Sample records for optimized local basis

  1. Multiple-copy state discrimination: Thinking globally, acting locally

    NASA Astrophysics Data System (ADS)

    Higgins, B. L.; Doherty, A. C.; Bartlett, S. D.; Pryde, G. J.; Wiseman, H. M.

    2011-05-01

    We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N→∞. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.

  2. Multiple-copy state discrimination: Thinking globally, acting locally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, B. L.; Pryde, G. J.; Wiseman, H. M.

    2011-05-15

    We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N{yields}{infinity}. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements,more » and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.« less

  3. Daubechies wavelets for linear scaling density functional theory.

    PubMed

    Mohr, Stephan; Ratcliff, Laura E; Boulanger, Paul; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Goedecker, Stefan

    2014-05-28

    We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.

  4. Comparison of localized basis and plane-wave basis for density-functional calculations of organic molecules on metals

    NASA Astrophysics Data System (ADS)

    Lee, Kyuho; Yu, Jaejun; Morikawa, Yoshitada

    2007-01-01

    Localized pseudoatomic orbitals (PAOs) are mainly optimized and tested for the strong chemical bonds within molecules and solids with their proven accuracy and efficiency, but are prone to significant basis set superposition error (BSSE) for weakly interacting systems. Here we test the accuracy of PAO basis in comparison with the BSSE-free plane-wave basis for the physisorption of pentacene molecule on Au (001) by calculating the binding energy, adsorption height, and energy level alignment. We show that both the large cutoff radius for localized PAOs and the counter-poise correction for BSSE are necessary to obtain well-converged physical properties. Thereby obtained results are as accurate as the plane-wave basis results. The comparison with experiment is given as well.

  5. Optimal resource states for local state discrimination

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Somshubhro; Halder, Saronath; Nathanson, Michael

    2018-02-01

    We study the problem of locally distinguishing pure quantum states using shared entanglement as a resource. For a given set of locally indistinguishable states, we define a resource state to be useful if it can enhance local distinguishability and optimal if it can distinguish the states as well as global measurements and is also minimal with respect to a partial ordering defined by entanglement and dimension. We present examples of useful resources and show that an entangled state need not be useful for distinguishing a given set of states. We obtain optimal resources with explicit local protocols to distinguish multipartite Greenberger-Horne-Zeilinger and graph states and also show that a maximally entangled state is an optimal resource under one-way local operations and classical communication to distinguish any bipartite orthonormal basis which contains at least one entangled state of full Schmidt rank.

  6. Two-qubit quantum cloning machine and quantum correlation broadcasting

    NASA Astrophysics Data System (ADS)

    Kheirollahi, Azam; Mohammadi, Hamidreza; Akhtarshenas, Seyed Javad

    2016-11-01

    Due to the axioms of quantum mechanics, perfect cloning of an unknown quantum state is impossible. But since imperfect cloning is still possible, a question arises: "Is there an optimal quantum cloning machine?" Buzek and Hillery answered this question and constructed their famous B-H quantum cloning machine. The B-H machine clones the state of an arbitrary single qubit in an optimal manner and hence it is universal. Generalizing this machine for a two-qubit system is straightforward, but during this procedure, except for product states, this machine loses its universality and becomes a state-dependent cloning machine. In this paper, we propose some classes of optimal universal local quantum state cloners for a particular class of two-qubit systems, more precisely, for a class of states with known Schmidt basis. We then extend our machine to the case that the Schmidt basis of the input state is deviated from the local computational basis of the machine. We show that more local quantum coherence existing in the input state corresponds to less fidelity between the input and output states. Also we present two classes of a state-dependent local quantum copying machine. Furthermore, we investigate local broadcasting of two aspects of quantum correlations, i.e., quantum entanglement and quantum discord, defined, respectively, within the entanglement-separability paradigm and from an information-theoretic perspective. The results show that although quantum correlation is, in general, very fragile during the broadcasting procedure, quantum discord is broadcasted more robustly than quantum entanglement.

  7. A Novel Consensus-Based Particle Swarm Optimization-Assisted Trust-Tech Methodology for Large-Scale Global Optimization.

    PubMed

    Zhang, Yong-Feng; Chiang, Hsiao-Dong

    2017-09-01

    A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.

  8. Beyond Low-Rank Representations: Orthogonal clustering basis reconstruction with optimized graph structure for multi-view spectral clustering.

    PubMed

    Wang, Yang; Wu, Lin

    2018-07-01

    Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective by discovering LRR as essentially a latent clustered orthogonal projection based representation winged with an optimized local graph structure for spectral clustering; each column of the representation is fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose LRR into latent clustered orthogonal representation via low-rank matrix factorization, to encode the more flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that of simultaneously learning orthogonal clustered representation and optimized local graph structure for each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Tuomas P., E-mail: tuomas.rossi@alumni.aalto.fi; Sakko, Arto; Puska, Martti J.

    We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate thatmore » the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.« less

  10. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  11. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE PAGES

    Zhang, Gaigong; Lin, Lin; Hu, Wei; ...

    2017-01-27

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  12. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin; Hu, Wei

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  13. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.

    2017-04-01

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.

  14. Optimization of selected molecular orbitals in group basis sets.

    PubMed

    Ferenczy, György G; Adams, William H

    2009-04-07

    We derive a local basis equation which may be used to determine the orbitals of a group of electrons in a system when the orbitals of that group are represented by a group basis set, i.e., not the basis set one would normally use but a subset suited to a specific electronic group. The group orbitals determined by the local basis equation minimize the energy of a system when a group basis set is used and the orbitals of other groups are frozen. In contrast, under the constraint of a group basis set, the group orbitals satisfying the Huzinaga equation do not minimize the energy. In a test of the local basis equation on HCl, the group basis set included only 12 of the 21 functions in a basis set one might ordinarily use, but the calculated active orbital energies were within 0.001 hartree of the values obtained by solving the Hartree-Fock-Roothaan (HFR) equation using all 21 basis functions. The total energy found was just 0.003 hartree higher than the HFR value. The errors with the group basis set approximation to the Huzinaga equation were larger by over two orders of magnitude. Similar results were obtained for PCl(3) with the group basis approximation. Retaining more basis functions allows an even higher accuracy as shown by the perfect reproduction of the HFR energy of HCl with 16 out of 21 basis functions in the valence basis set. When the core basis set was also truncated then no additional error was introduced in the calculations performed for HCl with various basis sets. The same calculations with fixed core orbitals taken from isolated heavy atoms added a small error of about 10(-4) hartree. This offers a practical way to calculate wave functions with predetermined fixed core and reduced base valence orbitals at reduced computational costs. The local basis equation can also be used to combine the above approximations with the assignment of local basis sets to groups of localized valence molecular orbitals and to derive a priori localized orbitals. An appropriately chosen localization and basis set assignment allowed a reproduction of the energy of n-hexane with an error of 10(-5) hartree, while the energy difference between its two conformers was reproduced with a similar accuracy for several combinations of localizations and basis set assignments. These calculations include localized orbitals extending to 4-5 heavy atoms and thus they require to solve reduced dimension secular equations. The dimensions are not expected to increase with increasing system size and thus the local basis equation may find use in linear scaling electronic structure calculations.

  15. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  16. Matrix-product-state method with local basis optimization for nonequilibrium electron-phonon systems

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian; Brockt, Christoph; Dorfner, Florian; Vidmar, Lev; Jeckelmann, Eric

    We present a method for simulating the time evolution of quasi-one-dimensional correlated systems with strongly fluctuating bosonic degrees of freedom (e.g., phonons) using matrix product states. For this purpose we combine the time-evolving block decimation (TEBD) algorithm with a local basis optimization (LBO) approach. We discuss the performance of our approach in comparison to TEBD with a bare boson basis, exact diagonalization, and diagonalization in a limited functional space. TEBD with LBO can reduce the computational cost by orders of magnitude when boson fluctuations are large and thus it allows one to investigate problems that are out of reach of other approaches. First, we test our method on the non-equilibrium dynamics of a Holstein polaron and show that it allows us to study the regime of strong electron-phonon coupling. Second, the method is applied to the scattering of an electronic wave packet off a region with electron-phonon coupling. Our study reveals a rich physics including transient self-trapping and dissipation. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 1807.

  17. Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer

    PubMed Central

    2018-01-01

    This paper presents an integrated hybrid optimization algorithm for training the radial basis function neural network (RBF NN). Training of neural networks is still a challenging exercise in machine learning domain. Traditional training algorithms in general suffer and trap in local optima and lead to premature convergence, which makes them ineffective when applied for datasets with diverse features. Training algorithms based on evolutionary computations are becoming popular due to their robust nature in overcoming the drawbacks of the traditional algorithms. Accordingly, this paper proposes a hybrid training procedure with differential search (DS) algorithm functionally integrated with the particle swarm optimization (PSO). To surmount the local trapping of the search procedure, a new population initialization scheme is proposed using Logistic chaotic sequence, which enhances the population diversity and aid the search capability. To demonstrate the effectiveness of the proposed RBF hybrid training algorithm, experimental analysis on publicly available 7 benchmark datasets are performed. Subsequently, experiments were conducted on a practical application case for wind speed prediction to expound the superiority of the proposed RBF training algorithm in terms of prediction accuracy. PMID:29768463

  18. Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer.

    PubMed

    Rani R, Hannah Jessie; Victoire T, Aruldoss Albert

    2018-01-01

    This paper presents an integrated hybrid optimization algorithm for training the radial basis function neural network (RBF NN). Training of neural networks is still a challenging exercise in machine learning domain. Traditional training algorithms in general suffer and trap in local optima and lead to premature convergence, which makes them ineffective when applied for datasets with diverse features. Training algorithms based on evolutionary computations are becoming popular due to their robust nature in overcoming the drawbacks of the traditional algorithms. Accordingly, this paper proposes a hybrid training procedure with differential search (DS) algorithm functionally integrated with the particle swarm optimization (PSO). To surmount the local trapping of the search procedure, a new population initialization scheme is proposed using Logistic chaotic sequence, which enhances the population diversity and aid the search capability. To demonstrate the effectiveness of the proposed RBF hybrid training algorithm, experimental analysis on publicly available 7 benchmark datasets are performed. Subsequently, experiments were conducted on a practical application case for wind speed prediction to expound the superiority of the proposed RBF training algorithm in terms of prediction accuracy.

  19. Optimal charge control strategies for stationary photovoltaic battery systems

    NASA Astrophysics Data System (ADS)

    Li, Jiahao; Danzer, Michael A.

    2014-07-01

    Battery systems coupled to photovoltaic (PV) modules for example fulfill one major function: they locally decouple PV generation and consumption of electrical power leading to two major effects. First, they reduce the grid load, especially at peak times and therewith reduce the necessity of a network expansion. And second, they increase the self-consumption in households and therewith help to reduce energy expenses. For the management of PV batteries charge control strategies need to be developed to reach the goals of both the distribution system operators and the local power producer. In this work optimal control strategies regarding various optimization goals are developed on the basis of the predicted household loads and PV generation profiles using the method of dynamic programming. The resulting charge curves are compared and essential differences discussed. Finally, a multi-objective optimization shows that charge control strategies can be derived that take all optimization goals into account.

  20. Optimal strategies for the control of autonomous vehicles in data assimilation

    NASA Astrophysics Data System (ADS)

    McDougall, D.; Moore, R. O.

    2017-08-01

    We propose a method to compute optimal control paths for autonomous vehicles deployed for the purpose of inferring a velocity field. In addition to being advected by the flow, the vehicles are able to effect a fixed relative speed with arbitrary control over direction. It is this direction that is used as the basis for the locally optimal control algorithm presented here, with objective formed from the variance trace of the expected posterior distribution. We present results for linear flows near hyperbolic fixed points.

  1. Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.

    PubMed

    Newberg, Lee A

    2008-08-15

    A backtrace through a dynamic programming algorithm's intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forward-backward algorithm, is a task of fundamental importance in computational biology. When there is insufficient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10,000. Sample C++-code for optimal backtrace is available in the Supplementary Materials. Supplementary data is available at Bioinformatics online.

  2. Economics of a nest-box program for the conservation of an endangered species: a reappraisal

    Treesearch

    Daniel A. Spring; Michael Bevers; John O.S. Kennedy; Dan Harley

    2001-01-01

    An optimization model is developed to identify timing and placement strategies for the installation of nest boxes and the harvesting of timber to meet joint timber–wildlife objectives. Optimal management regimes are determined on the basis of their impacts on the local abundance of a threatened species and net present value (NPV) and are identified for a range of NPV...

  3. A hybrid linear/nonlinear training algorithm for feedforward neural networks.

    PubMed

    McLoone, S; Brown, M D; Irwin, G; Lightbody, A

    1998-01-01

    This paper presents a new hybrid optimization strategy for training feedforward neural networks. The algorithm combines gradient-based optimization of nonlinear weights with singular value decomposition (SVD) computation of linear weights in one integrated routine. It is described for the multilayer perceptron (MLP) and radial basis function (RBF) networks and then extended to the local model network (LMN), a new feedforward structure in which a global nonlinear model is constructed from a set of locally valid submodels. Simulation results are presented demonstrating the superiority of the new hybrid training scheme compared to second-order gradient methods. It is particularly effective for the LMN architecture where the linear to nonlinear parameter ratio is large.

  4. The Physiological Basis for Thermal Comfort in Different Climates; a Preliminary Study (De fysiologische basis voor thermisch comfort onder diverse klimatologische omstandigheden; een voorstudie),

    DTIC Science & Technology

    1996-08-07

    Thermal comfort is very important for optimal functioning of humans. It gives information about the thermal state of the body, by which the human...receptors and sending efferent information to the effectors by which the body controls its temperature. Thermal comfort is determined by the temperature...global thermal comfort are core temperature, temperature of the extremities and temperature of the environment. In local thermal comfort and pain

  5. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform.

    PubMed

    Nagy, Péter R; Kállay, Mihály

    2017-06-07

    An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor.

  6. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform

    PubMed Central

    2017-01-01

    An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor. PMID:28576082

  7. NOTE: A positive contrast, tri-modality tissue marker for breast tumour localization

    NASA Astrophysics Data System (ADS)

    Li, Yangmei; Xiong Wang, Jian; Holloway, Claire; Plewes, Donald B.

    2007-02-01

    A new interstitial breast localization marker is proposed which exhibits positive contrast in T1-weighted MRI, ultrasound and x-ray mammography. Unlike previous markers which provide MRI contrast on the basis of a susceptibility-induced signal void, this marker provides a clear positive contrast without any loss of signal or spatial distortion. The marker is composed of 400 µm diameter copper microspheres suspended in a Gd-DTPA-doped gel matrix. Optimal contrast in T1-weighted spoiled gradient recalled MRI was found to occur with the addition of 10 mM Gd-DTPA. Ultrasound contrast was generated on the basis of scattering from the copper microspheres. X-ray contrast was provided by the high x-ray attenuation properties of the copper microspheres. The study demonstrates potential suitability of the marker for use as a breast localization marker based on ex vivo studies of chicken breast.

  8. Basis set limit and systematic errors in local-orbital based all-electron DFT

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Behler, Jörg; Gehrke, Ralf; Reuter, Karsten; Scheffler, Matthias

    2006-03-01

    With the advent of efficient integration schemes,^1,2 numeric atom-centered orbitals (NAO's) are an attractive basis choice in practical density functional theory (DFT) calculations of nanostructured systems (surfaces, clusters, molecules). Though all-electron, the efficiency of practical implementations promises to be on par with the best plane-wave pseudopotential codes, while having a noticeably higher accuracy if required: Minimal-sized effective tight-binding like calculations and chemically accurate all-electron calculations are both possible within the same framework; non-periodic and periodic systems can be treated on equal footing; and the localized nature of the basis allows in principle for O(N)-like scaling. However, converging an observable with respect to the basis set is less straightforward than with competing systematic basis choices (e.g., plane waves). We here investigate the basis set limit of optimized NAO basis sets in all-electron calculations, using as examples small molecules and clusters (N2, Cu2, Cu4, Cu10). meV-level total energy convergence is possible using <=50 basis functions per atom in all cases. We also find a clear correlation between the errors which arise from underconverged basis sets, and the system geometry (interatomic distance). ^1 B. Delley, J. Chem. Phys. 92, 508 (1990), ^2 J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002).

  9. Optimal wide-area monitoring and nonlinear adaptive coordinating neurocontrol of a power system with wind power integration and multiple FACTS devices.

    PubMed

    Qiao, Wei; Venayagamoorthy, Ganesh K; Harley, Ronald G

    2008-01-01

    Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm and multiple flexible ac transmission system (FACTS) devices. An optimal wide-area monitor (OWAM), which is a radial basis function neural network (RBFNN), is designed to identify the input-output dynamics of the nonlinear power system. Its parameters are optimized through particle swarm optimization (PSO). Based on the OWAM, the WACNC is then designed by using the dual heuristic programming (DHP) method and RBFNNs, while considering the effect of signal transmission delays. The WACNC operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance and therefore helps improve system-wide dynamic and transient performance. The proposed control is verified by simulation studies on a multimachine power system.

  10. Analysis of Multi-Scale Phenomena in Heterogeneous Materials

    DTIC Science & Technology

    2011-02-22

    requires the use of properties of the Catalan numbers to show that the series coefficients are exponentially bounded in the H1 Sobolev norm. This is joint...the use of a small number of optimal local basis functions. The local bases are supported on sub domains of fixed diameter within the computa- tional...not display a currently valid OMB control number . 1. REPORT DATE 22 FEB 2011 2. REPORT TYPE FINAL REPORT 3. DATES COVERED 03-01-2008 to 03-03

  11. The effective local potential method: Implementation for molecules and relation to approximate optimized effective potential techniques

    NASA Astrophysics Data System (ADS)

    Izmaylov, Artur F.; Staroverov, Viktor N.; Scuseria, Gustavo E.; Davidson, Ernest R.; Stoltz, Gabriel; Cancès, Eric

    2007-02-01

    We have recently formulated a new approach, named the effective local potential (ELP) method, for calculating local exchange-correlation potentials for orbital-dependent functionals based on minimizing the variance of the difference between a given nonlocal potential and its desired local counterpart [V. N. Staroverov et al., J. Chem. Phys. 125, 081104 (2006)]. Here we show that under a mildly simplifying assumption of frozen molecular orbitals, the equation defining the ELP has a unique analytic solution which is identical with the expression arising in the localized Hartree-Fock (LHF) and common energy denominator approximations (CEDA) to the optimized effective potential. The ELP procedure differs from the CEDA and LHF in that it yields the target potential as an expansion in auxiliary basis functions. We report extensive calculations of atomic and molecular properties using the frozen-orbital ELP method and its iterative generalization to prove that ELP results agree with the corresponding LHF and CEDA values, as they should. Finally, we make the case for extending the iterative frozen-orbital ELP method to full orbital relaxation.

  12. Pulse shape optimization for electron-positron production in rotating fields

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; Hebenstreit, Florian; Gagnon, Denis; MacLean, Steve

    2017-07-01

    We optimize the pulse shape and polarization of time-dependent electric fields to maximize the production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is parametrized in Fourier space by a B -spline polynomial basis, which results in a relatively low-dimensional parameter space while still allowing for a large number of electric field modes. The optimization is performed by using a parallel implementation of the differential evolution, one of the most efficient metaheuristic algorithms. The computational performance of the numerical method and the results on pair production are compared with a local multistart optimization algorithm. These techniques allow us to determine the pulse shape and field polarization that maximize the number of produced pairs in computationally accessible regimes.

  13. Tractable Pareto Optimization of Temporal Preferences

    NASA Technical Reports Server (NTRS)

    Morris, Robert; Morris, Paul; Khatib, Lina; Venable, Brent

    2003-01-01

    This paper focuses on temporal constraint problems where the objective is to optimize a set of local preferences for when events occur. In previous work, a subclass of these problems has been formalized as a generalization of Temporal CSPs, and a tractable strategy for optimization has been proposed, where global optimality is defined as maximizing the minimum of the component preference values. This criterion for optimality, which we call 'Weakest Link Optimization' (WLO), is known to have limited practical usefulness because solutions are compared only on the basis of their worst value; thus, there is no requirement to improve the other values. To address this limitation, we introduce a new algorithm that re-applies WLO iteratively in a way that leads to improvement of all the values. We show the value of this strategy by proving that, with suitable preference functions, the resulting solutions are Pareto Optimal.

  14. Model's sparse representation based on reduced mixed GMsFE basis methods

    NASA Astrophysics Data System (ADS)

    Jiang, Lijian; Li, Qiuqi

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.

  15. Model's sparse representation based on reduced mixed GMsFE basis methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Qiuqi, E-mail: qiuqili@hnu.edu.cn

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a largemore » number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.« less

  16. Performance of local orbital basis sets in the self-consistent Sternheimer method for dielectric matrices of extended systems

    NASA Astrophysics Data System (ADS)

    Hübener, H.; Pérez-Osorio, M. A.; Ordejón, P.; Giustino, F.

    2012-09-01

    We present a systematic study of the performance of numerical pseudo-atomic orbital basis sets in the calculation of dielectric matrices of extended systems using the self-consistent Sternheimer approach of [F. Giustino et al., Phys. Rev. B 81, 115105 (2010)]. In order to cover a range of systems, from more insulating to more metallic character, we discuss results for the three semiconductors diamond, silicon, and germanium. Dielectric matrices of silicon and diamond calculated using our method fall within 1% of reference planewaves calculations, demonstrating that this method is promising. We find that polarization orbitals are critical for achieving good agreement with planewaves calculations, and that only a few additional ζ's are required for obtaining converged results, provided the split norm is properly optimized. Our present work establishes the validity of local orbital basis sets and the self-consistent Sternheimer approach for the calculation of dielectric matrices in extended systems, and prepares the ground for future studies of electronic excitations using these methods.

  17. Local Approximation and Hierarchical Methods for Stochastic Optimization

    NASA Astrophysics Data System (ADS)

    Cheng, Bolong

    In this thesis, we present local and hierarchical approximation methods for two classes of stochastic optimization problems: optimal learning and Markov decision processes. For the optimal learning problem class, we introduce a locally linear model with radial basis function for estimating the posterior mean of the unknown objective function. The method uses a compact representation of the function which avoids storing the entire history, as is typically required by nonparametric methods. We derive a knowledge gradient policy with the locally parametric model, which maximizes the expected value of information. We show the policy is asymptotically optimal in theory, and experimental works suggests that the method can reliably find the optimal solution on a range of test functions. For the Markov decision processes problem class, we are motivated by an application where we want to co-optimize a battery for multiple revenue, in particular energy arbitrage and frequency regulation. The nature of this problem requires the battery to make charging and discharging decisions at different time scales while accounting for the stochastic information such as load demand, electricity prices, and regulation signals. Computing the exact optimal policy becomes intractable due to the large state space and the number of time steps. We propose two methods to circumvent the computation bottleneck. First, we propose a nested MDP model that structure the co-optimization problem into smaller sub-problems with reduced state space. This new model allows us to understand how the battery behaves down to the two-second dynamics (that of the frequency regulation market). Second, we introduce a low-rank value function approximation for backward dynamic programming. This new method only requires computing the exact value function for a small subset of the state space and approximate the entire value function via low-rank matrix completion. We test these methods on historical price data from the PJM Interconnect and show that it outperforms the baseline approach used in the industry.

  18. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan

    2015-06-21

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix ofmore » the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.« less

  19. Compressed modes for variational problems in mathematical physics and compactly supported multiresolution basis for the Laplace operator

    NASA Astrophysics Data System (ADS)

    Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley

    2014-03-01

    We will describe a general formalism for obtaining spatially localized (``sparse'') solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an L1 regularization term to the variational principle, which is shown to yield solutions with compact support (``compressed modes''). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size. In addition, we introduce an L1 regularized variational framework for developing a spatially localized basis, compressed plane waves (CPWs), that spans the eigenspace of a differential operator, for instance, the Laplace operator. Our approach generalizes the concept of plane waves to an orthogonal real-space basis with multiresolution capabilities. Supported by NSF Award DMR-1106024 (VO), DOE Contract No. DE-FG02-05ER25710 (RC) and ONR Grant No. N00014-11-1-719 (SO).

  20. Estimation of reflectance from camera responses by the regularized local linear model.

    PubMed

    Zhang, Wei-Feng; Tang, Gongguo; Dai, Dao-Qing; Nehorai, Arye

    2011-10-01

    Because of the limited approximation capability of using fixed basis functions, the performance of reflectance estimation obtained by traditional linear models will not be optimal. We propose an approach based on the regularized local linear model. Our approach performs efficiently and knowledge of the spectral power distribution of the illuminant and the spectral sensitivities of the camera is not needed. Experimental results show that the proposed method performs better than some well-known methods in terms of both reflectance error and colorimetric error. © 2011 Optical Society of America

  1. Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans.

    PubMed

    Plessow, Philipp N

    2018-02-13

    This work explores how constrained linear combinations of bond lengths can be used to optimize transition states in periodic structures. Scanning of constrained coordinates is a standard approach for molecular codes with localized basis functions, where a full set of internal coordinates is used for optimization. Common plane wave-codes for periodic boundary conditions almost exlusively rely on Cartesian coordinates. An implementation of constrained linear combinations of bond lengths with Cartesian coordinates is described. Along with an optimization of the value of the constrained coordinate toward the transition states, this allows transition optimization within a single calculation. The approach is suitable for transition states that can be well described in terms of broken and formed bonds. In particular, the implementation is shown to be effective and efficient in the optimization of transition states in zeolite-catalyzed reactions, which have high relevance in industrial processes.

  2. Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu

    2013-12-15

    The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less

  3. Employing general fit-bases for construction of potential energy surfaces with an adaptive density-guided approach

    NASA Astrophysics Data System (ADS)

    Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide; Christiansen, Ove

    2018-02-01

    We present an approach to treat sets of general fit-basis functions in a single uniform framework, where the functional form is supplied on input, i.e., the use of different functions does not require new code to be written. The fit-basis functions can be used to carry out linear fits to the grid of single points, which are generated with an adaptive density-guided approach (ADGA). A non-linear conjugate gradient method is used to optimize non-linear parameters if such are present in the fit-basis functions. This means that a set of fit-basis functions with the same inherent shape as the potential cuts can be requested and no other choices with regards to the fit-basis functions need to be taken. The general fit-basis framework is explored in relation to anharmonic potentials for model systems, diatomic molecules, water, and imidazole. The behaviour and performance of Morse and double-well fit-basis functions are compared to that of polynomial fit-basis functions for unsymmetrical single-minimum and symmetrical double-well potentials. Furthermore, calculations for water and imidazole were carried out using both normal coordinates and hybrid optimized and localized coordinates (HOLCs). Our results suggest that choosing a suitable set of fit-basis functions can improve the stability of the fitting routine and the overall efficiency of potential construction by lowering the number of single point calculations required for the ADGA. It is possible to reduce the number of terms in the potential by choosing the Morse and double-well fit-basis functions. These effects are substantial for normal coordinates but become even more pronounced if HOLCs are used.

  4. Sparseness- and continuity-constrained seismic imaging

    NASA Astrophysics Data System (ADS)

    Herrmann, Felix J.

    2005-04-01

    Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR < 0 dB); (ii) use the sparseness and locality (both in position and angle) of directional basis functions (such as curvelets and contourlets) on the model: the reflectivity; and (iii) exploit the near invariance of these basis functions under the normal operator, i.e., the scattering-followed-by-imaging operator. Signal-to-noise ratio and the continuity along the imaged reflectors are significantly enhanced by formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.

  5. Multi-sensor image fusion algorithm based on multi-objective particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Xia-zhu; Xu, Ya-wei

    2017-11-01

    On the basis of DT-CWT (Dual-Tree Complex Wavelet Transform - DT-CWT) theory, an approach based on MOPSO (Multi-objective Particle Swarm Optimization Algorithm) was proposed to objectively choose the fused weights of low frequency sub-bands. High and low frequency sub-bands were produced by DT-CWT. Absolute value of coefficients was adopted as fusion rule to fuse high frequency sub-bands. Fusion weights in low frequency sub-bands were used as particles in MOPSO. Spatial Frequency and Average Gradient were adopted as two kinds of fitness functions in MOPSO. The experimental result shows that the proposed approach performances better than Average Fusion and fusion methods based on local variance and local energy respectively in brightness, clarity and quantitative evaluation which includes Entropy, Spatial Frequency, Average Gradient and QAB/F.

  6. Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography.

    PubMed

    Gang, G J; Siewerdsen, J H; Stayman, J W

    2017-02-11

    This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index ( d' ) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength ( β ) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.

  7. Optimization of wireless sensor networks based on chicken swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Qingxi; Zhu, Lihua

    2017-05-01

    In order to reduce the energy consumption of wireless sensor network and improve the survival time of network, the clustering routing protocol of wireless sensor networks based on chicken swarm optimization algorithm was proposed. On the basis of LEACH agreement, it was improved and perfected that the points on the cluster and the selection of cluster head using the chicken group optimization algorithm, and update the location of chicken which fall into the local optimum by Levy flight, enhance population diversity, ensure the global search capability of the algorithm. The new protocol avoided the die of partial node of intensive using by making balanced use of the network nodes, improved the survival time of wireless sensor network. The simulation experiments proved that the protocol is better than LEACH protocol on energy consumption, also is better than that of clustering routing protocol based on particle swarm optimization algorithm.

  8. Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design

    NASA Astrophysics Data System (ADS)

    Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro

    2018-06-01

    A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.

  9. Adaptive Sparse Representation for Source Localization with Gain/Phase Errors

    PubMed Central

    Sun, Ke; Liu, Yimin; Meng, Huadong; Wang, Xiqin

    2011-01-01

    Sparse representation (SR) algorithms can be implemented for high-resolution direction of arrival (DOA) estimation. Additionally, SR can effectively separate the coherent signal sources because the spectrum estimation is based on the optimization technique, such as the L1 norm minimization, but not on subspace orthogonality. However, in the actual source localization scenario, an unknown gain/phase error between the array sensors is inevitable. Due to this nonideal factor, the predefined overcomplete basis mismatches the actual array manifold so that the estimation performance is degraded in SR. In this paper, an adaptive SR algorithm is proposed to improve the robustness with respect to the gain/phase error, where the overcomplete basis is dynamically adjusted using multiple snapshots and the sparse solution is adaptively acquired to match with the actual scenario. The simulation results demonstrate the estimation robustness to the gain/phase error using the proposed method. PMID:22163875

  10. The Pasinetti-Solow Growth Model with Optimal Saving Behaviour: A Local Bifurcation Analysis

    NASA Astrophysics Data System (ADS)

    Commendatore, P.; Palmisani, C.

    We present a discrete time version of the Pasinetti-Solow economic growth model. Workers and capitalists are assumed to save on the basis of rational choices. Workers face a finite time horizon and base their consumption choices on a life-cycle motive, whereas capitalists behave like an infinitely-lived dynasty. The accumulation of both capitalists' and workers' wealth through time is reduced to a two-dimensional map whose local asymptotic stability properties are studied. Various types of bifurcation emerge (flip, Neimark-Sacker, saddle-node and transcritical): a precondition for chaotic dynamics.

  11. Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Carter, Emily A.

    2018-01-01

    We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.

  12. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package.

    PubMed

    Womack, James C; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-28

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  13. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package

    NASA Astrophysics Data System (ADS)

    Womack, James C.; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-01

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  14. Sparse Modeling of Human Actions from Motion Imagery

    DTIC Science & Technology

    2011-09-02

    is here developed. Spatio-temporal features that char- acterize local changes in the image are rst extracted. This is followed by the learning of a...video comes from the optimal sparse linear com- bination of the learned basis vectors (action primitives) representing the actions. A low...computational cost deep-layer model learning the inter- class correlations of the data is added for increasing discriminative power. In spite of its simplicity

  15. Determination of the mobility profile in GaAs-MESFETs. Thesis

    NASA Technical Reports Server (NTRS)

    Prost, W.

    1985-01-01

    A process for measuring charge carrier mobility for gallium-arsenide metal semiconductor field effect transistors is described in an attempt to optimize the relationship between this factor and production. The measuring procedure allows an actual determination of local mobility in the channel. The physical basis for the process and features of the measuring room are outlined. The measuring technique is described and recommendations are made for setting measuring parameters.

  16. Two optimal working regimes of the ”long” Iguasu gas centrifuge

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of optimization calculations that the dependence of the optimal separative power of the Iguasu gas centrifuge with 2 m rotor has two local maxima,corresponding pressures of p max1 = 35 mmHg and p max2 = 350 mmHg. The optimal separative power values in these maxima differ by the value of 0.6%. Low pressure maximum is caused by the thermal drive, whereas high pressure maximum is caused by both thermal and mechanical drives. High pressure maximum is located on wide ’’plateau” from p 1 = 200 mmHg to p 2 = 500 mmHg, where the optimal separative power changes in the range of 0.7%. In this way, Iguasu gas centrifuge has two optimal working regimes with different sets of working parameters and close slightly different values of the separative power. Calculations show that high pressure regime is less sensitive to the parameters change than low pressure one.

  17. Robust electromagnetically guided endoscopic procedure using enhanced particle swarm optimization for multimodal information fusion.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian

    2015-04-01

    Electromagnetically guided endoscopic procedure, which aims at accurately and robustly localizing the endoscope, involves multimodal sensory information during interventions. However, it still remains challenging in how to integrate these information for precise and stable endoscopic guidance. To tackle such a challenge, this paper proposes a new framework on the basis of an enhanced particle swarm optimization method to effectively fuse these information for accurate and continuous endoscope localization. The authors use the particle swarm optimization method, which is one of stochastic evolutionary computation algorithms, to effectively fuse the multimodal information including preoperative information (i.e., computed tomography images) as a frame of reference, endoscopic camera videos, and positional sensor measurements (i.e., electromagnetic sensor outputs). Since the evolutionary computation method usually limits its possible premature convergence and evolutionary factors, the authors introduce the current (endoscopic camera and electromagnetic sensor's) observation to boost the particle swarm optimization and also adaptively update evolutionary parameters in accordance with spatial constraints and the current observation, resulting in advantageous performance in the enhanced algorithm. The experimental results demonstrate that the authors' proposed method provides a more accurate and robust endoscopic guidance framework than state-of-the-art methods. The average guidance accuracy of the authors' framework was about 3.0 mm and 5.6° while the previous methods show at least 3.9 mm and 7.0°. The average position and orientation smoothness of their method was 1.0 mm and 1.6°, which is significantly better than the other methods at least with (2.0 mm and 2.6°). Additionally, the average visual quality of the endoscopic guidance was improved to 0.29. A robust electromagnetically guided endoscopy framework was proposed on the basis of an enhanced particle swarm optimization method with using the current observation information and adaptive evolutionary factors. The authors proposed framework greatly reduced the guidance errors from (4.3, 7.8) to (3.0 mm, 5.6°), compared to state-of-the-art methods.

  18. Joint Optimization of Fluence Field Modulation and Regularization in Task-Driven Computed Tomography

    PubMed Central

    Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.

    2017-01-01

    Purpose This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d′) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM. PMID:28626290

  19. Joint optimization of fluence field modulation and regularization in task-driven computed tomography

    NASA Astrophysics Data System (ADS)

    Gang, G. J.; Siewerdsen, J. H.; Stayman, J. W.

    2017-03-01

    Purpose: This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods: We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d') across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results: The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions: The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.

  20. A gradient system solution to Potts mean field equations and its electronic implementation.

    PubMed

    Urahama, K; Ueno, S

    1993-03-01

    A gradient system solution method is presented for solving Potts mean field equations for combinatorial optimization problems subject to winner-take-all constraints. In the proposed solution method the optimum solution is searched by using gradient descent differential equations whose trajectory is confined within the feasible solution space of optimization problems. This gradient system is proven theoretically to always produce a legal local optimum solution of combinatorial optimization problems. An elementary analog electronic circuit implementing the presented method is designed on the basis of current-mode subthreshold MOS technologies. The core constituent of the circuit is the winner-take-all circuit developed by Lazzaro et al. Correct functioning of the presented circuit is exemplified with simulations of the circuits implementing the scheme for solving the shortest path problems.

  1. Large-scale quantum transport calculations for electronic devices with over ten thousand atoms

    NASA Astrophysics Data System (ADS)

    Lu, Wenchang; Lu, Yan; Xiao, Zhongcan; Hodak, Miro; Briggs, Emil; Bernholc, Jerry

    The non-equilibrium Green's function method (NEGF) has been implemented in our massively parallel DFT software, the real space multigrid (RMG) code suite. Our implementation employs multi-level parallelization strategies and fully utilizes both multi-core CPUs and GPU accelerators. Since the cost of the calculations increases dramatically with the number of orbitals, an optimal basis set is crucial for including a large number of atoms in the ``active device'' part of the simulations. In our implementation, the localized orbitals are separately optimized for each principal layer of the device region, in order to obtain an accurate and optimal basis set. As a large example, we calculated the transmission characteristics of a Si nanowire p-n junction. The nanowire is along (110) direction in order to minimize the number dangling bonds that are saturated by H atoms. Its diameter is 3 nm. The length of 24 nm is necessary because of the long-range screening length in Si. Our calculations clearly show the I-V characteristics of a diode, i.e., the current increases exponentially with forward bias and is near zero with backward bias. Other examples will also be presented, including three-terminal transistors and large sensor structures.

  2. Learning and inference using complex generative models in a spatial localization task.

    PubMed

    Bejjanki, Vikranth R; Knill, David C; Aslin, Richard N

    2016-01-01

    A large body of research has established that, under relatively simple task conditions, human observers integrate uncertain sensory information with learned prior knowledge in an approximately Bayes-optimal manner. However, in many natural tasks, observers must perform this sensory-plus-prior integration when the underlying generative model of the environment consists of multiple causes. Here we ask if the Bayes-optimal integration seen with simple tasks also applies to such natural tasks when the generative model is more complex, or whether observers rely instead on a less efficient set of heuristics that approximate ideal performance. Participants localized a "hidden" target whose position on a touch screen was sampled from a location-contingent bimodal generative model with different variances around each mode. Over repeated exposure to this task, participants learned the a priori locations of the target (i.e., the bimodal generative model), and integrated this learned knowledge with uncertain sensory information on a trial-by-trial basis in a manner consistent with the predictions of Bayes-optimal behavior. In particular, participants rapidly learned the locations of the two modes of the generative model, but the relative variances of the modes were learned much more slowly. Taken together, our results suggest that human performance in a more complex localization task, which requires the integration of sensory information with learned knowledge of a bimodal generative model, is consistent with the predictions of Bayes-optimal behavior, but involves a much longer time-course than in simpler tasks.

  3. Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nelson, Andrea; Aftosmis, Michael J.; Nemec, Marian; Pulliam, Thomas H.

    2004-01-01

    Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the number of design variables is increased.

  4. SU-E-P-10: Establishment of Local Diagnostic Reference Levels of Routine Exam in Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, M; Wang, Y; Weng, H

    Introduction National diagnostic reference levels (NDRLs) can be used as a reference dose of radiological examination can provide radiation dose as the basis of patient dose optimization. Local diagnostic reference levels (LDRLs) by periodically view and check doses, more efficiency to improve the way of examination. Therefore, the important first step is establishing a diagnostic reference level. Computed Tomography in Taiwan had been built up the radiation dose limit value,in addition, many studies report shows that CT scan contributed most of the radiation dose in different medical. Therefore, this study was mainly to let everyone understand DRL’s international status. Formore » computed tomography in our hospital to establish diagnostic reference levels. Methods and Materials: There are two clinical CT scanners (a Toshiba Aquilion and a Siemens Sensation) were performed in this study. For CT examinations the basic recommended dosimetric quantity is the Computed Tomography Dose Index (CTDI). Each exam each different body part, we collect 10 patients at least. Carried out the routine examinations, and all exposure parameters have been collected and the corresponding CTDIv and DLP values have been determined. Results: The majority of patients (75%) were between 60–70 Kg of body weight. There are 25 examinations in this study. Table 1 shows the LDRL of each CT routine examination. Conclusions: Therefore, this study would like to let everyone know DRL’s international status, but also establishment of computed tomography of the local reference levels for our hospital, and providing radiation reference, as a basis for optimizing patient dose.« less

  5. The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-05-08

    The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less

  6. On the optimization of Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Petersson, George A.; Zhong, Shijun; Montgomery, John A.; Frisch, Michael J.

    2003-01-01

    A new procedure for the optimization of the exponents, αj, of Gaussian basis functions, Ylm(ϑ,φ)rle-αjr2, is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk, of the index, j: ln αj=∑k=0kmaxAkPk((2j-2)/(Nprim-1)-1), yields a new set of well-conditioned parameters, Ak, and a complete sequence of well-conditioned exponent optimizations proceeding from the even-tempered basis set (kmax=1) to a fully optimized basis set (kmax=Nprim-1). The error relative to the exact numerical self-consistent field limit for a six-term expansion is consistently no more than 25% larger than the error for the completely optimized basis set. Thus, there is no need to optimize more than six well-conditioned variational parameters, even for the largest sets of Gaussian primitives.

  7. Calculations of the excitation energies of all-trans and 11,12s-dicis retinals using localized molecular orbitals obtained by the elongation method

    NASA Astrophysics Data System (ADS)

    Kurihara, Youji; Aoki, Yuriko; Imamura, Akira

    1997-09-01

    In the present article, the excitation energies of the all-trans and the 11,12s-dicis retinals were calculated by using the elongation method. The geometries of these molecules were optimized with the 4-31G basis set by using the GAUSSIAN 92 program. The wave functions for the calculation of the excitation energies were obtained with CNDO/S approximation by the elongation method, which enables us to analyze electronic structures of aperiodic polymers in terms of the exciton-type local excitation and the charge transfer-type excitation. The excitation energies were calculated by using the single excitation configuration interaction (SECI) on the basis of localized molecular orbitals (LMOs). The LMOs were obtained in the process of the elongation method. The configuration interaction (CI) matrices were diagonalized by Davidson's method. The calculated results were in good agreement with the experimental data for absorption spectra. In order to consider the isomerization path from 11,12s-dicis to all-trans retinals, the barriers to the rotations about C11-C12 double and C12-C13 single bonds were evaluated.

  8. Utilization of group theory in studies of molecular clusters

    NASA Astrophysics Data System (ADS)

    Ocak, Mahir E.

    The structure of the molecular symmetry group of molecular clusters was analyzed and it is shown that the molecular symmetry group of a molecular cluster can be written as direct products and semidirect products of its subgroups. Symmetry adaptation of basis functions in direct product groups and semidirect product groups was considered in general and the sequential symmetry adaptation procedure which is already known for direct product groups was extended to the case of semidirect product groups. By using the sequential symmetry adaptation procedure a new method for calculating the VRT spectra of molecular clusters which is named as Monomer Basis Representation (MBR) method is developed. In the MBR method, calculations starts with a single monomer with the purpose of obtaining an optimized basis for that monomer as a linear combination of some primitive basis functions. Then, an optimized basis for each identical monomer is generated from the optimized basis of this monomer. By using the optimized bases of the monomers, a basis is generated generated for the solution of the full problem, and the VRT spectra of the cluster is obtained by using this basis. Since an optimized basis is used for each monomer which has a much smaller size than the primitive basis from which the optimized bases are generated, the MBR method leads to an exponential optimization in the size of the basis that is required for the calculations. Application of the MBR method has been illustrated by calculating the VRT spectra of water dimer by using the SAPT-5st potential surface of Groenenboom et al. The rest of the calculations are in good agreement with both the original calculations of Groenenboom et al. and also with the experimental results. Comparing the size of the optimized basis with the size of the primitive basis, it can be said that the method works efficiently. Because of its efficiency, the MBR method can be used for studies of clusters bigger than dimers. Thus, MBR method can be used for studying the many-body terms and for deriving accurate potential surfaces.

  9. Design and implementation of an automated compound management system in support of lead optimization.

    PubMed

    Quintero, Catherine; Kariv, Ilona

    2009-06-01

    To meet the needs of the increasingly rapid and parallelized lead optimization process, a fully integrated local compound storage and liquid handling system was designed and implemented to automate the generation of assay-ready plates directly from newly submitted and cherry-picked compounds. A key feature of the system is the ability to create project- or assay-specific compound-handling methods, which provide flexibility for any combination of plate types, layouts, and plate bar-codes. Project-specific workflows can be created by linking methods for processing new and cherry-picked compounds and control additions to produce a complete compound set for both biological testing and local storage in one uninterrupted workflow. A flexible cherry-pick approach allows for multiple, user-defined strategies to select the most appropriate replicate of a compound for retesting. Examples of custom selection parameters include available volume, compound batch, and number of freeze/thaw cycles. This adaptable and integrated combination of software and hardware provides a basis for reducing cycle time, fully automating compound processing, and ultimately increasing the rate at which accurate, biologically relevant results can be produced for compounds of interest in the lead optimization process.

  10. Multicriteria hierarchical iterative interactive algorithm for organizing operational modes of large heat supply systems

    NASA Astrophysics Data System (ADS)

    Korotkova, T. I.; Popova, V. I.

    2017-11-01

    The generalized mathematical model of decision-making in the problem of planning and mode selection providing required heat loads in a large heat supply system is considered. The system is multilevel, decomposed into levels of main and distribution heating networks with intermediate control stages. Evaluation of the effectiveness, reliability and safety of such a complex system is carried out immediately according to several indicators, in particular pressure, flow, temperature. This global multicriteria optimization problem with constraints is decomposed into a number of local optimization problems and the coordination problem. An agreed solution of local problems provides a solution to the global multicriterion problem of decision making in a complex system. The choice of the optimum operational mode of operation of a complex heat supply system is made on the basis of the iterative coordination process, which converges to the coordinated solution of local optimization tasks. The interactive principle of multicriteria task decision-making includes, in particular, periodic adjustment adjustments, if necessary, guaranteeing optimal safety, reliability and efficiency of the system as a whole in the process of operation. The degree of accuracy of the solution, for example, the degree of deviation of the internal air temperature from the required value, can also be changed interactively. This allows to carry out adjustment activities in the best way and to improve the quality of heat supply to consumers. At the same time, an energy-saving task is being solved to determine the minimum required values of heads at sources and pumping stations.

  11. Robust electromagnetically guided endoscopic procedure using enhanced particle swarm optimization for multimodal information fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiongbiao, E-mail: xluo@robarts.ca, E-mail: Ying.Wan@student.uts.edu.au; Wan, Ying, E-mail: xluo@robarts.ca, E-mail: Ying.Wan@student.uts.edu.au; He, Xiangjian

    Purpose: Electromagnetically guided endoscopic procedure, which aims at accurately and robustly localizing the endoscope, involves multimodal sensory information during interventions. However, it still remains challenging in how to integrate these information for precise and stable endoscopic guidance. To tackle such a challenge, this paper proposes a new framework on the basis of an enhanced particle swarm optimization method to effectively fuse these information for accurate and continuous endoscope localization. Methods: The authors use the particle swarm optimization method, which is one of stochastic evolutionary computation algorithms, to effectively fuse the multimodal information including preoperative information (i.e., computed tomography images) asmore » a frame of reference, endoscopic camera videos, and positional sensor measurements (i.e., electromagnetic sensor outputs). Since the evolutionary computation method usually limits its possible premature convergence and evolutionary factors, the authors introduce the current (endoscopic camera and electromagnetic sensor’s) observation to boost the particle swarm optimization and also adaptively update evolutionary parameters in accordance with spatial constraints and the current observation, resulting in advantageous performance in the enhanced algorithm. Results: The experimental results demonstrate that the authors’ proposed method provides a more accurate and robust endoscopic guidance framework than state-of-the-art methods. The average guidance accuracy of the authors’ framework was about 3.0 mm and 5.6° while the previous methods show at least 3.9 mm and 7.0°. The average position and orientation smoothness of their method was 1.0 mm and 1.6°, which is significantly better than the other methods at least with (2.0 mm and 2.6°). Additionally, the average visual quality of the endoscopic guidance was improved to 0.29. Conclusions: A robust electromagnetically guided endoscopy framework was proposed on the basis of an enhanced particle swarm optimization method with using the current observation information and adaptive evolutionary factors. The authors proposed framework greatly reduced the guidance errors from (4.3, 7.8) to (3.0 mm, 5.6°), compared to state-of-the-art methods.« less

  12. Performance of local correlation methods for halogen bonding: The case of Br{sub 2}–(H{sub 2}O){sub n},n = 4,5 clusters and Br{sub 2}@5{sup 12}6{sup 2} clathrate cage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batista-Romero, Fidel A.; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón, E-mail: ramon@uaem.mx

    The performance of local correlation methods is examined for the interactions present in clusters of bromine with water where the combined effect of hydrogen bonding (HB), halogen bonding (XB), and hydrogen-halogen (HX) interactions lead to many interesting properties. Local methods reproduce all the subtleties involved such as many-body effects and dispersion contributions provided that specific methodological steps are followed. Additionally, they predict optimized geometries that are nearly free of basis set superposition error that lead to improved estimates of spectroscopic properties. Taking advantage of the local correlation energy partitioning scheme, we compare the different interaction environments present in small clustersmore » and those inside the 5{sup 12}6{sup 2} clathrate cage. This analysis allows a clear identification of the reasons supporting the use of local methods for large systems where non-covalent interactions play a key role.« less

  13. Exploring biorthonormal transformations of pair-correlation functions in atomic structure variational calculations

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Jönsson, P.; Gaigalas, G.; Godefroid, M.; Froese Fischer, C.

    2010-04-01

    Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of configuration state functions (CSFs), many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the multiconfiguration Hartree-Fock (MCHF) method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double-excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional complete active space (CAS)-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations.

  14. Study on the water resources optimal operation based on riverbed wind erosion control in West Liaohe River plain

    NASA Astrophysics Data System (ADS)

    Wanguang, Sun; Chengzhen, Li; Baoshan, Fan

    2018-06-01

    Rivers are drying up most frequently in West Liaohe River plain and the bare river beds present fine sand belts on land. These sand belts, which yield a dust heavily in windy days, stress the local environment deeply as the riverbeds are eroded by wind. The optimal operation of water resources, thus, is one of the most important methods for preventing the wind erosion of riverbeds. In this paper, optimal operation model for water resources based on riverbed wind erosion control has been established, which contains objective function, constraints, and solution method. The objective function considers factors which include water volume diverted into reservoirs, river length and lower threshold of flow rate, etc. On the basis of ensuring the water requirement of each reservoir, the destruction of the vegetation in the riverbed by the frequent river flow is avoided. The multi core parallel solving method for optimal water resources operation in the West Liaohe River Plain is proposed, which the optimal solution is found by DPSA method under the POA framework and the parallel computing program is designed in Fork/Join mode. Based on the optimal operation results, the basic rules of water resources operation in the West Liaohe River Plain are summarized. Calculation results show that, on the basis of meeting the requirement of water volume of every reservoir, the frequency of reach river flow which from Taihekou to Talagan Water Diversion Project in the Xinkai River is reduced effectively. The speedup and parallel efficiency of parallel algorithm are 1.51 and 0.76 respectively, and the computing time is significantly decreased. The research results show in this paper can provide technical support for the prevention and control of riverbed wind erosion in the West Liaohe River plain.

  15. Forearm ischemia decreases endothelial colony-forming cell angiogenic potential.

    PubMed

    Mauge, Laetitia; Sabatier, Florence; Boutouyrie, Pierre; D'Audigier, Clément; Peyrard, Séverine; Bozec, Erwan; Blanchard, Anne; Azizi, Michel; Dizier, Blandine; Dignat-George, Françoise; Gaussem, Pascale; Smadja, David M

    2014-02-01

    Circulating endothelial progenitor cells and especially endothelial colony-forming cells (ECFCs) are promising candidate cells for endothelial regenerative medicine of ischemic diseases, but the conditions for an optimal collection from adult blood must be improved. On the basis of a recently reported vascular niche of ECFCs, we hypothesized that a local ischemia could trigger ECFC mobilization from the vascular wall into peripheral blood to optimize their collection for autologous implantation in critical leg ischemia. Because the target population with critical leg ischemia is composed of elderly patients in whom a vascular impairment has been documented, we also analyzed the impact of aging on ECFC mobilization and vascular integrity. After having defined optimized ECFC culture conditions, we studied the effect of forearm ischemia on ECFC numbers and functions in 26 healthy volunteers (13 volunteers ages 20-30-years old versus 13 volunteers ages 60-70 years old). The results show that forearm ischemia induced an efficient local ischemia and a normal endothelial response but did not mobilize ECFCs regardless of the age group. Moreover, we report an alteration of angiogenic properties of ECFCs obtained after forearm ischemia, in vitro as well as in vivo in a hindlimb ischemia murine model. This impaired ECFC angiogenic potential was not associated with a quantitative modification of the circulating endothelial compartment. The procedure of local ischemia, although reulting in a preserved endothelial reactivity, did not mobilize ECFCs but altered their angiogenic potential. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    NASA Technical Reports Server (NTRS)

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  17. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization

    PubMed Central

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods. PMID:28222194

  18. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization.

    PubMed

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.

  19. Trust regions in Kriging-based optimization with expected improvement

    NASA Astrophysics Data System (ADS)

    Regis, Rommel G.

    2016-06-01

    The Kriging-based Efficient Global Optimization (EGO) method works well on many expensive black-box optimization problems. However, it does not seem to perform well on problems with steep and narrow global minimum basins and on high-dimensional problems. This article develops a new Kriging-based optimization method called TRIKE (Trust Region Implementation in Kriging-based optimization with Expected improvement) that implements a trust-region-like approach where each iterate is obtained by maximizing an Expected Improvement (EI) function within some trust region. This trust region is adjusted depending on the ratio of the actual improvement to the EI. This article also develops the Kriging-based CYCLONE (CYClic Local search in OptimizatioN using Expected improvement) method that uses a cyclic pattern to determine the search regions where the EI is maximized. TRIKE and CYCLONE are compared with EGO on 28 test problems with up to 32 dimensions and on a 36-dimensional groundwater bioremediation application in appendices supplied as an online supplement available at http://dx.doi.org/10.1080/0305215X.2015.1082350. The results show that both algorithms yield substantial improvements over EGO and they are competitive with a radial basis function method.

  20. Inferring neural activity from BOLD signals through nonlinear optimization.

    PubMed

    Vakorin, Vasily A; Krakovska, Olga O; Borowsky, Ron; Sarty, Gordon E

    2007-11-01

    The blood oxygen level-dependent (BOLD) fMRI signal does not measure neuronal activity directly. This fact is a key concern for interpreting functional imaging data based on BOLD. Mathematical models describing the path from neural activity to the BOLD response allow us to numerically solve the inverse problem of estimating the timing and amplitude of the neuronal activity underlying the BOLD signal. In fact, these models can be viewed as an advanced substitute for the impulse response function. In this work, the issue of estimating the dynamics of neuronal activity from the observed BOLD signal is considered within the framework of optimization problems. The model is based on the extended "balloon" model and describes the conversion of neuronal signals into the BOLD response through the transitional dynamics of the blood flow-inducing signal, cerebral blood flow, cerebral blood volume and deoxyhemoglobin concentration. Global optimization techniques are applied to find a control input (the neuronal activity and/or the biophysical parameters in the model) that causes the system to follow an admissible solution to minimize discrepancy between model and experimental data. As an alternative to a local linearization (LL) filtering scheme, the optimization method escapes the linearization of the transition system and provides a possibility to search for the global optimum, avoiding spurious local minima. We have found that the dynamics of the neural signals and the physiological variables as well as the biophysical parameters can be robustly reconstructed from the BOLD responses. Furthermore, it is shown that spiking off/on dynamics of the neural activity is the natural mathematical solution of the model. Incorporating, in addition, the expansion of the neural input by smooth basis functions, representing a low-pass filtering, allows us to model local field potential (LFP) solutions instead of spiking solutions.

  1. Hyperthermia in the treatment of cancer: A review of the radiobiological basis

    NASA Technical Reports Server (NTRS)

    Baker, D. G.

    1978-01-01

    Temperatures in the range 41.5 C to 43.5 C tend to be more damaging to malignant than nonmalignant cells. Where local hyperthermia (41.5 C to 43.5 C) is combined with ionizing radiation, a significant therapeutic ratio may be realized. Total body hyperthermia, alone or combined with other therapeutic modalities, can provide palliation for some systemic malignancies but may not be as effective as local hyperthermia for treating local disease. The influence of hyperthermia on immune mechanisms and the risk of metastatic spread of potential tumor growth stimulation need further investigation. Among other questions needing elucidation before hyperthermia can be considered a standard treatment modality are the time-dose (for heating) relationships to produce an optimal therapeutic ratio and whether the late sequela of combined heat and ionizing radiation may result in an unacceptable risk of patient morbidity.

  2. An improved local radial point interpolation method for transient heat conduction analysis

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Lin, Gao; Zheng, Bao-Jing; Hu, Zhi-Qiang

    2013-06-01

    The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.

  3. Chopped random-basis quantum optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caneva, Tommaso; Calarco, Tommaso; Montangero, Simone

    2011-08-15

    In this work, we describe in detail the chopped random basis (CRAB) optimal control technique recently introduced to optimize time-dependent density matrix renormalization group simulations [P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106, 190501 (2011)]. Here, we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.

  4. Fuzzy multiobjective models for optimal operation of a hydropower system

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  5. Value versus Accuracy: application of seasonal forecasts to a hydro-economic optimization model for the Sudanese Blue Nile

    NASA Astrophysics Data System (ADS)

    Satti, S.; Zaitchik, B. F.; Siddiqui, S.; Badr, H. S.; Shukla, S.; Peters-Lidard, C. D.

    2015-12-01

    The unpredictable nature of precipitation within the East African (EA) region makes it one of the most vulnerable, food insecure regions in the world. There is a vital need for forecasts to inform decision makers, both local and regional, and to help formulate the region's climate change adaptation strategies. Here, we present a suite of different seasonal forecast models, both statistical and dynamical, for the EA region. Objective regionalization is performed for EA on the basis of interannual variability in precipitation in both observations and models. This regionalization is applied as the basis for calculating a number of standard skill scores to evaluate each model's forecast accuracy. A dynamically linked Land Surface Model (LSM) is then applied to determine forecasted flows, which drive the Sudanese Hydroeconomic Optimization Model (SHOM). SHOM combines hydrologic, agronomic and economic inputs to determine the optimal decisions that maximize economic benefits along the Sudanese Blue Nile. This modeling sequence is designed to derive the potential added value of information of each forecasting model to agriculture and hydropower management. A rank of each model's forecasting skill score along with its added value of information is analyzed in order compare the performance of each forecast. This research aims to improve understanding of how characteristics of accuracy, lead time, and uncertainty of seasonal forecasts influence their utility to water resources decision makers who utilize them.

  6. Fast-match on particle swarm optimization with variant system mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yuehuang; Fang, Xin; Chen, Jie

    2018-03-01

    Fast-Match is a fast and effective algorithm for approximate template matching under 2D affine transformations, which can match the target with maximum similarity without knowing the target gesture. It depends on the minimum Sum-of-Absolute-Differences (SAD) error to obtain the best affine transformation. The algorithm is widely used in the field of matching images because of its fastness and robustness. In this paper, our approach is to search an approximate affine transformation over Particle Swarm Optimization (PSO) algorithm. We treat each potential transformation as a particle that possesses memory function. Each particle is given a random speed and flows throughout the 2D affine transformation space. To accelerate the algorithm and improve the abilities of seeking the global excellent result, we have introduced the variant system mechanism on this basis. The benefit is that we can avoid matching with huge amount of potential transformations and falling into local optimal condition, so that we can use a few transformations to approximate the optimal solution. The experimental results prove that our method has a faster speed and a higher accuracy performance with smaller affine transformation space.

  7. Ant-cuckoo colony optimization for feature selection in digital mammogram.

    PubMed

    Jona, J B; Nagaveni, N

    2014-01-15

    Digital mammogram is the only effective screening method to detect the breast cancer. Gray Level Co-occurrence Matrix (GLCM) textural features are extracted from the mammogram. All the features are not essential to detect the mammogram. Therefore identifying the relevant feature is the aim of this work. Feature selection improves the classification rate and accuracy of any classifier. In this study, a new hybrid metaheuristic named Ant-Cuckoo Colony Optimization a hybrid of Ant Colony Optimization (ACO) and Cuckoo Search (CS) is proposed for feature selection in Digital Mammogram. ACO is a good metaheuristic optimization technique but the drawback of this algorithm is that the ant will walk through the path where the pheromone density is high which makes the whole process slow hence CS is employed to carry out the local search of ACO. Support Vector Machine (SVM) classifier with Radial Basis Kernal Function (RBF) is done along with the ACO to classify the normal mammogram from the abnormal mammogram. Experiments are conducted in miniMIAS database. The performance of the new hybrid algorithm is compared with the ACO and PSO algorithm. The results show that the hybrid Ant-Cuckoo Colony Optimization algorithm is more accurate than the other techniques.

  8. Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.

    We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less

  9. Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis

    DOE PAGES

    Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.; ...

    2017-07-21

    We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less

  10. Near Hartree-Fock quality GTO basis sets for the second-row atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry

    1987-01-01

    Energy optimized, near Hartree-Fock quality Gaussian basis sets ranging in size from (17s12p) to (20s15p) are presented for the ground states of the second-row atoms for Na(2P), Na(+), Na(-), Mg(3P), P(-), S(-), and Cl(-). In addition, optimized supplementary functions are given for the ground state basis sets to describe the negative ions, and the excited Na(2P) and Mg(3P) atomic states. The ratios of successive orbital exponents describing the inner part of the 1s and 2p orbitals are found to be nearly independent of both nuclear charge and basis set size. This provides a method of obtaining good starting estimates for other basis set optimizations.

  11. Orbital dependent functionals: An atom projector augmented wave method implementation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao

    This thesis explores the formulation and numerical implementation of orbital dependent exchange-correlation functionals within electronic structure calculations. These orbital-dependent exchange-correlation functionals have recently received renewed attention as a means to improve the physical representation of electron interactions within electronic structure calculations. In particular, electron self-interaction terms can be avoided. In this thesis, an orbital-dependent functional is considered in the context of Hartree-Fock (HF) theory as well as the Optimized Effective Potential (OEP) method and the approximate OEP method developed by Krieger, Li, and Iafrate, known as the KLI approximation. In this thesis, the Fock exchange term is used as a simple well-defined example of an orbital-dependent functional. The Projected Augmented Wave (PAW) method developed by P. E. Blochl has proven to be accurate and efficient for electronic structure calculations for local and semi-local functions because of its accurate evaluation of interaction integrals by controlling multiple moments. We have extended the PAW method to treat orbital-dependent functionals in Hartree-Fock theory and the Optimized Effective Potential method, particularly in the KLI approximation. In the course of study we develop a frozen-core orbital approximation that accurately treats the core electron contributions for above three methods. The main part of the thesis focuses on the treatment of spherical atoms. We have investigated the behavior of PAW-Hartree Fock and PAW-KLI basis, projector, and pseudopotential functions for several elements throughout the periodic table. We have also extended the formalism to the treatment of solids in a plane wave basis and implemented PWPAW-KLI code, which will appear in future publications.

  12. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. Part I. Application of the Huzinaga equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.

  13. A radial basis function Galerkin method for inhomogeneous nonlocal diffusion

    DOE PAGES

    Lehoucq, Richard B.; Rowe, Stephen T.

    2016-02-01

    We introduce a discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. As a result, we explore approximating the solution to anisotropic differential equations by solving anisotropic nonlocal integral equations using the radial basis function method.

  14. Basis set construction for molecular electronic structure theory: natural orbital and Gauss-Slater basis for smooth pseudopotentials.

    PubMed

    Petruzielo, F R; Toulouse, Julien; Umrigar, C J

    2011-02-14

    A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.

  15. Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Derevianko, Andrei

    2008-09-01

    The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.

  16. Investigating local controls on soil moisture temporal stability using an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry

    2013-04-01

    A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).

  17. Stockpiling Ventilators for Influenza Pandemics.

    PubMed

    Huang, Hsin-Chan; Araz, Ozgur M; Morton, David P; Johnson, Gregory P; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-06-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response.

  18. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    PubMed

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  19. Application of ab initio many-body perturbation theory with Gaussian basis sets to the singlet and triplet excitations of organic molecules

    NASA Astrophysics Data System (ADS)

    Hamed, Samia; Rangel, Tonatiuh; Bruneval, Fabien; Neaton, Jeffrey B.

    Quantitative understanding of charged and neutral excitations of organic molecules is critical in diverse areas of study that include astrophysics and the development of energy technologies that are clean and efficient. The recent use of local basis sets with ab initio many-body perturbation theory in the GW approximation and the Bethe-Saltpeter equation approach (BSE), methods traditionally applied to periodic condensed phases with a plane-wave basis, has opened the door to detailed study of such excitations for molecules, as well as accurate numerical benchmarks. Here, through a series of systematic benchmarks with a Gaussian basis, we report on the extent to which the predictive power and utility of this approach depend critically on interdependent underlying approximations and choices for molecules, including the mean-field starting point (eg optimally-tuned range separated hybrids, pure DFT functionals, and untuned hybrids), the GW scheme, and the Tamm Dancoff approximation. We demonstrate the effects of these choices in the context of Thiels' set while drawing analogies to linear-response time-dependent DFT and making comparisons to best theoretical estimates from higher-order wavefunction-based theories.

  20. Neurocardiology: Structure-Based Function.

    PubMed

    Ardell, Jeffrey L; Armour, John Andrew

    2016-09-15

    Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  1. Learning optimal features for visual pattern recognition

    NASA Astrophysics Data System (ADS)

    Labusch, Kai; Siewert, Udo; Martinetz, Thomas; Barth, Erhardt

    2007-02-01

    The optimal coding hypothesis proposes that the human visual system has adapted to the statistical properties of the environment by the use of relatively simple optimality criteria. We here (i) discuss how the properties of different models of image coding, i.e. sparseness, decorrelation, and statistical independence are related to each other (ii) propose to evaluate the different models by verifiable performance measures (iii) analyse the classification performance on images of handwritten digits (MNIST data base). We first employ the SPARSENET algorithm (Olshausen, 1998) to derive a local filter basis (on 13 × 13 pixels windows). We then filter the images in the database (28 × 28 pixels images of digits) and reduce the dimensionality of the resulting feature space by selecting the locally maximal filter responses. We then train a support vector machine on a training set to classify the digits and report results obtained on a separate test set. Currently, the best state-of-the-art result on the MNIST data base has an error rate of 0,4%. This result, however, has been obtained by using explicit knowledge that is specific to the data (elastic distortion model for digits). We here obtain an error rate of 0,55% which is second best but does not use explicit data specific knowledge. In particular it outperforms by far all methods that do not use data-specific knowledge.

  2. Quantitative local analysis of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Topcu, Ufuk

    This thesis investigates quantitative methods for local robustness and performance analysis of nonlinear dynamical systems with polynomial vector fields. We propose measures to quantify systems' robustness against uncertainties in initial conditions (regions-of-attraction) and external disturbances (local reachability/gain analysis). S-procedure and sum-of-squares relaxations are used to translate Lyapunov-type characterizations to sum-of-squares optimization problems. These problems are typically bilinear/nonconvex (due to local analysis rather than global) and their size grows rapidly with state/uncertainty space dimension. Our approach is based on exploiting system theoretic interpretations of these optimization problems to reduce their complexity. We propose a methodology incorporating simulation data in formal proof construction enabling more reliable and efficient search for robustness and performance certificates compared to the direct use of general purpose solvers. This technique is adapted both to region-of-attraction and reachability analysis. We extend the analysis to uncertain systems by taking an intentionally simplistic and potentially conservative route, namely employing parameter-independent rather than parameter-dependent certificates. The conservatism is simply reduced by a branch-and-hound type refinement procedure. The main thrust of these methods is their suitability for parallel computing achieved by decomposing otherwise challenging problems into relatively tractable smaller ones. We demonstrate proposed methods on several small/medium size examples in each chapter and apply each method to a benchmark example with an uncertain short period pitch axis model of an aircraft. Additional practical issues leading to a more rigorous basis for the proposed methodology as well as promising further research topics are also addressed. We show that stability of linearized dynamics is not only necessary but also sufficient for the feasibility of the formulations in region-of-attraction analysis. Furthermore, we generalize an upper bound refinement procedure in local reachability/gain analysis which effectively generates non-polynomial certificates from polynomial ones. Finally, broader applicability of optimization-based tools stringently depends on the availability of scalable/hierarchial algorithms. As an initial step toward this direction, we propose a local small-gain theorem and apply to stability region analysis in the presence of unmodeled dynamics.

  3. Basis for selecting optimum antibiotic regimens for secondary peritonitis.

    PubMed

    Maseda, Emilio; Gimenez, Maria-Jose; Gilsanz, Fernando; Aguilar, Lorenzo

    2016-01-01

    Adequate management of severely ill patients with secondary peritonitis requires supportive therapy of organ dysfunction, source control of infection and antimicrobial therapy. Since secondary peritonitis is polymicrobial, appropriate empiric therapy requires combination therapy in order to achieve the needed coverage for both common and more unusual organisms. This article reviews etiological agents, resistance mechanisms and their prevalence, how and when to cover them and guidelines for treatment in the literature. Local surveillances are the basis for the selection of compounds in antibiotic regimens, which should be further adapted to the increasing number of patients with risk factors for resistance (clinical setting, comorbidities, previous antibiotic treatments, previous colonization, severity…). Inadequate antimicrobial regimens are strongly associated with unfavorable outcomes. Awareness of resistance epidemiology and of clinical consequences of inadequate therapy against resistant bacteria is crucial for clinicians treating secondary peritonitis, with delicate balance between optimization of empirical therapy (improving outcomes) and antimicrobial overuse (increasing resistance emergence).

  4. A real-time biomimetic acoustic localizing system using time-shared architecture

    NASA Astrophysics Data System (ADS)

    Nourzad Karl, Marianne; Karl, Christian; Hubbard, Allyn

    2008-04-01

    In this paper a real-time sound source localizing system is proposed, which is based on previously developed mammalian auditory models. Traditionally, following the models, which use interaural time delay (ITD) estimates, the amount of parallel computations needed by a system to achieve real-time sound source localization is a limiting factor and a design challenge for hardware implementations. Therefore a new approach using a time-shared architecture implementation is introduced. The proposed architecture is a purely sample-base-driven digital system, and it follows closely the continuous-time approach described in the models. Rather than having dedicated hardware on a per frequency channel basis, a specialized core channel, shared for all frequency bands is used. Having an optimized execution time, which is much less than the system's sample rate, the proposed time-shared solution allows the same number of virtual channels to be processed as the dedicated channels in the traditional approach. Hence, the time-shared approach achieves a highly economical and flexible implementation using minimal silicon area. These aspects are particularly important in efficient hardware implementation of a real time biomimetic sound source localization system.

  5. Strong stabilization servo controller with optimization of performance criteria.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2011-07-01

    Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Theoretical Investigation Leading to Energy Storage in Atomic and Molecular Systems

    DTIC Science & Technology

    1990-12-01

    can be calculated in a single run. 21 j) Non-gradient optimization of basis function exponents is possible. The source code can be modified to carry...basis. The 10s3p/5s3p basis consists of the 9s/4s contraction of Siegbahn and Liu (Reference 91) augmented by a diffuse s-type function ( exponent ...vibrational modes. Introduction of diffuse basis functions and optimization of the d-orbital exponents have a small but important effect on the

  7. Pneumothorax detection in chest radiographs using local and global texture signatures

    NASA Astrophysics Data System (ADS)

    Geva, Ofer; Zimmerman-Moreno, Gali; Lieberman, Sivan; Konen, Eli; Greenspan, Hayit

    2015-03-01

    A novel framework for automatic detection of pneumothorax abnormality in chest radiographs is presented. The suggested method is based on a texture analysis approach combined with supervised learning techniques. The proposed framework consists of two main steps: at first, a texture analysis process is performed for detection of local abnormalities. Labeled image patches are extracted in the texture analysis procedure following which local analysis values are incorporated into a novel global image representation. The global representation is used for training and detection of the abnormality at the image level. The presented global representation is designed based on the distinctive shape of the lung, taking into account the characteristics of typical pneumothorax abnormalities. A supervised learning process was performed on both the local and global data, leading to trained detection system. The system was tested on a dataset of 108 upright chest radiographs. Several state of the art texture feature sets were experimented with (Local Binary Patterns, Maximum Response filters). The optimal configuration yielded sensitivity of 81% with specificity of 87%. The results of the evaluation are promising, establishing the current framework as a basis for additional improvements and extensions.

  8. Distributed Optimal Consensus Control for Multiagent Systems With Input Delay.

    PubMed

    Zhang, Huaipin; Yue, Dong; Zhao, Wei; Hu, Songlin; Dou, Chunxia; Huaipin Zhang; Dong Yue; Wei Zhao; Songlin Hu; Chunxia Dou; Hu, Songlin; Zhang, Huaipin; Dou, Chunxia; Yue, Dong; Zhao, Wei

    2018-06-01

    This paper addresses the problem of distributed optimal consensus control for a continuous-time heterogeneous linear multiagent system subject to time varying input delays. First, by discretization and model transformation, the continuous-time input-delayed system is converted into a discrete-time delay-free system. Two delicate performance index functions are defined for these two systems. It is shown that the performance index functions are equivalent and the optimal consensus control problem of the input-delayed system can be cast into that of the delay-free system. Second, by virtue of the Hamilton-Jacobi-Bellman (HJB) equations, an optimal control policy for each agent is designed based on the delay-free system and a novel value iteration algorithm is proposed to learn the solutions to the HJB equations online. The proposed adaptive dynamic programming algorithm is implemented on the basis of a critic-action neural network (NN) structure. Third, it is proved that local consensus errors of the two systems and weight estimation errors of the critic-action NNs are uniformly ultimately bounded while the approximated control policies converge to their target values. Finally, two simulation examples are presented to illustrate the effectiveness of the developed method.

  9. Quantum Monte Carlo calculations of NiO

    NASA Astrophysics Data System (ADS)

    Maezono, Ryo; Towler, Mike D.; Needs, Richard. J.

    2008-03-01

    We describe variational and diffusion quantum Monte Carlo (VMC and DMC) calculations [1] of NiO using a 1024-electron simulation cell. We have used a smooth, norm-conserving, Dirac-Fock pseudopotential [2] in our work. Our trial wave functions were of Slater-Jastrow form, containing orbitals generated in Gaussian-basis UHF periodic calculations. Jastrow factor is optimized using variance minimization with optimized cutoff lengths using the same scheme as our previous work. [4] We apply the lattice regulated scheme [5] to evaluate non-local pseudopotentials in DMC and find the scheme improves the smoothness of the energy-volume curve. [1] CASINO ver.2.1 User Manual, University of Cambridge (2007). [2] J.R. Trail et.al., J. Chem. Phys. 122, 014112 (2005). [3] CRYSTAL98 User's Manual, University of Torino (1998). [4] Ryo Maezono et.al., Phys. Rev. Lett., 98, 025701 (2007). [5] Michele Casula, Phys. Rev. B 74, 161102R (2006).

  10. Stockpiling Ventilators for Influenza Pandemics

    PubMed Central

    Araz, Ozgur M.; Morton, David P.; Johnson, Gregory P.; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-01-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response. PMID:28518041

  11. Gradient design for liquid chromatography using multi-scale optimization.

    PubMed

    López-Ureña, S; Torres-Lapasió, J R; Donat, R; García-Alvarez-Coque, M C

    2018-01-26

    In reversed phase-liquid chromatography, the usual solution to the "general elution problem" is the application of gradient elution with programmed changes of organic solvent (or other properties). A correct quantification of chromatographic peaks in liquid chromatography requires well resolved signals in a proper analysis time. When the complexity of the sample is high, the gradient program should be accommodated to the local resolution needs of each analyte. This makes the optimization of such situations rather troublesome, since enhancing the resolution for a given analyte may imply a collateral worsening of the resolution of other analytes. The aim of this work is to design multi-linear gradients that maximize the resolution, while fulfilling some restrictions: all peaks should be eluted before a given maximal time, the gradient should be flat or increasing, and sudden changes close to eluting peaks are penalized. Consequently, an equilibrated baseline resolution for all compounds is sought. This goal is achieved by splitting the optimization problem in a multi-scale framework. In each scale κ, an optimization problem is solved with N κ  ≈ 2 κ variables that are used to build the gradients. The N κ variables define cubic splines written in terms of a B-spline basis. This allows expressing gradients as polygonals of M points approximating the splines. The cubic splines are built using subdivision schemes, a technique of fast generation of smooth curves, compatible with the multi-scale framework. Owing to the nature of the problem and the presence of multiple local maxima, the algorithm used in the optimization problem of each scale κ should be "global", such as the pattern-search algorithm. The multi-scale optimization approach is successfully applied to find the best multi-linear gradient for resolving a mixture of amino acid derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Consensus Statement of the American Academy of Sleep Medicine on the Recommended Amount of Sleep for Healthy Children: Methodology and Discussion.

    PubMed

    Paruthi, Shalini; Brooks, Lee J; D'Ambrosio, Carolyn; Hall, Wendy A; Kotagal, Suresh; Lloyd, Robin M; Malow, Beth A; Maski, Kiran; Nichols, Cynthia; Quan, Stuart F; Rosen, Carol L; Troester, Matthew M; Wise, Merrill S

    2016-11-15

    Members of the American Academy of Sleep Medicine developed consensus recommendations for the amount of sleep needed to promote optimal health in children and adolescents using a modified RAND Appropriateness Method. After review of 864 published articles, the following sleep durations are recommended: Infants 4 months to 12 months should sleep 12 to 16 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 1 to 2 years of age should sleep 11 to 14 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 3 to 5 years of age should sleep 10 to 13 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 6 to 12 years of age should sleep 9 to 12 hours per 24 hours on a regular basis to promote optimal health. Teenagers 13 to 18 years of age should sleep 8 to 10 hours per 24 hours on a regular basis to promote optimal health. Sleeping the number of recommended hours on a regular basis is associated with better health outcomes including: improved attention, behavior, learning, memory, emotional regulation, quality of life, and mental and physical health. Regularly sleeping fewer than the number of recommended hours is associated with attention, behavior, and learning problems. Insufficient sleep also increases the risk of accidents, injuries, hypertension, obesity, diabetes, and depression. Insufficient sleep in teenagers is associated with increased risk of self-harm, suicidal thoughts, and suicide attempts. A commentary on this article apears in this issue on page 1439. © 2016 American Academy of Sleep Medicine

  13. Reconstruction of local perturbations in periodic surfaces

    NASA Astrophysics Data System (ADS)

    Lechleiter, Armin; Zhang, Ruming

    2018-03-01

    This paper concerns the inverse scattering problem to reconstruct a local perturbation in a periodic structure. Unlike the periodic problems, the periodicity for the scattered field no longer holds, thus classical methods, which reduce quasi-periodic fields in one periodic cell, are no longer available. Based on the Floquet-Bloch transform, a numerical method has been developed to solve the direct problem, that leads to a possibility to design an algorithm for the inverse problem. The numerical method introduced in this paper contains two steps. The first step is initialization, that is to locate the support of the perturbation by a simple method. This step reduces the inverse problem in an infinite domain into one periodic cell. The second step is to apply the Newton-CG method to solve the associated optimization problem. The perturbation is then approximated by a finite spline basis. Numerical examples are given at the end of this paper, showing the efficiency of the numerical method.

  14. The lowest-order weak Galerkin finite element method for the Darcy equation on quadrilateral and hybrid meshes

    NASA Astrophysics Data System (ADS)

    Liu, Jiangguo; Tavener, Simon; Wang, Zhuoran

    2018-04-01

    This paper investigates the lowest-order weak Galerkin finite element method for solving the Darcy equation on quadrilateral and hybrid meshes consisting of quadrilaterals and triangles. In this approach, the pressure is approximated by constants in element interiors and on edges. The discrete weak gradients of these constant basis functions are specified in local Raviart-Thomas spaces, specifically RT0 for triangles and unmapped RT[0] for quadrilaterals. These discrete weak gradients are used to approximate the classical gradient when solving the Darcy equation. The method produces continuous normal fluxes and is locally mass-conservative, regardless of mesh quality, and has optimal order convergence in pressure, velocity, and normal flux, when the quadrilaterals are asymptotically parallelograms. Implementation is straightforward and results in symmetric positive-definite discrete linear systems. We present numerical experiments and comparisons with other existing methods.

  15. Analysis of a Two-Dimensional Thermal Cloaking Problem on the Basis of Optimization

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.

    2018-04-01

    For a two-dimensional model of thermal scattering, inverse problems arising in the development of tools for cloaking material bodies on the basis of a mixed thermal cloaking strategy are considered. By applying the optimization approach, these problems are reduced to optimization ones in which the role of controls is played by variable parameters of the medium occupying the cloaking shell and by the heat flux through a boundary segment of the basic domain. The solvability of the direct and optimization problems is proved, and an optimality system is derived. Based on its analysis, sufficient conditions on the input data are established that ensure the uniqueness and stability of optimal solutions.

  16. Polarized atomic orbitals for self-consistent field electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Head-Gordon, Martin

    1997-12-01

    We present a new self-consistent field approach which, given a large "secondary" basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small "primary" basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO's) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO's derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO's are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO's are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.

  17. Localized basis functions and other computational improvements in variational nonorthogonal basis function methods for quantum mechanical scattering problems involving chemical reactions

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Truhlar, Donald G.

    1990-01-01

    The Generalized Newton Variational Principle for 3D quantum mechanical reactive scattering is briefly reviewed. Then three techniques are described which improve the efficiency of the computations. First, the fact that the Hamiltonian is Hermitian is used to reduce the number of integrals computed, and then the properties of localized basis functions are exploited in order to eliminate redundant work in the integral evaluation. A new type of localized basis function with desirable properties is suggested. It is shown how partitioned matrices can be used with localized basis functions to reduce the amount of work required to handle the complex boundary conditions. The new techniques do not introduce any approximations into the calculations, so they may be used to obtain converged solutions of the Schroedinger equation.

  18. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Kenny S K; Lee, Louis K Y; Xing, L

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis,more » which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.« less

  19. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization.

    PubMed

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-03-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.

  20. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization

    PubMed Central

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-01-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm. PMID:28257060

  1. Computing the Partition Function for Kinetically Trapped RNA Secondary Structures

    PubMed Central

    Lorenz, William A.; Clote, Peter

    2011-01-01

    An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/clotelab/RNAlocopt/. PMID:21297972

  2. A Novel Optimization Technique to Improve Gas Recognition by Electronic Noses Based on the Enhanced Krill Herd Algorithm

    PubMed Central

    Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan

    2016-01-01

    An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C6H6), toluene (C7H8), formaldehyde (CH2O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms’ applications in all E-nose application areas. PMID:27529247

  3. The problem of hole localization in inner-shell states of N2 and CO2 revisited with complete active space self-consistent field approach.

    PubMed

    Rocha, Alexandre B; de Moura, Carlos E V

    2011-12-14

    Potential energy curves for inner-shell states of nitrogen and carbon dioxide molecules are calculated by inner-shell complete active space self-consistent field (CASSCF) method, which is a protocol, recently proposed, to obtain specifically converged inner-shell states at multiconfigurational level. This is possible since the collapse of the wave function to a low-lying state is avoided by a sequence of constrained optimization in the orbital mixing step. The problem of localization of K-shell states is revisited by calculating their energies at CASSCF level based on both localized and delocalized orbitals. The localized basis presents the best results at this level of calculation. Transition energies are also calculated by perturbation theory, by taking the above mentioned MCSCF function as zeroth order wave function. Values for transition energy are in fairly good agreement with experimental ones. Bond dissociation energies for N(2) are considerably high, which means that these states are strongly bound. Potential curves along ground state normal modes of CO(2) indicate the occurrence of Renner-Teller effect in inner-shell states. © 2011 American Institute of Physics

  4. Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements

    NASA Astrophysics Data System (ADS)

    Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso

    2017-09-01

    This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.

  5. A temperature-based feedback control system for electromagnetic phased-array hyperthermia: theory and simulation.

    PubMed

    Kowalski, M E; Jin, J M

    2003-03-07

    A hybrid proportional-integral-in-time and cost-minimizing-in-space feedback control system for electromagnetic, deep regional hyperthermia is proposed. The unique features of this controller are that (1) it uses temperature, not specific absorption rate, as the criterion for selecting the relative phases and amplitudes with which to drive the electromagnetic phased-array used for hyperthermia and (2) it requires on-line computations that are all deterministic in duration. The former feature, in addition to optimizing the treatment directly on the basis of a clinically relevant quantity, also allows the controller to sense and react to time- and temperature-dependent changes in local blood perfusion rates and other factors that can significantly impact the temperature distribution quality of the delivered treatment. The latter feature makes it feasible to implement the scheme on-line in a real-time feedback control loop. This is in sharp contrast to other temperature optimization techniques proposed in the literature that generally involve an iterative approximation that cannot be guaranteed to terminate in a fixed amount of computational time. An example of its application is presented to illustrate the properties and demonstrate the capability of the controller to sense and compensate for local, time-dependent changes in blood perfusion rates.

  6. Divergence in cryptic leaf colour provides local camouflage in an alpine plant.

    PubMed

    Niu, Yang; Chen, Zhe; Stevens, Martin; Sun, Hang

    2017-10-11

    The efficacy of camouflage through background matching is highly environment-dependent, often resulting in intraspecific colour divergence in animals to optimize crypsis in different visual environments. This phenomenon is largely unexplored in plants, although several lines of evidence suggest they do use crypsis to avoid damage by herbivores. Using Corydalis hemidicentra, an alpine plant with cryptic leaf colour, we quantified background matching between leaves and surrounding rocks in five populations based on an approximate model of their butterfly enemy's colour perception. We also investigated the pigment basis of leaf colour variation and the association between feeding risk and camouflage efficacy. We show that plants exhibit remarkable colour divergence between populations, consistent with differences in rock appearances. Leaf colour varies because of a different quantitative combination of two basic pigments-chlorophyll and anthocyanin-plus different air spaces. As expected, leaf colours are better matched against their native backgrounds than against foreign ones in the eyes of the butterfly. Furthermore, improved crypsis tends to be associated with a higher level of feeding risk. These results suggest that divergent cryptic leaf colour may have evolved to optimize local camouflage in various visual environments, extending our understanding of colour evolution and intraspecific phenotype diversity in plants. © 2017 The Author(s).

  7. Blocking reduction of Landsat Thematic Mapper JPEG browse images using optimal PSNR estimated spectra adaptive postfiltering

    NASA Technical Reports Server (NTRS)

    Linares, Irving; Mersereau, Russell M.; Smith, Mark J. T.

    1994-01-01

    Two representative sample images of Band 4 of the Landsat Thematic Mapper are compressed with the JPEG algorithm at 8:1, 16:1 and 24:1 Compression Ratios for experimental browsing purposes. We then apply the Optimal PSNR Estimated Spectra Adaptive Postfiltering (ESAP) algorithm to reduce the DCT blocking distortion. ESAP reduces the blocking distortion while preserving most of the image's edge information by adaptively postfiltering the decoded image using the block's spectral information already obtainable from each block's DCT coefficients. The algorithm iteratively applied a one dimensional log-sigmoid weighting function to the separable interpolated local block estimated spectra of the decoded image until it converges to the optimal PSNR with respect to the original using a 2-D steepest ascent search. Convergence is obtained in a few iterations for integer parameters. The optimal logsig parameters are transmitted to the decoder as a negligible byte of overhead data. A unique maxima is guaranteed due to the 2-D asymptotic exponential overshoot shape of the surface generated by the algorithm. ESAP is based on a DFT analysis of the DCT basis functions. It is implemented with pixel-by-pixel spatially adaptive separable FIR postfilters. PSNR objective improvements between 0.4 to 0.8 dB are shown together with their corresponding optimal PSNR adaptive postfiltered images.

  8. Optimization of Decision-Making for Spatial Sampling in the North China Plain, Based on Remote-Sensing a Priori Knowledge

    NASA Astrophysics Data System (ADS)

    Feng, J.; Bai, L.; Liu, S.; Su, X.; Hu, H.

    2012-07-01

    In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scalefitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys.

  9. Modeling intraspecific adaptation of Abies sachalinensis to local altitude and responses to global warming, based on a 36-year reciprocal transplant experiment.

    PubMed

    Ishizuka, Wataru; Goto, Susumu

    2012-04-01

    Intraspecific adaptation in Abies sachalinensis was examined using models based on long-term monitoring data gathered during a reciprocal transplant experiment with eight seed source populations and six transplantation sites along an altitudinal gradient. The consequence of local adaptation was evaluated by testing the home-site advantage for upslope and downslope transplants at five ages. The populations' fitness-linked trait was set as their productivity (tree height × survival rate) at each age. The effects of global warming were evaluated on the basis of the 36-year performance of downslope transplants. Evidence was found for adaptive genetic variation affecting both height and survival from an early age. Increasing the distance between seed source and planting site significantly reduced productivity for both upslope and downslope transplantation, demonstrating the existence of a significant home-site advantage. The decrease in productivity was most distinct for upslope transplantations, indicating strong local adaptation to high altitudes. Global warming is predicted to increase the productivity of high-altitude populations. However, owing to their existing local adaptation, all tested populations exhibited lower productivity under warming than demes that were optimal for the new climate. These negative predictions should be considered when planning the management of locally adapted plant species such as A. sachalinensis.

  10. On the possibility of control restoration in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The hypersonic aircraft permeable surfaces effective heat protection problems are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated in mathematical model. The statements of direct problems of heat and mass transfer are given: according to preset given controls it is necessary to compute the boundary layer mathematical model parameters and determinate the local and total heat flows and friction forces and the power of blowing system. The A.A.Dorodnicyn's generalized integral relations method has been used as calculation basis. The optimal control - the blowing into boundary layer (for continuous functions) was constructed as the solution of direct problem in extreme statement with the use of this approach. The statement of inverse problems are given: the control laws ensuring the preset given local heat flow and local tangent friction are restored. The differences between the interpolation and the approximation statements are discussed. The possibility of unique control restoration is established and proved (in the stagnation point). The computational experiments results are presented.

  11. Pollution source localization in an urban water supply network based on dynamic water demand.

    PubMed

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  12. Multivariate optimization of headspace trap for furan and furfural simultaneous determination in sponge cake.

    PubMed

    Cepeda-Vázquez, Mayela; Blumenthal, David; Camel, Valérie; Rega, Barbara

    2017-03-01

    Furan, a possibly carcinogenic compound to humans, and furfural, a naturally occurring volatile contributing to aroma, can be both found in thermally treated foods. These process-induced compounds, formed by close reaction pathways, play an important role as markers of food safety and quality. A method capable of simultaneously quantifying both molecules is thus highly relevant for developing mitigation strategies and preserving the sensory properties of food at the same time. We have developed a unique reliable and sensitive headspace trap (HS trap) extraction method coupled to GC-MS for the simultaneous quantification of furan and furfural in a solid processed food (sponge cake). HS Trap extraction has been optimized using an optimal design of experiments (O-DOE) approach, considering four instrumental and two sample preparation variables, as well as a blocking factor identified during preliminary assays. Multicriteria and multiple response optimization was performed based on a desirability function, yielding the following conditions: thermostatting temperature, 65°C; thermostatting time, 15min; number of pressurization cycles, 4; dry purge time, 0.9min; water / sample amount ratio (dry basis), 16; and total amount (water + sample amount, dry basis), 10g. The performances of the optimized method were also assessed: repeatability (RSD: ≤3.3% for furan and ≤2.6% for furfural), intermediate precision (RSD: 4.0% for furan and 4.3% for furfural), linearity (R 2 : 0.9957 for furan and 0.9996 for furfural), LOD (0.50ng furan g sample dry basis -1 and 10.2ng furfural g sample dry basis -1 ), LOQ (0.99ng furan g sample dry basis -1 and 41.1ng furfural g sample dry basis -1 ). Matrix effect was observed mainly for furan. Finally, the optimized method was applied to other sponge cakes with different matrix characteristics and levels of analytes. Copyright © 2016. Published by Elsevier B.V.

  13. Consensus Statement of the American Academy of Sleep Medicine on the Recommended Amount of Sleep for Healthy Children: Methodology and Discussion

    PubMed Central

    Paruthi, Shalini; Brooks, Lee J.; D'Ambrosio, Carolyn; Hall, Wendy A.; Kotagal, Suresh; Lloyd, Robin M.; Malow, Beth A.; Maski, Kiran; Nichols, Cynthia; Quan, Stuart F.; Rosen, Carol L.; Troester, Matthew M.; Wise, Merrill S.

    2016-01-01

    Members of the American Academy of Sleep Medicine developed consensus recommendations for the amount of sleep needed to promote optimal health in children and adolescents using a modified RAND Appropriateness Method. After review of 864 published articles, the following sleep durations are recommended: Infants 4 months to 12 months should sleep 12 to 16 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 1 to 2 years of age should sleep 11 to 14 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 3 to 5 years of age should sleep 10 to 13 hours per 24 hours (including naps) on a regular basis to promote optimal health. Children 6 to 12 years of age should sleep 9 to 12 hours per 24 hours on a regular basis to promote optimal health. Teenagers 13 to 18 years of age should sleep 8 to 10 hours per 24 hours on a regular basis to promote optimal health. Sleeping the number of recommended hours on a regular basis is associated with better health outcomes including: improved attention, behavior, learning, memory, emotional regulation, quality of life, and mental and physical health. Regularly sleeping fewer than the number of recommended hours is associated with attention, behavior, and learning problems. Insufficient sleep also increases the risk of accidents, injuries, hypertension, obesity, diabetes, and depression. Insufficient sleep in teenagers is associated with increased risk of self-harm, suicidal thoughts, and suicide attempts. Commentary: A commentary on this article apears in this issue on page 1439. Citation: Paruthi S, Brooks LJ, D'Ambrosio C, Hall WA, Kotagal S, Lloyd RM, Malow BA, Maski K, Nichols C, Quan SF, Rosen CL, Troester MM, Wise MS. Consensus statement of the American Academy of Sleep Medicine on the recommended amount of sleep for healthy children: methodology and discussion. J Clin Sleep Med 2016;12(11):1549–1561. PMID:27707447

  14. CONORBIT: constrained optimization by radial basis function interpolation in trust regions

    DOE PAGES

    Regis, Rommel G.; Wild, Stefan M.

    2016-09-26

    Here, this paper presents CONORBIT (CONstrained Optimization by Radial Basis function Interpolation in Trust regions), a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions, and is an extension of the ORBIT algorithm. It uses a small margin for the RBF constraint models to facilitate the generation of feasible iterates, and extensive numerical tests confirm that such a margin is helpful in improving performance. CONORBIT is compared with other algorithms on 27 test problems, amore » chemical process optimization problem, and an automotive application. Numerical results show that CONORBIT performs better than COBYLA, a sequential penalty derivative-free method, an augmented Lagrangian method, a direct search method, and another RBF-based algorithm on the test problems and on the automotive application.« less

  15. Profile shape optimization in multi-jet impingement cooling of dimpled topologies for local heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Negi, Deepchand Singh; Pattamatta, Arvind

    2015-04-01

    The present study deals with shape optimization of dimples on the target surface in multi-jet impingement heat transfer. Bezier polynomial formulation is incorporated to generate profile shapes for the dimple profile generation and a multi-objective optimization is performed. The optimized dimple shape exhibits higher local Nusselt number values compared to the reference hemispherical dimpled plate optimized shape which can be used to alleviate local temperature hot spots on target surface.

  16. Synthesizing epidemiological and economic optima for control of immunizing infections.

    PubMed

    Klepac, Petra; Laxminarayan, Ramanan; Grenfell, Bryan T

    2011-08-23

    Epidemic theory predicts that the vaccination threshold required to interrupt local transmission of an immunizing infection like measles depends only on the basic reproductive number and hence transmission rates. When the search for optimal strategies is expanded to incorporate economic constraints, the optimum for disease control in a single population is determined by relative costs of infection and control, rather than transmission rates. Adding a spatial dimension, which precludes local elimination unless it can be achieved globally, can reduce or increase optimal vaccination levels depending on the balance of costs and benefits. For weakly coupled populations, local optimal strategies agree with the global cost-effective strategy; however, asymmetries in costs can lead to divergent control optima in more strongly coupled systems--in particular, strong regional differences in costs of vaccination can preclude local elimination even when elimination is locally optimal. Under certain conditions, it is locally optimal to share vaccination resources with other populations.

  17. The calculations of small molecular conformation energy differences by density functional method

    NASA Astrophysics Data System (ADS)

    Topol, I. A.; Burt, S. K.

    1993-03-01

    The differences in the conformational energies for the gauche (G) and trans(T) conformers of 1,2-difluoroethane and for myo-and scyllo-conformer of inositol have been calculated by local density functional method (LDF approximation) with geometry optimization using different sets of calculation parameters. It is shown that in the contrast to Hartree—Fock methods, density functional calculations reproduce the correct sign and value of the gauche effect for 1,2-difluoroethane and energy difference for both conformers of inositol. The results of normal vibrational analysis for1,2-difluoroethane showed that harmonic frequencies calculated in LDF approximation agree with experimental data with the accuracy typical for scaled large basis set Hartree—Fock calculations.

  18. Coercivity degradation caused by inhomogeneous grain boundaries in sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Chen, Hansheng; Yun, Fan; Qu, Jiangtao; Li, Yingfei; Cheng, Zhenxiang; Fang, Ruhao; Ye, Zhixiao; Ringer, Simon P.; Zheng, Rongkun

    2018-05-01

    Quantitative correlation between intrinsic coercivity and grain boundaries in three dimensions is critical to further improve the performance of sintered Nd-Fe-B permanent magnets. Here, we quantitatively reveal the local composition variation across and especially along grain boundaries using the powerful atomic-scale analysis technique known as atom probe tomography. We also estimate the saturation magnetization, magnetocrystalline anisotropy constant, and exchange stiffness of the grain boundaries on the basis of the experimentally determined structure and composition. Finally, using micromagnetic simulations, we quantify the intrinsic coercivity degradation caused by inhomogeneous grain boundaries. This approach can be applied to other magnetic materials for the analysis and optimization of magnetic properties.

  19. A relative performance analysis of atmospheric Laser Doppler Velocimeter methods.

    NASA Technical Reports Server (NTRS)

    Farmer, W. M.; Hornkohl, J. O.; Brayton, D. B.

    1971-01-01

    Evaluation of the effectiveness of atmospheric applications of a Laser Doppler Velocimeter (LDV) at a wavelength of about 0.5 micrometer in conjunction with dual scatter LDV illuminating techniques, or at a wavelength of 10.6 micrometer with local oscillator LDV illuminating techniques. Equations and examples are given to provide a quantitative basis for LDV system selection and performance criteria in atmospheric research. The comparative study shows that specific ranges and conditions exist where performance of one of the methods is superior to that of the other. It is also pointed out that great care must be exercised in choosing system parameters that optimize a particular LDV designed for atmospheric applications.

  20. Optimization of Levan Production by Cold-Active Bacillus licheniformis ANT 179 and Fructooligosaccharide Synthesis by Its Levansucrase.

    PubMed

    Xavier, Janifer Raj; Ramana, Karna Venkata

    2017-03-01

    Fructooligosaccharides (FOS) and levan attract much attention due to a wide range of applications in food technology and pharmaceutical and cosmetic industry. Bacillus licheniformis ANT 179, isolated from Antarctica soil, produced levansucrase and levan in a medium containing sucrose as carbon substrate. In this study, characterization of levansucrase and production of short-chain FOS and levan were investigated. Temperature and pH optimum of the enzyme were found to be 60 °C and pH 6.0, respectively. The optimization of fermentation conditions for levan production using sugarcane juice by response surface methodology (RSM) was carried out. Central composite rotatable design was used to study the main and the interactive effects of medium components: sugarcane juice and casein peptone concentration on levan production by the bacterium. The optimized medium with sugarcane juice at 20 % (v/v) and casein peptone at 2 % (w/v) was found to be optimal at an initial pH of 7.0 and incubation temperature of 35 °C for 48 h. Under these conditions, the maximum levan concentration was 50.25 g/L on wet weight basis and 16.35 g/L on dry weight basis. The produced inulin type FOS (kestose and neokestose) and levan were characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis. The study revealed that the levansucrase could form FOS from sucrose. The locally available low-cost substrate such as sugarcane juice in the form of a renewable substrate is proposed to be suitable even for scale-up production of enzyme and FOS for industrial applications. The levan and FOS synthesized by the bacterium are suitable for food applications and biomedical uses as the bacterium has GRAS status and devoid of endotoxin as compared to other Gram-negative bacteria.

  1. Jig-Shape Optimization of a Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2018-01-01

    A simple approach for optimizing the jig-shape is proposed in this study. This simple approach is based on an unconstrained optimization problem and applied to a low-boom supersonic aircraft. In this study, the jig-shape optimization is performed using the two-step approach. First, starting design variables are computed using the least-squares surface fitting technique. Next, the jig-shape is further tuned using a numerical optimization procedure based on an in-house object-oriented optimization tool. During the numerical optimization procedure, a design jig-shape is determined by the baseline jig-shape and basis functions. A total of 12 symmetric mode shapes of the cruise-weight configuration, rigid pitch shape, rigid left and right stabilator rotation shapes, and a residual shape are selected as sixteen basis functions. After three optimization runs, the trim shape error distribution is improved, and the maximum trim shape error of 0.9844 inches of the starting configuration becomes 0.00367 inch by the end of the third optimization run.

  2. Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system

    PubMed Central

    Xu, Guang-Bao; Yang, Ying-Hui; Wen, Qiao-Yan; Qin, Su-Juan; Gao, Fei

    2016-01-01

    As we know, unextendible product basis (UPB) is an incomplete basis whose members cannot be perfectly distinguished by local operations and classical communication. However, very little is known about those incomplete and locally indistinguishable product bases that are not UPBs. In this paper, we first construct a series of orthogonal product bases that are completable but not locally distinguishable in a general m ⊗ n (m ≥ 3 and n ≥ 3) quantum system. In particular, we give so far the smallest number of locally indistinguishable states of a completable orthogonal product basis in arbitrary quantum systems. Furthermore, we construct a series of small and locally indistinguishable orthogonal product bases in m ⊗ n (m ≥ 3 and n ≥ 3). All the results lead to a better understanding of the structures of locally indistinguishable product bases in arbitrary bipartite quantum system. PMID:27503634

  3. Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions.

    PubMed

    Hoban, Sean; Kelley, Joanna L; Lotterhos, Katie E; Antolin, Michael F; Bradburd, Gideon; Lowry, David B; Poss, Mary L; Reed, Laura K; Storfer, Andrew; Whitlock, Michael C

    2016-10-01

    Uncovering the genetic and evolutionary basis of local adaptation is a major focus of evolutionary biology. The recent development of cost-effective methods for obtaining high-quality genome-scale data makes it possible to identify some of the loci responsible for adaptive differences among populations. Two basic approaches for identifying putatively locally adaptive loci have been developed and are broadly used: one that identifies loci with unusually high genetic differentiation among populations (differentiation outlier methods) and one that searches for correlations between local population allele frequencies and local environments (genetic-environment association methods). Here, we review the promises and challenges of these genome scan methods, including correcting for the confounding influence of a species' demographic history, biases caused by missing aspects of the genome, matching scales of environmental data with population structure, and other statistical considerations. In each case, we make suggestions for best practices for maximizing the accuracy and efficiency of genome scans to detect the underlying genetic basis of local adaptation. With attention to their current limitations, genome scan methods can be an important tool in finding the genetic basis of adaptive evolutionary change.

  4. The Energy Landscape Analysis of Cancer Mutations in Protein Kinases

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2011-01-01

    The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems. PMID:21998754

  5. Purification of intact chloroplasts from marine plant Posidonia oceanica suitable for organelle proteomics.

    PubMed

    Piro, Amalia; Serra, Ilia Anna; Spadafora, Antonia; Cardilio, Monica; Bianco, Linda; Perrotta, Gaetano; Santos, Rui; Mazzuca, Silvia

    2015-12-01

    Posidonia oceanica is a marine angiosperm, or seagrass, adapted to grow to the underwater life from shallow waters to 50 m depth. This raises questions of how their photosynthesis adapted to the attenuation of light through the water column and leads to the assumption that biochemistry and metabolism of the chloroplast are the basis of adaptive capacity. In the present study, we described a protocol that was adapted from those optimized for terrestrial plants, to extract chloroplasts from as minimal tissue as possible. We obtained the best balance between tissue amount/intact chloroplasts yield using one leaf from one plant. After isopynic separations, the chloroplasts purity and integrity were evaluated by biochemical assay and using a proteomic approach. Chloroplast proteins were extracted from highly purified organelles and resolved by 1DE SDS-PAGE. Proteins were sequenced by nLC-ESI-IT-MS/MS of 1DE gel bands and identified against NCBInr green plant databases, Dr. Zompo database for seagrasses in a local customized dataset. The curated localization of proteins in sub-plastidial compartments (i.e. envelope, stroma and thylakoids) was retrieved in the AT_CHLORO database. This purification protocol and the validation of compartment markers may serve as basis for sub-cellular proteomics in P. oceanica and other seagrasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motamarri, P.; Nowak, M.R.; Leiter, K.

    2013-11-15

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposedmore » solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using modest computational resources, and good scalability of the present implementation up to 192 processors.« less

  7. Optimizer convergence and local minima errors and their clinical importance

    NASA Astrophysics Data System (ADS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R.

    2003-09-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  8. Optimizer convergence and local minima errors and their clinical importance.

    PubMed

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-09-07

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  9. Acceleration techniques in the univariate Lipschitz global optimization

    NASA Astrophysics Data System (ADS)

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.; De Franco, Angela

    2016-10-01

    Univariate box-constrained Lipschitz global optimization problems are considered in this contribution. Geometric and information statistical approaches are presented. The novel powerful local tuning and local improvement techniques are described in the contribution as well as the traditional ways to estimate the Lipschitz constant. The advantages of the presented local tuning and local improvement techniques are demonstrated using the operational characteristics approach for comparing deterministic global optimization algorithms on the class of 100 widely used test functions.

  10. Local-in-Time Adjoint-Based Method for Optimal Control/Design Optimization of Unsteady Compressible Flows

    NASA Technical Reports Server (NTRS)

    Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.

    2009-01-01

    .We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.

  11. Environment assisted degradation mechanisms in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.

  12. [A new approach to clinical and laboratory diagnosis of systemic and local soft tissue infections].

    PubMed

    Barkhatova, N A

    2009-01-01

    Dynamic measurements of blood TNF-a, IL-IRA, CRP, oligopeptide, and lactoferrin levels in patients with systemic and local soft tissue infections revealed direct correlation between them which allowed to use these indicators for the diagnosis of systemic infections. Results of clinical and laboratory analyses provided a basis for distinguishing short-term systemic inflammatory response syndrome and sepsis and developing relevant diagnostic criteria. Sepsis combined with systemic inflammatory response syndrome persisting for more than 72 hours after the onset of adequate therapy was characterized by CRP levels > 30 mg/l, oligopeptides > 0.34 U, lactoferrin > 1900 ng/ml, TNF-a > 6 pg/ml, ILL-IRA < 1500 pg/ml Patients with systemic inflammatory response syndrome for less than 72 hours had lower TNF-a, CRP, oligopeptide, and lactoferrin levels with IL-IRA > 1500 pg/ml. This new approach to early diagnosis of systemic infections makes it possible to optimize their treatment and thereby enhance its efficiency.

  13. Modelling Framework and the Quantitative Analysis of Distributed Energy Resources in Future Distribution Networks

    NASA Astrophysics Data System (ADS)

    Han, Xue; Sandels, Claes; Zhu, Kun; Nordström, Lars

    2013-08-01

    There has been a large body of statements claiming that the large-scale deployment of Distributed Energy Resources (DERs) could eventually reshape the future distribution grid operation in numerous ways. Thus, it is necessary to introduce a framework to measure to what extent the power system operation will be changed by various parameters of DERs. This article proposed a modelling framework for an overview analysis on the correlation between DERs. Furthermore, to validate the framework, the authors described the reference models of different categories of DERs with their unique characteristics, comprising distributed generation, active demand and electric vehicles. Subsequently, quantitative analysis was made on the basis of the current and envisioned DER deployment scenarios proposed for Sweden. Simulations are performed in two typical distribution network models for four seasons. The simulation results show that in general the DER deployment brings in the possibilities to reduce the power losses and voltage drops by compensating power from the local generation and optimizing the local load profiles.

  14. Localized basis sets for unbound electrons in nanoelectronics.

    PubMed

    Soriano, D; Jacob, D; Palacios, J J

    2008-02-21

    It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of Gaussian basis sets, commonly used in first-principles codes. The possible usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.

  15. Streamflow Prediction based on Chaos Theory

    NASA Astrophysics Data System (ADS)

    Li, X.; Wang, X.; Babovic, V. M.

    2015-12-01

    Chaos theory is a popular method in hydrologic time series prediction. Local model (LM) based on this theory utilizes time-delay embedding to reconstruct the phase-space diagram. For this method, its efficacy is dependent on the embedding parameters, i.e. embedding dimension, time lag, and nearest neighbor number. The optimal estimation of these parameters is thus critical to the application of Local model. However, these embedding parameters are conventionally estimated using Average Mutual Information (AMI) and False Nearest Neighbors (FNN) separately. This may leads to local optimization and thus has limitation to its prediction accuracy. Considering about these limitation, this paper applies a local model combined with simulated annealing (SA) to find the global optimization of embedding parameters. It is also compared with another global optimization approach of Genetic Algorithm (GA). These proposed hybrid methods are applied in daily and monthly streamflow time series for examination. The results show that global optimization can contribute to the local model to provide more accurate prediction results compared with local optimization. The LM combined with SA shows more advantages in terms of its computational efficiency. The proposed scheme here can also be applied to other fields such as prediction of hydro-climatic time series, error correction, etc.

  16. Task-Driven Optimization of Fluence Field and Regularization for Model-Based Iterative Reconstruction in Computed Tomography.

    PubMed

    Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster

    2017-12-01

    This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.

  17. Optimal Design for the Precise Estimation of an Interaction Threshold: The Impact of Exposure to a Mixture of 18 Polyhalogenated Aromatic Hydrocarbons

    PubMed Central

    Yeatts, Sharon D.; Gennings, Chris; Crofton, Kevin M.

    2014-01-01

    Traditional additivity models provide little flexibility in modeling the dose–response relationships of the single agents in a mixture. While the flexible single chemical required (FSCR) methods allow greater flexibility, its implicit nature is an obstacle in the formation of the parameter covariance matrix, which forms the basis for many statistical optimality design criteria. The goal of this effort is to develop a method for constructing the parameter covariance matrix for the FSCR models, so that (local) alphabetic optimality criteria can be applied. Data from Crofton et al. are provided as motivation; in an experiment designed to determine the effect of 18 polyhalogenated aromatic hydrocarbons on serum total thyroxine (T4), the interaction among the chemicals was statistically significant. Gennings et al. fit the FSCR interaction threshold model to the data. The resulting estimate of the interaction threshold was positive and within the observed dose region, providing evidence of a dose-dependent interaction. However, the corresponding likelihood-ratio-based confidence interval was wide and included zero. In order to more precisely estimate the location of the interaction threshold, supplemental data are required. Using the available data as the first stage, the Ds-optimal second-stage design criterion was applied to minimize the variance of the hypothesized interaction threshold. Practical concerns associated with the resulting design are discussed and addressed using the penalized optimality criterion. Results demonstrate that the penalized Ds-optimal second-stage design can be used to more precisely define the interaction threshold while maintaining the characteristics deemed important in practice. PMID:22640366

  18. A local segmentation parameter optimization approach for mapping heterogeneous urban environments using VHR imagery

    NASA Astrophysics Data System (ADS)

    Grippa, Tais; Georganos, Stefanos; Lennert, Moritz; Vanhuysse, Sabine; Wolff, Eléonore

    2017-10-01

    Mapping large heterogeneous urban areas using object-based image analysis (OBIA) remains challenging, especially with respect to the segmentation process. This could be explained both by the complex arrangement of heterogeneous land-cover classes and by the high diversity of urban patterns which can be encountered throughout the scene. In this context, using a single segmentation parameter to obtain satisfying segmentation results for the whole scene can be impossible. Nonetheless, it is possible to subdivide the whole city into smaller local zones, rather homogeneous according to their urban pattern. These zones can then be used to optimize the segmentation parameter locally, instead of using the whole image or a single representative spatial subset. This paper assesses the contribution of a local approach for the optimization of segmentation parameter compared to a global approach. Ouagadougou, located in sub-Saharan Africa, is used as case studies. First, the whole scene is segmented using a single globally optimized segmentation parameter. Second, the city is subdivided into 283 local zones, homogeneous in terms of building size and building density. Each local zone is then segmented using a locally optimized segmentation parameter. Unsupervised segmentation parameter optimization (USPO), relying on an optimization function which tends to maximize both intra-object homogeneity and inter-object heterogeneity, is used to select the segmentation parameter automatically for both approaches. Finally, a land-use/land-cover classification is performed using the Random Forest (RF) classifier. The results reveal that the local approach outperforms the global one, especially by limiting confusions between buildings and their bare-soil neighbors.

  19. Kullback-Leibler Divergence-Based Differential Evolution Markov Chain Filter for Global Localization of Mobile Robots.

    PubMed

    Martín, Fernando; Moreno, Luis; Garrido, Santiago; Blanco, Dolores

    2015-09-16

    One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot's pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area.

  20. Tailoring the heat transfer on the injection moulding cavity by plasma sprayed ceramic coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Hopmann, Ch; Öte, M.; Knoch, M. A.; Alkhasli, I.; Dornebusch, H.; Schmitz, M.

    2017-03-01

    Inhomogeneous material shrinkage in injection moulding can cause warpage in thermoplastic components. To minimise the deformations of the injection moulding parts, the heat transfer during the cooling phase can be adjusted according to the local cooling demand on the surface of the mould cavity by means of plasma sprayed coatings with locally variable thermal resistance over the surface of the mould. Thermal resistance is a function of thermal conductivity and thickness of the coatings, where thermal conductivity of thermal barrier coatings can be adjusted by altering the chemical composition and the microstructure, which is depending on the thickness. This work evaluates the application of plasma sprayed coatings with variable thickness as thermal barrier coatings in the mould cavity. The thermal resistance of the coating and thereby the heat transfer from the melt into the mould will be influenced locally by varying the coating thickness over the cavity area according to the local cooling demand. Using the laser flash method, the thermal conduction of coatings with different thicknesses will be determined. On the basis of the experimentally determined thermal conduction, the effect of the coatings on the temperature field of the mould cavity will be numerically calculated and the required thickness distribution of the coating for an optimal temperature gradient will be determined.

  1. Kullback-Leibler Divergence-Based Differential Evolution Markov Chain Filter for Global Localization of Mobile Robots

    PubMed Central

    Martín, Fernando; Moreno, Luis; Garrido, Santiago; Blanco, Dolores

    2015-01-01

    One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot’s pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area. PMID:26389914

  2. A partitioned correlation function interaction approach for describing electron correlation in atoms

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given.

  3. Convolutional neural network approach for enhanced capture of breast parenchymal complexity patterns associated with breast cancer risk

    NASA Astrophysics Data System (ADS)

    Oustimov, Andrew; Gastounioti, Aimilia; Hsieh, Meng-Kang; Pantalone, Lauren; Conant, Emily F.; Kontos, Despina

    2017-03-01

    We assess the feasibility of a parenchymal texture feature fusion approach, utilizing a convolutional neural network (ConvNet) architecture, to benefit breast cancer risk assessment. Hypothesizing that by capturing sparse, subtle interactions between localized motifs present in two-dimensional texture feature maps derived from mammographic images, a multitude of texture feature descriptors can be optimally reduced to five meta-features capable of serving as a basis on which a linear classifier, such as logistic regression, can efficiently assess breast cancer risk. We combine this methodology with our previously validated lattice-based strategy for parenchymal texture analysis and we evaluate the feasibility of this approach in a case-control study with 424 digital mammograms. In a randomized split-sample setting, we optimize our framework in training/validation sets (N=300) and evaluate its descriminatory performance in an independent test set (N=124). The discriminatory capacity is assessed in terms of the the area under the curve (AUC) of the receiver operator characteristic (ROC). The resulting meta-features exhibited strong classification capability in the test dataset (AUC = 0.90), outperforming conventional, non-fused, texture analysis which previously resulted in an AUC=0.85 on the same case-control dataset. Our results suggest that informative interactions between localized motifs exist and can be extracted and summarized via a fairly simple ConvNet architecture.

  4. Optimal Designs for the Rasch Model

    ERIC Educational Resources Information Center

    Grasshoff, Ulrike; Holling, Heinz; Schwabe, Rainer

    2012-01-01

    In this paper, optimal designs will be derived for estimating the ability parameters of the Rasch model when difficulty parameters are known. It is well established that a design is locally D-optimal if the ability and difficulty coincide. But locally optimal designs require that the ability parameters to be estimated are known. To attenuate this…

  5. Cuckoo Search with Lévy Flights for Weighted Bayesian Energy Functional Optimization in Global-Support Curve Data Fitting

    PubMed Central

    Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis

    2014-01-01

    The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way. PMID:24977175

  6. Cuckoo search with Lévy flights for weighted Bayesian energy functional optimization in global-support curve data fitting.

    PubMed

    Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis

    2014-01-01

    The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.

  7. Computational benefits using artificial intelligent methodologies for the solution of an environmental design problem: saltwater intrusion.

    PubMed

    Papadopoulou, Maria P; Nikolos, Ioannis K; Karatzas, George P

    2010-01-01

    Artificial Neural Networks (ANNs) comprise a powerful tool to approximate the complicated behavior and response of physical systems allowing considerable reduction in computation time during time-consuming optimization runs. In this work, a Radial Basis Function Artificial Neural Network (RBFN) is combined with a Differential Evolution (DE) algorithm to solve a water resources management problem, using an optimization procedure. The objective of the optimization scheme is to cover the daily water demand on the coastal aquifer east of the city of Heraklion, Crete, without reducing the subsurface water quality due to seawater intrusion. The RBFN is utilized as an on-line surrogate model to approximate the behavior of the aquifer and to replace some of the costly evaluations of an accurate numerical simulation model which solves the subsurface water flow differential equations. The RBFN is used as a local approximation model in such a way as to maintain the robustness of the DE algorithm. The results of this procedure are compared to the corresponding results obtained by using the Simplex method and by using the DE procedure without the surrogate model. As it is demonstrated, the use of the surrogate model accelerates the convergence of the DE optimization procedure and additionally provides a better solution at the same number of exact evaluations, compared to the original DE algorithm.

  8. A machine learning approach for efficient uncertainty quantification using multiscale methods

    NASA Astrophysics Data System (ADS)

    Chan, Shing; Elsheikh, Ahmed H.

    2018-02-01

    Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.

  9. Optimization of global model composed of radial basis functions using the term-ranking approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Peng; Tao, Chao, E-mail: taochao@nju.edu.cn; Liu, Xiao-Jun

    2014-03-15

    A term-ranking method is put forward to optimize the global model composed of radial basis functions to improve the predictability of the model. The effectiveness of the proposed method is examined by numerical simulation and experimental data. Numerical simulations indicate that this method can significantly lengthen the prediction time and decrease the Bayesian information criterion of the model. The application to real voice signal shows that the optimized global model can capture more predictable component in chaos-like voice data and simultaneously reduce the predictable component (periodic pitch) in the residual signal.

  10. Long-term Benefit of Tumor Volume-Directed Involved Field Radiation Therapy in the Management of Recurrent Ovarian Cancer.

    PubMed

    Albuquerque, Kevin; Patel, Mona; Liotta, Margaret; Harkenrider, Matthew; Guo, Rong; Small, William; Ronald, Potkul

    2016-05-01

    This study aimed to report on long-term effectiveness of involved field radiation therapy (IFRT) in the salvage of localized recurrent ovarian cancer (ROC). A retrospective analysis of 27 patients with a diagnosis of epithelial ovarian cancer who received tumor volume-directed IFRT for localized extraperitoneal recurrences (either as consolidation after cytoreductive surgery (CRS) or as attempted salvage if unresectable) forms the basis of this report. All patients were heavily pretreated with multiple chemotherapy regimens. Involved field radiation therapy was primarily with external beam (median dose, 50.4 Gy). Local recurrence-free survival (LRFS) was defined as freedom from in-field recurrences and was considered as a measure of effectiveness of radiotherapy. Statistical analyses evaluated association between disease-free survival, overall survival, LRFS, and various prognostic factors. Comparison was also made with a similar but unmatched cohort with localized recurrences salvaged by additional chemotherapy instead of local therapies (NIFRT group). Of 27 patients, 17 had optimal CRS before RT. The actuarial survival at 5 and 10 years (in parenthesis) from date of radiation were LRFS (70% and 60%), overall survival (30% and 19%), and disease-free survival (33% and 20%). None of the NIFRT patients survived beyond 5 years from initiation of salvage chemotherapy. Long-term follow-up in this selected series confirmed the benefit of IFRT (±CRS) in localized ROC. Chemotherapy salvage in a similar NIFRT group was not equivalent, suggesting a role for locoregional therapies in selected patients with ROC.

  11. Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells.

    PubMed

    Sheng, Huachun; Ma, Jie; Pu, Junbao; Wang, Lijun

    2018-05-16

    Turgor-driven plant cell growth depends on cell wall structure and mechanics. Strengthening of cell walls on the basis of an association and interaction with silicon (Si) could lead to improved nutrient uptake and optimized growth and metabolism in rice (Oryza sativa). However, the structural basis and physiological mechanisms of nutrient uptake and metabolism optimization under Si assistance remain obscure. Single-cell level biophysical measurements, including in situ non-invasive micro-testing (NMT) of NH4+ ion fluxes, atomic force microscopy (AFM) of cell walls, and electrolyte leakage and membrane potential, as well as whole-cell proteomics using isobaric tags for relative and absolute quantification (iTRAQ), were performed. The altered cell wall structure increases the uptake rate of the main nutrient NH4+ in Si-accumulating cells, whereas the rate is only half in Si-deprived counterparts. Rigid cell walls enhanced by a wall-bound form of Si as the structural basis stabilize cell membranes. This, in turn, optimizes nutrient uptake of the cells in the same growth phase without any requirement for up-regulation of transmembrane ammonium transporters. Optimization of cellular nutrient acquisition strategies can substantially improve performance in terms of growth, metabolism and stress resistance.

  12. Application of an image-guided navigation system in breast cancer localization

    NASA Astrophysics Data System (ADS)

    Alderliesten, Tanja; Loo, Claudette; Schlief, Angelique T. E. F.; Paape, Anita; van der Meer, Michiel; Gilhuijs, Kenneth G. A.

    2009-02-01

    Image-guided navigation on the basis of pre-therapy images in a deformable organ, such as the breast, requires a survey of the factors that cause uncertainties. A deformable breast-tissue-mimicking phantom with simulated tumors was employed to investigate the accuracy of lesion localization with a needle instrument coupled to an optical measurement system. The RMS deviation was 1.1 mm with errors <= 2.0 mm in 96% of the procedures. Ultrasonography data acquired during needle localization of breast tumors were analyzed in 20 patients (23 tumors; 12 benign, 11 malignant) to investigate the deformation due to presence of instruments. The overall RMS tumor shift was 2.3 mm after release of pressure on the needle. To establish an optimal strategy to correct for breast motion due to breathing experiments with a volunteer were performed. Tracking a single centre marker was found to be most effective to improve registration accuracy. Average deviations of 8.2 mm were reduced to 1.1 mm. The combined impact of these different uncertainties resulted in distributions defined by: μ = 2.5 mm, σ = 1.4 mm (benign and malignant), μ = 3.1 mm, σ = 1.8 mm (benign), μ = 1.7 mm, σ = 0.9 mm (malignant).

  13. Developing the Framework for an Early Warning System for Ebola based on Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Dartevelle, Sebastien; Nguy-Robertson, Anthony; Bell, Jesse; Chretien, Jean-Paul

    2017-04-01

    The 2014-2016 Ebola outbreak in West Africa indicated that this lethal disease can become a National Security issue as it crossed boarders and taxed regional health care systems. Ebola symptoms are also similar to other endemic diseases. Thus, forewarning of its possible presence can alert local public health facilities and populations, and may thereby reduce response time. Early work by our group has identified local climate (e.g. temperature, precipitation) and vegetation health (e.g. remote sensing using normalized difference vegetation index, NDVI) variables as leading indicators to known historical Ebola outbreaks. The environmental stress placed on the system as it reaches a climatic tipping point provides optimal conditions for spillover of Ebola virus from the reservoir host (which is unknown but suspected to be bats) to humans. This work outlines a framework for an approach to provide early warning maps based on the present state of the environment. Time series data from Climate Forecast System ver. 2 and AVHRR and MODIS satellite sensors are the basis for the early warning models used. These maps can provide policy makers and local health care professionals timely information for disease surveillance and preparation for future Ebola outbreaks.

  14. Phase II, randomized study of concomitant chemoradiotherapy followed by surgery and adjuvant capecitabine plus oxaliplatin (CAPOX) compared with induction CAPOX followed by concomitant chemoradiotherapy and surgery in magnetic resonance imaging-defined, locally advanced rectal cancer: Grupo cancer de recto 3 study.

    PubMed

    Fernández-Martos, Carlos; Pericay, Carles; Aparicio, Jorge; Salud, Antonieta; Safont, Mariajose; Massuti, Bertomeu; Vera, Ruth; Escudero, Pilar; Maurel, Joan; Marcuello, Eugenio; Mengual, Jose Luis; Saigi, Eugenio; Estevan, Rafael; Mira, Moises; Polo, Sonia; Hernandez, Ana; Gallen, Manuel; Arias, Fernando; Serra, Javier; Alonso, Vicente

    2010-02-10

    PURPOSE The optimal therapeutic sequence of the adjuvant chemotherapy component of preoperative chemoradiotherapy (CRT) for patients with locally advanced rectal cancer is controversial. Induction chemotherapy before preoperative CRT may be associated with better efficacy and compliance. PATIENTS AND METHODS A total of 108 patients with locally advanced rectal cancer were randomly assigned to arm A-preoperative CRT with capecitabine, oxaliplatin, and concurrent radiation followed by surgery and four cycles of postoperative adjuvant capecitabine and oxaliplatin (CAPOX)-or arm B-induction CAPOX followed by CRT and surgery. The primary end point was pathologic complete response rate (pCR). Results On an intention-to-treat basis, the pCR for arms A and B were 13.5% (95% CI, 5.6% to 25.8%) and 14.3% (95% CI, 6.4% to 26.2%), respectively. There were no statistically significant differences in other end points, including downstaging, tumor regression, and R0 resection. Overall, chemotherapy treatment exposure was higher in arm B than in arm A for both oxaliplatin (P < .0001) and capecitabine (P < .0001). During CRT, grades 3 to 4 adverse events were similar in both arms but were significantly higher in arm A during postoperative adjuvant CT than with induction CT in arm B. There were three deaths in each arm during the treatment period. CONCLUSION Compared with postoperative adjuvant CAPOX, induction CAPOX before CRT had similar pCR and complete resection rates. It did achieve more favorable compliance and toxicity profiles. On the basis of these findings, a phase III study to definitively test the induction strategy is warranted.

  15. On computing the global time-optimal motions of robotic manipulators in the presence of obstacles

    NASA Technical Reports Server (NTRS)

    Shiller, Zvi; Dubowsky, Steven

    1991-01-01

    A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.

  16. Efficient DV-HOP Localization for Wireless Cyber-Physical Social Sensing System: A Correntropy-Based Neural Network Learning Scheme

    PubMed Central

    Xu, Yang; Luo, Xiong; Wang, Weiping; Zhao, Wenbing

    2017-01-01

    Integrating wireless sensor network (WSN) into the emerging computing paradigm, e.g., cyber-physical social sensing (CPSS), has witnessed a growing interest, and WSN can serve as a social network while receiving more attention from the social computing research field. Then, the localization of sensor nodes has become an essential requirement for many applications over WSN. Meanwhile, the localization information of unknown nodes has strongly affected the performance of WSN. The received signal strength indication (RSSI) as a typical range-based algorithm for positioning sensor nodes in WSN could achieve accurate location with hardware saving, but is sensitive to environmental noises. Moreover, the original distance vector hop (DV-HOP) as an important range-free localization algorithm is simple, inexpensive and not related to the environment factors, but performs poorly when lacking anchor nodes. Motivated by these, various improved DV-HOP schemes with RSSI have been introduced, and we present a new neural network (NN)-based node localization scheme, named RHOP-ELM-RCC, through the use of DV-HOP, RSSI and a regularized correntropy criterion (RCC)-based extreme learning machine (ELM) algorithm (ELM-RCC). Firstly, the proposed scheme employs both RSSI and DV-HOP to evaluate the distances between nodes to enhance the accuracy of distance estimation at a reasonable cost. Then, with the help of ELM featured with a fast learning speed with a good generalization performance and minimal human intervention, a single hidden layer feedforward network (SLFN) on the basis of ELM-RCC is used to implement the optimization task for obtaining the location of unknown nodes. Since the RSSI may be influenced by the environmental noises and may bring estimation error, the RCC instead of the mean square error (MSE) estimation, which is sensitive to noises, is exploited in ELM. Hence, it may make the estimation more robust against outliers. Additionally, the least square estimation (LSE) in ELM is replaced by the half-quadratic optimization technique. Simulation results show that our proposed scheme outperforms other traditional localization schemes. PMID:28085084

  17. A Computationally Inexpensive Optimal Guidance via Radial-Basis-Function Neural Network for Autonomous Soft Landing on Asteroids

    PubMed Central

    Zhang, Peng; Liu, Keping; Zhao, Bo; Li, Yuanchun

    2015-01-01

    Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN) is proposed. The optimization problem of the trajectory for soft landing on asteroids is formulated and transformed into a two-point boundary value problem (TPBVP). Combining the database of initial states with the relative initial co-states, an RBFNN is trained offline. The optimal trajectory of the soft landing is determined rapidly by applying the trained network in the online guidance. The Monte Carlo simulations of soft landing on the Eros433 are performed to demonstrate the effectiveness of the proposed guidance algorithm. PMID:26367382

  18. An evaluation of methods for estimating the number of local optima in combinatorial optimization problems.

    PubMed

    Hernando, Leticia; Mendiburu, Alexander; Lozano, Jose A

    2013-01-01

    The solution of many combinatorial optimization problems is carried out by metaheuristics, which generally make use of local search algorithms. These algorithms use some kind of neighborhood structure over the search space. The performance of the algorithms strongly depends on the properties that the neighborhood imposes on the search space. One of these properties is the number of local optima. Given an instance of a combinatorial optimization problem and a neighborhood, the estimation of the number of local optima can help not only to measure the complexity of the instance, but also to choose the most convenient neighborhood to solve it. In this paper we review and evaluate several methods to estimate the number of local optima in combinatorial optimization problems. The methods reviewed not only come from the combinatorial optimization literature, but also from the statistical literature. A thorough evaluation in synthetic as well as real problems is given. We conclude by providing recommendations of methods for several scenarios.

  19. Stiffness management of sheet metal parts using laser metal deposition

    NASA Astrophysics Data System (ADS)

    Bambach, Markus; Sviridov, Alexander; Weisheit, Andreas

    2017-10-01

    Tailored blanks are established solutions for the production of load-adapted sheet metal components. In the course of the individualization of production, such semi-finished products are gaining importance. In addition to tailored welded blanks and tailored rolled blanks, patchwork blanks have been developed which allow a local increase in sheet thickness by welding, gluing or soldering patches onto sheet metal blanks. Patchwork blanks, however, have several limitations, on the one hand, the limited freedom of design in the production of patchwork blanks and, on the other hand, the fact that there is no optimum material bonding with the substrate. The increasing production of derivative and special vehicles on the basis of standard vehicles, prototype production and the functionalization of components require solutions with which semi-finished products and sheet metal components can be provided flexibly with local thickenings or functional elements with a firm metallurgical bond to the substrate. An alternative to tailored and patchwork blanks is, therefore, a free-form reinforcement applied by additive manufacturing via laser metal deposition (LMD). By combining metal forming and additive manufacturing, stiffness can be adapted to the loads based on standard components in a material-efficient manner and without the need to redesign the forming tools. This paper details a study of the potential of stiffness management by LMD using a demonstrator part. Sizing optimization is performed and part distortion is taken into account to find an optimal design for the cladding. A maximum stiffness increase of 167% is feasible with only 4.7% additional mass. Avoiding part distortion leads to a pareto-optimal design which achieves 95% more stiffness with 6% added mass.

  20. 41 CFR 101-8.304 - Effect of State or local law or other requirements and effect of employment opportunities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS GENERAL 8-NONDISCRIMINATION IN PROGRAMS RECEIVING FEDERAL FINANCIAL ASSISTANCE 8.3-Discrimination Prohibited on the Basis of Handicap § 101-8.304 Effect of State or local law or other requirements and effect... alleviated by the existence of any State or local law or other requirement that, on the basis of handicap...

  1. 41 CFR 101-8.304 - Effect of State or local law or other requirements and effect of employment opportunities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REGULATIONS GENERAL 8-NONDISCRIMINATION IN PROGRAMS RECEIVING FEDERAL FINANCIAL ASSISTANCE 8.3-Discrimination Prohibited on the Basis of Handicap § 101-8.304 Effect of State or local law or other requirements and effect... alleviated by the existence of any State or local law or other requirement that, on the basis of handicap...

  2. 41 CFR 101-8.304 - Effect of State or local law or other requirements and effect of employment opportunities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS GENERAL 8-NONDISCRIMINATION IN PROGRAMS RECEIVING FEDERAL FINANCIAL ASSISTANCE 8.3-Discrimination Prohibited on the Basis of Handicap § 101-8.304 Effect of State or local law or other requirements and effect... alleviated by the existence of any State or local law or other requirement that, on the basis of handicap...

  3. 41 CFR 101-8.304 - Effect of State or local law or other requirements and effect of employment opportunities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REGULATIONS GENERAL 8-NONDISCRIMINATION IN PROGRAMS RECEIVING FEDERAL FINANCIAL ASSISTANCE 8.3-Discrimination Prohibited on the Basis of Handicap § 101-8.304 Effect of State or local law or other requirements and effect... alleviated by the existence of any State or local law or other requirement that, on the basis of handicap...

  4. 41 CFR 101-8.304 - Effect of State or local law or other requirements and effect of employment opportunities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... REGULATIONS GENERAL 8-NONDISCRIMINATION IN PROGRAMS RECEIVING FEDERAL FINANCIAL ASSISTANCE 8.3-Discrimination Prohibited on the Basis of Handicap § 101-8.304 Effect of State or local law or other requirements and effect... alleviated by the existence of any State or local law or other requirement that, on the basis of handicap...

  5. Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Farano, Mirko; Cherubini, Stefania; Robinet, Jean-Christophe; De Palma, Pietro

    2016-12-01

    Subcritical transition in plane Poiseuille flow is investigated by means of a Lagrange-multiplier direct-adjoint optimization procedure with the aim of finding localized three-dimensional perturbations optimally growing in a given time interval (target time). Space localization of these optimal perturbations (OPs) is achieved by choosing as objective function either a p-norm (with p\\gg 1) of the perturbation energy density in a linear framework; or the classical (1-norm) perturbation energy, including nonlinear effects. This work aims at analyzing the structure of linear and nonlinear localized OPs for Poiseuille flow, and comparing their transition thresholds and scenarios. The nonlinear optimization approach provides three types of solutions: a weakly nonlinear, a hairpin-like and a highly nonlinear optimal perturbation, depending on the value of the initial energy and the target time. The former shows localization only in the wall-normal direction, whereas the latter appears much more localized and breaks the spanwise symmetry found at lower target times. Both solutions show spanwise inclined vortices and large values of the streamwise component of velocity already at the initial time. On the other hand, p-norm optimal perturbations, although being strongly localized in space, keep a shape similar to linear 1-norm optimal perturbations, showing streamwise-aligned vortices characterized by low values of the streamwise velocity component. When used for initializing direct numerical simulations, in most of the cases nonlinear OPs provide the most efficient route to transition in terms of time to transition and initial energy, even when they are less localized in space than the p-norm OP. The p-norm OP follows a transition path similar to the oblique transition scenario, with slightly oscillating streaks which saturate and eventually experience secondary instability. On the other hand, the nonlinear OP rapidly forms large-amplitude bent streaks and skips the phases of streak saturation, providing a contemporary growth of all of the velocity components due to strong nonlinear coupling.

  6. An intertwined method for making low-rank, sum-of-product basis functions that makes it possible to compute vibrational spectra of molecules with more than 10 atoms

    PubMed Central

    Thomas, Phillip S.

    2017-01-01

    We propose a method for solving the vibrational Schrödinger equation with which one can compute spectra for molecules with more than ten atoms. It uses sum-of-product (SOP) basis functions stored in a canonical polyadic tensor format and generated by evaluating matrix-vector products. By doing a sequence of partial optimizations, in each of which the factors in a SOP basis function for a single coordinate are optimized, the rank of the basis functions is reduced as matrix-vector products are computed. This is better than using an alternating least squares method to reduce the rank, as is done in the reduced-rank block power method. Partial optimization is better because it speeds up the calculation by about an order of magnitude and allows one to significantly reduce the memory cost. We demonstrate the effectiveness of the new method by computing vibrational spectra of two molecules, ethylene oxide (C2H4O) and cyclopentadiene (C5H6), with 7 and 11 atoms, respectively. PMID:28571348

  7. An intertwined method for making low-rank, sum-of-product basis functions that makes it possible to compute vibrational spectra of molecules with more than 10 atoms.

    PubMed

    Thomas, Phillip S; Carrington, Tucker

    2017-05-28

    We propose a method for solving the vibrational Schrödinger equation with which one can compute spectra for molecules with more than ten atoms. It uses sum-of-product (SOP) basis functions stored in a canonical polyadic tensor format and generated by evaluating matrix-vector products. By doing a sequence of partial optimizations, in each of which the factors in a SOP basis function for a single coordinate are optimized, the rank of the basis functions is reduced as matrix-vector products are computed. This is better than using an alternating least squares method to reduce the rank, as is done in the reduced-rank block power method. Partial optimization is better because it speeds up the calculation by about an order of magnitude and allows one to significantly reduce the memory cost. We demonstrate the effectiveness of the new method by computing vibrational spectra of two molecules, ethylene oxide (C 2 H 4 O) and cyclopentadiene (C 5 H 6 ), with 7 and 11 atoms, respectively.

  8. Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.

    PubMed

    Götz, Andreas W; Kollmar, Christian; Hess, Bernd A

    2005-09-01

    We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.

  9. Partial discharge localization in power transformers based on the sequential quadratic programming-genetic algorithm adopting acoustic emission techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Long; Liu, Hua-Dong

    2014-10-01

    Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And localization results based on the SQP-GA are compared with some algorithms such as the GA, some other intelligent and non-intelligent algorithms. The results of calculating examples both stimulated and spot experiments demonstrate that the localization method based on the SQP-GA can effectively prevent the results from getting trapped into the local optimum values, and the localization method is of great feasibility and very suitable for the field applications, and the precision of localization is enhanced, and the effectiveness of localization is ideal and satisfactory.

  10. An efficient linear-scaling CCSD(T) method based on local natural orbitals.

    PubMed

    Rolik, Zoltán; Szegedy, Lóránt; Ladjánszki, István; Ladóczki, Bence; Kállay, Mihály

    2013-09-07

    An improved version of our general-order local coupled-cluster (CC) approach [Z. Rolik and M. Kállay, J. Chem. Phys. 135, 104111 (2011)] and its efficient implementation at the CC singles and doubles with perturbative triples [CCSD(T)] level is presented. The method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys. 131, 114109 (2009)] with frozen natural orbital (NO) techniques. To break down the unfavorable fifth-power scaling of our original approach a two-level domain construction algorithm has been developed. First, an extended domain of localized molecular orbitals (LMOs) is assembled based on the spatial distance of the orbitals. The necessary integrals are evaluated and transformed in these domains invoking the density fitting approximation. In the second step, for each occupied LMO of the extended domain a local subspace of occupied and virtual orbitals is constructed including approximate second-order Mo̸ller-Plesset NOs. The CC equations are solved and the perturbative corrections are calculated in the local subspace for each occupied LMO using a highly-efficient CCSD(T) code, which was optimized for the typical sizes of the local subspaces. The total correlation energy is evaluated as the sum of the individual contributions. The computation time of our approach scales linearly with the system size, while its memory and disk space requirements are independent thereof. Test calculations demonstrate that currently our method is one of the most efficient local CCSD(T) approaches and can be routinely applied to molecules of up to 100 atoms with reasonable basis sets.

  11. A parallel competitive Particle Swarm Optimization for non-linear first arrival traveltime tomography and uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Luu, Keurfon; Noble, Mark; Gesret, Alexandrine; Belayouni, Nidhal; Roux, Pierre-François

    2018-04-01

    Seismic traveltime tomography is an optimization problem that requires large computational efforts. Therefore, linearized techniques are commonly used for their low computational cost. These local optimization methods are likely to get trapped in a local minimum as they critically depend on the initial model. On the other hand, global optimization methods based on MCMC are insensitive to the initial model but turn out to be computationally expensive. Particle Swarm Optimization (PSO) is a rather new global optimization approach with few tuning parameters that has shown excellent convergence rates and is straightforwardly parallelizable, allowing a good distribution of the workload. However, while it can traverse several local minima of the evaluated misfit function, classical implementation of PSO can get trapped in local minima at later iterations as particles inertia dim. We propose a Competitive PSO (CPSO) to help particles to escape from local minima with a simple implementation that improves swarm's diversity. The model space can be sampled by running the optimizer multiple times and by keeping all the models explored by the swarms in the different runs. A traveltime tomography algorithm based on CPSO is successfully applied on a real 3D data set in the context of induced seismicity.

  12. 45 CFR 1174.37 - Subgrants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Relating to Public Welfare (Continued) NATIONAL FOUNDATION ON THE ARTS AND THE HUMANITIES NATIONAL... (whether on a cost reimbursement or fixed amount basis) of financial assistance to local and Indian tribal... fixed amount basis) of financial assistance to local and Indian tribal governments. Grantees shall: (1...

  13. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets

    NASA Astrophysics Data System (ADS)

    Hill, J. Grant; Peterson, Kirk A.; Knizia, Gerald; Werner, Hans-Joachim

    2009-11-01

    Accurate extrapolation to the complete basis set (CBS) limit of valence correlation energies calculated with explicitly correlated MP2-F12 and CCSD(T)-F12b methods have been investigated using a Schwenke-style approach for molecules containing both first and second row atoms. Extrapolation coefficients that are optimal for molecular systems containing first row elements differ from those optimized for second row analogs, hence values optimized for a combined set of first and second row systems are also presented. The new coefficients are shown to produce excellent results in both Schwenke-style and equivalent power-law-based two-point CBS extrapolations, with the MP2-F12/cc-pV(D,T)Z-F12 extrapolations producing an average error of just 0.17 mEh with a maximum error of 0.49 for a collection of 23 small molecules. The use of larger basis sets, i.e., cc-pV(T,Q)Z-F12 and aug-cc-pV(Q,5)Z, in extrapolations of the MP2-F12 correlation energy leads to average errors that are smaller than the degree of confidence in the reference data (˜0.1 mEh). The latter were obtained through use of very large basis sets in MP2-F12 calculations on small molecules containing both first and second row elements. CBS limits obtained from optimized coefficients for conventional MP2 are only comparable to the accuracy of the MP2-F12/cc-pV(D,T)Z-F12 extrapolation when the aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z basis sets are used. The CCSD(T)-F12b correlation energy is extrapolated as two distinct parts: CCSD-F12b and (T). While the CCSD-F12b extrapolations with smaller basis sets are statistically less accurate than those of the MP2-F12 correlation energies, this is presumably due to the slower basis set convergence of the CCSD-F12b method compared to MP2-F12. The use of larger basis sets in the CCSD-F12b extrapolations produces correlation energies with accuracies exceeding the confidence in the reference data (also obtained in large basis set F12 calculations). It is demonstrated that the use of the 3C(D) Ansatz is preferred for MP2-F12 CBS extrapolations. Optimal values of the geminal Slater exponent are presented for the diagonal, fixed amplitude Ansatz in MP2-F12 calculations, and these are also recommended for CCSD-F12b calculations.

  14. Empirical investigation of optimal severance taxation in Alabama. Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leathers, C.G.; Zumpano, L.V.

    1980-10-01

    The research develops a theoretical and empirical foundation for the analysis of severance taxation in Alabama. Primary emphasis was directed to delineating an optimal severance tax structure for the state of Alabama and, in the process, assess the economic and fiscal consequences of current severance tax usage. The legal and economic basis and justification for severance taxation, the amounts and distribution of severance tax revenues currently generated, the administration of the tax, and severance tax practices prevailing in other states were compared in Volume I. These data, findings, and quantitative analyses were used to ascertain the fiscal and economic effectsmore » of changes in the structure and utilization of severance taxation in Alabama. The actual and potential productivity of severance taxation in Alamama is discussed. The analysis estimates the state's severance tax revenue capacity relative to the nation and to regional neighbors. The analysis is followed by an intrastate fiscal examination of the state and local tax system. In the process, the relative revenue contribution of severance taxes to state and local revenues is quantified, as well as comparing the revenue capacity and utilization of severance taxes to other state and local levies. An examination is made of the question of who actually pays the severance taxes by an analysis of the shifting and incidence characteristics of taxes on natural resources. Serious doubt is raised that states can, under normal economic circumstances, export a large portion of the severance tax burden to out-of-state users. According to the analytical results of the study, profit margins will be affected; therefore, higher severance taxes should only be imposed after rational assessment of the consequences on business incentives and employment in the extractive inudstries, especially coal.« less

  15. Constructing Optimal Coarse-Grained Sites of Huge Biomolecules by Fluctuation Maximization.

    PubMed

    Li, Min; Zhang, John Zenghui; Xia, Fei

    2016-04-12

    Coarse-grained (CG) models are valuable tools for the study of functions of large biomolecules on large length and time scales. The definition of CG representations for huge biomolecules is always a formidable challenge. In this work, we propose a new method called fluctuation maximization coarse-graining (FM-CG) to construct the CG sites of biomolecules. The defined residual in FM-CG converges to a maximal value as the number of CG sites increases, allowing an optimal CG model to be rigorously defined on the basis of the maximum. More importantly, we developed a robust algorithm called stepwise local iterative optimization (SLIO) to accelerate the process of coarse-graining large biomolecules. By means of the efficient SLIO algorithm, the computational cost of coarse-graining large biomolecules is reduced to within the time scale of seconds, which is far lower than that of conventional simulated annealing. The coarse-graining of two huge systems, chaperonin GroEL and lengsin, indicates that our new methods can coarse-grain huge biomolecular systems with up to 10,000 residues within the time scale of minutes. The further parametrization of CG sites derived from FM-CG allows us to construct the corresponding CG models for studies of the functions of huge biomolecular systems.

  16. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  17. Solutions to Kuessner's integral equation in unsteady flow using local basis functions

    NASA Technical Reports Server (NTRS)

    Fromme, J. A.; Halstead, D. W.

    1975-01-01

    The computational procedure and numerical results are presented for a new method to solve Kuessner's integral equation in the case of subsonic compressible flow about harmonically oscillating planar surfaces with controls. Kuessner's equation is a linear transformation from pressure to normalwash. The unknown pressure is expanded in terms of prescribed basis functions and the unknown basis function coefficients are determined in the usual manner by satisfying the given normalwash distribution either collocationally or in the complex least squares sense. The present method of solution differs from previous ones in that the basis functions are defined in a continuous fashion over a relatively small portion of the aerodynamic surface and are zero elsewhere. This method, termed the local basis function method, combines the smoothness and accuracy of distribution methods with the simplicity and versatility of panel methods. Predictions by the local basis function method for unsteady flow are shown to be in excellent agreement with other methods. Also, potential improvements to the present method and extensions to more general classes of solutions are discussed.

  18. Efficient Convex Optimization for Energy-Based Acoustic Sensor Self-Localization and Source Localization in Sensor Networks.

    PubMed

    Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan

    2018-05-21

    The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods.

  19. Efficient Convex Optimization for Energy-Based Acoustic Sensor Self-Localization and Source Localization in Sensor Networks

    PubMed Central

    Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Leng, Bing; Li, Shuangquan

    2018-01-01

    The energy reading has been an efficient and attractive measure for collaborative acoustic source localization in practical application due to its cost saving in both energy and computation capability. The maximum likelihood problems by fusing received acoustic energy readings transmitted from local sensors are derived. Aiming to efficiently solve the nonconvex objective of the optimization problem, we present an approximate estimator of the original problem. Then, a direct norm relaxation and semidefinite relaxation, respectively, are utilized to derive the second-order cone programming, semidefinite programming or mixture of them for both cases of sensor self-location and source localization. Furthermore, by taking the colored energy reading noise into account, several minimax optimization problems are formulated, which are also relaxed via the direct norm relaxation and semidefinite relaxation respectively into convex optimization problems. Performance comparison with the existing acoustic energy-based source localization methods is given, where the results show the validity of our proposed methods. PMID:29883410

  20. Design optimization of the sensor spatial arrangement in a direct magnetic field-based localization system for medical applications.

    PubMed

    Marechal, Luc; Shaohui Foong; Zhenglong Sun; Wood, Kristin L

    2015-08-01

    Motivated by the need for developing a neuronavigation system to improve efficacy of intracranial surgical procedures, a localization system using passive magnetic fields for real-time monitoring of the insertion process of an external ventricular drain (EVD) catheter is conceived and developed. This system operates on the principle of measuring the static magnetic field of a magnetic marker using an array of magnetic sensors. An artificial neural network (ANN) is directly used for solving the inverse problem of magnetic dipole localization for improved efficiency and precision. As the accuracy of localization system is highly dependent on the sensor spatial location, an optimization framework, based on understanding and classification of experimental sensor characteristics as well as prior knowledge of the general trajectory of the localization pathway, for design of such sensing assemblies is described and investigated in this paper. Both optimized and non-optimized sensor configurations were experimentally evaluated and results show superior performance from the optimized configuration. While the approach presented here utilizes ventriculostomy as an illustrative platform, it can be extended to other medical applications that require localization inside the body.

  1. The Operation Method of Smarter City Based on Ecological Theory

    NASA Astrophysics Data System (ADS)

    Fan, C.; Fan, H. Y.

    2017-10-01

    As the city and urbanization’s accelerated pace has caused galloping population, the urban framework is extending with increasingly complex social problems. The urban management tends to become complicated and the governance seems more difficult to pursue. exploring the urban management’s new model has attracted local governments’ urgent attention. tcombines the guiding ideology and that management’s practices based on ecological theory, explains the Smarter city Ecology Managementmodel’s formation, makes modern urban management’s comparative analysis and further defines the aforesaid management mode’s conceptual model. Based on the smarter city system theory’s ecological carrying capacity, the author uses mathematical model to prove the coordination relationship between the smarter city Ecology Managementmode’s subsystems, demonstrates that it can improve the urban management’s overall level, emphasizes smarter city management integrity, believing that urban system’s optimization is based on each subsystem being optimized, attaching the importance to elements, structure, and balance between each subsystem and between internal elements. Through the establishment of the smarter city Ecology Managementmodel’s conceptual model and theoretical argumentation, it provides a theoretical basis and technical guidance to that model’s innovation.

  2. Soft, thin skin-mounted power management systems and their use in wireless thermography

    NASA Astrophysics Data System (ADS)

    Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A.

    2016-05-01

    Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios.

  3. Soft, thin skin-mounted power management systems and their use in wireless thermography.

    PubMed

    Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A

    2016-05-31

    Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios.

  4. Soft, thin skin-mounted power management systems and their use in wireless thermography

    PubMed Central

    Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A.

    2016-01-01

    Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios. PMID:27185907

  5. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores

    PubMed Central

    Sharafat Hossain, Md; Al-Dirini, Feras; Hossain, Faruque M.; Skafidas, Efstratios

    2015-01-01

    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator. PMID:26083450

  6. Light-induced fluorescence for pulpal diagnosis

    NASA Astrophysics Data System (ADS)

    Ebihara, Arata; Liaw, Lih-Huei L.; Krasieva, Tatiana B.; Wilder-Smith, Petra B. B.

    2001-04-01

    A direct non-histological means of pulpal diagnosis remains elusive to clinical practice. Clinical vitality testing remains limited to electric, thermal criteria, or laser Doppler flowmetry. The goal of these investigations was to determine the feasibility of using light-induced fluorescence as a non-invasive modality for pulpal evaluation. Such a capability would, for example, permit expanded use of pulpotomy/pulpectomy techniques. Clinically healthy and diseased human extirpated pulpal tissues were used in this study. After excision, they were rapidly frozen and standard cryosections prepared. Measurement of tissue excitation/emission characteristics was performed using spectrographic analysis. A low-light level fluorescence microscopy system was then used to image autofluorescence localization and intensity at optimal excitation/detection parameters. Excitation/detection parameters used in this study included 405/605, 405/635, 405/670, 440/550, and 440/635. Autofluorescence intensities in healthy tissues were significantly stronger than those in diseased tissues at optimal parameters. It is postulated that autofluorescence characteristics are related to pathology- related structural changes in the pulp. This work provides the basis for further investigation into the relation between autofluorescence, histology and clinical symptoms.

  7. Asian society of gynecologic oncology workshop 2010

    PubMed Central

    Suh, Dong Hoon; Kim, Jae Weon; Aziz, Mohamad Farid; Devi, Uma K.; Ngan, Hextan Y. S.; Nam, Joo-Hyun; Kim, Seung Cheol; Kato, Tomoyasu; Ryu, Hee Sug; Fujii, Shingo; Lee, Yoon Soon; Kim, Jong Hyeok; Kim, Tae-Joong; Kim, Young Tae; Wang, Kung-Liahng; Lee, Taek Sang; Ushijima, Kimio; Shin, Sang-Goo; Chia, Yin Nin; Wilailak, Sarikapan; Park, Sang Yoon; Katabuchi, Hidetaka; Kamura, Toshiharu

    2010-01-01

    This workshop was held on July 31-August 1, 2010 and was organized to promote the academic environment and to enhance the communication among Asian countries prior to the 2nd biennial meeting of Australian Society of Gynaecologic Oncologists (ASGO), which will be held on November 3-5, 2011. We summarized the whole contents presented at the workshop. Regarding cervical cancer screening in Asia, particularly in low resource settings, and an update on human papillomavirus (HPV) vaccination was described for prevention and radical surgery overview, fertility sparing and less radical surgery, nerve sparing radical surgery and primary chemoradiotherapy in locally advanced cervical cancer, were discussed for management. As to surgical techniques, nerve sparing radical hysterectomy, optimal staging in early ovarian cancer, laparoscopic radical hysterectomy, one-port surgery and robotic surgery were introduced. After three topics of endometrial cancer, laparoscopic surgery versus open surgery, role of lymphadenectomy and fertility sparing treatment, there was a special additional time for clinical trials in Asia. Finally, chemotherapy including neo-adjuvant chemotherapy, optimal surgical management, and the basis of targeted therapy in ovarian cancer were presented. PMID:20922136

  8. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores.

    PubMed

    Hossain, Md Sharafat; Al-Dirini, Feras; Hossain, Faruque M; Skafidas, Efstratios

    2015-06-17

    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator.

  9. Using an iterative eigensolver to compute vibrational energies with phase-spaced localized basis functions.

    PubMed

    Brown, James; Carrington, Tucker

    2015-07-28

    Although phase-space localized Gaussians are themselves poor basis functions, they can be used to effectively contract a discrete variable representation basis [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. This works despite the fact that elements of the Hamiltonian and overlap matrices labelled by discarded Gaussians are not small. By formulating the matrix problem as a regular (i.e., not a generalized) matrix eigenvalue problem, we show that it is possible to use an iterative eigensolver to compute vibrational energy levels in the Gaussian basis.

  10. Optimizing Barrier Removal to Restore Connectivity in Utah's Weber Basin

    NASA Astrophysics Data System (ADS)

    Kraft, M.; Null, S. E.

    2016-12-01

    Instream barriers, such as dams, culverts and diversions are economically important for water supply, but negatively affect river ecosystems and disrupt hydrologic processes. Removal of uneconomical and aging in-stream barriers to improve habitat connectivity is increasingly used to restore river connectivity. Most past barrier removal projects focused on individual barriers using a score-and-rank technique, ignoring cumulative change from multiple, spatially-connected barrier removals. Similarly, most water supply models optimize either human water use or aquatic connectivity, failing to holistically represent human and environmental benefits. In this study, a dual objective optimization model identified in-stream barriers that impede aquatic habitat connectivity for trout, using streamflow, temperature, and channel gradient as indicators of aquatic habitat suitability. Water scarcity costs are minimized using agricultural and urban economic penalty functions to incorporate water supply benefits and a budget monetizes costs of removing small barriers like culverts and road crossings. The optimization model developed is applied to a case study in Utah's Weber basin to prioritize removal of the most environmentally harmful barriers, while maintaining human water uses. The dual objective solution basis was developed to quantify and graphically visualize tradeoffs between connected quality-weighted habitat for Bonneville cutthroat trout and economic water uses. Modeled results include a spectrum of barrier removal alternatives based on budget and quality-weighted reconnected habitat that can be communicated with local stakeholders. This research will help prioritize barrier removals and future restoration decisions. The modeling approach expands current barrier removal optimization methods by explicitly including economic and environmental water uses.

  11. Task-Driven Tube Current Modulation and Regularization Design in Computed Tomography with Penalized-Likelihood Reconstruction.

    PubMed

    Gang, G J; Siewerdsen, J H; Stayman, J W

    2016-02-01

    This work applies task-driven optimization to design CT tube current modulation and directional regularization in penalized-likelihood (PL) reconstruction. The relative performance of modulation schemes commonly adopted for filtered-backprojection (FBP) reconstruction were also evaluated for PL in comparison. We adopt a task-driven imaging framework that utilizes a patient-specific anatomical model and information of the imaging task to optimize imaging performance in terms of detectability index ( d' ). This framework leverages a theoretical model based on implicit function theorem and Fourier approximations to predict local spatial resolution and noise characteristics of PL reconstruction as a function of the imaging parameters to be optimized. Tube current modulation was parameterized as a linear combination of Gaussian basis functions, and regularization was based on the design of (directional) pairwise penalty weights for the 8 in-plane neighboring voxels. Detectability was optimized using a covariance matrix adaptation evolutionary strategy algorithm. Task-driven designs were compared to conventional tube current modulation strategies for a Gaussian detection task in an abdomen phantom. The task-driven design yielded the best performance, improving d' by ~20% over an unmodulated acquisition. Contrary to FBP, PL reconstruction using automatic exposure control and modulation based on minimum variance (in FBP) performed worse than the unmodulated case, decreasing d' by 16% and 9%, respectively. This work shows that conventional tube current modulation schemes suitable for FBP can be suboptimal for PL reconstruction. Thus, the proposed task-driven optimization provides additional opportunities for improved imaging performance and dose reduction beyond that achievable with conventional acquisition and reconstruction.

  12. Meshless Local Petrov-Galerkin Euler-Bernoulli Beam Problems: A Radial Basis Function Approach

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Phillips, D. R.; Krishnamurthy, T.

    2003-01-01

    A radial basis function implementation of the meshless local Petrov-Galerkin (MLPG) method is presented to study Euler-Bernoulli beam problems. Radial basis functions, rather than generalized moving least squares (GMLS) interpolations, are used to develop the trial functions. This choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as in the conventional MLPG method. Compactly and noncompactly supported radial basis functions are considered. The non-compactly supported cubic radial basis function is found to perform very well. Results obtained from the radial basis MLPG method are comparable to those obtained using the conventional MLPG method for mixed boundary value problems and problems with discontinuous loading conditions.

  13. Bayesian image reconstruction - The pixon and optimal image modeling

    NASA Technical Reports Server (NTRS)

    Pina, R. K.; Puetter, R. C.

    1993-01-01

    In this paper we describe the optimal image model, maximum residual likelihood method (OptMRL) for image reconstruction. OptMRL is a Bayesian image reconstruction technique for removing point-spread function blurring. OptMRL uses both a goodness-of-fit criterion (GOF) and an 'image prior', i.e., a function which quantifies the a priori probability of the image. Unlike standard maximum entropy methods, which typically reconstruct the image on the data pixel grid, OptMRL varies the image model in order to find the optimal functional basis with which to represent the image. We show how an optimal basis for image representation can be selected and in doing so, develop the concept of the 'pixon' which is a generalized image cell from which this basis is constructed. By allowing both the image and the image representation to be variable, the OptMRL method greatly increases the volume of solution space over which the image is optimized. Hence the likelihood of the final reconstructed image is greatly increased. For the goodness-of-fit criterion, OptMRL uses the maximum residual likelihood probability distribution introduced previously by Pina and Puetter (1992). This GOF probability distribution, which is based on the spatial autocorrelation of the residuals, has the advantage that it ensures spatially uncorrelated image reconstruction residuals.

  14. Optimal fold symmetry of LH2 rings on a photosynthetic membrane

    PubMed Central

    Cleary, Liam; Chen, Hang; Chuang, Chern; Silbey, Robert J.; Cao, Jianshu

    2013-01-01

    An intriguing observation of photosynthetic light-harvesting systems is the N-fold symmetry of light-harvesting complex 2 (LH2) of purple bacteria. We calculate the optimal rotational configuration of N-fold rings on a hexagonal lattice and establish two related mechanisms for the promotion of maximum excitation energy transfer (EET). (i) For certain fold numbers, there exist optimal basis cells with rotational symmetry, extendable to the entire lattice for the global optimization of the EET network. (ii) The type of basis cell can reduce or remove the frustration of EET rates across the photosynthetic network. We find that the existence of a basis cell and its type are directly related to the number of matching points S between the fold symmetry and the hexagonal lattice. The two complementary mechanisms provide selection criteria for the fold number and identify groups of consecutive numbers. Remarkably, one such group consists of the naturally occurring 8-, 9-, and 10-fold rings. By considering the inter-ring distance and EET rate, we demonstrate that this group can achieve minimal rotational sensitivity in addition to an optimal packing density, achieving robust and efficient EET. This corroborates our findings i and ii and, through their direct relation to S, suggests the design principle of matching the internal symmetry with the lattice order. PMID:23650366

  15. Optimal fold symmetry of LH2 rings on a photosynthetic membrane.

    PubMed

    Cleary, Liam; Chen, Hang; Chuang, Chern; Silbey, Robert J; Cao, Jianshu

    2013-05-21

    An intriguing observation of photosynthetic light-harvesting systems is the N-fold symmetry of light-harvesting complex 2 (LH2) of purple bacteria. We calculate the optimal rotational configuration of N-fold rings on a hexagonal lattice and establish two related mechanisms for the promotion of maximum excitation energy transfer (EET). (i) For certain fold numbers, there exist optimal basis cells with rotational symmetry, extendable to the entire lattice for the global optimization of the EET network. (ii) The type of basis cell can reduce or remove the frustration of EET rates across the photosynthetic network. We find that the existence of a basis cell and its type are directly related to the number of matching points S between the fold symmetry and the hexagonal lattice. The two complementary mechanisms provide selection criteria for the fold number and identify groups of consecutive numbers. Remarkably, one such group consists of the naturally occurring 8-, 9-, and 10-fold rings. By considering the inter-ring distance and EET rate, we demonstrate that this group can achieve minimal rotational sensitivity in addition to an optimal packing density, achieving robust and efficient EET. This corroborates our findings i and ii and, through their direct relation to S, suggests the design principle of matching the internal symmetry with the lattice order.

  16. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., geographically averaged on a study-area-wide basis, that the incumbent local exchange carrier experiences based... exchange carrier experiences based on the prior year's annual use. Tandem-switched transport transmission..., geographically averaged on a study-area-wide basis, that the incumbent local exchange carrier experiences based...

  17. Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Knight, Norman F., Jr.

    1996-01-01

    A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.

  18. Three-dimensional unstructured grid generation via incremental insertion and local optimization

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Wiltberger, N. Lyn; Gandhi, Amar S.

    1992-01-01

    Algorithms for the generation of 3D unstructured surface and volume grids are discussed. These algorithms are based on incremental insertion and local optimization. The present algorithms are very general and permit local grid optimization based on various measures of grid quality. This is very important; unlike the 2D Delaunay triangulation, the 3D Delaunay triangulation appears not to have a lexicographic characterization of angularity. (The Delaunay triangulation is known to minimize that maximum containment sphere, but unfortunately this is not true lexicographically). Consequently, Delaunay triangulations in three-space can result in poorly shaped tetrahedral elements. Using the present algorithms, 3D meshes can be constructed which optimize a certain angle measure, albeit locally. We also discuss the combinatorial aspects of the algorithm as well as implementational details.

  19. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT

    PubMed Central

    2017-01-01

    Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of “premature convergence,” that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment. PMID:29181020

  20. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT.

    PubMed

    Nie, Xiaohua; Wang, Wei; Nie, Haoyao

    2017-01-01

    Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of "premature convergence," that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.

  1. Using Chou's pseudo amino acid composition based on approximate entropy and an ensemble of AdaBoost classifiers to predict protein subnuclear location.

    PubMed

    Jiang, Xiaoying; Wei, Rong; Zhao, Yanjun; Zhang, Tongliang

    2008-05-01

    The knowledge of subnuclear localization in eukaryotic cells is essential for understanding the life function of nucleus. Developing prediction methods and tools for proteins subnuclear localization become important research fields in protein science for special characteristics in cell nuclear. In this study, a novel approach has been proposed to predict protein subnuclear localization. Sample of protein is represented by Pseudo Amino Acid (PseAA) composition based on approximate entropy (ApEn) concept, which reflects the complexity of time series. A novel ensemble classifier is designed incorporating three AdaBoost classifiers. The base classifier algorithms in three AdaBoost are decision stumps, fuzzy K nearest neighbors classifier, and radial basis-support vector machines, respectively. Different PseAA compositions are used as input data of different AdaBoost classifier in ensemble. Genetic algorithm is used to optimize the dimension and weight factor of PseAA composition. Two datasets often used in published works are used to validate the performance of the proposed approach. The obtained results of Jackknife cross-validation test are higher and more balance than them of other methods on same datasets. The promising results indicate that the proposed approach is effective and practical. It might become a useful tool in protein subnuclear localization. The software in Matlab and supplementary materials are available freely by contacting the corresponding author.

  2. Experimental Detection of Quantum Channel Capacities.

    PubMed

    Cuevas, Álvaro; Proietti, Massimiliano; Ciampini, Mario Arnolfo; Duranti, Stefano; Mataloni, Paolo; Sacchi, Massimiliano F; Macchiavello, Chiara

    2017-09-08

    We present an efficient experimental procedure that certifies nonvanishing quantum capacities for qubit noisy channels. Our method is based on the use of a fixed bipartite entangled state, where the system qubit is sent to the channel input. A particular set of local measurements is performed at the channel output and the ancilla qubit mode, obtaining lower bounds to the quantum capacities for any unknown channel with no need of quantum process tomography. The entangled qubits have a Bell state configuration and are encoded in photon polarization. The lower bounds are found by estimating the Shannon and von Neumann entropies at the output using an optimized basis, whose statistics is obtained by measuring only the three observables σ_{x}⊗σ_{x}, σ_{y}⊗σ_{y}, and σ_{z}⊗σ_{z}.

  3. Geometrical optimization of a local ballistic magnetic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanda, Yuhsuke; Hara, Masahiro; Nomura, Tatsuya

    2014-04-07

    We have developed a highly sensitive local magnetic sensor by using a ballistic transport property in a two-dimensional conductor. A semiclassical simulation reveals that the sensitivity increases when the geometry of the sensor and the spatial distribution of the local field are optimized. We have also experimentally demonstrated a clear observation of a magnetization process in a permalloy dot whose size is much smaller than the size of an optimized ballistic magnetic sensor fabricated from a GaAs/AlGaAs two-dimensional electron gas.

  4. Cost-Effectiveness Analysis of Systemic Therapies in Advanced Pancreatic Cancer in the Canadian Health Care System.

    PubMed

    Coyle, Doug; Ko, Yoo-Joung; Coyle, Kathryn; Saluja, Ronak; Shah, Keya; Lien, Kelly; Lam, Henry; Chan, Kelvin K W

    2017-04-01

    To assess the cost-effectiveness of gemcitabine (G), G + 5-fluorouracil, G + capecitabine, G + cisplatin, G + oxaliplatin, G + erlotinib, G + nab-paclitaxel (GnP), and FOLFIRINOX in the treatment of advanced pancreatic cancer from a Canadian public health payer's perspective, using data from a recently published Bayesian network meta-analysis. Analysis was conducted through a three-state Markov model and used data on the progression of disease with treatment from the gemcitabine arms of randomized controlled trials combined with estimates from the network meta-analysis for the newer regimens. Estimates of health care costs were obtained from local providers, and utilities were derived from the literature. The model estimates the effect of treatment regimens on costs and quality-adjusted life-years (QALYs) discounted at 5% per annum. At a willingness-to-pay (WTP) threshold of greater than $30,666 per QALY, FOLFIRINOX would be the most optimal regimen. For a WTP threshold of $50,000 per QALY, the probability that FOLFIRINOX would be optimal was 57.8%. There was no price reduction for nab-paclitaxel when GnP was optimal. From a Canadian public health payer's perspective at the present time and drug prices, FOLFIRINOX is the optimal regimen on the basis of the cost-effectiveness criterion. GnP is not cost-effective regardless of the WTP threshold. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  5. Using spatiotemporal source separation to identify prominent features in multichannel data without sinusoidal filters.

    PubMed

    Cohen, Michael X

    2017-09-27

    The number of simultaneously recorded electrodes in neuroscience is steadily increasing, providing new opportunities for understanding brain function, but also new challenges for appropriately dealing with the increase in dimensionality. Multivariate source separation analysis methods have been particularly effective at improving signal-to-noise ratio while reducing the dimensionality of the data and are widely used for cleaning, classifying and source-localizing multichannel neural time series data. Most source separation methods produce a spatial component (that is, a weighted combination of channels to produce one time series); here, this is extended to apply source separation to a time series, with the idea of obtaining a weighted combination of successive time points, such that the weights are optimized to satisfy some criteria. This is achieved via a two-stage source separation procedure, in which an optimal spatial filter is first constructed and then its optimal temporal basis function is computed. This second stage is achieved with a time-delay-embedding matrix, in which additional rows of a matrix are created from time-delayed versions of existing rows. The optimal spatial and temporal weights can be obtained by solving a generalized eigendecomposition of covariance matrices. The method is demonstrated in simulated data and in an empirical electroencephalogram study on theta-band activity during response conflict. Spatiotemporal source separation has several advantages, including defining empirical filters without the need to apply sinusoidal narrowband filters. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.

    PubMed

    Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo

    2011-07-01

    Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.

  7. Optimal designs based on the maximum quasi-likelihood estimator

    PubMed Central

    Shen, Gang; Hyun, Seung Won; Wong, Weng Kee

    2016-01-01

    We use optimal design theory and construct locally optimal designs based on the maximum quasi-likelihood estimator (MqLE), which is derived under less stringent conditions than those required for the MLE method. We show that the proposed locally optimal designs are asymptotically as efficient as those based on the MLE when the error distribution is from an exponential family, and they perform just as well or better than optimal designs based on any other asymptotically linear unbiased estimators such as the least square estimator (LSE). In addition, we show current algorithms for finding optimal designs can be directly used to find optimal designs based on the MqLE. As an illustrative application, we construct a variety of locally optimal designs based on the MqLE for the 4-parameter logistic (4PL) model and study their robustness properties to misspecifications in the model using asymptotic relative efficiency. The results suggest that optimal designs based on the MqLE can be easily generated and they are quite robust to mis-specification in the probability distribution of the responses. PMID:28163359

  8. Efficient regeneration and improved sonication-assisted Agrobacterium transformation (SAAT) method for Catharanthus roseus.

    PubMed

    Alam, Pravej; Khan, Zainul Abdeen; Abdin, Malik Zainul; Khan, Jawaid A; Ahmad, Parvaiz; Elkholy, Shereen F; Sharaf-Eldin, Mahmoud A

    2017-05-01

    Catharanthus roseus is an important medicinal plant known for its pharmacological qualities such as antimicrobial, anticancerous, antifeedant, antisterility, antidiabetic activities. More than 130 bioactive compounds like vinblastine, vindoline and vincristine have been synthesized in this plant. Extensive studies have been carried out for optimization regeneration and transformation protocols. Most of the protocol described are laborious and time-consuming. Due to sophisticated protocol of regeneration and genetic transformation, the production of these bioactive molecules is less and not feasible to be commercialized worldwide. Here we have optimized the efficient protocol for regeneration and transformation to minimize the time scale and enhance the transformation frequency through Agrobacterium and sonication-assisted transformation (SAAT) method. In this study, hypocotyl explants responded best for maximal production of transformed shoots. The callus percentage were recorded 52% with 1.0 mg L -1 (BAP) and 0.5 mg L -1 (NAA) while 80% shoot percentage obtained with 4.0 mg L -1 (BAP) and 0.05 mg L -1 (NAA). The microscopic studies revealed that the expression of GFP was clearly localized in leaf tissue of the C. roseus after transformation of pRepGFP0029 construct. Consequently, transformation efficiency was revealed on the basis of GFP localization. The transformation efficiency of SAAT method was 6.0% comparable to 3.5% as conventional method. Further, PCR analysis confirmed the integration of the nptII gene in the transformed plantlets of C. roseus.

  9. Artificial neural network assisted kinetic spectrophotometric technique for simultaneous determination of paracetamol and p-aminophenol in pharmaceutical samples using localized surface plasmon resonance band of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Khodaveisi, Javad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Rohani Moghadam, Masoud; Hormozi-Nezhad, Mohammad Reza

    2015-03-01

    Spectrophotometric analysis method based on the combination of the principal component analysis (PCA) with the feed-forward neural network (FFNN) and the radial basis function network (RBFN) was proposed for the simultaneous determination of paracetamol (PAC) and p-aminophenol (PAP). This technique relies on the difference between the kinetic rates of the reactions between analytes and silver nitrate as the oxidizing agent in the presence of polyvinylpyrrolidone (PVP) which is the stabilizer. The reactions are monitored at the analytical wavelength of 420 nm of the localized surface plasmon resonance (LSPR) band of the formed silver nanoparticles (Ag-NPs). Under the optimized conditions, the linear calibration graphs were obtained in the concentration range of 0.122-2.425 μg mL-1 for PAC and 0.021-5.245 μg mL-1 for PAP. The limit of detection in terms of standard approach (LODSA) and upper limit approach (LODULA) were calculated to be 0.027 and 0.032 μg mL-1 for PAC and 0.006 and 0.009 μg mL-1 for PAP. The important parameters were optimized for the artificial neural network (ANN) models. Statistical parameters indicated that the ability of the both methods is comparable. The proposed method was successfully applied to the simultaneous determination of PAC and PAP in pharmaceutical preparations.

  10. Difficulty of distinguishing product states locally

    NASA Astrophysics Data System (ADS)

    Croke, Sarah; Barnett, Stephen M.

    2017-01-01

    Nonlocality without entanglement is a rather counterintuitive phenomenon in which information may be encoded entirely in product (unentangled) states of composite quantum systems in such a way that local measurement of the subsystems is not enough for optimal decoding. For simple examples of pure product states, the gap in performance is known to be rather small when arbitrary local strategies are allowed. Here we restrict to local strategies readily achievable with current technology: those requiring neither a quantum memory nor joint operations. We show that even for measurements on pure product states, there can be a large gap between such strategies and theoretically optimal performance. Thus, even in the absence of entanglement, physically realizable local strategies can be far from optimal for extracting quantum information.

  11. 14 CFR § 1251.109 - Effect of State or local law or other requirements and effect of employment opportunities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP General Provisions... local law or other requirement that, on the basis of handicap, imposes prohibitions or limits upon the eligibility of qualified handicapped persons to receive services or to practice any occupation or profession...

  12. Formation of the portfolio of high-rise construction projects on the basis of optimization of «risk-return» rate

    NASA Astrophysics Data System (ADS)

    Uvarova, Svetlana; Kutsygina, Olga; Smorodina, Elena; Gumba, Khuta

    2018-03-01

    The effectiveness and sustainability of an enterprise are based on the effectiveness and sustainability of its portfolio of projects. When creating a production program for a construction company based on a portfolio of projects and related to the planning and implementation of initiated organizational and economic changes, the problem of finding the optimal "risk-return" ratio of the program (portfolio of projects) is solved. The article proposes and approves the methodology of forming a portfolio of enterprise projects on the basis of the correspondence principle. Optimization of the portfolio of projects on the criterion of "risk-return" also contributes to the company's sustainability.

  13. COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Borland, Michael

    Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.

  14. Model-Based Speech Signal Coding Using Optimized Temporal Decomposition for Storage and Broadcasting Applications

    NASA Astrophysics Data System (ADS)

    Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret

    2003-12-01

    A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.

  15. Reducing Environmental Allergic Triggers: Policy Issues.

    PubMed

    Abramson, Stuart L

    The implementation of policies to reduce environmental allergic triggers can be an important adjunct to optimal patient care for allergic rhinitis and allergic asthma. Policies at the local level in schools and other public as well as private buildings can make an impact on disease morbidity. Occupational exposures for allergens have not yet been met with the same rigorous policy standards applied for exposures to toxicants by Occupational Safety and Health Administration. Further benefit may be obtained through policies by local, county, state, and national governments, and possibly through international cooperative agreements. The reduction of allergenic exposures can and should be affected by policies with strong scientific, evidence-based derivation. However, a judicious application of the precautionary principle may be needed in circumstances where the health effect of inaction could lead to more serious threats to vulnerable populations with allergic disease. This commentary covers the scientific basis, current implementation, knowledge gaps, and pro/con views on policy issues in reducing environmental allergic triggers. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Anesthesia for ambulatory anorectal surgery.

    PubMed

    Gudaityte, Jūrate; Marchertiene, Irena; Pavalkis, Dainius

    2004-01-01

    The prevalence of minor anorectal diseases is 4-5% of adult Western population. Operations are performed on ambulatory or 24-hour stay basis. Requirements for ambulatory anesthesia are: rapid onset and recovery, ability to provide quick adjustments during maintenance, lack of intraoperative and postoperative side effects, and cost-effectiveness. Anorectal surgery requires deep levels of anesthesia. The aim is achieved with 1) regional blocks alone or in combination with monitored anesthesia care or 2) deep general anesthesia, usually with muscle relaxants and tracheal intubation. Modern general anesthetics provide smooth, quickly adjustable anesthesia and are a good choice for ambulatory surgery. Popular regional methods are: spinal anesthesia, caudal blockade, posterior perineal blockade and local anesthesia. The trend in regional anesthesia is lowering the dose of local anesthetic, providing selective segmental block. Adjuvants potentiating analgesia are recommended. Postoperative period may be complicated by: 1) severe pain, 2) urinary retention due to common nerve supply, and 3) surgical bleeding. Complications may lead to hospital admission. In conclusion, novel general anesthetics are recommended for ambulatory anorectal surgery. Further studies to determine an optimal dose and method are needed in the group of regional anesthesia.

  17. Research of Environmental and Economic Interactions of Coke And By-Product Process

    NASA Astrophysics Data System (ADS)

    Mikhailov, Vladimir; Kiseleva, Tamara; Bugrova, Svetlana; Muromtseva, Alina; Mikhailova, Yana

    2017-11-01

    The issues of showing relations between environmental and economic indicators (further - environmental and economic interactions) of coke and by-product process are considered in the article. The purpose of the study is to reveal the regularities of the functioning of the local environmental and economic system on the basis of revealed spectrum of environmental and economic interactions. A simplified scheme of the environmental and economic system "coke and by-product process - the environment" was developed. The forms of the investigated environmental-economic interactions were visualized and the selective interpretation of the tightness of the established connection was made. The main result of the work is modeling system of environmental and economic interactions that allows increasing the efficiency of local ecological and economic system management and optimizing the "interests" of an industrial enterprise - the source of negative impact on the environment. The results of the survey can be recommended to government authorities and industrial enterprises with a wide range of negative impact forms to support the adoption of effective management decisions aimed at sustainable environmental and economic development of the region or individual municipalities.

  18. Environmental control and control of the environment: the basis of longevity in bivalves.

    PubMed

    Abele, Doris; Philipp, Eva

    2013-01-01

    Longevity and ageing are two sides of a coin, leaving the question open as to which one is the cause and which one the effect. At the individual level, the physiological rate of ageing determines the length of life (= individual longevity, as long as death results from old age and not from disease or other impacts). Individual longevity depends on the direct influence of environmental conditions with respect to nutrition, and the possibility for and timing of reproduction, as well as on the energetic costs animals invest in behavioural and physiological stress defence. All these environmental effectors influence hormonal and cellular signalling pathways that modify the individual physiological condition, the reproductive strategy, and the rate of ageing. At the species level, longevity (= maximum lifespan) is the result of an evolutionary process and, thus, largely determined by the species' behavioural and physiological adaptations to its ecological niche. Specifically, reproductive and breeding strategies have to be optimized in relation to local environmental conditions in different habitats. As a result of adaptive and evolutionary processes, species longevity is genetically underpinned, not necessarily by a few ageing genes, but by an evolutionary process that has hierarchically shaped and optimized species genomes to function in a specific niche or environmental system. Importantly, investigations and reviews attempting to unravel the mechanistic basis of the ageing process need to differentiate clearly between the evolutionary process shaping longevity at the species level and the regulatory mechanisms that alter the individual rate of ageing. Copyright © 2012 S. Karger AG, Basel.

  19. Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics.

    PubMed

    Zhao, Meng; Ding, Baocang

    2015-03-01

    This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Optimal design of geodesically stiffened composite cylindrical shells

    NASA Technical Reports Server (NTRS)

    Gendron, G.; Guerdal, Z.

    1992-01-01

    An optimization system based on the finite element code Computations Structural Mechanics (CSM) Testbed and the optimization program, Automated Design Synthesis (ADS), is described. The optimization system can be used to obtain minimum-weight designs of composite stiffened structures. Ply thickness, ply orientations, and stiffener heights can be used as design variables. Buckling, displacement, and material failure constraints can be imposed on the design. The system is used to conduct a design study of geodesically stiffened shells. For comparison purposes, optimal designs of unstiffened shells and shells stiffened by rings and stingers are also obtained. Trends in the design of geodesically stiffened shells are identified. An approach to include local stress concentrations during the design optimization process is then presented. The method is based on a global/local analysis technique. It employs spline interpolation functions to determine displacements and rotations from a global model which are used as 'boundary conditions' for the local model. The organization of the strategy in the context of an optimization process is described. The method is validated with an example.

  1. Estimation of Δ R/ R values by benchmark study of the Mössbauer Isomer shifts for Ru, Os complexes using relativistic DFT calculations

    NASA Astrophysics Data System (ADS)

    Kaneko, Masashi; Yasuhara, Hiroki; Miyashita, Sunao; Nakashima, Satoru

    2017-11-01

    The present study applies all-electron relativistic DFT calculation with Douglas-Kroll-Hess (DKH) Hamiltonian to each ten sets of Ru and Os compounds. We perform the benchmark investigation of three density functionals (BP86, B3LYP and B2PLYP) using segmented all-electron relativistically contracted (SARC) basis set with the experimental Mössbauer isomer shifts for 99Ru and 189Os nuclides. Geometry optimizations at BP86 theory of level locate the structure in a local minimum. We calculate the contact density to the wavefunction obtained by a single point calculation. All functionals show the good linear correlation with experimental isomer shifts for both 99Ru and 189Os. Especially, B3LYP functional gives a stronger correlation compared to BP86 and B2PLYP functionals. The comparison of contact density between SARC and well-tempered basis set (WTBS) indicated that the numerical convergence of contact density cannot be obtained, but the reproducibility is less sensitive to the choice of basis set. We also estimate the values of Δ R/ R, which is an important nuclear constant, for 99Ru and 189Os nuclides by using the benchmark results. The sign of the calculated Δ R/ R values is consistent with the predicted data for 99Ru and 189Os. We obtain computationally the Δ R/ R values of 99Ru and 189Os (36.2 keV) as 2.35×10-4 and -0.20×10-4, respectively, at B3LYP level for SARC basis set.

  2. Underwater sonar image detection: A combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm.

    PubMed

    Wang, Xingmei; Liu, Shu; Liu, Zhipeng

    2017-01-01

    This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method.

  3. Underwater sonar image detection: A combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm

    PubMed Central

    Liu, Zhipeng

    2017-01-01

    This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method. PMID:28542266

  4. How to generate a sound-localization map in fish

    NASA Astrophysics Data System (ADS)

    van Hemmen, J. Leo

    2015-03-01

    How sound localization is represented in the fish brain is a research field largely unbiased by theoretical analysis and computational modeling. Yet, there is experimental evidence that the axes of particle acceleration due to underwater sound are represented through a map in the midbrain of fish, e.g., in the torus semicircularis of the rainbow trout (Wubbels et al. 1997). How does such a map arise? Fish perceive pressure gradients by their three otolithic organs, each of which comprises a dense, calcareous, stone that is bathed in endolymph and attached to a sensory epithelium. In rainbow trout, the sensory epithelia of left and right utricle lie in the horizontal plane and consist of hair cells with equally distributed preferred orientations. We model the neuronal response of this system on the basis of Schuijf's vector detection hypothesis (Schuijf et al. 1975) and introduce a temporal spike code of sound direction, where optimality of hair cell orientation θj with respect to the acceleration direction θs is mapped onto spike phases via a von-Mises distribution. By learning to tune in to the earliest synchronized activity, nerve cells in the midbrain generate a map under the supervision of a locally excitatory, yet globally inhibitory visual teacher. Work done in collaboration with Daniel Begovic. Partially supported by BCCN - Munich.

  5. CC2 oscillator strengths within the local framework for calculating excitation energies (LoFEx).

    PubMed

    Baudin, Pablo; Kjærgaard, Thomas; Kristensen, Kasper

    2017-04-14

    In a recent work [P. Baudin and K. Kristensen, J. Chem. Phys. 144, 224106 (2016)], we introduced a local framework for calculating excitation energies (LoFEx), based on second-order approximated coupled cluster (CC2) linear-response theory. LoFEx is a black-box method in which a reduced excitation orbital space (XOS) is optimized to provide coupled cluster (CC) excitation energies at a reduced computational cost. In this article, we present an extension of the LoFEx algorithm to the calculation of CC2 oscillator strengths. Two different strategies are suggested, in which the size of the XOS is determined based on the excitation energy or the oscillator strength of the targeted transitions. The two strategies are applied to a set of medium-sized organic molecules in order to assess both the accuracy and the computational cost of the methods. The results show that CC2 excitation energies and oscillator strengths can be calculated at a reduced computational cost, provided that the targeted transitions are local compared to the size of the molecule. To illustrate the potential of LoFEx for large molecules, both strategies have been successfully applied to the lowest transition of the bivalirudin molecule (4255 basis functions) and compared with time-dependent density functional theory.

  6. Bending the Rules: Widefield Microscopy and the Abbe Limit of Resolution

    PubMed Central

    Verdaasdonk, Jolien S.; Stephens, Andrew D.; Haase, Julian; Bloom, Kerry

    2014-01-01

    One of the most fundamental concepts of microscopy is that of resolution–the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope–deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy. PMID:23893718

  7. Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.

    PubMed

    McIntosh, Chris; Hamarneh, Ghassan

    2012-01-01

    We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.

  8. Optimal inverse functions created via population-based optimization.

    PubMed

    Jennings, Alan L; Ordóñez, Raúl

    2014-06-01

    Finding optimal inputs for a multiple-input, single-output system is taxing for a system operator. Population-based optimization is used to create sets of functions that produce a locally optimal input based on a desired output. An operator or higher level planner could use one of the functions in real time. For the optimization, each agent in the population uses the cost and output gradients to take steps lowering the cost while maintaining their current output. When an agent reaches an optimal input for its current output, additional agents are generated in the output gradient directions. The new agents then settle to the local optima for the new output values. The set of associated optimal points forms an inverse function, via spline interpolation, from a desired output to an optimal input. In this manner, multiple locally optimal functions can be created. These functions are naturally clustered in input and output spaces allowing for a continuous inverse function. The operator selects the best cluster over the anticipated range of desired outputs and adjusts the set point (desired output) while maintaining optimality. This reduces the demand from controlling multiple inputs, to controlling a single set point with no loss in performance. Results are demonstrated on a sample set of functions and on a robot control problem.

  9. The solution of private problems for optimization heat exchangers parameters

    NASA Astrophysics Data System (ADS)

    Melekhin, A.

    2017-11-01

    The relevance of the topic due to the decision of problems of the economy of resources in heating systems of buildings. To solve this problem we have developed an integrated method of research which allows solving tasks on optimization of parameters of heat exchangers. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The author have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.

  10. An EGO-like optimization framework for sensor placement optimization in modal analysis

    NASA Astrophysics Data System (ADS)

    Morlier, Joseph; Basile, Aniello; Chiplunkar, Ankit; Charlotte, Miguel

    2018-07-01

    In aircraft design, ground/flight vibration tests are conducted to extract aircraft’s modal parameters (natural frequencies, damping ratios and mode shapes) also known as the modal basis. The main problem in aircraft modal identification is the large number of sensors needed, which increases operational time and costs. The goal of this paper is to minimize the number of sensors by optimizing their locations in order to reconstruct a truncated modal basis of N mode shapes with a high level of accuracy in the reconstruction. There are several methods to solve sensors placement optimization (SPO) problems, but for this case an original approach has been established based on an iterative process for mode shapes reconstruction through an adaptive Kriging metamodeling approach so called efficient global optimization (EGO)-SPO. The main idea in this publication is to solve an optimization problem where the sensors locations are variables and the objective function is defined by maximizing the trace of criteria so called AutoMAC. The results on a 2D wing demonstrate a reduction of sensors by 30% using our EGO-SPO strategy.

  11. Health-related quality of life, optimism, and coping strategies in persons suffering from localized scleroderma.

    PubMed

    Szramka-Pawlak, B; Dańczak-Pazdrowska, A; Rzepa, T; Szewczyk, A; Sadowska-Przytocka, A; Żaba, R

    2013-01-01

    The clinical course of localized scleroderma may consist of bodily deformations, and bodily functions may also be affected. Additionally, the secondary lesions, such as discoloration, contractures, and atrophy, are unlikely to regress. The aforementioned symptoms and functional disturbances may decrease one's quality of life (QoL). Although much has been mentioned in the medical literature regarding QoL in persons suffering from dermatologic diseases, no data specifically describing patients with localized scleroderma exist. The aim of the study was to explore QoL in localized scleroderma patients and to examine their coping strategies in regard to optimism and QoL. The study included 41 patients with localized scleroderma. QoL was evaluated using the SKINDEX questionnaire, and levels of dispositional optimism were assessed using the Life Orientation Test-Revised. In addition, individual coping strategy was determined using the Mini-MAC scale and physical condition was assessed using the Localized Scleroderma Severity Index. The mean QoL score amounted to 51.10 points, with mean scores for individual components as follows: symptoms = 13.49 points, emotions = 21.29 points, and functioning = 16.32 points. A relationship was detected between QoL and the level of dispositional optimism as well as with coping strategies known as anxious preoccupation and helplessness-hopelessness. Higher levels of optimism predicted a higher general QoL. In turn, greater intensity of anxious preoccupied and helpless-hopeless behaviors predicted a lower QoL. Based on these results, it may be stated that localized scleroderma patients have a relatively high QoL, which is accompanied by optimism as well as a lower frequency of behaviors typical of emotion-focused coping strategies.

  12. Research on particle swarm optimization algorithm based on optimal movement probability

    NASA Astrophysics Data System (ADS)

    Ma, Jianhong; Zhang, Han; He, Baofeng

    2017-01-01

    The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.

  13. Free-form Airfoil Shape Optimization Under Uncertainty Using Maximum Expected Value and Second-order Second-moment Strategies

    NASA Technical Reports Server (NTRS)

    Huyse, Luc; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Free-form shape optimization of airfoils poses unexpected difficulties. Practical experience has indicated that a deterministic optimization for discrete operating conditions can result in dramatically inferior performance when the actual operating conditions are different from the - somewhat arbitrary - design values used for the optimization. Extensions to multi-point optimization have proven unable to adequately remedy this problem of "localized optimization" near the sampled operating conditions. This paper presents an intrinsically statistical approach and demonstrates how the shortcomings of multi-point optimization with respect to "localized optimization" can be overcome. The practical examples also reveal how the relative likelihood of each of the operating conditions is automatically taken into consideration during the optimization process. This is a key advantage over the use of multipoint methods.

  14. Efficient Multi-Stage Time Marching for Viscous Flows via Local Preconditioning

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Wood, William A.; vanLeer, Bram

    1999-01-01

    A new method has been developed to accelerate the convergence of explicit time-marching, laminar, Navier-Stokes codes through the combination of local preconditioning and multi-stage time marching optimization. Local preconditioning is a technique to modify the time-dependent equations so that all information moves or decays at nearly the same rate, thus relieving the stiffness for a system of equations. Multi-stage time marching can be optimized by modifying its coefficients to account for the presence of viscous terms, allowing larger time steps. We show it is possible to optimize the time marching scheme for a wide range of cell Reynolds numbers for the scalar advection-diffusion equation, and local preconditioning allows this optimization to be applied to the Navier-Stokes equations. Convergence acceleration of the new method is demonstrated through numerical experiments with circular advection and laminar boundary-layer flow over a flat plate.

  15. Proper Orthogonal Decomposition in Optimal Control of Fluids

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.

  16. Behavior and neural basis of near-optimal visual search

    PubMed Central

    Ma, Wei Ji; Navalpakkam, Vidhya; Beck, Jeffrey M; van den Berg, Ronald; Pouget, Alexandre

    2013-01-01

    The ability to search efficiently for a target in a cluttered environment is one of the most remarkable functions of the nervous system. This task is difficult under natural circumstances, as the reliability of sensory information can vary greatly across space and time and is typically a priori unknown to the observer. In contrast, visual-search experiments commonly use stimuli of equal and known reliability. In a target detection task, we randomly assigned high or low reliability to each item on a trial-by-trial basis. An optimal observer would weight the observations by their trial-to-trial reliability and combine them using a specific nonlinear integration rule. We found that humans were near-optimal, regardless of whether distractors were homogeneous or heterogeneous and whether reliability was manipulated through contrast or shape. We present a neural-network implementation of near-optimal visual search based on probabilistic population coding. The network matched human performance. PMID:21552276

  17. Experimental and theoretical study of p-nitroacetanilide

    NASA Astrophysics Data System (ADS)

    Gnanasambandan, T.; Gunasekaran, S.; Seshadri, S.

    2014-01-01

    The spectroscopic properties of the p-nitroacetanilide (PNA) were examined by FT-IR, FT-Raman and UV-Vis techniques. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. The UV-Vis absorption spectrum of the compound that dissolved in ethanol was recorded in the range of 200-400 nm. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional theory (DFT) employing B3LYP methods with the 6-31G(d,p) and 6-311+G(d,p) basis sets. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear optical (NLO) properties such as electric dipole moment and first hyperpolarizability have been computed using B3LYP quantum chemical calculation.

  18. Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs).

    PubMed

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2014-12-01

    In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Evaluation of cold workplaces: an overview of standards for assessment of cold stress.

    PubMed

    Holmér, Ingvar

    2009-07-01

    Many persons world wide are exposed to cold environments, either indoors for example in cold stores, or outdoors. Cold is a hazard to health and may affect safety and performance of work. Basis for the creation of safe and optimal working conditions may be obtained by the application of relevant international standards. ISO 11079 presents a method for evaluation of whole body heat balance. On the basis of climate and activity a required clothing insulation (IREQ) for heat balance is determined. For clothing with known insulation value an exposure time limited is calculated. ISO 11079 also includes criteria for assessment of local cooling. Finger temperatures should not be below 24 degrees C during prolonged exposures or 15 degrees C occasionally. Wind chill temperature indicates the risk of bare skin to freeze for combinations of wind and low temperatures. Special protection of airways is recommended at temperatures below -20 degrees C, in particular during heavy work. Additional standards are available describing evaluation strategies, work place observation checklists and checklist for medical screening. Risks associated with contact with cold surfaces can be evaluated with ISO 13732. The strategy and principles for assessment and prevention of cold stress are reviewed in this paper.

  20. Theoretical study on the structure and stabilities of molecular clusters of oxalic acid with water.

    PubMed

    Weber, Kevin H; Morales, Francisco J; Tao, Fu-Ming

    2012-11-29

    The importance of aerosols to humankind is well-known, playing an integral role in determining Earth's climate and influencing human health. Despite this fact, much remains unknown about the initial events of nucleation. In this work, the molecular properties of common organic atmospheric pollutant oxalic acid and its gas phase interactions with water have been thoroughly examined. Local minima single-point energies for the monomer conformations were calculated at the B3LYP and MP2 level of theory with both 6-311++G(d,p) and aug-cc-pVDZ basis sets and are compared with previous works. Optimized geometries, relative energies, and free energy changes for the stable clusters of oxalic acid conformers with up to six waters were then obtained from B3LYP calculations with 6-31+G(d) and 6-311++G(d,p) basis sets. Initially, cooperative binding is predicted to be the most important factor in nucleation, but as the clusters grow, dipole cancellations are found to play a pivotal role. The clusters of oxalic acid hydrated purely with water tend to produce extremely stable and neutral core systems. Free energies of formation and atmospheric implications are discussed.

  1. Formulation analysis and computation of an optimization-based local-to-nonlocal coupling method.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Elia, Marta; Bochev, Pavel Blagoveston

    2017-01-01

    In this paper, we present an optimization-based coupling method for local and nonlocal continuum models. Our approach couches the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual controls are the nonlocal volume constraint and the local boundary condition. We present the method in the context of Local-to-Nonlocal di usion coupling. Numerical examples illustrate the theoretical properties of the approach.

  2. Power optimal single-axis articulating strategies

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Heck, Michael L.

    1991-01-01

    Power optimal single axis articulating PV array motion for Space Station Freedom is investigated. The motivation is to eliminate one of the articular joints to reduce Station costs. Optimal (maximum power) Beta tracking is addressed for local vertical local horizontal (LVLH) and non-LVLH attitudes. Effects of intra-array shadowing are also presented. Maximum power availability while Beta tracking is compared to full sun tracking and optimal alpha tracking. The results are quantified in orbital and yearly minimum, maximum, and average values of power availability.

  3. Two-UAV Intersection Localization System Based on the Airborne Optoelectronic Platform

    PubMed Central

    Bai, Guanbing; Liu, Jinghong; Song, Yueming; Zuo, Yujia

    2017-01-01

    To address the limitation of the existing UAV (unmanned aerial vehicles) photoelectric localization method used for moving objects, this paper proposes an improved two-UAV intersection localization system based on airborne optoelectronic platforms by using the crossed-angle localization method of photoelectric theodolites for reference. This paper introduces the makeup and operating principle of intersection localization system, creates auxiliary coordinate systems, transforms the LOS (line of sight, from the UAV to the target) vectors into homogeneous coordinates, and establishes a two-UAV intersection localization model. In this paper, the influence of the positional relationship between UAVs and the target on localization accuracy has been studied in detail to obtain an ideal measuring position and the optimal localization position where the optimal intersection angle is 72.6318°. The result shows that, given the optimal position, the localization root mean square error (RMS) will be 25.0235 m when the target is 5 km away from UAV baselines. Finally, the influence of modified adaptive Kalman filtering on localization results is analyzed, and an appropriate filtering model is established to reduce the localization RMS error to 15.7983 m. Finally, An outfield experiment was carried out and obtained the optimal results: σB=1.63×10−4 (°), σL=1.35×10−4 (°), σH=15.8 (m), σsum=27.6 (m), where σB represents the longitude error, σL represents the latitude error, σH represents the altitude error, and σsum represents the error radius. PMID:28067814

  4. Two-UAV Intersection Localization System Based on the Airborne Optoelectronic Platform.

    PubMed

    Bai, Guanbing; Liu, Jinghong; Song, Yueming; Zuo, Yujia

    2017-01-06

    To address the limitation of the existing UAV (unmanned aerial vehicles) photoelectric localization method used for moving objects, this paper proposes an improved two-UAV intersection localization system based on airborne optoelectronic platforms by using the crossed-angle localization method of photoelectric theodolites for reference. This paper introduces the makeup and operating principle of intersection localization system, creates auxiliary coordinate systems, transforms the LOS (line of sight, from the UAV to the target) vectors into homogeneous coordinates, and establishes a two-UAV intersection localization model. In this paper, the influence of the positional relationship between UAVs and the target on localization accuracy has been studied in detail to obtain an ideal measuring position and the optimal localization position where the optimal intersection angle is 72.6318°. The result shows that, given the optimal position, the localization root mean square error (RMS) will be 25.0235 m when the target is 5 km away from UAV baselines. Finally, the influence of modified adaptive Kalman filtering on localization results is analyzed, and an appropriate filtering model is established to reduce the localization RMS error to 15.7983 m. Finally, An outfield experiment was carried out and obtained the optimal results: σ B = 1.63 × 10 - 4 ( ° ) , σ L = 1.35 × 10 - 4 ( ° ) , σ H = 15.8 ( m ) , σ s u m = 27.6 ( m ) , where σ B represents the longitude error, σ L represents the latitude error, σ H represents the altitude error, and σ s u m represents the error radius.

  5. Space-planning and structural solutions of low-rise buildings: Optimal selection methods

    NASA Astrophysics Data System (ADS)

    Gusakova, Natalya; Minaev, Nikolay; Filushina, Kristina; Dobrynina, Olga; Gusakov, Alexander

    2017-11-01

    The present study is devoted to elaboration of methodology used to select appropriately the space-planning and structural solutions in low-rise buildings. Objective of the study is working out the system of criteria influencing the selection of space-planning and structural solutions which are most suitable for low-rise buildings and structures. Application of the defined criteria in practice aim to enhance the efficiency of capital investments, energy and resource saving, create comfortable conditions for the population considering climatic zoning of the construction site. Developments of the project can be applied while implementing investment-construction projects of low-rise housing at different kinds of territories based on the local building materials. The system of criteria influencing the optimal selection of space-planning and structural solutions of low-rise buildings has been developed. Methodological basis has been also elaborated to assess optimal selection of space-planning and structural solutions of low-rise buildings satisfying the requirements of energy-efficiency, comfort and safety, and economical efficiency. Elaborated methodology enables to intensify the processes of low-rise construction development for different types of territories taking into account climatic zoning of the construction site. Stimulation of low-rise construction processes should be based on the system of approaches which are scientifically justified; thus it allows enhancing energy efficiency, comfort, safety and economical effectiveness of low-rise buildings.

  6. Use of genetic algorithm for the selection of EEG features

    NASA Astrophysics Data System (ADS)

    Asvestas, P.; Korda, A.; Kostopoulos, S.; Karanasiou, I.; Ouzounoglou, A.; Sidiropoulos, K.; Ventouras, E.; Matsopoulos, G.

    2015-09-01

    Genetic Algorithm (GA) is a popular optimization technique that can detect the global optimum of a multivariable function containing several local optima. GA has been widely used in the field of biomedical informatics, especially in the context of designing decision support systems that classify biomedical signals or images into classes of interest. The aim of this paper is to present a methodology, based on GA, for the selection of the optimal subset of features that can be used for the efficient classification of Event Related Potentials (ERPs), which are recorded during the observation of correct or incorrect actions. In our experiment, ERP recordings were acquired from sixteen (16) healthy volunteers who observed correct or incorrect actions of other subjects. The brain electrical activity was recorded at 47 locations on the scalp. The GA was formulated as a combinatorial optimizer for the selection of the combination of electrodes that maximizes the performance of the Fuzzy C Means (FCM) classification algorithm. In particular, during the evolution of the GA, for each candidate combination of electrodes, the well-known (Σ, Φ, Ω) features were calculated and were evaluated by means of the FCM method. The proposed methodology provided a combination of 8 electrodes, with classification accuracy 93.8%. Thus, GA can be the basis for the selection of features that discriminate ERP recordings of observations of correct or incorrect actions.

  7. Accurate Initial State Estimation in a Monocular Visual–Inertial SLAM System

    PubMed Central

    Chen, Jing; Zhou, Zixiang; Leng, Zhen; Fan, Lei

    2018-01-01

    The fusion of monocular visual and inertial cues has become popular in robotics, unmanned vehicles and augmented reality fields. Recent results have shown that optimization-based fusion strategies outperform filtering strategies. Robust state estimation is the core capability for optimization-based visual–inertial Simultaneous Localization and Mapping (SLAM) systems. As a result of the nonlinearity of visual–inertial systems, the performance heavily relies on the accuracy of initial values (visual scale, gravity, velocity and Inertial Measurement Unit (IMU) biases). Therefore, this paper aims to propose a more accurate initial state estimation method. On the basis of the known gravity magnitude, we propose an approach to refine the estimated gravity vector by optimizing the two-dimensional (2D) error state on its tangent space, then estimate the accelerometer bias separately, which is difficult to be distinguished under small rotation. Additionally, we propose an automatic termination criterion to determine when the initialization is successful. Once the initial state estimation converges, the initial estimated values are used to launch the nonlinear tightly coupled visual–inertial SLAM system. We have tested our approaches with the public EuRoC dataset. Experimental results show that the proposed methods can achieve good initial state estimation, the gravity refinement approach is able to efficiently speed up the convergence process of the estimated gravity vector, and the termination criterion performs well. PMID:29419751

  8. Humans make efficient use of natural image statistics when performing spatial interpolation.

    PubMed

    D'Antona, Anthony D; Perry, Jeffrey S; Geisler, Wilson S

    2013-12-16

    Visual systems learn through evolution and experience over the lifespan to exploit the statistical structure of natural images when performing visual tasks. Understanding which aspects of this statistical structure are incorporated into the human nervous system is a fundamental goal in vision science. To address this goal, we measured human ability to estimate the intensity of missing image pixels in natural images. Human estimation accuracy is compared with various simple heuristics (e.g., local mean) and with optimal observers that have nearly complete knowledge of the local statistical structure of natural images. Human estimates are more accurate than those of simple heuristics, and they match the performance of an optimal observer that knows the local statistical structure of relative intensities (contrasts). This optimal observer predicts the detailed pattern of human estimation errors and hence the results place strong constraints on the underlying neural mechanisms. However, humans do not reach the performance of an optimal observer that knows the local statistical structure of the absolute intensities, which reflect both local relative intensities and local mean intensity. As predicted from a statistical analysis of natural images, human estimation accuracy is negligibly improved by expanding the context from a local patch to the whole image. Our results demonstrate that the human visual system exploits efficiently the statistical structure of natural images.

  9. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter

    PubMed Central

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan

    2018-01-01

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509

  10. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.

    PubMed

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan

    2018-02-06

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

  11. Particle swarm optimization and its application in MEG source localization using single time sliced data

    NASA Astrophysics Data System (ADS)

    Lin, Juan; Liu, Chenglian; Guo, Yongning

    2014-10-01

    The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.

  12. Optimization of structures on the basis of fracture mechanics and reliability criteria

    NASA Technical Reports Server (NTRS)

    Heer, E.; Yang, J. N.

    1973-01-01

    Systematic summary of factors which are involved in optimization of given structural configuration is part of report resulting from study of analysis of objective function. Predicted reliability of performance of finished structure is sharply dependent upon results of coupon tests. Optimization analysis developed by study also involves expected cost of proof testing.

  13. Optimizing the sequence of diameter distributions and selection harvests for uneven-aged stand management

    Treesearch

    Robert G. Haight; J. Douglas Brodie; Darius M. Adams

    1985-01-01

    The determination of an optimal sequence of diameter distributions and selection harvests for uneven-aged stand management is formulated as a discrete-time optimal-control problem with bounded control variables and free-terminal point. An efficient programming technique utilizing gradients provides solutions that are stable and interpretable on the basis of economic...

  14. Geminal embedding scheme for optimal atomic basis set construction in correlated calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorella, S., E-mail: sorella@sissa.it; Devaux, N.; Dagrada, M., E-mail: mario.dagrada@impmc.upmc.fr

    2015-12-28

    We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wavemore » function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.« less

  15. Analysis of technical university information system

    NASA Astrophysics Data System (ADS)

    Savelyev, N. A.; Boyarkin, M. A.

    2018-05-01

    The paper covers a set and interaction of the existing higher education institution automated control systems in φ state budgetary educational institution of higher professional education "Industrial University of Tyumen ". A structural interaction of the existing systems and their functions has been analyzed which has become a basis for identification of a number of system-related and local (related to separate modules) drawbacks of the university activities automation. The authors suggested a new structure of the automated control system, consisting of three major subsystems: management support; training and methodology support; distance and supplementary education support. Functionality for each subsystem has been defined in accordance with the educational institution automation requirements. The suggested structure of the ACS will solve the challenges facing the university during reorganization and optimization of the processes of management of the institution activities as a whole.

  16. Topology and boundary shape optimization as an integrated design tool

    NASA Technical Reports Server (NTRS)

    Bendsoe, Martin Philip; Rodrigues, Helder Carrico

    1990-01-01

    The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.

  17. Direct discriminant locality preserving projection with Hammerstein polynomial expansion.

    PubMed

    Chen, Xi; Zhang, Jiashu; Li, Defang

    2012-12-01

    Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.

  18. Autonomous Modelling of X-ray Spectra Using Robust Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar; Fiege, Jason

    2015-08-01

    The standard approach to model fitting in X-ray astronomy is by means of local optimization methods. However, these local optimizers suffer from a number of problems, such as a tendency for the fit parameters to become trapped in local minima, and can require an involved process of detailed user intervention to guide them through the optimization process. In this work we introduce a general GUI-driven global optimization method for fitting models to X-ray data, written in MATLAB, which searches for optimal models with minimal user interaction. We directly interface with the commonly used XSPEC libraries to access the full complement of pre-existing spectral models that describe a wide range of physics appropriate for modelling astrophysical sources, including supernova remnants and compact objects. Our algorithm is powered by the Ferret genetic algorithm and Locust particle swarm optimizer from the Qubist Global Optimization Toolbox, which are robust at finding families of solutions and identifying degeneracies. This technique will be particularly instrumental for multi-parameter models and high-fidelity data. In this presentation, we provide details of the code and use our techniques to analyze X-ray data obtained from a variety of astrophysical sources.

  19. Optimization of waste combinations during in-vessel composting of agricultural waste.

    PubMed

    Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh

    2017-01-01

    In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.

  20. Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm

    NASA Astrophysics Data System (ADS)

    Anam, S.

    2017-10-01

    Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.

  1. Prediction of gas chromatographic retention indices by the use of radial basis function neural networks.

    PubMed

    Yao, Xiaojun; Zhang, Xiaoyun; Zhang, Ruisheng; Liu, Mancang; Hu, Zhide; Fan, Botao

    2002-05-16

    A new method for the prediction of retention indices for a diverse set of compounds from their physicochemical parameters has been proposed. The two used input parameters for representing molecular properties are boiling point and molar volume. Models relating relationships between physicochemical parameters and retention indices of compounds are constructed by means of radial basis function neural networks. To get the best prediction results, some strategies are also employed to optimize the topology and learning parameters of the RBFNNs. For the test set, a predictive correlation coefficient R=0.9910 and root mean squared error of 14.1 are obtained. Results show that radial basis function networks can give satisfactory prediction ability and its optimization is less-time consuming and easy to implement.

  2. Optimal color coding for compression of true color images

    NASA Astrophysics Data System (ADS)

    Musatenko, Yurij S.; Kurashov, Vitalij N.

    1998-11-01

    In the paper we present the method that improves lossy compression of the true color or other multispectral images. The essence of the method is to project initial color planes into Karhunen-Loeve (KL) basis that gives completely decorrelated representation for the image and to compress basis functions instead of the planes. To do that the new fast algorithm of true KL basis construction with low memory consumption is suggested and our recently proposed scheme for finding optimal losses of Kl functions while compression is used. Compare to standard JPEG compression of the CMYK images the method provides the PSNR gain from 0.2 to 2 dB for the convenient compression ratios. Experimental results are obtained for high resolution CMYK images. It is demonstrated that presented scheme could work on common hardware.

  3. Process of optimization of district heat production by utilizing waste energy from metallurgical processes

    NASA Astrophysics Data System (ADS)

    Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo

    2017-07-01

    In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.

  4. Who are the real bird brains? Qualitative differences in behavioral flexibility between dogs (Canis familiaris) and pigeons (Columba livia).

    PubMed

    Laude, Jennifer R; Pattison, Kristina F; Rayburn-Reeves, Rebecca M; Michler, Daniel M; Zentall, Thomas R

    2016-01-01

    Pigeons given a simultaneous spatial discrimination reversal, in which a single reversal occurs at the midpoint of each session, consistently show anticipation prior to the reversal as well as perseveration after the reversal, suggesting that they use a less effective cue (time or trial number into the session) than what would be optimal to maximize reinforcement (local feedback from the most recent trials). In contrast, rats (Rattus norvegicus) and humans show near-optimal reversal learning on this task. To determine whether this is a general characteristic of mammals, in the present research, pigeons (Columba livia) and dogs (Canis familiaris) were tested with a simultaneous spatial discrimination mid-session reversal. Overall, dogs performed the task more poorly than pigeons. Interestingly, both pigeons and dogs employed what resembled a timing strategy. However, dogs showed greater perseverative errors, suggesting that they may have relatively poorer working memory and inhibitory control with this task. The greater efficiency shown by pigeons with this task suggests they are better able to time and use the feedback from their preceding choice as the basis of their future choice, highlighting what may be a qualitative difference between the species.

  5. Effects of Outlets on Cracking Risk and Integral Stability of Super-High Arch Dams

    PubMed Central

    Hu, Hang

    2014-01-01

    In this paper, case study on outlet cracking is first conducted for the Goupitan and Xiaowan arch dams. A nonlinear FEM method is then implemented to study effects of the outlets on integral stability of the Xiluodu arch dam under two loading conditions, i.e., normal loading and overloading conditions. On the basis of the case study and the numerical modelling, the outlet cracking mechanism, risk, and corresponding reinforcement measures are discussed. Furthermore, the numerical simulation reveals that (1) under the normal loading conditions, the optimal distribution of the outlets will contribute to the tensile stress release in the local zone of the dam stream surface and decrease the outlet cracking risk during the operation period. (2) Under the overloading conditions, the cracks initiate around the outlets, then propagate along the horizontal direction, and finally coalesce with those in adjacent outlets, where the yield zone of the dam has a shape of butterfly. Throughout this study, a dam outlet cracking risk control and reinforcement principle is proposed to optimize the outlet design, select the appropriate concrete material, strengthen the temperature control during construction period, design reasonable impounding scheme, and repair the cracks according to their classification. PMID:25152907

  6. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM.

    PubMed

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2016-10-14

    A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  7. Einstein-Podolsky-Rosen steering: Its geometric quantification and witness

    NASA Astrophysics Data System (ADS)

    Ku, Huan-Yu; Chen, Shin-Liang; Budroni, Costantino; Miranowicz, Adam; Chen, Yueh-Nan; Nori, Franco

    2018-02-01

    We propose a measure of quantum steerability, namely, a convex steering monotone, based on the trace distance between a given assemblage and its corresponding closest assemblage admitting a local-hidden-state (LHS) model. We provide methods to estimate such a quantity, via lower and upper bounds, based on semidefinite programming. One of these upper bounds has a clear geometrical interpretation as a linear function of rescaled Euclidean distances in the Bloch sphere between the normalized quantum states of (i) a given assemblage and (ii) an LHS assemblage. For a qubit-qubit quantum state, these ideas also allow us to visualize various steerability properties of the state in the Bloch sphere via the so-called LHS surface. In particular, some steerability properties can be obtained by comparing such an LHS surface with a corresponding quantum steering ellipsoid. Thus, we propose a witness of steerability corresponding to the difference of the volumes enclosed by these two surfaces. This witness (which reveals the steerability of a quantum state) enables one to find an optimal measurement basis, which can then be used to determine the proposed steering monotone (which describes the steerability of an assemblage) optimized over all mutually unbiased bases.

  8. AN OPTIMAL ADAPTIVE LOCAL GRID REFINEMENT APPROACH TO MODELING CONTAMINANT TRANSPORT

    EPA Science Inventory

    A Lagrangian-Eulerian method with an optimal adaptive local grid refinement is used to model contaminant transport equations. pplication of this approach to two bench-mark problems indicates that it completely resolves difficulties of peak clipping, numerical diffusion, and spuri...

  9. Localization of multilayer networks by optimized single-layer rewiring.

    PubMed

    Jalan, Sarika; Pradhan, Priodyuti

    2018-04-01

    We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.

  10. Localization of multilayer networks by optimized single-layer rewiring

    NASA Astrophysics Data System (ADS)

    Jalan, Sarika; Pradhan, Priodyuti

    2018-04-01

    We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.

  11. 75 FR 66054 - Nondiscrimination on the Basis of Disability in State and Local Government Services, Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Captioning and Video Description; and Nondiscrimination on the Basis of Disability by State and Local... San Francisco, CA, on a date to be announced in the near future on the ADA Home Page at http://www.ada... a location to be announced in the near future on the ADA Home Page at http://www.ada.gov . FOR...

  12. Development Of Educational Programs In Renewable And Alternative Energy Processing: The Case Of Russia

    NASA Astrophysics Data System (ADS)

    Svirina, Anna; Shindor, Olga; Tatmyshevsky, Konstantin

    2014-12-01

    The paper deals with the main problems of Russian energy system development that proves necessary to provide educational programs in the field of renewable and alternative energy. In the paper the process of curricula development and defining teaching techniques on the basis of expert opinion evaluation is defined, and the competence model for renewable and alternative energy processing master students is suggested. On the basis of a distributed questionnaire and in-depth interviews, the data for statistical analysis was obtained. On the basis of this data, an optimization of curricula structure was performed, and three models of a structure for optimizing teaching techniques were developed. The suggested educational program structure which was adopted by employers is presented in the paper. The findings include quantitatively estimated importance of systemic thinking and professional skills and knowledge as basic competences of a masters' program graduate; statistically estimated necessity of practice-based learning approach; and optimization models for structuring curricula in renewable and alternative energy processing. These findings allow the establishment of a platform for the development of educational programs.

  13. Sparse matrix multiplications for linear scaling electronic structure calculations in an atom-centered basis set using multiatom blocks.

    PubMed

    Saravanan, Chandra; Shao, Yihan; Baer, Roi; Ross, Philip N; Head-Gordon, Martin

    2003-04-15

    A sparse matrix multiplication scheme with multiatom blocks is reported, a tool that can be very useful for developing linear-scaling methods with atom-centered basis functions. Compared to conventional element-by-element sparse matrix multiplication schemes, efficiency is gained by the use of the highly optimized basic linear algebra subroutines (BLAS). However, some sparsity is lost in the multiatom blocking scheme because these matrix blocks will in general contain negligible elements. As a result, an optimal block size that minimizes the CPU time by balancing these two effects is recovered. In calculations on linear alkanes, polyglycines, estane polymers, and water clusters the optimal block size is found to be between 40 and 100 basis functions, where about 55-75% of the machine peak performance was achieved on an IBM RS6000 workstation. In these calculations, the blocked sparse matrix multiplications can be 10 times faster than a standard element-by-element sparse matrix package. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 618-622, 2003

  14. Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Admissibility and Termination Analysis.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Qiao

    In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.In this paper, a novel local value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon optimal control problems for discrete-time nonlinear systems. The focuses of this paper are to study admissibility properties and the termination criteria of discrete-time local value iteration ADP algorithms. In the discrete-time local value iteration ADP algorithm, the iterative value functions and the iterative control laws are both updated in a given subset of the state space in each iteration, instead of the whole state space. For the first time, admissibility properties of iterative control laws are analyzed for the local value iteration ADP algorithm. New termination criteria are established, which terminate the iterative local ADP algorithm with an admissible approximate optimal control law. Finally, simulation results are given to illustrate the performance of the developed algorithm.

  15. Perturbation expansion theory corrected from basis set superposition error. I. Locally projected excited orbitals and single excitations.

    PubMed

    Nagata, Takeshi; Iwata, Suehiro

    2004-02-22

    The locally projected self-consistent field molecular orbital method for molecular interaction (LP SCF MI) is reformulated for multifragment systems. For the perturbation expansion, two types of the local excited orbitals are defined; one is fully local in the basis set on a fragment, and the other has to be partially delocalized to the basis sets on the other fragments. The perturbation expansion calculations only within single excitations (LP SE MP2) are tested for water dimer, hydrogen fluoride dimer, and colinear symmetric ArM+ Ar (M = Na and K). The calculated binding energies of LP SE MP2 are all close to the corresponding counterpoise corrected SCF binding energy. By adding the single excitations, the deficiency in LP SCF MI is thus removed. The results suggest that the exclusion of the charge-transfer effects in LP SCF MI might indeed be the cause of the underestimation for the binding energy. (c) 2004 American Institute of Physics.

  16. Distributed Optimization for a Class of Nonlinear Multiagent Systems With Disturbance Rejection.

    PubMed

    Wang, Xinghu; Hong, Yiguang; Ji, Haibo

    2016-07-01

    The paper studies the distributed optimization problem for a class of nonlinear multiagent systems in the presence of external disturbances. To solve the problem, we need to achieve the optimal multiagent consensus based on local cost function information and neighboring information and meanwhile to reject local disturbance signals modeled by an exogenous system. With convex analysis and the internal model approach, we propose a distributed optimization controller for heterogeneous and nonlinear agents in the form of continuous-time minimum-phase systems with unity relative degree. We prove that the proposed design can solve the exact optimization problem with rejecting disturbances.

  17. The use of optimization techniques to design controlled diffusion compressor blading

    NASA Technical Reports Server (NTRS)

    Sanger, N. L.

    1982-01-01

    A method for automating compressor blade design using numerical optimization, and applied to the design of a controlled diffusion stator blade row is presented. A general purpose optimization procedure is employed, based on conjugate directions for locally unconstrained problems and on feasible directions for locally constrained problems. Coupled to the optimizer is an analysis package consisting of three analysis programs which calculate blade geometry, inviscid flow, and blade surface boundary layers. The optimizing concepts and selection of design objective and constraints are described. The procedure for automating the design of a two dimensional blade section is discussed, and design results are presented.

  18. Hyperfine coupling constants of the nitrogen and phosphorus atoms: A challenge for exact-exchange density-functional and post-Hartree-Fock methods

    NASA Astrophysics Data System (ADS)

    Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas

    2010-05-01

    The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.

  19. Messaging with Cost-Optimized Interstellar Beacons

    NASA Technical Reports Server (NTRS)

    Benford, James; Benford, Gregory; Benford, Dominic

    2010-01-01

    On Earth, how would we build galactic-scale beacons to attract the attention of extraterrestrials, as some have suggested we should do? From the point of view of expense to a builder on Earth, experience shows an optimum trade-off. This emerges by minimizing the cost of producing a desired power density at long range, which determines the maximum range of detectability of a transmitted signal. We derive general relations for cost-optimal aperture and power. For linear dependence of capital cost on transmitter power and antenna area, minimum capital cost occurs when the cost is equally divided between antenna gain and radiated power. For nonlinear power-law dependence, a similar simple division occurs. This is validated in cost data for many systems; industry uses this cost optimum as a rule of thumb. Costs of pulsed cost-efficient transmitters are estimated from these relations by using current cost parameters ($/W, $/sq m) as a basis. We show the scaling and give examples of such beacons. Galactic-scale beacons can be built for a few billion dollars with our present technology. Such beacons have narrow "searchlight" beams and short "dwell times" when the beacon would be seen by an alien observer in their sky. More-powerful beacons are more efficient and have economies of scale: cost scales only linearly with range R, not as R(exp 2), so number of stars radiated to increases as the square of cost. On a cost basis, they will likely transmit at higher microwave frequencies, -10 GHz. The natural corridor to broadcast is along the galactic radius or along the local spiral galactic arm we are in. A companion paper asks "If someone like us were to produce a beacon, how should we look for it?"

  20. Speed and convergence properties of gradient algorithms for optimization of IMRT.

    PubMed

    Zhang, Xiaodong; Liu, Helen; Wang, Xiaochun; Dong, Lei; Wu, Qiuwen; Mohan, Radhe

    2004-05-01

    Gradient algorithms are the most commonly employed search methods in the routine optimization of IMRT plans. It is well known that local minima can exist for dose-volume-based and biology-based objective functions. The purpose of this paper is to compare the relative speed of different gradient algorithms, to investigate the strategies for accelerating the optimization process, to assess the validity of these strategies, and to study the convergence properties of these algorithms for dose-volume and biological objective functions. With these aims in mind, we implemented Newton's, conjugate gradient (CG), and the steepest decent (SD) algorithms for dose-volume- and EUD-based objective functions. Our implementation of Newton's algorithm approximates the second derivative matrix (Hessian) by its diagonal. The standard SD algorithm and the CG algorithm with "line minimization" were also implemented. In addition, we investigated the use of a variation of the CG algorithm, called the "scaled conjugate gradient" (SCG) algorithm. To accelerate the optimization process, we investigated the validity of the use of a "hybrid optimization" strategy, in which approximations to calculated dose distributions are used during most of the iterations. Published studies have indicated that getting trapped in local minima is not a significant problem. To investigate this issue further, we first obtained, by trial and error, and starting with uniform intensity distributions, the parameters of the dose-volume- or EUD-based objective functions which produced IMRT plans that satisfied the clinical requirements. Using the resulting optimized intensity distributions as the initial guess, we investigated the possibility of getting trapped in a local minimum. For most of the results presented, we used a lung cancer case. To illustrate the generality of our methods, the results for a prostate case are also presented. For both dose-volume and EUD based objective functions, Newton's method far outperforms other algorithms in terms of speed. The SCG algorithm, which avoids expensive "line minimization," can speed up the standard CG algorithm by at least a factor of 2. For the same initial conditions, all algorithms converge essentially to the same plan. However, we demonstrate that for any of the algorithms studied, starting with previously optimized intensity distributions as the initial guess but for different objective function parameters, the solution frequently gets trapped in local minima. We found that the initial intensity distribution obtained from IMRT optimization utilizing objective function parameters, which favor a specific anatomic structure, would lead to a local minimum corresponding to that structure. Our results indicate that from among the gradient algorithms tested, Newton's method appears to be the fastest by far. Different gradient algorithms have the same convergence properties for dose-volume- and EUD-based objective functions. The hybrid dose calculation strategy is valid and can significantly accelerate the optimization process. The degree of acceleration achieved depends on the type of optimization problem being addressed (e.g., IMRT optimization, intensity modulated beam configuration optimization, or objective function parameter optimization). Under special conditions, gradient algorithms will get trapped in local minima, and reoptimization, starting with the results of previous optimization, will lead to solutions that are generally not significantly different from the local minimum.

  1. New estimation architecture for multisensor data fusion

    NASA Astrophysics Data System (ADS)

    Covino, Joseph M.; Griffiths, Barry E.

    1991-07-01

    This paper describes a novel method of hierarchical asynchronous distributed filtering called the Net Information Approach (NIA). The NIA is a Kalman-filter-based estimation scheme for spatially distributed sensors which must retain their local optimality yet require a nearly optimal global estimate. The key idea of the NIA is that each local sensor-dedicated filter tells the global filter 'what I've learned since the last local-to-global transmission,' whereas in other estimation architectures the local-to-global transmission consists of 'what I think now.' An algorithm based on this idea has been demonstrated on a small-scale target-tracking problem with many encouraging results. Feasibility of this approach was demonstrated by comparing NIA performance to an optimal centralized Kalman filter (lower bound) via Monte Carlo simulations.

  2. Multi objective multi refinery optimization with environmental and catastrophic failure effects objectives

    NASA Astrophysics Data System (ADS)

    Khogeer, Ahmed Sirag

    2005-11-01

    Petroleum refining is a capital-intensive business. With stringent environmental regulations on the processing industry and declining refining margins, political instability, increased risk of war and terrorist attacks in which refineries and fuel transportation grids may be targeted, higher pressures are exerted on refiners to optimize performance and find the best combination of feed and processes to produce salable products that meet stricter product specifications, while at the same time meeting refinery supply commitments and of course making profit. This is done through multi objective optimization. For corporate refining companies and at the national level, Intea-Refinery and Inter-Refinery optimization is the second step in optimizing the operation of the whole refining chain as a single system. Most refinery-wide optimization methods do not cover multiple objectives such as minimizing environmental impact, avoiding catastrophic failures, or enhancing product spec upgrade effects. This work starts by carrying out a refinery-wide, single objective optimization, and then moves to multi objective-single refinery optimization. The last step is multi objective-multi refinery optimization, the objectives of which are analysis of the effects of economic, environmental, product spec, strategic, and catastrophic failure. Simulation runs were carried out using both MATLAB and ASPEN PIMS utilizing nonlinear techniques to solve the optimization problem. The results addressed the need to debottleneck some refineries or transportation media in order to meet the demand for essential products under partial or total failure scenarios. They also addressed how importing some high spec products can help recover some of the losses and what is needed in order to accomplish this. In addition, the results showed nonlinear relations among local and global objectives for some refineries. The results demonstrate that refineries can have a local multi objective optimum that does not follow the same trends as either global or local single objective optimums. Catastrophic failure effects on refinery operations and on local objectives are more significant than environmental objective effects, and changes in the capacity or the local objectives follow a discrete behavioral pattern, in contrast to environmental objective cases in which the effects are smoother. (Abstract shortened by UMI.)

  3. Complex Patterns of Local Adaptation in Teosinte

    PubMed Central

    Pyhäjärvi, Tanja; Hufford, Matthew B.; Mezmouk, Sofiane; Ross-Ibarra, Jeffrey

    2013-01-01

    Populations of widely distributed species encounter and must adapt to local environmental conditions. However, comprehensive characterization of the genetic basis of adaptation is demanding, requiring genome-wide genotype data, multiple sampled populations, and an understanding of population structure and potential selection pressures. Here, we used single-nucleotide polymorphism genotyping and data on numerous environmental variables to describe the genetic basis of local adaptation in 21 populations of teosinte, the wild ancestor of maize. We found complex hierarchical genetic structure created by altitude, dispersal events, and admixture among subspecies, which complicated identification of locally beneficial alleles. Patterns of linkage disequilibrium revealed four large putative inversion polymorphisms showing clinal patterns of frequency. Population differentiation and environmental correlations suggest that both inversions and intergenic polymorphisms are involved in local adaptation. PMID:23902747

  4. Image segmentation using local shape and gray-level appearance models

    NASA Astrophysics Data System (ADS)

    Seghers, Dieter; Loeckx, Dirk; Maes, Frederik; Suetens, Paul

    2006-03-01

    A new generic model-based segmentation scheme is presented, which can be trained from examples akin to the Active Shape Model (ASM) approach in order to acquire knowledge about the shape to be segmented and about the gray-level appearance of the object in the image. Because in the ASM approach the intensity and shape models are typically applied alternately during optimizing as first an optimal target location is selected for each landmark separately based on local gray-level appearance information only to which the shape model is fitted subsequently, the ASM may be misled in case of wrongly selected landmark locations. Instead, the proposed approach optimizes for shape and intensity characteristics simultaneously. Local gray-level appearance information at the landmark points extracted from feature images is used to automatically detect a number of plausible candidate locations for each landmark. The shape information is described by multiple landmark-specific statistical models that capture local dependencies between adjacent landmarks on the shape. The shape and intensity models are combined in a single cost function that is optimized non-iteratively using dynamic programming which allows to find the optimal landmark positions using combined shape and intensity information, without the need for initialization.

  5. [Establishment of prescription research technology system in Chinese medicine secondary exploitation based on "component structure" theory].

    PubMed

    Cheng, Xu-Dong; Feng, Liang; Gu, Jun-Fei; Zhang, Ming-Hua; Jia, Xiao-Bin

    2014-11-01

    Chinese medicine prescriptions are the wisdom outcomes of traditional Chinese medicine (TCM) clinical treatment determinations which based on differentiation of symptoms and signs. Chinese medicine prescriptions are also the basis of secondary exploitation of TCM. The study on prescription helps to understand the material basis of its efficacy, pharmacological mechanism, which is an important guarantee for the modernization of traditional Chinese medicine. Currently, there is not yet dissertation n the method and technology system of basic research on the prescription of Chinese medicine. This paper focuses on how to build an effective system of prescription research technology. Based on "component structure" theory, a technology system contained four-step method that "prescription analysis, the material basis screening, the material basis of analysis and optimization and verify" was proposed. The technology system analyzes the material basis of the three levels such as Chinese medicine pieces, constituents and the compounds which could respect the overall efficacy of Chinese medicine. Ideas of prescription optimization, remodeling are introduced into the system. The technology system is the combination of the existing research and associates with new techniques and methods, which used for explore the research thought suitable for material basis research and prescription remodeling. The system provides a reference for the secondary development of traditional Chinese medicine, and industrial upgrading.

  6. Scanning tunneling microscopy image simulation of the rutile (110) TiO2 surface with hybrid functionals and the localized basis set approach

    NASA Astrophysics Data System (ADS)

    Di Valentin, Cristiana

    2007-10-01

    In this work we present a simplified procedure to use hybrid functionals and localized atomic basis sets to simulate scanning tunneling microscopy (STM) images of stoichiometric, reduced and hydroxylated rutile (110) TiO2 surface. For the two defective systems it is necessary to introduce some exact Hartree-Fock exchange in the exchange functional in order to correctly describe the details of the electronic structure. Results are compared to the standard density functional theory and planewave basis set approach. Both methods have advantages and drawbacks that are analyzed in detail. In particular, for the localized basis set approach, it is necessary to introduce a number of Gaussian function in the vacuum region above the surface in order to correctly describe the exponential decay of the integrated local density of states from the surface. In the planewave periodic approach, a thick vacuum region is required to achieve correct results. Simulated STM images are obtained for both the reduced and hydroxylated surface which nicely compare with experimental findings. A direct comparison of the two defects as displayed in the simulated STM images indicates that the OH groups should appear brighter than oxygen vacancies in perfect agreement with the experimental STM data.

  7. Wavelet decomposition and radial basis function networks for system monitoring

    NASA Astrophysics Data System (ADS)

    Ikonomopoulos, A.; Endou, A.

    1998-10-01

    Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.

  8. A Memetic Algorithm for Global Optimization of Multimodal Nonseparable Problems.

    PubMed

    Zhang, Geng; Li, Yangmin

    2016-06-01

    It is a big challenging issue of avoiding falling into local optimum especially when facing high-dimensional nonseparable problems where the interdependencies among vector elements are unknown. In order to improve the performance of optimization algorithm, a novel memetic algorithm (MA) called cooperative particle swarm optimizer-modified harmony search (CPSO-MHS) is proposed in this paper, where the CPSO is used for local search and the MHS for global search. The CPSO, as a local search method, uses 1-D swarm to search each dimension separately and thus converges fast. Besides, it can obtain global optimum elements according to our experimental results and analyses. MHS implements the global search by recombining different vector elements and extracting global optimum elements. The interaction between local search and global search creates a set of local search zones, where global optimum elements reside within the search space. The CPSO-MHS algorithm is tested and compared with seven other optimization algorithms on a set of 28 standard benchmarks. Meanwhile, some MAs are also compared according to the results derived directly from their corresponding references. The experimental results demonstrate a good performance of the proposed CPSO-MHS algorithm in solving multimodal nonseparable problems.

  9. Optimal reconstruction of the states in qutrit systems

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Yang, Ming; Cao, Zhuo-Liang

    2010-10-01

    Based on mutually unbiased measurements, an optimal tomographic scheme for the multiqutrit states is presented explicitly. Because the reconstruction process of states based on mutually unbiased states is free of information waste, we refer to our scheme as the optimal scheme. By optimal we mean that the number of the required conditional operations reaches the minimum in this tomographic scheme for the states of qutrit systems. Special attention will be paid to how those different mutually unbiased measurements are realized; that is, how to decompose each transformation that connects each mutually unbiased basis with the standard computational basis. It is found that all those transformations can be decomposed into several basic implementable single- and two-qutrit unitary operations. For the three-qutrit system, there exist five different mutually unbiased-bases structures with different entanglement properties, so we introduce the concept of physical complexity to minimize the number of nonlocal operations needed over the five different structures. This scheme is helpful for experimental scientists to realize the most economical reconstruction of quantum states in qutrit systems.

  10. Generalized gradient algorithm for trajectory optimization

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Bryson, A. E.; Slattery, R.

    1990-01-01

    The generalized gradient algorithm presented and verified as a basis for the solution of trajectory optimization problems improves the performance index while reducing path equality constraints, and terminal equality constraints. The algorithm is conveniently divided into two phases, of which the first, 'feasibility' phase yields a solution satisfying both path and terminal constraints, while the second, 'optimization' phase uses the results of the first phase as initial guesses.

  11. Theoretical Foundations of Wireless Networks

    DTIC Science & Technology

    2015-07-22

    Optimal transmission over a fading channel with imperfect channel state information,” in Global Telecommun. Conf., pp. 1–5, Houston TX , December 5-9...SECURITY CLASSIFICATION OF: The goal of this project is to develop a formal theory of wireless networks providing a scientific basis to understand...randomness and optimality. Randomness, in the form of fading, is a defining characteristic of wireless networks. Optimality is a suitable design

  12. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-09

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water.

  13. Pre-evaluation and interactive editing of B-spline and GERBS curves and surfaces

    NASA Astrophysics Data System (ADS)

    Laksâ, Arne

    2017-12-01

    Interactive computer based geometry editing is very useful for designers and artists. Our goal has been to develop useful tools for geometry editing in a way that increases the ability for creative design. When we interactively editing geometry, we want to see the change happening gradually and smoothly on the screen. Pre-evaluation is a tool for increasing the speed of the graphics when doing interactive affine operation on control points and control surfaces. It is then possible to add details on surfaces, and change shape in a smooth and continuous way. We use pre-evaluation on basis functions, on blending functions and on local surfaces. Pre-evaluation can be made hierarchi-cally and is thus useful for local refinements. Sampling and plotting of curves, surfaces and volumes can today be handled by the GPU and it is therefore important to have a structured organization and updating system to be able to make interactive editing as smooth and user friendly as possible. In the following, we will show a structure for pre-evaluation and an optimal organisation of the computation and we will show the effect of implementing both of these techniques.

  14. NBO, conformational, NLO, HOMO-LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods

    NASA Astrophysics Data System (ADS)

    Xavier, S.; Periandy, S.; Ramalingam, S.

    2015-02-01

    In this study, FT-IR, FT-Raman, NMR and UV spectra of 1-phenyl-1-propanol, an intermediate of anti-depressant drug fluoxetine, has been investigated. The theoretical vibrational frequencies and optimized geometric parameters have been calculated by using HF and density functional theory with the hybrid methods B3LYP, B3PW91 and 6-311+G(d,p)/6-311++G(d,p) basis sets. The theoretical vibrational frequencies have been found in good agreement with the corresponding experimental data. 1H and 13C NMR spectra were recorded and chemical shifts of the molecule were compared to TMS by using the Gauge-Independent Atomic Orbital (GIAO) method. A study on the electronic and optical properties, absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies are performed using HF and DFT methods. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The local reactivity of the molecule has been studied using the Fukui function. NLO properties related to polarizability and hyperpolarizability are also discussed.

  15. Optimization of immunohistochemical and fluorescent antibody techniques for localization of foot-and-mouth disease virus in animal tissues

    USDA-ARS?s Scientific Manuscript database

    Immunohistochemical (IHC) and immunofluorescent (IF) techniques were optimized for the detection of foot-and-mouth disease virus (FMDV) structural and non-structural proteins in frozen and paraformaldehyde-fixed paraffin embedded (PFPE) tissues of bovine and porcine origin. Immunohistochemical local...

  16. Multi-objective optimization of piezoelectric circuitry network for mode delocalization and suppression of bladed disk

    NASA Astrophysics Data System (ADS)

    Yoo, David; Tang, J.

    2017-04-01

    Since weakly-coupled bladed disks are highly sensitive to the presence of uncertainties, they can easily undergo vibration localization. When vibration localization occurs, vibration modes of bladed disk become dramatically different from those under the perfectly periodic condition, and the dynamic response under engine-order excitation is drastically amplified. In previous studies, it is investigated that amplified vibration response can be suppressed by connecting piezoelectric circuitry into individual blades to induce the damped absorber effect, and localized vibration modes can be alleviated by integrating piezoelectric circuitry network. Delocalization of vibration modes and vibration suppression of bladed disk, however, require different optimal set of circuit parameters. In this research, multi-objective optimization approach is developed to enable finding the best circuit parameters, simultaneously achieving both objectives. In this way, the robustness and reliability in bladed disk can be ensured. Gradient-based optimizations are individually developed for mode delocalization and vibration suppression, which are then integrated into multi-objective optimization framework.

  17. Understanding and mimicking the dual optimality of the fly ear

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Currano, Luke; Gee, Danny; Helms, Tristan; Yu, Miao

    2013-08-01

    The fly Ormia ochracea has the remarkable ability, given an eardrum separation of only 520 μm, to pinpoint the 5 kHz chirp of its cricket host. Previous research showed that the two eardrums are mechanically coupled, which amplifies the directional cues. We have now performed a mechanics and optimization analysis which reveals that the right coupling strength is key: it results in simultaneously optimized directional sensitivity and directional cue linearity at 5 kHz. We next demonstrated that this dual optimality is replicable in a synthetic device and can be tailored for a desired frequency. Finally, we demonstrated a miniature sensor endowed with this dual-optimality at 8 kHz with unparalleled sound localization. This work provides a quantitative and mechanistic explanation for the fly's sound-localization ability from a new perspective, and it provides a framework for the development of fly-ear inspired sensors to overcoming a previously-insurmountable size constraint in engineered sound-localization systems.

  18. Adaptation, Growth, and Resilience in Biological Distribution Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. We show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as plant and animal vasculature. In addition, we show how the incorporation of spatially collective fluctuating sources yields a minimal model of realistic reticulation in distribution networks and thus resilience against damage.

  19. Analytic Optimization of Near-Field Optical Chirality Enhancement

    PubMed Central

    2017-01-01

    We present an analytic derivation for the enhancement of local optical chirality in the near field of plasmonic nanostructures by tuning the far-field polarization of external light. We illustrate the results by means of simulations with an achiral and a chiral nanostructure assembly and demonstrate that local optical chirality is significantly enhanced with respect to circular polarization in free space. The optimal external far-field polarizations are different from both circular and linear. Symmetry properties of the nanostructure can be exploited to determine whether the optimal far-field polarization is circular. Furthermore, the optimal far-field polarization depends on the frequency, which results in complex-shaped laser pulses for broadband optimization. PMID:28239617

  20. 10 CFR 1042.420 - Access to schools operated by LEAs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....420 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex... recipient that is a local educational agency shall not, on the basis of sex, exclude any person from...

  1. 28 CFR 54.420 - Access to schools operated by LEAs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 54.420 Access to schools operated by LEAs. A recipient that is a local educational agency shall not, on the basis of sex, exclude...

  2. 43 CFR 41.420 - Access to schools operated by LEAs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 41.420 Access to schools operated by LEAs. A recipient that is a local educational agency shall not, on the basis of sex, exclude...

  3. Mechanoluminescence assisting agile optimization of processing design on surgical epiphysis plates

    NASA Astrophysics Data System (ADS)

    Terasaki, Nao; Toyomasu, Takashi; Sonohata, Motoki

    2018-04-01

    We propose a novel method for agile optimization of processing design by visualization of mechanoluminescence. To demonstrate the effect of the new method, epiphysis plates were processed to form dots (diameters: 1 and 1.5 mm) and the mechanical information was evaluated. As a result, the appearance of new strain concentration was successfully visualized on the basis of mechanoluminescence, and complex mechanical information was instinctively understood by surgeons as the designers. In addition, it was clarified by mechanoluminescence analysis that small dots do not have serious mechanical effects such as strength reduction. Such detail mechanical information evaluated on the basis of mechanoluminescence was successfully applied to the judgement of the validity of the processing design. This clearly proves the effectiveness of the new methodology using mechanoluminescence for assisting agile optimization of the processing design.

  4. Perceptual Optimization of DCT Color Quantization Matrices

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Many image compression schemes employ a block Discrete Cosine Transform (DCT) and uniform quantization. Acceptable rate/distortion performance depends upon proper design of the quantization matrix. In previous work, we showed how to use a model of the visibility of DCT basis functions to design quantization matrices for arbitrary display resolutions and color spaces. Subsequently, we showed how to optimize greyscale quantization matrices for individual images, for optimal rate/perceptual distortion performance. Here we describe extensions of this optimization algorithm to color images.

  5. [Intranet applications in radiology].

    PubMed

    Knopp, M V; von Hippel, G M; Koch, T; Knopp, M A

    2000-01-01

    The aim of the paper is to present the conceptual basis and capabilities of intranet applications in radiology. The intranet, which is the local brother of the internet can be readily realized using existing computer components and a network. All current computer operating systems support intranet applications which allow hard and software independent communication of text, images, video and sound with the use of browser software without dedicated programs on the individual personal computers. Radiological applications for text communication e.g. department specific bulletin boards and access to examination protocols; use of image communication for viewing and limited processing and documentation of radiological images can be achieved on decentralized PCs as well as speech communication for dictation, distribution of dictation and speech recognition. The intranet helps to optimize the organizational efficiency and cost effectiveness in the daily work of radiological departments in outpatients and hospital settings. The general interest in internet and intranet technology will guarantee its continuous development.

  6. Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis.

    PubMed

    Sosa, Lilian; Clares, Beatriz; Alvarado, Helen L; Bozal, Nuria; Domenech, Oscar; Calpena, Ana C

    2017-10-01

    The present study was designed to develop a nanoemulsion formulation of Amphotericin B (AmB) for the treatment of skin candidiasis and aspergillosis. Several ingredients were selected on the basis of AmB solubility and compatibility with skin. The formulation that exhibited the best properties was selected from the pseudo-ternary phase diagram. After physicochemical characterization its stability was assessed. Drug release and skin permeation studies were also accomplished. The antifungal efficacy and skin tolerability of developed AmB nanoemulsion was demonstrated. Finally, our results showed that the developed AmB formulation could provide an effective local antifungal effect without theoretical systemic absorption, based on its skin retention capacity, which might avoid related side effect. These results suggested that the nanoemulsion may be an optimal therapeutic alternative for the treatment of skin fungal infections with AmB. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. 2011 IEEE Visualization Contest winner: Visualizing unsteady vortical behavior of a centrifugal pump.

    PubMed

    Otto, Mathias; Kuhn, Alexander; Engelke, Wito; Theisel, Holger

    2012-01-01

    In the 2011 IEEE Visualization Contest, the dataset represented a high-resolution simulation of a centrifugal pump operating below optimal speed. The goal was to find suitable visualization techniques to identify regions of rotating stall that impede the pump's effectiveness. The winning entry split analysis of the pump into three parts based on the pump's functional behavior. It then applied local and integration-based methods to communicate the unsteady flow behavior in different regions of the dataset. This research formed the basis for a comparison of common vortex extractors and more recent methods. In particular, integration-based methods (separation measures, accumulated scalar fields, particle path lines, and advection textures) are well suited to capture the complex time-dependent flow behavior. This video (http://youtu.be/oD7QuabY0oU) shows simulations of unsteady flow in a centrifugal pump.

  8. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    PubMed

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning

    PubMed Central

    Brković, Milenko; Simić, Mirjana

    2014-01-01

    Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443

  10. Model and Data Reduction for Control, Identification and Compressed Sensing

    NASA Astrophysics Data System (ADS)

    Kramer, Boris

    This dissertation focuses on problems in design, optimization and control of complex, large-scale dynamical systems from different viewpoints. The goal is to develop new algorithms and methods, that solve real problems more efficiently, together with providing mathematical insight into the success of those methods. There are three main contributions in this dissertation. In Chapter 3, we provide a new method to solve large-scale algebraic Riccati equations, which arise in optimal control, filtering and model reduction. We present a projection based algorithm utilizing proper orthogonal decomposition, which is demonstrated to produce highly accurate solutions at low rank. The method is parallelizable, easy to implement for practitioners, and is a first step towards a matrix free approach to solve AREs. Numerical examples for n ≥ 106 unknowns are presented. In Chapter 4, we develop a system identification method which is motivated by tangential interpolation. This addresses the challenge of fitting linear time invariant systems to input-output responses of complex dynamics, where the number of inputs and outputs is relatively large. The method reduces the computational burden imposed by a full singular value decomposition, by carefully choosing directions on which to project the impulse response prior to assembly of the Hankel matrix. The identification and model reduction step follows from the eigensystem realization algorithm. We present three numerical examples, a mass spring damper system, a heat transfer problem, and a fluid dynamics system. We obtain error bounds and stability results for this method. Chapter 5 deals with control and observation design for parameter dependent dynamical systems. We address this by using local parametric reduced order models, which can be used online. Data available from simulations of the system at various configurations (parameters, boundary conditions) is used to extract a sparse basis to represent the dynamics (via dynamic mode decomposition). Subsequently, a new, compressed sensing based classification algorithm is developed which incorporates the extracted dynamic information into the sensing basis. We show that this augmented classification basis makes the method more robust to noise, and results in superior identification of the correct parameter. Numerical examples consist of a Navier-Stokes, as well as a Boussinesq flow application.

  11. The Globe. Neighbourhood Agenda 21: Going Local in Reading.

    ERIC Educational Resources Information Center

    Welsh, Richard

    1994-01-01

    Reports on the philosophy underlying a project to promote local community involvement in neighborhood plans as a basis for a citywide Local Agenda 21 and the first stages of Go Local on a Better Environment (GLOBE) introduced to give the project a popular identify and communicate the environmental message. (LZ)

  12. Fall-to-Fall Testing versus Spring-to-Spring Testing: What Is the Impact on a Local Community's Chapter 1 Evaluation?

    ERIC Educational Resources Information Center

    Bushner, Diane E.

    The impact of a decision by a local program under Chapter 1, the federally funded program of financial assistance to special educational needs of children, to test students fall-to-fall or spring-to-spring was studied. Students enrolled in a Chapter 1 reading program in 1988-89 were tested on a fall-to-spring basis, a spring-to-spring basis, and a…

  13. Local gravity field modeling using spherical radial basis functions and a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mahbuby, Hany; Safari, Abdolreza; Foroughi, Ismael

    2017-05-01

    Spherical Radial Basis Functions (SRBFs) can express the local gravity field model of the Earth if they are parameterized optimally on or below the Bjerhammar sphere. This parameterization is generally defined as the shape of the base functions, their number, center locations, bandwidths, and scale coefficients. The number/location and bandwidths of the base functions are the most important parameters for accurately representing the gravity field; once they are determined, the scale coefficients can then be computed accordingly. In this study, the point-mass kernel, as the simplest shape of SRBFs, is chosen to evaluate the synthesized free-air gravity anomalies over the rough area in Auvergne and GNSS/Leveling points (synthetic height anomalies) are used to validate the results. A two-step automatic approach is proposed to determine the optimum distribution of the base functions. First, the location of the base functions and their bandwidths are found using the genetic algorithm; second, the conjugate gradient least squares method is employed to estimate the scale coefficients. The proposed methodology shows promising results. On the one hand, when using the genetic algorithm, the base functions do not need to be set to a regular grid and they can move according to the roughness of topography. In this way, the models meet the desired accuracy with a low number of base functions. On the other hand, the conjugate gradient method removes the bias between derived quasigeoid heights from the model and from the GNSS/leveling points; this means there is no need for a corrector surface. The numerical test on the area of interest revealed an RMS of 0.48 mGal for the differences between predicted and observed gravity anomalies, and a corresponding 9 cm for the differences in GNSS/leveling points.

  14. A segmentation approach for a delineation of terrestrial ecoregions

    NASA Astrophysics Data System (ADS)

    Nowosad, J.; Stepinski, T.

    2017-12-01

    Terrestrial ecoregions are the result of regionalization of land into homogeneous units of similar ecological and physiographic features. Terrestrial Ecoregions of the World (TEW) is a commonly used global ecoregionalization based on expert knowledge and in situ observations. Ecological Land Units (ELUs) is a global classification of 250 meters-sized cells into 4000 types on the basis of the categorical values of four environmental variables. ELUs are automatically calculated and reproducible but they are not a regionalization which makes them impractical for GIS-based spatial analysis and for comparison with TEW. We have regionalized terrestrial ecosystems on the basis of patterns of the same variables (land cover, soils, landform, and bioclimate) previously used in ELUs. Considering patterns of categorical variables makes segmentation and thus regionalization possible. Original raster datasets of the four variables are first transformed into regular grids of square-sized blocks of their cells called eco-sites. Eco-sites are elementary land units containing local patterns of physiographic characteristics and thus assumed to contain a single ecosystem. Next, eco-sites are locally aggregated using a procedure analogous to image segmentation. The procedure optimizes pattern homogeneity of all four environmental variables within each segment. The result is a regionalization of the landmass into land units characterized by uniform pattern of land cover, soils, landforms, climate, and, by inference, by uniform ecosystem. Because several disjoined segments may have very similar characteristics, we cluster the segments to obtain a smaller set of segment types which we identify with ecoregions. Our approach is automatic, reproducible, updatable, and customizable. It yields the first automatic delineation of ecoregions on the global scale. In the resulting vector database each ecoregion/segment is described by numerous attributes which make it a valuable GIS resource for global ecological and conservation studies.

  15. Local discretization method for overdamped Brownian motion on a potential with multiple deep wells.

    PubMed

    Nguyen, P T T; Challis, K J; Jack, M W

    2016-11-01

    We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.

  16. Local discretization method for overdamped Brownian motion on a potential with multiple deep wells

    NASA Astrophysics Data System (ADS)

    Nguyen, P. T. T.; Challis, K. J.; Jack, M. W.

    2016-11-01

    We present a general method for transforming the continuous diffusion equation describing overdamped Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The method is based on an expansion in localized basis states of local metastable potentials that match the full potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells that are deep compared to five times the thermal energy can be associated with a discrete localized state while shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.

  17. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties.

    PubMed

    Yu, Meng; Ma, Huixian; Lei, Mingzhu; Li, Nan; Tan, Fengping

    2014-09-01

    Topical skin treatment was limited due to the lack of suitable delivery system with significant cutaneous localization and systemic safety. The aim of this study was to develop and optimize a nanoemulsion (NE) to enhance targeting localization of metronidazole (MTZ) in skin layers. In vitro studies were used to optimize NE formulations, and a series of experiments were carried in vitro and in vivo to validate the therapeutic efficacy of MTZ-loaded optimal NE. NE type selection and D-optimal design study were applied to optimize NE formulation with maximum skin retention and minimum skin penetration. Three formulation variables: Oil X1 (Labrafil), Smix X2 (a mixture of Cremophor EL/Tetraethylene glycol, 2:1 w/w) and water X3 were included in D-design. The system was assessed for skin retention Y1, cumulative MTZ amount after 24 h Y2 and droplet size Y3. Following optimization, the values of formulation components (X1, X2 and X3) were 4.13%, 16.42% and 79.45%, respectively. The optimized NE was assessed for viscosity, droplet size, morphological study and in vitro permeation in pig skin. Distributions of MTZ were validated by confocal laser scanning microscopy (CLSM). Active agent of NE transferred into deeper skin and localized in epidermal/dermal layers after 24 h, which showed significant advantages of the optimal NE over Gel. The skin targeting localization and minimal systemic escape of optimal NE was further proved by in vivo study on rat skin. Current in vitro-in vivo correlation (IVIVC) enabled the prediction of pharmacokinetic profile of MTZ from in vitro permeation results. Further, the in vivo anti-rosacea efficacy of optimal formulation was investigated by pharmacodynamics study on mice ear. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The anesthetic action of some polyhalogenated ethers-Monte Carlo method based QSAR study.

    PubMed

    Golubović, Mlađan; Lazarević, Milan; Zlatanović, Dragan; Krtinić, Dane; Stoičkov, Viktor; Mladenović, Bojan; Milić, Dragan J; Sokolović, Dušan; Veselinović, Aleksandar M

    2018-04-13

    Up to this date, there has been an ongoing debate about the mode of action of general anesthetics, which have postulated many biological sites as targets for their action. However, postoperative nausea and vomiting are common problems in which inhalational agents may have a role in their development. When a mode of action is unknown, QSAR modelling is essential in drug development. To investigate the aspects of their anesthetic, QSAR models based on the Monte Carlo method were developed for a set of polyhalogenated ethers. Until now, their anesthetic action has not been completely defined, although some hypotheses have been suggested. Therefore, a QSAR model should be developed on molecular fragments that contribute to anesthetic action. QSAR models were built on the basis of optimal molecular descriptors based on the SMILES notation and local graph invariants, whereas the Monte Carlo optimization method with three random splits into the training and test set was applied for model development. Different methods, including novel Index of ideality correlation, were applied for the determination of the robustness of the model and its predictive potential. The Monte Carlo optimization process was capable of being an efficient in silico tool for building up a robust model of good statistical quality. Molecular fragments which have both positive and negative influence on anesthetic action were determined. The presented study can be useful in the search for novel anesthetics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Multicompare tests of the performance of different metaheuristics in EEG dipole source localization.

    PubMed

    Escalona-Vargas, Diana Irazú; Lopez-Arevalo, Ivan; Gutiérrez, David

    2014-01-01

    We study the use of nonparametric multicompare statistical tests on the performance of simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), when used for electroencephalographic (EEG) source localization. Such task can be posed as an optimization problem for which the referred metaheuristic methods are well suited. Hence, we evaluate the localization's performance in terms of metaheuristics' operational parameters and for a fixed number of evaluations of the objective function. In this way, we are able to link the efficiency of the metaheuristics with a common measure of computational cost. Our results did not show significant differences in the metaheuristics' performance for the case of single source localization. In case of localizing two correlated sources, we found that PSO (ring and tree topologies) and DE performed the worst, then they should not be considered in large-scale EEG source localization problems. Overall, the multicompare tests allowed to demonstrate the little effect that the selection of a particular metaheuristic and the variations in their operational parameters have in this optimization problem.

  20. Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier

    2018-06-01

    Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.

  1. A quantum annealing architecture with all-to-all connectivity from local interactions.

    PubMed

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-10-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.

  2. A quantum annealing architecture with all-to-all connectivity from local interactions

    PubMed Central

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-01-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316

  3. Small-Tip-Angle Spokes Pulse Design Using Interleaved Greedy and Local Optimization Methods

    PubMed Central

    Grissom, William A.; Khalighi, Mohammad-Mehdi; Sacolick, Laura I.; Rutt, Brian K.; Vogel, Mika W.

    2013-01-01

    Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods. PMID:22392822

  4. Adaptive behaviors in multi-agent source localization using passive sensing.

    PubMed

    Shaukat, Mansoor; Chitre, Mandar

    2016-12-01

    In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent's adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent's sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal.

  5. Local Feature Selection for Data Classification.

    PubMed

    Armanfard, Narges; Reilly, James P; Komeili, Majid

    2016-06-01

    Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method for measuring the similarities of a query datum to each of the respective classes is also proposed. The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm. In addition we show several examples where localized feature selection produces better results than a global feature selection method.

  6. Incremental social learning in particle swarms.

    PubMed

    de Oca, Marco A Montes; Stutzle, Thomas; Van den Enden, Ken; Dorigo, Marco

    2011-04-01

    Incremental social learning (ISL) was proposed as a way to improve the scalability of systems composed of multiple learning agents. In this paper, we show that ISL can be very useful to improve the performance of population-based optimization algorithms. Our study focuses on two particle swarm optimization (PSO) algorithms: a) the incremental particle swarm optimizer (IPSO), which is a PSO algorithm with a growing population size in which the initial position of new particles is biased toward the best-so-far solution, and b) the incremental particle swarm optimizer with local search (IPSOLS), in which solutions are further improved through a local search procedure. We first derive analytically the probability density function induced by the proposed initialization rule applied to new particles. Then, we compare the performance of IPSO and IPSOLS on a set of benchmark functions with that of other PSO algorithms (with and without local search) and a random restart local search algorithm. Finally, we measure the benefits of using incremental social learning on PSO algorithms by running IPSO and IPSOLS on problems with different fitness distance correlations.

  7. [Application of simulated annealing method and neural network on optimizing soil sampling schemes based on road distribution].

    PubMed

    Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng

    2015-03-01

    Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.

  8. Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades

    NASA Astrophysics Data System (ADS)

    Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang

    2017-12-01

    This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.

  9. Network models for solving the problem of multicriterial adaptive optimization of investment projects control with several acceptable technologies

    NASA Astrophysics Data System (ADS)

    Shorikov, A. F.; Butsenko, E. V.

    2017-10-01

    This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.

  10. A conceptual framework for addressing complexity and unfolding transition dynamics when developing sustainable adaptation strategies in urban water management.

    PubMed

    Fratini, C F; Elle, M; Jensen, M B; Mikkelsen, P S

    2012-01-01

    To achieve a successful and sustainable adaptation to climate change we need to transform the way we think about change. Much water management research has focused on technical innovation with a range of new solutions developed to achieve a 'more sustainable and integrated urban water management cycle'. But Danish municipalities and utility companies are struggling to bring such solutions into practice. 'Green infrastructure', for example, requires the consideration of a larger range of aspects related to the urban context than the traditional urban water system optimization. There is the need for standardized methods and guidelines to organize transdisciplinary processes where different types of knowledge and perspectives are taken into account. On the basis of the macro-meso-micro pattern inspired by complexity science and transition theory, we developed a conceptual framework to organize processes addressing the complexity characterizing urban water management in the context of climate change. In this paper the framework is used to organize a research process aiming at understanding and unfolding urban dynamics for sustainable transition. The final goal is to enable local authorities and utilities to create the basis for managing and catalysing the technical and organizational innovation necessary for a sustainable transition towards climate change adaptation in urban areas.

  11. Experimental and theoretical study of p-nitroacetanilide.

    PubMed

    Gnanasambandan, T; Gunasekaran, S; Seshadri, S

    2014-01-03

    The spectroscopic properties of the p-nitroacetanilide (PNA) were examined by FT-IR, FT-Raman and UV-Vis techniques. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The UV-Vis absorption spectrum of the compound that dissolved in ethanol was recorded in the range of 200-400 nm. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional theory (DFT) employing B3LYP methods with the 6-31G(d,p) and 6-311+G(d,p) basis sets. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear optical (NLO) properties such as electric dipole moment and first hyperpolarizability have been computed using B3LYP quantum chemical calculation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Optimal Design of Grid-Stiffened Panels and Shells With Variable Curvature

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin

    2001-01-01

    A design strategy for optimal design of composite grid-stiffened structures with variable curvature subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. Stiffening configuration is herein defined as a design variable that indicates the combination of axial, transverse and diagonal stiffeners in the stiffened panel. The design optimization process is adapted to identify the lightest-weight stiffening configuration and stiffener spacing for grid-stiffened composite panels given the overall panel dimensions. in-plane design loads, material properties. and boundary conditions of the grid-stiffened panel or shell.

  13. Propellers And Fans Based On The Moebius Strip

    NASA Technical Reports Server (NTRS)

    Seiner, John Milton; Gilinsky, Mikhail Markovich

    1996-01-01

    Moebius strip proposed as basis for optimally shaped airplane and boat propellers, fans, helicopter rotors, mixing screws, coffee grinders, and concrete mixers. Basic idea of optimal shaping of such device to increase working efficiency by increasing area for capture of still medium without increasing power needed for rotation.

  14. Methodology of shell structure reinforcement layout optimization

    NASA Astrophysics Data System (ADS)

    Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof

    2018-01-01

    This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.

  15. 49 CFR 25.420 - Access to schools operated by LEAs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 25.420 Transportation Office of the Secretary of Transportation NONDISCRIMINATION ON THE BASIS OF SEX... Basis of Sex in Education Programs or Activities Prohibited § 25.420 Access to schools operated by LEAs. A recipient that is a local educational agency shall not, on the basis of sex, exclude any person...

  16. 40 CFR 5.420 - Access to schools operated by LEAs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 5.420 Access to schools operated by LEAs. A recipient that is a local educational agency shall not, on the basis of sex, exclude...

  17. 40 CFR 5.420 - Access to schools operated by LEAs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 5.420 Access to schools operated by LEAs. A recipient that is a local educational agency shall not, on the basis of sex, exclude...

  18. 29 CFR 99.205 - Basis for determining Federal awards expended.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Basis for determining Federal awards expended. 99.205 Section 99.205 Labor Office of the Secretary of Labor AUDITS OF STATES, LOCAL GOVERNMENTS, AND NON-PROFIT ORGANIZATIONS Audits § 99.205 Basis for determining Federal awards expended. (a) Determining Federal awards...

  19. A Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval

    NASA Technical Reports Server (NTRS)

    Solakiewicz, Richard; Attele, Rohan; Koshak, William

    2011-01-01

    A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a (low earth orbiting or geostationary) satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters, a scalar function was minimized by a numerical method. In order to improve this optimization, we introduce a Grobner basis solution to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. Using the Grobner basis, we show that there are exactly 2 solutions involving the first 3 moments of the (exponentially distributed) data. When the mean of the ground flash optical characteristic (e.g., such as the Maximum Group Area, MGA) is larger than that for cloud flashes, then a unique solution can be obtained.

  20. REGIONAL COORDINATION OF NOAA/NATIONAL WEATHER SERVICE CLIMATE SERVICES IN THE WEST (Invited)

    NASA Astrophysics Data System (ADS)

    Bair, A.

    2009-12-01

    The climate services program is an important component in the National Weather Service’s (NWS) mission, and is one of the National Oceanic and Atmospheric Administration’s (NOAA) top five priorities. The Western Region NWS started building a regional and local climate services program in late 2001, with input from local NWS offices and key partners. The original goals of the Western Region climate services program were to strive to provide climate services that were useful, easily accessible, well understood, coordinated and supported by partners, and reflect customer needs. While the program has evolved, and lessons have been learned, these goals are still guiding the program. Regional and local level Climate Services are a fundamental part of NOAA/NWS’s current and future role in providing climate services. There is an ever growing demand for climate information and services to aid the public in decision-making and no single entity alone can provide the range of information and services needed. Coordination and building strong partnerships at the local and regional levels is the key to providing optimal climate services. Over the past 8 years, Western Region NWS has embarked on numerous coordination efforts to build the regional and local climate services programs, such as: collaboration (both internally and externally to NOAA) meetings and projects, internal staff training, surveys, and outreach efforts. In order to gain regional and local buy-in from the NWS staff, multiple committees were utilized to plan and develop goals and structure for the program. While the regional and local climate services program in the NWS Western Region has had many successes, there have been several important lessons learned from efforts that have not been as successful. These lessons, along with past experience, close coordination with partners, and the need to constantly improve/change the program as the climate changes, form the basis for future program development and goals.

  1. Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ergin; Baysal, Veli; Ozer, Mahmut; Perc, Matjaž

    2016-02-01

    We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman-Watts small-world network consisting of stochastic Hodgkin-Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obtained results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm.

  2. Efficiency of quantum vs. classical annealing in nonconvex learning problems

    PubMed Central

    Zecchina, Riccardo

    2018-01-01

    Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions. PMID:29382764

  3. Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms.

    PubMed

    Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  4. Study of motion of optimal bodies in the soil of grid method

    NASA Astrophysics Data System (ADS)

    Kotov, V. L.; Linnik, E. Yu

    2016-11-01

    The paper presents a method of calculating the optimum forms in axisymmetric numerical method based on the Godunov and models elastoplastic soil vedium Grigoryan. Solved two problems in a certain definition of generetrix rotation of the body of a given length and radius of the base, having a minimum impedance and maximum penetration depth. Numerical calculations are carried out by a modified method of local variations, which allows to significantly reduce the number of operations at different representations of generetrix. Significantly simplify the process of searching for optimal body allows the use of a quadratic model of local interaction for preliminary assessments. It is noted the qualitative similarity of the process of convergence of numerical calculations for solving the optimization problem based on local interaction model and within the of continuum mechanics. A comparison of the optimal bodies with absolutely optimal bodies possessing the minimum resistance of penetration below which is impossible to achieve under given constraints on the geometry. It is shown that the conical striker with a variable vertex angle, which equal to the angle of the solution is absolutely optimal body of minimum resistance of penetration for each value of the velocity of implementation will have a final depth of penetration is only 12% more than the traditional body absolutely optimal maximum depth penetration.

  5. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    PubMed Central

    Deb, Suash; Yang, Xin-She

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730

  6. Analysis and Research on the Optimal Allocation of Regional Water Resources

    NASA Astrophysics Data System (ADS)

    rui-chao, Xi; yu-jie, Gu

    2018-06-01

    Starting from the basic concept of optimal allocation of water resources, taking the allocation of water resources in Tianjin as an example, the present situation of water resources in Tianjin is analyzed, and the multi-objective optimal allocation model of water resources is used to optimize the allocation of water resources. We use LINGO to solve the model, get the optimal allocation plan that meets the economic and social benefits, and put forward relevant policies and regulations, so as to provide theoretical which is basis for alleviating and solving the problem of water shortage.

  7. Estimating local scaling properties for the classification of interstitial lung disease patterns

    NASA Astrophysics Data System (ADS)

    Huber, Markus B.; Nagarajan, Mahesh B.; Leinsinger, Gerda; Ray, Lawrence A.; Wismueller, Axel

    2011-03-01

    Local scaling properties of texture regions were compared in their ability to classify morphological patterns known as 'honeycombing' that are considered indicative for the presence of fibrotic interstitial lung diseases in high-resolution computed tomography (HRCT) images. For 14 patients with known occurrence of honeycombing, a stack of 70 axial, lung kernel reconstructed images were acquired from HRCT chest exams. 241 regions of interest of both healthy and pathological (89) lung tissue were identified by an experienced radiologist. Texture features were extracted using six properties calculated from gray-level co-occurrence matrices (GLCM), Minkowski Dimensions (MDs), and the estimation of local scaling properties with Scaling Index Method (SIM). A k-nearest-neighbor (k-NN) classifier and a Multilayer Radial Basis Functions Network (RBFN) were optimized in a 10-fold cross-validation for each texture vector, and the classification accuracy was calculated on independent test sets as a quantitative measure of automated tissue characterization. A Wilcoxon signed-rank test was used to compare two accuracy distributions including the Bonferroni correction. The best classification results were obtained by the set of SIM features, which performed significantly better than all the standard GLCM and MD features (p < 0.005) for both classifiers with the highest accuracy (94.1%, 93.7%; for the k-NN and RBFN classifier, respectively). The best standard texture features were the GLCM features 'homogeneity' (91.8%, 87.2%) and 'absolute value' (90.2%, 88.5%). The results indicate that advanced texture features using local scaling properties can provide superior classification performance in computer-assisted diagnosis of interstitial lung diseases when compared to standard texture analysis methods.

  8. Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency.

    PubMed

    Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland

    2009-04-21

    Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.

  9. Atomic Cholesky decompositions: A route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland

    2009-04-01

    Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.

  10. A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions

    DOE PAGES

    D'Elia, Marta; Perego, Mauro; Bochev, Pavel B.; ...

    2015-12-21

    We develop and analyze an optimization-based method for the coupling of nonlocal and local diffusion problems with mixed volume constraints and boundary conditions. The approach formulates the coupling as a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the nonlocal and local domains, and the controls are virtual volume constraints and boundary conditions. When some assumptions on the kernel functions hold, we prove that the resulting optimization problem is well-posed and discuss its implementation using Sandia’s agile software components toolkit. As a result,more » the latter provides the groundwork for the development of engineering analysis tools, while numerical results for nonlocal diffusion in three-dimensions illustrate key properties of the optimization-based coupling method.« less

  11. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP.

    PubMed

    Mohsen, Abdulqader M

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality.

  12. Optimal dietary patterns designed from local foods to achieve maternal nutritional goals.

    PubMed

    Raymond, Jofrey; Kassim, Neema; Rose, Jerman W; Agaba, Morris

    2018-04-04

    Achieving nutritional requirements for pregnant and lactating mothers in rural households while maintaining the intake of local and culture-specific foods can be a difficult task. Deploying a linear goal programming approach can effectively generate optimal dietary patterns that incorporate local and culturally acceptable diets. The primary objective of this study was to determine whether a realistic and affordable diet that achieves nutritional goals for rural pregnant and lactating women can be formulated from locally available foods in Tanzania. A cross sectional study was conducted to assess dietary intakes of 150 pregnant and lactating women using a weighed dietary record (WDR), 24 h dietary recalls and a 7-days food record. A market survey was also carried out to estimate the cost per 100 g of edible portion of foods that are frequently consumed in the study population. Dietary survey and market data were then used to define linear programming (LP) model parameters for diet optimisation. All LP analyses were done using linear program solver to generate optimal dietary patterns. Our findings showed that optimal dietary patterns designed from locally available foods would improve dietary adequacy for 15 and 19 selected nutrients in pregnant and lactating women, respectively, but inadequacies remained for iron, zinc, folate, pantothenic acid, and vitamin E, indicating that these are problem nutrients (nutrients that did not achieve 100% of their RNIs in optimised diets) in the study population. These findings suggest that optimal use of local foods can improve dietary adequacy for rural pregnant and lactating women aged 19-50 years. However, additional cost-effective interventions are needed to ensure adequate intakes for the identified problem nutrients.

  13. On the use of the exact exchange optimized effective potential method for static response properties

    NASA Astrophysics Data System (ADS)

    Krykunov, Mykhaylo; Ziegler, Tom

    In the present work, we question the notion that the modified Kohn-Sham orbital energies and smaller HOMO-LUMO gaps, produced from the exact exchange optimized effective potential (EXX-OEP) method, might significantly improve the paramagnetic contribution to the NMR chemical shifts compared with the regular Hartree-Fock (HF) scheme. First of all, it is shown analytically that if there is such a local potential that produces the HF energy, and the Kohn-Sham orbitals are obtained as a result of separate rotations of the occupied and virtual HF orbitals, any static magnetic property obtained from the coupled perturbed HF method will be identical to that obtained from the EXX-OEP approach. In fact the EXX-OEP method is equivalent to the improved virtual orbitals (IVO) scheme in which the energies of the virtual orbitals are modified by an effective potential. It is shown that the IVO procedure leaves static response properties unchanged. To test our analysis numerically we have employed several variants of the EXX-OEP method, based on the expansion of the local exchange potential into a linear combination of fit functions. The different EXX-OEP schemes have been used to calculate the NMR chemical shifts for a set of small molecules containing C, H, N, O, and F atoms. Comparison of the deviation between experimental and calculated chemical shifts from the HF, the EXX-OEP, and the common energy denominator approximation (CEDA) approximation to the EXX-OEP methods has shown that for carbon, hydrogen, and fluorine the EXX-OEP methods do not yield any improvement over the HF method. For nitrogen and oxygen we have found that the EXX-OEP performs better than the HF method. However, in the limit of infinite fit basis set and, as a consequence of it, a perfect fit of the HF potential the EXX-OEP and the HF methods would afford the same chemical shifts according to our theoretical analysis. Unfortunately, without a perfect fit the chemical shifts from the EXX-OEP method strongly depend on the fit convergence. In our opinion, the EXX-OEP method should not be used for response properties as it is numerically unstable. Thus, any apparent improvement of the EXX-OEP method over the HF scheme for a finite fit basis set must be considered spurious.

  14. Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties

    NASA Astrophysics Data System (ADS)

    Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.

    2007-12-01

    Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.

  15. Adaptive eigenspace method for inverse scattering problems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Grote, Marcus J.; Kray, Marie; Nahum, Uri

    2017-02-01

    A nonlinear optimization method is proposed for the solution of inverse scattering problems in the frequency domain, when the scattered field is governed by the Helmholtz equation. The time-harmonic inverse medium problem is formulated as a PDE-constrained optimization problem and solved by an inexact truncated Newton-type iteration. Instead of a grid-based discrete representation, the unknown wave speed is projected to a particular finite-dimensional basis of eigenfunctions, which is iteratively adapted during the optimization. Truncating the adaptive eigenspace (AE) basis at a (small and slowly increasing) finite number of eigenfunctions effectively introduces regularization into the inversion and thus avoids the need for standard Tikhonov-type regularization. Both analytical and numerical evidence underpins the accuracy of the AE representation. Numerical experiments demonstrate the efficiency and robustness to missing or noisy data of the resulting adaptive eigenspace inversion method.

  16. Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Motta, Mario; Zhang, Shiwei

    2018-05-01

    We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.

  17. Clinical Outcomes and Patterns of Disease Recurrence After Intensity Modulated Proton Therapy for Oropharyngeal Squamous Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunn, G. Brandon; Blanchard, Pierre; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif

    Purpose: A single-institution prospective study was conducted to assess disease control and toxicity of proton therapy for patients with head and neck cancer. Methods and Materials: Disease control, toxicity, functional outcomes, and patterns of failure for the initial cohort of patients with oropharyngeal squamous carcinoma (OPC) treated with intensity modulated proton therapy (IMPT) were prospectively collected in 2 registry studies at a single institution. Locoregional failures were analyzed by using deformable image registration. Results: Fifty patients with OPC treated from March 3, 2011, to July 2014 formed the cohort. Eighty-four percent were male, 50% had never smoked, 98% had stagemore » III/IV disease, 64% received concurrent therapy, and 35% received induction chemotherapy. Forty-four of 45 tumors (98%) tested for p16 were positive. All patients received IMPT (multifield optimization to n=46; single-field optimization to n=4). No Common Terminology Criteria for Adverse Events grade 4 or 5 toxicities were observed. The most common grade 3 toxicities were acute mucositis in 58% of patients and late dysphagia in 12%. Eleven patients had a gastrostomy (feeding) tube placed during therapy, but none had a feeding tube at last follow-up. At a median follow-up time of 29 months, 5 patients had disease recurrence: local in 1, local and regional in 1, regional in 2, and distant in 1. The 2-year actuarial overall and progression-free survival rates were 94.5% and 88.6%. Conclusions: The oncologic, toxicity, and functional outcomes after IMPT for OPC are encouraging and provide the basis for ongoing and future clinical studies.« less

  18. Improving Evaluation Use in Local School Settings. Optimizing Evaluation Use: Final Report.

    ERIC Educational Resources Information Center

    King, Jean A.; And Others

    A project for studying ways to optimize utilization of evaluation products in public schools is reported. The results indicate that the negative picture of use prevalent in recent literature stems from the unrealistic expectation that local decision-makers will behave in a classically rational manner. Such a view ignores the political settings of…

  19. TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy

    PubMed Central

    Sinkó, József; Kákonyi, Róbert; Rees, Eric; Metcalf, Daniel; Knight, Alex E.; Kaminski, Clemens F.; Szabó, Gábor; Erdélyi, Miklós

    2014-01-01

    Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments. PMID:24688813

  20. Constructing diabatic representations using adiabatic and approximate diabatic data--Coping with diabolical singularities.

    PubMed

    Zhu, Xiaolei; Yarkony, David R

    2016-01-28

    We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H(d), and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H(d) individually provides a starting point (seed) from which convergence of the full H(d) construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4(1)A states of phenol and the 1,2(1)A states of NH3, states which are coupled by conical intersections.

  1. Linear-scaling explicitly correlated treatment of solids: periodic local MP2-F12 method.

    PubMed

    Usvyat, Denis

    2013-11-21

    Theory and implementation of the periodic local MP2-F12 method in the 3*A fixed-amplitude ansatz is presented. The method is formulated in the direct space, employing local representation for the occupied, virtual, and auxiliary orbitals in the form of Wannier functions (WFs), projected atomic orbitals (PAOs), and atom-centered Gaussian-type orbitals, respectively. Local approximations are introduced, restricting the list of the explicitly correlated pairs, as well as occupied, virtual, and auxiliary spaces in the strong orthogonality projector to the pair-specific domains on the basis of spatial proximity of respective orbitals. The 4-index two-electron integrals appearing in the formalism are approximated via the direct-space density fitting technique. In this procedure, the fitting orbital spaces are also restricted to local fit-domains surrounding the fitted densities. The formulation of the method and its implementation exploits the translational symmetry and the site-group symmetries of the WFs. Test calculations are performed on LiH crystal. The results show that the periodic LMP2-F12 method substantially accelerates basis set convergence of the total correlation energy, and even more so the correlation energy differences. The resulting energies are quite insensitive to the resolution-of-the-identity domain sizes and the quality of the auxiliary basis sets. The convergence with the orbital domain size is somewhat slower, but still acceptable. Moreover, inclusion of slightly more diffuse functions, than those usually used in the periodic calculations, improves the convergence of the LMP2-F12 correlation energy with respect to both the size of the PAO-domains and the quality of the orbital basis set. At the same time, the essentially diffuse atomic orbitals from standard molecular basis sets, commonly utilized in molecular MP2-F12 calculations, but problematic in the periodic context, are not necessary for LMP2-F12 treatment of crystals.

  2. Multiple local feature representations and their fusion based on an SVR model for iris recognition using optimized Gabor filters

    NASA Astrophysics Data System (ADS)

    He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Dong, Hongxing

    2014-12-01

    Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representations and their fusion scheme based on a support vector regression (SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)- and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for each involved test dataset without predefinition or manual modulation. Several comparative experiments on JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative experiments show that our approach may outperform other popular iris systems.

  3. Molecular orbital studies (hardness, chemical potential, electronegativity and electrophilicity), vibrational spectroscopic investigation and normal coordinate analysis of 5-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}benzene-1,3-diol

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Renuga, S.

    2014-01-01

    FT-IR and FT-Raman spectra of 5-{1-hydroxy-2-[(propan-2-yl) amino] ethyl} benzene-1,3-diol (abbrevi- 54 ated as HPAEBD) were recorded in the region 4000-450 cm-1 and 4000-100 cm-1 respectively. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (B3LYP) and HF method with 6-31 G(d,p) as basis set. The theoretical wave numbers were scaled and compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated Potential energy distribution (PED). Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the σ antibonding orbitals and E (2) energies confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The molecule orbital contributions were studied by using the total (TDOS), sum of α and β electron (αβDOS) density of States. Mulliken population analysis of atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in this compound. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated.

  4. DFT analysis on the molecular structure, vibrational and electronic spectra of 2-(cyclohexylamino)ethanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Renuga Devi, T. S.; Sharmi kumar, J.; Ramkumaar, G. R.

    2015-02-01

    The FTIR and FT-Raman spectra of 2-(cyclohexylamino)ethanesulfonic acid were recorded in the regions 4000-400 cm-1 and 4000-50 cm-1 respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using Hartee-Fock and Density functional method (B3LYP) with the correlation consistent-polarized valence double zeta (cc-pVDZ) basis set and 6-311++G(d,p) basis set. The most stable conformer was optimized and the structural and vibrational parameters were determined based on this. The complete assignments were performed based on the Potential Energy Distribution (PED) of the vibrational modes, calculated using Vibrational Energy Distribution Analysis (VEDA) 4 program. With the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties and Atomic charges were calculated using both Hartee-Fock and density functional method using the cc-pVDZ basis set and compared. The calculated HOMO-LUMO energy gap revealed that charge transfer occurs within the molecule. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge Including Atomic Orbital (GIAO) method and were compared with experimental results. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using Natural Bond Orbital (NBO) analysis. The first order hyperpolarizability (β) and Molecular Electrostatic Potential (MEP) of the molecule was computed using DFT calculations. The electron density based local reactivity descriptor such as Fukui functions were calculated to explain the chemical reactivity site in the molecule.

  5. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch; Zaidi, Habib; Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva

    2014-06-15

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailedmore » investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function superposition and keeping the image representation error to a minimum, is feasible, with the parameter combination range depending upon the scanner's intrinsic resolution characteristics. Conclusions: Using the printed point source array as a MR compatible methodology for experimentally measuring the scanner's PSF, the system's spatially variant resolution properties were successfully evaluated in image space. Overall the PET subsystem exhibits excellent resolution characteristics mainly due to the fact that the raw data are not under-sampled/rebinned, enabling the spatial resolution to be dictated by the scanner's intrinsic resolution and the image reconstruction parameters. Due to the impact of these parameters on the resolution properties of the reconstructed images, the image space PSF varies both under spatial transformations and due to basis function parameter selection. Nonetheless, for a range of basis function parameters, the image space PSF remains unaffected, with the range depending on the scanner's intrinsic resolution properties.« less

  6. 45 CFR 86.35 - Access to schools operated by L.E.A.s.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 86.35 Access to schools operated by L.E.A.s. A recipient which is a local educational agency shall not, on the basis of sex...

  7. 45 CFR 86.35 - Access to schools operated by L.E.A.s.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 86.35 Access to schools operated by L.E.A.s. A recipient which is a local educational agency shall not, on the basis of sex...

  8. Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications

    USDA-ARS?s Scientific Manuscript database

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...

  9. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    NASA Astrophysics Data System (ADS)

    Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.

    2017-04-01

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.

  10. Nonlinear identification using a B-spline neural network and chaotic immune approaches

    NASA Astrophysics Data System (ADS)

    dos Santos Coelho, Leandro; Pessôa, Marcelo Wicthoff

    2009-11-01

    One of the important applications of B-spline neural network (BSNN) is to approximate nonlinear functions defined on a compact subset of a Euclidean space in a highly parallel manner. Recently, BSNN, a type of basis function neural network, has received increasing attention and has been applied in the field of nonlinear identification. BSNNs have the potential to "learn" the process model from input-output data or "learn" fault knowledge from past experience. BSNN can be used as function approximators to construct the analytical model for residual generation too. However, BSNN is trained by gradient-based methods that may fall into local minima during the learning procedure. When using feed-forward BSNNs, the quality of approximation depends on the control points (knots) placement of spline functions. This paper describes the application of a modified artificial immune network inspired optimization method - the opt-aiNet - combined with sequences generate by Hénon map to provide a stochastic search to adjust the control points of a BSNN. The numerical results presented here indicate that artificial immune network optimization methods are useful for building good BSNN model for the nonlinear identification of two case studies: (i) the benchmark of Box and Jenkins gas furnace, and (ii) an experimental ball-and-tube system.

  11. Multidisciplinary Optimization and Damage Tolerance of Stiffened Structures

    NASA Astrophysics Data System (ADS)

    Jrad, Mohamed

    THE structural optimization of a cantilever aircraft wing with curvilinear spars and ribs and stiffeners is described. For the optimization of a complex wing, a common strategy is to divide the optimization procedure into two subsystems: the global wing optimization which optimizes the geometry of spars, ribs and wing skins; and the local panel optimization which optimizes the design variables of local panels bordered by spars and ribs. The stiffeners are placed on the local panels to increase the stiffness and buckling resistance. During the local panel optimization, the stress information is taken from the global model as a displacement boundary condition on the panel edges using the so-called "Global-Local Approach". Particle swarm optimization is used in the integration of global/local optimization to optimize the SpaRibs. Parallel computing approach has been developed in the Python programming language to reduce the CPU time. The license cycle-check method and memory self-adjustment method are two approaches that have been applied in the parallel framework in order to optimize the use of the resources by reducing the license and memory limitations and making the code robust. The integrated global-local optimization approach has been applied to subsonic NASA common research model (CRM) wing, which proves the methodology's application scaling with medium fidelity FEM analysis. The structural weight of the wing has been reduced by 42% and the parallel implementation allowed a reduction in the CPU time by 89%. The aforementioned Global-Local Approach is investigated and applied to a composite panel with crack at its center. Because of composite laminates' heterogeneity, an accurate analysis of these requires very high time and storage space. A possible alternative to reduce the computational complexity is the global-local analysis which involves an approximate analysis of the whole structure followed by a detailed analysis of a significantly smaller region of interest. Buckling analysis of a composite panel with attached longitudinal stiffeners under compressive loads is performed using Ritz method with trigonometric functions. Results are then compared to those from Abaqus FEA for different shell elements. The case of composite panel with one, two, and three stiffeners is investigated. The effect of the distance between the stiffeners on the buckling load is also studied. The variation of the buckling load and buckling modes with the stiffeners' height is investigated. It is shown that there is an optimum value of stiffeners' height beyond which the structural response of the stiffened panel is not improved and the buckling load does not increase. Furthermore, there exist different critical values of stiffener's height at which the buckling mode of the structure changes. Next, buckling analysis of a composite panel with two straight stiffeners and a crack at the center is performed. Finally, buckling analysis of a composite panel with curvilinear stiffeners and a crack at the center is also conducted. Results show that panels with a larger crack have a reduced buckling load and that the buckling load decreases slightly when using higher order 2D shell FEM elements. A damage tolerance framework, EBF3PanelOpt, has been developed to design and analyze curvilinearly stiffened panels. The framework is written with the scripting language Python and it interacts with the commercial software MSC. Patran (for geometry and mesh creation), MSC. Nastran (for finite element analysis), and MSC. Marc (for damage tolerance analysis). The crack location is set to the location of the maximum value of the major principal stress while its orientation is set normal to the major principal axis direction. The effective stress intensity factor is calculated using the Virtual Crack Closure Technique and compared to the fracture toughness of the material in order to decide whether the crack will expand or not. The ratio of these two quantities is used as a constraint, along with the buckling factor, Kreisselmeier and Steinhauser criteria, and crippling factor. The EBF3PanelOpt framework is integrated within a two-step Particle Swarm Optimization in order to minimize the weight of the panel while satisfying the aforementioned constraints and using all the shape and thickness parameters as design variables. The result of the PSO is used then as an initial guess for the Gradient Based Optimization using only the thickness parameters as design variables and employing VisualDOC. Stiffened panel with two curvilinear stiffeners is optimized for two load cases. In both cases, significant reduction has been made for the panel's weight.

  12. Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates.

    PubMed

    Subotnik, Joseph E; Dutoi, Anthony D; Head-Gordon, Martin

    2005-09-15

    We present here an algorithm for computing stable, well-defined localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. The algorithm is very fast, limited only by diagonalization of two matrices with dimension the size of the number of virtual orbitals. Furthermore, we require no more than quadratic (in the number of electrons) storage. The basic premise behind our algorithm is that one can decompose any given atomic-orbital (AO) vector space as a minimal basis space (which includes the occupied and valence virtual spaces) and a hard-virtual (HV) space (which includes everything else). The valence virtual space localizes easily with standard methods, while the hard-virtual space is constructed to be atom centered and automatically local. The orbitals presented here may be computed almost as quickly as projecting the AO basis onto the virtual space and are almost as local (according to orbital variance), while our orbitals are orthonormal (rather than redundant and nonorthogonal). We expect this algorithm to find use in local-correlation methods.

  13. Optimizing product life cycle processes in design phase

    NASA Astrophysics Data System (ADS)

    Faneye, Ola. B.; Anderl, Reiner

    2002-02-01

    Life cycle concepts do not only serve as basis in assisting product developers understand the dependencies between products and their life cycles, they also help in identifying potential opportunities for improvement in products. Common traditional concepts focus mainly on energy and material flow across life phases, necessitating the availability of metrics derived from a reference product. Knowledge of life cycle processes won from an existing product is directly reused in its redesign. Depending on sales volume nevertheless, the environmental impact before product optimization can be substantial. With modern information technologies today, computer-aided life cycle methodologies can be applied well before product use. On the basis of a virtual prototype, life cycle processes are analyzed and optimized, using simulation techniques. This preventive approach does not only help in minimizing (or even eliminating) environmental burdens caused by product, costs incurred due to changes in real product can also be avoided. The paper highlights the relationship between product and life cycle and presents a computer-based methodology for optimizing the product life cycle during design, as presented by SFB 392: Design for Environment - Methods and Tools at Technical University, Darmstadt.

  14. Impacts of Sigma Coordinates on the Euler and Navier-Stokes Equations using Continuous Galerkin Methods

    DTIC Science & Technology

    2009-03-01

    the 1- D local basis functions. The 1-D Lagrange polynomial local basis function, using Legendre -Gauss-Lobatto interpolation points, was defined by...cases were run using 10th order polynomials , with contours from -0.05 to 0.525 K with an interval of 0.025 K...after 700 s for reso- lutions: (a) 20, (b) 10, and (c) 5 m. All cases were run using 10th order polynomials , with contours from -0.05 to 0.525 K

  15. Relativistic well-tempered Gaussian basis sets for helium through mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, S.; Matsuoka, O.

    1989-10-01

    Exponent parameters of the nonrelativistically optimized well-tempered Gaussian basis sets of Huzinaga and Klobukowski have been employed for Dirac--Fock--Roothaan calculations without their reoptimization. For light atoms He (atomic number {ital Z}=2)--Rh ({ital Z}=45), the number of exponent parameters used has been the same as the nonrelativistic basis sets and for heavier atoms Pd ({ital Z}=46)--Hg({ital Z}=80), two 2{ital p} (and three 3{ital d}) Gaussian basis functions have been augmented. The scheme of kinetic energy balance and the uniformly charged sphere model of atomic nuclei have been adopted. The qualities of the calculated basis sets are close to the Dirac--Fock limit.

  16. Optimal Audiovisual Integration in the Ventriloquism Effect But Pervasive Deficits in Unisensory Spatial Localization in Amblyopia.

    PubMed

    Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F

    2018-01-01

    Classically understood as a deficit in spatial vision, amblyopia is increasingly recognized to also impair audiovisual multisensory processing. Studies to date, however, have not determined whether the audiovisual abnormalities reflect a failure of multisensory integration, or an optimal strategy in the face of unisensory impairment. We use the ventriloquism effect and the maximum-likelihood estimation (MLE) model of optimal integration to investigate integration of audiovisual spatial information in amblyopia. Participants with unilateral amblyopia (n = 14; mean age 28.8 years; 7 anisometropic, 3 strabismic, 4 mixed mechanism) and visually normal controls (n = 16, mean age 29.2 years) localized brief unimodal auditory, unimodal visual, and bimodal (audiovisual) stimuli during binocular viewing using a location discrimination task. A subset of bimodal trials involved the ventriloquism effect, an illusion in which auditory and visual stimuli originating from different locations are perceived as originating from a single location. Localization precision and bias were determined by psychometric curve fitting, and the observed parameters were compared with predictions from the MLE model. Spatial localization precision was significantly reduced in the amblyopia group compared with the control group for unimodal visual, unimodal auditory, and bimodal stimuli. Analyses of localization precision and bias for bimodal stimuli showed no significant deviations from the MLE model in either the amblyopia group or the control group. Despite pervasive deficits in localization precision for visual, auditory, and audiovisual stimuli, audiovisual integration remains intact and optimal in unilateral amblyopia.

  17. Do Vascular Networks Branch Optimally or Randomly across Spatial Scales?

    PubMed Central

    Newberry, Mitchell G.; Savage, Van M.

    2016-01-01

    Modern models that derive allometric relationships between metabolic rate and body mass are based on the architectural design of the cardiovascular system and presume sibling vessels are symmetric in terms of radius, length, flow rate, and pressure. Here, we study the cardiovascular structure of the human head and torso and of a mouse lung based on three-dimensional images processed via our software Angicart. In contrast to modern allometric theories, we find systematic patterns of asymmetry in vascular branching, potentially explaining previously documented mismatches between predictions (power-law or concave curvature) and observed empirical data (convex curvature) for the allometric scaling of metabolic rate. To examine why these systematic asymmetries in vascular branching might arise, we construct a mathematical framework to derive predictions based on local, junction-level optimality principles that have been proposed to be favored in the course of natural selection and development. The two most commonly used principles are material-cost optimizations (construction materials or blood volume) and optimization of efficient flow via minimization of power loss. We show that material-cost optimization solutions match with distributions for asymmetric branching across the whole network but do not match well for individual junctions. Consequently, we also explore random branching that is constrained at scales that range from local (junction-level) to global (whole network). We find that material-cost optimizations are the strongest predictor of vascular branching in the human head and torso, whereas locally or intermediately constrained random branching is comparable to material-cost optimizations for the mouse lung. These differences could be attributable to developmentally-programmed local branching for larger vessels and constrained random branching for smaller vessels. PMID:27902691

  18. SU-D-BRA-04: Computerized Framework for Marker-Less Localization of Anatomical Feature Points in Range Images Based On Differential Geometry Features for Image-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufi, M; Arimura, H; Toyofuku, F

    Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patientmore » surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed framework might be useful for tasks involving feature-based image registration in range-image guided radiation therapy.« less

  19. Memetic Approaches for Optimizing Hidden Markov Models: A Case Study in Time Series Prediction

    NASA Astrophysics Data System (ADS)

    Bui, Lam Thu; Barlow, Michael

    We propose a methodology for employing memetics (local search) within the framework of evolutionary algorithms to optimize parameters of hidden markov models. With this proposal, the rate and frequency of using local search are automatically changed over time either at a population or individual level. At the population level, we allow the rate of using local search to decay over time to zero (at the final generation). At the individual level, each individual is equipped with information of when it will do local search and for how long. This information evolves over time alongside the main elements of the chromosome representing the individual.

  20. Dispositional Optimism

    PubMed Central

    Carver, Charles S.; Scheier, Michael F.

    2014-01-01

    Optimism is a cognitive construct (expectancies regarding future outcomes) that also relates to motivation: optimistic people exert effort, whereas pessimistic people disengage from effort. Study of optimism began largely in health contexts, finding positive associations between optimism and markers of better psychological and physical health. Physical health effects likely occur through differences in both health-promoting behaviors and physiological concomitants of coping. Recently, the scientific study of optimism has extended to the realm of social relations: new evidence indicates that optimists have better social connections, partly because they work harder at them. In this review, we examine the myriad ways this trait can benefit an individual, and our current understanding of the biological basis of optimism. PMID:24630971

  1. Evaluation of Methods for Multidisciplinary Design Optimization (MDO). Part 2

    NASA Technical Reports Server (NTRS)

    Kodiyalam, Srinivas; Yuan, Charles; Sobieski, Jaroslaw (Technical Monitor)

    2000-01-01

    A new MDO method, BLISS, and two different variants of the method, BLISS/RS and BLISS/S, have been implemented using iSIGHT's scripting language and evaluated in this report on multidisciplinary problems. All of these methods are based on decomposing a modular system optimization system into several subtasks optimization, that may be executed concurrently, and the system optimization that coordinates the subtasks optimization. The BLISS method and its variants are well suited for exploiting the concurrent processing capabilities in a multiprocessor machine. Several steps, including the local sensitivity analysis, local optimization, response surfaces construction and updates are all ideally suited for concurrent processing. Needless to mention, such algorithms that can effectively exploit the concurrent processing capabilities of the compute servers will be a key requirement for solving large-scale industrial design problems, such as the automotive vehicle problem detailed in Section 3.4.

  2. A hybrid multi-objective evolutionary algorithm for wind-turbine blade optimization

    NASA Astrophysics Data System (ADS)

    Sessarego, M.; Dixon, K. R.; Rival, D. E.; Wood, D. H.

    2015-08-01

    A concurrent-hybrid non-dominated sorting genetic algorithm (hybrid NSGA-II) has been developed and applied to the simultaneous optimization of the annual energy production, flapwise root-bending moment and mass of the NREL 5 MW wind-turbine blade. By hybridizing a multi-objective evolutionary algorithm (MOEA) with gradient-based local search, it is believed that the optimal set of blade designs could be achieved in lower computational cost than for a conventional MOEA. To measure the convergence between the hybrid and non-hybrid NSGA-II on a wind-turbine blade optimization problem, a computationally intensive case was performed using the non-hybrid NSGA-II. From this particular case, a three-dimensional surface representing the optimal trade-off between the annual energy production, flapwise root-bending moment and blade mass was achieved. The inclusion of local gradients in the blade optimization, however, shows no improvement in the convergence for this three-objective problem.

  3. Health benefit modelling and optimization of vehicular pollution control strategies

    NASA Astrophysics Data System (ADS)

    Sonawane, Nayan V.; Patil, Rashmi S.; Sethi, Virendra

    2012-12-01

    This study asserts that the evaluation of pollution reduction strategies should be approached on the basis of health benefits. The framework presented could be used for decision making on the basis of cost effectiveness when the strategies are applied concurrently. Several vehicular pollution control strategies have been proposed in literature for effective management of urban air pollution. The effectiveness of these strategies has been mostly studied as a one at a time approach on the basis of change in pollution concentration. The adequacy and practicality of such an approach is studied in the present work. Also, the assessment of respective benefits of these strategies has been carried out when they are implemented simultaneously. An integrated model has been developed which can be used as a tool for optimal prioritization of various pollution management strategies. The model estimates health benefits associated with specific control strategies. ISC-AERMOD View has been used to provide the cause-effect relation between control options and change in ambient air quality. BenMAP, developed by U.S. EPA, has been applied for estimation of health and economic benefits associated with various management strategies. Valuation of health benefits has been done for impact indicators of premature mortality, hospital admissions and respiratory syndrome. An optimization model has been developed to maximize overall social benefits with determination of optimized percentage implementations for multiple strategies. The model has been applied for sub-urban region of Mumbai city for vehicular sector. Several control scenarios have been considered like revised emission standards, electric, CNG, LPG and hybrid vehicles. Reduction in concentration and resultant health benefits for the pollutants CO, NOx and particulate matter are estimated for different control scenarios. Finally, an optimization model has been applied to determine optimized percentage implementation of specific control strategies with maximization of social benefits, when these strategies are applied simultaneously.

  4. Improved techniques for outgoing wave variational principle calculations of converged state-to-state transition probabilities for chemical reactions

    NASA Technical Reports Server (NTRS)

    Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.

  5. Optimization of locations of diffusion spots in indoor optical wireless local area networks

    NASA Astrophysics Data System (ADS)

    Eltokhey, Mahmoud W.; Mahmoud, K. R.; Ghassemlooy, Zabih; Obayya, Salah S. A.

    2018-03-01

    In this paper, we present a novel optimization of the locations of the diffusion spots in indoor optical wireless local area networks, based on the central force optimization (CFO) scheme. The users' performance uniformity is addressed by using the CFO algorithm, and adopting different objective function's configurations, while considering maximization and minimization of the signal to noise ratio and the delay spread, respectively. We also investigate the effect of varying the objective function's weights on the system and the users' performance as part of the adaptation process. The results show that the proposed objective function configuration-based optimization procedure offers an improvement of 65% in the standard deviation of individual receivers' performance.

  6. Damage identification in beams using speckle shearography and an optimal spatial sampling

    NASA Astrophysics Data System (ADS)

    Mininni, M.; Gabriele, S.; Lopes, H.; Araújo dos Santos, J. V.

    2016-10-01

    Over the years, the derivatives of modal displacement and rotation fields have been used to localize damage in beams. Usually, the derivatives are computed by applying finite differences. The finite differences propagate and amplify the errors that exist in real measurements, and thus, it is necessary to minimize this problem in order to get reliable damage localizations. A way to decrease the propagation and amplification of the errors is to select an optimal spatial sampling. This paper presents a technique where an optimal spatial sampling of modal rotation fields is computed and used to obtain the modal curvatures. Experimental measurements of modal rotation fields of a beam with single and multiple damages are obtained with shearography, which is an optical technique allowing the measurement of full-fields. These measurements are used to test the validity of the optimal sampling technique for the improvement of damage localization in real structures. An investigation on the ability of a model updating technique to quantify the damage is also reported. The model updating technique is defined by the variations of measured natural frequencies and measured modal rotations and aims at calibrating the values of the second moment of area in the damaged areas, which were previously localized.

  7. Inverse Electrocardiographic Source Localization of Ischemia: An Optimization Framework and Finite Element Solution

    PubMed Central

    Wang, Dafang; Kirby, Robert M.; MacLeod, Rob S.; Johnson, Chris R.

    2013-01-01

    With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the myocardium with the bidomain heart model. The task is an inverse source problem governed by partial differential equations (PDE). Our main contribution is solving the inverse problem within a PDE-constrained optimization framework that enables various physically-based constraints in both equality and inequality forms. We formulated the optimality conditions rigorously in the continuum before deriving finite element discretization, thereby making the optimization independent of discretization choice. Such a formulation was derived for the L2-norm Tikhonov regularization and the total variation minimization. The subsequent numerical optimization was fulfilled by a primal-dual interior-point method tailored to our problem’s specific structure. Our simulations used realistic, fiber-included heart models consisting of up to 18,000 nodes, much finer than any inverse models previously reported. With synthetic ischemia data we localized ischemic regions with roughly a 10% false-negative rate or a 20% false-positive rate under conditions up to 5% input noise. With ischemia data measured from animal experiments, we reconstructed TMPs with roughly 0.9 correlation with the ground truth. While precisely estimating the TMP in general cases remains an open problem, our study shows the feasibility of reconstructing TMP during the ST interval as a means of ischemia localization. PMID:23913980

  8. Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution

    NASA Astrophysics Data System (ADS)

    Nishimura, S.; Ogino, T.; Takemura, Y.; Shirakashi, J.

    2008-03-01

    Tapping mode SPM local oxidation nanolithography with sub-10 nm resolution is investigated by optimizing the applied bias voltage (V), scanning speed (S) and the oscillation amplitude of the cantilever (A). We fabricated Si oxide wires with an average width of 9.8 nm (V = 17.5 V, S = 250 nm/s, A = 292 nm). In SPM local oxidation with tapping mode operation, it is possible to decrease the size of the water meniscus by enhancing the oscillation amplitude of cantilever. Hence, it seems that the water meniscus with sub-10 nm dimensions could be formed by precisely optimizing the oxidation conditions. Moreover, we quantitatively explain the size (width and height) of Si oxide wires with a model based on the oxidation ratio, which is defined as the oxidation time divided by the period of the cantilever oscillation. The model allows us to understand the mechanism of local oxidation in tapping mode operation with amplitude modulation. The results imply that the sub-10 nm resolution could be achieved using tapping mode SPM local oxidation technique with the optimization of the cantilever dynamics.

  9. Proxy functions for turbulent transport optimization of stellarators

    NASA Astrophysics Data System (ADS)

    Rorvig, Mordechai; Hegna, Chris; Mynick, Harry; Xanthopoulos, Pavlos

    2012-10-01

    The design freedom of toroidal confinement shaping suggests the possibility of optimizing the magnetic geometry for turbulent transport, particularly in stellarators. The framework for implementing such an optimization was recently established [1] using a proxy function as a measure of the ITG induced turbulent transport associated with a given geometry. Working in the framework of local 3-D equilibrium [2], we investigate the theory and implications of such proxy functions by analyzing the linear instability dependence on curvature and local shear, and the associated quasilinear transport estimates. Simple analytic models suggest the beneficial effect of local shear enters through polarization effects, which can be controlled by field torsion in small net current regimes. We test the proxy functions with local, electrostatic gyrokinetics calculations [3] of ITG modes for experimentally motivated local 3-D equilibria.[4pt] [1] H. E. Mynick, N. Pomphrey, and P. Xanthopoulos, Phys. Rev. Lett. 105, 095004 (2010).[0pt] [2] C. C. Hegna, Physics of Plasmas 7, 3921 (2000).[0pt] [3] F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Physical Review Letters 7, 1904 (2000).

  10. Multiobjective optimization model of intersection signal timing considering emissions based on field data: A case study of Beijing.

    PubMed

    Kou, Weibin; Chen, Xumei; Yu, Lei; Gong, Huibo

    2018-04-18

    Most existing signal timing models are aimed to minimize the total delay and stops at intersections, without considering environmental factors. This paper analyzes the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. First, considering the different operating modes of cruising, acceleration, deceleration, and idling, field data of emissions and Global Positioning System (GPS) are collected to estimate emission rates for heavy-duty and light-duty vehicles. Second, multiobjective signal timing optimization model is established based on a genetic algorithm to minimize delay, stops, and emissions. Finally, a case study is conducted in Beijing. Nine scenarios are designed considering different weights of emission and traffic efficiency. The results compared with those using Highway Capacity Manual (HCM) 2010 show that signal timing optimized by the model proposed in this paper can decrease vehicles delay and emissions more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development. Vehicle emissions are heavily at signal intersections in urban area. The multiobjective signal timing optimization model is proposed considering the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. The results indicate that signal timing optimized by the model proposed in this paper can decrease vehicle emissions and delays more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development.

  11. A method to incorporate leakage and head scatter corrections into a tomotherapy inverse treatment planning algorithm

    NASA Astrophysics Data System (ADS)

    Holmes, Timothy W.

    2001-01-01

    A detailed tomotherapy inverse treatment planning method is described which incorporates leakage and head scatter corrections during each iteration of the optimization process, allowing these effects to be directly accounted for in the optimized dose distribution. It is shown that the conventional inverse planning method for optimizing incident intensity can be extended to include a `concurrent' leaf sequencing operation from which the leakage and head scatter corrections are determined. The method is demonstrated using the steepest-descent optimization technique with constant step size and a least-squared error objective. The method was implemented using the MATLAB scientific programming environment and its feasibility demonstrated for 2D test cases simulating treatment delivery using a single coplanar rotation. The results indicate that this modification does not significantly affect convergence of the intensity optimization method when exposure times of individual leaves are stratified to a large number of levels (>100) during leaf sequencing. In general, the addition of aperture dependent corrections, especially `head scatter', reduces incident fluence in local regions of the modulated fan beam, resulting in increased exposure times for individual collimator leaves. These local variations can result in 5% or greater local variation in the optimized dose distribution compared to the uncorrected case. The overall efficiency of the modified intensity optimization algorithm is comparable to that of the original unmodified case.

  12. Optimization Research of Generation Investment Based on Linear Programming Model

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  13. Tight-binding approach to overdamped Brownian motion on a bichromatic periodic potential.

    PubMed

    Nguyen, P T T; Challis, K J; Jack, M W

    2016-02-01

    We present a theoretical treatment of overdamped Brownian motion on a time-independent bichromatic periodic potential with spatially fast- and slow-changing components. In our approach, we generalize the Wannier basis commonly used in the analysis of periodic systems to define a basis of S states that are localized at local minima of the potential. We demonstrate that the S states are orthonormal and complete on the length scale of the periodicity of the fast-changing potential, and we use the S-state basis to transform the continuous Smoluchowski equation for the system to a discrete master equation describing hopping between local minima. We identify the parameter regime where the master equation description is valid and show that the interwell hopping rates are well approximated by Kramers' escape rate in the limit of deep potential minima. Finally, we use the master equation to explore the system dynamics and determine the drift and diffusion for the system.

  14. 29 CFR 776.21 - “For” commerce.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... essentially local ice plant where the only basis of coverage is the delivery of ice for the water cooler in... entitled to be paid on that basis notwithstanding some of the wells drilled may eventually prove to be dry...

  15. 29 CFR 776.21 - “For” commerce.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... essentially local ice plant where the only basis of coverage is the delivery of ice for the water cooler in... entitled to be paid on that basis notwithstanding some of the wells drilled may eventually prove to be dry...

  16. 29 CFR 776.21 - “For” commerce.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... essentially local ice plant where the only basis of coverage is the delivery of ice for the water cooler in... entitled to be paid on that basis notwithstanding some of the wells drilled may eventually prove to be dry...

  17. An efficient algorithm for function optimization: modified stem cells algorithm

    NASA Astrophysics Data System (ADS)

    Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad Hadi

    2013-03-01

    In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).

  18. Orbit design and optimization based on global telecommunication performance metrics

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Lee, Charles H.; Kerridge, Stuart; Cheung, Kar-Ming; Edwards, Charles D.

    2006-01-01

    The orbit selection of telecommunications orbiters is one of the critical design processes and should be guided by global telecom performance metrics and mission-specific constraints. In order to aid the orbit selection, we have coupled the Telecom Orbit Analysis and Simulation Tool (TOAST) with genetic optimization algorithms. As a demonstration, we have applied the developed tool to select an optimal orbit for general Mars telecommunications orbiters with the constraint of being a frozen orbit. While a typical optimization goal is to minimize tele-communications down time, several relevant performance metrics are examined: 1) area-weighted average gap time, 2) global maximum of local maximum gap time, 3) global maximum of local minimum gap time. Optimal solutions are found with each of the metrics. Common and different features among the optimal solutions as well as the advantage and disadvantage of each metric are presented. The optimal solutions are compared with several candidate orbits that were considered during the development of Mars Telecommunications Orbiter.

  19. Smart grid technologies in local electric grids

    NASA Astrophysics Data System (ADS)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  20. A hierarchical transition state search algorithm

    NASA Astrophysics Data System (ADS)

    del Campo, Jorge M.; Köster, Andreas M.

    2008-07-01

    A hierarchical transition state search algorithm is developed and its implementation in the density functional theory program deMon2k is described. This search algorithm combines the double ended saddle interpolation method with local uphill trust region optimization. A new formalism for the incorporation of the distance constrain in the saddle interpolation method is derived. The similarities between the constrained optimizations in the local trust region method and the saddle interpolation are highlighted. The saddle interpolation and local uphill trust region optimizations are validated on a test set of 28 representative reactions. The hierarchical transition state search algorithm is applied to an intramolecular Diels-Alder reaction with several internal rotors, which makes automatic transition state search rather challenging. The obtained reaction mechanism is discussed in the context of the experimentally observed product distribution.

  1. Method of assessing the state of a rolling bearing based on the relative compensation distance of multiple-domain features and locally linear embedding

    NASA Astrophysics Data System (ADS)

    Kang, Shouqiang; Ma, Danyang; Wang, Yujing; Lan, Chaofeng; Chen, Qingguo; Mikulovich, V. I.

    2017-03-01

    To effectively assess different fault locations and different degrees of performance degradation of a rolling bearing with a unified assessment index, a novel state assessment method based on the relative compensation distance of multiple-domain features and locally linear embedding is proposed. First, for a single-sample signal, time-domain and frequency-domain indexes can be calculated for the original vibration signal and each sensitive intrinsic mode function obtained by improved ensemble empirical mode decomposition, and the singular values of the sensitive intrinsic mode function matrix can be extracted by singular value decomposition to construct a high-dimensional hybrid-domain feature vector. Second, a feature matrix can be constructed by arranging each feature vector of multiple samples, the dimensions of each row vector of the feature matrix can be reduced by the locally linear embedding algorithm, and the compensation distance of each fault state of the rolling bearing can be calculated using the support vector machine. Finally, the relative distance between different fault locations and different degrees of performance degradation and the normal-state optimal classification surface can be compensated, and on the basis of the proposed relative compensation distance, the assessment model can be constructed and an assessment curve drawn. Experimental results show that the proposed method can effectively assess different fault locations and different degrees of performance degradation of the rolling bearing under certain conditions.

  2. Effect of local minima on adiabatic quantum optimization.

    PubMed

    Amin, M H S

    2008-04-04

    We present a perturbative method to estimate the spectral gap for adiabatic quantum optimization, based on the structure of the energy levels in the problem Hamiltonian. We show that, for problems that have an exponentially large number of local minima close to the global minimum, the gap becomes exponentially small making the computation time exponentially long. The quantum advantage of adiabatic quantum computation may then be accessed only via the local adiabatic evolution, which requires phase coherence throughout the evolution and knowledge of the spectrum. Such problems, therefore, are not suitable for adiabatic quantum computation.

  3. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins.

    PubMed

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-05

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  4. Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH.

    PubMed

    Volk, Jochen; Herrmann, Torsten; Wüthrich, Kurt

    2008-07-01

    MATCH (Memetic Algorithm and Combinatorial Optimization Heuristics) is a new memetic algorithm for automated sequence-specific polypeptide backbone NMR assignment of proteins. MATCH employs local optimization for tracing partial sequence-specific assignments within a global, population-based search environment, where the simultaneous application of local and global optimization heuristics guarantees high efficiency and robustness. MATCH thus makes combined use of the two predominant concepts in use for automated NMR assignment of proteins. Dynamic transition and inherent mutation are new techniques that enable automatic adaptation to variable quality of the experimental input data. The concept of dynamic transition is incorporated in all major building blocks of the algorithm, where it enables switching between local and global optimization heuristics at any time during the assignment process. Inherent mutation restricts the intrinsically required randomness of the evolutionary algorithm to those regions of the conformation space that are compatible with the experimental input data. Using intact and artificially deteriorated APSY-NMR input data of proteins, MATCH performed sequence-specific resonance assignment with high efficiency and robustness.

  5. Integration and Optimization of Alternative Sources of Energy in a Remote Region

    NASA Astrophysics Data System (ADS)

    Berberi, Pellumb; Inodnorjani, Spiro; Aleti, Riza

    2010-01-01

    In a remote coastal region supply of energy from national grid is insufficient for a sustainable development. Integration and optimization of local alternative renewable energy sources is an optional solution of the problem. In this paper we have studied the energetic potential of local sources of renewable energy (water, solar, wind and biomass). A bottom-up energy system optimization model is proposed in order to support planning policies for promoting the use of renewable energy sources. A software, based on multiple factors and constrains analysis for optimization energy flow is proposed, which provides detailed information for exploitation each source of energy, power and heat generation, GHG emissions and end-use sectors. Economical analysis shows that with existing technologies both stand alone and regional facilities may be feasible. Improving specific legislation will foster investments from Central or Local Governments and also from individuals, private companies or small families. The study is carried on the frame work of a FP6 project "Integrated Renewable Energy System."

  6. QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization.

    PubMed

    Handoko, Stephanus Daniel; Ouyang, Xuchang; Su, Chinh Tran To; Kwoh, Chee Keong; Ong, Yew Soon

    2012-01-01

    Predicting binding between macromolecule and small molecule is a crucial phase in the field of rational drug design. AutoDock Vina, one of the most widely used docking software released in 2009, uses an empirical scoring function to evaluate the binding affinity between the molecules and employs the iterated local search global optimizer for global optimization, achieving a significantly improved speed and better accuracy of the binding mode prediction compared its predecessor, AutoDock 4. In this paper, we propose further improvement in the local search algorithm of Vina by heuristically preventing some intermediate points from undergoing local search. Our improved version of Vina-dubbed QVina-achieved a maximum acceleration of about 25 times with the average speed-up of 8.34 times compared to the original Vina when tested on a set of 231 protein-ligand complexes while maintaining the optimal scores mostly identical. Using our heuristics, larger number of different ligands can be quickly screened against a given receptor within the same time frame.

  7. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigehiko; Uchida, Yoshihiro; Hasegawa, Taisuke; Higashi, Masahiro; Kosugi, Takahiro; Kamiya, Motoshi

    2017-05-01

    Many remarkable molecular functions of proteins use their characteristic global and slow conformational dynamics through coupling of local chemical states in reaction centers with global conformational changes of proteins. To theoretically examine the functional processes of proteins in atomic detail, a methodology of quantum mechanical/molecular mechanical (QM/MM) free-energy geometry optimization is introduced. In the methodology, a geometry optimization of a local reaction center is performed with a quantum mechanical calculation on a free-energy surface constructed with conformational samples of the surrounding protein environment obtained by a molecular dynamics simulation with a molecular mechanics force field. Geometry optimizations on extensive free-energy surfaces by a QM/MM reweighting free-energy self-consistent field method designed to be variationally consistent and computationally efficient have enabled examinations of the multiscale molecular coupling of local chemical states with global protein conformational changes in functional processes and analysis and design of protein mutants with novel functional properties.

  8. Investigation and process optimization of SONOS cell's drain disturb in 2-transistor structure flash arrays

    NASA Astrophysics Data System (ADS)

    Xu, Zhaozhao; Qian, Wensheng; Chen, Hualun; Xiong, Wei; Hu, Jun; Liu, Donghua; Duan, Wenting; Kong, Weiran; Na, Wei; Zou, Shichang

    2017-03-01

    The mechanism and distribution of drain disturb (DD) are investigated in silicon-oxide-nitride-oxide-silicon (SONOS) flash cells. It is shown that DD is the only concern in this paper. First, the distribution of trapped charge in nitride layer is found to be non-localized (trapped in entire nitride layer along the channel) after programming. Likewise, the erase is also non-localized. Then, the main disturb mechanism: Fowler Nordheim tunneling (FNT) has been confirmed in this paper with negligible disturb effect from hot-hole injection (HHI). And then, distribution of DD is confirmed to be non-localized similarly, which denotes that DD exists in entire tunneling oxide (Oxide for short). Next, four process optimization ways are proposed for minimization of DD, and VTH shift is measured. It reveals that optimized lightly doped drain (LDD), halo, and channel implant are required for the fabrication of a robust SONOS cell. Finally, data retention and endurance of the optimized SONOS are demonstrated.

  9. MODFLOW-LGR: Practical application to a large regional dataset

    NASA Astrophysics Data System (ADS)

    Barnes, D.; Coulibaly, K. M.

    2011-12-01

    In many areas of the US, including southwest Florida, large regional-scale groundwater models have been developed to aid in decision making and water resources management. These models are subsequently used as a basis for site-specific investigations. Because the large scale of these regional models is not appropriate for local application, refinement is necessary to analyze the local effects of pumping wells and groundwater related projects at specific sites. The most commonly used approach to date is Telescopic Mesh Refinement or TMR. It allows the extraction of a subset of the large regional model with boundary conditions derived from the regional model results. The extracted model is then updated and refined for local use using a variable sized grid focused on the area of interest. MODFLOW-LGR, local grid refinement, is an alternative approach which allows model discretization at a finer resolution in areas of interest and provides coupling between the larger "parent" model and the locally refined "child." In the present work, these two approaches are tested on a mining impact assessment case in southwest Florida using a large regional dataset (The Lower West Coast Surficial Aquifer System Model). Various metrics for performance are considered. They include: computation time, water balance (as compared to the variable sized grid), calibration, implementation effort, and application advantages and limitations. The results indicate that MODFLOW-LGR is a useful tool to improve local resolution of regional scale models. While performance metrics, such as computation time, are case-dependent (model size, refinement level, stresses involved), implementation effort, particularly when regional models of suitable scale are available, can be minimized. The creation of multiple child models within a larger scale parent model makes it possible to reuse the same calibrated regional dataset with minimal modification. In cases similar to the Lower West Coast model, where a model is larger than optimal for direct application as a parent grid, a combination of TMR and LGR approaches should be used to develop a suitable parent grid.

  10. 40 CFR 35.936-2 - Grantee procurement systems; State or local law.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Grantee procurement systems; State or local law. 35.936-2 Section 35.936-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS... rational basis. (c) Preference. State or local laws, ordinances, regulations or procedures which...

  11. Optimization Problem of Thermal Field on Surface of Revolving Susceptor in Vapor-Phase Epitaxy Reactor

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A. A.; Chernyi, S. G.; Nyrkov, A. P.; Sokolov, S. S.

    2017-10-01

    Nitrides of group III elements are a very suitable basis for deriving light-emitting devices with the radiating modes lengths of 200-600 nm. The use of such semiconductors allows obtaining full-color RGB light sources, increasing record density of a digital data storage device, getting high-capacity and efficient sources of white light. Electronic properties of such semi-conductors allow using them as a basis for high-power and high-frequency transistors and other electronic devices, the specifications of which are competitive with those of SiC-based devices. Only since 2000, the technology of cultivation of crystals III-N of group has come to the level of wide recognition by both abstract science, and the industry that has led to the creation of the multi-billion dollar market. And this is despite a rather low level of development of the production technology of devices on the basis of III-N of materials. The progress that has happened in the last decade requires the solution of the main problem, constraining further development of this technology today - ensuring cultivation of III-N structures of necessary quality. For this purpose, it is necessary to solve problems of the analysis and optimization of processes in installations of epitaxial growth, and, as a result, optimization of its constructions.

  12. [Optimized application of nested PCR method for detection of malaria].

    PubMed

    Yao-Guang, Z; Li, J; Zhen-Yu, W; Li, C

    2017-04-28

    Objective To optimize the application of the nested PCR method for the detection of malaria according to the working practice, so as to improve the efficiency of malaria detection. Methods Premixing solution of PCR, internal primers for further amplification and new designed primers that aimed at two Plasmodium ovale subspecies were employed to optimize the reaction system, reaction condition and specific primers of P . ovale on basis of routine nested PCR. Then the specificity and the sensitivity of the optimized method were analyzed. The positive blood samples and examination samples of malaria were detected by the routine nested PCR and the optimized method simultaneously, and the detection results were compared and analyzed. Results The optimized method showed good specificity, and its sensitivity could reach the pg to fg level. The two methods were used to detect the same positive malarial blood samples simultaneously, the results indicated that the PCR products of the two methods had no significant difference, but the non-specific amplification reduced obviously and the detection rates of P . ovale subspecies improved, as well as the total specificity also increased through the use of the optimized method. The actual detection results of 111 cases of malarial blood samples showed that the sensitivity and specificity of the routine nested PCR were 94.57% and 86.96%, respectively, and those of the optimized method were both 93.48%, and there was no statistically significant difference between the two methods in the sensitivity ( P > 0.05), but there was a statistically significant difference between the two methods in the specificity ( P < 0.05). Conclusion The optimized PCR can improve the specificity without reducing the sensitivity on the basis of the routine nested PCR, it also can save the cost and increase the efficiency of malaria detection as less experiment links.

  13. Optimum Edging and Trimming of Hardwood Lumber

    Treesearch

    Carmen Regalado; D. Earl Kline; Philip A. Araman

    1992-01-01

    Before the adoption of an automated system for optimizing edging and trimming in hardwood mills, the performance of present manual systems must be evaluated to provide a basis for comparison. a study was made in which lumber values recovered in actual hardwood operations were compared to the output of a computer-based procedure for edging and trimming optimization. The...

  14. Tables Of Gaussian-Type Orbital Basis Functions

    NASA Technical Reports Server (NTRS)

    Partridge, Harry

    1992-01-01

    NASA technical memorandum contains tables of estimated Hartree-Fock wave functions for atoms lithium through neon and potassium through krypton. Sets contain optimized Gaussian-type orbital exponents and coefficients, and near Hartree-Fock quality. Orbital exponents optimized by minimizing restricted Hartree-Fock energy via scaled Newton-Raphson scheme in which Hessian evaluated numerically by use of analytically determined gradients.

  15. Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Yue, Chen

    2015-11-01

    The welded joints of dissimilar materials have been widely used in automotive, ship and space industries. The joint quality is often evaluated by weld seam geometry, microstructures and mechanical properties. To obtain the desired weld seam geometry and improve the quality of welded joints, this paper proposes a process modeling and parameter optimization method to obtain the weld seam with minimum width and desired depth of penetration for laser butt welding of dissimilar materials. During the process, Taguchi experiments are conducted on the laser welding of the low carbon steel (Q235) and stainless steel (SUS301L-HT). The experimental results are used to develop the radial basis function neural network model, and the process parameters are optimized by genetic algorithm. The proposed method is validated by a confirmation experiment. Simultaneously, the microstructures and mechanical properties of the weld seam generated from optimal process parameters are further studied by optical microscopy and tensile strength test. Compared with the unoptimized weld seam, the welding defects are eliminated in the optimized weld seam and the mechanical properties are improved. The results show that the proposed method is effective and reliable for improving the quality of welded joints in practical production.

  16. Simulated annealing in orbital flight planning

    NASA Technical Reports Server (NTRS)

    Soller, Jeffrey

    1990-01-01

    Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is unique because the space station will define the first true multivehicle environment in space. The optimization yields surfaces which are potentially complex, with multiple local minima. Because of the likelihood of these local minima, descent techniques are unable to offer robust solutions. Other deterministic optimization techniques were explored without success. The simulated annealing optimization is capable of identifying a minimum-fuel, two-burn trajectory subject to four constraints. Furthermore, the computational efforts involved in the optimization are such that missions could be planned on board the space station. Potential applications could include the on-site planning of rendezvous with a target craft of the emergency rescue of an astronaut. Future research will include multiwaypoint maneuvers, using a knowledge base to guide the optimization.

  17. 40 CFR 35.162 - Basis for allotment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....162 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Water Pollution Control (section 106) § 35.162 Basis for allotment. (a) Allotments. Each fiscal year funds appropriated for Water Pollution Control...

  18. 40 CFR 35.162 - Basis for allotment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....162 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Environmental Program Grants Water Pollution Control (section 106) § 35.162 Basis for allotment. (a) Allotments. Each fiscal year funds appropriated for Water Pollution Control...

  19. A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation

    PubMed Central

    Eddy, Sean R.

    2008-01-01

    Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236

  20. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP

    PubMed Central

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality. PMID:27999590

  1. Large scale exact quantum dynamics calculations: Ten thousand quantum states of acetonitrile

    NASA Astrophysics Data System (ADS)

    Halverson, Thomas; Poirier, Bill

    2015-03-01

    'Exact' quantum dynamics (EQD) calculations of the vibrational spectrum of acetonitrile (CH3CN) are performed, using two different methods: (1) phase-space-truncated momentum-symmetrized Gaussian basis and (2) correlated truncated harmonic oscillator basis. In both cases, a simple classical phase space picture is used to optimize the selection of individual basis functions-leading to drastic reductions in basis size, in comparison with existing methods. Massive parallelization is also employed. Together, these tools-implemented into a single, easy-to-use computer code-enable a calculation of tens of thousands of vibrational states of CH3CN to an accuracy of 0.001-10 cm-1.

  2. Entanglement Length in Miscible Blends of cis-Polyisoprene and Poly(ptert-butylstyrene)

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Matsumiya, Yumi

    In miscible polymer blends, the entanglement length is common for the components, but its changes with the composition w remain unclear. For this problem, this study analyzed viscoelastic data for miscible blends of cis-polyisoprene (PI) and poly(ptert-butylstyrene) (PtBS), considering the basic feature that the local relaxation is determined only by wPI. On the basis of this feature, a series of unentangled low- M PI/PtBS blends having various M and a given wPI were utilized as references for well-entangled high- M PI/PtBS blends having the same wPI, and the modulus data of the references were subtracted from the high- M blend data. For an optimally chosen reference, the storage modulus Ge'of the high- M blends obtained after the subtraction exhibited a clear entanglement plateau GN and the corresponding Ge' ' decreased in proportion to 1/ ω at high frequencies ω. Thus, the onset of entanglement relaxation was detected. The GN values were well described by a linear mixing rule of the entanglement length with the number fraction of Kuhn segments of the components being utilized as the averaging weight. This result, not explained by a mean-field picture of entanglement, is discussed in relation to local packing of bulky PtBS chains and skinny PI chains.

  3. Edge-SIFT: discriminative binary descriptor for scalable partial-duplicate mobile search.

    PubMed

    Zhang, Shiliang; Tian, Qi; Lu, Ke; Huang, Qingming; Gao, Wen

    2013-07-01

    As the basis of large-scale partial duplicate visual search on mobile devices, image local descriptor is expected to be discriminative, efficient, and compact. Our study shows that the popularly used histogram-based descriptors, such as scale invariant feature transform (SIFT) are not optimal for this task. This is mainly because histogram representation is relatively expensive to compute on mobile platforms and loses significant spatial clues, which are important for improving discriminative power and matching near-duplicate image patches. To address these issues, we propose to extract a novel binary local descriptor named Edge-SIFT from the binary edge maps of scale- and orientation-normalized image patches. By preserving both locations and orientations of edges and compressing the sparse binary edge maps with a boosting strategy, the final Edge-SIFT shows strong discriminative power with compact representation. Furthermore, we propose a fast similarity measurement and an indexing framework with flexible online verification. Hence, the Edge-SIFT allows an accurate and efficient image search and is ideal for computation sensitive scenarios such as a mobile image search. Experiments on a large-scale dataset manifest that the Edge-SIFT shows superior retrieval accuracy to Oriented BRIEF (ORB) and is superior to SIFT in the aspects of retrieval precision, efficiency, compactness, and transmission cost.

  4. Localization and separation of acoustic sources by using a 2.5-dimensional circular microphone array.

    PubMed

    Bai, Mingsian R; Lai, Chang-Sheng; Wu, Po-Chen

    2017-07-01

    Circular microphone arrays (CMAs) are sufficient in many immersive audio applications because azimuthal angles of sources are considered more important than the elevation angles in those occasions. However, the fact that CMAs do not resolve the elevation angle well can be a limitation for some applications which involves three-dimensional sound images. This paper proposes a 2.5-dimensional (2.5-D) CMA comprised of a CMA and a vertical logarithmic-spacing linear array (LLA) on the top. In the localization stage, two delay-and-sum beamformers are applied to the CMA and the LLA, respectively. The direction of arrival (DOA) is estimated from the product of two array output signals. In the separation stage, Tikhonov regularization and convex optimization are employed to extract the source amplitudes on the basis of the estimated DOA. The extracted signals from two arrays are further processed by the normalized least-mean-square algorithm with the internal iteration to yield the source signal with improved quality. To validate the 2.5-D CMA experimentally, a three-dimensionally printed circular array comprised of a 24-element CMA and an eight-element LLA is constructed. Objective perceptual evaluation of speech quality test and a subjective listening test are also undertaken.

  5. Examining the effect of initialization strategies on the performance of Gaussian mixture modeling.

    PubMed

    Shireman, Emilie; Steinley, Douglas; Brusco, Michael J

    2017-02-01

    Mixture modeling is a popular technique for identifying unobserved subpopulations (e.g., components) within a data set, with Gaussian (normal) mixture modeling being the form most widely used. Generally, the parameters of these Gaussian mixtures cannot be estimated in closed form, so estimates are typically obtained via an iterative process. The most common estimation procedure is maximum likelihood via the expectation-maximization (EM) algorithm. Like many approaches for identifying subpopulations, finite mixture modeling can suffer from locally optimal solutions, and the final parameter estimates are dependent on the initial starting values of the EM algorithm. Initial values have been shown to significantly impact the quality of the solution, and researchers have proposed several approaches for selecting the set of starting values. Five techniques for obtaining starting values that are implemented in popular software packages are compared. Their performances are assessed in terms of the following four measures: (1) the ability to find the best observed solution, (2) settling on a solution that classifies observations correctly, (3) the number of local solutions found by each technique, and (4) the speed at which the start values are obtained. On the basis of these results, a set of recommendations is provided to the user.

  6. efficient association study design via power-optimized tag SNP selection

    PubMed Central

    HAN, BUHM; KANG, HYUN MIN; SEO, MYEONG SEONG; ZAITLEN, NOAH; ESKIN, ELEAZAR

    2008-01-01

    Discovering statistical correlation between causal genetic variation and clinical traits through association studies is an important method for identifying the genetic basis of human diseases. Since fully resequencing a cohort is prohibitively costly, genetic association studies take advantage of local correlation structure (or linkage disequilibrium) between single nucleotide polymorphisms (SNPs) by selecting a subset of SNPs to be genotyped (tag SNPs). While many current association studies are performed using commercially available high-throughput genotyping products that define a set of tag SNPs, choosing tag SNPs remains an important problem for both custom follow-up studies as well as designing the high-throughput genotyping products themselves. The most widely used tag SNP selection method optimizes over the correlation between SNPs (r2). However, tag SNPs chosen based on an r2 criterion do not necessarily maximize the statistical power of an association study. We propose a study design framework that chooses SNPs to maximize power and efficiently measures the power through empirical simulation. Empirical results based on the HapMap data show that our method gains considerable power over a widely used r2-based method, or equivalently reduces the number of tag SNPs required to attain the desired power of a study. Our power-optimized 100k whole genome tag set provides equivalent power to the Affymetrix 500k chip for the CEU population. For the design of custom follow-up studies, our method provides up to twice the power increase using the same number of tag SNPs as r2-based methods. Our method is publicly available via web server at http://design.cs.ucla.edu. PMID:18702637

  7. System principles, mathematical models and methods to ensure high reliability of safety systems

    NASA Astrophysics Data System (ADS)

    Zaslavskyi, V.

    2017-04-01

    Modern safety and security systems are composed of a large number of various components designed for detection, localization, tracking, collecting, and processing of information from the systems of monitoring, telemetry, control, etc. They are required to be highly reliable in a view to correctly perform data aggregation, processing and analysis for subsequent decision making support. On design and construction phases of the manufacturing of such systems a various types of components (elements, devices, and subsystems) are considered and used to ensure high reliability of signals detection, noise isolation, and erroneous commands reduction. When generating design solutions for highly reliable systems a number of restrictions and conditions such as types of components and various constrains on resources should be considered. Various types of components perform identical functions; however, they are implemented using diverse principles, approaches and have distinct technical and economic indicators such as cost or power consumption. The systematic use of different component types increases the probability of tasks performing and eliminates the common cause failure. We consider type-variety principle as an engineering principle of system analysis, mathematical models based on this principle, and algorithms for solving optimization problems of highly reliable safety and security systems design. Mathematical models are formalized in a class of two-level discrete optimization problems of large dimension. The proposed approach, mathematical models, algorithms can be used for problem solving of optimal redundancy on the basis of a variety of methods and control devices for fault and defects detection in technical systems, telecommunication networks, and energy systems.

  8. The concurrent multiplicative-additive approach for gauge-radar/satellite multisensor precipitation estimates

    NASA Astrophysics Data System (ADS)

    Garcia-Pintado, J.; Barberá, G. G.; Erena Arrabal, M.; Castillo, V. M.

    2010-12-01

    Objective analysis schemes (OAS), also called ``succesive correction methods'' or ``observation nudging'', have been proposed for multisensor precipitation estimation combining remote sensing data (meteorological radar or satellite) with data from ground-based raingauge networks. However, opposite to the more complex geostatistical approaches, the OAS techniques for this use are not optimized. On the other hand, geostatistical techniques ideally require, at the least, modelling the covariance from the rain gauge data at every time step evaluated, which commonly cannot be soundly done. Here, we propose a new procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) for operational rainfall estimation using rain gauges and meteorological radar, which does not require explicit modelling of spatial covariances. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on the OAS, whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The approach considers radar estimates as background a priori information (first guess), so that nudging to observations (gauges) may be relaxed smoothly to the first guess, and the relaxation shape is obtained from the sequential optimization. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, an OAS spatially variable adjustment with multiplicative factors, ordinary cokriging, and kriging with external drift. In theory, it could be equally applicable to gauge-satellite estimates and other hydrometeorological variables.

  9. Constructing diabatic representations using adiabatic and approximate diabatic data – Coping with diabolical singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu

    2016-01-28

    We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H{sup d}, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility,more » has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H{sup d} individually provides a starting point (seed) from which convergence of the full H{sup d} construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4{sup 1}A states of phenol and the 1,2{sup 1}A states of NH{sub 3}, states which are coupled by conical intersections.« less

  10. Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: a path for the optimization of low-energy many-body basis expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeongnim; Reboredo, Fernando A.

    The self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo J. Chem. Phys. {\\bf 136}, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. {\\bf 89}, 6316 (1988)] are blended to obtain a method for the calculation of thermodynamic properties of many-body systems at low temperatures. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric trial wave functions. A statistical method is derived for the calculation of finite temperature properties of many-body systemsmore » near the ground state. In the process we also obtain a parallel algorithm that optimizes the many-body basis of a small subspace of the many-body Hilbert space. This small subspace is optimized to have maximum overlap with the one expanded by the lower energy eigenstates of a many-body Hamiltonian. We show in a model system that the Helmholtz free energy is minimized within this subspace as the iteration number increases. We show that the subspace expanded by the small basis systematically converges towards the subspace expanded by the lowest energy eigenstates. Possible applications of this method to calculate the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can be also used to accelerate the calculation of the ground or excited states with Quantum Monte Carlo.« less

  11. Optimization of Turbine Blade Design for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Shyy, Wei

    1998-01-01

    To facilitate design optimization of turbine blade shape for reusable launching vehicles, appropriate techniques need to be developed to process and estimate the characteristics of the design variables and the response of the output with respect to the variations of the design variables. The purpose of this report is to offer insight into developing appropriate techniques for supporting such design and optimization needs. Neural network and polynomial-based techniques are applied to process aerodynamic data obtained from computational simulations for flows around a two-dimensional airfoil and a generic three- dimensional wing/blade. For the two-dimensional airfoil, a two-layered radial-basis network is designed and trained. The performances of two different design functions for radial-basis networks, one based on the accuracy requirement, whereas the other one based on the limit on the network size. While the number of neurons needed to satisfactorily reproduce the information depends on the size of the data, the neural network technique is shown to be more accurate for large data set (up to 765 simulations have been used) than the polynomial-based response surface method. For the three-dimensional wing/blade case, smaller aerodynamic data sets (between 9 to 25 simulations) are considered, and both the neural network and the polynomial-based response surface techniques improve their performance as the data size increases. It is found while the relative performance of two different network types, a radial-basis network and a back-propagation network, depends on the number of input data, the number of iterations required for radial-basis network is less than that for the back-propagation network.

  12. Decoy-state quantum key distribution with biased basis choice

    PubMed Central

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states. PMID:23948999

  13. Decoy-state quantum key distribution with biased basis choice.

    PubMed

    Wei, Zhengchao; Wang, Weilong; Zhang, Zhen; Gao, Ming; Ma, Zhi; Ma, Xiongfeng

    2013-01-01

    We propose a quantum key distribution scheme that combines a biased basis choice with the decoy-state method. In this scheme, Alice sends all signal states in the Z basis and decoy states in the X and Z basis with certain probabilities, and Bob measures received pulses with optimal basis choice. This scheme simplifies the system and reduces the random number consumption. From the simulation result taking into account of statistical fluctuations, we find that in a typical experimental setup, the proposed scheme can increase the key rate by at least 45% comparing to the standard decoy-state scheme. In the postprocessing, we also apply a rigorous method to upper bound the phase error rate of the single-photon components of signal states.

  14. Efficiency bounds of molecular motors under a trade-off figure of merit

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Huang, Chuankun; Lin, Guoxing; Chen, Jincan

    2017-05-01

    On the basis of the theory of irreversible thermodynamics and an elementary model of the molecular motors converting chemical energy by ATP hydrolysis to mechanical work exerted against an external force, the efficiencies of the molecular motors at two different optimization configurations for trade-off figure of merit representing a best compromise between the useful energy and the lost energy are calculated. The upper and lower bounds for the efficiency at two different optimization configurations are determined. It is found that the optimal efficiencies at the two different optimization configurations are always larger than 1 / 2.

  15. Optimal dynamic pricing for deteriorating items with reference-price effects

    NASA Astrophysics Data System (ADS)

    Xue, Musen; Tang, Wansheng; Zhang, Jianxiong

    2016-07-01

    In this paper, a dynamic pricing problem for deteriorating items with the consumers' reference-price effect is studied. An optimal control model is established to maximise the total profit, where the demand not only depends on the current price, but also is sensitive to the historical price. The continuous-time dynamic optimal pricing strategy with reference-price effect is obtained through solving the optimal control model on the basis of Pontryagin's maximum principle. In addition, numerical simulations and sensitivity analysis are carried out. Finally, some managerial suggestions that firm may adopt to formulate its pricing policy are proposed.

  16. On optimal soft-decision demodulation. [in digital communication system

    NASA Technical Reports Server (NTRS)

    Lee, L.-N.

    1976-01-01

    A necessary condition is derived for optimal J-ary coherent demodulation of M-ary (M greater than 2) signals. Optimality is defined as maximality of the symmetric cutoff rate of the resulting discrete memoryless channel. Using a counterexample, it is shown that the condition derived is generally not sufficient for optimality. This condition is employed as the basis for an iterative optimization method to find the optimal demodulator decision regions from an initial 'good guess'. In general, these regions are found to be bounded by hyperplanes in likelihood space; the corresponding regions in signal space are found to have hyperplane asymptotes for the important case of additive white Gaussian noise. Some examples are presented, showing that the regions in signal space bounded by these asymptotic hyperplanes define demodulator decision regions that are virtually optimal.

  17. Augmented Lagrange Programming Neural Network for Localization Using Time-Difference-of-Arrival Measurements.

    PubMed

    Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George

    2017-08-15

    A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.

  18. An analytical optimization model for infrared image enhancement via local context

    NASA Astrophysics Data System (ADS)

    Xu, Yongjian; Liang, Kun; Xiong, Yiru; Wang, Hui

    2017-12-01

    The requirement for high-quality infrared images is constantly increasing in both military and civilian areas, and it is always associated with little distortion and appropriate contrast, while infrared images commonly have some shortcomings such as low contrast. In this paper, we propose a novel infrared image histogram enhancement algorithm based on local context. By constraining the enhanced image to have high local contrast, a regularized analytical optimization model is proposed to enhance infrared images. The local contrast is determined by evaluating whether two intensities are neighbors and calculating their differences. The comparison on 8-bit images shows that the proposed method can enhance the infrared images with more details and lower noise.

  19. The trust-region self-consistent field method in Kohn-Sham density-functional theory.

    PubMed

    Thøgersen, Lea; Olsen, Jeppe; Köhn, Andreas; Jørgensen, Poul; Sałek, Paweł; Helgaker, Trygve

    2005-08-15

    The trust-region self-consistent field (TRSCF) method is extended to the optimization of the Kohn-Sham energy. In the TRSCF method, both the Roothaan-Hall step and the density-subspace minimization step are replaced by trust-region optimizations of local approximations to the Kohn-Sham energy, leading to a controlled, monotonic convergence towards the optimized energy. Previously the TRSCF method has been developed for optimization of the Hartree-Fock energy, which is a simple quadratic function in the density matrix. However, since the Kohn-Sham energy is a nonquadratic function of the density matrix, the local energy functions must be generalized for use with the Kohn-Sham model. Such a generalization, which contains the Hartree-Fock model as a special case, is presented here. For comparison, a rederivation of the popular direct inversion in the iterative subspace (DIIS) algorithm is performed, demonstrating that the DIIS method may be viewed as a quasi-Newton method, explaining its fast local convergence. In the global region the convergence behavior of DIIS is less predictable. The related energy DIIS technique is also discussed and shown to be inappropriate for the optimization of the Kohn-Sham energy.

  20. Estimating cellular parameters through optimization procedures: elementary principles and applications.

    PubMed

    Kimura, Akatsuki; Celani, Antonio; Nagao, Hiromichi; Stasevich, Timothy; Nakamura, Kazuyuki

    2015-01-01

    Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.

  1. From the experience of development of composite materials with desired properties

    NASA Astrophysics Data System (ADS)

    Garkina, I. A.; Danilov, A. M.

    2017-04-01

    Using the experience in the development of composite materials with desired properties is given the algorithm of construction materials synthesis on the basis of their representation in the form of a complex system. The possibility of creation of a composite and implementation of the technical task originally are defined at a stage of cognitive modeling. On the basis of development of the cognitive map hierarchical structures of criteria of quality are defined; according to them for each allocated large-scale level the corresponding block diagrams of system are specified. On the basis of the solution of problems of one-criteria optimization with use of the found optimum values formalization of a multi-criteria task and its decision is carried out (the optimum organization and properties of system are defined). The emphasis is on methodological aspects of mathematical modeling (construction of a generalized and partial models to optimize the properties and structure of materials, including those based on the concept of systemic homeostasis).

  2. Optimized auxiliary basis sets for density fitted post-Hartree-Fock calculations of lanthanide containing molecules

    NASA Astrophysics Data System (ADS)

    Chmela, Jiří; Harding, Michael E.

    2018-06-01

    Optimised auxiliary basis sets for lanthanide atoms (Ce to Lu) for four basis sets of the Karlsruhe error-balanced segmented contracted def2 - series (SVP, TZVP, TZVPP and QZVPP) are reported. These auxiliary basis sets enable the use of the resolution-of-the-identity (RI) approximation in post Hartree-Fock methods - as for example, second-order perturbation theory (MP2) and coupled cluster (CC) theory. The auxiliary basis sets are tested on an enlarged set of about a hundred molecules where the test criterion is the size of the RI error in MP2 calculations. Our tests also show that the same auxiliary basis sets can be used together with different effective core potentials. With these auxiliary basis set calculations of MP2 and CC quality can now be performed efficiently on medium-sized molecules containing lanthanides.

  3. Solving the optimal attention allocation problem in manual control

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.

    1976-01-01

    Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.

  4. Research on numerical method for multiple pollution source discharge and optimal reduction program

    NASA Astrophysics Data System (ADS)

    Li, Mingchang; Dai, Mingxin; Zhou, Bin; Zou, Bin

    2018-03-01

    In this paper, the optimal method for reduction program is proposed by the nonlinear optimal algorithms named that genetic algorithm. The four main rivers in Jiangsu province, China are selected for reducing the environmental pollution in nearshore district. Dissolved inorganic nitrogen (DIN) is studied as the only pollutant. The environmental status and standard in the nearshore district is used to reduce the discharge of multiple river pollutant. The research results of reduction program are the basis of marine environmental management.

  5. Using Biomechanical Optimization To Interpret Dancers’ Pose Selection For A Partnered Spin

    DTIC Science & Technology

    2009-05-06

    optimized performance of a straight arm backward longswing on the still rings in mens artistic gymnastics . Because gymnasts lose points for excessive swing at...an actual performance and used that as the basis for their search. Yeadon determined that with timing within 15ms, gymnasts can minimize their excess...are moving in an optimal way. 2.5 Body Modeling 2.5.1 Building the Body In his study involving gymnasts on the rings, Yeadon developed a body model com

  6. Financial planning as a policy tool in the petroleum industry (the case study: ojsc ”SURGUTNEFTEGAS”)

    NASA Astrophysics Data System (ADS)

    Romanyuk, Vera; Karyakina, Anna; Vershkova, Elena; Grinkevish, Larisa; Pozdeeva, Galina

    2016-09-01

    The article deals with the financial planning of oil and gas company activities including capital structure optimization. One of the main tasks of up-to-date financial management is to optimize the capital structure of an organization and minimize the weighted average cost of capital. The applied method in capital structure optimization affects the research quality results, as well as management decisions. The study was conducted on the basis of OJSC "Surgutneftegas" financial statements.

  7. Locally optimal extracellular stimulation for chaotic desynchronization of neural populations.

    PubMed

    Wilson, Dan; Moehlis, Jeff

    2014-10-01

    We use optimal control theory to design a methodology to find locally optimal stimuli for desynchronization of a model of neurons with extracellular stimulation. This methodology yields stimuli which lead to positive Lyapunov exponents, and hence desynchronizes a neural population. We analyze this methodology in the presence of interneuron coupling to make predictions about the strength of stimulation required to overcome synchronizing effects of coupling. This methodology suggests a powerful alternative to pulsatile stimuli for deep brain stimulation as it uses less energy than pulsatile stimuli, and could eliminate the time consuming tuning process.

  8. Constraint Optimization Literature Review

    DTIC Science & Technology

    2015-11-01

    COPs. 15. SUBJECT TERMS high-performance computing, mobile ad hoc network, optimization, constraint, satisfaction 16. SECURITY CLASSIFICATION OF: 17...Optimization Problems 1 2.1 Constraint Satisfaction Problems 1 2.2 Constraint Optimization Problems 3 3. Constraint Optimization Algorithms 9 3.1...Constraint Satisfaction Algorithms 9 3.1.1 Brute-Force search 9 3.1.2 Constraint Propagation 10 3.1.3 Depth-First Search 13 3.1.4 Local Search 18

  9. Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer.

    PubMed

    Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin

    2013-02-28

    The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.

  10. Numerical study of the shape parameter dependence of the local radial point interpolation method in linear elasticity.

    PubMed

    Moussaoui, Ahmed; Bouziane, Touria

    2016-01-01

    The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).

  11. Utility of coupling nonlinear optimization methods with numerical modeling software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, M.J.

    1996-08-05

    Results of using GLO (Global Local Optimizer), a general purpose nonlinear optimization software package for investigating multi-parameter problems in science and engineering is discussed. The package consists of the modular optimization control system (GLO), a graphical user interface (GLO-GUI), a pre-processor (GLO-PUT), a post-processor (GLO-GET), and nonlinear optimization software modules, GLOBAL & LOCAL. GLO is designed for controlling and easy coupling to any scientific software application. GLO runs the optimization module and scientific software application in an iterative loop. At each iteration, the optimization module defines new values for the set of parameters being optimized. GLO-PUT inserts the new parametermore » values into the input file of the scientific application. GLO runs the application with the new parameter values. GLO-GET determines the value of the objective function by extracting the results of the analysis and comparing to the desired result. GLO continues to run the scientific application over and over until it finds the ``best`` set of parameters by minimizing (or maximizing) the objective function. An example problem showing the optimization of material model is presented (Taylor cylinder impact test).« less

  12. Combining local search with co-evolution in a remarkably simple way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, S.; Percus, A.

    2000-05-01

    The authors explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problem. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. In contrast to genetic algorithms, which operate on an entire gene-pool of possible solutions, extremal optimization successively replaces extremely undesirable elements of a single sub-optimal solution with new, random ones. Large fluctuations, or avalanches, ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements heuristics inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Phase transitions are found in many combinatorial optimization problems, and have been conjectured to occur in the region of parameter space containing the hardest instances. We demonstrate how extremal optimization can be implemented for a variety of hard optimization problems. We believe that this will be a useful tool in the investigation of phase transitions in combinatorial optimization, thereby helping to elucidate the origin of computational complexity.« less

  13. Searching for the most cost-effective strategy for controlling epidemics spreading on regular and small-world networks

    PubMed Central

    Kleczkowski, Adam; Oleś, Katarzyna; Gudowska-Nowak, Ewa; Gilligan, Christopher A.

    2012-01-01

    We present a combined epidemiological and economic model for control of diseases spreading on local and small-world networks. The disease is characterized by a pre-symptomatic infectious stage that makes detection and control of cases more difficult. The effectiveness of local (ring-vaccination or culling) and global control strategies is analysed by comparing the net present values of the combined cost of preventive treatment and illness. The optimal strategy is then selected by minimizing the total cost of the epidemic. We show that three main strategies emerge, with treating a large number of individuals (global strategy, GS), treating a small number of individuals in a well-defined neighbourhood of a detected case (local strategy) and allowing the disease to spread unchecked (null strategy, NS). The choice of the optimal strategy is governed mainly by a relative cost of palliative and preventive treatments. If the disease spreads within the well-defined neighbourhood, the local strategy is optimal unless the cost of a single vaccine is much higher than the cost associated with hospitalization. In the latter case, it is most cost-effective to refrain from prevention. Destruction of local correlations, either by long-range (small-world) links or by inclusion of many initial foci, expands the range of costs for which the NS is most cost-effective. The GS emerges for the case when the cost of prevention is much lower than the cost of treatment and there is a substantial non-local component in the disease spread. We also show that local treatment is only desirable if the disease spreads on a small-world network with sufficiently few long-range links; otherwise it is optimal to treat globally. In the mean-field case, there are only two optimal solutions, to treat all if the cost of the vaccine is low and to treat nobody if it is high. The basic reproduction ratio, R0, does not depend on the rate of responsive treatment in this case and the disease always invades (but might be stopped afterwards). The details of the local control strategy, and in particular the optimal size of the control neighbourhood, are determined by the epidemiology of the disease. The properties of the pathogen might not be known in advance for emerging diseases, but the broad choice of the strategy can be made based on economic analysis only. PMID:21653570

  14. Searching for the most cost-effective strategy for controlling epidemics spreading on regular and small-world networks.

    PubMed

    Kleczkowski, Adam; Oleś, Katarzyna; Gudowska-Nowak, Ewa; Gilligan, Christopher A

    2012-01-07

    We present a combined epidemiological and economic model for control of diseases spreading on local and small-world networks. The disease is characterized by a pre-symptomatic infectious stage that makes detection and control of cases more difficult. The effectiveness of local (ring-vaccination or culling) and global control strategies is analysed by comparing the net present values of the combined cost of preventive treatment and illness. The optimal strategy is then selected by minimizing the total cost of the epidemic. We show that three main strategies emerge, with treating a large number of individuals (global strategy, GS), treating a small number of individuals in a well-defined neighbourhood of a detected case (local strategy) and allowing the disease to spread unchecked (null strategy, NS). The choice of the optimal strategy is governed mainly by a relative cost of palliative and preventive treatments. If the disease spreads within the well-defined neighbourhood, the local strategy is optimal unless the cost of a single vaccine is much higher than the cost associated with hospitalization. In the latter case, it is most cost-effective to refrain from prevention. Destruction of local correlations, either by long-range (small-world) links or by inclusion of many initial foci, expands the range of costs for which the NS is most cost-effective. The GS emerges for the case when the cost of prevention is much lower than the cost of treatment and there is a substantial non-local component in the disease spread. We also show that local treatment is only desirable if the disease spreads on a small-world network with sufficiently few long-range links; otherwise it is optimal to treat globally. In the mean-field case, there are only two optimal solutions, to treat all if the cost of the vaccine is low and to treat nobody if it is high. The basic reproduction ratio, R(0), does not depend on the rate of responsive treatment in this case and the disease always invades (but might be stopped afterwards). The details of the local control strategy, and in particular the optimal size of the control neighbourhood, are determined by the epidemiology of the disease. The properties of the pathogen might not be known in advance for emerging diseases, but the broad choice of the strategy can be made based on economic analysis only.

  15. Optimal Verification of Entangled States with Local Measurements

    NASA Astrophysics Data System (ADS)

    Pallister, Sam; Linden, Noah; Montanaro, Ashley

    2018-04-01

    Consider the task of verifying that a given quantum device, designed to produce a particular entangled state, does indeed produce that state. One natural approach would be to characterize the output state by quantum state tomography, or alternatively, to perform some kind of Bell test, tailored to the state of interest. We show here that neither approach is optimal among local verification strategies for 2-qubit states. We find the optimal strategy in this case and show that quadratically fewer total measurements are needed to verify to within a given fidelity than in published results for quantum state tomography, Bell test, or fidelity estimation protocols. We also give efficient verification protocols for any stabilizer state. Additionally, we show that requiring that the strategy be constructed from local, nonadaptive, and noncollective measurements only incurs a constant-factor penalty over a strategy without these restrictions.

  16. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).

    PubMed

    Schütz, Martin

    2015-06-07

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  17. A coherent discrete variable representation method on a sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hua -Gen

    Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.

  18. A coherent discrete variable representation method on a sphere

    DOE PAGES

    Yu, Hua -Gen

    2017-09-05

    Here, the coherent discrete variable representation (ZDVR) has been extended for construct- ing a multidimensional potential-optimized DVR basis on a sphere. In order to deal with the non-constant Jacobian in spherical angles, two direct product primitive basis methods are proposed so that the original ZDVR technique can be properly implemented. The method has been demonstrated by computing the lowest states of a two dimensional (2D) vibrational model. Results show that the extended ZDVR method gives accurate eigenval- ues and exponential convergence with increasing ZDVR basis size.

  19. Use of an auxiliary basis set to describe the polarization in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Fedorov, Dmitri G.; Kitaura, Kazuo

    2014-03-01

    We developed a dual basis approach within the fragment molecular orbital formalism enabling efficient and accurate use of large basis sets. The method was tested on water clusters and polypeptides and applied to perform geometry optimization of chignolin (PDB: 1UAO) in solution at the level of DFT/6-31++G∗∗, obtaining a structure in agreement with experiment (RMSD of 0.4526 Å). The polarization in polypeptides is discussed with a comparison of the α-helix and β-strand.

  20. 49 CFR 27.17 - Effect of State or local law.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Effect of State or local law. 27.17 Section 27.17 Transportation Office of the Secretary of Transportation NONDISCRIMINATION ON THE BASIS OF DISABILITY IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE General § 27.17 Effect of State or local law...

  1. Latin for Communication. New York State Syllabus. Draft.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Foreign Languages Education.

    The draft of a new syllabus for Latin instruction in New York State public schools emphasizes language instruction for communication. The syllabus is intended to serve as a basis for local activities such as review of current local programs, development of local programs to meet new standards, selection and acquisition of support materials,…

  2. Open space preservation, property value, and optimal spatial configuration

    Treesearch

    Yong Jiang; Stephen K. Swallow

    2007-01-01

    The public has increasingly demonstrated a strong support for open space preservation. How to finance the socially efficient level of open space with the optimal spatial structure is of high policy relevance to local governments. In this study, we developed a spatially explicit open space model to help identify the socially optimal amount and optimal spatial...

  3. Optimal design of reflectometer density profile measurements using a radar systems approach (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.; Kim, K. W.; Peebles, W. A.; Rhodes, T. L.

    1997-01-01

    Reflectometry is an attractive and versatile diagnostic technique that can address a wide range of measurement needs on fusion devices. However, progress in the area of profile measurement has been hampered by the lack of a well-understood basis for the optimum design and implementation of such systems. Such a design basis is provided by the realization that reflectometer systems utilized for density profile measurements are in fact specialized forms of radar systems. In this article five criteria are introduced by which reflectometer systems can be systematically designed for optimal performance: range resolution, spatial sampling, turbulence immunity, bandwidth optimization, and the need for adaptive data processing. Many of these criteria are familiar from radar systems analysis, and are applicable to reflectometry after allowance is made for differences stemming from the nature of the plasma target. These criteria are utilized to critically evaluate current reflectometer density profile techniques and indicate improvements that can impact current and next step devices, such as ITER.

  4. An Efficient Radial Basis Function Mesh Deformation Scheme within an Adjoint-Based Aerodynamic Optimization Framework

    NASA Astrophysics Data System (ADS)

    Poirier, Vincent

    Mesh deformation schemes play an important role in numerical aerodynamic optimization. As the aerodynamic shape changes, the computational mesh must adapt to conform to the deformed geometry. In this work, an extension to an existing fast and robust Radial Basis Function (RBF) mesh movement scheme is presented. Using a reduced set of surface points to define the mesh deformation increases the efficiency of the RBF method; however, at the cost of introducing errors into the parameterization by not recovering the exact displacement of all surface points. A secondary mesh movement is implemented, within an adjoint-based optimization framework, to eliminate these errors. The proposed scheme is tested within a 3D Euler flow by reducing the pressure drag while maintaining lift of a wing-body configured Boeing-747 and an Onera-M6 wing. As well, an inverse pressure design is executed on the Onera-M6 wing and an inverse span loading case is presented for a wing-body configured DLR-F6 aircraft.

  5. Trophic state and toxic cyanobacteria density in optimization modeling of multi-reservoir water resource systems.

    PubMed

    Sulis, Andrea; Buscarinu, Paola; Soru, Oriana; Sechi, Giovanni M

    2014-04-22

    The definition of a synthetic index for classifying the quality of water bodies is a key aspect in integrated planning and management of water resource systems. In previous works [1,2], a water system optimization modeling approach that requires a single quality index for stored water in reservoirs has been applied to a complex multi-reservoir system. Considering the same modeling field, this paper presents an improved quality index estimated both on the basis of the overall trophic state of the water body and on the basis of the density values of the most potentially toxic Cyanobacteria. The implementation of the index into the optimization model makes it possible to reproduce the conditions limiting water use due to excessive nutrient enrichment in the water body and to the health hazard linked to toxic blooms. The analysis of an extended limnological database (1996-2012) in four reservoirs of the Flumendosa-Campidano system (Sardinia, Italy) provides useful insights into the strengths and limitations of the proposed synthetic index.

  6. Infinite occupation number basis of bosons: Solving a numerical challenge

    NASA Astrophysics Data System (ADS)

    Geißler, Andreas; Hofstetter, Walter

    2017-06-01

    In any bosonic lattice system, which is not dominated by local interactions and thus "frozen" in a Mott-type state, numerical methods have to cope with the infinite size of the corresponding Hilbert space even for finite lattice sizes. While it is common practice to restrict the local occupation number basis to Nc lowest occupied states, the presence of a finite condensate fraction requires the complete number basis for an exact representation of the many-body ground state. In this work we present a truncation scheme to account for contributions from higher number states. By simply adding a single coherent-tail state to this common truncation, we demonstrate increased numerical accuracy and the possible increase in numerical efficiency of this method for the Gutzwiller variational wave function and within dynamical mean-field theory.

  7. Density matrix modeling of quantum cascade lasers without an artificially localized basis: A generalized scattering approach

    NASA Astrophysics Data System (ADS)

    Pan, Andrew; Burnett, Benjamin A.; Chui, Chi On; Williams, Benjamin S.

    2017-08-01

    We derive a density matrix (DM) theory for quantum cascade lasers (QCLs) that describes the influence of scattering on coherences through a generalized scattering superoperator. The theory enables quantitative modeling of QCLs, including localization and tunneling effects, using the well-defined energy eigenstates rather than the ad hoc localized basis states required by most previous DM models. Our microscopic approach to scattering also eliminates the need for phenomenological transition or dephasing rates. We discuss the physical interpretation and numerical implementation of the theory, presenting sets of both energy-resolved and thermally averaged equations, which can be used for detailed or compact device modeling. We illustrate the theory's applications by simulating a high performance resonant-phonon terahertz (THz) QCL design, which cannot be easily or accurately modeled using conventional DM methods. We show that the theory's inclusion of coherences is crucial for describing localization and tunneling effects consistent with experiment.

  8. DFT benchmark study for the oxidative addition of CH 4 to Pd. Performance of various density functionals

    NASA Astrophysics Data System (ADS)

    de Jong, G. Theodoor; Geerke, Daan P.; Diefenbach, Axel; Matthias Bickelhaupt, F.

    2005-06-01

    We have evaluated the performance of 24 popular density functionals for describing the potential energy surface (PES) of the archetypal oxidative addition reaction of the methane C-H bond to the palladium atom by comparing the results with our recent ab initio [CCSD(T)] benchmark study of this reaction. The density functionals examined cover the local density approximation (LDA), the generalized gradient approximation (GGA), meta-GGAs as well as hybrid density functional theory. Relativistic effects are accounted for through the zeroth-order regular approximation (ZORA). The basis-set dependence of the density-functional-theory (DFT) results is assessed for the Becke-Lee-Yang-Parr (BLYP) functional using a hierarchical series of Slater-type orbital (STO) basis sets ranging from unpolarized double-ζ (DZ) to quadruply polarized quadruple-ζ quality (QZ4P). Stationary points on the reaction surface have been optimized using various GGA functionals, all of which yield geometries that differ only marginally. Counterpoise-corrected relative energies of stationary points are converged to within a few tenths of a kcal/mol if one uses the doubly polarized triple-ζ (TZ2P) basis set and the basis-set superposition error (BSSE) drops to 0.0 kcal/mol for our largest basis set (QZ4P). Best overall agreement with the ab initio benchmark PES is achieved by functionals of the GGA, meta-GGA, and hybrid-DFT type, with mean absolute errors of 1.3-1.4 kcal/mol and errors in activation energies ranging from +0.8 to -1.4 kcal/mol. Interestingly, the well-known BLYP functional compares very reasonably with an only slightly larger mean absolute error of 2.5 kcal/mol and an underestimation by -1.9 kcal/mol of the overall barrier (i.e., the difference in energy between the TS and the separate reactants). For comparison, with B3LYP we arrive at a mean absolute error of 3.8 kcal/mol and an overestimation of the overall barrier by 4.5 kcal/mol.

  9. Comparative evaluation of endodontic pressure syringe, insulin syringe, jiffy tube, and local anesthetic syringe in obturation of primary teeth: An in vitro study.

    PubMed

    Hiremath, Mallayya C; Srivastava, Pooja

    2016-01-01

    The purpose of this in vitro study was to compare four methods of root canal obturation in primary teeth using conventional radiography. A total of 96 root canals of primary molars were prepared and obturated with zinc oxide eugenol. Obturation methods compared were endodontic pressure syringe, insulin syringe, jiffy tube, and local anesthetic syringe. The root canal obturations were evaluated by conventional radiography for the length of obturation and presence of voids. The obtained data were analyzed using Chi-square test. The results showed significant differences between the four groups for the length of obturation (P < 0.05). The endodontic pressure syringe showed the best results (98.5% optimal fillings) and jiffy tube showed the poor results (37.5% optimal fillings) for the length of obturation. The insulin syringe (79.2% optimal fillings) and local anesthetic syringe (66.7% optimal fillings) showed acceptable results for the length of root canal obturation. However, minor voids were present in all the four techniques used. Endodontic pressure syringe produced the best results in terms of length of obturation and controlling paste extrusion from the apical foramen. However, insulin syringe and local anesthetic syringe can be used as effective alternative methods.

  10. Optimal control to modelling motorcycle rider steering: local versus global coordinate systems in rider preview

    NASA Astrophysics Data System (ADS)

    Rowell, S.; Popov, A. A.; Meijaard, J. P.

    2010-04-01

    The response of a motorcycle is heavily dependent on the rider's control actions, and consequently a means of replicating the rider's behaviour provides an important extension to motorcycle dynamics. The primary objective here is to develop effective path-following simulations and to understand how riders control motorcycles. Optimal control theory is applied to the tracking of roadway by a motorcycle, using a non-linear motorcycle model operating in free control by steering torque input. A path-following controller with road preview is designed by minimising tracking errors and control effort. Tight controls with high weightings on performance and loose controls with high weightings on control power are defined. Special attention is paid to the modelling of multipoint preview in local and global coordinate systems. The controller model is simulated over a standard single lane-change manoeuvre. It is argued that the local coordinates point of view is more representative of the way that a human rider operates and interprets information. The simulations suggest that for accurate path following, using optimal control, the problem must be solved by the local coordinates approach in order to achieve accurate results with short preview horizons. Furthermore, some weaknesses of the optimal control approach are highlighted here.

  11. Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure

    NASA Astrophysics Data System (ADS)

    Stegmann, Mikkel B.; Skoglund, Karl; Ryberg, Charlotte

    2005-04-01

    This paper describes methods for automatic localization of the mid-sagittal plane (MSP) and mid-sagittal surface (MSS). The data used is a subset of the Leukoaraiosis And DISability (LADIS) study consisting of three-dimensional magnetic resonance brain data from 62 elderly subjects (age 66 to 84 years). Traditionally, the mid-sagittal plane is localized by global measures. However, this approach fails when the partitioning plane between the brain hemispheres does not coincide with the symmetry plane of the head. We instead propose to use a sparse set of profiles in the plane normal direction and maximize the local symmetry around these using a general-purpose optimizer. The plane is parameterized by azimuth and elevation angles along with the distance to the origin in the normal direction. This approach leads to solutions confirmed as the optimal MSP in 98 percent of the subjects. Despite the name, the mid-sagittal plane is not always planar, but a curved surface resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an optimization strategy which fits a thin-plate spline surface to the brain data using a robust least median of squares estimator. Albeit computationally more expensive, mid-sagittal surface fitting demonstrated convincingly better partitioning of curved brains into cerebral hemispheres.

  12. Estimating 3D positions and velocities of projectiles from monocular views.

    PubMed

    Ribnick, Evan; Atev, Stefan; Papanikolopoulos, Nikolaos P

    2009-05-01

    In this paper, we consider the problem of localizing a projectile in 3D based on its apparent motion in a stationary monocular view. A thorough theoretical analysis is developed, from which we establish the minimum conditions for the existence of a unique solution. The theoretical results obtained have important implications for applications involving projectile motion. A robust, nonlinear optimization-based formulation is proposed, and the use of a local optimization method is justified by detailed examination of the local convexity structure of the cost function. The potential of this approach is validated by experimental results.

  13. Private Prayer and Optimism in Middle-Aged and Older Patients Awaiting Cardiac Surgery

    ERIC Educational Resources Information Center

    Ai, Amy L.; Peterson, Christopher; Bolling, Steven F.; Koenig, Harold

    2002-01-01

    Purpose: This study investigated the use of private prayer among middle-aged and older patients as a way of coping with cardiac surgery and prayer's relationship to optimism. Design and Methods: The measure of prayer included three aspects: (a) belief in the importance of private prayer, (b) faith in the efficacy of prayer on the basis of previous…

  14. Optimizing structure of complex technical system by heterogeneous vector criterion in interval form

    NASA Astrophysics Data System (ADS)

    Lysenko, A. V.; Kochegarov, I. I.; Yurkov, N. K.; Grishko, A. K.

    2018-05-01

    The article examines the methods of development and multi-criteria choice of the preferred structural variant of the complex technical system at the early stages of its life cycle in the absence of sufficient knowledge of parameters and variables for optimizing this structure. The suggested methods takes into consideration the various fuzzy input data connected with the heterogeneous quality criteria of the designed system and the parameters set by their variation range. The suggested approach is based on the complex use of methods of interval analysis, fuzzy sets theory, and the decision-making theory. As a result, the method for normalizing heterogeneous quality criteria has been developed on the basis of establishing preference relations in the interval form. The method of building preferential relations in the interval form on the basis of the vector of heterogeneous quality criteria suggest the use of membership functions instead of the coefficients considering the criteria value. The former show the degree of proximity of the realization of the designed system to the efficient or Pareto optimal variants. The study analyzes the example of choosing the optimal variant for the complex system using heterogeneous quality criteria.

  15. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.; Hinckley, David

    2016-01-01

    Low-thrust interplanetary space missions are highly complex and there can be many locally optimal solutions. While several techniques exist to search for globally optimal solutions to low-thrust trajectory design problems, they are typically limited to unconstrained trajectories. The operational design community in turn has largely avoided using such techniques and has primarily focused on accurate constrained local optimization combined with grid searches and intuitive design processes at the expense of efficient exploration of the global design space. This work is an attempt to bridge the gap between the global optimization and operational design communities by presenting a mathematical framework for global optimization of low-thrust trajectories subject to complex constraints including the targeting of planetary landing sites, a solar range constraint to simplify the thermal design of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch thrusters on and off as available power changes over the course of a mission.

  16. SU-G-206-01: A Fully Automated CT Tool to Facilitate Phantom Image QA for Quantitative Imaging in Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahi-Anwar, M; Lo, P; Kim, H

    Purpose: The use of Quantitative Imaging (QI) methods in Clinical Trials requires both verification of adherence to a specified protocol and an assessment of scanner performance under that protocol, which are currently accomplished manually. This work introduces automated phantom identification and image QA measure extraction towards a fully-automated CT phantom QA system to perform these functions and facilitate the use of Quantitative Imaging methods in clinical trials. Methods: This study used a retrospective cohort of CT phantom scans from existing clinical trial protocols - totaling 84 phantoms, across 3 phantom types using various scanners and protocols. The QA system identifiesmore » the input phantom scan through an ensemble of threshold-based classifiers. Each classifier - corresponding to a phantom type - contains a template slice, which is compared to the input scan on a slice-by-slice basis, resulting in slice-wise similarity metric values for each slice compared. Pre-trained thresholds (established from a training set of phantom images matching the template type) are used to filter the similarity distribution, and the slice with the most optimal local mean similarity, with local neighboring slices meeting the threshold requirement, is chosen as the classifier’s matched slice (if it existed). The classifier with the matched slice possessing the most optimal local mean similarity is then chosen as the ensemble’s best matching slice. If the best matching slice exists, image QA algorithm and ROIs corresponding to the matching classifier extracted the image QA measures. Results: Automated phantom identification performed with 84.5% accuracy and 88.8% sensitivity on 84 phantoms. Automated image quality measurements (following standard protocol) on identified water phantoms (n=35) matched user QA decisions with 100% accuracy. Conclusion: We provide a fullyautomated CT phantom QA system consistent with manual QA performance. Further work will include parallel component to automatically verify image acquisition parameters and automated adherence to specifications. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; NIH Grant support from: U01 CA181156.« less

  17. Cache Locality Optimization for Recursive Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lifflander, Jonathan; Krishnamoorthy, Sriram

    We present an approach to optimize the cache locality for recursive programs by dynamically splicing--recursively interleaving--the execution of distinct function invocations. By utilizing data effect annotations, we identify concurrency and data reuse opportunities across function invocations and interleave them to reduce reuse distance. We present algorithms that efficiently track effects in recursive programs, detect interference and dependencies, and interleave execution of function invocations using user-level (non-kernel) lightweight threads. To enable multi-core execution, a program is parallelized using a nested fork/join programming model. Our cache optimization strategy is designed to work in the context of a random work stealing scheduler. Wemore » present an implementation using the MIT Cilk framework that demonstrates significant improvements in sequential and parallel performance, competitive with a state-of-the-art compile-time optimizer for loop programs and a domain- specific optimizer for stencil programs.« less

  18. Establishing a Modern Ground Network for Space Geodesy Applications

    NASA Technical Reports Server (NTRS)

    Pearlman, M.; Pavlis, E.; Altamimi, Z.; Noll, C.

    2010-01-01

    Ground-based networks of co-located space-geodesy techniques (VLBI, SLR, GLASS, DORIS) are the basis for the development and maintenance of the :International Terrestrial deference Frame (ITRE), which is the basis for our metric measurements of global change. The Global Geodetic Observing System (GGOS) within the International Association of Geodesy has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at I mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence. As a first step, simulations focused on establishing the optimal global SLR and VLBI network, since these two techniques alone are sufficient to define the reference frame. The GLASS constellations will then distribute the reference frame to users anywhere on the Earth. Using simulated data to be collected by the future networks, we investigated various designs and the resulting accuracy in the origin, scale and orientation of the resulting ITRF. We present here the results of extensive simulation studies aimed at designing optimal global geodetic networks to support GGOS science products. Current estimates are the network will require 24 - 32 globally distributed co-location sites. Stations in the near global network will require geologically stable sites witla good weather, established infrastructure, and local support and personnel. EGOS will seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to take part in the network implementation and operation_ Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in designing a co-location station.

  19. Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange.

    PubMed

    Ramírez-Solís, A; Zicovich-Wilson, C M; Hernández-Lamoneda, R; Ochoa-Calle, A J

    2017-01-25

    The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε 1 phase and a higher pressure NM ε 0 phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O 2 molecules in the (O 2 ) 4 unit cell were studied. Full enthalpy-driven geometry optimizations of the (O 2 ) 4 unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O 2 ) 4 unit cell for the low-pressure regime of the ε phase.

  20. Pivot methods for global optimization

    NASA Astrophysics Data System (ADS)

    Stanton, Aaron Fletcher

    A new algorithm is presented for the location of the global minimum of a multiple minima problem. It begins with a series of randomly placed probes in phase space, and then uses an iterative redistribution of the worst probes into better regions of phase space until a chosen convergence criterion is fulfilled. The method quickly converges, does not require derivatives, and is resistant to becoming trapped in local minima. Comparison of this algorithm with others using a standard test suite demonstrates that the number of function calls has been decreased conservatively by a factor of about three with the same degrees of accuracy. Two major variations of the method are presented, differing primarily in the method of choosing the probes that act as the basis for the new probes. The first variation, termed the lowest energy pivot method, ranks all probes by their energy and keeps the best probes. The probes being discarded select from those being kept as the basis for the new cycle. In the second variation, the nearest neighbor pivot method, all probes are paired with their nearest neighbor. The member of each pair with the higher energy is relocated in the vicinity of its neighbor. Both methods are tested against a standard test suite of functions to determine their relative efficiency, and the nearest neighbor pivot method is found to be the more efficient. A series of Lennard-Jones clusters is optimized with the nearest neighbor method, and a scaling law is found for cpu time versus the number of particles in the system. The two methods are then compared more explicitly, and finally a study in the use of the pivot method for solving the Schroedinger equation is presented. The nearest neighbor method is found to be able to solve the ground state of the quantum harmonic oscillator from a pure random initialization of the wavefunction.

Top