura, Chiaki

    2014-02-01

    Inheritance of culture is achieved by social learning and improvement is achieved by individual learning. To realize cumulative cultural evolution, social and individual learning should be performed in this order in one's life. However, it is not clear whether such a learning schedule can evolve by the maximization of individual fitness. Here we study optimal allocation of lifetime to learning and exploitation in a two-stage life history model under a constant environment. We show that the learning schedule by which high cultural level is achieved through cumulative cultural evolution is unlikely to evolve as a result of the maximization of individual fitness, if there exists a trade-off between the time spent in learning and the time spent in exploiting the knowledge that has been learned in earlier stages of one's life. Collapse of a fully developed culture is predicted by a game-theoretical analysis where individuals behave selfishly, e.g., less learning and more exploiting. The present study suggests that such factors as group selection, the ability of learning-while-working ("on the job training"), or environmental fluctuation might be important in the realization of rapid and cumulative cultural evolution that is observed in humans.

  3. Simultaneous microemulsion liquid chromatographic analysis of fat-soluble vitamins in pharmaceutical formulations: optimization using genetic algorithm.

    PubMed

    Momenbeik, Fariborz; Roosta, Mostafa; Nikoukar, Ali Akbar

    2010-06-11

    An environmentally benign and simple method has been proposed for separation and determination of fat-soluble vitamins using isocratic microemulsion liquid chromatography. Optimization of parameters affecting the separation selectivity and efficiency including surfactant concentration, percent of cosurfactant (1-butanol), and percent of organic oily solvent (diethyl ether), temperature and pH were performed simultaneously using genetic algorithm method. A new software package, MLR-GA, was developed for this purpose. The results indicated that 73.6mM sodium dodecyl sulfate, 13.64% (v/v) 1-butanol, 0.48% (v/v) diethyl ether, column temperature of 32.5 degrees C and 0.02M phosphate buffer of pH 6.99 are the best conditions for separation of fat-soluble vitamins. At the optimized conditions, the calibration plots for the vitamins were obtained and detection limits (1.06-3.69microgmL(-1)), accuracy (recoveries>94.3), precision (RSD<3.96) and linearity (0.01-10mgmL(-1)) were estimated. Finally, the amount of vitamins in multivitamin syrup and a sample of fish oil capsule were determined. The results showed a good agreement with those reported by manufactures.

  4. Optimized low-level liquid scintillation spectroscopy of 35S for atmospheric and biogeochemical chemistry applications

    PubMed Central

    Brothers, Lauren A.; Dominguez, Gerardo; Abramian, Anna; Corbin, Antoinette; Bluen, Ben; Thiemens, Mark H.

    2010-01-01

    Anthropogenic activities, dominated by emissions of sulfur dioxide (SO2), have perturbed the global sulfur (S) cycle. Uncertainties in timescales of S transport and chemistry in the atmosphere lead to uncertainties in the predicted impact of S emissions. Measurements of cosmogenic 35S may potentially be used to resolve existing uncertainties in the photochemical and chemical transformation of S in the environment. The lack of a simple, effective, and highly sensitive technique to measure 35S activity in samples with low activities may explain the scarcity of published measurements. We present a set of new sample handling and measurement procedures optimized for the measurement of 35S in natural samples with activities as low as 0.20 dpm above background (2σ, integration time = 2 hr). We also report simultaneous measurements of aerosol () and gas phase () collected at inland and coastal locations; the range of observed activities corresponds to SO2 residence lifetimes of 0.2 ± 0.04 (coastal) - 22.3 d ± 0.04 (inland). These optimized techniques offer the potential for resolving atmospheric processes that occur on 6–12-hour timescales as well as resolving transport phenomena such as stratospheric mixing into the troposphere. PMID:20212141

  5. Direct Comparison of Xpert MTB/RIF Assay with Liquid and Solid Mycobacterial Culture for Quantification of Early Bactericidal Activity

    PubMed Central

    Kayigire, Xavier A.; Friedrich, Sven O.; Venter, Amour; Dawson, Rodney; Gillespie, Stephen H.; Boeree, Martin J.; Heinrich, Norbert; Hoelscher, Michael

    2013-01-01

    The early bactericidal activity of antituberculosis agents is usually determined by measuring the reduction of the sputum mycobacterial load over time on solid agar medium or in liquid culture. This study investigated the value of a quantitative PCR assay for early bactericidal activity determination. Groups of 15 patients were treated with 6 different antituberculosis agents or regimens. Patients collected sputum for 16 h overnight at baseline and at days 7 and 14 after treatment initiation. We determined the sputum bacterial load by CFU counting (log CFU/ml sputum, reported as mean ± standard deviation [SD]), time to culture positivity (TTP, in hours [mean ± SD]) in liquid culture, and Xpert MTB/RIF cycle thresholds (CT, n [mean ± SD]). The ability to discriminate treatment effects between groups was analyzed with one-way analysis of variance (ANOVA). All measurements showed a decrease in bacterial load from mean baseline (log CFU, 5.72 ± 1.00; TTP, 116.0 ± 47.6; CT, 19.3 ± 3.88) to day 7 (log CFU, −0.26 ± 1.23, P = 0.2112; TTP, 35.5 ± 59.3, P = 0.0002; CT, 0.55 ± 3.07, P = 0.6030) and day 14 (log CFU, −0.55 ± 1.24, P = 0.0006; TTP, 54.8 ± 86.8, P < 0.0001; CT, 2.06 ± 4.37, P = 0.0020). The best discrimination between group effects was found with TTP at day 7 and day 14 (F = 9.012, P < 0.0001, and F = 11.580, P < 0.0001), followed by log CFU (F = 4.135, P = 0.0024, and F = 7.277, P < 0.0001). CT was not significantly discriminative (F = 1.995, P = 0.091, and F = 1.203, P = 0.316, respectively). Culture-based methods are superior to PCR for the quantification of early antituberculosis treatment effects in sputum. PMID:23596237

  6. Direct comparison of Xpert MTB/RIF assay with liquid and solid mycobacterial culture for quantification of early bactericidal activity.

    PubMed

    Kayigire, Xavier A; Friedrich, Sven O; Venter, Amour; Dawson, Rodney; Gillespie, Stephen H; Boeree, Martin J; Heinrich, Norbert; Hoelscher, Michael; Diacon, Andreas H

    2013-06-01

    The early bactericidal activity of antituberculosis agents is usually determined by measuring the reduction of the sputum mycobacterial load over time on solid agar medium or in liquid culture. This study investigated the value of a quantitative PCR assay for early bactericidal activity determination. Groups of 15 patients were treated with 6 different antituberculosis agents or regimens. Patients collected sputum for 16 h overnight at baseline and at days 7 and 14 after treatment initiation. We determined the sputum bacterial load by CFU counting (log CFU/ml sputum, reported as mean ± standard deviation [SD]), time to culture positivity (TTP, in hours [mean ± SD]) in liquid culture, and Xpert MTB/RIF cycle thresholds (C(T), n [mean ± SD]). The ability to discriminate treatment effects between groups was analyzed with one-way analysis of variance (ANOVA). All measurements showed a decrease in bacterial load from mean baseline (log CFU, 5.72 ± 1.00; TTP, 116.0 ± 47.6; C(T), 19.3 ± 3.88) to day 7 (log CFU, -0.26 ± 1.23, P = 0.2112; TTP, 35.5 ± 59.3, P = 0.0002; C(T), 0.55 ± 3.07, P = 0.6030) and day 14 (log CFU, -0.55 ± 1.24, P = 0.0006; TTP, 54.8 ± 86.8, P < 0.0001; C(T), 2.06 ± 4.37, P = 0.0020). The best discrimination between group effects was found with TTP at day 7 and day 14 (F = 9.012, P < 0.0001, and F = 11.580, P < 0.0001), followed by log CFU (F = 4.135, P = 0.0024, and F = 7.277, P < 0.0001). C(T) was not significantly discriminative (F = 1.995, P = 0.091, and F = 1.203, P = 0.316, respectively). Culture-based methods are superior to PCR for the quantification of early antituberculosis treatment effects in sputum.

  7. Culture.

    PubMed

    Smith, Timothy B; Rodríguez, Melanie Domenech; Bernal, Guillermo

    2011-02-01

    This article summarizes the definitions, means, and research of adapting psychotherapy to clients' cultural backgrounds. We begin by reviewing the prevailing definitions of cultural adaptation and providing a clinical example. We present an original meta-analysis of 65 experimental and quasi-experimental studies involving 8,620 participants. The omnibus effect size of d = .46 indicates that treatments specifically adapted for clients of color were moderately more effective with that clientele than traditional treatments. The most effective treatments tended to be those with greater numbers of cultural adaptations. Mental health services targeted to a specific cultural group were several times more effective than those provided to clients from a variety of cultural backgrounds. We recommend a series of research-supported therapeutic practices that account for clients' culture, with culture-specific treatments being more effective than generally culture-sensitive treatments. © 2010 Wiley Periodicals, Inc.

  8. Time-series integrated "omic" analyses to elucidate short-term stress-induced responses in plant liquid cultures.

    PubMed

    Dutta, Bhaskar; Kanani, Harin; Quackenbush, John; Klapa, Maria I

    2009-01-01

    The research that aims at furthering our understanding of plant primary metabolism has intensified during the last decade. The presented study validated a systems biology methodological framework for the analysis of stress-induced molecular interaction networks in the context of plant primary metabolism, as these are expressed during the first hours of the stress treatment. The framework involves the application of time-series integrated full-genome transcriptomic and polar metabolomic analyses on plant liquid cultures. The latter were selected as the model system for this type of analysis, because they provide a well-controlled growth environment, ensuring that the observed plant response is due only to the applied perturbation. An enhanced gas chromatography-mass spectrometry (GC-MS) metabolomic data correction strategy and a new algorithm for the significance analysis of time-series "omic" data are used to extract information about the plant's transcriptional and metabolic response to the applied stress from the acquired datasets; in this article, it is the first time that these are applied for the analysis of a large biological dataset from a complex eukaryotic system. The case-study involved Arabidopsis thaliana liquid cultures subjected for 30 h to elevated (1%) CO2 stress. The advantages and validity of the methodological framework are discussed in the context of the known A. thaliana or plant, in general, physiology under the particular stress. Of note, the ability of the methodology to capture dynamic aspects of the observed molecular response allowed for 9 and 24 h of treatment to be indicated as corresponding to shifts in both the transcriptional and metabolic activity; analysis of the pathways through which these activity changes are manifested provides insight to regulatory processes.

  9. Optimism

    PubMed Central

    Carver, Charles S.; Scheier, Michael F.; Segerstrom, Suzanne C.

    2010-01-01

    Optimism is an individual difference variable that reflects the extent to which people hold generalized favorable expectancies for their future. Higher levels of optimism have been related prospectively to better subjective well-being in times of adversity or difficulty (i.e., controlling for previous well-being). Consistent with such findings, optimism has been linked to higher levels of engagement coping and lower levels of avoidance, or disengagement, coping. There is evidence that optimism is associated with taking proactive steps to protect one's health, whereas pessimism is associated with health-damaging behaviors. Consistent with such findings, optimism is also related to indicators of better physical health. The energetic, task-focused approach that optimists take to goals also relates to benefits in the socioeconomic world. Some evidence suggests that optimism relates to more persistence in educational efforts and to higher later income. Optimists also appear to fare better than pessimists in relationships. Although there are instances in which optimism fails to convey an advantage, and instances in which it may convey a disadvantage, those instances are relatively rare. In sum, the behavioral patterns of optimists appear to provide models of living for others to learn from. PMID:20170998

  10. Artificial neural network-based model for the prediction of optimal growth and culture conditions for maximum biomass accumulation in multiple shoot cultures of Centella asiatica.

    PubMed

    Prasad, Archana; Prakash, Om; Mehrotra, Shakti; Khan, Feroz; Mathur, Ajay Kumar; Mathur, Archana

    2017-01-01

    An artificial neural network (ANN)-based modelling approach is used to determine the synergistic effect of five major components of growth medium (Mg, Cu, Zn, nitrate and sucrose) on improved in vitro biomass yield in multiple shoot cultures of Centella asiatica. The back propagation neural network (BPNN) was employed to predict optimal biomass accumulation in terms of growth index over a defined culture duration of 35 days. The four variable concentrations of five media components, i.e. MgSO4 (0, 0.75, 1.5, 3.0 mM), ZnSO4 (0, 15, 30, 60 μM), CuSO4 (0, 0.05, 0.1, 0.2 μM), NO3 (20, 30, 40, 60 mM) and sucrose (1, 3, 5, 7 %, w/v) were taken as inputs for the ANN model. The designed model was evaluated by performing three different sets of validation experiments that indicated a greater similarity between the target and predicted dataset. The results of the modelling experiment suggested that 1.5 mM Mg, 30 μM Zn, 0.1 μM Cu, 40 mM NO3 and 6 % (w/v) sucrose were the respective optimal concentrations of the tested medium components for achieving maximum growth index of 1654.46 with high centelloside yield (62.37 mg DW/culture) in the cultured multiple shoots. This study can facilitate the generation of higher biomass of uniform, clean, good quality C. asiatica herb that can efficiently be utilized by pharmaceutical industries.

  11. Optimization of growth media for obtaining high-cell density cultures of halophilic archaea (family Halobacteriaceae) by response surface methodology.

    PubMed

    Manikandan, Muthu; Pasić, Lejla; Kannan, Vijayaraghavan

    2009-06-01

    Optimization of media components for the growth and biomass production of Halobacterium salinarum VKMM 013 was carried out using response surface methodology. A second order quadratic model was estimated and media components were determined based on quadratic regression equation generated by model. These were 6.35 g L(-1) of KCl, 9.70 g L(-1) of MgSO(4), 13.38 g L(-1) of gelatin and 12.00 g L(-1) of soluble starch in nutrient broth supplemented with artificial seawater with 20% (w/v) of NaCl. In these optimal conditions, the obtained cell concentration of 0.746 g L(-1) dry weight was in agreement with the predicted cell concentration. The optimized media significantly shortened the time required for cell culture to reach the stationary phase while providing a nearly 2.4-fold increase in biomass production. Furthermore, in cell cultures of three other halophilic archaea the use of optimized media enhanced growth rate and provided high-cell density.

  12. Optimization of a fermented soy product formulation with a kefir culture and fiber using a simplex-centroid mixture design.

    PubMed

    Baú, Tahis Regina; Garcia, Sandra; Ida, Elza Iouko

    2013-12-01

    The objective of this work was to optimize a fermented soy product formulation with kefir and soy, oat and wheat fibers and to evaluate the fiber and product characteristics. A simplex-centroid mixture design was used for the optimization. Soymilk, soy, oat and wheat fiber mixtures, sucrose and anti-foaming agent were used for the formulation, followed by thermal treatment, cooling and the addition of flavoring. Fermentation was performed at 25 °C with a kefir culture until a pH of 4.5 was obtained. The products were cooled, homogenized and stored for analysis. From the mathematical models and variables response surface and desirability an optimal fermented product was formulated containing 3% (w/w) soy fiber. Compared with the other formulations, soy fermented product with 3% soy fiber had the best acidity, viscosity, syneresis, firmness and Lactococcus lactis count.

  13. Optimization by infusion of multiple reaction monitoring transitions for sensitive quantification of peptides by liquid chromatography/mass spectrometry.

    PubMed

    Alghanem, Bandar; Nikitin, Frédéric; Stricker, Thomas; Duchoslav, Eva; Luban, Jeremy; Strambio-De-Castillia, Caterina; Muller, Markus; Lisacek, Frédérique; Varesio, Emmanuel; Hopfgartner, Gérard

    2017-05-15

    In peptide quantification by liquid chromatography/mass spectrometry (LC/MS), the optimization of multiple reaction monitoring (MRM) parameters is essential for sensitive detection. We have compared different approaches to build MRM assays, based either on flow injection analysis (FIA) of isotopically labelled peptides, or on the knowledge and the prediction of the best settings for MRM transitions and collision energies (CE). In this context, we introduce MRMOptimizer, an open-source software tool that processes spectra and assists the user in selecting transitions in the FIA workflow. MS/MS spectral libraries with CE voltages from 10 to 70 V are automatically acquired in FIA mode for isotopically labelled peptides. Then MRMOptimizer determines the optimal MRM settings for each peptide. To assess the quantitative performance of our approach, 155 peptides, representing 84 proteins, were analysed by LC/MRM-MS and the peak areas were compared between: (A) the MRMOptimizer-based workflow, (B1) the SRMAtlas transitions set used 'as-is'; (B2) the same SRMAtlas set with CE parameters optimized by Skyline. 51% of the three most intense transitions per peptide were shown to be common to both A and B1/B2 methods, and displayed similar sensitivity and peak area distributions. The peak areas obtained with MRMOptimizer for transitions sharing either the precursor ion charge state or the fragment ions with the SRMAtlas set at unique transitions were increased 1.8- to 2.3-fold. The gain in sensitivity using MRMOptimizer for transitions with different precursor ion charge state and fragment ions (8% of the total), reaches a ~ 11-fold increase. Isotopically labelled peptides can be used to optimize MRM transitions more efficiently in FIA than by searching databases. The MRMOptimizer software is MS independent and enables the post-acquisition selection of MRM parameters. Coefficients of variation for optimal CE values are lower than those obtained with the SRMAtlas approach (B2

  14. Comparative anatomy and morphology of Vitis vinifera (Vitaceae) somatic embryos from solid- and liquid-culture-derived proembryogenic masses.

    PubMed

    Jayasankar, S; Bondada, Bhaskar R; Li, Zhijian; Gray, D J

    2003-07-01

    Ontogeny of somatic embryos of grapevine (Vitis vinifera) produced from solid- and liquid-culture-derived proembryogenic masses (PEM) was compared using light and scanning electron microscopy. Somatic embryos produced from solid-medium-derived PEM (SPEM) had large cotyledons, little or no visible suspensor structure, and a relatively undeveloped concave shoot apical meristem, whereas those from liquid-medium-derived PEM (LPEM) had smaller cotyledons, a distinct suspensor, and a flat-to-convex shoot apical meristem. The convex shoot apical meristem in LPEM-derived somatic embryos formed as early as the heart stage of development; it was 4-6 cell layers deep and rich in protein. Suspensors persisted in fully developed and mature LPEM-derived somatic embryos. The SPEM-derived somatic embryos exhibited dormancy, as do mature zygotic embryos, which also have a rudimentary suspensor, whereas LPEM-derived embryos were not dormant. We hypothesize that the presence of a persistent suspensor in LPEM-derived somatic embryos modulates development, ultimately resulting in rapid germination and a high plant-regeneration rate.

  15. The evaluation of kefir pure culture starter: Liquid-core capsule entrapping microorganisms isolated from kefir grains.

    PubMed

    Wang, Liang; Zhong, Hao; Liu, Keying; Guo, Aizhen; Qi, Xianghui; Cai, Meihong

    2016-10-01

    The main purpose of this study was to develop a pure culture starter for producing kefir. In order to accomplish starter recycling, yeasts (Kluyveromyces marxianus strain, Pichia kudriavzevii clone), lactic acid bacteria (Lactobacillus kefiri strain F4Aa, Lactobacillus kefiri strain NM131-7, Lactobacillus kefiri strain NM132-3, Lactobacillus kefiri strain NM180-3, respectively), and acetic acid bacteria (Acetobacter lovaniensis strain) were entrapped in liquid core capsules based on the distribution ratio in kefir grains. The microbiological, antimicrobial, and chemical properties of kefir made with capsules (M) and kefir grains (K) were measured and compared. According to the results of plate counts in different selective medium, the number of yeasts and bacteria in the liquid core capsules gradually increased and stabilized after eight fermentation cycles. The results of gas chromatography-mass spectrometry showed that almost all the aroma components existed in the two type of kefir, except the ethyl lactate. There was no significant difference in alcohol content, protein content, and fat content, except the acidity and sugar content. Water holding capacity of kefir K was higher than kefir M. There were 14 same free amino acids in kefir M and kefir K, and the content of most free amino acids was similar. In antimicrobial test, there was no significant difference in both kefirs. © The Author(s) 2016.

  16. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface.

    PubMed

    Polk, William W; Sharma, Monita; Sayes, Christie M; Hotchkiss, Jon A; Clippinger, Amy J

    2016-04-23

    Aerosol generation and characterization are critical components in the assessment of the inhalation hazards of engineered nanomaterials (NMs). An extensive review was conducted on aerosol generation and exposure apparatus as part of an international expert workshop convened to discuss the design of an in vitro testing strategy to assess pulmonary toxicity following exposure to aerosolized particles. More specifically, this workshop focused on the design of an in vitro method to predict the development of pulmonary fibrosis in humans following exposure to multi-walled carbon nanotubes (MWCNTs). Aerosol generators, for dry or liquid particle suspension aerosolization, and exposure chambers, including both commercially available systems and those developed by independent researchers, were evaluated. Additionally, characterization methods that can be used and the time points at which characterization can be conducted in order to interpret in vitro exposure results were assessed. Summarized below is the information presented and discussed regarding the relevance of various aerosol generation and characterization techniques specific to aerosolized MWCNTs exposed to cells cultured at the air-liquid interface (ALI). The generation of MWCNT aerosols relevant to human exposures and their characterization throughout exposure in an ALI system is critical for extrapolation of in vitro results to toxicological outcomes in humans.

  17. Optimized Dispersive Liquid-Liquid Microextraction Method and High Performance Liquid Chromatography with Ultraviolet Detection for Simultaneous Determination of Sorbic and Benzoic Acids and Evaluation of Contamination of These Preservatives in Iranian Foods.

    PubMed

    Javanmardi, Fardin; Arefhosseini, Seyyed Rafie; Ansarin, Masood; Nemati, Mahboob

    2015-01-01

    A rapid, simple, and sensitive dispersive liquid-liquid microextraction procedure followed by HPLC-UV was applied to determine the benzoate and sorbate in foods. The method was optimized for some variables including extraction solvent type and volume, dispersing solvent type and volume, and the effects of salt and pH. Optimum conditions were determined as follows: sample volume, 5 mL; extraction solvent (chloroform) volume, 250 μL; disperser solvent (acetone) volume, 1.2 mL; NaCl amount, 0.75 g/5 mL at pH 4. Sixty samples were analyzed, including 15 doogh, 15 fruit juice, 15 cookie, and 15 tomato paste; benzoic acid was detected in 57 samples (95%) at levels up to 448.1 μg/mL and sorbic acid in 31 samples (51.6%) at levels up to 1369 μg/mL. Under the optimum experimental conditions, the LOD and LOQ were determined as 0.1 and 0.5 μg/mL for benzoate and 0.08 and 0.3 μg/mL for sorbate, respectively. The results showed that these preservatives are commonly used at high levels in yogurt drinks (dooghs) and cookies. Also, the concentration of benzoic acid that was detected in the tomato paste and fruit juice samples was low but may affect children and sensitive persons.

  18. Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge.

    PubMed

    Alam, Md Zahangir; Muyibi, Suleyman A; Wahid, Rosmaziah

    2008-07-01

    A two-level fractional factorial design (FFD) was used to determine the effects of six factors, i.e. substrate (domestic wastewater sludge - DWS) and co-substrate concentration (wheat flour - WF), temperature, initial pH, inoculum size and agitation rate on the production of cellulase enzyme by Trichoderma harzianum in liquid state bioconversion. On statistical analysis of the results from the experimental studies, optimum process conditions were found to be temperature 32.5 degrees C, substrate concentration (DWS) 0.75% (w/w), co-substrate (WF) concentration 2% (w/w), initial pH 5, inoculum size 2% (v/w) and agitation 175 rpm. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 0.975. Cellulase activity reached 10.2 FPU/ml at day 3 during the fermentation process which indicated about 1.5-fold increase in production compared to the cellulase activity obtained from the results of design of experiment (6.9 FPU/ml). Biodegradation of DWS was also evaluated to verify the efficiency of the bioconversion process as a waste management method.

  19. Understanding and optimizing microemulsions with magnetic room temperature ionic liquids (MRTILs).

    PubMed

    Klee, Andreas; Prevost, Sylvain; Gasser, Urs; Gradzielski, Michael

    2015-03-12

    Nonaqueous microemulsions containing the magnetic room temperature ionic liquid (MRTIL) bmimFeCl4 as polar phase were studied with respect to their macroscopic phase behavior and structure by means of small angle neutron scattering (SANS). The phase behavior was studied in detail for different alcohols as cosurfactant and different oils as nonpolar phase and mainly by varying the chain length of the used ionic surfactant (CnmimCl with n = 14, 16, 18). In general, phase behavior and structural ordering in the mesophases were found to be comparable to water systems where with increasing content of MRTIL the microemulsions seems to become less and less structured leading to a rough and softer interface with less long-range ordering. The extent of structuring increases with increasing chain length of the surfactant. However, the pure surfactant is not able to form microemulsions and a rather large amount of alcohol is required for stabilization, where the effectiveness of the alcohol increases with increasing chain length of the alcohol. From this comprehensive investigation systematic trends can be deduced in order to formulate correspondingly structured microemulsions with MRTIL as polar phase.

  20. Decline Curve Analysis for Production Forecast and Optimization of Liquid-Dominated Geothermal Reservoir

    NASA Astrophysics Data System (ADS)

    Hidayat, I.

    2016-09-01

    Power projects in the geothermal field has a long span of about 30 years. The power supply should be maintained at a certain value across a range of time. A geothermal field, however, has the characteristics of natural production decline with time. In a geothermal field, development of decline curve model of steam production is important for forecasting production decline in the future. This study was developed using decline curve by production data along 3 years liquid-dominated geothermal reservoir in Ulubelu field. Decline curve in geothermal field based on decline curve in petroleum industry. The decline curve was correlated by reservoir management in geothermal. The purposes of this study to get best match model decline curve and forecasting production in the future. Based on decline curve analysis by production data in Ulubelu field, the result model decline curve is exponential model. From the model, we can get the value of decline rate in the field is 9.4 %/year. Then, the formula of forecasting steam flow used exponent decline to forecast in the future. By using separated system cycle in Ulubelu field, the minimal steam flowrate towards turbine was 502018.4 ton/month. Based on formula of forecasting production and minimal steam flowrate, we can get the time make up wells to maintain steam supply for stability in generator power capacity.

  1. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system

    NASA Astrophysics Data System (ADS)

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  2. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system.

    PubMed

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  3. Proton Energy Optimization and Spatial Distribution Analysis from a Thickness Study Using Liquid Crystal Targets

    NASA Astrophysics Data System (ADS)

    Willis, Christopher; Poole, Patrick; Schumacher, Douglas; Freeman, Richard; van Woerkom, Linn

    2016-10-01

    Laser-accelerated ions from thin targets have been widely studied for applications including secondary radiation sources and cancer therapy, with recent studies trending towards thinner targets which can provide improved ion energies and yields. Here we discuss results from an experiment on the Scarlet laser at OSU using variable thickness liquid crystal targets. On this experiment, the spatial and spectral distributions of accelerated ions were measured along target normal and laser axes at varying thicknesses from 150nm to 2000nm at a laser intensity of 1 ×1020W /cm2 . Maximum ion energy was observed for targets in the 600 - 800nm thickness range, with proton energies reaching 24MeV . The ions were further characterized using radiochromic film, revealing an unusual spatial distribution on many laser shots. Here, the peak ion yield falls in an annular ring surrounding the target normal, with an increasing divergence angle as a function of ion energy. Details of these spatial and spectral ion distributions will be presented, including spectral deconvolution of the RCF data, revealing additional trends in the accelerated ion distributions. Supported by the DARPA PULSE program through a Grant from AMRDEC, and by the NNSA under contract DE-NA0001976.

  4. Ultrasonic Assisted Extraction of Paclitaxel from Taxus x media Using Ionic Liquids as Adjuvants: Optimization of the Process by Response Surface Methodology.

    PubMed

    Tan, Zhijian; Li, Qiao; Wang, Chaoyun; Zhou, Wanlai; Yang, Yuanru; Wang, Hongying; Yi, Yongjian; Li, Fenfang

    2017-09-11

    (1) Background: Ionic liquids (ILs) are considered "green" solvents and have been widely used in the extraction and separation field in recent years; (2) Methods: In this study, some common ILs and functionalized magnetic ionic liquids (MILs) were used as adjuvants for the solvent extraction of paclitaxel from Taxus x media (T. x media) using methanol solution. The extraction conditions of methanol concentration, IL type and amount, solid-liquid ratio, extraction temperature, and ultrasonic irradiation time were investigated in single factor experiments. Then, three factors of IL amount, solid-liquid ratio, and ultrasonic irradiation time were optimized by response surface methodology (RSM); (3) Results: The MIL [C₄MIM]FeCl₃Br was screened as the optimal adjuvant. Under the optimization conditions of 1.2% IL amount, 1:10.5 solid-liquid ratio, and 30 min ultrasonic irradiation time, the extraction yield reached 0.224 mg/g; and (4) Conclusions: Compared with the conventional solvent extraction, this ultrasonic assisted extraction (UAE) using methanol and MIL as adjuvants can significantly improve the extraction yield, reduce the use of methanol, and shorten the extraction time, which has the potentiality of being used in the extraction of some other important bioactive compounds from natural plant resources.

  5. Optimal liquid crystal display backlight dimming based on clustered contrast loss

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Lee, Kyu-Ho; Bae, Jin-Gon; Kim, Hyung-Geun; Kim, Jong-Ok

    2015-10-01

    We propose an image adaptive backlight dimming method that quantitatively measures the perceived image quality degradation in terms of brightness and contrast. Unlike conventional methods, the proposed adaptive dimming considers the spatial distribution characteristics of the clipped pixels via a new measure, clusterization, to effectively estimate the perceived contrast loss and prevent the clipping artifact (light saturation). The proposed adaptive dimming achieves an average 17.71% power reduction while keeping the image quality difference to a tolerably low amount, as shown by the subjective mean opinion score test results. Comparing the optimal backlight levels estimated by the proposed method with results from other methods, the proposed backlight dimming is closer to the ground truth backlight levels that are favored by human subjects.

  6. Optimal mixing rate in linear solvent strength gradient liquid chromatography. Balanced mixing program.

    PubMed

    Blumberg, Leonid M; Desmet, Gert

    2016-12-09

    The mixing rate (Rϕ) is the temporal rate of increase in the solvent strength in gradient LC. The optimal Rϕ (Rϕ,Opt) is the one at which a required peak capacity of gradient LC analysis is obtained in the shortest time. The balanced mixing program is a one where, for better separation of early eluting solutes, the mixing ramp is preceded by a balanced isocratic hold of the duration depending on Rϕ. The improvement in the separation of the earlier eluites due to the balanced programming has been evaluated. The value of Rϕ,Opt depends on the solvent composition range covered by the mixing ramp and on the column pressure conditions. The Rϕ,Opt for a column operating at maximum instrumental pressure is different from Rϕ,Opt for a column operating below the instrumental pressure limit. On the other hand, it has been shown that the difference in the Rϕ,Opt values under different conditions is not very large so that a single default Rϕ previously recommended for gradient analyses without the isocratic hold also yields a good approximation to the shortest analysis time for all conditions in the balanced analyses. With or without the initial balance isocratic hold, the recommended default Rϕ is about 5%/t0 (5% increase in the solvent strength per each t0-long increment in time) for small-molecule samples, and about an order of magnitude slower (0.5%/t0) for protein samples. A discussion illustrating the use of the optimization criteria employed here for the techniques other than LSS gradient LC is included.

  7. Scaling-up and ionic liquid-based extraction of pectinases from Aspergillus flavipes cultures.

    PubMed

    Wolf-Márquez, Vicente E; Martínez-Trujillo, M Aurora; Aguilar Osorio, Guillermo; Patiño, Faustino; Álvarez, María S; Rodríguez, Ana; Sanromán, M Ángeles; Deive, Francisco J

    2017-02-01

    The viability of the scaling-up of pectinases production by Aspergillus flavipes at 5L-bioreactor scale has been demonstrated by keeping constant the power input, and a drastic increase in the endo- and exopectinolytic enzyme production was recorded (7- and 40-fold, respectively). The main process variables were modelled by means of logistic and Gompertz equations. In order to overcome the limitations of the conventional downstream strategies, a novel extraction strategy was proposed on the basis of the adequate salting-out potential of two biocompatible cholinium-based ionic liquids (N1112OHCl and N1112OHH2PO4) in aqueous solutions of Tergitol, reaching more than 90% of extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. High sensitivity liquid sensing by optimized slot photonic crystal ring resonator

    NASA Astrophysics Data System (ADS)

    Jannesari, R.; Grille, T.; Hedenig, U.; Jakoby, B.

    2017-05-01

    In this work we present a design to enhance absorption of infrared light by a fluid analyte being in contact with a slot photonic crystal ring resonator (slot-PCRR). For this purpose, we propose a new PCRR design facilitating higher interaction between guided mode and analyte. These types of PCRRs are based on two-dimensional photonic crystals, which consist of an array of holes in a silicon slab being arranged in a hexagonal lattice. The holes will be filled with liquid analyte. A slot is embedded in this hexagonal ring cavity to create a slot-PCRR. The strong confinement of light in the low index region, occupied by the analyte, is the key advantage of the slot- PCRR. We also calculate the relative intensity change in the transmission spectrum due to the absorption in the analyte. The maximum change obtained is given by a mode which has most of the electromagnetic field energy in the region the region filled with the analyte. Furthermore, this mode is well separated from neighboring bands, which has the advantage that impinging light with specified frequency is less likely to spuriously couple to other modes with the same frequency, which would decrease the amount of energy coupled to desired mode. The slot-PCRR yields a higher relative change due to absorption compared to the PCRR without a slot. In this work, the radii of six rods at the outer PhC were tuned to enhance the quality factor of slot-PCRR. Using these optimum values of radii, the Q-factor rises up to 80000.

  9. Optimizing Inpatient Urine Culture Ordering Practices Using the Electronic Medical Record: A Pilot Study.

    PubMed

    Shirley, Daniel; Scholtz, Harry; Osterby, Kurt; Musuuza, Jackson; Fox, Barry; Safdar, Nasia

    2017-04-01

    A prospective quasi-experimental before-and-after study of an electronic medical record-anchored intervention of embedded education on appropriate urine culture indications and indication selection reduced the number of urine cultures ordered for catheterized patients at an academic medical center. This intervention could be a component of CAUTI-reduction bundles. Infect Control Hosp Epidemiol 2017;38:486-488.

  10. Adolescent Autonomy-Relatedness and the Family in Cultural Context: What Is Optimal?

    ERIC Educational Resources Information Center

    Kagitcibasi, Cigdem

    2013-01-01

    This review examines self-family-culture links from a cultural and global perspective utilizing Kagitcibasi's Family Change Theory and Self Theory as general frameworks. These theories have the "autonomous-related self" at their point of intersection. Autonomy and relatedness dynamics is the key to understanding the self, and family…

  11. Assay for inorganic pyrophosphate in chondrocyte culture using anion-exchange high-performance liquid chromatography and radioactive orthophosphate labeling

    SciTech Connect

    Prins, A.P.; Kiljan, E.; v.d. Stadt, R.J.; v.d. Korst, J.K.

    1986-02-01

    A method is described for determination of inorganic pyrophosphate (PPi) in cell culture medium and in rabbit articular chondrocytes grown in the presence of radioactive orthophosphate (/sup 32/Pi). Intra- and extracellular /sup 32/PPi formed was measured using high-performance liquid chromatographic (HPLC) separation of the PPi from orthophosphate (Pi) and other phosphate-containing compounds. The chromatographic separation on a weak anion-exchange column is based on the extent to which various phosphate compounds form complexes with Mg2+ at low pH and the rate at which such formation occurs. These complexes are eluted more readily than the uncomplexed compounds. Best results were obtained using a simultaneous gradient of Mg2+ ions and ionic strength. In this case separation of small amounts of PPi from a large excess of Pi was possible without prior removal of Pi or extraction of the PPi fraction. The assay is also useful for measurement of inorganic pyrophosphatase activity. The sensitivity of the assay depends on the specific activity of the added /sup 32/Pi and on the culture conditions, but is comparable with the most sensitive of the enzymatic assays. Sample preparation, particularly deproteinization, proved to be of importance. The losses of PPi which occur during procedures of this sort due to hydrolysis and coprecipitation were quantitated.

  12. Growth and development of Frankia spp. strain CcI3 at the single-hypha level in liquid culture.

    PubMed

    Huang, Ying; Benson, David R

    2012-01-01

    Filamentous actinobacteria from the genus Frankia grow by hyphal tip extension and branching. The growth kinetics and branching pattern of Frankia are not well studied, especially at the early stages of mycelial development. Here, we compare the growth of Frankia sp. strain CcI3 in liquid cultures with and without proteose peptone #3 (PP3) using time-lapse photomicrography and image analysis. Individual hyphae showed a pseudolinear increase in length at early stages of development, whereas at the mycelial level, the aggregate length of hyphae described an exponential rate before slowing. Growth based on optical density or microscopic observations was similar in medium with or without PP3. However, PP3 altered the pattern of mycelial development by increasing branching. Distances between the hyphal apex and first branches were on average shorter in PP3-containing media. The final interbranch distances were also shorter in PP3 medium indicating that hyphae tended to branch earlier and more often when supplemented with PP3 to give a more compact mycelium. Vesicle development in nitrogen-fixing cultures limited cell expansion as a result of vesicles truncating growth on new branches. The results provide some explanation for the growth kinetics of Frankia and some indication of how growth rates may be improved.

  13. Speciation of vanadium in oilsand coke and bacterial culture by high performance liquid chromatography inductively coupled plasma mass spectrometry.

    PubMed

    Li, X Sherry; Glasauer, Susan; Le, X Chris

    2007-10-17

    A simple and sensitive method for the speciation of vanadium(III), (IV), and (V) was developed by using high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICPMS). The EDTA-complexed vanadium species were separated on a strong anion exchange column with an eluent containing 2 mM EDTA, 3% acetonitrile, and 80 mM ammonium bicarbonate at pH 6. Each analysis was complete in 5 min. The detection limits were 0.6, 0.7 and 1.0 microg L(-1) for V(III), V(IV), and V(V), respectively. The method was applied to coke pore water samples from an oilsand processing/upgrading site in Fort McMurray, Alberta, Canada and to Shewanella putrefaciens CN32 bacterial cultures incubated with V(V). In the coke pore water samples, V(IV) and V(V) were found to be the major species. For the first time, V(III) was detected in the bacterial cultures incubated with V(V).

  14. Helicobacter pylori in liquid culture: evaluation of growth rates and ultrastructure.

    PubMed

    Kitsos, C M; Stadtländer, C T

    1998-08-01

    This study investigated the growth of Helicobacter (H.) pylori in Brucella broth supplemented with either IsoVitaleX (1% vol/vol), hemin (.01% wt.vol), agar (0.3% wt/vol), or blood agar blocks (1.5% wt/vol agar). IsoVitaleX was found to significantly shorten the lag phase, while hemin inhibited the growth within the first 24 hours but later acted as a growth stimulant. There was a tendency toward stronger growth when blood agar blocks were added to the medium. Subsequent electron microscopic evaluation revealed that cells of H. pylori were attached to blood agar block surfaces. In contrast, the supplementation of Brucella broth with agar did not significantly increase the cell density. When H. pylori was grown in the presence of IsoVitaleX, strongly stainable electron-dense bodies (140-200 nm) were seen in the cytoplasms. Incubation of cultures on rotary shakers at 10 rpm significantly enhanced growth. The addition of glycerol (15% vol/vol) or fetal bovine serum (15% vol/vol) showed good ultrastructural preservation of bacteria with undamaged cell walls and cytoplasmic membranes, and cytoplasms were ribosome-dense. Cell counts revealed that cultures stored in glycerol or fetal bovine serum had a significantly lower loss in viability when compared with cultures stored without cryopreservatives. Unprotected cells of H. pylori showed on electron micrographs, clumping, cell lysis, and flagellar damage. Finally, the survival rates of H. pylori after multiple thawing from storage at -80 degrees C were best in Brucella broth/glycerol, Brucella broth/fetal bovine serum, and Brucella broth without cryopreservative (in descending order).

  15. HEK293 cell culture media study towards bioprocess optimization: Animal derived component free and animal derived component containing platforms.

    PubMed

    Liste-Calleja, Leticia; Lecina, Martí; Cairó, Jordi Joan

    2014-04-01

    The increasing demand for biopharmaceuticals produced in mammalian cells has lead industries to enhance bioprocess volumetric productivity through different strategies. Among those strategies, cell culture media development is of major interest. In the present work, several commercially available culture media for Human Embryonic Kidney cells (HEK293) were evaluated in terms of maximal specific growth rate and maximal viable cell concentration supported. The main objective was to provide different cell culture platforms which are suitable for a wide range of applications depending on the type and the final use of the product obtained. Performing simple media supplementations with and without animal derived components, an enhancement of cell concentration from 2 × 10(6) cell/mL to 17 × 10(6) cell/mL was achieved in batch mode operation. Additionally, the media were evaluated for adenovirus production as a specific application case of HEK293 cells. None of the supplements interfered significantly with the adenovirus infection although some differences were encountered in viral productivity. To the best of our knowledge, the high cell density achieved in the work presented has never been reported before in HEK293 batch cell cultures and thus, our results are greatly promising to further study cell culture strategies in bioreactor towards bioprocess optimization. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Optimization of conversion of low hydrogen containing feedstocks using Rentech`s gas-to-liquids (GTL) technology

    SciTech Connect

    Benham, C.B.; Yakobson, D.L.

    1998-12-31

    The subject of this paper is to integrate existing technologies and available feedstocks to directly support the three defined thrusts of increased energy efficiency, decreased carbon intensity and carbon sequestration. The authors show that proper implementation of an iron based Fisher-Tropsch gas-to-liquids conversion process using the synthesis gas produced from coal by partial oxidation in conjunction with power generation will have a positive effect in reducing carbon emissions from fossil fuels. Integrating Rentech`s proprietary and patented gas-to-liquids (GTL) concept with power generation using both coal or coal and natural gas, an optimal fuel due to its lower carbon content, supports the concept of ``energyplexes.`` The goal of energyplexes are to combine power generation with the production of chemical feedstocks and/or transportation fuels to maximize carbon conversion, reduce carbon intensity and provide the initial step for carbon sequestration. The authors have evaluated several different technically viable flow schemes and compared the results to technology currently being utilized for electrical generation by turbines using steam generated from the combustion of coal and by modern coal fired combined cycle power plants. To develop the data for this paper Rentech utilized its internally generated computer model to simulate system containing a partial oxidation (POX) unit, an F-T module and various recycle loops. Verification of the POX model was achieved by comparing its results to those published by Texaco for identical feedstocks and similar operating conditions. For the Fischer-Tropsch results the authors relied exclusively on data developed by Rentech at pilot and commercial scale over a wide range of synthesis reactor operating conditions and for different hydrogen to carbon monoxide ratios of the synthesis gas utilized for conversion. For the coal feed utilized in this paper they used Pittsburgh No. 8 Coal.

  17. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures.

    PubMed

    Votintseva, Antonina A; Pankhurst, Louise J; Anson, Luke W; Morgan, Marcus R; Gascoyne-Binzi, Deborah; Walker, Timothy M; Quan, T Phuong; Wyllie, David H; Del Ojo Elias, Carlos; Wilcox, Mark; Walker, A Sarah; Peto, Tim E A; Crook, Derrick W

    2015-04-01

    We developed a low-cost and reliable method of DNA extraction from as little as 1 ml of early positive mycobacterial growth indicator tube (MGIT) cultures that is suitable for whole-genome sequencing to identify mycobacterial species and predict antibiotic resistance in clinical samples. The DNA extraction method is based on ethanol precipitation supplemented by pretreatment steps with a MolYsis kit or saline wash for the removal of human DNA and a final DNA cleanup step with solid-phase reversible immobilization beads. The protocol yielded ≥0.2 ng/μl of DNA for 90% (MolYsis kit) and 83% (saline wash) of positive MGIT cultures. A total of 144 (94%) of the 154 samples sequenced on the MiSeq platform (Illumina) achieved the target of 1 million reads, with <5% of reads derived from human or nasopharyngeal flora for 88% and 91% of samples, respectively. A total of 59 (98%) of 60 samples that were identified by the national mycobacterial reference laboratory (NMRL) as Mycobacterium tuberculosis were successfully mapped to the H37Rv reference, with >90% coverage achieved. The DNA extraction protocol, therefore, will facilitate fast and accurate identification of mycobacterial species and resistance using a range of bioinformatics tools. Copyright © 2015, Votintseva et al.

  18. Optimization of dispersive liquid-liquid microextraction based on the solidification of floating organic droplets using an orthogonal array design and its application for the determination of fungicide concentrations in environmental water samples.

    PubMed

    Yang, Xiaoling; Yang, Miyi; Hou, Bang; Li, Songqing; Zhang, Ying; Lu, Runhua; Zhang, Sanbing

    2014-08-01

    A dispersive liquid-liquid microextraction method based on the solidification of floating organic droplets was developed as a simple and sensitive method for the simultaneous determination of the concentrations of multiple fungicides (triazolone, chlorothalonil, cyprodinil, and trifloxystrobin) in water by high-performance liquid chromatography with variable-wavelength detection. After an approach varying one factor at a time was used, an orthogonal array design [L25 (5(5))] was employed to optimize the method and to determine the interactions between the parameters. The significance of the effects of the different factors was determined using analysis of variance. The results indicated that the extraction solvent volume significantly affects the efficiency of the extraction. Under optimal conditions, the relative standard deviation (n = 5) varied from 2.3 to 5.5% at 0.1 μg/mL for each analyte. Low limits of detection were obtained and ranged from 0.02 to 0.2 ng/mL. In addition, the proposed method was applied to the analysis of fungicides in real water samples. The results show that the dispersive liquid-liquid microextraction based on the solidification of floating organic droplets is a potential method for detecting fungicides in environmental water samples, with recoveries of the target analytes ranging from 70.1 to 102.5%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Expression of the naphthoate synthase gene in Mycobacterium tuberculosis in a self-generated oxygen depleted liquid culture system.

    PubMed

    Ramchandra, Prathna; Sturm, A Willem

    2010-12-01

    Mycobacterium tuberculosis has been classified for decades as a strict aerobic species. Whole genome sequencing of the type culture strain H37Rv has revealed the presence of a full set of genes allowing for anaerobic metabolism. Naphthoate synthase (menB) is a key enzyme required for the synthesis of menaquinone, which plays a crucial role in anaerobic electron transport, ultimately resulting in the formation of energy generating intermediates. Interrupting the synthesis of this enzyme will interfere with the production of menaquinone and therefore this enzyme is a potential drug target. This study serves to investigate the role of naphtoate synthase in the survival of M. tuberculosis H37Rv when incubated under oxygen limiting conditions of unagitated liquid culture over 15 weeks. M. tuberculosis H37Rv was grown in Middlebrook 7H9 media. The tubes were kept undisturbed at 37 °C for up to 15 weeks. At selected time points, aliquots of cells were removed and frozen. RNA was simultaneously extracted from all aliquots. The RNA was converted to cDNA for Real-Time PCR on the ABI 7000 SDS. Gene expression was normalized against 16S RNA quantities at each time point. A systematic increase in the expression of the menB gene product was observed over the incubation period with a 4.3-fold increase seen at week 6 (P < 0.001) relative to day 0 and an 85.8-fold increase at week 15 (P < 0.001) relative to day 0. Cells of M. tuberculosis increase menaquinone production during prolonged incubation in broth culture as a mechanism of survival. This study substantiates the menB enzyme to be a putative drug target.

  20. Plant defense responses in opium poppy cell cultures revealed by liquid chromatography-tandem mass spectrometry proteomics.

    PubMed

    Zulak, Katherine G; Khan, Morgan F; Alcantara, Joenel; Schriemer, David C; Facchini, Peter J

    2009-01-01

    Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids, including the narcotic analgesic morphine and the antimicrobial agent sanguinarine. In contrast to the plant, cell cultures of opium poppy do not accumulate alkaloids constitutively but produce sanguinarine in response to treatment with certain fungal-derived elicitors. The induction of sanguinarine biosynthesis provides a model platform to characterize the regulation of benzylisoquinoline alkaloid pathways and other defense responses. Proteome analysis of elicitor-treated opium poppy cell cultures by two-dimensional denaturing-polyacrylamide gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry facilitated the identification of 219 of 340 protein spots based on peptide fragment fingerprint searches of a combination of databases. Of the 219 hits, 129 were identified through pre-existing plant proteome databases, 63 were identified by matching predicted translation products in opium poppy-expressed sequence tag databases, and the remainder shared evidence from both databases. Metabolic enzymes represented the largest category of proteins and included S-adenosylmethionine synthetase, several glycolytic, and a nearly complete set of tricarboxylic acid cycle enzymes, one alkaloid, and several other secondary metabolic enzymes. The abundance of chaperones, heat shock proteins, protein degradation factors, and pathogenesis-related proteins provided a comprehensive proteomics view on the coordination of plant defense responses. Qualitative comparison of protein abundance in control and elicitor-treated cell cultures allowed the separation of induced and constitutive or suppressed proteins. DNA microarrays were used to corroborate increases in protein abundance with a corresponding induction in cognate transcript levels.

  1. Elm tree (Ulmus parvifolia) bark bioprocessed with Mycelia of Shiitake (Lentinus edodes) mushrooms in liquid Culture: Composition and mechanism of protection against allergic asthma in mice

    USDA-ARS?s Scientific Manuscript database

    The present study investigated the antiasthma effect of a bioprocessed Ulmus parvifolia bark extract (BPUBE) from Lentinus edodes liquid mycelia culture against allergic asthma biomarkers in U266B1 leukemia cells and OVA-sensitized/challenged mice. BPUBE suppressed total IgE release from U266B1 cel...

  2. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani.

    PubMed

    Kobori, Nilce N; Mascarin, Gabriel M; Jackson, Mark A; Schisler, David A

    2015-04-01

    Media and culturing protocols were identified that supported the formation of submerged conidia and microsclerotia (MS) by Trichoderma harzianum Rifai strain T-22 using liquid culture fermentation. Liquid media with a higher carbon concentration (36 g L(-1)) promoted MS formation at all C:N ratios tested. Hyphae aggregated to form MS after 2 d growth and after 7 d MS were fully melanized. This is the first report of MS formation by T. harzianum or any species of Trichoderma. Furthermore, submerged conidia formation was induced by liquid culture media, but yields, desiccation tolerance, and storage stability varied with C:N ratio and carbon rate. Air-dried MS granules (<4% moisture) retained excellent shelf life under cool and unrefrigerated storage conditions with no loss in conidial production. A low-cost complex nitrogen source based on cottonseed flour effectively supported high MS yields. Amending potting mix with dried MS formulations reduced or eliminated damping-off of melon seedlings caused by Rhizoctonia solani. Together, the results provide insights into the liquid culture production, stabilization process, and bioefficacy of the hitherto unreported MS of T. harzianum as a potential biofungicide for use in integrated management programs against soilborne diseases.

  3. Effect of oxygen concentration in gas phase on sporulation and individual ganoderic acids accumulation in liquid static culture of Ganoderma lucidum.

    PubMed

    Zhang, Wen-Xian; Zhong, Jian-Jiang

    2010-01-01

    Effects of oxygen concentration within 21-100% in gaseous phase on the morphology and ganoderic acids (GAs) production by Ganoderma lucidum in liquid static culture were studied. A higher oxygen concentration increased individual GAs production, and more spores and higher total GA content were obtained at an oxygen level of 80%.

  4. Spirostaphylotrichin W, a spirocyclic γ-lactam isolated from liquid culture of Pyrenophora semeniperda, a potential mycoherbicide for cheatgrass (Bromus tectorum) biocontrol

    Treesearch

    Marco Masia; Susan Meyer; Suzette Clement; Anna Andolfi; Alessio Cimmino; Antonio. Evidente

    2014-01-01

    A novel spirocyclic γ-lactam, named spirostaphylotrichin W (1), was isolated together with the well known and closely related spirostaphylotrichins A, C, D, R and V, as well as triticone E, from the liquid cultures of Pyrenophora semeniperda (anamorph: Drechslera), a seed pathogen proposed for cheatgrass (Bromus tectorum) biocontrol. Spirostaphylotrichin W was...

  5. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds.

    PubMed

    Battiston, Kyle G; Cheung, Jane W C; Jain, Devika; Santerre, J Paul

    2014-05-01

    Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems.

  6. Stable isotope labeling by amino acids in cell culture-based liquid chromatography-mass spectrometry assay to measure microtubule dynamics in neuronal cell cultures.

    PubMed

    Polson, Craig; Cantone, Joseph L; Wei, Cong; Drexler, Dieter M; Meredith, Jere E

    2014-12-01

    Microtubules (MTs) are highly dynamic polymers composed of α- and β-tubulin heterodimers. Dysregulation of MT dynamics in neurons may be a contributing factor in the progression of various neurodegenerative diseases. We developed a stable isotope labeling by amino acids in cell culture (SILAC)-based liquid chromatography-mass spectrometry (LC-MS) method to measure the fraction of [(13)C6]leucine-labeled α-tubulin-derived surrogate peptides. Using this approach, we measured the time course of incorporation of [(13)C6]leucine label into the MT and dimer pools isolated from cycling cells and rat primary hippocampal neurons. We found that the MT pool is in rapid equilibrium with the dimer pool in the cycling cells, consistent with rapid MT polymerization/depolymerization during cell proliferation. Conversely, in neurons, we found that labeling of the MT pool was rapid, whereas the dimer pool was delayed. These results suggest that newly synthesized α-tubulin is first incorporated into MTs or complexes that co-sediment with MTs and that appearance of labeled α-tubulin in the dimer pool may be a consequence of MT depolymerization or breakdown. Our results demonstrate that a SILAC-based approach can be used to measure MT dynamics and may have utility for exploring MT dysregulation in various models of neurodegenerative disease.

  7. An efficient liquid chromatography-high resolution mass spectrometry approach for the optimization of the metabolic stability of therapeutic peptides.

    PubMed

    Esposito, Simone; Mele, Riccardo; Ingenito, Raffaele; Bianchi, Elisabetta; Bonelli, Fabio; Monteagudo, Edith; Orsatti, Laura

    2017-04-01

    In drug discovery, there is increasing interest in peptides as therapeutic agents due to several appealing characteristics that are typical of this class of compounds, including high target affinity, excellent selectivity, and low toxicity. However, peptides usually present also some challenging ADME (absorption, distribution, metabolism, and excretion) issues such as limited metabolic stability, poor oral bioavailability, and short half-lives. In this context, early preclinical in vitro studies such as plasma metabolic stability assays are crucial to improve developability of a peptidic drug. In order to speed up the optimization of peptide metabolic stability, a strategy was developed for the integrated semi-quantitative determination of metabolic stability of peptides and qualitative identification/structural elucidation of their metabolites in preclinical plasma metabolic stability studies using liquid chromatography-high-resolution Orbitrap™ mass spectrometry (LC-HRMS). Sample preparation was based on protein precipitation: experimental conditions were optimized after evaluating and comparing different organic solvents in order to obtain an adequate extraction of the parent peptides and their metabolites and to minimize matrix effect. Peptides and their metabolites were analyzed by reverse-phase liquid chromatography: a template gradient (total run time, 6 min) was created to allow retention and good peak shape for peptides of different polarity and isoelectric points. Three LC columns were selected to be systematically evaluated for each series of peptides. Targeted and untargeted HRMS data were simultaneously acquired in positive full scan + data-dependent MS/MS acquisition mode, and then processed to calculate plasma half-life and to identify the major cleavage sites, this latter by using the software Biopharma Finder™. Finally, as an example of the application of this workflow, a study that shows the plasma stability improvement of a series of

  8. Evaluation and optimization for liquid-based preparation cytology in whole slide imaging

    PubMed Central

    Lee, Roy E.; McClintock, David S.; Laver, Nora M.; Yagi, Yukako

    2011-01-01

    Background: Cytology poses different obstacles in whole slide imaging compared to surgical pathology slides. A single focal plane suffices for most of the latter, but cytology slides are thicker, potentially requiring multiple focal planes for adequate diagnostic information. Multiple focal planes adversely impact scanning time per slide, evaluation times, and file sizes. In this pilot study, we evaluated and compared the multilayer stack method to the extended focus algorithm as an alternative which collapses multiple focal planes into a single image, retaining only focused areas from each plane. Materials and Methods: 10 SurePath® cervical cytology slides were scanned at three thickness settings: 18, 24, and 30 μm. Three scanners were used: (1) Hamamatsu Nanozoomer 2.0-HT, (2) 3DHISTECH Mirax scan, and (3) Bioimagene iScan Coreo Au. The Nanozoomer and iScan utilized multilayer stacking, while the Mirax files were composited by extended focus. Scan times and file sizes were recorded, and image quality compared. Results: The Nanozoomer stacks averaged 1.58 gb and around 25 min for each slide, while the iScan stacks ranged from 6.23 to 9.3 gb and took 34-50 min to scan. The Mirax images averaged 210 mb and took 13-20 min to scan. Multilayer stack image quality from both Nanozoomer and iScan was fairly comparable. The iScan revealed significant mechanical issues that did not correspond to user settings. The Mirax images showed worrisome loss of crisp focus detail, worsening with increasing focal planes and impacting assessment of nuclear contours and chromatin detail. Conclusions: The optimal number of focal planes remains unknown for cytology. Multilayer stacks require excessive scanning time, network bandwidth, and file storage. Extended focus was evaluated as an alternative, but significant image quality issues were revealed. Further large-scale studies are needed to assess their clinical impact. PMID:22059147

  9. Artemisinin production by plant hairy root cultures in gas- and liquid-phase bioreactors.

    PubMed

    Patra, Nivedita; Srivastava, Ashok K

    2016-01-01

    Alternative biotechnological protocol for large-scale artemisinin production was established. It featured enhanced growth and artemisinin production by cultivation of hairy roots in nutrient mist bioreactor (NMB) coupled with novel cultivation strategies. Artemisinin is used for the treatment of cerebral malaria. Presently, its main source is from seasonal plant Artemisia annua. This study featured investigation of growth and artemisinin production by A. annua hairy roots (induced by Agrobacterium rhizogenes-mediated genetic transformation of explants) in three bioreactor configurations-bubble column reactor, NMB and modified NMB particularly to establish their suitability for commercial production. It was observed that cultivation of hairy roots in a non-stirred bubble column reactor exhibited a biomass accumulation of 5.68 g/l only while batch cultivation in a custom-made NMB exhibited a higher biomass concentration of 8.52 g/l but relatively lower artemisinin accumulation of 0.22 mg/g was observed in this reactor. A mixture of submerged liquid-phase growth (for 5 days) followed by gas-phase cultivation in nutrient mist reactor operation strategy (for next 15 days) was adopted for hairy root cultivation in this investigation. Reasonably, high (23.02 g/l) final dry weight along with the artemisinin accumulation (1.12 mg/g, equivalent to 25.78 mg/l artemisinin) was obtained in this bioreactor, which is the highest reported artemisinin yield in the gas-phase NMB cultivation.

  10. Final report-passive safety optimization in liquid sodium-cooled reactors.

    SciTech Connect

    Cahalana, J. E.; Hahn, D.; Nuclear Engineering Division; Korea Atomic Energy Research Inst.

    2007-08-13

    This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety

  11. Optimization of Culture Conditions for Growth Associated with Cr(VI) Removal by Wickerhamomyces anomalus M10.

    PubMed

    Fernández, Pablo Marcelo; Cruz, Elías Leonardo; Viñarta, Silvana Carolina; Castellanos de Figueroa, Lucía Inés

    2017-03-01

    Chromate-resistant microorganisms with the ability of reducing toxic Cr(VI) to less toxic Cr(III), are candidates for bioremediation. An alternative culture medium to reduce Cr(VI) using Wickerhamomyces anomalus M10 was optimized. Using the Plackett-Burman design, it was determined that sucrose, K2HPO4 and inoculum size had significant effects on chromate removal (i.e., reduction) at 24 h. Concentrations of these significant factors were adjusted using a complete factorial design. In this case, only the K2HPO4 effect was significant at 12 h of culture, with greater Cr(VI) removal at low concentration (1.2 g L(-1)). The optimum medium was validated at the fermenter scale level. Optimal culture conditions for complete removal of Cr(VI) (1 mM) were 400 rpm agitation and air flow of 1 vvm. Moreover, W. anomalus M10 completely removed consecutively added pulses of Cr(VI) (1 mM). These results show interesting characteristics from the standpoint of biotechnology because the development of a future remediation process using W. anomalus M10 can represent an efficient and highly profitable technology for removing the toxic form of Cr.

  12. Rational optimization of culture conditions for the most efficient ethanol production in Scheffersomyces stipitis using design of experiments.

    PubMed

    Unrean, Pornkamol; Nguyen, Nhung H A

    2012-01-01

    Optimization of culture parameters for achieving the most efficient ethanol fermentation is challenging due to multiple variables involved. Here we presented a rationalized methodology for multi-variables optimization through the design of experiments DoE approach. Three critical parameters, pH, temperature, and agitation speed, affecting ethanol fermentation in S. stipitis was investigated. A predictive model showed that agitation speed significantly affected ethanol synthesis. Reducing pH and temperature also improved ethanol production. The model identified the optimum culture conditions for the most efficient ethanol production with the yield and productivity of 0.46 g/g and 0.28 g/l h, respectively, which is consistent with experimental observation. The results also indicated the scalability of the model from shake flask to bioreactor. Thus, DoE is a promising tool permitting the rapid establishment of culture conditions for the most efficient ethanol fermentation in S. stipitis. The approach could be useful to reduce process development time in lignocellulosic ethanol industry.

  13. Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess.

    PubMed

    Hezarjaribi, Mehrnoosh; Ardestani, Fatemeh; Ghorbani, Hamid Reza

    2016-08-01

    Saccharomyces cerevisiae PTCC5269 growth was evaluated to specify an optimum culture medium to reach the highest protein production. Experiment design was conducted using a fraction of the full factorial methodology, and signal to noise ratio was used for results analysis. Maximum cell of 8.84 log (CFU/mL) was resulted using optimized culture composed of 0.3, 0.15, 1, and 50 g L(-1) of ammonium sulfate, iron sulfate, glycine, and glucose, respectively at 300 rpm and 35 °C. Glycine concentration (39.32 % contribution) and glucose concentration (36.15 % contribution) were determined as the most effective factors on the biomass production, while Saccharomyces cerevisiae growth had showed the least dependence on ammonium sulfate (5.2 % contribution) and iron sulfate (19.28 % contribution). The most interaction was diagnosed between ammonium sulfate and iron sulfate concentrations with interaction severity index of 50.71 %, while the less one recorded for glycine and glucose concentration was equal to 8.12 %. An acceptable consistency of 84.26 % was obtained between optimum theoretical cell numbers determined by software of 8.91 log (CFU/mL), and experimentally measured one at optimal condition confirms the suitability of the applied method. High protein content of 44.6 % using optimum culture suggests that Saccharomyces cerevisiae is a good commercial case for single cell protein production.

  14. Identification of variables that optimize isolation and culture of multipotent mesenchymal stem cells from equine umbilical-cord blood.

    PubMed

    Schuh, Elizabeth M; Friedman, Michael S; Carrade, Danielle D; Li, Junzhi; Heeke, Darren; Oyserman, Sivan M; Galuppo, Larry D; Lara, Dorian J; Walker, Naomi J; Ferraro, Gregory L; Owens, Sean D; Borjesson, Dori L

    2009-12-01

    OBJECTIVE-To optimize the isolation and culture of mesenchymal stem cells (MSCs) from umbilical-cord blood (UCB), identify variables that predicted successful MSC isolation, and determine whether shipping, processing, and cryopreservation altered MSC viability, recovery rates, and expansion kinetics. SAMPLE POPULATION-UCB samples from 79 Thoroughbred and Quarter Horse mares. PROCEDURES-UCB samples were processed to reduce volume and remove RBCs. Nucleated cells (NCs) were cryopreserved or grown in various culture conditions to optimize MSC monolayer expansion and proliferation. Donor and UCB-sample factors were analyzed to determine their influence on the success of MSC isolation and monolayer expansion. RESULTS-MSCs capable of multilineage in vitro differentiation were expanded from > 80% of UCB samples. Automated UCB processing and temperature-controlled shipping facilitated sterile and standardized RBC reduction and NC enrichment from UCB samples. The number of NCs after UCB samples were processed was the sole variable that predicted successful MSC expansion. The UCB-derived MSCs and NCs were successfully cryopreserved and thawed with no decrease in cell recovery, viability, or MSC proliferation. The use of fibronectin-coated culture plates and reduction of incubator oxygen tension from 20% to 5% improved the MSC isolation rate. Some UCB-derived MSC clones proliferated for > 20 passages before senescence. Onset of senescence was associated with specific immunocytochemical changes. CONCLUSIONS AND CLINICAL RELEVANCE-Equine UCB samples appeared to be a rich source of readily obtainable, highly proliferative MSCs that could be banked for therapeutic use.

  15. Production of bioemulsifier by Bacillus subtilis, Alcaligenes faecalis and Enterobacter species in liquid culture.

    PubMed

    Toledo, F L; Gonzalez-Lopez, J; Calvo, C

    2008-11-01

    Three bacterial strains isolated from waste crude oil were selected due to their capacity of growing in the presence of hydrocarbons and production of bioemulsifier. The genetic identification (PCR of the 16S rDNA gene using fD1 and rD1 primers) of these strains showed their affiliation to Bacillus subtilis, Alcaligenes faecalis and Enterobacter sp. These strains were able to emulsify n-octane, toluene, xylene, mineral oils and crude oil, look promising for bioremediation application. Finally, chemical composition, emulsifying activity and surfactant activity of the biopolymers produced by the selected strains were studies under different culture conditions. Our results showed that chemical and functional properties of the bioemulsifiers were affected by the carbon source added to the growth media.

  16. The protective effect of Agaricus blazei Murrill, submerged culture using the optimized medium composition, on alcohol-induced liver injury.

    PubMed

    Wang, Hang; Li, Gang; Zhang, Wenyu; Han, Chunchao; Xu, Xin; Li, Yong-Ping

    2014-01-01

    Agaricus blazei Murrill (ABM), an edible mushroom native to Brazil, is widely used for nonprescript and medicinal purposes. Alcohol liver disease (ALD) is considered as a leading cause for a liver injury in modern dietary life, which can be developed by a prolonged or large intake of alcohol. In this study, the medium composition of ABM was optimized using response surface methodology for maximum mycelial biomass and extracellular polysaccharide (EPS) production. The model predicts to gain a maximal mycelial biomass and extracellular polysaccharide at 1.047 g/100 mL, and 0.367 g/100 mL, respectively, when the potato is 29.88 g/100 mL, the glucose is 1.01 g/100 mL, and the bran is 1.02 g/100 mL. The verified experiments showed that the model was significantly consistent with the model prediction and that the trends of mycelial biomass and extracellular polysaccharide were predicted by artificial neural network. After that, the optimized medium was used for the submerged culture of ABM. Then, alcohol-induced liver injury in mice model was used to examine the protective effect of ABM cultured using the optimized medium on the liver. And the hepatic histopathological observations showed that ABM had a relatively significant role in mice model, which had alcoholic liver damage.

  17. The Protective Effect of Agaricus blazei Murrill, Submerged Culture Using the Optimized Medium Composition, on Alcohol-Induced Liver Injury

    PubMed Central

    Wang, Hang; Li, Gang; Zhang, Wenyu; Han, Chunchao; Xu, Xin; Li, Yong-Ping

    2014-01-01

    Agaricus blazei Murrill (ABM), an edible mushroom native to Brazil, is widely used for nonprescript and medicinal purposes. Alcohol liver disease (ALD) is considered as a leading cause for a liver injury in modern dietary life, which can be developed by a prolonged or large intake of alcohol. In this study, the medium composition of ABM was optimized using response surface methodology for maximum mycelial biomass and extracellular polysaccharide (EPS) production. The model predicts to gain a maximal mycelial biomass and extracellular polysaccharide at 1.047 g/100 mL, and 0.367 g/100 mL, respectively, when the potato is 29.88 g/100 mL, the glucose is 1.01 g/100 mL, and the bran is 1.02 g/100 mL. The verified experiments showed that the model was significantly consistent with the model prediction and that the trends of mycelial biomass and extracellular polysaccharide were predicted by artificial neural network. After that, the optimized medium was used for the submerged culture of ABM. Then, alcohol-induced liver injury in mice model was used to examine the protective effect of ABM cultured using the optimized medium on the liver. And the hepatic histopathological observations showed that ABM had a relatively significant role in mice model, which had alcoholic liver damage. PMID:25114908

  18. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  19. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content.

    PubMed

    Wang, Y; Yang, Y; Ma, F; Xuan, L; Xu, Y; Huo, H; Zhou, D; Dong, S

    2015-05-01

    Microalgae are a sustainable bioresource, and the biofuel they produce is widely considered to be an alternative to limited natural fuel resources. However, microalgae harvesting is a bottleneck in the development of technology. Axenic Chlorella vulgaris microalgae exhibit poor harvesting, as expressed by a flocculation efficiency of 0·2%. This work optimized the co-culture conditions of C. vulgaris and bioflocculant-producing bacteria in synthetic wastewater using response surface methodology (RSM), thus aiming to enhance C. vulgaris harvesting and lipid content. Three significant process variables- inoculation ratio of bacteria and microalgae, initial glucose concentration, and co-culture time- were proposed in the RSM model. F-values (3·98/8·46) and R(2) values (0·7817/0·8711) both indicated a reasonable prediction by the RSM model. The results showed that C. vulgaris harvesting efficiency reached 45·0-50·0%, and the lipid content was over 21·0% when co-cultured with bioflocculant-producing bacteria under the optimized culture conditions of inoculation ratio of bacteria and microalgae of 0·20-0·25, initial glucose concentration of <1·5 kg m(-3) and co-culture time of 9-14 days. This work provided new insights into microalgae harvesting and cost-effective microalgal bioproducts, and confirmed the promising prospect of introducing bioflocculant-producing bacteria into microalgae bioenergy production. This work optimized the co-culture conditions of microalgae (C. vulgaris) and bioflocculant-producing bacteria (F2, Rhizobium radiobacter) in synthetic wastewater using response surface methodology, aiming to enhance C. vulgaris harvesting and lipid produced content. Bioflocculant-producing microbes are environmentally friendly functional materials. They avoid the negative effects of traditional chemical flocculants. This work provided new insights into microalgae harvesting and cost-effective production of microalgal bioproducts, and confirmed the

  20. Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture.

    PubMed

    Zheng, Y; Thomas, A; Schmidt, C M; Dann, C T

    2014-11-01

    Can human spermatogonia be detected in long-term primary testicular cell cultures using validated, germ cell-specific markers of spermatogonia? Germ cell-specific markers of spermatogonia/spermatogonial stem cells (SSCs) are detected in early (1-2 weeks) but not late (> 6 weeks) primary testicular cell cultures; somatic cell markers are detected in late primary testicular cell cultures. The development of conditions for human SSC culture is critically dependent on the ability to define cell types unequivocally and to quantify spermatogonia/SSCs. Growth by somatic cells presents a major challenge in the establishment of SSC cultures and therefore markers that define spermatogonia/SSCs, but are not also expressed by testicular somatic cells, are essential for accurate characterization of SSC cultures. Testicular tissue from eight organ donors with normal spermatogenesis was used for assay validation and establishing primary testicular cell cultures. Immunofluorescence analysis of normal human testicular tissue was used to validate antibodies (UTF1, SALL4, DAZL and VIM) and then the antibodies were used to demonstrate that primary testicular cells cultured in vitro for 1-2 weeks were composed of somatic cells and rare germ cells. Primary testicular cell cultures were further characterized by comparing to testicular somatic cell cultures using quantitative reverse transcriptase PCR (UTF1, FGFR3, ZBTB16, GPR125, DAZL, GATA4 and VIM) and flow cytometry (CD9 and SSEA4). UTF1, FGFR3, DAZL and ZBTB16 qRT-PCR and SSEA4 flow cytometry were validated for the sensitive, quantitative and specific detection of germ cells. In contrast, GPR125 mRNA and CD9 were found to be not specific to germ cells because they were also expressed in testicular somatic cell cultures. While the germ cell-specific markers were detected in early primary testicular cell cultures (1-2 weeks), their expression steadily declined over time in vitro. After 6 weeks in culture only somatic cells were

  1. Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture

    PubMed Central

    Zheng, Y.; Thomas, A.; Schmidt, C.M.; Dann, C.T.

    2014-01-01

    STUDY QUESTION Can human spermatogonia be detected in long-term primary testicular cell cultures using validated, germ cell-specific markers of spermatogonia? SUMMARY ANSWER Germ cell-specific markers of spermatogonia/spermatogonial stem cells (SSCs) are detected in early (1–2 weeks) but not late (> 6 weeks) primary testicular cell cultures; somatic cell markers are detected in late primary testicular cell cultures. WHAT IS KNOWN ALREADY The development of conditions for human SSC culture is critically dependent on the ability to define cell types unequivocally and to quantify spermatogonia/SSCs. Growth by somatic cells presents a major challenge in the establishment of SSC cultures and therefore markers that define spermatogonia/SSCs, but are not also expressed by testicular somatic cells, are essential for accurate characterization of SSC cultures. STUDY DESIGN, SIZE, DURATION Testicular tissue from eight organ donors with normal spermatogenesis was used for assay validation and establishing primary testicular cell cultures. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunofluorescence analysis of normal human testicular tissue was used to validate antibodies (UTF1, SALL4, DAZL and VIM) and then the antibodies were used to demonstrate that primary testicular cells cultured in vitro for 1–2 weeks were composed of somatic cells and rare germ cells. Primary testicular cell cultures were further chara