2013-09-01
Optimization of the Nonradiative Lifetime of Molecular- Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH) by P...it to the originator. Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-6660 September 2013 Optimization of the Nonradiative ...REPORT TYPE Final 3. DATES COVERED (From - To) FY2013 4. TITLE AND SUBTITLE Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy
Photoluminescence and Band Alignment of Strained GaAsSb/GaAs QW Structures Grown by MBE on GaAs
Sadofyev, Yuri G.; Samal, Nigamananda
2010-01-01
An in-depth optimization of growth conditions and investigation of optical properties including discussions on band alignment of GaAsSb/GaAs quantum well (QW) on GaAs by molecular beam epitaxy (MBE) are reported. Optimal MBE growth temperature of GaAsSb QW is found to be 470 ± 10 °C. GaAsSb/GaAs QW with Sb content ~0.36 has a weak type-II band alignment with valence band offset ratio QV ~1.06. A full width at half maximum (FWHM) of ~60 meV in room temperature (RT) photoluminescence (PL) indicates fluctuation in electrostatic potential to be less than 20 meV. Samples grown under optimal conditions do not exhibit any blue shift of peak in RT PL spectra under varying excitation.
MBE development of dilute nitrides for commercial long-wavelength laser applications
NASA Astrophysics Data System (ADS)
Malis, O.; Liu, W. K.; Gmachl, C.; Fastenau, J. M.; Joel, A.; Gong, P.; Bland, S. W.; Moshegov, N.
2003-04-01
InGaAsN-based materials are being developed at IQE, Inc. for 1.3 μm laser applications. Both MBE and MOCVD growth technology are employed and under investigation for commercial viability. The MBE effort focuses on optimizing the process for the large-volume manufacturing environment. The PL efficiencies of InGaAsN QWs grown with different nitrogen sources on single and multi-wafer MBE platforms are compared. The effect of various annealing treatments on the PL intensity and wavelength uniformity is also discussed in detail. The PL intensity of MBE-grown InGaAsN QWs is inferior to the efficiency of MOCVD samples emitting below 1.29 μm. MOCVD samples, however, exhibit a faster decay of the PL intensity with increasing wavelength, and loose their advantage above 1.29 μm. Deep and shallow ridge-waveguide lasers emitting at 1.28 μm were processed from the MBE material and the laser characteristics are discussed.
Millimeterwave and digital applications of InP-based MBE grown HEMTs and HBTs
NASA Astrophysics Data System (ADS)
Greiling, Paul
1997-05-01
Microwave and millimeterwave devices grown by MBE have significantly advanced the state of the art for RF device performance with respect to noise figure, power output, power added efficiency and extended the clock frequency of digital circuits into the millimeterwave regime. Ober the last 10-15 years, military systems have greatly benefited from the superior performance of MBE grown devices. In order to have a similar impact on the commercial marketplace, MBE growers will have to focus their efforts on a different set of performance criteria; i.e. cost, uniformity and reproducibility. This paper discusses outstanding performance achieved by MBE grown devices and outlines the criteria for commercial applications.
Comparison of AlGaAs Oxidation in MBE and MOCVD Grown Samples
2002-01-01
vertical cavity surface emitting lasers ( VCSELs ) [1, 2, 3]. They are also being... molecular beam epitaxy ( MBE ) [5, 6] or metal organic chemical vapor deposition (MOCVD) [7, 8]. The MBE -grown A1GaAs layers are sometimes pseudo or digital...Simultaneous wet-thermal oxidation of MBE and MOCVD grown AlxGal_xAs layers (x = 0.1 to 1.0) showed that the epitaxial growth method does not
Optimization of the defects and the nonradiative lifetime of GaAs/AlGaAs double heterostructures
NASA Astrophysics Data System (ADS)
Cevher, Z.; Folkes, P. A.; Hier, H. S.; VanMil, B. L.; Connelly, B. C.; Beck, W. A.; Ren, Y. H.
2018-04-01
We used Raman scattering and time-resolved photoluminescence spectroscopy to investigate the molecular-beam-epitaxy (MBE) growth parameters that optimize the structural defects and therefore the internal radiative quantum efficiency of MBE-grown GaAs/AlGaAs double heterostructures (DH). The DH structures were grown at two different temperatures and three different As/Ga flux ratios to determine the conditions for an optimized structure with the longest nonradiative minority carrier lifetime. Raman scattering measurements show an improvement in the lattice disorder in the AlGaAs and GaAs layers as the As/Ga flux ratio is reduced from 40 to 15 and as the growth temperature is increased from 550 to 595 °C. The optimized structure is obtained with the As/Ga flux ratio equal to 15 and the substrate temperature 595 °C. This is consistent with the fact that the optimized structure has the longest minority carrier lifetime. Moreover, our Raman studies reveal that incorporation of a distributed Bragg reflector layer between the substrate and DH structures significantly reduces the defect density in the subsequent epitaxial layers.
All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001).
Kwoen, Jinkwan; Jang, Bongyong; Lee, Joohang; Kageyama, Takeo; Watanabe, Katsuyuki; Arakawa, Yasuhiko
2018-04-30
Directly grown III-V quantum dot (QD) laser on on-axis Si (001) is a good candidate for achieving monolithically integrated Si photonics light source. Nowadays, laser structures containing high quality InAs / GaAs QD are generally grown by molecular beam epitaxy (MBE). However, the buffer layer between the on-axis Si (001) substrate and the laser structure are usually grown by metal-organic chemical vapor deposition (MOCVD). In this paper, we demonstrate all MBE grown high-quality InAs/GaAs QD lasers on on-axis Si (001) substrates without using patterning and intermediate layers of foreign material.
NASA Astrophysics Data System (ADS)
Wang, C. S.; Koda, R.; Huntington, A. S.; Gossard, A. C.; Coldren, L. A.
2005-04-01
High-quality InAlGaAs digital-alloy active regions using submonolayer superlattices were developed and employed in a 3-stage bipolar cascade multiple-active-region vertical cavity surface emitting laser (VCSEL) design. The photoluminescence intensity and linewidth of these active regions were optimized by varying the substrate temperature and digitization period. These active regions exhibit considerable improvement over previously developed digital-alloy active regions and are comparable to analog-alloy active regions. Multiple-active-region VCSELs, grown all-epitaxially by MBE on InP, demonstrate greater than 100% output differential efficiency at 1.55-μm emission. A record high 104% output differential efficiency was achieved for a 3-stage long-wavelength VCSEL.
Development of Mid-infrared GeSn Light Emitting Diodes on a Silicon Substrate
2015-04-22
Materials, Heterostrucuture Semiconductor, Light Emitting Devices, Molecular Beam Epitaxy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...LED) structure. Optimization of traditional and hetero- P-i-N structures designed and grown on Ge-buffer Si (001) wafers using molecular beam epitaxy ...designed structures were grown on Ge-buffer Si (001) wafers using molecular beam epitaxy (MBE) with the low-temperature growth technique. (The Ge-buffer
NASA Astrophysics Data System (ADS)
Chen, Ke; Roy, Anupam; Rai, Amritesh; Movva, Hema C. P.; Meng, Xianghai; He, Feng; Banerjee, Sanjay K.; Wang, Yaguo
2018-05-01
Defect-carrier interaction in transition metal dichalcogenides (TMDs) plays important roles in carrier relaxation dynamics and carrier transport, which determines the performance of electronic devices. With femtosecond laser time-resolved spectroscopy, we investigated the effect of grain boundary/edge defects on the ultrafast dynamics of photoexcited carrier in molecular beam epitaxy (MBE)-grown MoTe2 and MoSe2. We found that, comparing with exfoliated samples, the carrier recombination rate in MBE-grown samples accelerates by about 50 times. We attribute this striking difference to the existence of abundant grain boundary/edge defects in MBE-grown samples, which can serve as effective recombination centers for the photoexcited carriers. We also observed coherent acoustic phonons in both exfoliated and MBE-grown MoTe2, indicating strong electron-phonon coupling in this materials. Our measured sound velocity agrees well with the previously reported result of theoretical calculation. Our findings provide a useful reference for the fundamental parameters: carrier lifetime and sound velocity and reveal the undiscovered carrier recombination effect of grain boundary/edge defects, both of which will facilitate the defect engineering in TMD materials for high speed opto-electronics.
2002-06-03
resonant-cavity light-emitting diodes (RC LEDs) and vertical-cavity surface-emitting lasers ( VCSELs )] fabricated from molecular beam epitaxy (MBE)-grown...grown 8470-631. by molecular beam epitaxy (MBE) using a Riber 32P E-mail address: muszal@ite.waw.pl (0. Muszalski). reactor. Details of the growth can be... molecular beams hit the center of a rotating sion features of RC LED and VCSEL structures, as well sample. However, due to the transversal distribution of as
Highly Oriented Atomically Thin Ambipolar MoSe2 Grown by Molecular Beam Epitaxy
2017-01-01
Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe2 on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates, allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe2. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film. PMID:28530829
LPE growth of crack-free PbSe layers on Si(100) using MBE-Grown PbSe/BaF2CaF2 buffer layers
NASA Astrophysics Data System (ADS)
Strecker, B. N.; McCann, P. J.; Fang, X. M.; Hauenstein, R. J.; O'Steen, M.; Johnson, M. B.
1997-05-01
Crack-free PbSe on (100)-oriented Si has been obtained by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. MBE is employed first to grow a PbSe/BaF2/CaF2 buffer structure on the (100)-oriented Si. A 2.5 μm thick PbSe layer is then grown by LPE. The LPE-grown PbSe displays excellent surface morphology and is continuous over the entire 8×8 mm2 area of growth. This result is surprising because of the large mismatch in thermal expansion coefficients between PbSe and Si. Previous attempts to grow crack-free PbSe by MBE alone using similar buffer structures on (100)-oriented Si have been unsuccessful. It is speculated that the large concentration of Se vacancies in the LPE-grown PbSe layer may allow dislocation climb along higher order slip planes, providing strain relaxation.
Phototransistors Development and their Applications to Lidar
NASA Technical Reports Server (NTRS)
Abedin, M. N.; Refaat, Tamer F.; Ismail, Syed; Singh, Upendra N.
2007-01-01
Custom-designed two-micron phototransistors have been developed using Liquid Phase Epitaxy (LPE), Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) techniques under Laser Risk Reduction Program (LRRP). The devices were characterized in the Detector Characterization Laboratory at NASA Langley Research Center. It appears that the performance of LPE- and MBE-grown phototransistors such as responsivity, noise-equivalent-power, and gain, are better than MOCVD-grown devices. Lidar tests have been conducted using LPE and MBE devices under the 2-micrometer CO2 Differential Absorption Lidar (DIAL) Instrument Incubator Program (IIP) at the National Center for Atmospheric Research (NCAR), Boulder, Colorado. The main focus of these tests was to examine the phototransistors performances as compared to commercial InGaAs avalanche photodiode by integrating them into the Raman-shifted Eye-safe Aerosol Lidar (REAL) operating at 1.543 micrometers. A simultaneous measurement of the atmospheric backscatter signals using the LPE phototransistors and the commercial APD demonstrated good agreement between these two devices. On the other hand, simultaneous detection of lidar backscatter signals using MBE-grown phototransistor and InGaAs APD, showed a general agreement between these two devices with a lower performance than LPE devices. These custom-built phototransistors were optimized for detection around 2-micrometer wavelength while the lidar tests were performed at 1.543 micrometers. Phototransistor operation at 2-micron will improve the performance of a lidar system operating at that wavelength. Measurements include detecting hard targets (Rocky Mountains), atmospheric structure consisting of cirrus clouds and boundary layer. These phototransistors may have potential for high sensitivity differential absorption lidar measurements of carbon dioxide and water vapor at 2.05-micrometers and 1.9-micrometers, respectively.
NASA Astrophysics Data System (ADS)
Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki
2017-05-01
Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.
2002-06-03
Molecular beam epitaxy ; Planar microcavities; Vertical cavity surface emitting lasers 1... Vertical Cavity Surface Emitting Lasers Grown by MBE DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the...S-581 83 Linkiping, Sweden Abstract The design of the vertical cavity surface emitting lasers ( VCSELs ) needs proper tuning of many
NASA Astrophysics Data System (ADS)
Cordier, Y.; Azize, M.; Baron, N.; Chenot, S.; Tottereau, O.; Massies, J.
2007-11-01
In this work, we show that, by carefully designing the subsurface Fe doping profile in SI-GaN templates grown by MOVPE and by optimizing the MBE regrowth conditions, a highly resistive GaN buffer can be achieved on these epi-ready GaN-on-sapphire templates without any addition of acceptors during the regrowth. As a result, high-quality high electron mobility transistors can be fabricated. Furthermore, we report on the excellent properties of two-dimensional electron gas and device performances with electron mobility greater than 2000 cm 2/V s at room temperature and off-state buffer leakage currents as low as 5 μA/mm at 100 V.
Wang, Wenliang; Wang, Haiyan; Yang, Weijia; Zhu, Yunnong; Li, Guoqiang
2016-04-22
High-quality GaN epitaxial films have been grown on Si substrates with Al buffer layer by the combination of molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) technologies. MBE is used to grow Al buffer layer at first, and then PLD is deployed to grow GaN epitaxial films on the Al buffer layer. The surface morphology, crystalline quality, and interfacial property of as-grown GaN epitaxial films on Si substrates are studied systematically. The as-grown ~300 nm-thick GaN epitaxial films grown at 850 °C with ~30 nm-thick Al buffer layer on Si substrates show high crystalline quality with the full-width at half-maximum (FWHM) for GaN(0002) and GaN(102) X-ray rocking curves of 0.45° and 0.61°, respectively; very flat GaN surface with the root-mean-square surface roughness of 2.5 nm; as well as the sharp and abrupt GaN/AlGaN/Al/Si hetero-interfaces. Furthermore, the corresponding growth mechanism of GaN epitaxial films grown on Si substrates with Al buffer layer by the combination of MBE and PLD is hence studied in depth. This work provides a novel and simple approach for the epitaxial growth of high-quality GaN epitaxial films on Si substrates.
Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy
NASA Astrophysics Data System (ADS)
Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.
2017-10-01
While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Dabiran, A. M.; Chow, P. P.; Wowchak, A. M.; Lee, In-Hwan; Ju, Jin-Woo; Pearton, S. J.
2009-10-01
The electrical properties, admittance spectra, microcathodoluminescence, and deep trap spectra of p-AlGaN films with an Al mole fraction up to 45% grown by both metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) were compared. The ionization energy of Mg increases from 0.15 to 0.17 eV in p-GaN to 0.3 eV in 45% Al p-AlGaN. In p-GaN films grown by MBE and MOCVD and in MOCVD grown p-AlGaN, we observed additional acceptors with a concentration an order lower than that of Mg acceptors, with a higher hole capture cross section and an ionization energy close to that of Mg. For some of the MBE grown p-AlGaN, we also detected the presence of additional acceptor centers, but in that case the centers were located near the p-AlGaN layer interface with the semi-insulating AlGaN buffer and showed activation energies considerably lower than those of Mg.
Fabrication of precision high quality facets on molecular beam epitaxy material
Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.
2001-01-01
Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.
Gallium Nitride (GaN) High Power Electronics (FY11)
2012-01-01
GaN films grown by metal-organic chemical vapor deposition (MOCVD) and ~1010 in films grown by molecular beam epitaxy (MBE) when they are deposited...inductively coupled plasma I-V current-voltage L-HVPE low doped HVPE MBE molecular beam epitaxy MOCVD metal-organic chemical vapor deposition...figure of merit HEMT high electron mobility transistor H-HVPE high doped HVPE HPE high power electronics HVPE hydride vapor phase epitaxy ICP
Uniformity of dc and rf performance of MBE-grown AlGaN/GaN HEMTS on HVPE-grown buffers
NASA Astrophysics Data System (ADS)
Gillespie, J. K.; Fitch, R. C.; Moser, N.; Jenkins, T.; Sewell, J.; Via, D.; Crespo, A.; Dabiran, A. M.; Chow, P. P.; Osinsky, A.; Mastro, M. A.; Tsvetkov, D.; Soukhoveev, V.; Usikov, A.; Dmitriev, V.; Luo, B.; Pearton, S. J.; Ren, F.
2003-10-01
AlGaN/GaN high electron mobility transistors (HEMTs) were grown by molecular beam epitaxy (MBE) on 2 in. diameter GaN buffer layers grown by hydride vapor epitaxy (HVPE) on sapphire substrates. HEMTs with 1 μm gate length displayed excellent dc and rf performance uniformity with up to 258 separate devices measured for each parameter. The drain-source saturation current was 561 mA with a standard deviation of 1.9% over the 2 in. diameter, with a corresponding transconductance of 118 ± 3.9 mS/mm. The threshold voltage was -5.3 ± 0.07 V. The rf performance uniformity was equally good, with an fT of 8.6 ± 0.8 GHz and fmax of 12.8 ± 2.5 GHz. The results show the excellent uniformity of the MBE technique for producing AlGaN/GaN HEMTs and also the ability of HVPE to provide high quality buffers at low cost.
Wavelength-scale Microlasers based on VCSEL-Photonic Crystal Architecture
2015-01-20
molecular beam epitaxy , MBE). We will also assume the triangular lattice of air...Abbreviations, and Acronyms InP: indium phosphide InGaAsP: indium gallium arsenide phosphide MBE: molecular beam epiitaxy VCSEL : vertical cavity...substrates and were grown by MBE. Electron beam lithography and reactive ion etching was used to deep‐etch the holes of the PhC‐ VCSELS ,
Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source
NASA Technical Reports Server (NTRS)
Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.
1989-01-01
Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.
New MBE buffer for micron- and quarter-micron-gateGaAs MESFETs
NASA Technical Reports Server (NTRS)
1988-01-01
A new buffer layer has been developed that eliminates backgating in GaAs MESFETs and substantially reduces short-channel effects in GaAs MESFETs with 0.27-micron-long gates. The new buffer is grown by molecular beam epitaxy (MBE) at a substrate temperature of 200 C using Ga and As sub 4 beam fluxes. The buffer is crystalline, highly resistive, optically inactive, and can be overgrown with high quality GaAs. GaAs MESFETs with a gate length of 0.27 microns that incorporate the new buffer show improved dc and RF properties in comparison with a similar MESFET with a thin undoped GaAs buffer. To demonstrate the backgating performance improvement afforded by the new buffer, MESFETs were fabricated using a number of different buffer layers and structures. A schematic cross section of the MESFET structure used in this study is shown. The measured gate length, gate width, and source-drain spacing of this device are 2,98, and 5.5 microns, respectively. An ohmic contact, isolated from the MESFET by mesa etching, served as the sidegate. The MESFETs were fabricated in MBE n-GaAs layers grown on the new buffer and also in MBE n-GaAs layers grown on buffer layers of undoped GaAs, AlGaAs, and GaAs/AlGaAs superlattices. All the buffer layers were grown by MBE and are 2 microns thick. The active layer is doped to approximately 2 x 10 to the 17th/cu cm with silicon and is 0.3 microns thick.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, M.; Hansson, G. V.; Ni, W.-X.
A double-low-temperature-buffer variable-temperature growth scheme was studied for fabrication of strain-relaxed thin Si{sub 0.6}Ge{sub 0.4} layer on Si(001) by using molecular beam epitaxy (MBE), with particular focuses on the influence of growth temperature of individual low-temperature-buffer layers on the relaxation process and final structural qualities. The low-temperature buffers consisted of a 40 nm Si layer grown at an optimized temperature of {approx}400 deg. C, followed by a 20 nm Si{sub 0.6}Ge{sub 0.4} layer grown at temperatures ranging from 50 to 550 deg. C. A significant relaxation increase together with a surface roughness decrease both by a factor of {approx}2, accompaniedmore » with the cross-hatch/cross-hatch-free surface morphology transition, took place for the sample containing a low-temperature Si{sub 0.6}Ge{sub 0.4} layer that was grown at {approx}200 deg. C. This dramatic change was explained by the association with a certain onset stage of the ordered/disordered growth transition during the low-temperature MBE, where the high density of misfit dislocation segments generated near surface cusps largely facilitated the strain relaxation of the top Si{sub 0.6}Ge{sub 0.4} layer.« less
Scanning tunneling microscope study of GaAs(001) surfaces grown by migration enhanced epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.; Gallagher, M.C.; Willis, R.F.
We report an investigation of the morphology of p-type GaAs(001) surfaces using scanning tunneling microscopy (STM). The substrates were prepared using two methods: migration enhanced epitaxy (MEE) and standard molecular-beam epitaxy (MBE). The STM measurements were performed ex situ using As decapping. Analysis indicates that the overall step density of the MEE samples decreases as the growth temperature is increased. Nominally flat samples grown at 300{degrees}C exhibited step densities of 10.5 steps/1000 {Angstrom} along [ 110] dropping to 2.5 steps at 580{degrees}C. MEE samples exhibited a lower step density than MBE samples. However as-grown surfaces exhibited a larger distribution ofmore » step heights. Annealing the samples reduced the step height distribution exposing fewer atomic layers. Samples grown by MEE at 580{degrees}C and annealed for 2 min displayed the lowest step density and the narrowest step height distribution. All samples displayed an anisotropic step density. We found a ratio of A-type to B-type steps of between 2 and 3 which directly reflects the difference in the incorporation energy at steps. The aspect ratio increased slightly with growth temperature. We found a similar aspect ratio on samples grown by MBE. This indicates that anisotropic growth during MEE, like MBE, is dominated by incorporation kinetics. MEE samples grown at 580{degrees}C and capped immediately following growth exhibited a number of {open_quotes}holes{close_quotes} in the surface. The holes could be eliminated by annealing the surface prior to quenching. 20 refs., 3 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Kiran, Rajni; Mallick, Shubhrangshu; Hahn, Suk-Ryong; Lee, T. S.; Sivananthan, Sivalingam; Ghosh, Siddhartha; Wijewarnasuriya, P. S.
2006-06-01
The effects of passivation with two different passivants, ZnS and CdTe, and two different passivation techniques, physical vapor deposition (PVD) and molecular beam epitaxy (MBE), were quantified in terms of the minority carrier lifetime and extracted surface recombination velocity on both MBE-grown medium-wavelength ir (MWIR) and long-wavelength ir HgCdTe samples. A gradual increment of the minority carrier lifetime was reported as the passivation technique was changed from PVD ZnS to PVD CdTe, and finally to MBE CdTe, especially at low temperatures. A corresponding reduction in the extracted surface recombination velocity in the same order was also reported for the first time. Initial data on the 1/ f noise values of as-grown MWIR samples showed a reduction of two orders of noise power after 1200-Å ZnS deposition.
NASA Technical Reports Server (NTRS)
Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.
1988-01-01
Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.
Carrier Concentration Control of GaSb/GaInAsSb System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazzari, J.-L.; Anda, F. de; Nieto, J.
2007-02-22
The residual carrier concentration of GaSb and GaSb-lattice matched Ga1-xInxAsySb1-y alloys (x = 0.12-0.26; y = 0.9x) grown by liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) was studied as a function of growth temperature, V/III ratio and alloy composition. Typical carrier concentrations p {approx} 2-3x1016 cm-3 were obtained for undoped GaSb grown by MBE at 480 deg. C, by LPE from Ga-rich melt at low temperature (400 deg. C), and by LPE from Sb-rich melts at {approx}600 deg. C. The native acceptor defect responsible of the high p-type residual doping in GaSb is reduced when the indium concentrationmore » is increased, and disappears for indium rich alloys (x = 0.23, 0.26). Tellurium compensation was used for controlled n-type doping in the (0.05-30)x1017 cm-3 range. A maximum of free carrier concentration was 1.5x1018 cm-3 for LPE layers, 2x1018 cm-3 for MBE layers grown at 1.0 {mu}m/h, 3.5x1018 cm-3 for MBE layers grown at 0.2 {mu}m/h. SIMS measurements showed Te concentrations of more than 1020 at/cm3, suggesting the formation of ternary GaSb1-xTex solid solution.« less
Profiling of MOCVD- and MBE-grown VCSEL wafers for WDM sources
NASA Astrophysics Data System (ADS)
Sze, Theresa; Mahbobzadeh, A. M.; Cheng, Julian; Hersee, Stephen D.; Osinski, Marek; Brueck, Steven R. J.; Malloy, Kevin J.
1993-06-01
We compare vertical-cavity surface emitting lasers grown by molecular beam epitaxial methods to those grown by metal organic chemical vapor deposition methods as sources for wavelength-division multiplexing systems.
Tsubouchi, Taishi; Ohta, Yukari; Haga, Takuma; Usui, Keiko; Shimane, Yasuhiro; Mori, Kozue; Tanizaki, Akiko; Adachi, Akiko; Kobayashi, Kiwa; Yukawa, Kiyotaka; Takagi, Emiko; Tame, Akihiro; Uematsu, Katsuyuki; Maruyama, Tadashi; Hatada, Yuji
2014-01-01
Two marine bacteria, designated strains MBE#61(T) and MBE#74(T), were isolated from a piece of sunken bamboo in the marine environment in Japan. Both of these strains were Gram-stain-negative, but had different cell shapes: MBE#61(T) was spiral, whereas MBE#74(T) was rod-shaped. The temperature, pH and salt concentration ranges for growth of strain MBE#61(T) were 4-38 °C (optimal at 32 °C), pH 4.5-11.0 (optimal at pH 7.0-8.0) and 1-11 % (optimal at 2 %) NaCl, whereas those of strain MBE#74(T) were 4-36 °C (optimal at 30 °C), pH 4.0-10.5 (optimal at pH 7.0-8.0) and 1-12 % (optimal at 4 %) NaCl. Phylogenetic analysis based on partial 16S rRNA gene sequences revealed that both strains belong to the genus Thalassospira within the class Alphaproteobacteria. Similarity between the 16S rRNA gene sequence of strain MBE#61(T) and those of the type strains of species of the genus Thalassospira was 97.5-99.0 %, and that of strain MBE#74(T) was 96.9-98.6 %; these two isolates were most closely related to Thalassospira lucentensis QMT2(T). However, the DNA-DNA hybridization values between T. lucentensis QMT2(T) and strain MBE#61(T) or MBE#74(T) were only 16.0 % and 7.1 %, respectively. The DNA G+C content of strain MBE#61(T) was 54.4 mol%, and that of strain MBE#74(T) was 55.9 mol%. The predominant isoprenoid quinone of the two strains was Q-10 (MBE#61(T), 97.3 %; MBE#74(T), 93.5 %). The major cellular fatty acids of strain MBE#61(T) were C18 : 1ω7c (31.1 %), summed feature 3 comprising C16 : 0ω7c/iso-C15 : 0 2-OH (26.1 %) and C16 : 0 (20.9 %); those of strain MBE#74(T) were C16 : 0 (26.2 %), C17 : 0 cyclo (19.9 %) and C18 : 1ω7c (12.1 %). On the basis of these results, strain MBE#61(T) and strain MBE#74(T) are considered to represent novel species of the genus Thalassospira, for which names Thalassospira alkalitolerans sp. nov. and Thalassospira mesophila sp. nov. are proposed. The type strains are MBE#61(T) ( = JCM 18968(T) = CECT 8273(T)) and MBE#74(T) ( = JCM 18969(T) = CECT 8274(T)), respectively. An emended description of the genus Thalassospira is also proposed.
NASA Astrophysics Data System (ADS)
Komissarova, T. A.; Kampert, E.; Law, J.; Jmerik, V. N.; Paturi, P.; Wang, X.; Yoshikawa, A.; Ivanov, S. V.
2018-01-01
Electrical properties of N-polar undoped and Mg-doped InN layers and In-polar undoped InN layers grown by plasma-assisted molecular beam epitaxy (PA MBE) were studied. Transport parameters of the surface and interface layers were determined from the measurements of the Hall coefficient and resistivity as well as the Shubnikov-de Haas oscillations at magnetic fields up to 60 T. Contributions of the 2D surface, 3D near-interface, and 2D interface layers to the total conductivity of the InN films were defined and discussed to be dependent on InN surface polarity, Mg doping, and PA MBE growth conditions.
InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamoorthy, Sriram, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu; Akyol, Fatih; Rajan, Siddharth, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu
InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450 nm) light emitting diode. A voltage drop of 5.3 V at 100 mA, forward resistance of 2 × 10{sup −2} Ω cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5 × 10{sup −4} Ω cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. Themore » depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.« less
NASA Astrophysics Data System (ADS)
Yoo, Sung-Shik
Ion etching was used to form junctions on the p-type (111)B Hg_{1-x}Cd_ {x}Te grown by Molecular Beam Epitaxy(MBE). When Hg_{1-x}Cd_{x}Te layers are etched by Ar ions at energies ranging between 300 and 450eV, the top Hg_{1 -x}Cd_{x}Te layer is converted to n-type. The converted region is electrically characterized as a defective n^+-region near the surface, and a low doped n^--region exist below the damaged region. The total thickness of the converted n-type layer was found to be considerable. These results suggest that the creation of the n-type layer is due to the filling of mercury vacancies by mercury atoms displaced by the Ar ion irradiation on the surface. For the performance of the resulting photodiodes on MBE grown (111)B Hg_{1-x}Cd _{x}Te using this technique, the dynamic resistances at 80K are one order of magnitude less than those of junctions made on Liquid Phase Epitaxially and Bulk grown Hg_{1 -x}Cd_{x}Te. The ion etching technique was compared with ion implantation technique by fabricating diodes on the same MBE grown (111)B Hg _{1-x}Cd_{x}Te layers. The result of the comparison illustrates that ion etching technique is as good as ion implantation technique for the fabrication of Hg_{1-x}Cd _{x}Te photodiodes. Also it is believed that the performance of the diodes is limited by a relatively large density of twin defects usually found in MBE grown (111)B Hg_{1-x}Cd _{x}Te.
Adhesion Measurements of Epitaxially Lifted MBE-Grown ZnSe
NASA Astrophysics Data System (ADS)
Mavridi, N.; Zhu, J.; Eldose, N. M.; Prior, K. A.; Moug, R. T.
2018-05-01
ZnSe layers grown by molecular beam epitaxy (MBE), after processing by epitaxial lift-off, have been analyzed using fracture mechanics and thin-film interference to determine their adhesion properties on two different substrates, viz. ZnSe and glass, yielding adhesion energy of 270 ± 60 mJ m-2 and 34 ± 4 mJ m-2, respectively. These values are considerably larger than if only van der Waals forces were present and imply that adhesion arises from chemical bonding.
Enhanced Hole Mobility and Density in GaSb Quantum Wells
2013-01-01
Keywords: Molecular beam epitaxy Quantum wells Semiconducting III–V materials Field-effect transistors GaSb a b s t r a c t Modulation-doped quantum wells...QWs) of GaSb clad by AlAsSb were grown by molecular beam epitaxy on InP substrates. By virtue of quantum confinement and compressive strain of the...heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi-insulating (001) InP substrates using a Riber Compact 21T MBE system. A cross
High-Temperature Spintronic Devices and Circuits in Absence of Magnetic Field
2012-04-23
non-equilibrium Green’s function (NEGF) formalism. • Molecular beam epitaxy (MBE) growth of ferromagnetic metals (Fe, MnAs) and...measured for two diode injection currents in the Faraday geometry. The quantum dot microcavity device was grown by molecular beam epitaxy with a low...channel (10 nm, lxlOl9j Mn-doped) / undoped-AlAs (1 nm) tunnel barrier / undoped-GaAs (0.5 nm) / MnAs (25 nm) were grown by molecular beam epitaxy (MBE
Engineering Electronic Properties of Strongly Correlated Metal Thin Films
NASA Astrophysics Data System (ADS)
Eaton, Craig
This dissertation reports on advances in synthesis and characterization of high quality perovskite metals with strong electron correlation. These materials have attracted considerable attention for their potential application as an active electronic material in logic applications utilizing the Mott type metal-to-insulator transition. CaVO3 and SrVO3 correlated metal oxide films have been grown by hybrid-molecular beam epitaxy (MBE), where alkaline earth cations are supplied using a conventional effusion cell and the transition metal vanadium is supplied using the metal-organic precursor vanadium (V) oxytriisopropoxide. Oxygen is available in both molecular and remote plasma activated forms. Titanate-based band insulators, namely SrTiO3 and CaTiO3, have also been grown using titanium tetra-isopropoxide as metal-organic precursor. The grown films have been characterized using reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD), atomic force microscopy (AFM), transition electron microscopy (TEM), and electrical properties have been determined using temperature dependent resistivity and Hall measurements. Optimized films exhibit high quality Kiessig fringes, with substrate limited rocking curve widths of 8 arc seconds in the case of CaVO3 and 17 arc seconds in the case of SrVO3. Both vanadate films grew in a step-flow mode with atomic steps visible after growth by AFM. In SrVO3, the perovskite phase remained present with a gradual lattice expansion away from the optimal cation flux ratio. For CaVO3, the films remained phase pure and with little change in lattice parameter throughout a growth window that spanned a 30% range in cation flux ratios. While an abrupt increase of lattice parameter was found for CaVO3 films grown under Carich conditions, films grown under V-rich conditions revealed a gradual reduction in lattice parameter, in contrast to SrVO3 where all defects have been shown to increase unit cell volume. Low resistivity and high residual resistivity ration complex vanadate thin films have been demonstrated. Methods for growing minimally strained SrVO3 films on (LaAlO 3)0.3(Sr2AlTaO6)0.7 substrates (0.7% tensile) were expanded to other substrates with different lattice mismatches, namely SrTiO3 (1.8% tensile) and LaAlO3 (1.3% compressive). Varying strain modifies bond angles or overlap, and can give rise to an insulating ground state. Changes in the film surface morphology derived from atomic force microscopy (AFM) was used to discriminate optimal growth conditions on each substrate. Films grown at each strain state remain strongly metallic at 10 nm thickness. Low temperature resistivity measurements, which demonstrates a marked increase in low temperature resistivity with respect to those films grown at optimized growth parameters, were found to be substrate dependent. The thickness of films grown on SrTiO3 are optimized for maximum thickness without cracking. Use of epitaxial strain as a mechanism for enabling a Mott transition was not demonstrated at strains and conditions attempted within this study. The experimental support of this hypothesis could not be experimentally confirmed within the range of strains studied here. Finally, high quality epitaxial SrTiO3-SrVO3-SrTiO 3 heterostructures are grown on (LaAlO3)0.3(Sr 2AlTaO6)0.7 substrates by hybrid MBE. RHEED, XRD, and TEM showed that these structures are of high structural quality, with atomically and chemically abrupt interfaces. By fixing the thickness of the SrTiO3 confinement layers to be 15 nm and decreasing the thickness of the SrVO3 from 50 nm down to 1.2 nm, it has been demonstrated that the system transitions from a strongly-correlated metal to an insulating state, as shown by temperature dependent resistivity and carrier concentration measurements. For films with thickness larger than 1.2 nm, the resistivity versus temperature is described by Fermi liquid behavior. Below this critical thickness the material undergoes an electronic phase transition into a variable-range hopping insulating phase. The results of this dissertation show that high quality vanadate thin films can be grown by hybrid MBE. Their electronic ground state, metallic in the bulk phase, can be effectively changed using geometrical confinement, while epitaxial strain was found to have a negligible effect. The ability to grow CaVO3 in a self-regulated fashion holds promise that the favorable growth kinetics in hybrid MBE might be a general characteristic of the metalorganic precursor employed.
NASA Astrophysics Data System (ADS)
Jmerik, V. N.; Kuznetsova, N. V.; Nechaev, D. V.; Shubina, T. V.; Kirilenko, D. A.; Troshkov, S. I.; Davydov, V. Yu.; Smirnov, A. N.; Ivanov, S. V.
2017-11-01
The site-controlled selective area growth of N-polar GaN nanorods (NR) was developed by plasma-assisted MBE (PA MBE) on micro-cone-patterned sapphire substrates (μ-CPSS) by using a two-stage growth process. A GaN nucleation layer grown by migration enhanced epitaxy provides the best selectivity for nucleation of NRs on the apexes of 3.5-μm-diameter cones, whereas the subsequent growth of 1-μm-high NRs with a constant diameter of about 100 nm proceeds by standard high-temperature PA MBE at nitrogen-rich conditions. These results are explained by anisotropy of the surface energy for GaN of different polarity and crystal orientation. The InGaN single quantum wells inserted in the GaN NRs grown on the μ-CPSS demonstrate photoluminescence at 510 nm with a spatially periodic variation of its intensity with a period of ∼6 μm equal to that of the substrate patterning profile.
NASA Astrophysics Data System (ADS)
Zheng, Renjing
Van der Waals (vdW) materials (also called as two-dimensional (2D) material in some literature) systems have received extensive attention recently due to their potential applications in next-generation electronics platform. Exciting properties have been discovered in this field, however, the performance and properties of the systems rely on the materials' quality and interface significantly, leading to the urgent need for scalable synthesis of high-quality vdW crystals and heterostructures. Toward this direction, this dissertation is devoted on the study of Molecular Beam Epitaxy (MBE) growth and various characterization of vdW materials and heterostructures, especially graphene and hexagonal boron nitride (h-BN). The goal is to achieve high-quality vdW materials and related heterostructures. There are mainly four projects discussed in this dissertation. The first project (Chapter 2) is about MBE growth of large-area h-BN on copper foil. After the growth, the film was transferred onto SiO2 substrate for characterization. It is observed that as-grown film gives evident h-BN Raman spectrum; what's more, h-BN peak intensity and position is dependent on film thickness. N-1s and B-1s XPS peaks further suggest the formation of h-BN. AFM and SEM images show the film is flat and continuous over large area. Our synthesis method shows it's possible to use MBE to achieve h-BN growth and could also pave a way for some unique structure, such as h-BN/graphene heterostructures and doped h-BN films by MBE. The second project (Chapter 3) is focused on establishment of grapehene/h-BN heterostructure on cobalt (Co) film. In-situ epitaxial growth of graphene/h-BN heterostructures on Co film substrate was achieved by using plasma-assisted MBE. The direct graphene/h-BN vertical stacking structures were demonstrated and further confirmed by various characterizations, such as Raman spectroscopy, SEM, XPS and TEM. Large area heterostructures consisting of single- /bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1º. The third project (Chapter 4) is about graphene growth on Fe by MBE at low temperature. Temperature-dependent growth of graphene on Fe using MBE is studied. Two-dimensional (2D), large-area graphene samples were grown on Fe thin films, and characterized by Raman, X-ray photoelectron spectroscopy, X-ray diffraction, optical microscopy, transmission electron microscopy and atomic force microscopy. Graphene is achieved on Fe at a wide growth temperature range and as low as 400 °C. The growth mechanism is studied and shows graphene growth is associated with formation and decomposition of iron carbide. The forth part is about a convenient way to produce vdW heterostructures: graphene growth of exfoliated h-BN on Co. We demonstrated graphene/h-BN heterostructures by growing graphene onto the substrates which consist of exfoliated h-BN on Co thin film using MBE. The heterostructure samples grown at different temperatures and growth durations were characterized by Raman, optical microscopy, atomic force microscopy, microwave impedance microscopy and scanning tunneling microscopy. It is found that the graphene/h-BN heterostructures were formed by the formation of graphene underneath rather than on top of the h-BN flakes. The growth mechanism is discussed. In summary, we develop and optimize growth of vdW materials (h-BN and graphene), and vdW heterostructures by MBE. Various characterization has been carried out to evaluate properties of the films in structural, optical and electrical aspects. Our results reveal that MBE can provide an excellent alternative way for reliable growth of high-quality and large-size vdW materials and related heterostructures, which will attract more attention for the utilization of MBE in vdW materials research.
Doping of free-standing zinc-blende GaN layers grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Novikov, S. V.; Powell, R. E. L.; Staddon, C. R.; Kent, A. J.; Foxon, C. T.
2014-10-01
Currently there is high level of interest in developing of vertical device structures based on the group III nitrides. We have studied n- and p-doping of free-standing zinc-blende GaN grown by plasma-assisted molecular beam epitaxy (PA-MBE). Si was used as the n-dopant and Mg as the p-dopant for zinc-blende GaN. Controllable levels of doping with Si and Mg in free-standing zinc-blende GaN have been achieved by PA-MBE. The Si and Mg doping depth uniformity through the zinc-blende GaN layers have been confirmed by secondary ion mass spectrometry (SIMS). Controllable Si and Mg doping makes PA-MBE a promising method for the growth of conducting group III-nitrides bulk crystals.
Molecular Beam Epitaxy Growth of Transition Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Yue, Ruoyu
The exponential growth of Si-based technology has finally reached its limit, and a new generation of devices must be developed to continue scaling. A unique class of materials, transition metal dichalcogenides (TMD), have attracted great attention due to their remarkable optical and electronic properties at the atomic thickness scale. Over the past decade, enormous efforts have been put into TMD research for application in low-power devices. Among these studies, a high-quality TMD synthesis method is essential. Molecular beam epitaxy (MBE) can enable high-quality TMD growth by combining high purity elemental sources and an ultra-high vacuum growth environment, together with the back-end-of-line compatible growth temperatures. Although many TMD candidates have been grown by MBE with promising microstructure, the limited grain size (< 200 nm) for the MBE-grown TMDs reported in the literature thus far is unsuitable for high-performance device applications. In this dissertation, the synthesis of TMDs by MBE and their implementation in device structures were investigated. van der Waals epitaxial growth of these TMDs (HfSe2, WTe2, WSe2, WTex Se2-x), due to the relaxed interactions at the interface, have been demonstrated on large lattice-mismatched substrates without strain and misfit dislocations. The fundamental nucleation and growth behavior of WSe2 was investigated through a detailed experimental design, combined with on-lattice, diffusion-based first principles kinetic modeling. Over one order of magnitude improvement in grain size was achieved through this study. Results from both experiment and simulation showed that reducing the growth rate, enabled by high growth temperature and low metal flux, is vital to nucleation density control. Meanwhile, providing a chalcogen-rich growth environment will promote larger grain lateral growth by suppressing vertical growth. Applying the knowledge learned from the nucleation study, we sucessfully integrated the MBE-grown WSe2 into Si complementary metal-oxide-semiconductor (CMOS) compatible field-effect transistors (FETs). Excellent transport properties, such as field effect hole mobilities (40 cm 2/V·s) with orders of magnitude improvement over the reported values of MBE-grown TMDs, are shown. These studies provide a comprehensive understanding of the MBE synthesis of TMDs and devices, indicating the great potential of integrating TMDs into CMOS process flows for the future electronics.
Growth and characterization of PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers on Si (100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachar, H.K.; Chao, I.; Fang, X.M.
1998-12-31
Crack-free layers of PbSe were grown on Si (100) by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. The PbSe layer was grown by LPE on Si(100) using a MBE-grown PbSe/BaF{sub 2}/CaF{sub 2} buffer layer structure. Pb{sub 1{minus}x}Sn{sub x}Se layers with tin contents in the liquid growth solution equal to 3%, 5%, 6%, 7%, and 10%, respectively, were also grown by LPE on Si(100) substrates using similar buffer layer structures. The LPE-grown PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers were characterized by optical Nomarski microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electronmore » microscopy (SEM). Optical Nomarski characterization of the layers revealed their excellent surface morphologies and good growth solution wipe-offs. FTIR transmission experiments showed that the absorption edge of the Pb{sub 1{minus}x}Sn{sub x}Se layers shifted to lower energies with increasing tin contents. The PbSe epilayers were also lifted-off from the Si substrate by dissolving the MBE-grown BaF{sub 2} buffer layer. SEM micrographs of the cleaved edges revealed that the lifted-off layers formed structures suitable for laser fabrication.« less
High-efficiency GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy
2011-01-01
We report the initial results of GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy (MBE) technique. For GaAs single-junction solar cell, with the application of AlInP as the window layer and GaInP as the back surface field layer, the photovoltaic conversion efficiency of 26% at one sun concentration and air mass 1.5 global (AM1.5G) is realized. The efficiency of 16.4% is also reached for GaInP solar cell. Our results demonstrate that the MBE-grown phosphide-contained III-V compound semiconductor solar cell can be quite comparable to the metal-organic-chemical-vapor-deposition-grown high-efficiency solar cell. PMID:22040124
Sb-Based n- and p-Channel Heterostructure FETs for High-Speed, Low-Power Applications
2008-07-01
Laboratory are presented. 2. InAlSb/InAs HEMTs The HEMT material was grown by solid-source molecu- lar beam epitaxy (MBE) on a semi-insulating (100) GaAs...and S.Y. Lin, “Strained quantum well modulation-doped InGaSb/AlGaSb struc- tures grown by molecular beam epitaxy ,” J. Electron. Mater., vol.22, no.3...where he majored in solid state physics and researched growth by molecular - beam epitaxy (MBE) of certain compound semiconductor ma- terials. Since
Recent progress in MBE grown HgCdTe materials and devices at UWA
NASA Astrophysics Data System (ADS)
Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.
2016-05-01
HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eustis, T.J.; Silcox, J.; Murphy, M.J.
The presence of oxygen throughout the nominally AlN nucleation layer of a RF assisted MBE grown III-N HEMT was revealed upon examination by Electron Energy Loss Spectroscopy (EELS) in a Scanning Transmission Electron Microscope (STEM). The nucleation layer generates the correct polarity (gallium face) required for producing a piezoelectric induced high mobility two dimensional electron gas at the AlGaN/GaN heterojunction. Only AlN or AlGaN nucleation layers have provided gallium face polarity in RF assisted MBE grown III-N's on sapphire. The sample was grown at Cornell University in a Varian GenII MBE using an EPI Uni-Bulb nitrogen plasma source. The nucleationmore » layer was examined in the Cornell University STEM using Annular Dark Field (ADF) imaging and Parallel Electron Energy Loss Spectroscopy (PEELS). Bright Field TEM reveals a relatively crystallographically sharp interface, while the PEELS reveal a chemically diffuse interface. PEELS of the nitrogen and oxygen K-edges at approximately 5-Angstrom steps across the GaN/AlN/sapphire interfaces reveals the presence of oxygen in the AlN nucleation layer. The gradient suggests that the oxygen has diffused into the nucleation region from the sapphire substrate forming this oxygen containing AlN layer. Based on energy loss near edge structure (ELNES), oxygen is in octahedral interstitial sites in the AlN and Al is both tetrahedrally and octahedrally coordinated in the oxygen rich region of the AlN.« less
Single- and two-color infrared focal plane arrays made by MBE in HgCdTe
NASA Astrophysics Data System (ADS)
Zanatta, Jean-Paul; Ferret, P.; Loyer, R.; Petroz, G.; Cremer, S.; Chamonal, Jean-Paul; Bouchut, Philippe; Million, Alain; Destefanis, Gerard L.
2000-12-01
We present here recent developments obtained at LETI infrared laboratory in the field of infrared detectors made in HgCdTe material and using the molecular beam epitaxial growth technique (MBE). We discuss the metallurgical points (growth temperature and flux control) that lead to achieve excellent quality epitaxial layers grown by MBE. We show a run-to-run reproducibility measured on growth run of more than 15 layers. The crystalline quality, surface morphology, and composition uniformity are excellent. The etch pits density (EPD) are in the low 105.cm-2 when HgCdTe grows on a CdZnTe substrate. Transport properties reveal a low n-type carrier concentration in the 1014 to 1015.cm-3 range with a carrier mobility in excess of 105 cm2/V/sec at 77K for epilayers grown with 10 micrometers cutoff wavelength. We describe the performances of several kinds of our HgCdTe- MBE devices: single color MWIR and LWIR detectors on HgCdTe/CdZnTe operating at 77K in respectively (3-5 micrometers ) and (8-12 micrometers ) wavelength range; single color MWIR detectors on HgCdTe grown on germanium heterosubstrate operating at 77K in the (3-5 micrometers ) wavelength range; two color HgCdTe detectors operating within the MWIR (3-5 micrometers ) band.
Superconducting proximity effect in MBE grown Nb-InAs junctions
NASA Astrophysics Data System (ADS)
Kan, Carolyn; Xue, Chi; Law, Stephanie; Eckstein, James
2013-03-01
Several proposals for the realization of Majorana fermions rely on excellent quality proximity coupling between a superconductor and a high-mobility semiconductor. We examine the long-range proximity coupling between MBE-grown InAs and in situ grown superconducting overlayers by fabricating transport devices, and investigate the effect of substrate choice and growth conditions on the quality of the MBE InAs. GaAs is commonly available as a high quality insulating substrate. Overcoming its lattice mismatch with InAs using GaSb and AlSb layers results in locally smooth terraced surfaces, but global spiral dislocation structures also appear and have a negative impact on the InAs mobility. Growing InAs on homoepitaxial GaSb results in improved morphology and increases the mean free path. We compare the proximity effect in devices made both ways. This material is based upon work supported by the U.S. Department of Energy, Division of Materials Sciences under Award No. DE-FG02 07ER46453, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavanapranee, Tosaporn; Horikoshi, Yoshiji
The characteristics of heavily Sn-doped GaAs samples grown at 300 deg. C by a migration-enhanced epitaxy (MEE) technique are investigated in comparison with those of the samples grown by a conventional molecular-beam epitaxy (MBE) at 580 deg. C. While no discernible difference is observed in the low doping regime, the difference in doping characteristics between the MBE- and MEE-grown samples becomes apparent when the doping concentration exceeds 1x10{sup 19} cm{sup -3}. Sn atoms as high as 4x10{sup 21} cm{sup -3} can be incorporated into MEE-grown GaAs films, unlike the MBE-grown samples that have a maximum doping level limited around 1x10{supmore » 19} cm{sup -3}. Due to an effective suppression of Sn segregation in the MEE growth case, high quality GaAs films with abrupt high-concentration Sn-doping profiles are achieved with the doping concentrations of up to 2x10{sup 21} cm{sup -3}. It has been shown that even though a high concentration of Sn atoms is incorporated into the GaAs film, the electron concentration saturates at 6x10{sup 19} cm{sup -3} and then gradually decreases with Sn concentration. The uniform doping limitation, as well as the electron concentration saturation, is discussed by means of Hall-effect measurement, x-ray diffraction, and Raman scattering spectroscopy.« less
Minority carrier diffusion and defects in InGaAsN grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Kurtz, Steven R.; Klem, J. F.; Allerman, A. A.; Sieg, R. M.; Seager, C. H.; Jones, E. D.
2002-02-01
To gain insight into the nitrogen-related defects of InGaAsN, nitrogen vibrational mode spectra, Hall mobilities, and minority carrier diffusion lengths are examined for InGaAsN (1.1 eV band gap) grown by molecular beam epitaxy (MBE). Annealing promotes the formation of In-N bonding, and lateral carrier transport is limited by large scale (≫mean free path) material inhomogeneities. Comparing solar cell quantum efficiencies with our earlier results for devices grown by metalorganic chemical vapor deposition (MOCVD), we find significant electron diffusion in the MBE material (reversed from the hole diffusion in MOCVD material), and minority carrier diffusion in InGaAsN cannot be explained by a "universal," nitrogen-related defect.
NASA Astrophysics Data System (ADS)
Roodenko, K.; Choi, K. K.; Clark, K. P.; Fraser, E. D.; Vargason, K. W.; Kuo, J.-M.; Kao, Y.-C.; Pinsukanjana, P. R.
2016-09-01
Performance of quantum well infrared photodetector (QWIP) device parameters such as detector cutoff wavelength and the dark current density depend strongly on the quality and the control of the epitaxy material growth. In this work, we report on a methodology to precisely control these critical material parameters for long wavelength infrared (LWIR) GaAs/AlGaAs QWIP epi wafers grown by multi-wafer production Molecular beam epitaxy (MBE). Critical growth parameters such as quantum well (QW) thickness, AlGaAs composition and QW doping level are discussed.
Influence of the growth method on degradation of InGaN laser diodes
NASA Astrophysics Data System (ADS)
Bojarska, Agata; Muzioł, Grzegorz; Skierbiszewski, Czesław; Grzanka, Ewa; Wiśniewski, Przemysław; Makarowa, Irina; Czernecki, Robert; Suski, Tadek; Perlin, Piotr
2017-09-01
We demonstrate the influence of the operation current density and temperature on the degradation rate of InGaN laser diodes grown via metalorganic vapor-phase epitaxy (MOVPE) and plasma-assisted molecular beam epitaxy (PAMBE). The degradation rate of the MOVPE devices shows an exponential dependence on the temperature, with an activation energy of 0.38-0.43 eV, and a linear dependence on the operating current density. In comparison, the MBE-grown lasers exhibit a higher activation energy, on the order of 1 eV, and typically a lower degradation rate, resulting in a service time exceeding 50,000 h. We suggest that this difference may be related to the lower concentration of H in the Mg-doped MBE-grown GaN.
Electron-beam pumped laser structures based on MBE grown {ZnCdSe}/{ZnSe} superlattices
NASA Astrophysics Data System (ADS)
Kozlovsky, V. I.; Shcherbakov, E. A.; Dianov, E. M.; Krysa, A. B.; Nasibov, A. S.; Trubenko, P. A.
1996-02-01
Cathodoluminescence (CL), photoreflection (PR), phototransmission (PT) of single and multiquantum wells (MQWs) and strain layer {ZnCdSe}/{ZnSe} superlattices (SLs) grown by molecular beam epitaxy (MBE) were studied. An increase of the Stokes shift with the number of quantum wells (QWs) and the appearance of new lines in CL and PT spectra were observed. Room temperature (RT) vertical-cavity surface-emitting laser (VCSEL) operation was achieved by using the SL structures. Output power up to 2.2 W in single longitudinal mode with λ = 493 nm was obtained. Cut facet laser wavelength of the same SL structure was 502 nm.
GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy
Lin, Yong; Leung, Benjamin; Li, Qiming; ...
2015-07-14
In this study, ammonia-based molecular beam epitaxy (NH 3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH 3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH 3-MBE grown GaN nanowires show moremore » than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.« less
Stacking of ZnSe/ZnCdSe Multi-Quantum Wells on GaAs (100) by Epitaxial Lift-Off
NASA Astrophysics Data System (ADS)
Eldose, N. M.; Zhu, J.; Mavridi, N.; Prior, Kevin; Moug, R. T.
2018-05-01
Here we present stacking of GaAs/ZnSe/ZnCdSe single-quantum well (QW) structures using epitaxial lift-off (ELO). Molecular beam epitaxy (MBE)-grown II-VI QW structure was lifted using our standard ELO technique. The QW structures were transferred onto glass plates and then subsequent layers stacked on top of each other to form a triple-QW structure. This was compared to an MBE-grown multiple-QW (MQW) structure of similar design. Low-temperature (77 K) photoluminescence (PL) spectroscopy was used to compare the two structures and showed no obvious degradation of the ELO stacked layer. It was observed that by stacking the single QW layer on itself we could increase the PL emission intensity beyond that of the grown MQW structure while maintaining narrow line width.
Molecular beam epitaxy growth of high electron mobility InAs/AlSb deep quantum well structure
NASA Astrophysics Data System (ADS)
Wang, Juan; Wang, Guo-Wei; Xu, Ying-Qiang; Xing, Jun-Liang; Xiang, Wei; Tang, Bao; Zhu, Yan; Ren, Zheng-Wei; He, Zhen-Hong; Niu, Zhi-Chuan
2013-07-01
InAs/AlSb deep quantum well (QW) structures with high electron mobility were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs substrates. AlSb and Al0.75Ga0.25Sb buffer layers were grown to accommodate the lattice mismatch (7%) between the InAs/AlSb QW active region and GaAs substrate. Transmission electron microscopy shows abrupt interface and atomic force microscopy measurements display smooth surface morphology. Growth conditions of AlSb and Al0.75Ga0.25Sb buffer were optimized. Al0.75Ga0.25Sb is better than AlSb as a buffer layer as indicated. The sample with optimal Al0.75Ga0.25Sb buffer layer shows a smooth surface morphology with root-mean-square roughness of 6.67 Å. The electron mobility has reached as high as 27 000 cm2/Vs with a sheet density of 4.54 × 1011/cm2 at room temperature.
1993-06-28
entitled "MBE Grown Microcavities for Optoelectronic Devices." In the dissertation work,1 the precision of molecular - beam epitaxy (MBE) is taken...Layers For Surface Normal Optoelectronic Devices," North American Conference on Molecular Beam Epitaxy , Ottawa, Canada, October 12-14, 1992, to be...8. C. Lei, T. J. Rogers, D. G. Deppe, and B. G. Streetman, "InGaAs-GaAs Quantum Well Vertical-Cavity Surface-Emitting Laser Using Molecular Beam
Site-controlled GaN nanocolumns with InGaN insertions grown by MBE
NASA Astrophysics Data System (ADS)
Nechaev, D. V.; Semenov, A. N.; Koshelev, O. A.; Jmerik, V. N.; Davydov, V. Yu; Smirnov, A. N.; Pozina, G.; Shubina, T. V.; Ivanov, S. V.
2017-11-01
The site-controlled plasma-assisted molecular beam epitaxy (PA MBE) has been developed to fabricate the regular array of GaN nanocolumns (NCs) with InGaN insertions on micro-cone patterned sapphire substrates (μ-CPSSs). Two-stage growth of GaN NCs, including a nucleation layer grown at metal-rich conditions and high temperature GaN growth in strong N-rich condition, has been developed to achieve the selective growth of the NCs. Microcathodoluminescence measurements have demonstrated pronounced emission from the InGaN insertions in 450-600 nm spectral range. The optically isolated NCs can be used as effective nano-emitters operating in the visible range.
Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagnelund, D.; Huang, Y. Q.; Buyanova, I. A.
2015-01-07
By employing photoluminescence (PL) spectroscopy under dual-wavelength optical excitation, we uncover the presence of deep-level hole traps in Ga(In)NP alloys grown by molecular beam epitaxy (MBE). The energy level positions of the traps are determined to be at 0.56 eV and 0.78 eV above the top of the valance band. We show that photo-excitation of the holes from the traps, by a secondary light source with a photon energy below the bandgap energy, can lead to a strong enhancement (up to 25%) of the PL emissions from the alloys under a primary optical excitation above the bandgap energy. We further demonstrate thatmore » the same hole traps can be found in various MBE-grown Ga(In)NP alloys, regardless of their growth temperatures, chemical compositions, and strain. The extent of the PL enhancement induced by the hole de-trapping is shown to vary between different alloys, however, likely reflecting their different trap concentrations. The absence of theses traps in the GaNP alloy grown by vapor phase epitaxy suggests that their incorporation could be associated with a contaminant accompanied by the N plasma source employed in the MBE growth, possibly a Cu impurity.« less
Luminescence studies of laser MBE grown GaN on ZnO nanostructures
NASA Astrophysics Data System (ADS)
Dewan, Sheetal; Tomar, Monika; Kapoor, Ashok K.; Tandon, R. P.; Gupta, Vinay
2017-08-01
GaN films have been successfully fabricated using Laser Molecular Beam Epitaxy (LMBE) technique on bare c-plane sapphire substrate and ZnO nanostructures (NS) decorated Si (100) substrates. The ZnO nanostructures were grown on Si (100) substrate using high pressure assisted Pulsed laser deposition technique in inert gas ambience. Discrete nanostructured morphology of ZnO was obtained using the PLD growth on Si substrates. Photoluminescence studies performed on the prepared GaN/Sapphire and GaN/ZnO-NS/Si systems, revealed a significant PL enhancement in case of GaN/ZnO-NS/Si system compared to the former. The hexagonal nucleation sites provided by the ZnO nanostructures strategically enhanced the emission of GaN film grown by Laser MBE Technique at relatively lower temperature of 700°C. The obtained results are attractive for the realization of highly luminescent GaN films on Si substrate for photonic devices.
Ultra-Low Threshold Vertical-Cavity Surface-Emitting Lasers for USAF Applications
2005-01-01
molecular beam epitaxy , semiconductors, finite element method, modeling and simulation, oxidation furnace 16. SECURITY CLASSIFICATION OF: 19a. NAME OF...Patterson Air Force Base). Device material growth was accomplished by means of molecular beam epitaxy (MBE) using a Varian GENII MBE system owned by the...grown by molecular beam epitaxy on a GaAs substrate. Vertical posts, with square and circular cross sections ranging in size from 5 to 40 microns
NASA Astrophysics Data System (ADS)
Hurni, Christophe Antoine
Widespread interest in the group III-Nitrides began with the achievement of p-type conductivity in the early 1990s in Mg-doped GaN films grown by metal organic chemical vapor deposition (MOCVD) by Nakamura et al. Indeed, MOCVD-grown Mg-doped GaN is insulating as-grown, because of the formation of neutral Mg-H complexes. Nakamura et al. showed that a rapid thermal anneal removes the hydrogen and enables p-conductivity. Shortly after this discovery, the first LEDs and lasers were demonstrated by Nakamura et al. The necessary annealing step is problematic for devices which need a buried p-layer, such as hetero-junction bipolar transistors. Ammonia molecular beam epitaxy (NH3-MBE) has a great potential for growing vertical III-Nitrides-based devices, thank to its N-rich growth conditions and all the usual advantages of MBE, which include a low-impurity growth environment, in situ monitoring techniques as well as the ability to grow sharp interfaces. We first investigated the growth of p-GaN by NH3-MBE. We found that the hole concentration strongly depends on the growth temperature. Thanks to comprehensive Hall and transfer length measurements, we found evidences for a compensating donor defects in NH3-MBE-grown Mg-doped GaN films. High-quality p-n junctions with very low reverse current and close to unity ideality factor were also grown and investigated. For the design of heterojunction devices such as laser diodes, light emitting diodes or heterojunction bipolar transistors, hetero-interface's characteristics such as the band offset or interface charges are fundamental. A technique developed by Kroemer et al. uses capacitance-voltage (C-V) profiling to extract band-offsets and charges at a hetero-interface. We applied this technique to the III-Nitrides. We discovered that for the polar III-Nitrides, the technique is not applicable because of the very large polarization charge. We nevertheless successfully measured the polarization charge at the AlGaN/GaN hetero-interface though C-V profiling. In the non-polar and semi-polar cases, the hetero-interface charge was low enough to extract the conduction band-offset through C-V profiling, provided that the doping profile had a foreseeable behavior.
An atomic carbon source for high temperature molecular beam epitaxy of graphene.
Albar, J D; Summerfield, A; Cheng, T S; Davies, A; Smith, E F; Khlobystov, A N; Mellor, C J; Taniguchi, T; Watanabe, K; Foxon, C T; Eaves, L; Beton, P H; Novikov, S V
2017-07-26
We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.
Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films
NASA Astrophysics Data System (ADS)
Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu
Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.
Ultra-High Aggregate Bandwidth Two-Dimensional Multiple-Wavelength Diode Laser Arrays
1994-04-09
surface temperature across the wafer during the growth of the cavity spacer region using the fact that the molecular beam epitaxy (MBE) growth of GaAs...substrate surface temperature across the wafer during the growth of the cavity spacer region. Using the fact that, during an molecular beam epitaxy (MBE...K. Bacher and J.S. Harris, "Periodically Induced Mode Shift in Vertical Cavity Fabry Perot Etalons Grown by Molecular Beam Epitaxy ," to be presented
NASA Astrophysics Data System (ADS)
Kaun, Stephen William
GaN-based high-electron-mobility transistors (HEMTs) will play an important role in the next generation of high-frequency amplifiers and power-switching devices. Since parasitic conduction (leakage) through the GaN buffer layer and (Al,Ga,In)N barrier reduces the efficiency of operation, HEMT performance hinges on the epitaxial quality of these layers. Increasing the sheet charge density and mobility of the two-dimensional electron gas (2DEG) is also essential for reducing the channel resistance and improving output. The growth conditions applied in plasma-assisted molecular beam epitaxy (PAMBE) and ammonia-based molecular beam epitaxy (NH3-MBE) that result in high-quality metal-polar HEMT structures are described. The effects of threading dislocations on the gate leakage and channel conductivity of AlGaN/GaN HEMTs were studied in detail. For this purpose, a series of HEMT structures were grown on GaN templates with threading dislocation densities (TDDs) that spanned three orders of magnitude. There was a clear trend of reduced gate leakage with reduced TDD for HEMTs grown by Ga-rich PAMBE; however, a reduction in TDD also entailed an increase in buffer leakage. By reducing the unintentionally doped (UID) GaN buffer thickness and including an AlGaN back barrier, a HEMT regrown by Ga-rich PAMBE on low-TDD free-standing (FS) GaN (~5 x 107 cm-2 TDD) yielded a three-terminal breakdown voltage greater than 50 V and a power output (power-added efficiency) of 6.7 W/mm (50 %) at 4 GHz with a 40 V drain bias. High TDD was then shown to severely degrade the 2DEG mobility of AlxGa1-xN/GaN (x = 0.24, 0.12, 0.06) and AlGaN/AlN/GaN heterostructures grown by Ga-rich PAMBE. By regrowing on low-TDD FS GaN and including a 2.5 nm AlN interlayer, an Al0.24Ga0.76N/AlN/GaN heterostructure achieved a room temperature (RT) 2DEG sheet resistance of 169 Ω/□. As evidenced by atom probe tomography, the AlN interlayer grown by Ga-rich PAMBE was pure with abrupt interfaces. The pure AlN interlayer greatly reduced alloy-related scattering. When AlGaN/AlN/GaN heterostructures were grown by NH3-MBE at 820 °C, the 2DEG sheet density was lower than expected. These AlN interlayers were shown to have a significant concentration of Ga impurities by atom probe tomography. The source of these impurities was most likely the decomposition of the underlying GaN layers, as reduction of the growth temperature below 750 °C yielded a much lower concentration of Ga impurities. Flux optimization and application of an In surfactant was necessary to reduce the interface roughness in AlGaN/AlN/GaN heterostructures grown by NH3-MBE at low temperature, yielding sheet resistances below 300 Ω/□. The growth of InAlN/(GaN)/(AlN)/GaN heterostructures with lattice-matched In0.17Al0.83N barriers by N-rich PAMBE is also described. Through flux optimization, the columnar microstructure previously observed in N-rich PAMBE-grown InAlN layers was eliminated. By including a 3 nm AlN interlayer and 2 nm GaN interlayer, an In0.17Al0.83N/GaN/AlN/GaN heterostructure regrown on low-TDD FS GaN achieved an exceptionally low RT 2DEG sheet resistance of 145 Ω/□.
doping of III-Nitride materials grown by molecular beam epitaxy (MBE). He joined NREL after graduation in (0001) GaN Growth by Radio Frequency Plasma-Assisted Molecular Beam Epitaxy, A.J. Ptak, M.R. Millecchia . Phys. Lett. 77, 2479 (2000). Magnesium Incorporation in GaN Grown by rf-Plasma Assisted Molecular Beam
Effect of defects on reaction of NiO surface with Pb-contained solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jongjin; Hou, Binyang; Park, Changyong
In order to understand the role of defects in chemical reactions, we used two types of samples, which are molecular beam epitaxy (MBE) grown NiO(001) film on Mg(001) substrate as the defect free NiO prototype and NiO grown on Ni(110) single crystal as the one with defects. In-situ observations for oxide-liquid interfacial structure and surface morphology were performed for both samples in water and Pb-contained solution using high-resolution X-ray reflectivity and atomic force microscopy. For the MBE grown NiO, no significant changes were detected in the high-resolution X-ray reflectivity data with monotonic increase in roughness. Meanwhile, in the case ofmore » native grown NiO on Ni(110), significant changes in both the morphology and atomistic structure at the interface were observed when immersed in water and Pb-contained solution. Our results provide simple and direct experimental evidence of the role of the defects in chemical reaction of oxide surfaces with both water and Pb-contained solution.« less
GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell
NASA Astrophysics Data System (ADS)
Da Silva, M.; Almosni, S.; Cornet, C.; Létoublon, A.; Levallois, C.; Rale, P.; Lombez, L.; Guillemoles, J.-F.; Durand, O.
2015-03-01
GaAsPN semiconductors are promising material for the elaboration of high efficiencies tandem solar cells on silicon substrates. GaAsPN diluted nitride alloy is studied as the top junction material due to its perfect lattice matching with the Si substrate and its ideal bandgap energy allowing a perfect current matching with the Si bottom cell. We review our recent progress in materials development of the GaAsPN alloy and our recent studies of some of the different building blocks toward the elaboration of a PIN solar cell. A lattice matched (with a GaP(001) substrate, as a first step toward the elaboration on a Si substrate) 1μm-thick GaAsPN alloy has been grown by MBE. After a post-growth annealing step, this alloy displays a strong absorption around 1.8-1.9 eV, and efficient photoluminescence at room temperature suitable for the elaboration of the targeted solar cell top junction. Early stage GaAsPN PIN solar cells prototypes have been grown on GaP (001) substrates, with 2 different absorber thicknesses (1μm and 0.3μm). The external quantum efficiencies and the I-V curves show that carriers have been extracted from the GaAsPN alloy absorbers, with an open-circuit voltage of 1.18 V, while displaying low short circuit currents meaning that the GaAsPN structural properties needs a further optimization. A better carrier extraction has been observed with the absorber displaying the smallest thickness, which is coherent with a low carriers diffusion length in our GaAsPN compound. Considering all the pathways for improvement, the efficiency obtained under AM1.5G is however promising.
Chip-Scale Controlled Storage All-Optical Memory
2007-02-01
half width at half maximum KHZ kilo Hertz KK Kramers-Kronig LH light hole MBE molecular beam epitaxy MHz mega Hertz MZI Mach-Zehnder...waveguide geometry. The sample used in experiments 1 and 2 consists of 15 GaAs (135Å)/Al0.3Ga0.7As(150 Å) QWs grown by molecular beam epitaxy (MBE...We developed the capability to grow GaAs QWs on (110)-oriented substrates using molecular beam epitaxy in a very short amount of time. The very
2002-01-01
emitting lasers operating from 1.0 to 1.3 gim with very low threshold currents have been reported [2,3,9]; in addition, vertical - cavity surface - emitting ...grown by solid source molecular beam epitaxy ( MBE ). By modifying Indium composition profile within quantum well (QW) region, it’s found the... lasers ( VCSELs ) have also been successfully demonstrated [4]. There are currently several approaches to grow 1.3 jim (In,Ga)As quantum dots by MBE
NASA Astrophysics Data System (ADS)
Gherasoiu, I.; Yu, K. M.; Reichertz, L.; Walukiewicz, W.
2015-09-01
PN junctions are basic building blocks of many electronic devices and their performance depends on the structural properties of the component layers and on the type and the amount of the doping impurities incorporated. Magnesium is the common p-type dopant for nitride semiconductors while silicon and more recently germanium are the n-dopants of choice. In this paper, therefore we analyze the quantitative limits for Mg and Ge incorporation on GaN and InGaN with high In content. We also discuss the challenges posed by the growth and characterization of InGaN pn-junctions and we discuss the properties of large area, long wavelength nanocolumn LEDs grown on silicon (1 1 1) by PA-MBE.
Zhang, Dong; Sun, Hong-Jun; Wang, Min-Huan; Miao, Li-Hua; Liu, Hong-Zhu; Zhang, Yu-Zhi; Bian, Ji-Ming
2017-01-01
Vanadium dioxide (VO2) thermochromic thin films with various thicknesses were grown on quartz glass substrates by radio frequency (RF)-plasma assisted oxide molecular beam epitaxy (O-MBE). The crystal structure, morphology and chemical stoichiometry were investigated systemically by X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. An excellent reversible metal-to-insulator transition (MIT) characteristics accompanied by an abrupt change in both electrical resistivity and optical infrared (IR) transmittance was observed from the optimized sample. Remarkably, the transition temperature (TMIT) deduced from the resistivity-temperature curve was reasonably consistent with that obtained from the temperature-dependent IR transmittance. Based on Raman measurement and XPS analyses, the observations were interpreted in terms of residual stresses and chemical stoichiometry. This achievement will be of great benefit for practical application of VO2-based smart windows. PMID:28772673
Group III-nitride thin films grown using MBE and bismuth
Kisielowski, Christian K.; Rubin, Michael
2002-01-01
The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.
Group III-nitride thin films grown using MBE and bismuth
Kisielowski, Christian K.; Rubin, Michael
2000-01-01
The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.
Visible-light vertical-cavity surface-emitting lasers grown by solid-source molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Saarinen, Mika J.; Xiang, Ning; Dumitrescu, Mihail M.; Vilokkinen, Ville; Melanen, Petri; Orsila, Seppo; Uusimaa, Petteri; Savolainen, Pekka; Pessa, Markus
2001-05-01
Visible vertical-cavity surface-emitting lasers (VCSELs) are potential light sources for polymer optical fibre (POF) data transmission systems. Minimum attenuation of light in standard PMMA-POFs occurs at about 650 nm. For POFs of a few tens of meters in length VCSELs at slightly longer wavelengths (670 - 690 nm) are also acceptable. So far, the visible VCSELs have been grown by metal organic chemical vapour deposition (MOCVD). They may also be grown by a novel variant of molecular beam epitaxy (MBE), a so-called all-solid-source MBE or SSMBE. In this paper, we describe growth of the first visible-light VCSELs by SSMBE and present the main results obtained. In particular, we have achieved lasing action at a sub-milliamp cw drive current for a VCSEL having the emission window of 8um in diameter, while a 10um device exhibited an external quantum efficiency of 6.65% in CW operation at room temperature. The lasing action up to temperature of 45°C has been demonstrated.
Influence of Growth Parameters and Annealing on Properties of MBE Grown GaAsSbN SQWs
NASA Technical Reports Server (NTRS)
Wu, Liangjin; Iyer, Shanthi; Nunna, Kalyan; Bharatan, Sudhakar; Li, Jia; Collis, Ward J.
2005-01-01
In this paper we report the growth of GaAsSbN/GaAs single quantum well (SQW) heterostructures by molecular beam epitaxy (MBE) and their properties. A systematic study has been carried out to determine the effect of growth conditions, such as the source shutter opening sequence and substrate temperature, on the structural and optical properties of the layers. The substrate temperatures in the range of 450-470 C were found to be optimal. Simultaneous opening of the source shutters (SS) resulted in N incorporation almost independent of substrate temperature and Sb incorporation higher at lower substrate temperatures. The effects of ex-situ annealing in nitrogen ambient and in-situ annealing under As ovepressure on the optical properties of the layers have also been investigated. A significant increase in photoluminescence (PL) intensity with reduced full width at half maxima (FWHM) in conjunction with a blue shift in the emission energy was observed on 10 annealing the samples. In in-situ annealed samples, the PL line shapes were more symmetric and the temperature dependence of the PL peak energy indicated significant decrease in the exciton localization energy as exhibited by a less pronounced S-shaped curve. The inverted S-shaped curve observed in the temperature dependence of PL FWHM is also discussed. 1.61 micrometer emission with FWHM of 25 meV at 20K has been obtained in in-situ annealed GaAsSbN/GaAs SQW grown at 470 C by SS.
Passivation of MBE grown InGaSb/InAs superlattice photodiodes
NASA Technical Reports Server (NTRS)
Hill, Cory J.; Keo, Sam S.; Mumolo, Jason M.; Gunapala, Sarath D.
2005-01-01
We have performed wet chemical passivation tests on InGaSb/InAs superlattice photodiode structures grown molecular beam epitaxy. The details of the devices growth and characterization as well as the results of chemical passivation involving RuCl3 and H2SO4 with SiO2 dielectric depositions are presented.
NASA Astrophysics Data System (ADS)
Brown, G. J.; Haugan, H. J.; Mahalingam, K.; Grazulis, L.; Elhamri, S.
2015-01-01
The objective of this work is to establish molecular beam epitaxy (MBE) growth processes that can produce high quality InAs/GaInSb superlattice (SL) materials specifically tailored for very long wavelength infrared (VLWIR) detection. To accomplish this goal, several series of MBE growth optimization studies, using a SL structure of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, were performed to refine the MBE growth process and optimize growth parameters. Experimental results demonstrated that our "slow" MBE growth process can consistently produce an energy gap near 50 meV. This is an important factor in narrow band gap SLs. However, there are other growth factors that also impact the electrical and optical properties of the SL materials. The SL layers are particularly sensitive to the anion incorporation condition formed during the surface reconstruction process. Since antisite defects are potentially responsible for the inherent residual carrier concentrations and short carrier lifetimes, the optimization of anion incorporation conditions, by manipulating anion fluxes, anion species, and deposition temperature, was systematically studied. Optimization results are reported in the context of comparative studies on the influence of the growth temperature on the crystal structural quality and surface roughness performed under a designed set of deposition conditions. The optimized SL samples produced an overall strong photoresponse signal with a relatively sharp band edge that is essential for developing VLWIR detectors. A quantitative analysis of the lattice strain, performed at the atomic scale by aberration corrected transmission electron microscopy, provided valuable information about the strain distribution at the GaInSb-on-InAs interface and in the InAs layers, which was important for optimizing the anion conditions.
MBE growth of few-layer 2H-MoTe2 on 3D substrates
NASA Astrophysics Data System (ADS)
Vishwanath, Suresh; Sundar, Aditya; Liu, Xinyu; Azcatl, Angelica; Lochocki, Edward; Woll, Arthur R.; Rouvimov, Sergei; Hwang, Wan Sik; Lu, Ning; Peng, Xin; Lien, Huai-Hsun; Weisenberger, John; McDonnell, Stephen; Kim, Moon J.; Dobrowolska, Margaret; Furdyna, Jacek K.; Shen, Kyle; Wallace, Robert M.; Jena, Debdeep; Xing, Huili Grace
2018-01-01
MoTe2 is the least explored material in the Molybdenum-chalcogen family. Molecular beam epitaxy (MBE) provides a unique opportunity to tackle the small electronegativity difference between Mo and Te while growing layer by layer away from thermodynamic equilibrium. We find that for a few-layer MoTe2 grown at a moderate rate of ∼6 min per monolayer, a narrow window in temperature (above Te cell temperature) and Te:Mo ratio exists, where we can obtain pure phase 2H-MoTe2. This is confirmed using reflection high-energy electron diffraction (RHEED), Raman spectroscopy and X-ray photoemission spectroscopy (XPS). For growth on CaF2, Grazing incidence X-ray diffraction (GI-XRD) reveals a grain size of ∼90 Å and presence of twinned grains. In this work, we hypothesis the presence of excess Te incorporation in MBE grown few layer 2H-MoTe2. For film on CaF2, it is based on >2 Te:Mo stoichiometry using XPS as well as 'a' and 'c' lattice spacing greater than bulk 2H-MoTe2. On GaAs, its based on observations of Te crystallite formation on film surface, 2 × 2 superstructure observed in RHEED and low energy electron diffraction, larger than bulk c-lattice spacing as well as the lack of electrical conductivity modulation by field effect. Finally, thermal stability and air sensitivity of MBE 2H-MoTe2 is investigated by temperature dependent XRD and XPS, respectively.
NASA Astrophysics Data System (ADS)
Velicu, S.; Bommena, R.; Morley, M.; Zhao, J.; Fahey, S.; Cowan, V.; Morath, C.
2013-09-01
The development of a broadband IR focal plane array poses several challenges in the area of detector design, material, device physics, fabrication process, hybridization, integration and testing. The purpose of our research is to address these challenges and demonstrate a high-performance IR system that incorporates a HgCdTe-based detector array with high uniformity and operability. Our detector architecture, grown using molecular beam epitaxy (MBE), is vertically integrated, leading to a stacked detector structure with the capability to simultaneously detect in two spectral bands. MBE is the method of choice for multiplelayer HgCdTe growth because it produces material of excellent quality and allows composition and doping control at the atomic level. Such quality and control is necessary for the fabrication of multicolor detectors since they require advanced bandgap engineering techniques. The proposed technology, based on the bandgap-tunable HgCdTe alloy, has the potential to extend the broadband detector operation towards room temperature. We present here our modeling, MBE growth and device characterization results, demonstrating Auger suppression in the LWIR band and diffusion limited behavior in the MWIR band.
Effects of Light Exposure on Dopant Incorporation and Migration in MBE-Grown GaAs(001)
NASA Astrophysics Data System (ADS)
Sanders, Charlotte E.; Beaton, D. A.; Alberi, K.
2015-03-01
Light-stimulated epitaxy of II-VI semiconducting materials is known to reduce crystalline defect density and enhance substitutional dopant incorporation relative to traditional ``dark'' epitaxial growth. These effects have been speculated to arise from photon-adatom interactions at the growth front, and from involvement in bonding processes by photogenerated carriers; however, a conclusive explanation of the observed effects has yet to be found. We are revisiting this topic, attempting to clarify the mechanisms of light-stimulated epitaxy and to explore its effects on the class of III-V materials. Here we report an ongoing investigation into dopant incorporation and migration in MBE-grown GaAs(001) when the growth front is irradiated during deposition. On the basis of our preliminary findings, and by comparing our new results with results previously obtained for light-stimulated effects on doping of II-VI systems, we can begin to draw conclusions about the mechanisms underlying light-stimulated epitaxy and their potential utility to MBE growth of complex multilayer structures. This work was supported by the DOE Office of Science, Basic Energy Sciences, under contract DE-AC36-08G028308.
Commercial production of QWIP wafers by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Fastenau, J. M.; Liu, W. K.; Fang, X. M.; Lubyshev, D. I.; Pelzel, R. I.; Yurasits, T. R.; Stewart, T. R.; Lee, J. H.; Li, S. S.; Tidrow, M. Z.
2001-06-01
As the performance of quantum well infrared photodetectors (QWIPs) and QWIP-based imaging systems continues to improve, their demand will undoubtedly grow. This points to the importance of a reliable commercial supplier of semiconductor QWIP material on three inch and, in the near future, four-inch substrates. Molecular beam epitaxy (MBE) is the preferred technique for growing the demanding QWIP structure, as tight control is required over the material composition and layer thickness. We report the current status of MBE-grown GaAs-based QWIP structures in a commercial production environment at IQE. Uniformity data and run-to-run reproducibility on both three-inch and four-inch GaAs substrates are quantified using alloy composition and QW thickness. Initial results on growth technology transfer to a multi-wafer MBE reactor are also presented. High-resolution X-ray diffraction measurements demonstrate GaAs QW thickness variations and AlGaAs barrier compositions changes to be less than 4% and 1% Al, respectively, across four-inch QWIP wafers from both single- and multiple-wafer MBE platforms.
Synthesis science of SrRuO3 and CaRuO3 epitaxial films with high residual resistivity ratios
NASA Astrophysics Data System (ADS)
Nair, Hari P.; Liu, Yang; Ruf, Jacob P.; Schreiber, Nathaniel J.; Shang, Shun-Li; Baek, David J.; Goodge, Berit H.; Kourkoutis, Lena F.; Liu, Zi-Kui; Shen, Kyle M.; Schlom, Darrell G.
2018-04-01
Epitaxial SrRuO3 and CaRuO3 films were grown under an excess flux of elemental ruthenium in an adsorption-controlled regime by molecular-beam epitaxy (MBE), where the excess volatile RuOx (x = 2 or 3) desorbs from the growth front leaving behind a single-phase film. By growing in this regime, we were able to achieve SrRuO3 and CaRuO3 films with residual resistivity ratios (ρ300 K/ρ4 K) of 76 and 75, respectively. A combined phase stability diagram based on the thermodynamics of MBE (TOMBE) growth, termed a TOMBE diagram, is employed to provide improved guidance for the growth of complex materials by MBE.
NASA Astrophysics Data System (ADS)
Wrobel, F.; Mark, A. F.; Christiani, G.; Sigle, W.; Habermeier, H.-U.; van Aken, P. A.; Logvenov, G.; Keimer, B.; Benckiser, E.
2017-01-01
Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity and microstructure as revealed by high-resolution transmission electron microscopy images and resistivity. The MBE samples show a higher density of stacking faults but smoother interfaces and generally higher electrical conductivity. Our study identifies the opportunities and challenges of MBE and PLD growth and serves as a general guide for the choice of the deposition technique for perovskite oxides.
Demonstration of zero bias responsivity in MBE grown β-Ga2O3 lateral deep-UV photodetector
NASA Astrophysics Data System (ADS)
Singh Pratiyush, Anamika; Krishnamoorthy, Sriram; Kumar, Sandeep; Xia, Zhanbo; Muralidharan, Rangarajan; Rajan, Siddharth; Nath, Digbijoy N.
2018-06-01
We demonstrate zero-bias spectral responsivity in MBE-grown β-Ga2O3 planar UV-C detector with good linearity up to optical power density of 4.6 mW cm‑2. Devices with asymmetrical metal contacts were realized on 150 nm thick β-Ga2O3 films on sapphire. The device exhibited a spectral responsivity of 1.4 mA W‑1 at 255 nm under zero-bias condition, dark current <10 nA at 15 V and UV-to-visible rejection ratio ∼105 at 5 V. The demonstrated UV-C detector exhibited an estimated high detectivity of 2.0 × 1012 Jones at 1 V and were found to be very stable and repeatable, suggesting its potential use for focal plane arrays.
1987-06-30
metal lattice sites using the liquid phase epitaxy. However, group V elements have not been successfully Incorporated Into MBE grown HgCdTe layer as...narrow-gap side was first Both groups used the liquid pweepitaxy (LPE) growth made with a thicknem of 2 to 3/pm before the growth condi- technique and...higher quasiequilibrium pressure than with the shutter opened. This study shows that with the particular geometry 27 used the time constant required
A photoluminescence study of the effects of hydrogen on deep levels in MBE grown GaAlAs:Si
NASA Astrophysics Data System (ADS)
Bosacchi, A.; Franchi, S.; Vanzetti, L.; Allegri, P.; Grilli, E.; Guzzi, M.; Zamboni, R.; Pavesi, L.
1991-04-01
We present a study on low-temperature photoluminescence (PL) of Si-doped Ga 1- xAl xAs ( n ~ 1 × 10 17 cm -3, 0.2 ⩽ x ⩽ 0.5) grown by MBE in the presence and in the absence of a hydrogen backpressure, and post-growth hydrogenated or not, by exposure to a hydrogen plasma. The PL spectra of GaAlAs grown without hydrogen are dominated by transitions involving relatively deep donors and/or acceptors independently on whether the material is post-growth hydrogenated. On the contrary, the spectra of GaAlAs grown in the presence of hydrogen are characterized by recombinations related to excitons and/or to shallow donors and acceptors. Both the in-situ and the ex-situ processes result in PL efficiency enhancements, which are definitely larger (by a factor of up to 20) when the former treatment is used. All of the above results suggest that the ex-situ and the in-situ treatments may affect deep levels of different origin, such as DX centers (related to the band structure of the semiconductor) and levels associated to Al-O complexes, respectively.
NASA Astrophysics Data System (ADS)
Kaun, Stephen W.; Mazumder, Baishakhi; Fireman, Micha N.; Kyle, Erin C. H.; Mishra, Umesh K.; Speck, James S.
2015-05-01
When grown at a high temperature (820 °C) by ammonia-based molecular beam epitaxy (NH3-MBE), the AlN layers of metal-polar AlGaN/AlN/GaN heterostructures had a high GaN mole fraction (∼0.15), as identified by atom probe tomography in a previous study (Mazumder et al 2013 Appl. Phys. Lett. 102 111603). In the study presented here, growth at low temperature (<740 °C) by NH3-MBE yielded metal-polar AlN layers that were essentially pure at the alloy level. The improved purity of the AlN layers grown at low temperature was correlated to a dramatic increase in the sheet density of the two-dimensional electron gas (2DEG) at the AlN/GaN heterointerface. Through application of an In surfactant, metal-polar AlN(3.5 nm)/GaN and AlGaN/AlN(2.5 nm)/GaN heterostructures grown at low temperature yielded low 2DEG sheet resistances of 177 and 285 Ω/□, respectively.
Optical Properties of Zinc Selenide Grown Using Molecular Beam Deposition Techniques
1989-06-01
studied were grown using a standard MBE machine with insitu diagnostics. The ZnSe material used for growing the samples is highly pure polycrystalline...width of the interference maxima n can be found from equation (1). Beyond 550 nm absorption is varying rapidly and this will cause Tmax to vary...nonlinearity Is utilized - such as in an optically bistable switch. It is known from previous work on ZnSe grown on GaAs 113] that the material begins growing
n-VO2/p-GaN based nitride-oxide heterostructure with various thickness of VO2 layer grown by MBE
NASA Astrophysics Data System (ADS)
Wang, Minhuan; Bian, Jiming; Sun, Hongjun; Liu, Weifeng; Zhang, Yuzhi; Luo, Yingmin
2016-12-01
High quality VO2 films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). Results indicated that a distinct reversible semiconductor-to-metal (SMT) phase transition was observed for all the samples in the temperature dependent electrical resistance measurement, and the influence of VO2 layer thickness on the SMT properties of the as-grown n-VO2/p-GaN based nitride-oxide heterostructure was investigated. Meanwhile, the clear rectifying transport characteristics originated from the n-VO2/p-GaN interface were demonstrated before and after SMT of the VO2 over layer, which were attributed to the p-n junction behavior and Schottky contact character, respectively. Moreover, the X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO2 films was principally composed of V4+ with trace amount of V5+. The design and modulation of the n-VO2/p-GaN based heterostructure devices will benefit significantly from these achievements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu
2016-05-01
Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the othermore » hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.« less
Development of 1300 nm GaAs-Based Microcavity Light-Emitting Diodes
2001-06-01
vertical - cavity surface emitting lasers ( VCSEL ) and micro- cavity light- emitting diodes (MC-LED) for short-to-medium... epitaxial growth run [1 ]. Self-organized In(Ga)As quantum dot (QD) heterostructures grown by molecular beam epitaxy ( MBE ) are promising candidates as...successfully grown by molecular beam epitaxy on GaAs substrates without the need to rely on any in-situ calibration technique. Fabricated
Electron microscopy of AlN-SiC interfaces and solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentley, J.; Tanaka, S.; Davis, R.F.
In a 2H AlN-SiC solid solution grown by MBE on {alpha}(6H)-SiC (3{degrees} from [0001]), the epilayer contained a high density of basal faults related to {approximately}5 nm steps on the growth surface: no compositional inhomogeneity was detected by PEELS. In diffusion couples of polycrystalline, sintered AlN on SiC annealed at 1600 and 1700{degrees}C. 8H sialon [nominally (AlN){sub 2}Al{sub 2}O{sub 3}] formed at the interface of SiC and recrystallized epitactic AlN grains, and Si{sub 3}N{sub 4}-rich {beta}{prime} sialon particles formed in the SiC. No interdiffusion was detected by PEELS in diffusion couples of MBE-grown AlN on SiC annealed at 1700 andmore » 1850{degrees}C. Irregular epilayer thickness explains companion Auger depth profile results.« less
Magnetic properties of epitaxial β-Nb2N thin film on SiC substrate
NASA Astrophysics Data System (ADS)
Yang, Zihao; Myers, Roberto; Katzer, D. Scott; Nepal, Neeraj; Meyer, David J.
Previously superconductivity in Nb2N was studied in thin films synthesized by reactive magnetron sputtering or pulsed laser deposition. Recently, Nb2N was synthesized by molecular beam epitaxy (MBE). Here, we report on the magnetic properties of MBE grown Nb2N measured by SQUID magnetometry. The single hexagonal β phase Nb2N is grown on a semi-insulating Si-face 4H SiC (0001) substrate in nitrogen rich conditions at a substrate temperature of 850 °C. In-plane magnetization as a function of magnetic field measured at 5 K shows type-II superconductivity with critical fields Hc1 and Hc2 of 300 Oe and 10 kOe, respectively. In-plane field-cooled and zero-field-cooled a critical temperature (Tc) of 11.5 K, higher than in sputtered Nb2N films. This work was supported by Army Research Office and the Office of Naval Research.
Self-organized MBE growth of II VI epilayers on patterned GaSb substrates
NASA Astrophysics Data System (ADS)
Wissmann, H.; Tran Anh, T.; Rogaschewski, S.; von Ortenberg, M.
1999-05-01
We report on the self-organized MBE growth of II-VI epilayers on patterned and unpatterned GaSb substrates resulting in quantum wires and quantum wells, respectively. The HgSe : Fe quantum wires were grown on (0 0 1)GaSb substrates with a buffer of lattice-matched ZnTe 1- xSe x. Due to the anisotropic growth of HgSe on the A-oriented stripes roof-like overgrowth with a definite ridge was obtained. Additional Fe doping in the direct vicinity of the ridge results in a highly conductive quantum wire.
Researching the electrical properties of single A3B5 nanowires
NASA Astrophysics Data System (ADS)
Vasiliev, A. A.; Mozharov, A. M.; Komissarenko, F. E.; Cirlin, G. E.; Bouravlev, D. A.; Mukhin, I. S.
2017-11-01
We investigate electrical characteristics of GaN, GaAs and GaP NWs which are grown with MOCVD and MBE. We developed measurement technique and it allows to determine the required properties of the structures.
NASA Astrophysics Data System (ADS)
Lansari, Yamina
The growth of Hg-based single layers and multiple quantum well structures by conventional molecular beam epitaxy (MBE) and photoassisted MBE was studied. The use of photoassisted MBE, an epitaxial growth technique developed at NCSU, has resulted in a substantial reduction of the film growth temperature. Indeed, substrate temperatures 50 to 100^circC lower than those customarily used by others for conventional MBE growth of Hg-based layers were successfully employed. Photoassisted MBE allowed the preparation of excellent structural quality HgTe layers (FWHM for the (400) diffraction peak ~ 40 arcsec), HgCdTe layers (FWHM for the (400) diffraction peak ~ 14 arcsec), and HgTeCdTe superlattices (FWHM for the (400) diffraction peak ~ 28 arcsec). In addition, n-type and p-type modulation-doping of Hg-based multilayers was accomplished by photoassisted MBE. This technique has been shown to have a significant effect on the growth process kinetics as well as on the desorption rates of the film species, thereby affecting dopant incorporation mechanisms and allowing for the successful substitutional doping of the multilayer structures. Finally, surface morphology studies were completed using scanning electron microscopy (SEM) and Nomarsky optical microscopy to study the effects of substrate surface preparation, growth initiation, and growth parameters on the density of pyramidal hillocks, a common growth defect plaguing the Hg-based layers grown in the (100) direction. Conditions which minimize the hillock density for (100) film growth have been determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jincheng; Kim, Tong-Ho; Jiao, Wenyuan
Recent work has shown that Bi incorporation increases during molecular beam epitaxy (MBE) when surface processes are kinetically limited through increased growth rate. Herein we explore how the structural and optical properties of GaAs{sub 1−x}Bi{sub x} films are modified when grown under conditions with varying degrees of kinetic limitations realized through growth temperature and growth rate changes. Within the typical window of MBE growth conditions for GaAs{sub 1−x}Bi{sub x}, we compare films with similar (∼3%) compositions grown under conditions of reduced kinetic limitations, i.e., relatively low gallium supersaturation achieved at higher temperatures (∼350 °C) and lower growth rates (∼0.5 μm/h), tomore » those grown farther from equilibrium, specifically, higher supersaturation achieved at lower growth temperatures (∼290 °C) and higher growth rates (∼1.4 μm/h). Both the x-ray diffraction full width at half maximum of the omega-2theta scan and the 300 K photoluminescence intensity increase when samples are grown under less kinetically limited conditions. We interpret these findings in relation to the incorporation of Bi-related microstructural defects that are more readily formed during less kinetically limited growth. These defects lead to enhanced luminescence efficiency due to the spatial localization of carriers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, A.J.; Fritz, I.J.; Drummond, T.J.
1993-11-01
Using atomic force microscopy (AFM), the authors have investigated the effects of growth temperature and dopant incorporation on the surface morphology of MBE grown graded buffer layers and strained layer superlattices (SLSs) in the InGaAlAs/GaAs and InAsSb/InSb material systems. The AFM results show quantitatively that over the temperature range from 380 to 545 C, graded in{sub x}Al{sub 1{minus}x}As(x = 0.05 {minus} 0.32) buffer layers grown at high temperatures ({approximately}520 C), and graded In{sub x}Ga{sub 1{minus}x}As (x = 0.05 {minus} 0.33) buffer layers and In{sub 0.4}Ga{sub 0.6}As/In{sub 0.26}Al{sub 0.35}Ga{sub 0.39}As SLSs grown at low temperatures ({approximately}400 C) have the lowest RMSmore » roughness. Also, for SLSs InAs{sub 0.21}Sb{sub 0.79}/InSb, undoped layers grown at 470 C were smoother than undoped layers grown at 420 C and Be-doped layers grown at 470 C. These results illustrate the role of surface tension in the growth of strained layer materials near the melting temperature of the InAs{sub x}Sb{sub {minus}x}/InSb superlattice. Nomarski interference and transmission electron microscopies, IR photoluminescence, x-ray diffraction, and photocurrent spectroscopy were also used to evaluate the relative quality of the material but usually, the results were not conclusive.« less
The impact of substrate selection for the controlled growth of graphene by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Schumann, T.; Lopes, J. M. J.; Wofford, J. M.; Oliveira, M. H.; Dubslaff, M.; Hanke, M.; Jahn, U.; Geelhaar, L.; Riechert, H.
2015-09-01
We examine how substrate selection impacts the resulting film properties in graphene growth by molecular beam epitaxy (MBE). Graphene growth on metallic as well as dielectric templates was investigated. We find that MBE offers control over the number of atomic graphene layers regardless of the substrate used. High structural quality could be achieved for graphene prepared on Ni (111) films which were epitaxially grown on MgO (111). For growth either on Al2O3 (0001) or on (6√3×6√3)R30°-reconstructed SiC (0001) surfaces, graphene with a higher density of defects is obtained. Interestingly, despite their defective nature, the layers possess a well defined epitaxial relation to the underlying substrate. These results demonstrate the feasibility of MBE as a technique for realizing the scalable synthesis of this two-dimensional crystal on a variety of substrates.
State-of-the-art MCT photodiodes for cutting-edge sensor applications by AIM
NASA Astrophysics Data System (ADS)
Figgemeier, H.; Hanna, S.; Eich, D.; Fries, P.; Mahlein, K.-M.; Wenisch, J.; Schirmacher, W.; Beetz, J.; Breiter, R.
2017-02-01
For about 30 years, AIM has been ranking among the leading global suppliers for high-performance MCT infrared detectors, with its portfolio spanning the photosensitivity cut-off range from the SWIR to the VLWIR and from 1st generation to 3rd generation FPA devices. To meet the market demands for SWaP-C- and IR-detectors with additional functionalities such as multicolor detection, AIM employs both LPE and MBE technology. From AIḾs line of highest-performance single color detectors fabricated by LPE, we will present our latest excellent results of 5.3 μm cut-off MWIR MCT detectors with 1024x768 pixels and a 10 μm pixel pitch. AIM's powerful low dark current LWIR and VLWIR p-on-n device technology on LPE-grown MCT has now been extended to the MWIR spectral range. A comparison of results from n-on-p and p-on-n MWIR MCT planar photodiode arrays is presented. Operating temperatures of 160 K and higher, in conjunction with low defect density and excellent thermal sensitivity (NETD) are attained. The results achieved for LPE MWIR are compared to MBE MWIR data. For both the cost-efficient production of MWIR single color MCT detectors, as well as 3rd generation multicolor MCT detectors, AIM makes use of MBE growth of MCT on large-area GaAs substrates. The now-available AIM MWIR single color MBE MCT detectors grown on GaAs are qualified, delivered, and have reached a maturity fully meeting customers' requirements. Representing AIM's multicolor detector development, latest test results on a 640x512 pixels with a 20 μm pitch design will be presented. The MWIR/MWIR diodes demonstrate high QE, very low color cross talk, and excellent NETD in conjunction with low defect densities.
Effect of SiC buffer layer on GaN growth on Si via PA-MBE
NASA Astrophysics Data System (ADS)
Kukushkin, S. A.; Mizerov, A. M.; Osipov, A. V.; Redkov, A. V.; Telyatnik, R. S.; Timoshnev, S. N.
2017-11-01
The study is devoted to comparison of GaN thin films grown on SiC/Si substrates made by the method of atoms substitution with the films grown directly on Si substrates. The growth was performed in a single process via plasma assisted molecular beam epitaxy. The samples were studied via optical microscopy, Raman spectroscopy, ellipsometry, and a comparison of their characteristics was made. Using chemical etching in KOH, the polarity of GaN films grown on SiC/Si and Si substrates was determined.
Enhancing the far-UV sensitivity of silicon CMOS imaging arrays
NASA Astrophysics Data System (ADS)
Retherford, K. D.; Bai, Yibin; Ryu, Kevin K.; Gregory, J. A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winter, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.
2014-07-01
We report our progress toward optimizing backside-illuminated silicon PIN CMOS devices developed by Teledyne Imaging Sensors (TIS) for far-UV planetary science applications. This project was motivated by initial measurements at Southwest Research Institute (SwRI) of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures described in Bai et al., SPIE, 2008, which revealed a promising QE in the 100-200 nm range as reported in Davis et al., SPIE, 2012. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include: 1) Representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory (LL); 2) Preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; 3) Detector fabrication was completed through the pre-MBE step; and 4) Initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments. Early results suggest that potential challenges in optimizing the UV-sensitivity of silicon PIN type CMOS devices, compared with similar UV enhancement methods established for CCDs, have been mitigated through our newly developed methods. We will discuss the potential advantages of our approach and briefly describe future development steps.
High Power Mid Wave Infrared Semiconductor Lasers
2006-06-15
resonance and the gain spectrum. The devices were grown using solid source molecular beam epitaxy (MBE) in a V80 reactor. Two side polished, undoped...verify the inherent low activation energy. N-type and P-type AISb, and various compositions of InxAl 1xSb, were grown by solid-source molecular beam ...level monitoring. Advances in epitaxial growth of semiconductor materials have allowed the development of Arsenic- free optically-pumped MWIR lasers on
Possibilities for LWIR detectors using MBE-grown Si(/Si(1-x)Ge(x) structures
NASA Technical Reports Server (NTRS)
Hauenstein, Robert J.; Miles, Richard H.; Young, Mary H.
1990-01-01
Traditionally, long wavelength infrared (LWIR) detection in Si-based structures has involved either extrinsic Si or Si/metal Schottky barrier devices. Molecular beam epitaxially (MBE) grown Si and Si/Si(1-x)Ge(x) heterostructures offer new possibilities for LWIR detection, including sensors based on intersubband transitions as well as improved conventional devices. The improvement in doping profile control of MBE in comparison with conventional chemical vapor deposited (CVD) Si films has resulted in the successful growth of extrinsic Si:Ga, blocked impurity-band conduction detectors. These structures exhibit a highly abrupt step change in dopant profile between detecting and blocking layers which is extremely difficult or impossible to achieve through conventional epitaxial growth techniques. Through alloying Si with Ge, Schottky barrier infrared detectors are possible, with barrier height values between those involving pure Si or Ge semiconducting materials alone. For both n-type and p-type structures, strain effects can split the band edges, thereby splitting the Schottky threshold and altering the spectral response. Measurements of photoresponse of n-type Au/Si(1-x)Ge(x) Schottky barriers demonstrate this effect. For intersubband multiquntum well (MQW) LWIR detection, Si(1-x)Ge(x)/Si detectors grown on Si substrates promise comparable absorption coefficients to that of the Ga(Al)As system while in addition offering the fundamental advantage of response to normally incident light as well as the practical advantage of Si-compatibility. Researchers grew Si(1-x)Ge(x)/Si MQW structures aimed at sensitivity to IR in the 8 to 12 micron region and longer, guided by recent theoretical work. Preliminary measurements of n- and p-type Si(1-x)Ge(x)/Si MQW structures are given.
NASA Astrophysics Data System (ADS)
Iida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-ichiro
1995-01-01
A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV-30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C+) irradiation during MBE growth of GaAs was carried out at substrate temperatures Tg between 500 and 590 °C. C+-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. CAs acceptor-related emissions such as ``g,'' [g-g], and [g-g]β are observed and their spectra are significantly changed with increasing C+ beam current density Ic. PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for Tg as low as 500 °C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C+ with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.
Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.
Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron
2016-06-01
Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs.
Ex situ n+ doping of GeSn alloys via non-equilibrium processing
NASA Astrophysics Data System (ADS)
Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I. A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; Helm, M.; Skorupa, W.; Zhou, S.
2018-06-01
Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p- and n-type doped regions for both planar and tri-dimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1 × 1019 cm‑3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3 × 1015 cm‑2 and electron concentration of about 4 × 1019 cm‑3. The optical and structural properties of ion-implanted GeSn layers are comparable with the in situ doped MBE grown layers.
Enhanced kinetics of Al{sub 0.97}Ga{sub 0.03}As wet oxidation through the use of hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Du, M.; Sagnes, I.; Beaudoin, G.
2006-09-11
This letter reports on a different kinetic behavior of the wet thermal oxidation process resulting in Al{sub x}O{sub y} material depending on the AlAs material growth method, molecular beam epitaxy (MBE) or metal organic vapor phase epitaxy (MOVPE). A higher oxidation rate for MOVPE-grown materia is systemically found. Considering the major role of hydrogen in the wet oxidation reaction, it is believed this observation could be linked with the higher hydrogen residual concentration in MOVPE layers. Using a hydrogen plasma, MBE-grown Al{sub 0.97}Ga{sub 0.03}As layers were hydrogened prior to oxidation. This hydrogenated sample showed a ten times enhanced oxidation ratemore » as compared to the nonhydrogenated Al{sub 0.97}Ga{sub 0.03}As sample. This behavior is mainly attributed to a hydrogen induced modification of the diffusion limited regime, enhancing the diffusion length of oxidizing species and reaction products in the oxidized layers.« less
NASA Astrophysics Data System (ADS)
Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Varavin, V. S.; Dvoretskii, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Sidorov, G. Yu.
2017-12-01
Metal-insulator-semiconductor (MIS) structures based on n(p)-Hg1-xCdxTe (x = 0.22-0.40) with near-surface variable-gap layers were grown by the molecular-beam epitaxy (MBE) technique on the Si (0 1 3) substrates. Electrical properties of MIS structures were investigated experimentally at various temperatures (9-77 K) and directions of voltage sweep. The ;narrow swing; technique was used to determine the spectra of fast surface states with the exception of hysteresis effects. It is established that the density of fast surface states at the MCT/Al2O3 interface at a minimum does not exceed 3 × 1010 eV-1 × cm-2. For MIS structures based on n-MCT/Si(0 1 3), the differential resistance of the space-charge region in strong inversion mode in the temperature range 50-90 K is limited by the Shockley-Read-Hall generation in the space-charge region.
NASA Astrophysics Data System (ADS)
Tsai, Jenn-Kai; Chen, Y. L.; Gau, M. H.; Pang, W. Y.; Hsu, Y. C.; Lo, Ikai; Hsieh, C. H.
2008-03-01
In this study, AlGaN/GaN high electron mobility transistor (HEMT) structure was grow on GaN template substrate radio frequency plasma assisted molecular beam epitaxy (MBE) equipped with an EPI UNI-Bulb nitrogen plasma source. The undoped GaN template substrate was grown on c-sapphire substrate by metal organic vapor phase epitaxy system (MOPVD). After growth of MOVPE and MBE, the samples are characterized by double crystal X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), atomic force microscopy (AFM), and Hall effect measurements. We found that the RMS roughness of template substrate play the major role in got the high value of mobility on AlGaN/GaN HEMT. When the roughness was lower than 0.77 nm in a 25 μm x 25 μm area, the mobility of HEMT at the temperature of 77 K was over 10000 cm^2/Vs.
NASA Astrophysics Data System (ADS)
Wijewarnasuriya, P. S.
HgCdTe alloy is currently the most important semiconductor material for IR detection technology. Different growth techniques are used to produce HgCdTe, but achieving a high-quality material is still a major objective in the field. Among the growth techniques for HgCdTe, molecular beam epitaxy (MBE) is one of the most promising, mainly because of its versatility. Furthermore, the growth by MBE is carried out at a low temperature which limits interdiffusion processes. The focus of this research is the understanding of the electrical properties of HgCdTe layers grown by MBE technique. Using a model based on a single discrete acceptor level near the valence band and a corresponding fully ionized donor level, a good fit to the observed Hall data on p-type epilayers was obtained. In some samples, another acceptor level was needed. Also, analysis of R _{h} data and low temperature mobilities indicated that the p-type MBE growth layers were highly compensated. This was also confirmed by mercury saturated annealing experiments. Annealing of (111)B epilayers with Hg pressure leads us to believe that Hg vacancies are responsible for the p-type character. The findings reveal that the electrical properties differ drastically between different growth orientations, with (111)B having the highest residual doping levels for a particular Cd composition. It is concluded that MBE growth for HgCdTe is essentially a Te rich growth and our understanding is that this extra Te is responsible for the n-type character in the epilayers. A comparison between HgCdTe twinned layers and twin-free layers has shown that electrically active acceptors and high hole mobilities are associated with the presence of twins. Incorporation of several foreign elements also tried and all were found to substitute the metal sites during growth. With magnetic field studies on R_ {h}, resistivity and conductivity tensor analysis, the band structure of the HgCdTe alloy is also investigated. Junction depth and the doping profile on low energy Ar ion sputtered epilayers are investigated and they are found to behave similar to the ion implanted layers.
Single-step fabrication of homoepitaxial silicon nanocones by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Colniţă, Alia; Marconi, Daniel; Brătfălean, Radu Tiberiu; Turcu, Ioan
2018-04-01
The purpose of this work was to optimize a single-step fabrication process of silicon (Si) cones-like nanostructures on Si(111) reconstructed substrates. The substrate temperature is the most important parameter in the Si/Si growth, due to its high influence over the surface nanostructuring and the occurrence of well defined nanocones. We investigate the effect of different substrate temperatures on the density and size distributions of Si nanocones formed during the molecular beam epitaxy (MBE) deposition of Si/Si(111) 7 × 7 reconstructed surfaces. The nanocones were characterized using scanning tunnelling microscopy (STM) and the height and the bottom area distributions of the Si nanocones were assessed. It was found that the obtained distributions are interrelated suggesting the self-similarity of the nanostructures grown during the deposition protocol.
NASA Astrophysics Data System (ADS)
Oyanagi, H.; Tsukada, A.; Naito, M.; Saini, N. L.; Zhang, C.
2007-02-01
A Ge pixel array detector (PAD) with 100 segments was used in fluorescence x-ray absorption spectroscopy (XAS) study, probing local structure of high temperature superconducting thin film single crystals. Independent monitoring of individual pixel outputs allows real-time inspection of interference of substrates which has long been a major source of systematic error. By optimizing grazing-incidence angle and azimuthal orientation, smooth extended x-ray absorption fine structure (EXAFS) oscillations were obtained, demonstrating that strain effects can be studied using high-quality data for thin film single crystals grown by molecular beam epitaxy (MBE). The results of (La,Sr)2CuO4 thin film single crystals under strain are related to the strain dependence of the critical temperature of superconductivity.
NASA Astrophysics Data System (ADS)
Retherford, Kurt D.; Bai, Yibin; Ryu, Kevin K.; Gregory, James A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winters, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.
2015-10-01
We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures, which revealed a promising QE in the 100 to 200 nm range. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include the following: (1) representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory; (2) preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; (3) detector fabrication was completed through the pre-MBE step; and (4) initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments.
MBE growth of Topological Isolators based on strained semi-metallic HgCdTe layers
NASA Astrophysics Data System (ADS)
Grendysa, J.; Tomaka, G.; Sliz, P.; Becker, C. R.; Trzyna, M.; Wojnarowska-Nowak, R.; Bobko, E.; Sheregii, E. M.
2017-12-01
Particularities of Molecular Beam Epitaxial (MBE) technology for the growth of Topological Insulators (TI) based on the semi-metal Hg1-xCdx Te are presented. A series of strained layers grown on GaAs substrates with a composition close to the 3D Dirac point were studied. The composition of the layers was verified by means of the position of the E1 maximum in optical reflectivity in the visible region. The surface morphology was determined via atomic force and electron microscopy. Magneto-transport measurements show quantized Hall resistance curves and Shubnikov de Hass oscillations (up to 50 K). It has been demonstrated that a well-developed MBE technology enables one to grow strained Hg1-xCdx Te layers on GaAs/CdTe substrates with a well-defined composition near the 3D Dirac point and consequently allows one to produce a 3D topological Dirac semimetal - 3D analogy of graphene - for future applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Wan-Jian; Department of Physics & Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606; Yang, Ji-Hui
2015-10-05
The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surfacemore » structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.« less
Very thin, high Ge content Si 0.3Ge 0.7 relaxed buffer grown by MBE on SOI(0 0 1) substrate
NASA Astrophysics Data System (ADS)
Myronov, M.; Shiraki, Y.
2007-04-01
Growth procedure and excellent properties of very thin 240 nm thick, 95% relaxed, high Ge content Si 0.3Ge 0.7 buffer grown on SOI(0 0 1) substrate are demonstrated. All epilayers of the newly developed Si 0.3Ge 0.7/SOI(0 0 1) variable-temperature virtual substrate were grown in a single process by solid-source molecular beam epitaxy. Surface analysis of grown samples revealed smooth, cross-hatch free surface with low root mean square surface roughness of 0.9 nm and low threading dislocations density of 5×10 4 cm -2.
Homoepitaxial n-core: p-shell gallium nitride nanowires: HVPE overgrowth on MBE nanowires.
Sanders, Aric; Blanchard, Paul; Bertness, Kris; Brubaker, Matthew; Dodson, Christopher; Harvey, Todd; Herrero, Andrew; Rourke, Devin; Schlager, John; Sanford, Norman; Chiaramonti, Ann N; Davydov, Albert; Motayed, Abhishek; Tsvetkov, Denis
2011-11-18
We present the homoepitaxial growth of p-type, magnesium doped gallium nitride shells by use of halide vapor phase epitaxy (HVPE) on n-type gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy (MBE). Scanning electron microscopy shows clear dopant contrast between the core and shell of the nanowire. The growth of magnesium doped nanowire shells shows little or no effect on the lattice parameters of the underlying nanowires, as measured by x-ray diffraction (XRD). Photoluminescence measurements of the nanowires show the appearance of sub-bandgap features in the blue and the ultraviolet, indicating the presence of acceptors. Finally, electrical measurements confirm the presence of electrically active holes in the nanowires.
MBE growth of VCSELs for high volume applications
NASA Astrophysics Data System (ADS)
Jäger, Roland; Riedl, Michael C.
2011-05-01
Mass market applications like laser computer mouse or optical data transmission based on vertical-cavity surface-emitting laser (VCSEL) chips need a high over all yield including epitaxy, processing, dicing, mounting and testing. One yield limitation for VCSEL structures is the emission wavelength variation of the substrate surface area leading to the fraction on laser chips which are below or above the specification limits. For most 850 nm VCSEL products a resonator wavelength variation of ±2 nm is common. This represents an average resonator thickness variation of much less than 1% which is quite challenging to be fulfilled on the entire processed wafer surface area. A high over all yield is demonstrated on MBE grown VCSEL structures.
Optical Probing of Low-Pressure Solution Grown GaN Crystal Properties
2010-04-01
observed in Mg and Si doped epitaxial films deposited by MBE and MOCVD on freestanding GaN HVPE substrates [23–25]. Considering the purity of the precursors...bands with similar energy positions here reported, a dominant deeper acceptor impurity has been assigned to Zn , a well known deep acceptor in GaN . Room...00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Optical probing of low-pressure solution grown GaN crystal properties 5a. CONTRACT NUMBER 5b
Ideal Channel Field Effect Transistors
2010-03-01
well as on /?-GaAs/w-GaAs homojunctions grown by molecular beam epitaxy (MBE). The diode I-Vs at reverse bias are plotted below. The measured breakdown...transistors and composite channel InAlAs/InGaAs/lnP/InAlAs high electron mobility transistors ( HEMTs ), which have taken the full advantage of the matched...result in a large number of dislocations in GaAs films epitaxially grown on wurtzite GaN. In this work, we have successfully integrated GaAs with GaN
Effect of BST film thickness on the performance of tunable interdigital capacitors grown by MBE
NASA Astrophysics Data System (ADS)
Meyers, Cedric J. G.; Freeze, Christopher R.; Stemmer, Susanne; York, Robert A.
2017-12-01
Voltage-tunable, interdigital capacitors (IDCs) were fabricated on Ba0.29Sr0.71TiO3 grown by hybrid molecular beam epitaxy (MBE). In this growth technique, we utilize the metal-organic precursor titanium tetraisopropoxide rather than solid-source Ti as with conventional MBE. Two samples of varying BaxSr(1-x)TiO3 (BST) thicknesses were fabricated and analyzed. High-quality, epitaxial Pt electrodes were deposited by sputtering from a high-purity Pt target at 825 °C. The Pt electrodes were patterned and etched by argon ion milling, passivated with reactively sputtered SiO2, and then metallized with lift-off Ti/Au. The fabricated devices consisted of two-port IDCs embedded in ground-signal-ground, coplanar waveguide (CPW) transmission lines to enable radio-frequency (RF) probing. The sample included open and thru de-embedding structures to remove pad and CPW parasitic impedances. Two-port RF scattering (S) parameters were measured from 100 MHz to 40 GHz while DC bias was stepped from 0 V to 100 V. The IDCs exhibit a high zero-bias radio-frequency (RF) quality factor (Q) approaching 200 at 1 GHz and better than 2.3:1 capacitance tuning for the 300-nm-thick sample. Differences in the Q(V) and C(V) response with varying thicknesses indicate that unknown higher order material phenomena are contributing to the loss and tuning characteristics of the material.
NASA Astrophysics Data System (ADS)
Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro
1995-01-01
A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.
Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less
NASA Astrophysics Data System (ADS)
Takabe, Ryota; Yachi, Suguru; Tsukahara, Daichi; Toko, Kaoru; Suemasu, Takashi
2017-05-01
We grew BaSi2 films on Ge(111) substrates by various growth methods based on molecular beam epitaxy (MBE). First, we attempted to form BaSi2 films directly on Ge(111) by MBE without templates. We next formed BaSi2 films using BaGe2 templates as commonly used for MBE growth of BaSi2 on Si substrates. Contrary to our prediction, the lateral growth of BaSi2 was not promoted by these two methods; BaSi2 formed not into a continuous film but into islands. Although streaky patterns of reflection high-energy electron diffraction were observed inside the growth chamber, no X-ray diffraction lines of BaSi2 were observed in samples taken out from the growth chamber. Such BaSi2 islands were easily to get oxidized. We finally attempted to form a continuous BaSi2 template layer on Ge(111) by solid phase epitaxy, that is, the deposition of amorphous Ba-Si layers onto MBE-grown BaSi2 epitaxial islands, followed by post annealing. We achieved the formation of an approximately 5-nm-thick BaSi2 continuous layer by this method. Using this BaSi2 layer as a template, we succeeded in forming a-axis-oriented 520-nm-thick BaSi2 epitaxial films on Ge substrates, although (111)-oriented Si grains were included in the grown layer. We next formed a B-doped p-BaSi2(20 nm)/n-Ge(111) heterojunction solar cell. A wide-spectrum response from 400 to 2000 nm was achieved. At an external bias voltage of 1 V, the external quantum efficiency reached as high as 60%, demonstrating the great potential of BaSi2/Ge combination. However, the efficiency of a solar cell under AM1.5 illumination was quite low (0.1%). The origin of such a low efficiency was examined.
Structural and optical characteristics of GaAs films grown on Si/Ge substrates
NASA Astrophysics Data System (ADS)
Rykov, A. V.; Dorokhin, M. V.; Vergeles, P. S.; Baidus, N. V.; Kovalskiy, V. A.; Yakimov, E. B.; Soltanovich, O. A.
2018-03-01
A GaAs/AlAs heterostructure and a GaAs film grown on Si/Ge substrates have been fabricated and studied. A Ge buffer on a silicon substrate was fabricated using the MBE process. A3B5 films were grown by MOCVD at low pressures. Photoluminescence spectroscopy was used to define the optical quality of A3B5 films. Structural properties were investigated using the electron beam induced current method. It was established that despite a rather high density of dislocations on the epitaxial layers, the detected photoluminescence radiation of layers indicates the acceptable crystalline quality of the top GaAs layer.
Materials Physics | Materials Science | NREL
capabilities in this area. Electronic Raman scattering as an ultra-sensitive probe of strain effects in research capabilities in this area. Effects of incident UV light on surface morphology of MBE grown GaAs example, we seek to predict the effects of soiling for different environmental conditions. We are working
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che
2012-06-29
GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 {mu}m and 0.095 {mu}m for GaN and AlN layers, respectively. The XRD spectra indicate that no sign ofmore » cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.« less
MBE growth of strain-compensated InGaAs/InAlAs/InP quantum cascade lasers
NASA Astrophysics Data System (ADS)
Gutowski, P.; Sankowska, I.; Karbownik, P.; Pierścińska, D.; Serebrennikova, O.; Morawiec, M.; Pruszyńska-Karbownik, E.; Gołaszewska-Malec, K.; Pierściński, K.; Muszalski, J.; Bugajski, M.
2017-05-01
We investigate growth conditions for strain-compensated In0.67Ga0.33As/In0.36Al0.64As/InP quantum cascade lasers (QCLs) by solid-source molecular beam epitaxy (SSMBE). The extensive discussion of growth procedures is presented. The technology was first elaborated for In0.53Ga0.47As/In0.52Al0.48As material system lattice matched to InP. After that QCLs with lattice matched active region were grown for validation of design and obtained material quality. The next step was elaboration of growth process and especially growth preparation procedures for strain compensated active regions. The grown structures were examined by HRXRD, AFM, and TEM techniques. The on-line implementation of obtained results in subsequent growth runs was crucial for achieving room temperature operating 4.4-μm lasers. For uncoated devices with Fabry-Perrot resonator up to 250 mW of optical power per facet at 300 K was obtained under pulsed conditions. The paper focuses on MBE technology and presents developed algorithm for strain-compensated QCL growth.
Strain-induced phenomenon in complex oxide thin films
NASA Astrophysics Data System (ADS)
Haislmaier, Ryan
Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of nonstoichiometry on ferroelectric properties are investigated, where enhanced ferroelectric responses are only found for stoichiometric films grown inside of the growth windows, whereas outside of the optimal growth window conditions, ferroelectric properties are greatly deteriorated and eventually disappear for highly nonstoichiometric film compositions. Utilizing these stoichiometric growth windows, high temperature polar phase transitions are discovered for compressively strained CaTiO3 films with transition temperatures in excess of 700 K, rendering this material as a strong candidate for high temperature electronic applications. Beyond the synthesis of single phase materials using hybrid MBE, a methodology is presented for constructing layered (SrTiO3)n/(CaTiO 3)n superlattice structures, where precise control over the unit cell layering thickness (n) is demonstrated using in-situ reflection high energy electron diffraction. The effects of interface roughness and layering periodicity (n) on the strain-induced ferroelectric properties for a series of n=1-10 (SrTiO3)n/(CaTiO3) n superlattice films are investigated. It is found that the stabilization of a ferroelectric phase is independent of n, but is however strongly dominated by the degree of interface roughness which is quantified by measuring the highest nth order X-ray diffraction peak splitting of each superlattice film. A counter-intuitive realization is made whereby a critical amount of interface roughness is required in order to enable the formation of the predicted strain-stabilized ferroelectric phase, whereas sharp interfaces actually suppress this ferroelectric phase from manifesting. It is shown how high-quality complex oxide superlattices can be constructed using hybrid MBE technique, allowing the ability to control layered materials at the atomic scale. Furthermore, a detailed growth methodology is provided for constructing a layered n=4 SrO(SrTiO3)n Ruddlesden-Popper (RP) phase by hybrid MBE, where the ability to deposit single monolayers of SrO and TiO2 is utilized to build the RP film structure over a time period of 5 hours. This is the first time that a thin film RP phase has been grown using hybrid MBE, where an a stable control over the fluxes is demonstrated during relatively long time periods of growth, which advantageously facilitates the synthesis of high-quality RP materials with excellent structural and chemical homogeneity. Additionally, this work demonstrates some major advancements in optical second harmonic generation (SHG) characterization techniques of ferroelectric thin film materials. The SHG characterization techniques developed here proved to be the 'bread-and-butter' for most of the work performed in this thesis, providing a powerful tool for identifying the existence of strain-induced ferroelectric phases, including their temperature dependence and polar symmetry. The work presented in this dissertation will hopefully provide a preliminary road map for future hybrid MBE growers, scientists and researchers, to develop and investigate epitaxial strain and heterostructure layering induced phenomena in other complex oxide systems.
Strained GaSb/AlAsSb Quantum Wells for p-Channel Field-Effect Transistors
2008-01-01
Available online 18 October 2008 PACS: 72.80.Ey 73.61.Ey 81.05.Ea 85.30.Tv Keywords: A3. Molecular beam epitaxy A3. Quantum wells B2. Semiconducting III–V...were grown by molecular beam epitaxy on GaAs substrates. The buffer layer and barrier layers consisted of relaxed AlAsxSb1x. The composition of the...composition in order to control the strain in the GaSb quantum well. The heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi
2010-05-17
arranged by Prof. A. Zaslavsky Keywords: Gallium nitride High electron mobility transistor Molecular beam epitaxy Homoepitaxy Doping a b s t r a c t AlGaN...GaN/Be:GaN heterostructures have been grown by rf-plasma molecular beam epitaxy on free- standing semi-insulating GaN substrates, employing...hydride vapor phase epitaxy (HVPE) grown GaN sub- strates has enabled the growth by molecular beam epitaxy (MBE) of AlGaN/GaNHEMTswith significantly
NASA Astrophysics Data System (ADS)
Yachi, Suguru; Takabe, Ryota; Deng, Tianguo; Toko, Kaoru; Suemasu, Takashi
2018-04-01
We investigated the effect of BaSi2 template growth duration (t RDE = 0-20 min) on the defect generation and performance of p-BaSi2/n-Si heterojunction solar cells. The p-BaSi2 layer grown by molecular beam epitaxy (MBE) was 15 nm thick with a hole concentration of 2 × 1018 cm-3. The conversion efficiency η increased for films grown at long t RDE, owing to improvements of the open-circuit voltage (V OC) and fill factor (FF), reaching a maximum of η = 8.9% at t RDE = 7.5 min. However, η decreased at longer and shorter t RDE owing to lower V OC and FF. Using deep-level transient spectroscopy, we detected a hole trap level 190 meV above the valence band maximum for the sample grown without the template (t RDE = 0 min). An electron trap level 106 meV below the conduction band minimum was detected for a sample grown with t RDE = 20 min. The trap densities for both films were (1-2) × 1013 cm-3. The former originated from the diffusion of Ba into the n-Si region; the latter originated from defects in the template layer. The crystalline qualities of the template and MBE-grown layers were discussed. The root-mean-square surface roughness of the template reached a minimum of 0.51 nm at t RDE = 7.5 min. The a-axis orientation of p-BaSi2 thin films degraded as t RDE exceeded 10 min. In terms of p-BaSi2 crystalline quality and solar cell performance, the optimum t RDE was determined to be 7.5 min, corresponding to approximately 4 nm in thickness.
NASA Astrophysics Data System (ADS)
Vogt, A.; Schütt, S.; Frei, K.; Fiederle, M.
2017-11-01
This work investigates the potential of CdTe semiconducting layers used for radiation detection directly deposited on the Medipix readout-chip by MBE. Due to the high Z-number of CdTe and the low electron-hole pair creation energy a thin layer suffices for satisfying photon absorption. The deposition takes place in a modified MBE system enabling growth rates up to 10 μm/h while the UHV conditions allow the required high purity for detector applications. CdTe sensor layers deposited on silicon substrates show resistivities up to 5.8 × 108 Ω cm and a preferred (1 1 1) orientation. However, the resistivity increases with higher growth temperature and the orientation gets more random. Additionally, the deposition of a back contact layer sequence in one process simplifies the complex production of an efficient contact on CdTe with aligned work functions. UPS measurements verify a decrease of the work function of 0.62 eV induced by Te doping of the CdTe.
Growth and Characterization of Wide Bandgap Semiconductor Oxide Thin Films
NASA Astrophysics Data System (ADS)
Ghose, Susmita
Wide bandgap semiconductors are receiving extensive attention due to their exceptional physical and chemical properties making them useful for high efficiency and high power electronic devices. Comparing other conventional wide bandgap materials, monoclinic beta-Ga2O3 also represents an outstanding semiconductor oxide for next generation of UV optoelectronics and high temperature sensors due to its wide band gap ( 4.9eV). This new semiconductor material has higher breakdown voltage (8MV/cm) and n-type conductivity which make it more suitable for potential application as high power electronics. The properties and potential applications of these wide bandgap materials have not yet fully explored. In this study, the growth and characterization of single crystal beta-Ga2O3 thin films grown on c-plane sapphire (Al2O3) substrate using two different techniques; molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) techniques has been investigated. The influence of the growth parameters of MBE and PLD on crystalline quality and surface has been explored. Two methods have been used to grow Ga2O3 using MBE; one method is to use elemental Ga and the second is the use of a polycrystalline Ga2O3 compound source with and without an oxygen source. Using the elemental Ga source, growth rate of beta-Ga2O3 thin films was limited due to the formation and desorption of Ga2O molecules. In order to mitigate this problem, a compound Ga2O3 source has been introduced and used for the growth of crystalline beta-Ga2O 3 thin films without the need for additional oxygen since this source produces Ga-O molecules and additional oxygen. Two different alloys (InGa) 2O3 and (AlGa)2O3 has been grown on c-plane sapphire substrate by pulsed laser deposition technique to tune the bandgap of the oxide thin films from 3.5-8.6 eV suitable for applications such as wavelength-tunable optical devices, solid-state lighting and high electron mobility transistors (HEMTs). The crystallinity, chemical bonding, surface morphology and optical properties have been systematically evaluated by a number of in-situ and ex-situ techniques. The crystalline Ga2O 3 films showed pure phase of (2¯01) plane orientation and in-plane XRD phi-scan exhibited the six-fold rotational symmetry for beta-Ga 2O3 when grown on sapphire substrate. The alloys exhibit different phases has been stabilized depending on the compositions. Finally, a metal-semiconductor-metal (MSM) structure deep-ultraviolet (DUV) photodetector has been fabricated on beta-Ga2O3 film grown with an optimized growth condition has been demonstrated. This photodetector exhibited high resistance as well as small dark current with expected photoresponse for 254 nm UV light irradiation suggesting beta-Ga2O3 thin films as a potential candidate for deep-UV photodetectors. While the grown Ga2O3 shows high resistivity, the electrical properties of (In0.6Ga0.4)2O3 and (In 0.8Ga0.2)2O3 alloys show low resistivity with a high carrier concentration and increasing mobility with In content.
Photoluminescence Studies on InAs/InSb Nanostructures Grown by MBE
2000-06-23
temperatures [61. One should stress especially that the main problem here is intermixing of group V elements at the interfaces. Since we used conventional solid...Nicolas, N. J. Mason and B. Zhang, Appl. Phys. Let. 74, 2041 (1999). [5] N. Bertru, A. Baranov, Y. Cuminal , G. Almuneau, F. Genty, A. Joullie, 0. Brandt, A
Optical Characterization of IV-VI Mid-Infrared VCSEL
2002-01-01
vertical cavity surface emitting laser ( VCSEL ). A power...il quantum well (QW) devices [5], there has little progress until recently in developing mid-IR vertical cavity surface emitting laser ( VCSEL ). This...structures and PbSrSe thin films were grown on Bat; (111) substrates by molecular beam epitaxy ( MBE ) and characterized by Fourier transform infi-ared
NASA Astrophysics Data System (ADS)
Yusoff, Mohd Zaki Mohd; Mahyuddin, Azzafeerah; Hassan, Zainuriah; Hassan, Haslan Abu; Abdullah, Mat Johar
2012-06-01
Recently, gallium nitride (GaN) and its related compounds involving Al and In have attracted much attention because of their potential to be used as high-efficiency UV light emitting devices, and as high frequency and high power electronic devices. Consequently, the growth and physics of GaN-based materials have attracted remarkable scientific attention. In this work, the growth and characterization of epitaxial Al0.29Ga0.71N and AlN layers grown on Si (111) by RF-plasma assisted molecular beam epitaxy (MBE) are described. The Al mole fraction was derived from the HR-XRD symmetric rocking curve (RC) ω/2θ scans of (0002) plane as x = 0.29. For AlN/GaN/AlN sample, the maximum Raman intensity at 521.53 cm-1 is attributed to crystalline silicon. It was found that the allowed Raman optical phonon mode of GaN, the E1 (high) is clearly visible, which is located at 570.74 cm-1. Photoluminscence (PL) spectrums of both samples have shown sharp and intense band edge emission of GaN without the existence of yellow emission band, showing good crystal quality of the samples have been successfully grown on Si substrate.
Nitrogen Plasma Optimization for High-Quality Dilute Nitrides
2005-02-01
Available online 1 February 2005Abstract Growth of GaInNAs by molecular beam epitaxy (MBE) generally requires a nitrogen plasma, which complicates growth...InGaAs and InGaAsP lasers. This paper addresses several of the challenges of plasma-assisted molecular beam epitaxy (MBE) of high-quality dilute nitrides...A.L. Holmes, Using beam flux monitor as Langmuir probe for plasma-assisted molecular beam epitaxy , J. Vac. Sci. Technol. B, in press.
NASA Astrophysics Data System (ADS)
Aouassa, Mansour; Jadli, Imen; Hassayoun, Latifa Slimen; Maaref, Hassen; Panczer, Gerard; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle
2017-12-01
Composition and microstructure of Ge grown on porous silicon (PSi) by Molecular Beam Epitaxy (MBE) at different temperatures are examined using High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. Ge grown at 400 °C on PSi buffer produces a planar Ge film with high crystalline quality compared to Ge grown on bulk Si. This result is attributed to the compliant nature of PSi. Increasing growth temperature >600 °C, changes the PSi morphology, increase the Ge/Si intermixing in the pores during Ge growth and lead to obtain a composite SiGe/Si substrate. Ge content in the composite SiGe substrate can controlled via growth temperature. These substrates serve as low cost virtual substrate for high efficiency III-V/Si solar cells.
Photoluminescence study of MBE grown InGaN with intentional indium segregation
NASA Astrophysics Data System (ADS)
Cheung, Maurice C.; Namkoong, Gon; Chen, Fei; Furis, Madalina; Pudavar, Haridas E.; Cartwright, Alexander N.; Doolittle, W. Alan
2005-05-01
Proper control of MBE growth conditions has yielded an In0.13Ga0.87N thin film sample with emission consistent with In-segregation. The photoluminescence (PL) from this epilayer showed multiple emission components. Moreover, temperature and power dependent studies of the PL demonstrated that two of the components were excitonic in nature and consistent with indium phase separation. At 15 K, time resolved PL showed a non-exponential PL decay that was well fitted with the stretched exponential solution expected for disordered systems. Consistent with the assumed carrier hopping mechanism of this model, the effective lifetime, , and the stretched exponential parameter, , decrease with increasing emission energy. Finally, room temperature micro-PL using a confocal microscope showed spatial clustering of low energy emission.
NASA Technical Reports Server (NTRS)
Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.
1992-01-01
SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.
2010-12-24
nano-thick Al2O3, HfO2, and Ga2O3 (Gd2O3)/ InGaAs (and GaN) using high-resolution x-ray reflectivity using in-situ/ex-situ high-resolution synchrotron...aligned inversion-channel In0.75Ga0.25As MOSFETs using MBE- grown Al2O3/ Ga2O3 (Gd2O3) Chips integrating high κ’s/InGaAs and /Ge onto Si substrates have...using molecular beam epitaxy (MBE)-Al2O3/ Ga2O3 (Gd2O3) [GGO] and atomic layer deposited (ALD)-Al2O3, with gate lengths (LG) of 1 μm and 0.4 μm
The Development of Ultraviolet Light Emitting Diodes on p-SiC Substrates
NASA Astrophysics Data System (ADS)
Brummer, Gordon
Ultraviolet (UV) light emitting diodes (LEDs) are promising light sources for purification, phototherapy, and resin curing applications. Currently, commercial UV LEDs are composed of AlGaN-based n-i-p junctions grown on sapphire substrates. These devices suffer from defects in the active region, inefficient p-type doping, and poor light extraction efficiency. This dissertation addresses the development of a novel UV LED device structure, grown on p-SiC substrates. In this device structure, the AlGaN-based intrinsic (i) and n-layers are grown directly on the p-type substrate, forming a p-i-n junction. The intrinsic layer (active region) is composed of an AlN buffer layer followed by three AlN/Al0.30Ga0.70N quantum wells. After the intrinsic layer, the n-layer is formed from n-type AlGaN. This device architecture addresses the deficiencies of UV LEDs on sapphire substrates while providing a vertical device geometry, reduced fabrication complexity, and improved thermal management. The device layers were grown by molecular beam epitaxy (MBE). The material properties were optimized by considering varying growth conditions and by considering the role of the layer within the device. AlN grown at 825 C and with a Ga surfactant yielded material with screw dislocation density of 1x10 7 cm-2 based on X-ray diffraction (XRD) analysis. AlGaN alloys grown in this work contained compositional inhomogeneity, as verified by high-resolution XRD, photoluminescence, and absorption measurements. Based on Stokes shift measurements, the degree of compositional inhomogeneity was correlated with the amount of excess Ga employed during growth. Compositional inhomogeneity yields carrier localizing potential fluctuations, which are advantages in light emitting device layers. Therefore, excess Ga growth conditions were used to grow AlN/Al0.30Ga0.70N quantum wells (designed using a wurtzite k.p model) with 35% internal quantum efficiency. Potential fluctuations limit the mobility of carriers and introduce sub-bandgap absorption, making them undesirable in the n-AlGaN layers. n-Al0.60Ga 0.40N grown under stoichiometric Ga flux and an In surfactant reduced the Stokes shift (compared to n-AlGaN grown without In) by 150 meV. However, even under these growth modes, some compositional inhomogeneity persisted which is speculatively attributed to the vicinal substrate. Device epitaxial layer stacks utilizing the optimum growth conditions were fabricated into prototype vertical UV LEDs which emit from 295-320 nm. In order to increase light extraction efficiency, UV distributed Bragg reflectors (DBRs) based on compositionally graded AlGaN alloys were designed using the transfer matrix method (TMM) and grown by MBE. DBRs were formed from repeated compositionally graded AlGaN alloys. This structure utilized the polarization doping and index of refraction variation of graded composition AlGaN. DBRs with square wave, sinusoidal, triangular, and sawtooth compositional profiles were realized, with reflectivity peaks over 50%, centered at 280 nm.
NASA Astrophysics Data System (ADS)
Babichev, A. V.; Karachinsky, L. Ya.; Novikov, I. I.; Gladyshev, A. G.; Mikhailov, S.; Iakovlev, V.; Sirbu, A.; Stepniak, G.; Chorchos, L.; Turkiewicz, J. P.; Agustin, M.; Ledentsov, N. N.; Voropaev, K. O.; Ionov, A. S.; Egorov, A. Yu.
2017-02-01
We report for the first time on wafer-fused InGaAs-InP/AlGaAs-GaAs 1550 nm vertical-cavity surface-emitting lasers (VCSELs) incorporating a InAlGaAs/InP MQW active region with re-grown tunnel junction sandwiched between top and bottom undoped AlGaAs/GaAs distributed Bragg reflectors (DBRs) all grown by molecular beam epitaxy. InP-based active region includes seven compressively strained quantum wells (2.8 nm) optimized to provide high differential gain. Devices with this active region demonstrate lasing threshold current < 2.5 mA and output optical power > 2 mW in the temperature range of 10-70°C. The wall-plug efficiency (WPE) value-reaches 20 %. Lasing spectra show single mode CW operation with a longitudinal side mode suppression ratio (SMSR) up to 45 dB at > 2 mW output power. Small signal modulation response measurements show a 3-dB modulation bandwidth of 9 GHz at pump current of 10 mA and a D-factor value of 3 GHz/(mA)1/2. Open-eye diagram at 30 Gb/s of standard NRZ is demonstrated. Achieved CW and modulation performance is quite sufficient for fiber to the home (FTTH) applications where very large volumes of low-cost lasers are required.
High Quality GaAs Growth by MBE on Si Using GeSi Buffers and Prospects for Space Photovoltaics
NASA Technical Reports Server (NTRS)
Carlin, J. A.; Ringel, S. A.; Fitzgerald, E. A.; Bulsara, M.
2005-01-01
III-V solar cells on Si substrates are of interest for space photovoltaics since this would combine high performance space cells with a strong, lightweight and inexpensive substrate. However, the primary obstacles blocking III-V/Si cells from achieving high performance to date have been fundamental materials incompatabilities, namely the 4% lattice mismatch between GaAs and Si, and the large mismatch in thermal expansion coefficient. In this paper, we report on the molecular beam epitaxial (MBE) growth and properties of GaAs layers and single junction GaAs cells on Si wafers which utilize compositionally graded GeSi Intermediate buffers grown by ultra-high vacuum chemical vapor deposition (UHVCVD) to mitigate the large lattice mismatch between GaAs and Si. Ga As cell structures were found to incorporate a threading dislocation density of 0.9-1.5 x 10 (exp 6) per square centimeter, identical to the underlying relaxed Ge cap of the graded buffer, via a combination of transmission electron microscopy, electron beam induced current, and etch pit density measurements. AlGaAs/GaAs double heterostructures wre grown on the GeSi/Si substrates for time-resolved photoluminescence measurements, which revealed a bulk GaAs minority carrier lifetime in excess of 10 ns, the highest lifetime ever reported for GaAs on Si. A series of growth were performed to ass3ss the impact of a GaAs buffer to a thickness of only 0.1 micrometer. Secondary ion mass spectroscopy studies revealed that there is negligible cross diffusion of Ga, As and Ge at he III-V/Ge interface, identical to our earlier findings for GaAs grown on Ge wafers using MBE. This indicates that there is no need for a buffer to "bury" regions of high autodopjing,a nd that either pn or np configuration cells are easily accomodated by these substrates. Preliminary diodes and single junction Al Ga As heteroface cells were grown and fabricated on the Ge/GeSi/Si substrates for the first time. Diodes fabricated on GaAs, Ge and Ge/GeSi/Si substrate show nearly identical I-V characteristics in both forward and reverse bias regions. External quantum efficiencies of AlGaAs/GaAs cell structures grown on Ge/GeSi/Si and Ge substrates demonstrated nearly identical photoresponse, which indicates that high lifetimes, diffusion lengths and efficient minority carrier collection is maintained after complete cell processing.
Research in the Optical Sciences
1990-03-12
organics for guided wave devices; nonlinear propagation and wave mixing in sodium vapor: gain/feedback approach to optical instabilities; conical... SODIUM VAPOR: GAIN/FEEDBACK APPROACH TO OPTICAL INSTABILITIES; CONICAL EMISSION; KALEIDOSCOPIC SPATIAL INSTABILITY G. Khitrova and H . M . Gibbs...Falco, "Ex situ characterization of MBE-grown molybdenum silicide thin films, The 8th Annual Symposium of the Arizona chapter of The American Vacuum
ASSESSMENT OF GALLIUM OXIDE TECHNOLOGY
2017-08-01
molecular beam epitaxy (MBE)) [45], this approach was abandoned. More recently, anodic oxides of GaAs grown at low temperatures were treated in oxygen ... temperature . In general, more oxygen is provided than that can be incorporated during the growth (i.e. oxygen rich growth). Sometimes, it is...26 Figure 19: Temperature -dependent Thermal Conductivity of β-Ga2O3 Measured along Different Crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Abhinav, E-mail: praka019@umn.edu; Dewey, John; Yun, Hwanhui
Owing to its high room-temperature electron mobility and wide bandgap, BaSnO{sub 3} has recently become of significant interest for potential room-temperature oxide electronics. A hybrid molecular beam epitaxy (MBE) approach for the growth of high-quality BaSnO{sub 3} films is developed in this work. This approach employs hexamethylditin as a chemical precursor for tin, an effusion cell for barium, and a radio frequency plasma source for oxygen. BaSnO{sub 3} films were thus grown on SrTiO{sub 3} (001) and LaAlO{sub 3} (001) substrates. Growth conditions for stoichiometric BaSnO{sub 3} were identified. Reflection high-energy electron diffraction (RHEED) intensity oscillations, characteristic of a layer-by-layermore » growth mode were observed. A critical thickness of ∼1 nm for strain relaxation was determined for films grown on SrTiO{sub 3} using in situ RHEED. Scanning transmission electron microscopy combined with electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy confirmed the cube-on-cube epitaxy and composition. The importance of precursor chemistry is discussed in the context of the MBE growth of BaSnO{sub 3}.« less
The structural and optical properties of high-Al-content AlInGaN epilayers grown by RF-MBE
NASA Astrophysics Data System (ADS)
Wang, Baozhu; An, Tao; Wen, Huanming; Wu, Ruihong; An, Shengbiao; Zhang, Xiuqing; Wang, Xiaoliang
2008-11-01
AlInGaN Quaternary Alloys were successfully grown on sapphire substrate by radio-frequency plasma-excited molecular beam epitaxy (RF-MBE). Different Al content AlInGaN quaternary alloys were acquired by changing the Al cell's temperature. The streaky RHEED pattern observed during AlInGaN growth showed the layer-by-layer growth mode. Rutherford back-scattering spectrometry (RBS), X-Ray diffraction (XRD) and Cathodoluminescence (CL) were used to characterize the structural and optical properties of the AlInGaN alloys. The experimental results show that the AlInGaN with appropriate Al cell's temperature, could acquire Al/In ratio near 4.7, then could acquire better crystal and optical quality. The samllest X-ray and CL full-width at half-maximum (FWHM) of the AlInGaN are 5arcmin and 25nm, respectivly. There are some cracks and V-defects occur in high-Al/In-ratio AlInGaN alloys. In the CL image, the cracks and V-defect regions are the emission-enhanced regions. The emission enhancement of the cracked and V-defect regions may be related to the In-segregation.
Electrical characterization of HgTe nanowires using conductive atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundersen, P.; Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim; Kongshaug, K. O.
Self-organized HgTe nanowires grown by molecular beam epitaxy (MBE) have been characterized using conductive atomic force microscopy. As HgTe will degrade or evaporate at normal baking temperatures for electron beam lithography (EBL) resists, an alternative method was developed. Using low temperature optical lithography processes, large Au contacts were deposited on a sample covered with randomly oriented, lateral HgTe nanowires. Nanowires partly covered by the large electrodes were identified with a scanning electron microscope and then localized in the atomic force microscope (AFM). The conductive tip of the AFM was then used as a movable electrode to measure current-voltage curves atmore » several locations on HgTe nanowires. The measurements revealed that polycrystalline nanowires had diffusive electron transport, with resistivities two orders of magnitude larger than that of an MBE-grown HgTe film. The difference can be explained by scattering at the rough surface walls and at the grain boundaries in the wires. The method can be a solution when EBL is not available or requires too high temperature, or when measurements at several positions along a wire are required.« less
Structural and electrical investigations of MBE-grown SiGe nanoislands
NASA Astrophysics Data System (ADS)
Şeker, İsa; Karatutlu, Ali; Gürbüz, Osman; Yanık, Serhat; Bakış, Yakup; Karakız, Mehmet
2018-01-01
SiGe nanoislands were grown by Molecular Beam Epitaxy (MBE) method on Si (100) substrates with comparative growth parameters such as annealing temperature, top Ge content and layer-by-layer annealing (LBLA). XRD and Raman data suggest that annealing temperature, top Ge content and layer-by-layer annealing (LBLA) can overall give a control not only over the amorphous content but also over yielding the strained Ge layer formation in addition to mostly Ge crystallites. Depending on the layer design and growth conditions, size of the crystallites was observed to be changed. Four Point Probe (FPP) Method via Semiconductor Analyzer shows that 100 °C rise in annealing temperature of the samples with Si0.25Ge0.75 top layers caused rougher islands with vacancies which further resulted in the formation of laterally higher resistive thin film sheets. However, vertically performed I-AFM analysis produced higher I-V values which suggest that the vertical and horizantal conductance mechanisms appear to be different. Ge top-layered samples gained greater crystalline structure and better surface conductivity where LBLA resulted in the formation of Ge nucleation and tight 2D stacking resulting in enhanced current values.
Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates
NASA Astrophysics Data System (ADS)
Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.
2016-09-01
We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.
Tunable dielectric response, resistive switching, and unconventional transport in SrTiO3
NASA Astrophysics Data System (ADS)
Mikheev, Evgeny
The first section of this thesis discusses integration of SR TiO3 grown by molecular beam epitaxy (MBE) in vertical device structures. One target application is as a tunable dielectric. Parallel plate capacitors based on epitaxial Pt(001) bottom electrodes and (Ba,Sr)TiO 3 dielectric layers grown by MBE are demonstrated. Optimization of structural quality of the vertical stack is shown to produce very low dielectric loss combined with very high tunability of the dielectric constant by DC bias. This results in considerable improvement of common figures of merit for varactor performance in comparison to previous reports. Another target application for transition metals oxides is in resistive switching memories, which are based on the hysteretic current-voltage response observed in many oxide-based Schottky junctions and capacitors. A study on the role of metal/oxide interface quality is presented. In particular, the use of epitaxial Pt(001) as Schottky contacts to Nb:SRTiO 3 is shown to suppress resistive switching hysteresis by eliminating unintentional contributions to interface capacitance. Such uncontrolled factors are discussed as a probable root cause for poor reproducibility in resistive switching memories, currently a ubiquitous challenge in the field. Potential routes towards stabilizing reproducible switching through intentional control of defect densities in high-quality structures are discussed, including a proof of concept demonstration using Schottky junctions incorporating intentionally non-stoichiometric SRTiO3 interlayers grown by MBE. The second section of this thesis is concerned with unconventional electronic transport in SRTiO3. A systematic description of scattering mechanisms will be presented for three related material systems: uniformly-doped SRTiO3, two-dimensional electron liquids (2DEL) at SRTiO3/RTiO 3 interfaces (R = Gd, Sm) and confined 2DELs in RTiO3/SRTiO3/ RTiO3 quantum wells. In particular, the prevalence of a well-defined T2 scattering rate in doped SRTiO3 will be discussed as being incompatible with its traditional assignment as electron-electron scattering in a Fermi liquid. In the case of ultrathin SRTiO3 quantum wells bound by RTiO3, evidence will be presented for the existence of a quantum critical point. This refers to a quantum phase transition at zero temperature towards an ordered phase in SRTiO 3. This transition is driven by increasing confinement of the 2DEL, with a critical point located at the 5 SrO layer thickness of SRTiO 3. It is manifested in anomalous temperature exponents of the power law resistivity. Additionally, a well-defined trend for the separation of the Hall and longitudinal scattering rates will be presented, analogously to a similar effect observed in the normal state of high-Tc superconductors. In particular, a unique pattern of residual scattering separation was documented, consistent with a quantum critical correction to the Hall lifetime that is divergent at the quantum critical point.
Growth and Structure of High-Temperature Superconducting Thin Films
NASA Astrophysics Data System (ADS)
Achutharaman, Vedapuram Sankar
High temperature superconducting thin films with atomic scale perfection are required for technological applications and scientific studies on the mechanism of superconductivity. Ozone assisted molecular beam epitaxy (MBE) has been shown to produce in-situ superconducting thin films. To obtain a well-controlled and reproducible process, some components such as the substrate heater and the substrate holder have to be designed to be compatible with high oxygen partial pressures. Also, to ensure precise stoichiometry and precipitate-free films, evaporation sources and temperature controllers have to be designed for better temperature stability. The investigation of the MBE process and the thin films grown by MBE are required to obtain a better understanding of the growth parameters such as the composition of the film, substrate surface structure, substrate temperature and ozone partial pressure. This can be obtained by dynamically monitoring the growth process by in-situ characterization techniques such as reflection high energy electron diffraction (RHEED). Intensity oscillations of the specular RHEED beam have been observed during the growth of RBa_2Cu_3 O_7 (R = Y,Dy) films on SrTiO _3. A model for the origin of these RHEED intensity oscillations will be proposed from extensive RHEED intensity studies. A mechanism for growth of these oxides by physical vapor deposition techniques such as MBE and pulsed laser deposition will also be developed. To verify both the models, the growth of the superconductors will be simulated by the Monte Carlo method and compared with experimental RHEED observations.
NASA Astrophysics Data System (ADS)
Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Okuhata, Ryo; Ishibe, Takafumi; Watanabe, Kentaro; Suzuki, Takeyuki; Fujita, Takeshi; Sawano, Kentarou; Nakamura, Yoshiaki
2017-05-01
We have investigated the intrinsic thermoelectric properties of epitaxial β-FeSi2 thin films and the impact of phosphorus (P) doping. Epitaxial β-FeSi2 thin films with single phase were grown on Si(111) substrates by two different techniques in an ultrahigh-vacuum molecular beam epitaxy (MBE) system: solid-phase epitaxy (SPE), where iron silicide films formed by codeposition of Fe and Si at room temperature were recrystallized by annealing at 530°C to form epitaxial β-FeSi2 thin films on Si(111) substrates, and MBE of β-FeSi2 thin films on epitaxial β-FeSi2 templates formed on Si(111) by reactive deposition epitaxy (RDE) at 530°C (RDE + MBE). Epitaxial SPE thin films based on codeposition had a flatter surface and more abrupt β-FeSi2/Si(111) interface than epitaxial RDE + MBE thin films. We investigated the intrinsic thermoelectric properties of the epitaxial β-FeSi2 thin films on Si(111), revealing lower thermal conductivity and higher electrical conductivity compared with bulk β-FeSi2. We also investigated the impact of doping on the Seebeck coefficient of bulk and thin-film β-FeSi2. A route to enhance the thermoelectric performance of β-FeSi2 is proposed, based on (1) fabrication of thin-film structures for high electrical conductivity and low thermal conductivity, and (2) proper choice of doping for high Seebeck coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plaut, Annette S.; Wurstbauer, Ulrich; Wang, Sheng
We demonstrate growth of single-layer graphene (SLG) on hexagonal boron nitride (h-BN) by molecular beam epitaxy (MBE), only limited in area by the finite size of the h-BN flakes. Using atomic force microscopy and micro-Raman spectroscopy, we show that for growth over a wide range of temperatures (500 °C – 1000 °C) the deposited carbon atoms spill off the edge of the h-BN flakes. We attribute this spillage to the very high mobility of the carbon atoms on the BN basal plane, consistent with van der Waals MBE. The h-BN flakes vary in size from 30 μm to 100 μm,more » thus demonstrating that the migration length of carbon atoms on h-BN is greater than 100 μm. When sufficient carbon is supplied to compensate for this loss, which is largely due to this fast migration of the carbon atoms to and off the edges of the h-BN flake, we find that the best growth temperature for MBE SLG on h-BN is ~950 °C. Self-limiting graphene growth appears to be facilitated by topographic h-BN surface features: We have thereby grown MBE self-limited SLG on an h-BN ridge. This opens up future avenues for precisely tailored fabrication of nano- and hetero-structures on pre-patterned h-BN surfaces for device applications.« less
Elimination of oval defects in epilayers by using chemical beam epitaxy
NASA Astrophysics Data System (ADS)
Tsang, W. T.
1985-06-01
One ubiquitous problem that continues to haunt over molecular beam epitaxy (MBE) persistently throughout all these year and still without a good controllable solution is the presence of oval defects in gallium-containing compound semiconductor epilayers. While these defects have not presented major problems for discrete devices, they are likely to be a serious obstacle for integrated circuit applications. We showed that oval defects were present in GaAs and In0.53Ga0.47As epilayers grown by conventional MBE process using elemental Ga and In as group III sources, and either solid As4 or thermally cracked As4 from gas mixtures of trimethylarsine and hydrogen. On the other hand, the use of the chemical beam epitaxy in which the Ga and In were derived by thermal pyrolysis of their metal alkyls at the heated substrate surface resulted reproducibly in epilayers free of oval defects over the entire substrate surface of ˜8 cm diameter (limited by the substrate holder size). On the basis of the present results it is evident that the oval defects were related to the use of elemental Ga melt as the evaporant in conventional MBE.
NASA Technical Reports Server (NTRS)
Leopold, Daniel J.
2002-01-01
The primary goal of this research project was to further extend the use of advanced heteroepitaxial-semiconductor crystal growth techniques such as molecular beam epitaxy (MBE) and to demonstrate significant gains in UV/blue photonic detection by designing and fabricating atomically-tailored heteroepitaxial GaAlN/GaInN photocathode device structures. This NASA Explorer technology research program has focused on the development of photocathodes for Cherenkov and scintillation radiation detection. Support from the program allowed us to enhance our MBE system to include a nitrogen plasma source and a magnetic bearing turbomolecular pump for delivery and removal of high purity atomic nitrogen during GaAlN/GaInN film growth. Under this program we have also designed, built and incorporated a cesium activation stage. In addition, a connected UHV chamber with photocathode transfer/positioner components as well as a hybrid phototube stage was designed and built to make in-situ quantum efficiency measurements without ever having to remove the photocathodes from UHV conditions. Thus we have constructed a system with the capability to couple atomically-tailored MBE-grown photocathode heterostructures with real high gain readout devices for single photon detection evaluation.
High-mobility BaSnO 3 grown by oxide molecular beam epitaxy
Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; ...
2016-01-28
High-mobility perovskite BaSnO 3 films are of significant interest as newwide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO 3 films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO x. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO 3. We demonstrate room temperature electron mobilities of 150 cm 2 V -1 s -1 in films grownmore » on PrScO 3. Lastly, the results open up a wide range of opportunities for future electronic devices.« less
NASA Astrophysics Data System (ADS)
Shin, Byungha
This thesis presents an extensive study of the growth kinetics during low temperature homoepitaxy by Molecular Beam Epitaxy (MBE) and Pulsed Laser Deposition (PLD) of our model system Ge(001). The range of the study covers from the sub-monolayer (sub-ML) regime to the later stage where film thickness amounts to a few thousand MLs; it also covers epitaxial breakdown in which epitaxial growth is no longer sustained and the growing phase becomes amorphous. First, we have conducted a systematic investigation of the phase shift of the RHEED intensity oscillations during Ge(001) homoepitaxy MBE for a wide range of diffraction conditions. We conclude that the phase shift is caused by the overlap of the specular spot and the Kikuchi features, in contrast to models involving dynamical scattering theory for the phase shift. We have studied the sub-ML growth of Ge(001) homoepitaxy by MBE at low temperatures using RHEED intensity oscillations obtained for a range of low incidence angles where the influence of the dynamical nature of electron scattering such as the Kikuchi features is minimized. We have developed a new model for RHEED specular intensity that includes the diffuse scattering off surface steps and the layer interference between terraces of different heights using the kinematic approximation. By using the model to interpret the measured RHEED intensity, we find the evolution of the coverage of the first 2--3 layers, from which we infer the ES barrier height to be 0.077 +/- 0.014 eV. Finally, using a dual MBE-PLD UHV chamber, we have conducted experiments under identical thermal, background, and surface preparation conditions to compare Ge(001) homoepitaxial growth morphology in PLD and MBE at low temperatures. To isolate the effect of kinetic energy of depositing species during PLD, we varied the average kinetic energy: ˜450 eV in PLD-HKE, ˜300 eV in PLD-LKE, and <1 eV in PLD-TH. At 150°C, we find that in PLD-LKE and in MBE the film morphology evolves in a similar fashion: initially irregularly shaped mounds form, followed by pyramidal mounds with edges of the square-base along <100> directions. The areal feature density is higher for PLD films than for MBE films grown at the same average growth rate and temperature. Furthermore, the dependence upon film thickness of roughness and feature separation differ for PLD and MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-HKE > PLD-LKE > MBE. At 100°C, PLD-LKE and MBE follow the same morphology evolution as at 150°C. The epitaxial thicknesses are ranked in the order PLD-LKE > MBE > PLD-TH; additionally, the surface is smoother in PLD-LKE than in MBE. Together, these results convincingly demonstrate that the enhancement of epitaxial growth---the reduction in roughness and the delay of epitaxial breakdown---are due to the kinetic energy of depositing species in PLD. To study the relaxation behavior, we varied the repetition rate from 5 Hz to 20 Hz in PLD-LKE at 100°C. However, we find no systematic effect on surface roughness by varying the repetition rate. This result is consistent with an investigation on the sub-ML growth regime of PLD-LKE by monitoring the intensity variations of the RHEED specular spot.
NASA Astrophysics Data System (ADS)
McCollum, M. J.; Jackson, S. L.; Szafranek, I.; Stillman, G. E.
1990-10-01
We report the growth of GaAs by molecular beam epitaxy (MBE), gas source molecular beam epitaxy (GSMBE), and chemical beam epitaxy (CBE) in an epitaxial III-V reactor which features high pumping speed. The system is comprised of a modified Perkin-Elmer 430P molecular beam epitaxy system and a custom gas source panel from Emcore. The growth chamber is pumped with a 7000 1/s (He) diffusion pump (Varian VHS-10 with Monsanto Santovac 5 oil). The gas source panel includes pressure based flow controllers (MKS 1150) allowing triethylaluminum (TEA), triethylgallium (TEG), and trimethylindium (TMI) to be supplied without the use of hydrogen. All source lines, including arsine and phosphine, are maintained below atmospheric pressure. The high pumping speed allows total system flow rates as high as 100 SCCM and V/III ratios as high as 100. The purity of GaAs grown by MBE in this system increases with pumping speed. GaAs layers grown by GSMBE with arsine flows of 10 and 20 SCCM have electron concentrations of 1 × 10 15 cm -3 (μ 77=48,000 cm 2/V·) and 2 × 10 14 cm -3 (μ 77=78,000 cm 2/V·s) respectively. El ectron concentration varies with hydride injector temperature such that the minimum in electron concentration occurs for less than complete cracking. The effect of V/III ratio and the use of a metal eutectic bubbler on residual carrier concentration in GaAs grown by CBE is presented. Intentional Si and Be doping of CBE grown GaAs is demonstrated at a high growth rate of 5.4 μm/h.
Formation and Characterization of Gold Nanoparticles
2013-09-01
nanowires are useful because they can be grown almost dislocation free, due to their nano dimension. The quality of crystalline materials is diminished by...real substrate temperature was obtained from the calibration based on the melting points of indium (In), selenium (Se), cadmium (Cd), and zinc (Zn...hydrogen fluoride In indium MBE molecular beam epitaxy NH3OH ammonium hydroxide RHEED reflection high-energy electron diffraction Se selenium SEM
Hybrid Molecular Beam Epitaxy for High Quality Strontium Titanate
NASA Astrophysics Data System (ADS)
Jalan, Bharat
2011-12-01
Advancement in thin film growth techniques drives new physics and technologies. Thin film growth approaches and characterization techniques have become more crucial than ever to design and evaluate many emerging materials systems, such as complex oxides. Complex oxides with the perovskite and related structures are fundamentally different from conventional semiconductors and exhibit much richer phenomena as diverse as ferroelectricity, superconductivity, and strongly-correlated Mott-Hubbard-type insulator characteristics. The structural quality of oxide films grown by molecular beam epitaxy (MBE) now matches that of epitaxial semiconductors. Stoichiometry control, however, remains a major challenge. The presence of large (˜tens of ppm) amounts of point defects and impurities, which are commonly present in thin films, has often made the realization and interpretation of intrinsic phenomena difficult. In this dissertation we first describe our work in the development of a hybrid MBE approach for the growth of high quality insulating SrTiO 3 films. The approach uses a combination of solid and metal-organic sources to supply the metals. Films grow in layer-by-layer and step-flow growth modes, with atomically smooth surfaces and an excellent structural quality that is only limited by those of the substrates. A major as- pect of this MBE technique is that it provides a route to stoichiometric SrTiO3. This is achieved by growing films within a "MBE growth window", in which the stoichiome- try is self-regulating, independent of the precise metal flux ratios. Despite the use of a chemical precursor that supply Ti, the carbon incorporation in the films remains below or in the low ppm range. This was achieved by growing films at relatively high temper- atures. We will discuss the transport properties of MBE grown SrTiO3 film. We show that excellent stoichiometry control and low intrinsic defect concentrations, afforded by MBE, allow for the high electron mobility in n-doped SrTiO 3 films, exceeding that of bulk single crystals. In addition, we demonstrate that modification of the band-structure and removal of domains etc. using uniaxial compressive stress can lead to an additional enhancement of low-temperature electron mobility by 300%, up to 128,000 cm2/Vs, with no obvious mobility saturation. Finally, we discuss the nature of the two-dimensional electron gas in delta-doped SrTiO3 films by analyzing Shubnikov-de Haas oscillations. Despite the inherent com- plexity of a sub-band that is derived from four d-band states near the conduction band minimum, we show that the quantum oscillations can be modeled quantitatively. We present the room temperature thermoelectric properties of uniformly doped and delta-doped SrTiO3 films, with the goal to explore these high quality films not only as a potential thermoelectric but also to understand electronic structure using electrical and thermal transport.
Growth and characterizations of various GaN nanostructures on C-plane sapphire using laser MBE
NASA Astrophysics Data System (ADS)
Ch., Ramesh; Tyagi, P.; Maurya, K. K.; Kumar, M. Senthil; Kushvaha, S. S.
2017-05-01
We have grown various GaN nanostructures such as three-dimensional islands, nanowalls and nanocolumns on c-plane sapphire substrates using laser assisted molecular beam epitaxy (LMBE) system. The shape of the GaN nanostructures was controlled by using different nucleation surfaces such as bare and nitridated sapphire with GaN or AlN buffer layers. The structural and surface morphological properties of grown GaN nanostructures were characterized by ex-situ high resolution x-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy. The symmetric x-ray rocking curve along GaN (0002) plane shows that the GaN grown on pre-nitridated sapphire with GaN or AlN buffer layer possesses good crystalline quality compared to sapphire without nitridation. The Raman spectroscopy measurements revealed the wurtzite phase for all the GaN nanostructures grown on c-sapphire.
Research in the Optical Sciences
1994-02-01
Gain Asymmetry and the Generation of New Frequencies2 "’ When a stable coherent beam is injected into a VCSEL that is lasing just above threshold, we... optical microscope was developed and tested. High quality single-crystal layers of beryllium were grown on germanium by molecular beam epitaxy (MBE... OPTICAL ELEWENTS FOR X-UV WAVELENGTHS FALCO AND SLAUGHTEM indicate an increase in crystalline quality as T is increased. However, samples deposited at
High-Frequency, 6.2 Angstrom pN Heterojunction Diodes
2012-01-01
this paper were grown by solid- source molecular beam epitaxy (MBE). Here, the use of a lower- case letter (p) for the narrow bandgap layer and upper...electron and hole mobilities. High electron mobil- ity transistors ( HEMTs ) fabricated from these materials have shown good operating characteristics [1,2...Furthermore, the first monolithic microwave integrated circuits (MMICs) fabricated using 6.1 Å based HEMTs have been demonstrated [3]. New mate- rials
Compound Semiconductors for Low-Power p-Channel Field-Effect Transistors
2009-07-01
making III–V FETs has been different than for silicon FETs. Growth techniques such as molecular beam epitaxy (MBE) are used to create heterostructures in...lities for III–V compounds. This article reviews the recent work to enhance hole mobilities in antimonide-based quantum wells. Epitaxial heterostructures...article reviews the recent work to enhance hole mobilities in antimonide-based quantum wells. Epitaxial heterostructures have been grown with the channel
NASA Astrophysics Data System (ADS)
Malinverni, M.; Lamy, J.-M.; Martin, D.; Feltin, E.; Dorsaz, J.; Castiglia, A.; Rossetti, M.; Duelk, M.; Vélez, C.; Grandjean, N.
2014-12-01
We demonstrate state-of-the-art p-type (Al)GaN layers deposited at low temperature (740 °C) by ammonia molecular beam epitaxy (NH3-MBE) to be used as top cladding of laser diodes (LDs) with the aim of further reducing the thermal budget on the InGaN quantum well active region. Typical p-type GaN resistivities and contact resistances are 0.4 Ω cm and 5 × 10-4 Ω cm2, respectively. As a test bed, we fabricated a hybrid laser structure emitting at 400 nm combining n-type AlGaN cladding and InGaN active region grown by metal-organic vapor phase epitaxy, with the p-doped waveguide and cladding layers grown by NH3-MBE. Single-mode ridge-waveguide LD exhibits a threshold voltage as low as 4.3 V for an 800 × 2 μm2 ridge dimension and a threshold current density of ˜5 kA cm-2 in continuous wave operation. The series resistance of the device is 6 Ω and the resistivity is 1.5 Ω cm, confirming thereby the excellent electrical properties of p-type Al0.06Ga0.94N:Mg despite the low growth temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, J. E.; Doundoulakis, G.; Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion
2016-06-14
We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO{sub 2} mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well asmore » numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.« less
III-nitride core–shell nanorod array on quartz substrates
Bae, Si-Young; Min, Jung-Wook; Hwang, Hyeong-Yong; Lekhal, Kaddour; Lee, Ho-Jun; Jho, Young-Dahl; Lee, Dong-Seon; Lee, Yong-Tak; Ikarashi, Nobuyuki; Honda, Yoshio; Amano, Hiroshi
2017-01-01
We report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal–organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction. Position-controlled growth of the GaN nanorods was achieved by selective-area growth using MOCVD. Simultaneously, the GaN nanorods were elongated by the pulsed-mode growth. The microstructural and optical properties of both GaN nanorods and InGaN/GaN core–shell nanorods were then investigated. The nanorods were highly crystalline and the core–shell structures exhibited optical emission properties, indicating the feasibility of fabricating III-nitride nano-optoelectronic devices on amorphous substrates. PMID:28345641
Heterointerface engineering of broken-gap InAs/GaSb multilayer structures.
Liu, Jheng-Sin; Zhu, Yan; Goley, Patrick S; Hudait, Mantu K
2015-02-04
Broken-gap InAs/GaSb strain balanced multilayer structures were grown by molecular beam epitaxy (MBE), and their structural, morphological, and band alignment properties were analyzed. Precise shutter sequence during the MBE growth process, enable to achieve the strain balanced structure. Cross-sectional transmission electron microscopy exhibited sharp heterointerfaces, and the lattice line extended from the top GaSb layer to the bottom InAs layer. X-ray analysis further confirmed a strain balanced InAs/GaSb multilayer structure. A smooth surface morphology with surface roughness of ∼0.5 nm was demonstrated. The effective barrier height -0.15 eV at the GaSb/InAs heterointerface was determined by X-ray photoelectron spectroscopy, and it was further corroborated by simulation. These results are important to demonstrate desirable characteristics of mixed As/Sb material systems for high-performance and low-power tunnel field-effect transistor applications.
Freely Suspended Two-Dimensional Electron Gases.
NASA Astrophysics Data System (ADS)
Blick, Robert; Monzon, Franklin; Roukes, Michael; Wegscheider, Werner; Stern, Frank
1998-03-01
We present a new technique that has allowed us to build the first freely suspended two-dimensional electron gas devices from AlGaAs/GaAs/AlAs heterostructures. This technique is based upon specially MBE grown structures that include a sacrificial layer. In order to design the MBE layer sequence, the conduction band lineup for these samples was modelled numerically. The overall focus of this work is to provide a new approach for studies of the quantum mechanical properties of nanomachined structures. Our current experiments are directed toward use of these techniques for research on very high frequency nanomechanical resonators. The high mobility 2DEG system provides a unique approach to realizing wideband, extremely sensitive displacement detection, using the piezoelectric properties of GaAs to modulate a suspended nanometer-scale HEMT. This approach offers promise for sensitive displacement detectors with sub-nanometer resolution and bandwidths into the microwave range.
A method of producing high quality oxide and related films on surfaces
NASA Technical Reports Server (NTRS)
Ruckman, Mark W.; Strongin, Myron; Gao, Yongli
1991-01-01
Aluminum oxide or aluminum nitride films were deposited on molecular beam epitaxy (MBE) grown GaAS(100) using a novel cryogenic-based reactive thin film deposition technique. The process involves the condensation of molecular oxygen, ammonia, or other gases normally used for reactive thin film deposition on the substrate before the metal is deposited. The metal vapor is deposited into this layer and reacts with the molecular solid to form the desired compound or a precursor that can be thermally decomposed to generate the desired compound. The films produced by this method are free of impurities, and the low temperatures can be used to control the film and interfacial structure. The process can be easily integrated with existing MBE systems. Ongoing research using the same apparatus suggests that photon or electron irradiation could be used to promote the reactions needed to produce the intended material.
NASA Technical Reports Server (NTRS)
Derry, P. L.; Chen, H. Z.; Morkoc, H.; Yariv, A.; Lau, K. Y.
1988-01-01
Broad area graded-index separate-confinement heterostructure single quantum well lasers grown by molecular-beam epitaxy (MBE) with threshold current density as low as 93 A/sq cm (520 microns long) have been fabricated. Buried lasers formed from similarly structured MBE material with liquid phase epitaxy regrowth had threshold currents at submilliampere levels when high reflectivity coatings were applied to the end facets. A CW threshold current of 0.55 mA was obtained for a laser with facet reflectivities of about 80 percent, a cavity length of 120 micron, and an active region stripe width of 1 micron. These devices driven directly with logic level signals have switch-on delays less than 50 ps without any current prebias. Such lasers permit fully on-off switching while at the same time obviating the need for bias monitoring and feedback control.
NASA Astrophysics Data System (ADS)
Lyu, Yuexi; Han, Xi; Sun, Yaoyao; Jiang, Zhi; Guo, Chunyan; Xiang, Wei; Dong, Yinan; Cui, Jie; Yao, Yuan; Jiang, Dongwei; Wang, Guowei; Xu, Yingqiang; Niu, Zhichuan
2018-01-01
We report on the growth of high quality GaSb-based AlInAsSb quaternary alloy by molecular beam epitaxy (MBE) to fabricate avalanche photodiodes (APDs). By means of high resolution X-ray diffraction (HRXRD) and scanning transmission electron microscope (STEM), phase separation phenomenon of AlInAsSb random alloy with naturally occurring vertical superlattice configuration was demonstrated. To overcome the tendency for phase segregation while maintaining a highly crystalline film, a digital alloy technique with migration-enhanced epitaxy growth method was employed, using a shutter sequence of AlSb, AlAs, AlSb, Sb, In, InAs, In, Sb. AlInAsSb digital alloy has proved to be reproducible and consistent with single phase, showing sharp satellite peaks on HRXRD rocking curve and smooth surface morphology under atomic force microscopy (AFM). Using optimized digital alloy, AlInAsSb separate absorption, grading, charge, and multiplication (SAGCM) APD was grown and fabricated. At room temperature, the device showed high performance with low dark current density of ∼14.1 mA/cm2 at 95% breakdown and maximum stable gain before breakdown as high as ∼200, showing the potential for further applications in optoelectronic devices.
Effect of metallic capping layers on the superconductivity in FeSe thin films.
NASA Astrophysics Data System (ADS)
Shibayev, Pavel; Salehi, Maryam; Moon, Jisoo; Oh, Seongshik; Oh Lab Team
In the past few years, there has been an increased interest in understanding the superconducting behavior of iron selenide (FeSe). Past efforts of others aimed at growing FeSe thin films yielded some success in reaching a Tc of 40K, but at present there is a stark lack of consensus among groups working on this problem. We set a goal of growing FeSe on insulating SrTiO3 (STO) substrates by optimizing both the growth temperature and the protection layer. In our quest to achieve this, we concentrate on keeping track of each compound's structural evolution with temperature via RHEED, an aspect often overlooked in papers describing FeSe growth, thus presenting a unique perspective to tackling this multifaceted challenge. Our group has grown 1, 3, and 30 unit-cell thick FeSe on STO using a state-of-the-art molecular beam epitaxy (MBE) system in our lab. Crucially, we expect to search for superconductivity in FeSe capped by unprecedented metallic protection layers. In addition, the FeSe/STO heterostructures with FeTe protection layers will be grown to enable comparison of existing transport data and scanning tunneling spectra (STS) to data involving our own novel cappings. Support: NSF EFRI Scholars program (1542798), EPiQS Initiative (GBMF4418).
Young, E. C.; Grandjean, N.; Mates, T. E.; ...
2016-11-23
Ca as an unintentional impurity has been investigated in III-nitride layers grown by molecular beam epitaxy (MBE). It has been found that Ca originates from the substrate surface, even if careful cleaning and rinsing procedures are applied. The initial Ca surface coverage is ~10 12 cm -2, which is consistent with previous reports on GaAs and silicon wafers. At the onset of growth, the Ca species segregates at the growth front while incorporating at low levels. The incorporation rate is strongly temperature dependent. It is about 0.03% at 820 °C and increases by two orders of magnitude when the temperaturemore » is reduced to 600 °C, which is the typical growth temperature for InGaN alloy. Consequently, [Ca] is as high as 10 18 cm -3 in InGaN/GaN quantum well structures. Such a huge concentration might be detrimental for the efficiency of light emitting diodes (LEDs) if one considers that Ca is potentially a source of Shockley-Read-Hall (SRH) defects. We thus developed a specific growth strategy to reduce [Ca] in the MBE grown LEDs, which consisted of burying Ca in a low temperature InGaN/GaN superlattice (SL) before the growth of the active region. Finally, two LED samples with and without an SL were fabricated. An increase in the output power by one order of magnitude was achieved when Ca was reduced in the LED active region, providing evidence for the role of Ca in the SRH recombination.« less
Optical investigation of InAs quantum dashes grown on InP(0 0 1) vicinal substrate
NASA Astrophysics Data System (ADS)
Besahraoui, F.; Bouslama, M.; Saidi, F.; Bouzaiene, L.; Hadj Alouane, M. H.; Maaref, H.; Chauvin, N.; Gendry, M.; Lounis, Z.; Ghaffour, M.
2014-01-01
We investigate with photoluminescence (PL) measurements the optoelectronic properties of self-organized InAs quantum dots (QDs) grown on nominal InP(0 0 1) substrate. InAs/InP(0 0 1) QDs are grown by Molecular Beam Epitaxy (MBE) method with optimized conditions in Stranski-Krastanov regime. A lateral coupling behavior was shown by photoluminescence spectroscopy. This phenomena is considered as a degradation source of the optoelectronic properties of InAs/InP(0 0 1) QDs used in lasers applications. In order to overcome this disadvantage behavior, we have studied the optical properties of InAs quantum islands (QIs) grown on vicinal InP(0 0 1) with 2° off miscut angle toward the [1 1 0] direction. From Polarized Photoluminescence (PPL) measurements, we have deduced that InAs quantum nanostructures have quantum dashes (QDas) form elongated in [1-10] direction. From excitation density PL measurements, we have evidenced that the different observed PL peaks are attributed to the emission of InAs QDas of different size. The lateral coupling behavior is completely eliminated in the case of this sample. The temperature-dependent PL measurements show a good thermal stability and an emission wavelength at room temperature around 1.55 μm of the vicinal sample. All these properties prove that this sample possess favorable characteristics for microlasers based devices functioning at room temperature and for optical telecommunication with long range weapon. The broad emission range observed at 300 K of the vicinal sample gives the possibility to use it as an active zone in solar cells and in infrared photodectectors of high optical gain and excellent sensitivity on a wide energy range.
Investigation of the {Fe}/{Si} interface and its phase transformations
NASA Astrophysics Data System (ADS)
Fanciulli, M.; Degroote, S.; Weyer, G.; Langouche, G.
1997-04-01
Thin 57Fe films (3-10 Å) have been grown by molecular beam epitaxy (MBE) on (7 × 7) reconstructed Si(111) and (2 × 1) reconstructed Si(001) surfaces and by e-gun evaporation on an H-terminated Si(111) surface. Conversion electron Mössbauer spectroscopy (CEMS) with high statistical accuracy and resolution allowed a detailed microscopic investigation of the silicide formation mechanism and of the structural phase transformations upon annealing.
Growing Gallium Arsenide On Silicon
NASA Technical Reports Server (NTRS)
Radhakrishnan, Gouri
1989-01-01
Epitaxial layers of high quality formed on <111> crystal plane. Present work reports successful growth of 1- and 2-micrometer thick layers of n-type, 7-ohms per cm, 2-inch diameter, Si<111> substrate. Growth conducted in Riber-2300(R) MBE system. Both doped and undoped layers of GaAs grown. Chamber equipped with electron gun and camera for in-situ reflection high-energy-electron diffraction measurements. RHEED patterns of surface monitored continuously during slow growth stage.
Development of MBE grown Pb-salt semiconductor lasers for the 8.0 to 15.0 micrometer spectral region
NASA Technical Reports Server (NTRS)
Miller, M. D.
1981-01-01
Diodes lasers are fabricated using multiple source molecular beam expitaxial growth of (PbSn)Te on BaF2 substrates. Methods for crystal growth, crystal transfer, and device fabrication by photolithographic techniques were developed. The lasers operate in the spectra range from 10 microns to 14 microns and at temperatures from 12K to 60K continuous wave and to 95 K pulsed.
Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors
2011-01-01
Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors MATTHEW REASON,1 BRIAN R. BENNETT,1,2 RICHARD MAGNO,1 and J. BRAD BOOS1 1...2010 to 00-00-2010 4. TITLE AND SUBTITLE Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors 5a. CONTRACT NUMBER 5b. GRANT...Prescribed by ANSI Std Z39-18 EXPERIMENTAL PROCEDURES The samples reported in this work were grown by solid-source molecular - beam epitaxy (MBE) with
2016 International Workshop on Nitride Semiconductors (IWN 2016)
2017-01-01
Doping Structure & Photoluminescence Properties of Flower-Like Spiral AIN Micro-Crystal Array Thermal Conductivity of Bulk AIN Direct Determination of...5.03 Optical and Electronic Properties HVPE GaN Wafers with Improved Crystallinity 5:00pm Michael Slomski 01.5.04 Thermal Conductivity of Bulk GaN...Broad-Band Emission Effect of lnter1ayers on the Vertical Electrical Conductivity of Si-Doped AIN/GaN DBRs Grown by PA-MBE Thermal Analys is of
Growth rate independence of Mg doping in GaN grown by plasma-assisted MBE
NASA Astrophysics Data System (ADS)
Turski, Henryk; Muzioł, Grzegorz; Siekacz, Marcin; Wolny, Pawel; Szkudlarek, Krzesimir; Feduniewicz-Żmuda, Anna; Dybko, Krzysztof; Skierbiszewski, Czeslaw
2018-01-01
Doping of Ga(Al)N layers by plasma-assisted molecular beam epitaxy in Ga-rich conditions on c-plane bulk GaN substrates was studied. Ga(Al)N samples, doped with Mg or Si, grown using different growth conditions were compared. In contrast to Si doped layers, no change in the Mg concentration was observed for layers grown using different growth rates for a constant Mg flux and constant growth temperature. This effect enables the growth of Ga(Al)N:Mg layers at higher growth rates, leading to shorter growth time and lower residual background doping, without the need of increasing Mg flux. Enhancement of Mg incorporation for Al containing layers was also observed. Change of Al content from 0% to 17% resulted in more than two times higher Mg concentration.
Space-charge behavior of 'Thin-MOS' diodes with MBE-grown silicon films
NASA Technical Reports Server (NTRS)
Lieneweg, U.; Bean, J. C.
1984-01-01
Basic theoretical and experimental characteristics of a novel 'Thin-MOS' technology, which has promising aspects for integrated high-frequency devices up to several hundred gigahertz are presented. The operation of such devices depends on charge injection into undoped silicon layers of about 1000-A thickness, grown by molecular beam epitaxy on heavily doped substrates, and isolation by thermally grown oxides of about 100-A thickness. Capacitance-voltage characteristics measured at high and low frequencies agree well with theoretical ones derived from uni and ambipolar space-charge models. It is concluded that after oxidation the residual doping in the epilayer is less than approximately 10 to the 16th/cu cm and rises by 3 orders of magnitude at the substrate interface within less than 100 A and that interface states at the oxide interface can be kept low.
NASA Technical Reports Server (NTRS)
Szydlic, P. P.; Alterovitz, S. A.; Haugland, E. J.; Segall, B.; Henderson, T. S.
1988-01-01
Shubnikov-de Hass (SdH) measurements performed on a 200 A layer of pseudomorphic In(0.10)Ga(0.90)As grown by MBE on undoped GaAs with an overlayer of Al(0.15)Ga(0.85)As are presented. These measurements were performed in magnetic fields up to 1.4 tesla at T in the range of 1.4-10 K. It was found that only one subband was populated with a density of 5.8 x 10 to the 11/cm-squared and an effective mass at the Fermi level m(asterisk) = (0.060 + or - 0.001)m(0).
McKee, Rodney A.; Walker, Frederick J.
1993-01-01
A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.
Status of the MBE technology at leti LIR for the manufacturing of HgCdTe focal plane arrays
NASA Astrophysics Data System (ADS)
Ferret, P.; Zanatta, J. P.; Hamelin, R.; Cremer, S.; Million, A.; Wolny, M.; Destefanis, G.
2000-06-01
This paper presents recent developments that have been made in Leti Infrared Laboratory in the field of molecular beam epitaxy (MBE) growth and fabrication of medium wavelength and long wavelength infrared (MWIR and LWIR) HgCdTe devices. The techniques that lead to growth temperature and flux control are presented. Run to run composition reproducibility is investigated on runs of more than 15 consecutively grown layers. Etch pit density in the low 105 cm-2 and void density lower than 103 cm-2 are obtained routinely on CdZnTe substrates. The samples exhibit low n-type carrier concentration in the 1014 to 1015 cm-3 range and mobility in excess of 105 cm2/Vs at 77 K for epilayers with 9.5 µm cut-off wavelength. LWIR diodes, fabricated with an-on-p homojunction process present dynamic resistance area products which reach values of 8 103 Ωcm2 for a biased voltage of -50 mV and a cutoff wavelength of 9.5 µm at 77 K. A 320 × 240 plane array with a 30 µm pitch operating at 77 K in the MWIR range has been developed using HgCdTe and CdTe layers MBE grown on a Germanium substrate. Mean NEDT value of 8.8 mK together with an operability of 99.94% is obtained. We fabricated MWIR two-color detectors by the superposition of layers of HgCdTe with different compositions and a mixed MESA and planar technology. These detectors are spatially coherent and can be independently addressed. Current voltage curves of 60 × 60 µm2 photodiodes have breakdown voltage exceeding 800 mV for each diode. The cutoff wavelength at 77 K is 3.1 µm for the MWIR-1 and 5 µm for the MWIR-2.
NASA Astrophysics Data System (ADS)
Park, Yeonjoon
The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.
MBE growth of nitride-arsenides for long wavelength opto-electronics
NASA Astrophysics Data System (ADS)
Spruytte, Sylvia Gabrielle
2001-07-01
Until recently, the operating wavelength of opto-electronic devices on GaAs has been limited to below 1 mum due to the lack of III-V materials with close lattice match to GaAs that have a bandgap below 1.24 eV. To enable devices operating at 1.3 mum on GaAs, MBE growth of a new III-V material formed by adding small amounts of nitrogen to InGaAs was developed. The growth of group III-nitride-arsenides (GaInNAs) is complicated by the divergent properties of the alloy constituents and the difficulty of generating a reactive nitrogen species. Nitride-arsenide materials are grown by molecular beam epitaxy (MBE) using a radio frequency (rf) nitrogen plasma source. The plasma conditions that maximize the amount of atomic nitrogen versus molecular nitrogen are determined using the emission spectrum of the plasma. To avoid phase segregation, nitride-arsenides must be grown at relatively low temperatures and high arsenic overpressures. It is shown that the group III growth rate controls the nitrogen concentration in the film. Absorption measurements allow the establishment of a range of GaInNAs alloys yielding 1.3 mum emission. The optical properties of GaInNAs and GaNAs quantum wells (QWs) are investigated with photoluminescence (PL) measurements. The peak PL intensity increases and peak wavelength shifts to shorter wavelengths when annealing. The increase in luminescence efficiency results from a decrease in non-radiative recombination centers. As the impurity concentration in the GaInNAs films is low, crystal defects associated with nitrogen incorporation were investigated and improvements in crystal quality after anneal were observed. Nuclear reaction channeling measurements show that as-grown nitride-arsenides contain a considerable amount of interstitial nitrogen and that a substantial fraction of the non-substitutional nitrogen disappears during anneal. Secondary ion mass spectroscopy depth profiling on GaInNAs quantum wells shows that during anneal, the nitrogen diffusion is more pronounced than indium diffusion, hence nitrogen diffusion is also the major cause of the shift during the anneal process of GaInNAs QWs. To limit nitrogen diffusion, the GaInNAs QWs were inserted between GaAsN barriers. This also resulted in longer wavelength emission due to decreased carrier confinement energy. This new active region resulted in devices emitting at 1.3 mum.
NASA Astrophysics Data System (ADS)
O'Steen, Mark Lee
2000-10-01
Scope and method of study. The purpose of this research was to understand the physics of RF plasma-assisted molecular beam epitaxial growth of GaN epitaxial films and InGaN/GaN superlattice structures grown on Al2O3 (0001) substrates. The techniques used to characterize the RF-MBE grown samples include in situ reflection high energy electron diffraction (RHEED) and optical pyrometry, and ex situ spatially-resolved high resolution X-ray diffraction, spatially-resolved reflectance spectroscopy, atomic force microscopy, and low-temperature photoluminescence (PL) spectroscopy. Findings and conclusions. RF plasma-assisted molecular beam epitaxy (RF-MBE) has been used to grow GaN epitaxial films and InGaN/GaN superlattice structures. The most important growth parameters in the growth of GaN epitaxial films were identified as the substrate temperature, incident N*/Ga flux ratio, and GaN growth rate. The effect of these growth parameters on GaN growth and quality of GaN epitaxial films is discussed. Additionally, an interpretation of the effects of growth conditions on the underlying microscopic growth processes occurring is presented. All of the observed GaN growth results may be understood in terms of these microscopic growth processes. InGaN/GaN superlattice samples are grown to identify and quantitatively access the InGaN growth phenomenology. It is inferred that InN requires a higher N*/III flux ratio than does GaN for stoichiometric growth. At substrate temperatures below 590°C, the In composition of the superlattice samples is nominally constant. However, in the narrow temperature range 590--670°C, the In composition decreases by more than an order-or-magnitude at the lowest N*/III flux ratio of this study. Additionally, the incident N*/III flux ratio is found to strongly influence the In composition as well. Nearly an order-of-magnitude increase in In composition is observed despite only a 20% increase in the N*/III flux ratio at the highest temperature of this study. RHEED and PL measurements support the assessment of the In reduction mechanism as thermally-activated surface-segregation and surface-desorption of In. Implications of these results for device growth are discussed.
NASA Astrophysics Data System (ADS)
Arimoto, Keisuke; Nakazawa, Hiroki; Mitsui, Shohei; Utsuyama, Naoto; Yamanaka, Junji; Hara, Kosuke O.; Usami, Noritaka; Nakagawa, Kiyokazu
2017-11-01
A strained Si/relaxed SiGe heterostructure grown on Si(110) substrate is attractive as a platform for high-hole-mobility Si-based electronic devices. To improve the electrical property, a smoother surface is desirable. In this study, we investigated surface morphology and microstructural aspects of strained Si/relaxed SiGe/Si(110) heterostructures grown by solid-source (SS) molecular beam epitaxy (MBE). It was revealed that SSMBE provides a way to grow strained Si/relaxed SiGe heterostructures with smooth surfaces. In addition, it was found that the strain in the SiGe layer of the SSMBE-grown sample is highly anisotropic whereas that of the GSMBE-grown sample is almost biaxially relaxed. Along with the surface morphology, the symmetry in degree of strain relaxation has implications for the electrical property. Results of a calculation shows that anisotropic strain is preferable for device application since it confines holes solely in the strained Si layer where hole mobility is enhanced.
McKee, Rodney A.; Walker, Frederick J.
1996-01-01
A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.
2013-08-15
InAsSb, compositionally graded buffer, MBE, infrared, minority carrier lifetime, reciprocal space mapping Ding Wang, Dmitry Donetsky, Youxi Lin, Gela...infrared, minority carrier lifetime; reciprocal space mapping . Introduction GaSb based Ill-Y materials are widely used in the development of mid... space mapping (RSM) at the symmetric (004) and asymmetric (335) Bragg reflections. Figure 3 presents a set of RSM measurements for a structure
Zn(1-x)MnxTe diluted magnetic semiconductor nanowires grown by molecular beam epitaxy.
Zaleszczyk, Wojciech; Janik, Elzbieta; Presz, Adam; Dłuzewski, Piotr; Kret, Sławomir; Szuszkiewicz, Wojciech; Morhange, Jean-François; Dynowska, Elzbieta; Kirmse, Holm; Neumann, Wolfgang; Petroutchik, Aleksy; Baczewski, Lech T; Karczewski, Grzegorz; Wojtowicz, Tomasz
2008-11-01
It is shown that the growth of II-VI diluted magnetic semiconductor nanowires is possible by the catalytically enhanced molecular beam epitaxy (MBE). Zn(1-x)MnxTe NWs with manganese content up to x=0.60 were produced by this method. X-ray diffraction, Raman spectroscopy, and temperature dependent photoluminescence measurements confirm the incorporation of Mn(2+) ions in the cation substitutional sites of the ZnTe matrix of the NWs.
1992-06-30
in the film. Ion-assisted molecular beam epitaxy is one of a class of techniques that allow modification growth kinetics during heteroepitaxy, with...the potential for novel means of misfit accommodation. In the last quarter, using ion-assisted molecular beam epitaxy , we have demonstrated 1. Reduction...shown in Figure 1. The results are compared with single quantum well material grown by Molecular Beam Epitaxy (MBE) previously. The optimum cavity
NASA Astrophysics Data System (ADS)
Arulkumaran, S.; Ng, G. I.; Lee, C. H.; Liu, Z. H.; Radhakrishnan, K.; Dharmarasu, N.; Sun, Z.
2010-11-01
Studies on the influence of quiescent-gate ( Vgs0) and quiescent-drain ( Vds0) bias stresses in rf-plasma MBE grown AlGaN/GaN high-electron-mobility transistors (HEMTs) were performed. The increase of drain current ( ID) collapse by quiescent-bias-stress in AlGaN/GaN HEMTs were observed using pulsed (pulse width = 200 ns; pulse period = 1 ms) IDS- VDS characteristics. The Si 3N 4 passivation suppressed about 80% ID collapse in quiescent-bias-point stressed HEMTs. The remaining 20% ID collapse were not suppressed which may be coming from buffer-related traps. However, more than 10% of ID collapse suppression was observed on un-stressed or fresh-HEMTs. Similarly, improved cut-off frequency ( fT), maximum oscillation frequency ( fmax) and device output power ( Pout) values were also observed on the un-stressed HEMTs. The Si 3N 4 passivation completely suppressed the ID collapse in un-stressed or fresh-HEMTs which leads to 70% improvement in fT and 60% improvement in the device Pout. The Si 3N 4 passivation did not completely suppress ID collapse in the quiescent-bias stressed-HEMTs. This may be due to the generation of additional surface-related traps in the HEMTs by quiescent-bias-stresses.
NASA Astrophysics Data System (ADS)
Chu, Hao; Teague, Marcus; Chen, Chien-Chang; Woodward, Nicholas; Yeh, Nai-Chang; Kou, Xufeng; He, Liang; Lang, Murong; Wang, Kang; Caltech Collaboration; UCLA Collaboration
2013-03-01
We conduct STS studies on MBE-grown heterostructures of non-magnetic TI (Bi2Se3) with a range of thicknesses (d = 1, 3, 5, 7 quintuple layers, QL) on top of 7-QL magnetically doped TI (Cr-doped Bi2Se3) . For d = 1 and 3-QL, a spatially homogeneous magnetism-induced surface gap (as large as about 150 meV for d = 1-QL) is observed at 77 K, whereas gapless Dirac spectra are found for d = 5 and 7-QL, suggesting that the effective magnetic length for Cr-doped Bi2Se3 is approximately 4 ~ 5-QL. These findings are further corroborated by ARPES and bulk electrical transport measurements. The magnetism-induced surface gap differs from those found in pure Bi2Se3 and (Bi0.5Sb0.5)2 Te3 films of thicknesses smaller than 6-QL, because the latter are due to overlaps of wave functions between the surface and interface layers, which lead to Rashba-like spin-orbit splitting and spin-preserving quasiparticle interference wave-vectors. In contrast, STS studies of TIs with magnetism-induced surface gap do not yield any quasiparticle interferences for energies within the bulk Bi2Se3 gap. Finally, comparative STS studies of pure and magnetically doped TIs in high magnetic fields will be discussed. This work was supported by DARPA.
Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer.
Schumann, T; Gotschke, T; Limbach, F; Stoica, T; Calarco, R
2011-03-04
GaN nanowires (NWs) were grown selectively in holes of a patterned silicon oxide mask, by rf-plasma-assisted molecular beam epitaxy (PAMBE), without any metal catalyst. The oxide was deposited on a thin AlN buffer layer previously grown on a Si(111) substrate. Regular arrays of holes in the oxide layer were obtained using standard e-beam lithography. The selectivity of growth has been studied varying the substrate temperature, gallium beam equivalent pressure and patterning layout. Adjusting the growth parameters, GaN NWs can be selectively grown in the holes of the patterned oxide with complete suppression of the parasitic growth in between the holes. The occupation probability of a hole with a single or multiple NWs depends strongly on its diameter. The selectively grown GaN NWs have one common crystallographic orientation with respect to the Si(111) substrate via the AlN buffer layer, as proven by x-ray diffraction (XRD) measurements. Based on the experimental data, we present a schematic model of the GaN NW formation in which a GaN pedestal is initially grown in the hole.
Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, B. S.; Rajasthan Technical University, Rawatbhata Road, Kota 324010; Singh, A.
We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surfacemore » with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.« less
Characterization of HgCdTe Films Grown on Large-Area CdZnTe Substrates by Molecular Beam Epitaxy
NASA Astrophysics Data System (ADS)
Arkun, F. Erdem; Edwall, Dennis D.; Ellsworth, Jon; Douglas, Sheri; Zandian, Majid; Carmody, Michael
2017-09-01
Recent advances in growth of Hg1- x Cd x Te films on large-area (7 cm × 7.5 cm) CdZnTe (CZT) substrates is presented. Growth of Hg1- x Cd x Te with good uniformity on large-area wafers is achieved using a Riber 412 molecular beam epitaxy (MBE) tool designed for growth of Hg1- x Cd x Te compounds. The reactor is equipped with conventional CdTe, Te, and Hg sources for achieving uniform exposure of the wafer during growth. The composition of the Hg1- x Cd x Te compound is controlled in situ by employing a closed-loop spectral ellipsometry technique to achieve a cutoff wavelength ( λ co) of 14 μm at 78 K. We present data on the thickness and composition uniformity of films grown for large-format focal-plane array applications. The composition and thickness nonuniformity are determined to be <1% over the area of a 7 cm × 7.5 cm wafer. The films are further characterized by Fourier-transform infrared spectroscopy, optical microscopy, and Hall measurements. Additionally, defect maps show the spatial distribution of defects generated during the epitaxial growth of the Hg1- x Cd x Te films. Microdefect densities are in the low 103 cm-2 range, and void defects are below 500 cm-2. Dislocation densities less than 5 × 105 cm-2 are routinely achieved for Hg1- x Cd x Te films grown on CZT substrates. HgCdTe 4k × 4k focal-plane arrays with 15 μm pitch for astronomical wide-area infrared imagers have been produced using the recently developed MBE growth process at Teledyne Imaging Sensors.
Spatially resolved variations in reflectivity across iron oxide thin films
NASA Astrophysics Data System (ADS)
Kelley, Chris S.; Thompson, Sarah M.; Gilks, Daniel; Sizeland, James; Lari, Leonardo; Lazarov, Vlado K.; Matsuzaki, Kosuke; LeFrançois, Stéphane; Cinque, Gianfelice; Dumas, Paul
2017-11-01
The spin polarising properties of the iron oxide magnetite (Fe3O4) make it attractive for use in spintronic devices, but its sensitivity to compositional and structural variations make it challenging to prepare reliably. Infrared microspectroscopy and modelling are used to determine the spatial variation in the chemical composition of three thin films of iron oxide; one prepared by pulsed laser deposition (PLD), one by molecular beam epitaxy (MBE) deposition of iron whilst simultaneously flowing oxygen into the chamber and one by flowing oxygen only once deposition is complete. The technique is easily able to distinguish between films which contain metallic iron and different iron oxide phases as well as spatial variations in composition across the films. The film grown by post-oxidising iron is spatially uniform but not fully oxidised, the film grown by simultaneously oxidising iron showed spatial variation in oxide composition while the film grown by PLD was spatially uniform magnetite.
Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer
NASA Astrophysics Data System (ADS)
Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt
2018-05-01
A 99.6% relaxed InSb layer is grown on a 6° offcut (1 0 0) Si substrate via an AlSb/GaSb buffer using molecular beam epitaxy (MBE). A 200 nm GaSb buffer is first grown on Si and the lattice mismatch between them is accommodated by an interfacial misfit (IMF) array consisting of uniformly distributed 90° misfit dislocations. Si delta doping is introduced during the growth of GaSb to reduce the density of threading dislocation. Subsequently, a 50 nm AlSb buffer is grown followed by a 0.8 μm InSb layer. The InSb layer exhibits a 300 K electron mobility of 22,300 cm2/Vs. An InSb photoconductor on Si is demonstrated with a photoconductive gain from 77 K to 200 K under a 700 °C maintained blackbody.
NASA Astrophysics Data System (ADS)
Shintri, Shashidhar S.
Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2/Ge/(211)Si was achieved by block co-polymer (BCP) lithography. Conditions for selective CdTe epitaxy was achieved and results showed different defect propagation mechanism at the patterned interface compared to the films grown on blanket Si. In another study, patterning of ˜360 nm holes in SiO2/(211)Si was done by molecular transfer lithography (MxL). Conditions for selective Ge and CdTe epitaxy were achieved which was the most challenging part of this work. Thin CdTe films were characterized to check the effect of nanopatterning. Certain results invariably showed that CdTe grown on nanopatterned substrates demonstrated promise of defect reduction and blocking close to the growth interface. But presently, nanopatterning also offers some serious challenges such as uniformity of patterns and substrate cleaning prior to growth for successful implementation of epitaxy on very large areas. Such factors resulted in degradation of overall crystal quality and will be discussed in this work. This is the first successful demonstration of selective (211)B CdTe epitaxy on Si by MOVPE using some of the relatively novel and promising nanopatterning techniques.
In situ monitoring of the surface reconstructions on InP(001) prepared by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ozanyan, K. B.; Parbrook, P. J.; Hopkinson, M.; Whitehouse, C. R.; Sobiesierski, Z.; Westwood, D. I.
1997-07-01
Reflection anisotropy spectroscopy (RAS) and reflection high-energy electron diffraction (RHEED) were applied to study clean InP(001) surfaces prepared by molecular beam epitaxy (MBE). At phosphorus beam equivalent pressures (BEPs) between 3.5×10-7 and 3.5×10-6 mbar and substrate temperature (Ts) falling from 590 to 150 °C, (2×4), (2×1), (2×2), and c(4×4) RHEED patterns are observed. The main RAS features, observed at 1.7-1.9 and 2.6-2.9 eV are assigned to In and P dimers, respectively. The above reconstruction sequence is associated closely with transformations identified in RAS signatures that are induced by progressively increasing the P surface coverage. The RAS results also imply the existence of (2×4)α and (2×4)β phases. A surface-phase diagram for MBE-grown (001) InP, in the whole range of Ts and phosphorus BEPs is proposed.
Zhong, Aihua; Fan, Ping; Zhong, Yuanting; Zhang, Dongping; Li, Fu; Luo, Jingting; Xie, Yizhu; Hane, Kazuhiro
2018-02-13
Structure shift of GaN nanowall network, nanocolumn, and compact film were successfully obtained on Si (111) by plasma-assisted molecular beam epitaxy (MBE). As is expected, growth of the GaN nanocolumns was observed in N-rich condition on bare Si, and the growth shifted to compact film when the Ga flux was improved. Interestingly, if an aluminum (Al) pre-deposition for 40 s was carried out prior to the GaN growth, GaN grows in the form of the nanowall network. Results show that the pre-deposited Al exits in the form of droplets with typical diameter and height of ~ 80 and ~ 6.7 nm, respectively. A growth model for the nanowall network is proposed and the growth mechanism is discussed. GaN grows in the area without Al droplets while the growth above Al droplets is hindered, resulting in the formation of continuous GaN nanowall network that removes the obstacles of nano-device fabrication.
NASA Astrophysics Data System (ADS)
Barate, P.; Liang, S. H.; Zhang, T. T.; Frougier, J.; Xu, B.; Schieffer, P.; Vidal, M.; Jaffrès, H.; Lépine, B.; Tricot, S.; Cadiz, F.; Garandel, T.; George, J. M.; Amand, T.; Devaux, X.; Hehn, M.; Mangin, S.; Tao, B.; Han, X. F.; Wang, Z. G.; Marie, X.; Lu, Y.; Renucci, P.
2017-11-01
We investigate the influence of the MgO growth process on the bias dependence of the electrical spin injection from a Co -Fe -B /MgO spin injector into a GaAs-based light-emitting diode (spin LED). With this aim, textured MgO tunnel barriers are fabricated either by sputtering or molecular-beam-epitaxy (MBE) methods. For the given growth parameters used for the two techniques, we observe that the circular polarization of the electroluminescence emitted by spin LEDs is rather stable as a function of the injected current or applied bias for the samples with sputtered tunnel barriers, whereas the corresponding circular polarization decreases abruptly for tunnel barriers grown by MBE. We attribute these different behaviors to the different kinetic energies of the injected carriers linked to differing amplitudes of the parasitic hole current flowing from GaAs to Co-Fe-B in both cases.
NASA Astrophysics Data System (ADS)
Wu, Ying; Luo, Sheng; Wang, Wei; Masudy-Panah, Saeid; Lei, Dian; Liang, Gengchiau; Gong, Xiao; Yeo, Yee-Chia
2017-12-01
A heavily Ga-doped Ge0.95Sn0.05 layer was grown on the Ge (100) substrate by molecular beam epitaxy (MBE), achieving an active doping concentration of 1.6 × 1020 cm-3 without the use of ion implantation and high temperature annealing that could cause Sn precipitation or surface segregation. An advanced nano-scale transfer length method was used to extract the specific contact resistivity ρc between the metal and the heavily doped p-Ge0.95Sn0.05 layer. By incorporating Sn into Ge and in-situ Ga doping during the MBE growth, an ultra-low ρc of 1.4 × 10-9 Ω.cm2 was achieved, which is 50% lower than the ρc of p+-Ge control and is also the lowest value obtained for metal/p-type semiconductor contacts.
Structure Shift of GaN Among Nanowall Network, Nanocolumn, and Compact Film Grown on Si (111) by MBE
NASA Astrophysics Data System (ADS)
Zhong, Aihua; Fan, Ping; Zhong, Yuanting; Zhang, Dongping; Li, Fu; Luo, Jingting; Xie, Yizhu; Hane, Kazuhiro
2018-02-01
Structure shift of GaN nanowall network, nanocolumn, and compact film were successfully obtained on Si (111) by plasma-assisted molecular beam epitaxy (MBE). As is expected, growth of the GaN nanocolumns was observed in N-rich condition on bare Si, and the growth shifted to compact film when the Ga flux was improved. Interestingly, if an aluminum (Al) pre-deposition for 40 s was carried out prior to the GaN growth, GaN grows in the form of the nanowall network. Results show that the pre-deposited Al exits in the form of droplets with typical diameter and height of 80 and 6.7 nm, respectively. A growth model for the nanowall network is proposed and the growth mechanism is discussed. GaN grows in the area without Al droplets while the growth above Al droplets is hindered, resulting in the formation of continuous GaN nanowall network that removes the obstacles of nano-device fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane
2016-05-09
Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe{sub 2} monolayers on MoS{sub 2} substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic “wagon wheel” pattern with only ∼2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give themore » monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe{sub 2} and thus determine the band-alignment in the MoTe{sub 2}/MoS{sub 2} interface.« less
NASA Astrophysics Data System (ADS)
Hauenstein, R. J.; Collins, D. A.; Cai, X. P.; O'Steen, M. L.; McGill, T. C.
1995-05-01
Effect of a nitrogen electron-cyclotron-resonance (ECR) microwave plasma on near-surface composition, crystal structure, and morphology of the As-stabilized GaAs (100) surface is investigated with the use of digitally image-processed in situ reflection high energy electron diffraction. Nitridation is performed on molecular beam epitaxially (MBE) grown GaAs surfaces near 600 °C under typical conditions for ECR microwave plasma-assisted MBE growth of GaN films on GaAs. Brief plasma exposures (≊3-5 s) are shown to result in a specular, coherently strained, relatively stable, GaN film approximately one monolayer in thickness, which can be commensurately overgrown with GaAs while longer exposures (up to 1 min) result in incommensurate zincblende epitaxial GaN island structures. Specular and nonspecular film formations are explained in terms of N-for-As surface and subsurface anion exchange reactions, respectively. Commensurate growth of ultrathin buried GaN layers in GaAs is achieved.
III-N light emitting diodes fabricated using RF nitrogen gas source MBE
NASA Astrophysics Data System (ADS)
Van Hove, J. M.; Carpenter, G.; Nelson, E.; Wowchak, A.; Chow, P. P.
1996-07-01
Homo- and heterojunction III-N light emitting diodes using RF atomic nitrogen plasma molecular beam epitaxy have been grown. GaN films deposited on sapphire using this growth technique exhibited an extremely sharp X-ray diffraction with a full width half maximum of 112 arc sec. p-type doping of the nitride films was done with elemental Mg and resulted in as-grown p-type material with resistivities as low as 2 Ω · cm. Both homo- and heterojunction LEDs showed clear rectification. Emission from the GaN homojunction deposited on n-type SiC was peaked at 410 nm while the AlGaNGaN(Zn)AlGaN double heterojunction LEDs emission was centered about 520 nm.
NASA Astrophysics Data System (ADS)
Tanaka, Tooru; Ohshita, Hiroshi; Saito, Katsuhiko; Guo, Qixin
2018-02-01
Photoluminescence (PL) properties of ZnTe/ZnMgTe quantum well (QW) structures grown by molecular beam epitaxy (MBE) were investigated systematically with respect to well widths and Mg contents. Observed PL peak energies were consistent well with the calculated emission energies of the QWs considering a lattice distortion in the ZnTe well. From the temperature dependence of PL intensity, it was found that a suppression of a carrier escape from QW is crucial to obtain a PL at higher temperature in the ZnTe/ZnMgTe QW. Based on the results, multiple quantum well structures were designed and fabricated, which exhibited a green PL at room temperature.
NASA Astrophysics Data System (ADS)
Dietz, R. J. B.; Brahm, A.; Velauthapillai, A.; Wilms, A.; Lammers, C.; Globisch, B.; Koch, M.; Notni, G.; Tünnermann, A.; Göbel, T.; Schell, M.
2015-01-01
We investigate properties of MBE grown photoconductive terahertz (THz) antennas based on the InGaAs/InAlAs/InP material system aimed for an excitation wavelength of approx. 1060 nm. Therefore, we analyze several different approaches concerning growth parameters, layer and material compositions as well as doping. The carrier dynamics are probed via transient white-light pump-probe spectroscopy as well as THz Time Domain Spectroscopy (TDS) measurements. We find that the electron capture probability is reduced for higher electron energies. By adjusting the material band gap this can be resolved and lifetimes of 1.3 ps are obtained. These short lifetimes enable the detection of THz TDS spectra with a bandwidth exceeding 4 THz.
Properties of Unrelaxed InAs1-XSbX Alloys Grown on Compositionally Graded Buffers
2011-10-07
beam epitaxy (MBE) as an alternative to HgCdTe for the fabrication of infrared (IR) photodetectors. These photodetector structures require the...FTIR) spectrometer equipped with a liquid-nitrogen cooled HgCdTe detector with a cut-off wavelength of 12 lm. The PL was excited by a 970 nm laser...characterized by surface roughness up to 10 nm for InAs0.56Sb0.44 samples. The PL and absorption spectra were measured with a Fourier-transform infrared
2014-05-15
important performance degradation mechanism, and provides a target for future comparisons with MBE-grown QD/host systems . 15. SUBJECT TERMS solar ...challenge for every photovoltaics ( PV ) technology. For space solar cell technologies, the III-V multijunction (MJ) concept has been the leading approach to...gap composition, without the need for high Al concentrations, is nonetheless available in the GaAsP alloy system at GaAs0.52P0.48, which is
Resonant tunneling in nanocolumns improved by quantum collimation.
Wensorra, Jakob; Indlekofer, Klaus Michael; Lepsa, Mihail Ion; Förster, Arno; Lüth, Hans
2005-12-01
We report on a quantum collimation effect based on surface depletion regions in AlAs/GaAs nanocolumns with an embedded resonant tunneling structure. The considered MBE-grown nanodevices have been fabricated by means of a top-down approach that employs a reproducible lithographic definition of the vertical nanocolumns. By analyzing the scaling properties of these nanodevices, we discuss how a collimation effect due to a saddle point in the confining potential can explain an improved device performance of the ultimately scaled structures at room temperature.
DC Characteristics of InAs/AlSb HEMTs at Cryogenic Temperatures
2009-05-01
Molecular Beam Epitaxy - MBE XIV, April 2007, Volumes 301- 302, Pages 1025-1029 Fig. 5: SEM image showing the 2x50μm InAs/AlSb HEMT . 325 ...started with a heterostructure grown by molecular beam epitaxy on a semi- insulating InP substrate. The heterostructure is shown in Fig. 1. Mesa isolation...DC characteristics of InAs/AlSb HEMTs at cryogenic temperatures G. Moschetti, P-Å Nilsson, N. Wadefalk, M. Malmkvist, E. Lefebvre, J. Grahn
Optical Behavior of III-TM-N Materials and Devices
2008-09-26
0296 University of Florida GaN films were doped with Eu to a concentration of ~0.12 at. % during growth at 800 °C by molecular beam epitaxy , with...MAGNETIC SEMICONDUCTOR GROWTH AND CHARACTERIZATION Growth of the films presented occurred in a Varian Gen II by gas-source molecular beam epitaxy ...versus temperature for films of either undoped AlN, single phase AlMnN, or Mn4N. AlCrN films were grown by Molecular Beam Epitaxy (MBE) on c-plane
InAs-based Hterostructure Barrier Varactor Diodes with In0.3Al0.7As0.4Sb0.6 as the Barrier Material
2008-08-01
discussed. 2. Device growth and fabrication HBV diode samples were grown by solid-source molecular beam epitaxy (MBE). The layer structure consisted of...defined simultaneously using optical lithography, and Ti:Pt:Au (100:50:2500 Å) unannealed, Ohmic contacts were depos- ited by e- beam evaporation. The diode...behavior of a doped-channel high-electron mobility transistor ( HEMT ). Device physics simula- tions of the 200 Å HBV (using ATLAS from Silvaco
High Luminescence Efficiency from GaAsN Layers Grown by MBE with RF Nitrogen Plasma Source
2002-01-01
is the goal for applications in fiber optic communication systems. 1.3 micron edge- emitting lasers and VCSELs have been recently demonstrated by...GaAsN layers. CONCLUSIONS Molecular beam epitaxial growth of GaAsj_,N, layers has been studied as a function of nitrogen content and growth regimes. We...obtained are important for further improving the characteristics of InGaAsN lasers emitting at 1.3 micron. INTRODUCTION Group-Ill nitride semiconductors
Enhancement of spin-lattice coupling in nanoengineered oxide films and heterostructures by laser MBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Xiaoxing
The objective of the proposed research is to investigate nanoengineered oxide films and multilayer structures that are predicted to show desirable properties. The main focus of the project is an atomic layer-by-layer laser MBE (ALL-Laser MBE ) technique that is superior to the conventional laser MBE in broadening the conditions for the synthesis of high quality nanoscale oxides and new designer materials. In ALL-Laser MBE, separate oxide targets are used instead of one compound target in the conventional laser MBE. The targets are switched back and forth in front of a UV laser beam as they are alternately ablated. Themore » oxide film is thus constructed one atomic layer at a time. The growth of each atomic layer is monitored and controlled by the reflection high energy electron diffraction (RHEED). The intensity of the diffraction spots increases or decreases depending on the chemistry of each atomic layer as well as the surface roughness. This allows us to determine whether the chemical ratio of the different elements in the films meets the desired value and whether each atomic layer is complete. ALL-Laser MBE is versatile: it works for non-polar film on non-polar substrate, polar film on polar substrate, and polar film on non-polar substrate. (In a polar material, each atomic layer is charged whereas in a non-polar material the atomic layers are charge neutral.) It allows one to push the thermodynamic boundary further in stabilizing new phases than reactive MBE and PLD, two of the most successful techniques for oxide thin films. For example, La 5Ni 4O 13, the Ruddlesden-Popper phase with n = 4, has never been reported in the literature because it needs atomic layer-by-layer growth at high oxygen pressures, not possible with other growth techniques. ALL-Laser MBE makes it possible. We have studied the interfacial 2-dimensional electron gas in the LaAlO 3/SrTiO 3 system, whose mechanism has been a subject of controversy. According to the most prevailing electronic reconstruction mechanism, a positive diverging electric potential is built up in the polar LaAlO 3 film when it is grown on a TiO 2-terminated SrTiO 3 substrate, which is non-polar. This leads to the transfer of half of an electron from the LaAlO 3 film surface to SrTiO 3 when the LaAlO 3 layer is thicker than 4 unit cells, creating a 2D electron gas at the interface with a sheet carrier density of 3.3×10 14/cm 2 for sufficiently thick LaAlO 3. A serious inconsistency with this mechanism is that the carrier densities reported experimentally are invariably lower than the expected value. The most likely reason is that the SrTiO 3 substrate is oxygen difficient due to the low oxygen pressures (< 10 mTorr) during growth, and post-growth annealing in oxygen is often used to remove the oxygen vacancies. People cannot grow the LaAlO 3 film in higher oxygen pressures - it results in insulating samples or 3D island growth. Because we grow the LaAlO 3 film one atomic layer at a time, we were able to grow conducting LaAlO 3/SrTiO 3 interfaces at a high oxygen pressure with ALL-Laser MBE, as high as 37 mTorr. The high oxygen pressure helps to prevent the possible oxygen reduction in SrTiO 3, ensure that the LaAlO 3 films are sufficiently oxygenated. Measurements of x-ray linear dichroism (XLD) and x-ray magnetic circular dichroism (XMCD) both show that the spectra of our films are similar to those of well oxygenated samples. In the LaAlO 3/SrTiO 3 interfaces grown by ALL-Laser MBE at 37 mTorr oxygen pressure, a quantitative agreement between our experimental result and the theoretical prediction was observed, which provides a strong support to the electronic reconstruction mechanism. The key differences between our result and the previous reports are the high oxygen pressure during the film growth and the high film crystallinity. The high oxygen pressure suppresses the likelihood of oxygen vacancies in SrTiO 3. Well oxygenated samples produced during film growth can avoid possible defects when sufficient oxygen is provided only after the growth by annealing. Using ALL-Laser MBE, we also synthesized high-quality singlec-rystalline CaMnO 3 films. The systematic increase of the oxygen vacancy content in CaMnO 3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft x-ray XAS and hard x-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and core-hole multiplet calculations with holistic fitting. The strain-induced oxygen-vacancy formation and ordering are a promising avenue for designing and controlling new functionalities in complex transition-metal oxides.« less
NASA Astrophysics Data System (ADS)
Senabulya, Nancy
This work is motivated by the need for new visible frequency direct bandgap semiconductor materials that are earth abundant and low-cost to meet the increasing demand for optoelectronic device applications such as solid state lighting and photovoltaics. Zinc-Tin-Nitride (ZnSnN2), a member of the II-IV nitride semiconductor family has been proposed as an alternative to the more common III-nitride semiconductors for use in optoelectronic devices. This material has been synthesized under optimized conditions using plasma assisted molecular beam epitaxy. Though a lot of research has recently been done computationally to predict the electronic and structural properties of ZnSnN2, experimental verification of these theories in single crystal thin films is lacking and warrants investigation because the accurate determination of the crystal structure of ZnSnN2 is a fundamental prerequisite for controlling and optimizing optoelectronic properties. In this synchrotron x-ray diffraction study, we present experimental validation, through unit cell refinement and 3d reciprocal space maps, of the crystal structure of single domain ZnSnN2 films deposited on (111) Yttria stabilized zirconia (YSZ) and (001) Lithium gallate (LGO) substrates. We find that ZnSnN2 films grown on (111) YSZ can attain both the theoretically predicted disordered wurtzite and ordered orthorhombic Pna21 structures under carefully controlled MBE growth conditions, while films grown on (001) LGO have the ordered Pn21a orthorhombic crystal structure. Through a systematic annealing study, a temperature induced first order structural phase transition from the wurtzite to orthorhombic phase is realized, characterized by the appearance of superstructure reflections in.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casallas-Moreno, Y. L.; Perez-Caro, M.; Gallardo-Hernandez, S.
InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 Degree-Sign C, and different In beam fluxes (BEP{sub In}) ranging from 5.9 Multiplication-Sign 10{sup -7} to 9.7 Multiplication-Sign 10{sup -7} Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD)more » and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 Degree-Sign C by MEE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinverni, M., E-mail: marco.malinverni@epfl.ch; Lamy, J.-M.; Martin, D.
2014-12-15
We demonstrate state-of-the-art p-type (Al)GaN layers deposited at low temperature (740 °C) by ammonia molecular beam epitaxy (NH{sub 3}-MBE) to be used as top cladding of laser diodes (LDs) with the aim of further reducing the thermal budget on the InGaN quantum well active region. Typical p-type GaN resistivities and contact resistances are 0.4 Ω cm and 5 × 10{sup −4} Ω cm{sup 2}, respectively. As a test bed, we fabricated a hybrid laser structure emitting at 400 nm combining n-type AlGaN cladding and InGaN active region grown by metal-organic vapor phase epitaxy, with the p-doped waveguide and cladding layers grown by NH{sub 3}-MBE. Single-mode ridge-waveguide LD exhibitsmore » a threshold voltage as low as 4.3 V for an 800 × 2 μm{sup 2} ridge dimension and a threshold current density of ∼5 kA cm{sup −2} in continuous wave operation. The series resistance of the device is 6 Ω and the resistivity is 1.5 Ω cm, confirming thereby the excellent electrical properties of p-type Al{sub 0.06}Ga{sub 0.94}N:Mg despite the low growth temperature.« less
NASA Astrophysics Data System (ADS)
Takata, Fumiya; Gushi, Toshiki; Anzai, Akihito; Toko, Kaoru; Suemasu, Takashi
2018-03-01
We grow MnAl films on different underlayers by molecular beam epitaxy (MBE), and investigate their structural and magnetic properties. L10-ordered MnAl films were successfully grown both on an MgO(0 0 1) single-crystalline substrate and on an Mn4N(0 0 1) buffer layer formed on MgO(0 0 1) and SrTiO3(0 0 1) substrates. For the MgO substrate, post rapid thermal annealing (RTA) drastically improved the crystalline quality and the degree of L10-ordering, whereas no improvement in the crystallinity was achieved by altering the substrate temperature (TS) during MBE growth. However, high-quality L10-MnAl films were formed on the Mn4N buffer layer by simply varying TS. Structural analysis using X-ray diffraction showed MnAl on an MgO substrate had a cubic structure whereas MnAl on the Mn4N buffer had a tetragonal structure. This difference in crystal structure affected the magnetic properties of the MnAl films. The uniaxial magnetic anisotropy constant (Ku) was drastically improved by inserting an Mn4N buffer layer. We achieved a perpendicular magnetic anisotropy of Ku = 5.0 ± 0.7 Merg/cm3 for MnAl/Mn4N film on MgO and 6.0 ± 0.2 Merg/cm3 on STO. These results suggest that Mn4N has potential as an underlayer for L10-MnAl.
NASA Astrophysics Data System (ADS)
Kanazawa, Ken; Yamawaki, Kazuma; Sekita, Naoya; Nishio, Yôtarô; Kuroda, Shinji; Mitome, Masanori; Bando, Yoshio
2015-04-01
We investigated the structural and magnetic properties of Cr1-δTe thin films grown on CdTe(001) layers by molecular beam epitaxy (MBE) with systematic variations of the ratio between Cr and Te fluxes and the substrate temperature Ts during the growth. Cr1-δTe of the hexagonal structure (hex-Cr1-δTe) was always formed irrespective of the growth conditions, but the growth orientation was different depending on the Cr/Te flux ratio and Ts. Hex-Cr1-δTe was grown in the [0001] axis in the range of small Cr/Te ratios and high Ts while it was also grown in the direction normal to the (1-102) plane at larger Cr/Te ratios or lower Ts. Hex-Cr1-δTe films grown in the both orientations show ferromagnetism, but they exhibit a clear contrast in the field dependence of perpendicular magnetization at 2 K; a square hysteretic loop in the film grown in the [0001] axis versus a round-shape loop in the film grown in the direction normal to the (1-102) plane. Moreover, the films grown in the [0001] axis at the smallest Cr/Te ratio show variations of ferromagnetic properties with Curie temperature (Tc) and the coercivity (Hc) varying according to the value of Ts.
Bi flux-dependent MBE growth of GaSbBi alloys
Rajpalke, M. K.; Linhart, W. M.; Yu, K. M.; ...
2015-03-05
The incorporation of Bi in GaSb 1-xBi x alloys grown by molecular beam epitaxy is investigated as a function of Bi flux at fixed growth temperature (275 °C) and growth rate (1 μm h⁻¹). The Bi content is found to vary proportionally with Bi flux with Bi contents, as measured by Rutherford backscattering, in the range 0 < x ≤ 4.5%. The GaSbBi samples grown at the lowest Bi fluxes have smooth surfaces free of metallic droplets. The higher Bi flux samples have surface Bi droplets. The room temperature band gap of the GaSbBi epitaxial layers determined from optical absorptionmore » decreases linearly with increasing Bi content with a reduction of ~32 meV/%Bi.« less
Luminescence properties of ZnxMg1-xSe layers
NASA Astrophysics Data System (ADS)
Bala, Waclaw; Firszt, Franciszek; Dzik, Janusz; Gapinski, Adam; Glowacki, Grzegorz
1995-10-01
This work deals with the study of luminescence properties of ZnxMg1-xSe layers prepared by different methods. ZnxMg1-xSe mixed crystal layers were obtained by: (a) thermal diffusion of Mg metal in the temperature range 1050 K - 1200 K into ZnSe single crystal grown by Bridgman method, and (b) epitaxial growth on (001) GaAs and (111) ZnTe substrates by MBE using elemental Zn, Se and Mg sources. The luminescence spectra of ZnxMg1-xSe layers grown on (001) GaAs and (111) ZnTe substrates are dominated by narrow blue and violet emission bands with maxima positioned at about 3.05 - 3.28 eV, 2.88 - 3.04 eV, and 2.81 - 2.705 eV.
Growth and properties of wide bandgap (MgSe)n(ZnxCd1-xSe)m short-period superlattices
NASA Astrophysics Data System (ADS)
Garcia, Thor A.; Tamargo, Maria C.
2017-12-01
We report the molecular beam epitaxy (MBE) growth and properties of (MgSe)n(ZnxCd1-x Se)m short-period superlattices(SPSLs) for potential application in II-VI devices grown on InP substrates. SPSL structures up to 1 μm thick with effective bandgaps ranging from 2.6 eV to above 3.42 eV are grown and characterized, extending the typical range possible for the ZnxCdyMg1-x-ySe random alloy beyond 3.2 eV. Additionally, ZnxCd1-xSe single and multiple quantum well structures using the SPSL barriers are also grown and investigated. The structures are characterized utilizing reflection high-energy electron diffraction, X-ray reflectance, X-ray diffraction and photoluminescence. We observed layer-by-layer growth and smoother interfaces in the QWs grown with SPSL when compared to the ZnxCdyMg1-x-ySe random alloy. The results indicate that this materials platform is a good candidate to replace the random alloy in wide bandgap device applications.
NASA Astrophysics Data System (ADS)
Yue, Naili
Graphene is a single atomic layer two-dimensional (2D) hexagonal crystal of carbon atoms with sp2-bonding. Because of its various special or unique properties, graphene has attracted huge attention and considerable interest in recent years. This PhD research work focuses on the development of a novel approach to fabricating graphene micro- and nano-structures using a 532 nm Nd:YAG laser, a technique based on local conversion of 3C-SiC thin film into graphene. Different from other reported laser-induced graphene on single crystalline 4H- or 6H- SiC, this study focus on 3C-SiC polycrystal film grown using MBE. Because the SiC thin film is grown on silicon wafer, this approach may potentially lead to various new technologies that are compatible with those of Si microelectronics for fabricating graphene-based electronic, optoelectronic, and photonic devices. The growth conditions for depositing 3C-SiC using MBE on Si wafers with three orientations, (100), (110), and (111), were evaluated and explored. The surface morphology and crystalline structure of 3C-SiC epilayer were investigated with SEM, AFM, XRD, μ-Raman, and TEM. The laser modification process to convert 3C-SiC into graphene layers has been developed and optimized by studying the quality dependence of the graphene layers on incident power, irradiation time, and surface morphology of the SiC film. The laser and power density used in this study which focused on thin film SiC was compared with those used in other related research works which focused on bulk SiC. The laser-induced graphene was characterized with μ-Raman, SEM/EDS, TEM, AFM, and, I-V curve tracer. Selective deposition of 3C-SiC thin film on patterned Si substrate with SiO2 as deposition mask has been demonstrated, which may allow the realization of graphene nanostructures (e.g., dots and ribbons) smaller than the diffraction limit spot size of the laser beam, down to the order of 100 nm. The electrical conductance of directly written graphene micro-ribbon (< 1 μm) was measured via overlaying two micro-electrodes using e-beam lithography and e-beam evaporation. The crystalline quality (stacking order, defect or disorder, strain, crystallite size, etc.) of laser-induced graphene was analyzed using Raman spectroscopy through the comparison with pristine natural graphite and CVD-grown monolayer graphene on SiO2/Si and other substrates. The experimental results reveal the feasibility of laser modification techniques as an efficient, inexpensive, and versatile (any shape and location) means in local synthesis of graphene, especially in patterning graphene nanostructures. Different from other laser induced graphene research works, which were concentrated on bulk SiC wafers, this PhD research work focuses on thin film SiC grown on Si (111) for the first time.
NASA Astrophysics Data System (ADS)
Ojima, T.; Tainosho, T.; Sharmin, S.; Yanagihara, H.
2018-04-01
Real-time in situ reflection high energy electron diffraction (RHEED) observations of Fe3O4, γ-Fe2O3, and (Co,Fe)3O4 films on MgO(001) substrates grown by a conventional planar magnetron sputtering was studied. The change in periodical intensity of the specular reflection spot in the RHEED images of three different spinel ferrite compounds grown by two different sputtering systems was examined. The oscillation period was found to correspond to the 1/4 unit cell of each spinel ferrite, similar to that observed in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) experiments. This suggests that the layer-by-layer growth of spinel ferrite (001) films is general in most physical vapor deposition (PVD) processes. The surfaces of the films were as flat as the surface of the substrate, consistent with the observed layer-by-layer growth process. The observed RHEED oscillation indicates that even a conventional sputtering method can be used to control film thickness during atomic layer depositions.
Infrared Focal Plane Arrays Based on Semiconductor Quantum Dots
2002-01-01
an ensemble of self -assembled InAs/GaAs or InAs/InP quantum dots (QDs) are typically in the range of 10-30 monolayers [1]. Here, we report on InAs...photoconductive properties of QDIPs based on self organized InAs quantum dots grown on In.52Al.48As/InP(100), using the MBE technique. Dr. Gendry grew the...composed of 10 layers of self assembled InAs dots, separated by 500 Å thick InAlAs (lattice matched to the semi-insulating InP substrate) barrier
2015-12-21
5.5: Evaluation of MBE-Grown MCT on GaAs for HOT Applications .................................................... 99 J. Wenisch, W. Schirmacher, R...on-p architecture and is well adapted for low flux detection or high operating temperature. This architecture has been evaluated for space...estimate the ER of the Hg1-xCdxTe in real time is described. In this work, the output parameters from the ICP etcher are evaluated for their correlation
2011-10-19
is uncertain . . The results of these various studies seem consistent that the Fermi . level at the surface of PbTe or Pbi -xSnxTe is not inherently...Both sides: ~T=220"C n-type IS am P!!I~:Ii SE+l9 n++ 200 nm Til Device P=30W/cm2 1001!!!1 Pbi ~Se 3.5E+I8 a+ NDLS ISO am PI!I!::Bi SE+19 a++ 200nmNil
DOE Office of Scientific and Technical Information (OSTI.GOV)
He Liang; Xiu Faxian; Huang Guan
In this paper, we report the epitaxial growth of Bi{sub 2}Se{sub 3} thin films on Si (111) substrate, using molecular beam epitaxy (MBE). We show that the as-grown samples have good crystalline quality, and their surfaces exhibit terracelike quintuple layers. Angel-resolved photoemission experiments demonstrate single-Dirac-conelike surface states. These results combined with the temperature- and thickness-dependent magneto-transport measurements, suggest the presence of a shallow impurity band. Below a critical temperature of {approx}100K, the surface states of a 7 nm thick film contribute up to 50% of the total conduction.
NASA Astrophysics Data System (ADS)
Reznik, R. R.; Shtrom, I. V.; Samsonenko, Yu B.; Khrebtov, A. I.; Soshnikov, I. P.; Cirlin, G. E.
2017-11-01
The data on the growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on Si (111) substrates by Au-assisted molecular beam epitaxy are presented. It is shown that by varying of the growth parameters it is possible to form structures like quantum dots emitting in a wide wavelengths range for both active and barrier parts. The technology proposed opens new possibilities for the integration of direct-band AIIIBV materials on silicon platform.
Defect-driven localization crossovers in MBE-grown La-doped SrSn O3 films
NASA Astrophysics Data System (ADS)
Wang, Tianqi; Thoutam, Laxman Raju; Prakash, Abhinav; Nunn, William; Haugstad, Greg; Jalan, Bharat
2017-11-01
Through systematic control of cation stoichiometry using a hybrid molecular beam epitaxy method, we show a crossover from weak to strong localization of electronic carriers in La-doped SrSn O3 films on LaAl O3 (001). We demonstrate that substrate-induced dislocations in these films can have a strong influence on the electron phase coherence length resulting in two-dimensional to three-dimensional weak localization crossover. We discuss the correlation between electronic transport, and defects associated with nonstoichiometry and dislocations.
Impurity and Defect Interactions in GaAs.
1984-02-29
3 VPE a X X ASW 3 vIE 33 34 35 36"M-cVO Wawwmba (CM - Z TS 32 -~ - .35T 2II i I MS . 34 35 3 , b Wovor%~~e (€cm -) X3 FiS.l Characteristic donor peaks ...2). Far infrared photoconductivity measurements on Si doped GaAs grown by molecular beam epitaxy (MBE) indicated that the impurity peak previously...difference is donor species dependent, each hydrogenic transition in a photothermal ionization spectrum contains several closely spaced peaks . Each peak cor
Refractive indexes of (Al, Ga, In) as epilayers on InP for optoelectronic applications
NASA Astrophysics Data System (ADS)
Mondry, M. J.; Babic, D. I.; Bowers, J. E.; Coldren, L. A.
1992-06-01
MBE grown bulk and short period superlattices of (Al, Ga, In) As epilayers lattice matched to InP were characterized by double-crystal diffractometry and low-temperature photoluminescence. A reflection spectroscopy technique was used to determine the refractive index of (Al, Ga, In) As films as a function of wavelength. The measured data were fitted to a single-oscillator dispersion model and the model coefficients are given. The resulting expression can be used in the design of wave-guides, modulators, and other optical devices.
2008-08-01
discussed. 2. Device growth and fabrication HBV diode samples were grown by solid-source molecular beam epitaxy (MBE). The layer structure consisted of...defined simultaneously using optical lithography, and Ti:Pt:Au (100:50:2500 Å) unannealed, Ohmic contacts were depos- ited by e- beam evaporation. The diode...behavior of a doped-channel high-electron mobility transistor ( HEMT ). Device physics simula- tions of the 200 Å HBV (using ATLAS from Silvaco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iba, Satoshi; Saito, Hidekazu; Yuasa, Shinji
2015-08-28
We conducted systematic measurements on the carrier lifetime (τ{sub c}), spin relaxation time (τ{sub s}), and circular polarization of photoluminescence (P{sub circ}) in (100) GaAs/AlGaAs multiple quantum wells grown by molecular beam epitaxy (MBE). The τ{sub c} values are strongly affected by MBE growth conditions (0.4–9 ns), whereas the τ{sub s} are almost constant at about 0.13 ns. The result suggests that spin detection efficiency [τ{sub s}/(τ{sub c} + τ{sub s})], which is expected to be proportional to a steady-state P{sub circ}, is largely dependent on growth condition. We confirmed that the P{sub circ} has similar dependence on growth condition to those of τ{submore » s}/(τ{sub c} + τ{sub s}) values. The study thus indicates that choosing the appropriate growth condition of the QW is indispensable for obtaining a high P{sub circ} from a spin-polarized light-emitting diode (spin-LED)« less
The 2-6 semiconductor superlattices
NASA Astrophysics Data System (ADS)
Gunshor, R. L.; Otsuka, N.
1992-12-01
The first operational semiconductor diode lasers were demonstrated in the summer of 1991 independently by two U.S. groups, one at 3M and the other a team effort shared by Purdue and Brown Universities. As a result of the close collaboration between MBE and TEM groups within the grant, the structures for lasing and LED (as well as display device) operation were realized with the lowest defect concentrations ever reported for 2-6 structures grown on GaAs by MBE. The reduction of the dislocation levels resulted from an iterative process where the growth could be modified in response to the TEM analysis. The AFOSR funded interface studies have led to our appreciation of the electrical and microstructural considerations obtaining at 2-6/3-5 heterovalent interfaces. As a result the Purdue/Brown group has had equal success in making laser diodes with substrates of both doping types. The Purdue/Brown collaboration has obtained CW operations at 77 K as well as pulsed operation at room temperature using a Zn(S,Se)-based device configuration emitting in the blue (490 nm at room temperature).
NASA Astrophysics Data System (ADS)
Cai, Zhuhua
Ferrite/ferroelectric heterostructures have attracted much attention in recent years because of their unique ability to potentially enable dual magnetic and electric field tunability. The simultaneous magnetic and electric tunability in such structures can be applied in a wide range of microwave planar devices (e.g., tunable phase shifters, resonators, and delay lines) and spintronics (e.g., magnetic tunneling junctions for magnetic sensors and nonvolatile magnetic memories). However, the attempts to engineer ferrite/ferroelectric heterostructures to operate at the frequencies higher than 5 GHz are limited. Barium hexaferrite (BaM, BaFe12O19) is an ideal candidate for high frequency microwave device applications because of its strong uniaxial anisotropy (HA ˜17 kOe) and can be tuned to ferromagnetic resonance (FMR) at frequencies higher than 40 GHz with relatively small applied magnetic fields. Spinel ferrite Fe3O4 has a high Curie temperature of 858 K and is predicted to possess ˜ 100% spin polarization, which can lead to ultrahigh tunneling magnetoresistence even at room temperature. The performance of today's ferrite-based microwave communication and spintronic devices would be enhanced and next-generation monolithic microwave integrated circuit (MMIC) would be possible if ferrite/ferroelectric heterostructures can be integrated with wide band gap semiconductors (e.g., SiC or GaN), which can function in high-temperature, high-power, and high-frequency environments. The goal of this work is to use molecular beam epitaxy (MBE) to understand nucleation and film growth mechanisms needed to integrate magnetic ferrites (BaM and Fe3O4) with SiC, and subsequently understand the material chemistry and structure influences on forming functional interfaces (i.e., interfaces that enable effective ferrite/ferroelectric coupling). The study of chemistry, structure, and magnetic properties of three generations of BaM films grown by pulsed laser deposition shows a MBE-grown single crystalline MgO template promotes the c-axis alignment through formation of an oxygen bridge at the interface and minimizes the interface mixing, which enables the effective heteroepitaxy of device quality BaM on 6H-SiC. Epitaxial single crystalline BaM film with strong c-axis perpendicular alignment, high H A (16.2 kOe) and magnetization (4.1 kG) was also successfully grown by MBE for the first time on 6H-SiC. Through MBE, further study of the chemistry and structure evolution at the BaM//SiC interface suggests the 10 nm MgO template not only functions as a diffusion barrier, but also forms a spinel transition layer that is structurally similar to BaM. The high quality BaM film on SiC is compatible with MMIC and can also function as a magnetic layer in BaM/ferroelectric multiferroic heterostructures for electrostatic FMR tuning. Through MBE, single crystalline, epitaxial Fe3O4 (111) films and Fe 3O4/BaTiO3/Fe3O4 heterostructures were successfully integrated with 6H-SiC. The Fe3O4 film exhibits high strucutrual order with sharp interfaces and an easy axis in-plane magnetization with a coercivity of 200 Oe. In the Fe3O 4/BaTiO3/Fe3O4 heterostructure, the magnetoeletric coupling is demonstrated at room-temperature by an electric field induced magnetic anisotropy field change. The Fe3O4 /BaTiO3/Fe3O4 heterostructure has the potential application in multiferroic tunneling junction used in novel information storage. Understanding the ferrite growth mechanisms and interface functions through this research, is an important contribution toward the realization of a next-generation, multifunctional device.
Modulation-Doped SrTiO3/SrTi1-xZrxO3 Heterostructures
NASA Astrophysics Data System (ADS)
Kajdos, Adam Paul
Two-dimensional electron gases (2DEGs) in SrTiO3 have attracted considerable attention for exhibiting a variety of interesting physical phenomena, such as superconductivity and magnetism. So far, most of the literature has focused on interfaces between nonpolar SrTiO3 and polar perovskite oxides (e.g. LaAlO3 or rare-earth titanates), where high carrier density 2DEGs (˜3 x 1014 cm-2) are generated by polar discontinuity. Modulation doping is an alternative approach to generating a 2DEG that has been explored extensively in III-V semiconductors but has not heretofore been explored in complex oxides. This approach involves interfacing an undoped semiconductor with a doped semiconductor whose conduction band edge lies at a higher energy, which results in electrons diffusing into the undoped semiconductor transport channel, where scattering from ionized dopants is minimized. Realizing a high-mobility modulation-doped structure with a SrTiO3 transport channel therefore requires both the optimization of the transport channel by minimizing native defects as well as the development of a perovskite oxide which has a suitable band offset with SrTiO3 and can be electron-doped. The growth of high electron mobility SrTiO3 as a suitable transport channel material was previously demonstrated using the hybrid molecular beam epitaxy (MBE) approach, where Sr is delivered via a solid source and Ti is delivered using a metal-organic precursor, titanium (IV) tetra-isopropoxide (TTIP). Expanding on this, in-situ reflection high-energy electron diffraction (RHEED) is used to track the surface and resulting film cation stoichiometry of homoepitaxial SrTiO3 (001) thin films grown by hybrid MBE. It is shown that films with lattice parameters identical to bulk single-crystal substrates within the detection limit of high-resolution X-ray diffraction (XRD) measurements exhibit an evolution in surface reconstruction with increasing TTIP beam-equivalent pressure. The change in the observed surface reconstruction from (1x1) to (2x1) to c(4x4) is correlated with a change from mixed SrO/TiO2 to pure TiO2 surface termination. It is argued that optimal cation stoichiometry is achieved for growth conditions within the XRD-defined growth window that result in a c(4x4) surface lattice. The development of a doped perovskite oxide semiconductor with a suitable conduction band offset is then discussed as the next necessary step towards realizing modulation-doped heterostructures. The SrTixZr1-x O3 solid solution is investigated for this purpose, with a focus on optimizing cation stoichiometry to allow for controlled doping. In particular, the hybrid MBE growth of SrTixZr1-xO3 thin films is explored using a metal-organic precursor for Zr, zirconium tert-butoxide (ZTB). The successful generation of 2DEGs by modulation doping of SrTiO3 is then demonstrated in SrTiO3/La:SrTi0.95Zr0.05O 3 heterostructures, and the electronic structure is studied by Shubnikov-de Haas analysis using multiple-subband models.
Chemical Beam Epitaxial Growth of Indium Phosphide Using Alternative, Safer Phosphorus Sources
NASA Astrophysics Data System (ADS)
Kim, Chungwoo
1995-11-01
Chemical beam epitaxy (CBE) is a relatively new III-V semiconductor growth technique that combines important advantages of molecular beam epitaxy (MBE) and organometallic vapor phase epitaxy (OMVPE). Although CBE grown-InP using phosphine (PH_3) combined with trimethylindium (TMIn) or triethylindium (TEIn) has produced high quality material comparable to OMVPE-and gas source MBE-grown InP, the highly hazardous and toxic nature of PH_3 is becoming a main obstacle to mass production of semiconductor devices. In this dissertation, InP epilayers were grown using tertiarybutylphosphine (TBP) and bisphosphinoethane (BPE) as possible replacements for PH_3, together with ethyldimethylindium (EDMIn) as the indium source. For the first time, InP epilayers have been grown using TBP and EDMIn by CBE. The surface morphology and the electrical and optical properties improved with increasing substrate and cracker cell temperatures and input V/III ratio. High quality n-type InP epilayers with electron mobilities of up to 3830 cm^2/Vs and net carrier concentrations of approximately 6 times 10^{14} cm^{-3} at room temperature were achieved at a growth temperature of 500^ circC using a V/III ratio of 70 and a TBP cracker cell temperature of 900^circ C. Strong band-edge emission was observed at growth temperatures between 460 and 500^circ C. The bound exciton halfwidth of the sample grown at 500^circC was as narrow as 3.6 meV at 14 K with a barely observable acceptor related peak indicating a very low concentration of acceptors. For growth of InP using BPE and EDMIn, good surface morphologies were obtained at a substrate temperature of 485^circC using V/III ratios of >=q53. At fixed growth and cracker cell temperatures of 485 and 800^circ C, respectively, the net carrier concentration at a V/III ratio of 53 was 7.8 times 10 ^{15} at room temperature and 3.2 times 10^{15} cm^{-3} at 77 K with respective electron mobilities of 3,630 and 21,800 cm^2 /Vs. The 14 K PL spectra were dominated by band -edge emission and exhibited very weak acceptor related peak intensities for InP layers grown at 485^ circC for several different V/III ratios and cracker cell temperatures. The narrowest value of FWHM for the band edge emission was 3.5 meV at 14 K.
NASA Astrophysics Data System (ADS)
Gao, Guilong; Tian, Jinshou; Wang, Tao; He, Kai; Zhang, Chunmin; Zhang, Jun; Chen, Shaorong; Jia, Hui; Yuan, Fenfang; Liang, Lingliang; Yan, Xin; Li, Shaohui; Wang, Chao; Yin, Fei
2017-11-01
We report and experimentally demonstrate an ultrafast all-optical imaging technique capable of single-shot ultrafast recording with a picosecond-scale temporal resolution and a micron-order two-dimensional spatial resolution. A GaAs/AlxGa1 - xAs multiple-quantum-well (MQW) semiconductor with a picosecond response time, grown using molecular beam epitaxy (MBE) at a low temperature (LT), is used for the first time in ultrafast imaging technology. The semiconductor transforms the signal beam information to the probe beam, the birefringent delay crystal time-serializes the input probe beam, and the beam displacer maps different polarization probe beams onto different detector locations, resulting in two frames with an approximately 9 ps temporal separation and approximately 25 lp/mm spatial resolution in the visible range.
Fabrication and characterization of AlN metal-insulator-semiconductor grown Si substrate
NASA Astrophysics Data System (ADS)
Mahyuddin, A.; Azrina, A.; Mohd Yusoff, M. Z.; Hassan, Z.
2017-11-01
An experimental investigation was conducted to explore the effect of inserting a single AlGaN interlayer between AlN epilayer and GaN/AlN heterostructures on Si (111) grown by molecular beam epitaxy (MBE). It is confirmed from the scanning electron microscopy (SEM) that the AlGaN interlayer has a remarkable effect on reducing the tensile stress and dislocation density in AlN top layer. Capacitance-voltage (C-V) measurements were conducted to study the electrical properties of AlN/GaN heterostructures. While deriving the findings through the calculation it is suggested that the AlGaN interlayer can significantly reduce the value of effective oxide charge density and total effective number of charges per unit area which are 1.37 × 10-6C/cm2 and 8.55 × 1012cm-2, respectively.
Writing and Reading of Ultrathin Ferroelectric Domains on Commensurate SrTiO3 on Silicon
NASA Astrophysics Data System (ADS)
Levy, Jeremy; Cen, Cheng; Sleasman, Charles R.; Warusawithana, Maitri; Schlom, Darrell G.
2008-03-01
Ferroelectricity in ultrathin epitaxial SrTiO3 grown commensurately by oxide-molecular beam epitaxy (MBE) on silicon substrates was investigated using piezoforce microscopy (PFM). A series of samples containing n molecular layers (ML) of SrTiO3 (n = 3, 4, 5, 6, 8, 10, 20) was grown on silicon substrates. Room-temperature ferroelectricity was observed for samples containing n = 5, 6, 8, 10 ML. Temperature-dependent measurements indicate that the sample with n = 5 exhibits a ferroelectric phase transition at Tc˜317 K. Sample with n = 6 remains ferroelectric up to at least 393K. Polar domains created on the n = 6 was found to be stable at room temperature for more than 72 hours. The implications of these results for fundamental and device-related applications will be discussed briefly.
High Temperature Annealing of MBE-grown Mg-doped GaN
NASA Astrophysics Data System (ADS)
Contreras, S.; Konczewicz, L.; Peyre, H.; Juillaguet, S.; Khalfioui, M. Al; Matta, S.; Leroux, M.; Damilano, B.; Brault, J.
2017-06-01
In this report, are shown the results of high temperature resistivity and Hall Effect studies of Mg-doped GaN epilayers. The samples studied were grown on (0001) (c-plane) sapphire by molecular beam epitaxy and 0.5 μm GaN:Mg layers have been achieved on low temperature buffers of GaN (30 nm) and AlN ( 150 nm). The experiments were carried out in the temperature range from 300 K up to 900 K. Up to about 870 K a typical thermally activated conduction process has been observed with the activation energy value EA = 215 meV. However, for higher temperatures, an annealing effect is observed in all the investigated samples. The increase of the free carrier concentration as a function of time leads to an irreversible decrease of sample resistivity of more than 60%.
On the nature of L1{sub 0} ordering in equiatomic AuNi and AuCu thin films grown on Au(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dynna, M.; Marty, A.; Gilles, B.
1997-01-01
The L1{sub 0} ordering of thin epitaxial films having a (001) surface normal subject to elastic constraints imposed by a similarly oriented substrate has been investigated both experimentally and theoretically. Thin AuNi films grown by MBE at room temperature on Au(001) by means of the alternating deposition of Au and Ni are found to possess a L1{sub 0} structure free of periodic antiphase boundaries when growth is controlled in such a way as to ensure that the quantity of Au or Ni deposited is almost exactly equal to one monolayer. If such control is not exercised during growth, a structuremore » having periodic antiphase boundaries is formed. This behavior stands in contrast to that of AuCu during room temperature MBE growth on Au(001), where a strongly ordered L2{sub 0} structure free of antiphase boundaries is formed even on the codeposition of Au and Cu. The effect of elastic constraints on the state of order in an alloy film which undergoes an L2{sub 0} order-disorder transition is examined as a function of temperature, lattice mismatch, and film thickness within the context of a model which allows for the introduction of dislocations in order to relieve misfit strain. Calculations are performed in detail for the case of AuCu, where particular attention is paid to the coupling between film thickness, the number of misfit dislocations present at equilibrium, and the state of order.« less
NASA Astrophysics Data System (ADS)
Vangala, Shivashankar; Peterson, Rita; Snure, Michael; Tassev, Vladimir
2017-02-01
Thick hydride vapor phase epitaxially grown orientation-patterned gallium phosphide (OPGaP) is a leading material for quasi-phase matching (QPM) frequency conversion in the mid- and longwave infrared (IR). This is due to its negligible two-photon absorption (2PA) in the convenient pumping range 1 - 1.7 μm, compared with the 2PA of some traditional QPM materials, such as GaAs. In this paper, we describe homo- and heteroepitaxial growth techniques aimed to produce hundreds of microns thick OPGaP on: 1) OPGaAs templates fabricated using an improved wafer-fusion process; 2) OPGaAs templates fabricated by using a molecular beam epitaxy (MBE) for sublattice polarity inversion, but one with and one without MBE regrowth after the inversion. Some of the advantages of the heteroepitaxial growth of OPGaP on OPGaAs templates include: 1) achieving good domain fidelity as a result of the significantly higher OPGaAs template quality; 2) eliminating the needs of using the poor quality commercially available GaP in the production of thick OPGaP material, and 3) suppression of the additional absorption band between 2 - 4 μm (which is due to incorporation of n-type impurities) and, in general, improvement of the IR transmittance in the entire IR region. Combining the advantages of the two most promising nonlinear materials, GaAs and GaP, will accelerate the development of high power, broadly tunable laser sources in the IR which, in addition, will be offered with higher device quality and at a reasonably lower unit cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.
The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplasticmore » yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.« less
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Hashizume, Tamotsu; Hasegawa, Hideki
1999-02-01
In order to understand and optimize a novel oxide-free InP passivation process using a silicon surface quantum well, a detailed in situ X-ray photoelectron spectroscopy (XPS) and ultrahigh vacuum (UHV) contactless capacitance-voltage (C-V) study of the interface was carried out. Calculation of quantum levels in the silicon quantum well was performed on the basis of the band lineup of the strained Si3N4/Si/InP interface and the result indicated that the interface should become free of gap states when the silicon layer thickness is below 5 Å. Experimentally, such a delicate Si3N4/Si/InP structure was realized by partial nitridation of a molecular beam epitaxially (MBE) grown pseudomorphic silicon layer using an electron cyclotron resonance (ECR) N2 plasma. The progress of nitridation was investigated in detail by angle-resolved XPS. A newly developed UHV contactless C-V method realized in situ characterization of surface electronic properties of InP at each processing step for passivation. It was found that the interface state density decreased substantially into the 1010 cm-2 eV-1 range by optimizing the nitridation process of the silicon layer. It was concluded that both the surface bond termination and state removal by quantum confinement are responsible for the NSS reduction.
Film growth and structure design in the barium oxide-strontium oxide-titanium dioxide system
NASA Astrophysics Data System (ADS)
Fisher, Patrick J.
This thesis describes the growth and characterization of thin films in the SrO-BaO-TiO2 system. The films are grown by molecular beam cpitaxy (MBE) and pulsed laser deposition (PLD) on ceramic substrates, and characterized using X-ray diffraction (XRD), atomic force microscopy (AFM), reflection-high energy electron diffraction (RHEED), and transmission electron microscopy (TEM). Films are grown with varied global and initial local stoichiometries, with the goal of determining the stability of specific cation organizations. Simple oxides, TiO2 (anatase) and SrO (rock salt) were grown on oxide substrates using MBE. Growth conditions, including substrate material, substrate temperature, O3 flux, and metal flux, are varied in each case. It is observed that the growth morphology of anatase is highly dependent on the ozone flux, with fluxes of 1.00 sccm and greater resulting in flat anatase surfaces. Increased roughness at higher substrate was determined to be a result of rutile inclusions. Growth oscillations are observed in the RHEED intensity for both TiO2 and SrO in overlapping regions of growth space, indicating 2D growth modes. Varied shuttering sequences were used during MBE growth of perovskites: globally non-stoichiometric films, as well as locally non-stoichiometric but globally stoichiometric perovskite. Films were grown within a (SrO) m(TiO2)n framework, where growth cycles involved m monolayers of SrO followed by n monolayers of TiO2. XRD results indicate that Ruddlesden-Popper defects, that is, rock salt double layers, enable incorporation of all levels of Sr excess, whereas excess Ti is observed to incorporate into the perovskite structure only at extreme excesses. A series of films with m equal to n were grown; that is, multiple monolayers of SrO deposited followed by multiple monolayers of TiO2. These initially locally non-stoichiometric arrangements interreact to form highly crystalline perovskite, even with layer thicknesses of up to 33 monolayers. The Ba0.6Sr0.4TiO3 films were characterized for their microwave dielectric properties, and were found to have high dielectric constants (epsilonr ˜1300 in each case, implying high tunabilities) but high tan delta values as well. The mechanisms by which the perovskite structure incorporates cation excesses is discussed, and it is argued that two probable mechanisms, one involving plane-sharing of Ti and Sr cations and the other involving rock salt multilayers, also enable the observed transport necessary for multilayer reaction. Working under the argument that these mechanisms involve low-energy architectures, a novel homologous series of phases based on rock salt multilayers is grown using monotayer control: the SrmTiO2+ m series, with each TiO2 monolayer followed by m SrO monolayers (m = 1-5). The phases in this series were characterized structurally, and an in-plane contraction was observed between the m = 2 and m = 3 phases, which is argued to be a relaxation of the SrO monolayers. Considering Ti-excess organizations, the BaTi2O5 structure is grown and observed to nucleate over a narrow window of growth conditions and substrates. LaAlO 3(100) promotes the nucleation of anatasc and ejection of perovskite; SrTiO3(100) promotes the nucleation of perovskite and ejection of TiO2; importantly, MgO(100) promotes the nucleation (010)-oriented BaTi2O5 growing with multiple domains. A BaTi2 O5 buffer layer was then used to promote the inclusion of Sr into (Ba,SOTi205 epilayers. Sr incorporation into a perovskite-related structure was observed to occur over the full range of (Ba,Sr)Ti2O 5 compositions.
Thin film GaP for solar cell application
NASA Astrophysics Data System (ADS)
Morozov, I. A.; Gudovskikh, A. S.; Kudryashov, D. A.; Nikitina, E. V.; Kleider, J.-P.; Myasoedov, A. V.; Levitskiy, V.
2016-08-01
A new approach to the silicon based heterostructures technology consisting of the growth of III-V compounds (GaP) on a silicon substrate by low-temperature plasma enhanced atomic layer deposition (PE-ALD) is proposed. The basic idea of the method is to use a time modulation of the growth process, i.e. time separated stages of atoms or precursors transport to the growing surface, migration over the surface, and crystal lattice relaxation for each monolayer. The GaP layers were grown on Si substrates by PE-ALD at 350°C with phosphine (PH3) and trimethylgallium (TMG) as sources of III and V atoms. Scanning and transmission electron microscopy demonstrate that the grown GaP films have homogeneous amorphous structure, smooth surface and a sharp GaP/Si interface. The GaP/Si heterostructures obtained by PE-ALD compare favourably to that conventionally grown by molecular beam epitaxy (MBE). Indeed, spectroscopic ellipsometry measurements indicate similar interband optical absorption while photoluminescence measurements indicate higher charge carrier effective lifetime. The better passivation properties of GaP layers grown by PE-ALD demonstrate a potential of this technology for new silicon based photovoltaic heterostructure
Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers
NASA Astrophysics Data System (ADS)
Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P. L.
1998-12-01
Gallium nitride layers were grown by plasma-assisted molecular-beam epitaxy on (0001)-oriented sapphire substrates using an electron cyclotron resonance (ECR) and a radio frequency (rf) plasma source. An applied substrate bias was varied from -200 to +250 V, resulting in a change of the density and energy of nitrogen ions impinging the growth surface. The layers were investigated by high-resolution x-ray diffractometry and high-resolution transmission electron microscopy (HRTEM). Applying a negative bias during growth has a marked detrimental effect on the crystal perfection of the layers grown with an ECR plasma source. This is indicated by a change in shape and width of (0002) and (202¯5) reciprocal lattice points as monitored by triple axis x-ray measurements. In HRTEM images, isolated basal plane stacking faults were found, which probably result from precipitation of interstitial atoms. The crystal damage in layers grown with a highly negative substrate bias is comparable to that observed for ion implantation processes at orders of magnitude larger ion energies. This is attributed to the impact of ions on the growing surface. None of the described phenomena was observed for the samples grown with the rf plasma source.
NASA Astrophysics Data System (ADS)
Suzuki, Toyoaki; Wada, Takehiko; Hirose, Kazuyuki; Makitsubo, Hironobu; Kaneda, Hidehiro
2012-08-01
We have evaluated the optical and electrical properties of a far-infrared (IR) transparent electrode for extrinsic germanium (Ge) photoconductors at 4 K, which was fabricated by molecular beam epitaxy (MBE). As a far-IR transparent electrode, an aluminum (Al)-doped Ge layer is formed at well-optimized doping concentration and layer thickness in terms of the three requirements: high far-IR transmittance, low-resistivity, and excellent ohmic contact. The Al-doped Ge layer has the far-IR transmittance of >95% within the wavelength range of 40-200 μm, while low-resistivity ( ˜5 Ω cm) and ohmic contact are ensured at 4 K. We demonstrate the applicability of the MBE technology in fabricating the far-IR transparent electrode satisfying the above requirements.
Kraus, Elena M; Bakanas, Erin; Gursahani, Kamal; DuBois, James M
2014-10-09
In recent years, issues in medical business ethics (MBE), such as conflicts of interest (COI), Medicare fraud and abuse, and the structure and functioning of reimbursement systems, have received significant attention from the media and professional associations in the United States. As a result of highly publicized instances of financial interests altering physician decision-making, major professional organizations and government bodies have produced reports and guidelines to encourage self-regulation and impose rules to limit physician relationships with for-profit entities. Nevertheless, no published curricula exist in the area of MBE. This study aimed to establish a baseline level of knowledge and the educational goals medical students and residents prioritize in the area of MBE. 732 medical students and 380 residents at two academic medical centers in the state of Missouri, USA, completed a brief survey indicating their awareness of major MBE guidance documents, knowledge of key MBE research, beliefs about the goals of an education in MBE, and the areas of MBE they were most interested in learning more about. Medical students and residents had little awareness of recent and major reports on MBE topics, and had minimal knowledge of basic MBE facts. Residents scored statistically better than medical students in both of these areas. Medical students and residents were in close agreement regarding the goals of an MBE curriculum. Both groups showed significant interest in learning more about MBE topics with an emphasis on background topics such as "the business aspects of medicine" and "health care delivery systems". The content of major reports by professional associations and expert bodies has not trickled down to medical students and residents, yet both groups are interested in learning more about MBE topics. Our survey suggests potentially beneficial ways to frame and embed MBE topics into the larger framework of medical education.
NASA Astrophysics Data System (ADS)
Trybus, Elaissa
The objective of the proposed research is to establish the technology for material growth by molecular beam epitaxy (MBE) and fabrication of indium gallium nitride/gallium nitride (InxGa1-xN/GaN) heterojunction solar cells. InxGa1-xN solar cells have the potential to span 90% of the solar spectrum, however there has been no success with high indium (In) incorporation and only limited success with low In incorporation InxGa1-xN. Therefore, this present work focuses on 15--30% In incorporation leading to a bandgap value of 2.3--2.8 eV. This work will exploit the revision of the indium nitride (InN) bandgap value of 0.68 eV, which expands the range of the optical emission of nitride-based devices from ultraviolet to near infrared regions, by developing transparent In xGa1-xN solar cells outside the visible spectrum. Photovoltaic devices with a bandgap greater than 2.0 eV are attractive because over half the available power in the solar spectrum is above the photon energy of 2.0 eV. The ability of InxGa1-xN materials to optimally span the solar spectrum offers a tantalizing solution for high-efficiency photovoltaics. This work presents results confirming the revised bandgap of InN grown on germanium (Ge) substrates and the effects of oxygen contamination on the bandgap. This research adds to the historical discussion of the bandgap value of InN. Using the metal modulated epitaxy (MME) technique in a new, ultra-clean refurbished MBE system, an innovative growth regime is established where In and Ga phase separation is diminished by increasing the growth rate for In xGa1-xN. The MME technique modulates the metal shutters with a fixed duty cycle while maintaining a constant nitrogen flux and proves effective for improving crystal quality and p-type doping. InxGa 1-xN/GaN heterojunction solar cells require p-type doping to create the p-n subcell collecting junction, which facilitates current collection through the electrostatic field created by spatially separated ionized donors and acceptors. Magnesium (Mg) has been proven to be the most successful p-type dopant. We demonstrate the ability to repeatedly grow high hole concentration Mg-doped GaN films using the MME technique. The highest hole concentration obtained is equal to 4.26 x 1019 cm-3, resistivity of 0.5 O-cm, and mobility of 0.28 cm2/V-s. We have achieved hole concentrations significantly higher than recorded in the literature, proving that our growth parameters and the MME technique is feasible, repeatable, and beneficial to p-GaN devices. The solar cell structures were modeled with software, to design an optimal heterojunction solar cell. Using the modeling results and optimized growth parameters, four solar cell devices were grown, fabricated, and underwent extensive device testing. The device testing determined that there was no photovoltaic response from the devices, resulting from the lack of high doping in the p-GaN emitter.
Luminescence and Electroluminescence of Nd, Tm and Yb Doped GaAs and some II-Vi Compounds
1994-02-28
from the bandgap discontinuity (as was proposed in my publications [1,2]). Also, by using superlattice structure A1GaAs / GaAs: Er / AlGaAs, we could...n ipact ightemiting evic 10 3. The AlGaAs/GaAs: Er/A1GaAs superlattice structure. For the first time we designed the unipolar n’ - superlattice - n...structure as shown in Figure 5. The GaAs: Er/Alo.45Gao.55As superlattice was grown by MBE on an n’ GaAs: Si substrate. It consisted of 60 periods of
Semiconductor light sources for near- and mid-infrared spectral ranges
NASA Astrophysics Data System (ADS)
Karachinsky, L. Ya; Babichev, A. V.; Gladyshev, A. G.; Denisov, D. V.; Filimonov, A. V.; Novikov, I. I.; Egorov, A. Yu
2017-11-01
1550 nm band wafer-fused vertical-cavity surface-emitting lasers (VCSELs) and 5-10 μm band multi-stages quantum-cascade lasers (QCL) grown by molecular beam epitaxy (MBE) were fabricated and studied. VCSELs show high output optical power up to 6 mW in single-mode regime (SMSR > 40 dB) and open-eye diagrams at 30 Gbps of standard NRZ at 20°C. QCL heterostructures show high structural quality (fluctuations of composition and thickness < 1%). 20-μm-stripe width QCLs mounted on copper heatsinks show lasing at ∼ 6, 7.5 and 9 μm.
New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles
NASA Astrophysics Data System (ADS)
Bouravleuv, A.; Ilkiv, I.; Reznik, R.; Kotlyar, K.; Soshnikov, I.; Cirlin, G.; Brunkov, P.; Kirilenko, D.; Bondarenko, L.; Nepomnyaschiy, A.; Gruznev, D.; Zotov, A.; Saranin, A.; Dhaka, V.; Lipsanen, H.
2018-01-01
We present a new method for the deposition of colloidal Au nanoparticles on the surface of silicon substrates based on short-time Ar plasma treatment without the use of any polymeric layers. The elaborated method is compatible with molecular beam epitaxy, which allowed us to carry out the detailed study of GaAs nanowire synthesis on Si(111) substrates using colloidal Au nanoparticles as seeds for their growth. The results obtained elucidated the causes of the difference between the initial nanoparticle sizes and the diameters of the grown nanowires.
NASA Astrophysics Data System (ADS)
Beaton, Daniel A.; Steger, M.; Christian, T.; Mascarenhas, A.
2018-02-01
In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs1-xBix epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.
1994-06-01
Taskert, M. Demmiler, J. Braunsteint, B. Hughes* and E. SAnchez Dpto. Tecnologfas de las Comunicaciones , Universidad de Vigo, E-36200 Vigo, Spain. Phone...Typical Hall mobilities of MOVPE and MBE grown lattice matched HFET layers 20 InGaAs 10 nm- Vg- 0.4V 60015estimated bulk InA LAs 20 nm 15 sl’,e-rai...P measured 0.3 R measured 1-ti) Rs ~~~0.4 .. .....7. ....... -. C simulated 0.2 C measured 0.1 La ~ ~0.2
Gallium arsenide (GaAs) (001) after sublimation of arsenic (As) thin-film cap, by XPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelhard, Mark H.; Lyubinetsky, Andre; Baer, Don R.
2016-12-01
Survey and high energy resolution spectra are reported for MBE grown GaAs (001) that had been capped with As. The As cap was removed by heating in situ prior to analysis. The current data expands upon the spectral regions previously reported in Surface Science Spectra. High energy resolution spectral features reported include: 2p, 3s, 3p, 3d, and L3M45M45 peaks for As; 2p, 3s, 3p, 3d, and L3M45M45 peaks for Ga; and the valance band region.
2010-01-01
Heterostructure epitaxial material growth was performed by RF plasma-assisted molecular - beam epitaxy (MBE) on a 2-in. semi- insulating 4H SiC wafer. From... beam epitaxy of beryllium-doped GaN buffer layers for AlGaN/GaN HEMTs . J Cryst Growth 2003;251:481–6. [25] Storm DF, Katzer DS, Binari SC, Glaser ER...Shanabrook BV, Roussos JA. Reduction of buffer layer conduction near plasma-assisted molecular - beam epitaxy grown GaN/AlN interfaces by beryllium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaton, Daniel A.; Steger, M.; Christian, T.
In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs 1-xBi x epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.
Beaton, Daniel A.; Steger, M.; Christian, T.; ...
2017-12-14
In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs 1-xBi x epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.
Josephson junctions of candidate topological crystalline insulator Pb1-xSnxTe
NASA Astrophysics Data System (ADS)
Snyder, Rodney; Trimble, Christie; Taylor, Patrick; Williams, James
Incorporating superconducting ordering through proximity effects in topological states of matter offers potential routes to novel excitations with properties beyond that of simple electrons. Topological crystalline insulators TCI offer alternative routes to topological states of matter with surface states of distinct character to those in more common 3d topological insulators. We report on the fabrication Josephson junctions using MBE-grown candidate TCI material Pb-doped SnTe as weak links and characterize the departures from conventional junctions using combined DC and RF techniques. Opportunities to create junction weak links from materials possessing electronic interactions will be discussed.
Matrix addressable vertical cavity surface emitting laser array
NASA Astrophysics Data System (ADS)
Orenstein, M.; von Lehmen, A. C.; Chang-Hasnain, C.; Stoffel, N. G.; Harbison, J. P.
1991-02-01
The design, fabrication and characterization of 1024-element matrix-addressable vertical-cavity surface-emitting laser (VCSEL) arrays are described. A strained InGaAs quantum-well VCSEL structure was grown by MBE, and an array of 32 x 32 lasers was defined using a proton implantation process. A matrix addressing architecture was employed, which enables the individual addressing of each of the 1024 lasers using only 64 electrical contacts. All the lasers in the array, measured after the laser definition step, were operating with fairly homogeneous characteristics; threshold current of 6.8 mA and output quantum differential efficiency of about 8 percent.
Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2 \\xAF 01 )
NASA Astrophysics Data System (ADS)
Kollmannsberger, Sebastian L.; Walenta, Constantin A.; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N.; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli
2017-09-01
In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α -H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga2O3(2 ¯ 01 ) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.
NASA Technical Reports Server (NTRS)
Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.
1990-01-01
The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.
Natrella, Michele; Rouvalis, Efthymios; Liu, Chin-Pang; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J
2012-08-13
We report the first InGaAsP-based uni-travelling carrier photodiode structure grown by Solid Source Molecular Beam Epitaxy; the material contains layers of InGaAsP as thick as 300 nm and a 120 nm thick InGaAs absorber. Large area vertically illuminated test devices have been fabricated and characterised; the devices exhibited 0.1 A/W responsivity at 1550 nm, 12.5 GHz -3 dB bandwidth and -5.8 dBm output power at 10 GHz for a photocurrent of 4.8 mA. The use of Solid Source Molecular Beam Epitaxy enables the major issue associated with the unintentional diffusion of zinc in Metal Organic Vapour Phase Epitaxy to be overcome and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of Gas Source Molecular Beam Epitaxy.
NASA Astrophysics Data System (ADS)
Thomas, Paul M.
Understanding of quantum tunneling phenomenon in semiconductor systems is increasingly important as CMOS replacement technologies are investigated. This work studies a variety of heterojunction materials and types to increase tunnel currents to CMOS competitive levels and to understand how integration onto Si substrates affects performance. Esaki tunnel diodes were grown by Molecular Beam Epitaxy (MBE) on Si substrates via a graded buffer and control Esaki tunnel diodes grown on lattice matched substrates for this work. Peak current density for each diode is extracted and benchmarked to build an empirical data set for predicting diode performance. Additionally, statistics are used as tool to show peak to valley ratio for the III-V on Si sample and the control perform similarly below a threshold area. This work has applications beyond logic, as multijunction solar cell, heterojunction bipolar transistor, and light emitting diode designs all benefit from better tunnel contact design.
Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2¯01).
Kollmannsberger, Sebastian L; Walenta, Constantin A; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli
2017-09-28
In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α-H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga 2 O 3 (2¯01) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.
Influence of twin boundaries on superconducting gap nodes in FeSe single crystal studied by STM/STS
NASA Astrophysics Data System (ADS)
Watashige, T.; Hanaguri, T.; Kohsaka, Y.; Iwaya, K.; Fu, Y.; Kasahara, S.; Watanabe, D.; Mizukami, Y.; Mikami, T.; Kawamoto, Y.; Kurata, S.; Shibauchi, T.; Matsuda, Y.; Böhmer, A. E.; Wolf, T.; Meingast, C.; Löhneysen, H. V.
2014-03-01
We performed scanning tunneling microscopy (STM) and spectroscopy (STS) measurements on high-quality FeSe single crystals grown by vapor transport technique to examine the superconducting-gap structure. In MBE-grown FeSe thin films, based on the V-shaped tunneling spectra, nodal superconductivity is suggested. It is interesting to investigate how the nodes are affected by various kinds of defects. We found that twin boundaries bring about drastic effects on the gap nodes. With approaching to the twin boundary, V-shaped spectra gradually change to U-shaped ones. Interestingly, in the area between the twin boundaries separated by about 30 nm, the gap node is completely lifted and there appears a finite gap over +/-0.4 meV. This unusual twin-boundary effect will give us a hint to elucidate the superconducting-gap structure.
NASA Astrophysics Data System (ADS)
Gunapala, Sarath D.; Bandara, Sumith V.; Singh, Anjali; Liu, John K.; Rafol, S. B.; Luong, Edward M.; Mumolo, Jason M.; Tran, N. Q.; Vincent, John D.; Shott, C. A.; Long, James F.; LeVan, Paul D.
1999-07-01
An optimized long-wavelength two-color quantum well IR photodetector (QWIP) device structure has been designed. This device structure was grown on a three-inch semi- insulating GaAs substrate by molecule beam epitaxy (MBE). This wafer was processed into several 640 X 486 format monolithically integrated 8-9 and 14-15 micrometers two-color QWIP focal plane arrays (FPAs). These FPAs were then hybridized to 640 X 486 silicon CMOS readout multiplexers. A thinned FPA hybrid was integrated into a liquid helium cooled dewar to perform electrical and optical characterization and to demonstrate simultaneous two-color imagery. The 8-9 micrometers detectors in the FPA have shown background limited performance (BLIP) at 70 K operating temperature, at 300 K background with f/2 cold stop. The 14-15 micrometers detectors of the FPA have reached BLIP at 40 K operating temperature at the same background conditions. In this paper we discuss the performance of this long-wavelength dualband QWIP FPA in quantum efficiency, detectivity, noise equivalent temperature difference, uniformity, and operability.
NASA Astrophysics Data System (ADS)
Gunapala, S. D.; Bandara, S. V.; Singh, A.; Liu, J. K.; Rafol, S. B.
2000-01-01
We have designed and fabricated an optimized long-wavelength/very-long-wavelength two-color quantum well infrared photodetector (QWIP) device structure. The device structure was grown on a 3-in semi-insulating GaAs substrate by molecular beam epitaxy (MBE). The wafer was processed into several 640 x 486 format monolithically integrated 8-9 and 14-15 micrometers two-color (or dual wavelength) QWIP focal plane arrays (FPA's). These FPA's were then hybridized to 640 x 486 silicon CMOS readout multiplexers. A thinned (i.e., substrate removed) FPA hybrid was integrated into liquid helium cooled dewar for electrical and optical characterization and to demonstrate simultaneous two-color imagery. The 8-9 micrometers detectors in the FPA have shown background limited performance (BLIP) at 70 K operating temperature for 300 K background with f/2 cold stop. The 14-15 micrometers detectors of the SPA reach BLIP at 40 K operating temperature under the same background conditions. In this paper we discuss the performance of this long-wavelength dualband QWIP SPA in terms of quantum efficiency, detectivity, noise equivalent temperature difference (NE DELTA T), uniformity, and operability.
Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mahesh; Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore 560013
High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN filmmore » grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth.« less
Spin and Charge Transport in 2D Materials and Magnetic Insulator/Metal Heterostructures
NASA Astrophysics Data System (ADS)
Amamou, Walid
Spintronic devices are very promising for future information storage, logic operations and computation and have the potential to replace current CMOS technology approaching the scaling limit. In particular, the generation and manipulation of spin current enables the integration of storage and logic within the same circuit for more powerful computing architectures. In this thesis, we examine the manipulation of spins in 2D materials such as graphene and metal/magnetic insulator heterostructures. In particular, we investigate the feasibility for achieving magnetization switching of a nanomagnet using graphene as a nonmagnetic channel material for All Spin Logic Device applications. Using in-situ MBE deposition of nanomagnet on graphene spin valve, we demonstrate the presence of an interfacial spin dephasing at the interface between the graphene and the nanomagnet. By introducing a Cu spacer between the nanomagnet and graphene, we demonstrate that this interfacial effect is related to an exchange interaction between the spin current and the disordered magnetic moment of the nanomagnet in the first monolayer. In addition to the newly discovered interfacial spin relaxation effect, the extracted contact resistance area product of the nanomagnet/graphene interface is relatively high on the order of 1Omicrom2. In practice, reducing the contact resistance will be as important as eliminating the interfacial relaxation in order to achieve magnetization switching. Furthermore, we examine spin manipulation in a nonmagnetic Pt using an internal magnetic exchange field produced by the adjacent magnetic insulator CoFe2O4 grown by MBE. Here, we report the observation of a strong magnetic proximity effect of Pt deposited on top of a perpendicular magnetic anisotropy (PMA) inverse spinel material Cobalt Ferrite (CFO, CoFe 2O4). The CFO was grown by MBE and its magnetization was characterized by Vibrating Sample Magnetometry (VSM) demonstrating the strong out of plane magnetic anisotropy of this material. The anomalous Hall measurement on a Pt/CFO Hall bar exhibits a strong non-linear background around the saturation of the out of plane CFO magnetization. After subtraction of the Ordinary Hall Effect (OHE), we extract a strongly hysteretic anomalous Hall voltage that indicates that Pt acquired the magnetization properties of the CFO and has become ferromagnetic due to the proximity effects.
Nucleation and growth of WSe2: enabling large grain transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Yue, Ruoyu; Nie, Yifan; Walsh, Lee A.; Addou, Rafik; Liang, Chaoping; Lu, Ning; Barton, Adam T.; Zhu, Hui; Che, Zifan; Barrera, Diego; Cheng, Lanxia; Cha, Pil-Ryung; Chabal, Yves J.; Hsu, Julia W. P.; Kim, Jiyoung; Kim, Moon J.; Colombo, Luigi; Wallace, Robert M.; Cho, Kyeongjae; Hinkle, Christopher L.
2017-12-01
The limited grain size (<200 nm) for transition metal dichalcogenides (TMDs) grown by molecular beam epitaxy (MBE) reported in the literature thus far is unsuitable for high-performance device applications. In this work, the fundamental nucleation and growth behavior of WSe2 is investigated through a detailed experimental design combined with on-lattice, diffusion-based first principles kinetic modeling to enable large area TMD growth. A three-stage adsorption-diffusion-attachment mechanism is identified and the adatom stage is revealed to play a significant role in the nucleation behavior. To limit the nucleation density and promote 2D layered growth, it is necessary to have a low metal flux in conjunction with an elevated substrate temperature. At the same time, providing a Se-rich environment further limits the formation of W-rich nuclei which suppresses vertical growth and promotes 2D growth. The fundamental understanding gained through this investigation has enabled an increase of over one order of magnitude in grain size for WSe2 thus far, and provides valuable insight into improving the growth of other TMD compounds by MBE and other growth techniques such as chemical vapor deposition (CVD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beatty, John; Cheng, Tao; Cao, Yuan
We report directly grown strongly adherent graphene on Co 3O 4(111) by carbon molecular beam epitaxy (C MBE) at 850 K and density functional theory (DFT) findings that the first graphene layer is reconstructed to fit the Co 3O 4 surface, while subsequent layers retain normal graphene structure. This adherence to the Co 3O 4 structure results from partial bonding of half the carbons to top oxygens of the substrate. This structure is validated by X-ray photoelectron spectroscopy and low-energy electron diffraction studies, showing layer-by-layer graphene growth with ~0.08 electrons/carbon atom transferred to the oxide from the first graphene layer,more » in agreement with DFT. In contrast, for Cr 2O 3 DFT finds no strong bonding to the surface and C MBE on Cr 2O 3(0001) yields only graphite formation at 700 K, with C desorption above 800 K. As a result, strong graphene-to-oxide charge transfer aids nucleation of graphene on incommensurate oxide substrates and may have implications for spintronics.« less
Beatty, John; Cheng, Tao; Cao, Yuan; ...
2016-12-14
We report directly grown strongly adherent graphene on Co 3O 4(111) by carbon molecular beam epitaxy (C MBE) at 850 K and density functional theory (DFT) findings that the first graphene layer is reconstructed to fit the Co 3O 4 surface, while subsequent layers retain normal graphene structure. This adherence to the Co 3O 4 structure results from partial bonding of half the carbons to top oxygens of the substrate. This structure is validated by X-ray photoelectron spectroscopy and low-energy electron diffraction studies, showing layer-by-layer graphene growth with ~0.08 electrons/carbon atom transferred to the oxide from the first graphene layer,more » in agreement with DFT. In contrast, for Cr 2O 3 DFT finds no strong bonding to the surface and C MBE on Cr 2O 3(0001) yields only graphite formation at 700 K, with C desorption above 800 K. As a result, strong graphene-to-oxide charge transfer aids nucleation of graphene on incommensurate oxide substrates and may have implications for spintronics.« less
X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi{sub 2}Se{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins-McIntyre, L. J.; Watson, M. D.; Zhang, S. L.
2014-12-15
We report the growth of Mn-doped Bi{sub 2}Se{sub 3} thin films by molecular beam epitaxy (MBE), investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), SQUID magnetometry and x-ray magnetic circular dichroism (XMCD). Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ∼7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS), and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mnmore » is observed with increasing doping concentration. A magnetic moment of 5.1 μ{sub B}/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 μ{sub B}/Mn from surface-sensitive XMCD. At ∼2.5 K, XMCD at the Mn L{sub 2,3} edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.« less
Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.
Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young
2014-08-29
Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.
NASA Astrophysics Data System (ADS)
Piquette, Eric Charles
The thesis consists of two parts. Part I describes work on the molecular beam epitaxial (MBE) growth of GaN, AlN, and AlxGa 1-xN alloys, as well as efforts in the initial technical development and demonstration of nitride-based high power electronic devices. The major issues pertaining to MBE growth are discussed, including special requirements of the growth system, substrates, film nucleation, n - and p-type doping, and the dependence of film quality on growth parameters. The GaN films were characterized by a variety of methods, including high resolution x-ray diffraction, photoluminescence, and Hall effect measurement. It is found that the film polarity and extended defect density as well as quality of photoluminescence and electrical transport properties depend crucially on how the nitride layer is nucleated on the substrate and how the subsequent film surface morphology evolves, which can be controlled by the growth conditions. A technique is proposed and demonstrated that utilizes the control of morphology evolution to reduce defect density and improve the structural quality of MBE GaN films. In addition to growth, the design and processing of high voltage GaN Schottky diodes is presented, as well as an experimental study of sputter-deposited ohmic and rectifying metal contacts to GaN. Simple models for high power devices, based on materials properties such as minority carrier diffusion length and critical electric breakdown field, are used to estimate the voltage standoff capability, current carrying capacity, and maximum operating frequency of unipolar and bipolar GaN power devices. The materials and transport properties of GaN pertinent to high power device design were measured experimentally. High voltage Schottky rectifiers were fabricated which verify the impressive electric breakdown field of GaN (2--5 MV/cm). Electron beam induced current (EBIC) experiments were also conducted to measure the minority carrier diffusion length for both electrons and holes in GaN. Part II of the thesis describes studies of the MBE growth of ZnS and investigations of ZnS/GaN fight emitting heterojunctions which show promise for application as blue and green light emitters. Zinc sulfide layers doped with Ag and Al were grown by MBE on sapphire, GaAs, and GaN substrates and characterized by x-ray diffraction and photoluminescence. Preliminary current-voltage and electroluminescence results are presented for a processed ZnS:Al,Ag/GaN:Mg prototype blue light emitting device.
40 CFR 33.503 - How does a recipient calculate MBE and WBE participation for reporting purposes?
Code of Federal Regulations, 2011 CFR
2011-07-01
... attributable to the MBE or WBE. If an MBE's or WBE's risk of loss, control or management responsibilities is... ENTERPRISES IN UNITED STATES ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Recordkeeping and Reporting § 33.503 How... performing a commercially useful function: (1) The MBE or WBE must be responsible for the management and...
40 CFR 33.503 - How does a recipient calculate MBE and WBE participation for reporting purposes?
Code of Federal Regulations, 2010 CFR
2010-07-01
... attributable to the MBE or WBE. If an MBE's or WBE's risk of loss, control or management responsibilities is... ENTERPRISES IN UNITED STATES ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Recordkeeping and Reporting § 33.503 How... performing a commercially useful function: (1) The MBE or WBE must be responsible for the management and...
Do explicit memory manipulations affect the memory blocking effect?
Landau, Joshua D; Leynes, P Andrew
2006-01-01
The memory blocking effect (MBE) occurs when people are prevented from completing word fragments because they studied orthographically similar words. Across 3 experiments, we investigated how manipulations that influence explicit memory tasks would influence the MBE. Although a significant MBE was observed in all 3 experiments, manipulating depth of processing (Experiment 1), time to complete the fragments (Experiment 2), and awareness of the MBE (Experiment 3) did not change the magnitude of the MBE. We discuss these results in the context of a suppression mechanism involved in retrieval-induced forgetting.
Highly-efficient GaN-based light-emitting diode wafers on La0.3Sr1.7AlTaO6 substrates
Wang, Wenliang; Yang, Weijia; Gao, Fangliang; Lin, Yunhao; Li, Guoqiang
2015-01-01
Highly-efficient GaN-based light-emitting diode (LED) wafers have been grown on La0.3Sr1.7AlTaO6 (LSAT) substrates by radio-frequency molecular beam epitaxy (RF-MBE) with optimized growth conditions. The structural properties, surface morphologies, and optoelectronic properties of as-prepared GaN-based LED wafers on LSAT substrates have been characterized in detail. The characterizations have revealed that the full-width at half-maximums (FWHMs) for X-ray rocking curves of GaN(0002) and GaN(10-12) are 190.1 and 210.2 arcsec, respectively, indicating that high crystalline quality GaN films have been obtained. The scanning electron microscopy and atomic force microscopy measurements have shown the very smooth p-GaN surface with the surface root-mean-square (RMS) roughness of 1.3 nm. The measurements of low-temperature and room-temperature photoluminescence help to calculate the internal quantum efficiency of 79.0%. The as-grown GaN-based LED wafers have been made into LED chips with the size of 300 × 300 μm2 by the standard process. The forward voltage, the light output power and the external quantum efficiency for LED chips are 19.6 W, 2.78 V, and 40.2%, respectively, at a current of 20 mA. These results reveal the high optoelectronic properties of GaN-based LEDs on LSAT substrates. This work brings up a broad future application of GaN-based devices. PMID:25799042
NASA Astrophysics Data System (ADS)
Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing
2017-02-01
III-nitride based ultraviolet (UV) light emitting diodes (LEDs) are of considerable interest in replacing gas lasers and mercury lamps for numerous applications. Specifically, AlGaN quantum well (QW) based LEDs have been developed extensively but the external quantum efficiencies of which remain less than 10% for wavelengths <300 nm due to high dislocation density, difficult p-type doping and most importantly, the physics and band structure from the three degeneration valence subbands. One solution to address this issue at deep UV wavelengths is by the use of the AlGaN-delta-GaN QW where the insertion of the delta-GaN layer can ensure the dominant conduction band (C) - heavyhole (HH) transition, leading to large transverse-electric (TE) optical output. Here, we proposed and investigated the physics and polarization-dependent optical characterizations of AlN-delta- GaN QW UV LED at 300 nm. The LED structure is grown by Molecular Beam Epitaxy (MBE) where the delta-GaN layer is 3-4 monolayer (QW-like) sandwiched by 2.5-nm AlN sub-QW layers. The physics analysis shows that the use of AlN-delta-GaN QW ensures a larger separation between the top HH subband and lower-energy bands, and strongly localizes the electron and HH wave functions toward the QW center and hence resulting in 30-time enhancement in TEpolarized spontaneous emission rate, compared to that of a conventional Al0.35Ga0.65N QW. The polarization-dependent electroluminescence measurements confirm our theoretical analysis; a dominant TE-polarized emission was obtained at 298 nm with a minimum transverse-magnetic (TM) polarized emission, indicating the feasibility of high-efficiency TEpolarized UV emitters based on our proposed QW structure.
Dielectric function of InGaAs in the visible
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Sieg, R. E.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.
1990-01-01
Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X(0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.
Dielectric function of InGaAs in the visible
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Yao, H. D.; Snyder, P. G.; Woolam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.; Sieg, R. E.
1990-01-01
Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X (0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.
p-n Junction Diodes Fabricated on Si-Si/Ge Heteroepitaxial Films
NASA Technical Reports Server (NTRS)
Das, K.; Mazumder, M. D. A.; Hall, H.; Alterovitz, Samuel A. (Technical Monitor)
2000-01-01
A set of photolithographic masks was designed for the fabrication of diodes in the Si-Si/Ge material system. Fabrication was performed on samples obtained from two different wafers: (1) a complete HBT structure with an n (Si emitter), p (Si/Ge base), and an n/n+ (Si collector/sub-collector) deposited epitaxially (MBE) on a high resistivity p-Si substrate, (2) an HBT structure where epitaxial growth was terminated after the p-type base (Si/Ge) layer deposition. Two different process runs were attempted for the fabrication of Si-Si/Ge (n-p) and Si/Ge-Si (p-n) junction diodes formed between the emitter-base and base-collector layers, respectively, of the Si-Si/Ge-Si HBT structure. One of the processes employed a plasma etching step to expose the p-layer in the structure (1) and to expose the e-layer in structure (2). The Contact metallization used for these diodes was a Cu-based metallization scheme that was developed during the first year of the grant. The plasma-etched base-collector diodes on structure (2) exhibited well-behaved diode-like characteristics. However, the plasma-etched emitter-base diodes demonstrated back-to-back diode characteristics. These back-to back characteristics were probably due to complete etching of the base-layer, yielding a p-n-p diode. The deep implantation process yielded rectifying diodes with asymmetric forward and reverse characteristics. The ideality factor of these diodes were between 1.6 -2.1, indicating that the quality of the MBE grown epitaxial films was not sufficiently high, and also incomplete annealing of the implantation damage. Further study will be conducted on CVD grown films, which are expected to have higher epitaxial quality.
In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors
NASA Astrophysics Data System (ADS)
Takahasi, Masamitu
2018-05-01
The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.
Quantum well infrared photodetectors (QWIP) with selectively regrown N-GaAs plugs
NASA Astrophysics Data System (ADS)
Matsukura, Yusuke; Nishino, Hironori; Tanaka, Hitoshi; Fujii, Toshio
2001-10-01
We fabricated the GaAs/AlGaAs Quantum Well Infrared Photo detector (QWIP) focal plane array with selectively re-grown N- GaAs interconnection plugs and demonstrated its device operation, in order to establish the technology to obtain both complex device functions and device manufacturability. MBE (Molecular Beam Epitaxy) grown QWIP MQW wafers were covered with SiON and SiNx mask films to obtain selectivity of the re-growth process. N-GaAs plugs were re-grown selectively with low-pressure MOCVD (Metal-Organic Chemical Vapor Deposition) with AsH3 and Dimethylgalliumchloride as precursors, only on the bottom surfaces of the holes for the interconnection to extract the electrodes from the underlying epilayer. Cross- sectional SEM observation revealed that the feature of the re- grown N-GaAs plugs was triangular, rather than rectangular as expected. The reason for this discrepancy is not yet clear. The electrical contact between the epilayer and re-grown N- GaAs plug was 'ohmic-like,' without any trace of interfacial barrier. The Current-Voltage characteristics of the fabricated QWIP device showed no tangible leakage current between the N- GaAs plug and device structure, indicating that electrical insulation between the N-GaAs plugs and device structure was sufficient. Fabricated devices were successfully operated as a hybrid focal plane array, indicating the selective re-growth was a promising technique to realize complex QWIP based devices.
2011-01-01
The growth of high mobility two-dimensional hole gases (2DHGs) using GaAs-GaAlAs heterostructures has been the subject of many investigations. However, despite many efforts hole mobilities in Be-doped structures grown on (100) GaAs substrate remained considerably lower than those obtained by growing on (311)A oriented surface using silicon as p-type dopant. In this study we will report on the properties of hole traps in a set of p-type Be-doped Al0.29Ga0.71As samples grown by molecular beam epitaxy on (100) and (311)A GaAs substrates using deep level transient spectroscopy (DLTS) technique. In addition, the effect of the level of Be-doping concentration on the hole deep traps is investigated. It was observed that with increasing the Be-doping concentration from 1 × 1016 to 1 × 1017 cm-3 the number of detected electrically active defects decreases for samples grown on (311)A substrate, whereas, it increases for (100) orientated samples. The DLTS measurements also reveal that the activation energies of traps detected in (311)A are lower than those in (100). From these findings it is expected that mobilities of 2DHGs in Be-doped GaAs-GaAlAs devices grown on (311)A should be higher than those on (100). PMID:21711687
NASA Astrophysics Data System (ADS)
Agrawal, M.; Ravikiran, L.; Dharmarasu, N.; Radhakrishnan, K.; Karthikeyan, G. S.; Zheng, Y.
2017-01-01
The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE) has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V˜1)and GaN is grown under N-rich growth regime (III/V<1). The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1) and metal rich growth regime (III/V≥1), respectively. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG) properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm-2.
Fabrication of photovoltaic laser energy converterby MBE
NASA Technical Reports Server (NTRS)
Lu, Hamilton; Wang, Scott; Chan, W. S.
1993-01-01
A laser-energy converter, fabricated by molecular beam epitaxy (MBE), was developed. This converter is a stack of vertical p-n junctions connected in series by low-resistivity, lattice matched CoSi2 layers to achieve a high conversion efficiency. Special high-temperature electron-beam (e-beam) sources were developed especially for the MBE growth of the junctions and CoSi2 layers. Making use of the small (greater than 1.2 percent) lattice mismatch between CoSi2 and Si layers, high-quality and pinhole-free epilayers were achieved, providing a capability of fabricating all the junctions and connecting layers as a single growth process with one pumpdown. Well-defined multiple p-n junctions connected by CoSi2 layers were accomplished by employing a low growth temperature (greater than 700 C) and a low growth rate (less than 0.5 microns/hour). Producing negligible interdiffusion, the low growth temperature and rate also produced negligible pinholes in the CoSi2 layers. For the first time, a stack of three p-n junctions connected by two 10(exp -5) Ohm-cm CoSi2 layers was achieved, meeting the high conversion efficiency requirement. This process can now be optimized for high growth rate to form a practical converter with 10 p-n junctions in the stack.
Broadband light-emitting diode
Fritz, Ian J.; Klem, John F.; Hafich, Michael J.
1998-01-01
A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.
Broadband light-emitting diode
Fritz, I.J.; Klem, J.F.; Hafich, M.J.
1998-07-14
A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nirwal, Varun Singh, E-mail: varun.nirwal30@gmail.com; Singh, Joginder; Gautam, Khyati
2016-05-06
We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10{sup −5} Amore » to 7.31×10{sup −7} A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of R{sub s} decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.« less
NASA Astrophysics Data System (ADS)
Wagner, Markus R.; Reparaz, Juan Sebastian; Callsen, Gordon; Nippert, Felix; Kure, Thomas; Hoffmann, Axel; Hugues, Maxime; Teysseire, Monique; Damilano, Benjamin; Chauveau, Jean-Michel
2017-03-01
We address the electronic, phononic, and thermal properties of oxide based superlattices and multi quantum well heterostructures. In the first part, we review the present understanding of phonon coupling and phonon propagation in superlattices and elucidate current research aspects of phonon coherence in these structure. Subsequently, we focus on the experimental study of MBE grown ZnO/ZnMgO multi quantum well heterostructures with varying Mg content, barrier thickness, quantum well thickness, and number of periods. In particular, we discuss how the controlled variation of these parameters affect the phonon dispersion relation and phonon propagation and their impact on the thermal properties.
Compensating vacancy defects in Sn- and Mg-doped In2O3
NASA Astrophysics Data System (ADS)
Korhonen, E.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; Galazka, Z.
2014-12-01
MBE-grown Sn- and Mg-doped epitaxial In2O3 thin-film samples with varying doping concentrations have been measured using positron Doppler spectroscopy and compared to a bulk crystal reference. Samples were subjected to oxygen or vacuum annealing and the effect on vacancy type defects was studied. Results indicate that after oxygen annealing the samples are dominated by cation vacancies, the concentration of which changes with the amount of doping. In highly Sn-doped In2O3 , however, these vacancies are not the main compensating acceptor. Vacuum annealing increases the size of vacancies in all samples, possibly by clustering them with oxygen vacancies.
NASA Astrophysics Data System (ADS)
Shubina, K. Yu; Pirogov, E. V.; Mizerov, A. M.; Nikitina, E. V.; Bouravleuv, A. D.
2018-03-01
The effects of GaN nanocolumn arrays and a thin SixNy layer, used as buffer layers, on the morphology of GaN epitaxial layers are investigated. Two types of samples with different buffer layers were synthesized by PA-MBE. The morphology of the samples was characterized by SEM. The crystalline quality of the samples was assessed by XRD. The possibility of synthesis of continuous crystalline GaN layers on Si(111) substrates without the addition of other materials such as aluminum nitride was demonstrated.
ARPES Studies on the substrate effect on monolayer FeSe
NASA Astrophysics Data System (ADS)
Rebec, Slavko; Jia, Tao; Lee, James; Li, Wei; Zhang, Chaofan; Moore, Robert; Shen, Z. X.
For 2D films, interface interactions can play a critical role in determining the prevailing physics of the system. In the case of FeSe on SrTiO3, reducing the FeSe thickness to 1 monolayer (ML) from bulk leads to a significantly increased superconducting transition temperature (Tc). To fully utilize and maximize this approach to increasing Tc in FeSe and potentially apply it to other superconducting materials, the role which the substrate plays in this system must be understood. Here we present recent in-situ angle-resolved photo emission studies of the substrate effect on MBE grown 1 ML FeSe films.
2009-05-01
shown in Fig. 1 was grown by molecular - beam epitaxy (MBE) on 3-inch semi-insulating GaAs substrates. AlGaSb was used as a buffer. AlSb was used as... beam epitaxy for low-power applications,” J. Vac. Sci. Technol. B. 24, pp. 2581-2585, 2006. [12] Y. C. Chou, L. J. Lee, J. M. Yang, M. D. Lange, P...passivation AlGaSb buffer Figure 1: Cross section of an AlSb/InAs HEMT device on a 3-inch GaAs substrate. The interface region between the
Extended short wavelength infrared HgCdTe detectors on silicon substrates
NASA Astrophysics Data System (ADS)
Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.
2016-09-01
We report high-quality n-type extended short wavelength infrared (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch detector array.
High throughput vacuum chemical epitaxy
NASA Astrophysics Data System (ADS)
Fraas, L. M.; Malocsay, E.; Sundaram, V.; Baird, R. W.; Mao, B. Y.; Lee, G. Y.
1990-10-01
We have developed a vacuum chemical epitaxy (VCE) reactor which avoids the use of arsine and allows multiple wafers to be coated at one time. Our vacuum chemical epitaxy reactor closely resembles a molecular beam epitaxy system in that wafers are loaded into a stainless steel vacuum chamber through a load chamber. Also as in MBE, arsenic vapors are supplied as reactant by heating solid arsenic sources thereby avoiding the use of arsine. However, in our VCE reactor, a large number of wafers are coated at one time in a vacuum system by the substitution of Group III alkyl sources for the elemental metal sources traditionally used in MBE. Higher wafer throughput results because in VCE, the metal-alkyl sources for Ga, Al, and dopants can be mixed at room temperature and distributed uniformly though a large area injector to multiple substrates as a homogeneous array of mixed element molecular beams. The VCE reactor that we have built and that we shall describe here uniformly deposits films on 7 inch diameter substrate platters. Each platter contains seven two inch or three 3 inch diameter wafers. The load chamber contains up to nine platters. The vacuum chamber is equipped with two VCE growth zones and two arsenic ovens, one per growth zone. Finally, each oven has a 1 kg arsenic capacity. As of this writing, mirror smooth GaAs films have been grown at up to 4 μm/h growth rate on multiple wafers with good thickness uniformity. The background doping is p-type with a typical hole concentration and mobility of 1 × 10 16/cm 3 and 350 cm 2/V·s. This background doping level is low enough for the fabrication of MESFETs, solar cells, and photocathodes as well as other types of devices. We have fabricated MESFET devices using VCE-grown epi wafers with peak extrinsic transconductance as high as 210 mS/mm for a threshold voltage of - 3 V and a 0.6 μm gate length. We have also recently grown AlGaAs epi layers with up to 80% aluminum using TEAl as the aluminum alkyl source. The AlGaAs layer thickness and aluminum content uniformity appear excellent.
Defect reduction in MBE-grown AlN by multicycle rapid thermal annealing
NASA Astrophysics Data System (ADS)
Greenlee, Jordan D.; Gunning, Brendan; Feigelson, Boris N.; Anderson, Travis J.; Koehler, Andrew D.; Hobart, Karl D.; Kub, Francis J.; Doolittle, W. Alan
2016-01-01
Multicycle rapid thermal annealing (MRTA) is shown to reduce the defect density of molecular beam epitaxially grown AlN films. No damage to the AlN surface occurred after performing the MRTA process at 1520°C. However, the individual grain structure was altered, with the emergence of step edges. This change in grain structure and diffusion of AlN resulted in an improvement in the crystalline structure. The Raman E2 linewidth decreased, confirming an improvement in crystal quality. The optical band edge of the AlN maintained the expected value of 6.2 eV throughout MRTA annealing, and the band edge sharpened after MRTA annealing at increased temperatures, providing further evidence of crystalline improvement. X-ray diffraction shows a substantial improvement in the (002) and (102) rocking curve FWHM for both the 1400 and 1520°C MRTA annealing conditions compared to the as-grown films, indicating that the screw and edge type dislocation densities decreased. Overall, the MRTA post-growth annealing of AlN lowers defect density, and thus will be a key step to improving optoelectronic and power electronic devices. [Figure not available: see fulltext.
Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo
2010-04-01
ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.
NASA Astrophysics Data System (ADS)
Mohd Yusoff, M. Z.; Hassan, Z.; Chin, C. W.; Hassan, H. Abu; Abdullah, M. J.; Mohammad, N. N.; Ahmad, M. A.; Yusof, Y.
2013-05-01
In this paper, the growth and characterization of epitaxial Al0.29Ga0.71N grown on Si(111) by RF-plasma assisted molecular beam epitaxy (MBE) are described. The Al mole fraction was derived from the HR-XRD symmetric rocking curve (RC) ω/2θ scans of (0002) plane as x = 0.29. PL spectrum of sample has shown sharp and intense band edge emission of GaN without the existence of yellow emission band, showing that it is comparable in crystal quality of the sample when compared with previous reports. From the Raman measurement of as-grown Al0.29Ga0.71N layer on GaN/AlN/Si sample. We found that the dominant E2 (high) phonon mode of GaN appears at 572.7 cm-1. The E2 (high) mode of AlN appears at 656.7 cm-1 and deviates from the standard value of 655 cm-1 for unstrained AlN. Finally, AlGaN Schottky photodiode have been fabricated and analyzed by mean of electrical characterization, using current-voltage (I-V) measurement to evaluate the performance of this device.
p-Type and n-type doping of ZnSe: Effects of hydrogen incorporation
NASA Astrophysics Data System (ADS)
Fisher, P. A.; Ho, E.; House, J. L.; Petrich, G. S.; Kolodziejski, L. A.; Walker, J.; Johnson, N. M.
1995-05-01
The hydrogenation behavior of p- and n-type ZnSe grown on GaAs by gas source molecular beam epitaxy (GSMBE) is presented. Recent advances in p-type doping, using a radio frequency (RF) plasma source with nitrogen, have led to the successful fabrication of blue/green light emitters based on the (Zn,Mg)(S,Se) material system grown by molecular beam epitaxy (MBE). GSMBE replaces the high vapor pressure group VI elements with hydride gases which are amenable to regulation using precision mass flow controllers, and has the potential to deliver improved compositional control and reproducibility. We have found that the presence of hydrogen does not affect the electrical conductivity of ZnSe:Cl grown by GSMBE. In contrast, nitrogen-doped ZnSe is speculated to be electrically passivated by hydrogen for certain growth conditions as evidenced by: (1) coherent tracking of the hydrogen concentration with variations in the nitrogen concentration, which is measured by secondary ion mass spectrometry (SIMS), and (2) indications of high resistivity determined by capacitance-voltage ( C-V) measurements. Conventional and rapid thermal annealing (RTA) have been investigated to modify the degree of hydrogen passivation.
In 0.35Ga 0.65P light-emitting diodes grown by gas-source MBE
NASA Astrophysics Data System (ADS)
Masselink, W. Ted; Zachau, Martin
1993-02-01
This paper describes the growth and optical characteristics of In yGa 1- yP with 0.3< y<0.5, and the LED operation of p-i-n structures in the same materials system. The InGaP is grown using gas-source molecular beam epitaxy (GSMBE). The non-lattice-matched In yGa 1- yP grown on GaAs using GSMBE has a specularly smooth surface morphology through the use of unique strained-layer superlattice (SLS) buffer. We have measured the luminescence, luminescence excitation, and Raman spectra of these undoped films and observe strong excitonic luminescence over the entire composition range investigated. The band gap derived from the luminescence excitation spectra corresponds to that of a fully relaxed InGaP film with no residual strain, which is confirmed by the Raman measurements. Light-emitting diodes with peak (300 K) emission centered at less than 590 nm have been fabricated from p-i-n junctions in In 0.35Ga 0.65P. This alloy is close to that with the largest direct band gap in the In yGa 1- y P system and has lattice mismatch from the GaAs substrate of 1%.
Vanadium dioxide thin films prepared on silicon by low temperature MBE growth and ex-situ annealing
NASA Astrophysics Data System (ADS)
Homm, Pia; van Bilzen, Bart; Menghini, Mariela; Locquet, Jean-Pierre; Ivanova, Todora; Sanchez, Luis; Sanchis, Pablo
Vanadium dioxide (VO2) is a material that shows an insulator to metal transition (IMT) near room temperature. This property can be exploited for applications in field effect devices, electro-optical switches and nonlinear circuit components. We have prepared VO2 thin films on silicon wafers by combining a low temperature MBE growth with an ex-situ annealing at high temperature. We investigated the structural, electrical and optical characteristics of films with thicknesses ranging from 10 to 100 nm. We have also studied the influence of the substrate cleaning. The films grown with our method are polycrystalline with a preferred orientation in the (011) direction of the monoclinic phase. For the films produced on silicon with a native oxide, an IMT at around 75 °C is observed. The magnitude of the resistance change across the IMT decreases with thickness while the refractive index at room temperature corresponds with values reported in the literature for thin films. The successful growth of VO2 films on silicon with good electrical and optical properties is an important step towards the integration of VO2 in novel devices. The authors acknowledge financial support from the FWO project G052010N10 and EU-FP7 SITOGA project. PH acknowledges support from Becas Chile - CONICYT.
NASA Astrophysics Data System (ADS)
Tamai, Isao; Hasegawa, Hideki
2007-04-01
As a combination of novel hardware architecture and novel system architecture for future ultrahigh-density III-V nanodevice LSIs, the authors' group has recently proposed a hexagonal binary decision diagram (BDD) quantum circuit approach where gate-controlled path switching BDD node devices for a single or few electrons are laid out on a hexagonal nanowire network to realize a logic function. In this paper, attempts are made to establish a method to grow highly dense hexagonal nanowire networks for future BDD circuits by selective molecular beam epitaxy (MBE) on (1 1 1)B substrates. The (1 1 1)B orientation is suitable for BDD architecture because of the basic three-fold symmetry of the BDD node device. The growth experiments showed complex evolution of the cross-sectional structures, and it was explained in terms of kinetics determining facet boundaries. Straight arrays of triangular nanowires with 60 nm base width as well as hexagonal arrays of trapezoidal nanowires with a node density of 7.5×10 6 cm -2 were successfully grown with the aid of computer simulation. The result shows feasibility of growing high-density hexagonal networks of GaAs nanowires with precise control of the shape and size.
Analysis of twin defects in GaAs(111)B molecular beam epitaxy growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yeonjoon; Cich, Michael J.; Zhao, Rian
2000-05-01
The formation of twin is common during GaAs(111) and GaN(0001) molecular beam epitaxy (MBE) metalorganic chemical vapor deposition growth. A stacking fault in the zinc-blende (ZB)(111) direction can be described as an insertion of one monolayer of wurtzite structure, sandwiched between two ZB structures that have been rotated 60 degree sign along the growth direction. GaAs(111)A/B MBE growth within typical growth temperature regimes is complicated by the formation of pyramidal structures and 60 degree sign rotated twins, which are caused by faceting and stacking fault formation. Although previous studies have revealed much about the structure of these twins, a well-establishedmore » simple nondestructive characterization method which allows the measurement of total aerial density of the twins does not exist at present. In this article, the twin density of AlGaAs layers grown on 1 degree sign miscut GaAs(111)B substrates has been measured using high resolution x-ray diffraction, and characterized with a combination of Nomarski microscopy, atomic force microscopy, and transmission electron microscopy. These comparisons permit the relationship between the aerial twin density and the growth condition to be determined quantitatively. (c) 2000 American Vacuum Society.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Z. Q.; Podpirka, A.; Kirchoefer, S. W.
2015-05-04
We report on the native defect and microwave properties of 1 μm thick Ba{sub 0.50}Sr{sub 0.50}TiO{sub 3} (BST) films grown on MgO (100) substrates by molecular beam epitaxy (MBE). Depth-resolved cathodoluminescence spectroscopy (DRCLS) showed high densities of native point defects in as-deposited BST films, causing strong subgap emission between 2.0 eV and 3.0 eV due to mixed cation V{sub C} and oxygen Vo vacancies. Post growth air anneals reduce these defects with 2.2, 2.65, and 3.0 eV V{sub O} and 2.4 eV V{sub C} intensities decreasing with increasing anneal temperature and by nearly two orders of magnitude after 950 °C annealing. These low-defect annealed BSTmore » films exhibited high quality microwave properties, including room temperature interdigitated capacitor tunability of 13% under an electric bias of 40 V and tan δ of 0.002 at 10 GHz and 40 V bias. The results provide a feasible route to grow high quality BST films by MBE through post-air annealing guided by DRCLS.« less
Chen, Ting; Gu, Chengxin; Xue, Cailin; Yang, Tao; Zhong, Yun; Liu, Shiming; Nie, Yuqiang; Yang, Hui
2017-01-01
Long non-coding RNAs (lncRNAs) have been implicated in liver carcinogenesis. We previously showed that the induction of lncRNA-uc002mbe.2 is positively associated with the apoptotic effect of trichostatin A (TSA) in hepatocellular carcinoma (HCC) cells. The current study further analyzed the role of uc002mbe.2 in TSA-induced liver cancer cell death. The level of uc002mbe.2 was markedly increased by TSA in the cytoplasm of HCC cells. Knockdown of uc002mbe.2 prohibited TSA-induced G2/M cell cycle arrest, p21 induction, and apoptosis of Huh7 cells and reversed the TSA-mediated decrease in p-AKT. RNA pull-down and RNA-binding protein immunoprecipitation (RIP) assays revealed that TSA induced an interaction between uc002mbe.2 and heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) in Huh7 cells. This interaction mediated AKT deactivation and p21 induction in liver cancer cells. In an athymic xenograft mouse model, knockdown of uc002mbe.2 significantly prohibited the TSA-mediated reduction in tumor size and weight. In addition, the ability of TSA to reduce hnRNPA2B1 and p-AKT levels and induce p21 in the xenograft tumors was prevented by uc002mbe.2 knockdown. Therefore, the interaction of uc002mbe.2 and hnRNPA2B1 in mediating AKT deactivation and p21 induction is involved in the cytostatic effect of trichostatin in liver cancer cells.
NASA Astrophysics Data System (ADS)
Talipov, N. Kh.; Voitsekhovskii, А. V.; Grigor'ev, D. V.
2014-07-01
Processes of formation of n + -n--p-structures in boron-implanted heteroepitaxial (HEL) CdxHg1-xTe (CMT) layers of p-type grown by molecular beam epitaxy (HEL CMT MBE) with different compositions of the upper graded-gap layer are studied. It is shown that the surface composition (xs) of HEL CMT MBE significantly affects both the electrical parameters of the implanted layer and the spatial distribution of radiation defects of donor type. For HEL CMT MBE with the small surface composition xs = 0.22-0.33, it is found that the layer electron concentration (Ns) is decreased after saturation with accumulation of radiation defects, as the dose of B+ ions is increased in the range of D = 1ṡ1011-3ṡ1015 сm-2. An increase of the surface composition up to xs = 0.49-0.56 results in a significant decrease in Ns and a disappearance of the saturation of concentration in the whole dose range. The value of Ns monotonically increases with the energy (E) of boron ions and composition xs. It is found that for B+-ion energies E = 20-100 keV, the depth of the surface n + -layer increases with increasing energy and exceeds the total projected path of boron ions. However, in the energy range E = 100-150 keV, the depth of n+-layer stops increasing with the increase of the surface composition. The depth (dn) of a lightly doped n--layer monotonically decreases with increasing energy of boron ions in the entire range of E = 20-150 keV. With increasing dose (D) of B+ ions in the interval D = 1ṡ1014-1ṡ1015сm-2, deep n--layers with dn = 4-5 μm are formed only in the HEL CMT MBE with xs = 0.22-0.33. For the samples with xs = 0.49-0.56, the depth changes in the interval dn = 1.5-2.5 μm. At D ≤ 3ṡ1013сm-2, n + -n--p-structure is not formed for all surface compositions, if implantation is performed at room temperature. However, implantation at T = 130°C leads to the formation of a deep n--layer. Planar photodiodes with the n-p-junction area of A = 35×35 μm2 made on the basis of the boron implanted HEL CMT MBE with the surface compositions xs = 0.33-0.56 had high differential resistance Rd = 3ṡ106-107 Ω•cm2 and high product R0 Aeff = 9.0-20.7 Ω•cm2, where Aeff is the effective area of the charge carrier collecting. The values of Rd and R0 Aeff increased with increasing xs. It is found that the layer electron concentration in the boron implanted HEL CMT MBE with different surface compositions is increased, when exposed to normal conditions for a few years.
NASA Astrophysics Data System (ADS)
Kibirev, I. A.; Matetskiy, A. V.; Zotov, A. V.; Saranin, A. A.
2018-05-01
Using molecular beam epitaxy, InSe films of thicknesses from one to six quadruple layers were grown on Si(111). The surface morphology and structure of the InSe films were monitored using reflection high-energy electron diffraction and scanning tunneling microscopy observations. Angle resolved photoemission experiments revealed that the bulk-like parabolic shape of the valence band of InSe/Si(111) changes for the so-called "Mexican hat" shape when the thickness of the InSe film reduces to one and two quadruple layers. The observed effect is in a qualitative agreement with the reported calculation results on the free-standing InSe films. However, in the InSe/Si(111) system, the features used to characterize the Mexican hat dispersion appear to be more pronounced, which makes the one- and two-quadruple InSe layers on Si(111) promising candidates as thermoelectric materials.
The effect of FeF2 on the magneto-optic response in FeF2/Fe/FeF2 sandwiches
NASA Astrophysics Data System (ADS)
Pištora, J.; Lesňák, M.; Lišková, E.; Višňovský, Š.; Harward, I.; Maslankiewicz, P.; Balin, K.; Celinski, Z.; Mistrík, J.; Yamaguchi, T.; Lopusnik, R.; Vlček, J.
2010-04-01
The room temperature optical constants n and k of MBE grown FeF2 films are reported. Because of poor chemical stability, FeF2 had to be coated with a protective Au layer. Reflection spectral ellipsometry in the photon energy range between 1.3 and 5.2 eV was performed on structures with a typical profile Au(0.5 nm)/FeF2(120 nm)/Au(30 nm)/Ag(20 nm)/Fe(0.6 nm) grown on GaAs(0 0 1) substrate. The spectra of n and k in FeF2 were subsequently employed in the design of FeF2/Fe/FeF2 sandwiches considered as magneto-optic (MO) sensors for weak microwave currents. Their MO response was evaluated using reflection MO (Kerr) spectroscopy at polar magnetization. The present results may be of interest in MO studies of magnetic nanostructures with Fe/FeF2/Fe, including MO magnetometry and MO magnetic domain imaging.
Surface acceptor states in MBE-grown CdTe layers
NASA Astrophysics Data System (ADS)
Wichrowska, Karolina; Wosinski, Tadeusz; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz
2018-04-01
A deep-level hole trap associated with surface defect states has been revealed with deep-level transient spectroscopy investigations of metal-semiconductor junctions fabricated on nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. The trap displayed the hole-emission activation energy of 0.33 eV and the logarithmic capture kinetics indicating its relation to extended defect states at the metal-semiconductor interface. Strong electric-field-induced enhancement of the thermal emission rate of holes from the trap has been attributed to the phonon-assisted tunneling effect from defect states involving very large lattice relaxation around the defect and metastability of its occupied state. Passivation with ammonium sulfide of the CdTe surface, prior to metallization, results in a significant decrease in the trap density. It also results in a distinct reduction in the width of the surface-acceptor-state-induced hysteresis loops in the capacitance vs. voltage characteristics of the metal-semiconductor junctions.
Intersubband transitions and many body effects in ZnMgO/ZnO quantum wells
NASA Astrophysics Data System (ADS)
Hierro, Adrian; Montes Bajo, Miguel; Tamayo-Arriola, Julen; Hugues, Maxime; Ulloa, J. M.; Le Biavan, N.; Peretti, Romain; Julien, François; Faist, Jerome; Chauveau, Jean-Michel
2018-02-01
In this work we show the potential of the ZnO/ZnMgO material system for intersubband (ISB)-based devices. This family of alloys presents a unique set of properties that makes it highly attractive for THz emission as well as strong coupling regimes: it has a very large longitudinal optical phonon energy of 72 meV, it can be doped up to 1021 cm-3, it is very ionic with a large difference between the static and high frequency dielectric constants, and it can be grown homoepitaxially on native substrates with low defect densities. The films analyzed here are grown by molecular beam epitaxy (MBE) on a non-polar orientation, the m-plane, with varying QW thicknesses and 30% Mg concentrations in the barrier, and are examined with polarization-dependent IR absorption spectroscopy. The QW band structure and the intersubband transitions energies are modeled considering many body effects, which are key to predict correctly the measured values.
Effect of a low-temperature-grown GaAs layer on InAs quantum-dot photoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosarev, A. N.; Chaldyshev, V. V., E-mail: chald.gvg@mail.ioffe.ru; Preobrazhenskii, V. V.
2016-11-15
The photoluminescence of InAs semiconductor quantum dots overgrown by GaAs in the low-temperature mode (LT-GaAs) using various spacer layers or without them is studied. Spacer layers are thin GaAs or AlAs layers grown at temperatures normal for molecular-beam epitaxy (MBE). Direct overgrowth leads to photoluminescence disappearance. When using a thin GaAs spacer layer, the photoluminescence from InAs quantum dots is partially recovered; however, its intensity appears lower by two orders of magnitude than in the reference sample in which the quantum-dot array is overgrown at normal temperature. The use of wider-gap AlAs as a spacer-layer material leads to the enhancementmore » of photoluminescence from InAs quantum dots, but it is still more than ten times lower than that of reference-sample emission. A model taking into account carrier generation by light, diffusion and tunneling from quantum dots to the LT-GaAs layer is constructed.« less
Stencil lithography of superconducting contacts on MBE-grown topological insulator thin films
NASA Astrophysics Data System (ADS)
Schüffelgen, Peter; Rosenbach, Daniel; Neumann, Elmar; Stehno, Martin P.; Lanius, Martin; Zhao, Jialin; Wang, Meng; Sheehan, Brendan; Schmidt, Michael; Gao, Bo; Brinkman, Alexander; Mussler, Gregor; Schäpers, Thomas; Grützmacher, Detlev
2017-11-01
Topological insulator (Bi0.06Sb0.94)2Te3 thin films grown by molecular beam epitaxy have been capped in-situ with a 2 nm Al film to conserve the pristine topological surface states. Subsequently, a shadow mask - structured by means of focus ion beam - was in-situ placed underneath the sample to deposit a thick layer of Al on well-defined microscopically small areas. The 2 nm thin Al layer fully oxidizes after exposure to air and in this way protects the TI surface from degradation. The thick Al layer remains metallic underneath a 3-4 nm thick native oxide layer and therefore serves as (super-) conducting contacts. Superconductor-Topological Insulator-Superconductor junctions with lateral dimensions in the nm range have then been fabricated via an alternative stencil lithography technique. Despite the in-situ deposition, transport measurements and transmission electron microscope analysis indicate a low transparency, due to an intermixed region at the interface between topological insulator thin film and metallic Al.
Optical Properties of A GaInNAs Multi-Quantum Well Semiconductor
NASA Astrophysics Data System (ADS)
Hughes, Timothy S.; Ren, Shang-Fen; Jiang, De-Sheng; Xiaogan, Liang
2002-03-01
Optoelectronic devices used today depend on lasers that have wavelengths in the optical fiber transmission window of 1.3 to 1.55 micrometers. When using GaAs substrate semiconductor lasers, we typically see this range of light emission. Quaternary materials, such as GaInNAs grown on this substrate, not only allow us to control the output wavelength, but it also allows us to manipulate the lattice constant. Further research has potential to produce low-costing highly efficient Vertical Cavity Surface Emitting Lasers (VCSEL). Using a Fourier-Transform Spectrometer, a method of using a Michelson Interferometer to measure the interference between two coherent beams, we measured and analyzed the photoluminescence spectra of a GaInNAs multi-quantum well semiconductor, grown using the Molecular Beam Epitaxy (MBE) growth technique. The experiments of this research were carried out in an undergraduate international research experience at the Chinese Semiconductor Institute supported by the Division of International Programs of NSF.
Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography
NASA Astrophysics Data System (ADS)
Bonef, Bastien; Cramer, Richard; Speck, James S.
2017-06-01
Laser assisted atom probe tomography is used to characterize the alloy distribution in BGaN. The effect of the evaporation conditions applied on the atom probe specimens on the mass spectrum and the quantification of the III site atoms is first evaluated. The evolution of the Ga++/Ga+ charge state ratio is used to monitor the strength of the applied field. Experiments revealed that applying high electric fields on the specimen results in the loss of gallium atoms, leading to the over-estimation of boron concentration. Moreover, spatial analysis of the surface field revealed a significant loss of atoms at the center of the specimen where high fields are applied. A good agreement between X-ray diffraction and atom probe tomography concentration measurements is obtained when low fields are applied on the tip. A random distribution of boron in the BGaN layer grown by molecular beam epitaxy is obtained by performing accurate and site specific statistical distribution analysis.
An integrated radar model solution for mission level performance and cost trades
NASA Astrophysics Data System (ADS)
Hodge, John; Duncan, Kerron; Zimmerman, Madeline; Drupp, Rob; Manno, Mike; Barrett, Donald; Smith, Amelia
2017-05-01
A fully integrated Mission-Level Radar model is in development as part of a multi-year effort under the Northrop Grumman Mission Systems (NGMS) sector's Model Based Engineering (MBE) initiative to digitally interconnect and unify previously separate performance and cost models. In 2016, an NGMS internal research and development (IR and D) funded multidisciplinary team integrated radio frequency (RF), power, control, size, weight, thermal, and cost models together using a commercial-off-the-shelf software, ModelCenter, for an Active Electronically Scanned Array (AESA) radar system. Each represented model was digitally connected with standard interfaces and unified to allow end-to-end mission system optimization and trade studies. The radar model was then linked to the Air Force's own mission modeling framework (AFSIM). The team first had to identify the necessary models, and with the aid of subject matter experts (SMEs) understand and document the inputs, outputs, and behaviors of the component models. This agile development process and collaboration enabled rapid integration of disparate models and the validation of their combined system performance. This MBE framework will allow NGMS to design systems more efficiently and affordably, optimize architectures, and provide increased value to the customer. The model integrates detailed component models that validate cost and performance at the physics level with high-level models that provide visualization of a platform mission. This connectivity of component to mission models allows hardware and software design solutions to be better optimized to meet mission needs, creating cost-optimal solutions for the customer, while reducing design cycle time through risk mitigation and early validation of design decisions.
Optically controlled reflection modulator using GaAs-AlGaAs n-i-p-i/multiple-quantum-well structures
NASA Technical Reports Server (NTRS)
Law, K.-K.; Simes, R. J.; Coldren, L. A.; Gossard, A. C.; Maserjian, J.
1989-01-01
An optically controlled reflection modulator has been demonstrated that consists of a combination of a GaAs-AlGaAs n-i-p-i doping structure with a multiple-quantum-well structures on top of a distributed Bragg reflector, all grown by MBE. A modulation of approximately 60 percent is obtained on the test structure, corresponding to a differential change of absorption coefficient in the quantum wells of approximately 7500/cm. Changes in reflectance can be observed with a control beam power as low as 1.5 microW. This device structure has the potential of being developed as an optically addressed spatial light modulator for optical information processing.
Bismuth-induced Raman modes in GaP 1– xBi x
Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; ...
2016-09-02
Here, dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP 1- xBi x epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm -1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismidemore » alloy regime.« less
Capacitance spectroscopy on n-type GaNAs/GaAs embedded quantum structure solar cells
NASA Astrophysics Data System (ADS)
Venter, Danielle; Bollmann, Joachim; Elborg, Martin; Botha, J. R.; Venter, André
2018-04-01
In this study, both deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) have been used to study the properties of electrically active deep level centers present in GaNAs/GaAs quantum wells (QWs) embedded in p-i-n solar cells. The structures were grown by molecular beam epitaxy (MBE). In particular, the electrical properties of samples with Si (n-type) doping of the QWs were investigated. DLTS revealed four deep level centers in the material, whereas only three were detected by AS. NextNano++ simulation software was used to model the sample band-diagrams to provide reasoning for the origin of the signals produced by both techniques.
Ellipsometric study of Si(0.5)Ge(0.5)/Si strained-layer superlattices
NASA Technical Reports Server (NTRS)
Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.
1993-01-01
An ellipsometric study of two Si(0.5)Ge(0.5)/Si strained-layer super lattices grown by MBE at low temperature (500 C) is presented, and results are compared with x ray diffraction (XRD) estimates. Excellent agreement is obtained between target values, XRD, and ellipsometry when one of two available Si(x)Ge(1-x) databases is used. It is shown that ellipsometry can be used to nondestructively determine the number of superlattice periods, layer thicknesses, Si(x)Ge(1-x) composition, and oxide thickness without resorting to additional sources of information. It was also noted that we do not observe any strain effect on the E(sub 1) critical point.
Controlling the morphology of MBE-grown WSe2 on epitaxial graphene/SiC(0001).
NASA Astrophysics Data System (ADS)
Liu, Liwei; Moghadam, Afsaneh; Weinert, Michael; Li, Lian
Controlling the morphology of transition metal dichalcogenides (TMDs) during molecular beam epitaxy is critical for their potential device applications. In this work, by systematically changing the substrate temperature and W/Se flux ratio, the growth of sub-monolayer to few layers WSe2 on graphene/SiC(0001) is investigated by in situ scanning tunneling microscopy, x-ray photoelectron spectroscopy, and Raman spectroscopy. The results indicate that the morphology of the WSe2 films can be controlled from fractal to compact triangular. These findings and their implication for the controlled growth of TMD heterostructures will be discussed at the meeting. This research was supported by NSF (DMR-1508560).
Twenty years of molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Cho, A. Y.
1995-05-01
The term "molecular beam epitaxy" (MBE) was first used in one of our crystal growth papers in 1970, after having conducted extensive surface physics studies in the late 1960's of the interaction of atomic and molecular beams with solid surfaces. The unique feature of MBE is the ability to prepare single crystal layers with atomic dimensional precision. MBE sets the standard for epitaxial growth and has made possible semiconductor structures that could not be fabricated with either naturally existing materials or by other crystal growth techniques. MBE led the crystal growth technologies when it prepared the first semiconductor quantum well and superlattice structures that gave unexpected and exciting electrical and optical properties. For example, the discovery of the fractional quantized Hall effect. It brought experimental quantum physics to the classroom, and practically all major universities throughout the world are now equipped with MBE systems. The fundamental principles demonstrated by the MBE growth of III-V compound semiconductors have also been applied to the growth of group IV, II-VI, metal, and insulating materials. For manufacturing, the most important criteria are uniformity, precise control of the device structure, and reproducibility. MBE has produced more lasers (3 to 5 million per month for compact disc application) than any other crystal growth technique in the world. New directions for MBE are to incorporate in-situ, real-time monitoring capabilities so that complex structures can be precisely "engineered". In the future, as environmental concerns increase, the use of toxic arsine and phosphine may be limited. Successful use of valved cracker cells for solid arsenic and phosphorus has already produced InP based injection lasers.
Electronic Transport in Ultrathin Heterostructures.
1981-10-01
heterostructures, superlattices, diffusion-enhanced disorder, transport properties, molecular beam epitaxy (MBE), photoluminescence, optical absorption...tion of single and multilayer GatlAs/GaAs heterostructures by metalorganic chemical vapor deposition (MJCVD) and molecular beam epitaxy (MBE) has...fundamental nature of these clusters and their relevance to other epitaxial techniques such as molecular beam epitaxy (MBE). To further varify or
Surfactant-Enabled Epitaxy of Smooth, Cubic Oxides on Gallium Nitride
NASA Astrophysics Data System (ADS)
Paisley, Elizabeth Aldret
Epitaxial integration of polar oxides with polar semiconductors presents the possibility of tunable 2D charge carriers at polar interfaces and integration of non-linear dielectric properties if defect densities are low and interfaces are smooth. Achieving this in materials with highly dissimilar structure and symmetry remains a serious challenge and requires a dramatically improved understanding of chemically and structurally dissimilar interfaces and their synthesis. Current efforts to achieve such devices are impeded by the fact that many polar oxides have a close-packed cubic substructure that requires the oxide to grow along the {111} direction, which is compatible with hexagonal (0002) GaN. Since the {111} direction is not the lowest energy face for these oxides, conventional methods used to synthesize these oxides usually allow the interface to compensate by forming facets resulting in defects, detrimental to the sustaining interface conductivity. This thesis demonstrates a new methodology developed to allow in situ stabilization of desired crystallographic habits where water vapor is utilized during growth to hydroxylate the oxide (111) surfaces, changing the equilibrium habit from cubic to octahedral, eliminating the (100)-faceting tendency. Bulk thermodynamic calculations show that a hydroxide termination can stabilize the (111)-face. Further, Ca(OH)2 (the structure likely to represent such termination) provides a low-energy surface with six-fold symmetry and atomic registry matching {111}-CaO and GaN. Additionally, the relative free energies of formation for CaO and Ca(OH)2 provide an adequate processing window to avoid competition between oxide and hydroxide deposition. This approach is demonstrated for three model systems of rocksalt oxides grown along a polar direction on GaN: MgO, CaO, and lattice-matched compositions: Mg0.52Ca0.48O. MBE growth of smooth (111) CaO is demonstrated using RHEED intensity vs. time oscillations that show layer-by-layer growth for water vapor grown CaO up to ˜35 ML with AFM step heights consistent with one half of a unit cell distance (2.8 A) along [111]-CaO. X-ray diffraction o-circle full width half maximum values for the {111} CaO reflection are reduced from 0.3° to 0.2°, for the case of oxygen and water, respectively, suggesting the utility of the water surfactant growth mode to reduce the number of disordered secondary nucleation sites that contribute to crystalline mosaicity. Finally, metal-insulator-semiconductor capacitors show a 1000x increase in resistance for surfactant-assisted CaO films for film thicknesses as low as 4.5 nm. Because higher surfactant partial pressures are required to stabilize {111}-MgO, MBE deposition cannot access the processing space and PLD is required. Collaborative research with the Oak Ridge National Laboratory Center for Nanophase Materials Sciences was performed and similar outcomes were found, i.e., 2D growth and step-and-terrace morphology. This demonstrates the generic ability of this surfactant-strategy by two very different deposition techniques: equilibrium growth provided by MBE and the energetic plasma provided by PLD. For both materials, a companion set of temperature dependent ab initio surface energy calculations were introduced to aid in interpretation and understanding of our experimental observations. In both cases, there is noteworthy agreement between simulation and experiment for a temperature and pressure window where 2D growth may be supported. Finally, lattice-matched Mg-Ca-O alloys were also investigated and optimized for MBE and PLD water surfactant growth. I-V analysis shows 100x increase in resistance and TEM analysis suggests a commensurate oxide-GaN interface. Incorporating vapor phase surfactants to PVD enables one to approach semiconductor-grade heterostructures in materials systems where 2D growth was previously impossible. Though demonstrations at this point are limited to rocksalt oxides, this approach should apply to cubic/pseudocubic oxide perovskites (which share a common sublattice), enabling a pathway to overcome symmetry barriers that currently encumber heterostructure deposition between highly dissimilar materials.
Artifacts for Calibration of Submicron Width Measurements
NASA Technical Reports Server (NTRS)
Grunthaner, Frank; Grunthaner, Paula; Bryson, Charles, III
2003-01-01
Artifacts that are fabricated with the help of molecular-beam epitaxy (MBE) are undergoing development for use as dimensional calibration standards with submicron widths. Such standards are needed for calibrating instruments (principally, scanning electron microscopes and scanning probe microscopes) for measuring the widths of features in advanced integrated circuits. Dimensional calibration standards fabricated by an older process that involves lithography and etching of trenches in (110) surfaces of single-crystal silicon are generally reproducible to within dimensional tolerances of about 15 nm. It is anticipated that when the artifacts of the present type are fully developed, their critical dimensions will be reproducible to within 1 nm. These artifacts are expected to find increasing use in the semiconductor-device and integrated- circuit industries as the width tolerances on semiconductor devices shrink to a few nanometers during the next few years. Unlike in the older process, one does not rely on lithography and etching to define the critical dimensions. Instead, one relies on the inherent smoothness and flatness of MBE layers deposited under controlled conditions and defines the critical dimensions as the thicknesses of such layers. An artifact of the present type is fabricated in two stages (see figure): In the first stage, a multilayer epitaxial wafer is grown on a very flat substrate. In the second stage, the wafer is cleaved to expose the layers, then the exposed layers are differentially etched (taking advantage of large differences between the etch rates of the different epitaxial layer materials). The resulting structure includes narrow and well-defined trenches and a shelf with thicknesses determined by the thicknesses of the epitaxial layers from which they were etched. Eventually, it should be possible to add a third fabrication stage in which durable, electronically inert artifacts could be replicated in diamondlike carbon from a master made by MBE and etching as described above.
Small pixel pitch MCT IR-modules
NASA Astrophysics Data System (ADS)
Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.
2016-05-01
It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.
NASA Astrophysics Data System (ADS)
Savchenko, D.; Tarasenko, R.; Vališka, M.; Kopeček, J.; Fekete, L.; Carva, K.; Holý, V.; Springholz, G.; Sechovský, V.; Honolka, J.
2018-05-01
We compare the magnetic and electronic configuration of single Mn atoms in molecular beam epitaxy (MBE) grown Bi2Se3 thin films, focusing on electron paramagnetic (ferromagnetic) resonance (EPR and FMR, respectively) and superconducting quantum interference device (SQUID) techniques. X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) reveal the expected increase of disorder with increasing concentration of magnetic guest atoms, however, Kikuchi patterns show that disorder consists majorly of μm-scale 60° twin domains in the hexagonal Bi2Se3 structure, which are promoted by the presence of single unclustered Mn impurities. Ferromagnetism below TC (5.4±0.3) K can be well described by critical scaling laws M (T) (1 - T /TC) β with a critical exponent β = (0.34 ± 0.2) , suggesting 3D Heisenberg class magnetism instead of e.g. 2D-type coupling between Mn-spins in van der Waals gap sites. From EPR hyperfine structure data we determine a Mn2+ (d5, S = 5/2) electronic configuration with a g-factor of 2.002 for -1/2 → +1/2 transitions. In addition, from the strong dependence of the low temperature FMR fields and linewidth on the field strength and orientation with respect to the Bi2Se3 (0001) plane, we derive magnetic anisotropy energies of up to K1 = -3720 erg/cm3 in MBE-grown Mn-doped Bi2Se3, reflecting the first order magneto-crystalline anisotropy of an in-plane magnetic easy plane in a hexagonal (0001) crystal symmetry. We observe an increase of K1 with increasing Mn concentration, which we interpret to be correlated to a Mn-induced in-plane lattice contraction. Across the ferromagnetic-paramagnetic transition the FMR intensity is suppressed and resonance fields converge the paramagnetic limit of Mn2+ (d5, S = 5/2).
High-efficiency photovoltaic cells
Yang, H.T.; Zehr, S.W.
1982-06-21
High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.
Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth
NASA Astrophysics Data System (ADS)
Richter, Wolfgang
2007-06-01
In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ("alchemy") because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.
Quantitative RHEED Studies of MBE Growth of 3-5 Compounds
1991-06-03
Vertical - Cavity Surface - Emitting Laser Using Molecular Beam Epitaxial ...Growth of Vertical Cavity Surface - emitting Lasers Our work under this ARO contract on the control of MBE growth has enhanced our ability to grow...pattern about the surface structure of nearly perfect crystals prepared by Molecular Beam Epitaxy ( MBE ) and to use these techniques
Hsu, C. H.; Brown, C. M.; Murphy, J. M.; Haskell, M. G.; Williams, C.; Feldman, K.; Mitchell, K.; Blanton, J. D.; Petersen, B. W.; Wallace, R. M.
2017-01-01
Summary Current guidelines in the setting of exposures to potentially rabid bats established by the Advisory Committee on Immunization Practices (ACIP) address post-exposure prophylaxis (PEP) administration in situations where a person may not be aware that a bite or direct contact has occurred and the bat is not available for diagnostic testing. These include instances when a bat is discovered in a room where a person awakens from sleep, is a child without an adult witness, has a mental disability or is intoxicated. The current ACIP guidelines, however, do not address PEP in the setting of multiple persons exposed to a bat or a bat colony, otherwise known as mass bat exposure (MBE) events. Due to a dearth of recommendations for response to these events, the reported reactions by public health agencies have varied widely. To address this perceived limitation, a survey of 45 state public health agencies was conducted to characterize prior experiences with MBE and practices to mitigate the public health risks. In general, most states (69% of the respondents) felt current ACIP guidelines were unclear in MBE scenarios. Thirty-three of the 45 states reported prior experience with MBE, receiving an average of 16.9 MBE calls per year and an investment of 106.7 person-hours annually on MBE investigations. PEP criteria, investigation methods and the experts recruited in MBE investigations varied between states. These dissimilarities could reflect differences in experience, scenario and resources. The lack of consistency in state responses to potential mass exposures to a highly fatal disease along with the large contingent of states dissatisfied with current ACIP guidance warrants the development of national guidelines in MBE settings. PMID:27389926
NASA Astrophysics Data System (ADS)
Bouttes, Nathaelle; Swingedouw, Didier; Roche, Didier M.; Sanchez-Goni, Maria F.; Crosta, Xavier
2018-03-01
Atmospheric CO2 levels during interglacials prior to the Mid-Brunhes Event (MBE, ˜ 430 ka BP) were around 40 ppm lower than after the MBE. The reasons for this difference remain unclear. A recent hypothesis proposed that changes in oceanic circulation, in response to different external forcings before and after the MBE, might have increased the ocean carbon storage in pre-MBE interglacials, thus lowering atmospheric CO2. Nevertheless, no quantitative estimate of this hypothesis has been produced up to now. Here we use an intermediate complexity model including the carbon cycle to evaluate the response of the carbon reservoirs in the atmosphere, ocean and land in response to the changes of orbital forcings, ice sheet configurations and atmospheric CO2 concentrations over the last nine interglacials. We show that the ocean takes up more carbon during pre-MBE interglacials in agreement with data, but the impact on atmospheric CO2 is limited to a few parts per million. Terrestrial biosphere is simulated to be less developed in pre-MBE interglacials, which reduces the storage of carbon on land and increases atmospheric CO2. Accounting for different simulated ice sheet extents modifies the vegetation cover and temperature, and thus the carbon reservoir distribution. Overall, atmospheric CO2 levels are lower during these pre-MBE simulated interglacials including all these effects, but the magnitude is still far too small. These results suggest a possible misrepresentation of some key processes in the model, such as the magnitude of ocean circulation changes, or the lack of crucial mechanisms or internal feedbacks, such as those related to permafrost, to fully account for the lower atmospheric CO2 concentrations during pre-MBE interglacials.
Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs /InAs1 -xSbx
NASA Astrophysics Data System (ADS)
Liu, Henan; Zhang, Yong; Steenbergen, Elizabeth H.; Liu, Shi; Lin, Zhiyuan; Zhang, Yong-Hang; Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Dupuis, Russell D.; Kim, Jin K.; Hawkins, Samuel D.; Klem, John F.
2017-09-01
The InAs /InAs1 -xSbx superlattice system distinctly differs from two well-studied superlattice systems GaAs /AlAs and InAs /GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs /InAs1 -xSbx system when compared to the other two systems. In this work, we report a polarized Raman study of the vibrational properties of the InAs /InAs1 -xSbx superlattices (SLs) as well as selected InAs1 -xSbx alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) from both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like "forbidden" LO mode is observed in two parallel-polarization configurations. The InAs1 -xSbx alloys lattice matched to the substrate (xSb˜0.09 ) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (xSb˜0.35 ) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs /InAs1 -xSbx and InAs /GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of the forbidden LO-like mode is a universal signature for SLs and bulk systems resulting from the mixing of phonon modes due to structural modulation or symmetry reduction.
Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs / InAs 1 - x Sb x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Henan; Zhang, Yong; Steenbergen, Elizabeth H.
The InAs/InAs 1-xSb x superlattice system distinctly differs from two well-studied superlattice systems GaAs / AlAs and InAs/GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs/InAs 1-xSb x system when compared to the other two systems. Here, we report a polarized Raman study of the vibrational properties of the InAs/InAs 1-xSb x superlattices (SLs) as well as selected InAs 1-xSb x alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) frommore » both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like “forbidden” LO mode is observed in two parallel-polarization configurations. The InAs 1-xSb x alloys lattice matched to the substrate (x Sb ~ 0.09) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (x Sb ~ 0.35) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs/InAs 1-xSb x and InAs/GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of the forbidden LO-like mode is a universal signature for SLs and bulk systems resulting from the mixing of phonon modes due to structural modulation or symmetry reduction.« less
Gstrein, Thomas; Edwards, Andrew; Přistoupilová, Anna; Leca, Ines; Breuss, Martin; Pilat-Carotta, Sandra; Hansen, Andi H; Tripathy, Ratna; Traunbauer, Anna K; Hochstoeger, Tobias; Rosoklija, Gavril; Repic, Marco; Landler, Lukas; Stránecký, Viktor; Dürnberger, Gerhard; Keane, Thomas M; Zuber, Johannes; Adams, David J; Flint, Jonathan; Honzik, Tomas; Gut, Marta; Beltran, Sergi; Mechtler, Karl; Sherr, Elliott; Kmoch, Stanislav; Gut, Ivo; Keays, David A
2018-06-06
In the supplementary information PDF originally posted, there were discrepancies from the integrated supplementary information that appeared in the HTML; the former has been corrected as follows. In the legend to Supplementary Fig. 2c, "major organs of the mouse" has been changed to "major organs of the adult mouse." In the legend to Supplementary Fig. 6d,h, "At E14.5 Mbe/Mbe mutants have a smaller percentage of Brdu positive cells in bin 3" has been changed to "At E14.5 Mbe/Mbe mutants have a higher percentage of Brdu positive cells in bin 3."
Critical thickness of MBE-grown Ga 1-xIn xSb ( x<0.2) on GaSb
NASA Astrophysics Data System (ADS)
Nilsen, T. A.; Breivik, M.; Selvig, E.; Fimland, B. O.
2009-03-01
Several Ga 1-xIn xSb layers, capped with 1 μm of GaSb, were grown on GaSb(0 0 1) substrates by molecular beam epitaxy in a Varian Gen II Modular system using either the conventional sample growth position with substrate rotation, or a tilted sample position with no substrate rotation. The GaInSb layers were examined by X-ray diffraction (XRD) using both symmetrical and asymmetrical reflections. The "tilted sample method" gave a variation of ±25% in thickness of the Ga 1-xIn xSb layers, while the indium (In) content varied by ±10% around the nominal value. The disappearance of thickness fringes in 004 XRD scans was used to determine the onset of relaxation, as determining the in-plane lattice constant for tilted samples was found to be difficult. Determining residual strain in samples grown by the tilted method was likewise found to be very difficult. The critical thickness for several In mole fractions between 5% and 19% was determined and was found to be from 2.2 to 2.7 times higher than predicted by Matthews and Blakeslee (1974) [J. Crystal Growth 27 (1974) 118] but lower than that predicted by People and Bean (1985) [Appl. Phys. Lett. 47 (1985) 322].
LWIR HgCdTe Detectors Grown on Ge Substrates
NASA Astrophysics Data System (ADS)
Vilela, M. F.; Lofgreen, D. D.; Smith, E. P. G.; Newton, M. D.; Venzor, G. M.; Peterson, J. M.; Franklin, J. J.; Reddy, M.; Thai, Y.; Patten, E. A.; Johnson, S. M.; Tidrow, M. Z.
2008-09-01
Long-wavelength infrared (LWIR) HgCdTe p-on- n double-layer heterojunctions (DLHJs) for infrared detector applications have been grown on 100 mm Ge (112) substrates by molecular beam epitaxy (MBE). The objective of this current work was to grow our baseline p-on- n DLHJ detector structure (used earlier on Si substrates) on 100 mm Ge substrates in the 10 μm to 11 μm LWIR spectral region, evaluate the material properties, and obtain some preliminary detector performance data. Material characterization techniques included are X-ray rocking curves, etch pit density (EPD) measurements, compositional uniformity determined from Fourier-transform infrared (FTIR) transmission, and doping concentrations determined from secondary-ion mass spectroscopy (SIMS). Detector properties include resistance-area product (RoA), spectral response, and quantum efficiency. Results of LWIR HgCdTe detectors and test structure arrays (TSA) fabricated on both Ge and silicon (Si) substrates are presented and compared. Material properties demonstrated include X-ray full-width of half-maximum (FWHM) as low as 77 arcsec, typical etch pit densities in mid 106 cm-2 and wavelength cutoff maximum/minimum variation <2% across the full wafer. Detector characteristics were found to be nearly identical for HgCdTe grown on either Ge or Si substrates.
NASA Astrophysics Data System (ADS)
Globisch, B.; Dietz, R. J. B.; Nellen, S.; Göbel, T.; Schell, M.
2016-12-01
The influence of post-growth annealing on the electrical properties, the transient carrier dynamics and the performance as THz photoconductive receiver of Beryllium (Be) doped InGaAs/InAlAs multilayer heterostructures grown at 130 °C in a molecular beam epitaxy (MBE) system was investigated. We studied samples with nominally Be doping concentrations of 8 ×10 17 cm-3 - 1.2 ×1019 cm3 annealed for 15 min. - 120 min. at temperatures between 500 °C - 600 °C. In contrast to previous publications, the results show consistently that annealing increases the electron lifetime of the material. In analogy to the annealing properties of low-temperature grown (LTG) GaAs we explain our findings by the precipitation of arsenic antisite defects. The knowledge of the influence of annealing on the material properties allowed for the fabrication of broadband THz photoconductive receivers with an electron lifetime below 300 fs and varying electrical properties. We found that the noise of the detected THz pulse trace in time-domain spectroscopy (TDS) was directly determined by the resistance of the photoconductive receiver and the peak-to-peak amplitude of the THz pulse correlated with the electron mobility.
NASA Astrophysics Data System (ADS)
Koshelev, O. A.; Nechaev, D. V.; Sitnikova, A. A.; Ratnikov, V. V.; Ivanov, S. V.; Jmerik, V. N.
2017-11-01
The paper describes experimental results on low temperature plasma-assisted molecular beam epitaxy of GaN/AlN heterostructures on both 6H-SiC and Si(111) substrates. We demonstrate that application of migration enhanced epitaxy and metal-modulated epitaxy for growth of AlN nucleation and buffer layers lowers the screw and edge(total)threading dislocation (TD) densities down to 1.7·108 and 2·109 cm-2, respectively, in a 2.8-μm-thick GaN buffer layer grown atop of AlN/6H-SiC. The screw and total TD densities of 1.2·109 and 7.4·109 cm-2, respectively, were achieved in a 1-μm-thickGaN/AlNheterostructure on Si(111). Stress generation and relaxation in GaN/AlN heterostructures were investigated by using multi-beam optical stress sensor (MOSS) to achieve zero substrate curvature at room temperature. It is demonstrated that a 1-μm-thick GaN/AlN buffer layer grown by PA MBE provides planar substrate morphology in the case of growth on Si substrates whereas 5-μm-thick GaN buffer layers have to be used to achieve the same when growing on 6H-SiC substrates.
NASA Astrophysics Data System (ADS)
Voitsekhovskii, Alexander V.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Varavin, Vasily S.; Dvoretsky, Sergey A.; Mikhailov, Nikolay N.; Yakushev, Maksim V.; Sidorov, Georgy Yu.
2017-11-01
Heterostructures based on n-Hg1-xCdxTe (x = 0.23-0.40) with near-surface graded-gap layers were grown by molecular beam epitaxy on Si (013) substrates. At 77 K, the admittance of the In/Al2O3/Hg1-xCdxTe metal-insulator-semiconductor (MIS) structures with grown in situ CdTe intermediate layer and without such a layer was investigated. It has been established that MIS structures of In/Al2O3/Hg1-xCdxTe with an interlayer of in situ grown CdTe are characterized by the electrical strength of the dielectric and the qualitative interface. The hysteresis of the capacitive characteristics is practically absent within a small range of variation in the bias voltage. The density of fast surface states at the minimum does not exceed 2.2 × 1010 eV-1 cm-2. MIS structures of In/Al2O3/Hg1-xCdxTe without an intermediate layer of CdTe have significantly higher densities of fast and slow surface states, as well as lower values of the differential resistance of the space-charge region in the regime of strong inversion.
NASA Astrophysics Data System (ADS)
Jum'h, I.; Abd El-Sadek, M. S.; Al-Taani, H.; Yahia, I. S.; Karczewski, G.
2017-02-01
Heterostructure p-(ZnMgTe/ZnTe:N)/CdTe/n-(CdTe:I)/GaAs was evaporated using molecular beam epitaxy and investigated for photovoltaic energy conversion application. The electrical properties of the studied heterostructure were measured and characterized in order to understand the relevant electrical transport mechanisms. Electrical properties derived from the current-voltage ( I- V) characteristics of solar cells provide essential information necessary for the analysis of performance losses and device efficiency. I- V characteristics are investigated in dark conditions and under different light intensities. All the electrical and power parameters of the heterostructure were measured, calculated and explained.
Transient atomic behavior and surface kinetics of GaN
NASA Astrophysics Data System (ADS)
Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan
2009-07-01
An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.
Cryogenic operation of pseudomorphic AlGaAs/InGaAs single-quantum-well MODFETs
NASA Technical Reports Server (NTRS)
Masselink, W. T.; Ketterson, A.; Klem, J.; Kopp, W.; Morkoc, H.
1985-01-01
The 77 K operation of AlGaAs/InGaAs MODFETs has been investigated. The structures, grown by MBE, make use of a 200 A undoped In(0.15)Ga(0.85)As quantum well for electron confinement and an Si-doped Al(0.15)Ga(0.85)As top barrier. The MODFETs with 1 micron gate lengths exhibit extrinsic transconductances of 360 mS/mm and maximum currents of 310 mA/mm at 77 K. The use of a low Al mole fraction AlGaAs/InGaAs heterojunction makes it possible to avoid the persistent trapping effects encountered in AlGaAs/GaAs MODFETs without sacrificing device performance.
NASA Astrophysics Data System (ADS)
Kazanov, D. R.; Pozina, G.; Jmerik, V. N.; Shubina, T. V.
2018-03-01
Molecular beam epitaxy (MBE) of III-nitride compounds on specially prepared cone-shaped patterned substrates is being actively developed nowadays, especially for nanophotonic applications. This type of substrates enables the successful growth of hexagonal nanorods (NRs). The insertion of an active quantum-sized region of InGaN inside a GaN NR allows us to enhance the rate of optical transitions by coupling them with resonant optical modes in the NR. However, we have observed the enhancement of emission not only from the NR but also around the circumference region of the cone-shaped base. We have studied this specific feature and demonstrated its impact on the output signal.
Ferromagnetic resonance and spin-wave resonances in GaMnAsP films
NASA Astrophysics Data System (ADS)
Liu, Xinyu; Li, Xiang; Bac, Seul-Ki; Zhang, Xucheng; Dong, Sining; Lee, Sanghoon; Dobrowolska, Margaret; Furdyna, Jacek K.
2018-05-01
A series of Ga1-xMnxAs1-yPy films grown by MBE on GaAs (100) substrates was systematically studied by ferromagnetic resonance (FMR). Magnetic anisotropy parameters were obtained by analyzing the angular dependence of the FMR data. The results clearly show that the easy axis of the films shifts from the in-plane [100] direction to the out-of-plane [001], indicating the emergence of a strong tensile-strain-induced perpendicular anisotropy when the P content exceeds y ≈ 0.07. Multiple resonances were observed in Ga1-xMnxAs1-yPy films with thicknesses over 48 nm, demonstrating the existence of exchange-dominated non-propagating spin-wave modes governed by surface anisotropy.
NASA Astrophysics Data System (ADS)
El Kazzi, S.; Mortelmans, W.; Nuytten, T.; Meersschaut, J.; Carolan, P.; Landeloos, L.; Conard, T.; Radu, I.; Heyns, M.; Merckling, C.
2018-04-01
We present in this paper the use of Gas Source Molecular Beam Epitaxy for the large-scale growth of transition metal dichalcogenides. Fiber-textured MoS2 co-deposited thin films (down to 1 MLs) are grown on commercially 200 mm wafer size templates where MX2 crystalline layers are achieved at temperatures ranging from RT to 550 °C. Raman Spectroscopy and photoluminescence measurements along with X-Ray Photoelectron Spectroscopy show that a low growth rate is essential for complete Mo sulfurization during MoS2 co-deposition. Finally, cross-section Transmission Electron Microscopy investigations are discussed to highlight the influence of SiO2 and Al2O3 used surfaces on MoS2 deposition.
Properties of arsenic-implanted Hg1-xCdxTe MBE films
NASA Astrophysics Data System (ADS)
Izhnin, Igor I.; Voitsekhovskii, Alexandr V.; Korotaev, Alexandr G.; Fitsych, Olena I.; Bonchyk, Oleksandr Yu.; Savytskyy, Hrygory V.; Mynbaev, Karim D.; Varavin, Vasilii S.; Dvoretsky, Sergey A.; Yakushev, Maxim V.; Jakiela, Rafal; Trzyna, Malgorzata
2017-01-01
Defect structure of arsenic-implanted Hg1-xCdxTe films (x=0.23-0.30) grown with molecular-beam epitaxy on Si substrates was investigated with the use of optical methods and by studying the electrical properties of the films. The structural perfection of the films remained higher after implantation with more energetic arsenic ions (350 keV vs 190 keV). 100%-activation of implanted ions as a result of post-implantation annealing was achieved, as well as the effective removal of radiation-induced donor defects. In some samples, however, activation of acceptor-like defects not related to mercury vacancies as a result of annealing was observed, possibly related to the effect of the substrate.
La-doped SrTiO3 films with large cryogenic thermoelectric power factors
NASA Astrophysics Data System (ADS)
Cain, Tyler A.; Kajdos, Adam P.; Stemmer, Susanne
2013-05-01
The thermoelectric properties at temperatures between 10 K and 300 K of La-doped SrTiO3 thin films grown by hybrid molecular beam epitaxy (MBE) on undoped SrTiO3 substrates are reported. Below 50 K, the Seebeck coefficients exhibit very large magnitudes due to the influence of phonon drag. Combined with high carrier mobilities, exceeding 50 000 cm2 V-1 s-1 at 2 K for the films with the lowest carrier densities, this leads to thermoelectric power factors as high as 470 μWcm-1 K-2. The results are compared with other promising low temperature thermoelectric materials and discussed in the context of coupling with phonons in the undoped substrate.
MBE growth technology for high quality strained III-V layers
NASA Technical Reports Server (NTRS)
Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)
1990-01-01
The III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group III and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation of low temperature, and to permit the film to relax to equilibrium. The method of the invention: (1) minimizes starting step density on sample surface; (2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 monolayers at a time); (3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and (4) uses time-resolved RHEED to achieve aspects (1) through (3).
760 nm high-performance VCSEL growth and characterization
NASA Astrophysics Data System (ADS)
Rinaldi, Fernando; Ostermann, Johannes M.; Kroner, Andrea; Riedl, Michael C.; Michalzik, Rainer
2006-04-01
High-performance vertical-cavity surface-emitting lasers (VCSELs) with an emission wavelength of approximately 764 nm are demonstrated. This wavelength is very attractive for oxygen sensing. Low threshold currents, high optical output power, single-mode operation, and stable polarization are obtained. Using the surface relief technique and in particular the grating relief technique, we have increased the single-mode output power to more than 2.5mW averaged over a large device quantity. The laser structure was grown by molecular beam epitaxy (MBE) on GaAs (100)-oriented substrates. The devices are entirely based on the AlGaAs mixed compound semiconductor material system. The growth process, the investigations of the epitaxial material together with the device fabrication and characterization are discussed in detail.
NASA Astrophysics Data System (ADS)
Ghosh, Kankat; Das, S.; Khiangte, K. R.; Choudhury, N.; Laha, Apurba
2017-11-01
We report structural and electrical properties of hexagonal Gd2O3 grown epitaxially on GaN/Si (1 1 1) and AlGaN/GaN/Si(1 1 1) virtual substrates. GaN and AlGaN/GaN heterostructures were grown on Si(1 1 1) substrates by plasma assisted molecular beam epitaxy (PA-MBE), whereas the Gd2O3 layer was grown by the pulsed laser ablation (PLA) technique. Initial structural characterizations show that Gd2O3 grown on III-nitride layers by PLA, exhibit a hexagonal structure with an epitaxial relationship as {{≤ft[ 0 0 0 1 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 0 0 0 1 \\right]}GaN} and {{≤ft[ 1 \\bar{1} 0 0 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 1 \\bar{1} 0 0 \\right]}GaN} . X-ray photoelectron measurements of the valence bands revealed that Gd2O3 exhibits band offsets of 0.97 eV and 0.4 eV, for GaN and Al0.3Ga0.7N, respectively. Electrical measurements such as capacitance-voltage and leakage current characteristics further confirm that epi-Gd2O3 on III-nitrides could be a potential candidate for future metal-oxide-semiconductor (MOS)-based transistors also for high power applications in radio frequency range.
NASA Astrophysics Data System (ADS)
Hegde, S. M.; Brown, Gail J.; Capano, Michael; Eyink, Kurt
1997-03-01
We have investigated MBE grown p-type, GaAs/AlGaAs QWIPs by photoluminescence spectroscopy. Excitation intensity, and temperature dependent photoluminescence spectra from 4.5K to 295K were studied. The PL-spectra were fitted with multiple gaussians to extract information on inter-subband (c1-hh1) peak loactions, full width at half maximum(FWHM), intensity and integrated intensity. A detailed analysis of the origin of the observed peaks and their thermal actiavtion energies was carried out. X-ray diffraction measurements were used to confirm the high qualiuty of the grown MQW structures and the Al-composition in the AlGaAs barriers. Temperature dependent photoconductivity measurements were used to measure the relative photoresponse from the hh1-to-continuum states in the valence subband transitions of these detector structures in the 10 micron region. It is found that high photoluminescence efficiency for the intersubband free-to-free transition at higher temperatures correl! ates with good photoresponse at th ose higher temperatures.
Group-III nitride VCSEL structures grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ng, HockMin; Moustakas, Theodore D.
2000-07-01
III-nitride VCSEL structures designed for electron-beam pumping have been grown by molecular beam epitaxy (MBE). The structures consist of a sapphire substrate on which an AlN/GaN distributed Bragg reflector (DBR) with peak reflectance >99% at 402 nm is deposited. The active region consists of a 2-(lambda) cavity with 25 In0.1Ga0.9N/GaN multiquantum wells (MQWs) whose emission coincides with the high reflectance region of the DBR. The thicknesses of the InGaN wells and the GaN barriers are 35 angstrom and 75 angstrom respectively. The top reflector consists of a silver metallic mirror which prevents charging effects during electron-beam pumping. The structure was pumped from the top- side with a cw electron-beam using a modified cathodoluminescence (CL) system mounted on a scanning electron microscope chamber. Light output was collected from the polished sapphire substrate side. Measurements performed at 100 K showed intense emission at 407 nm with narrowing of the linewidth with increasing beam current. A narrow emission linewidth of 0.7 nm was observed indicating the onset of stimulated emission.
Height-selective etching for regrowth of self-aligned contacts using MBE
NASA Astrophysics Data System (ADS)
Burek, G. J.; Wistey, M. A.; Singisetti, U.; Nelson, A.; Thibeault, B. J.; Bank, S. R.; Rodwell, M. J. W.; Gossard, A. C.
2009-03-01
Advanced III-V transistors require unprecedented low-resistance contacts in order to simultaneously scale bandwidth, fmax and ft with the physical active region [M.J.W. Rodwell, M. Le, B. Brar, in: Proceedings of the IEEE, 96, 2008, p. 748]. Low-resistance contacts have been previously demonstrated using molecular beam epitaxy (MBE), which provides active doping above 4×10 19 cm -3 and permits in-situ metal deposition for the lowest resistances [U. Singisetti, M.A. Wistey, J.D. Zimmerman, B.J. Thibeault, M.J.W. Rodwell, A.C. Gossard, S.R. Bank, Appl. Phys. Lett., submitted]. But MBE is a blanket deposition technique, and applying MBE regrowth to deep-submicron lateral device dimensions is difficult even with advanced lithography techniques. We present a simple method for selectively etching undesired regrowth from the gate or mesa of a III-V MOSFET or laser, resulting in self-aligned source/drain contacts regardless of the device dimensions. This turns MBE into an effectively selective area growth technique.
NASA Astrophysics Data System (ADS)
Kishore, G. V. K.; Kumar, Anish; Rajkumar, K. V.; Purnachandra Rao, B.; Pramanik, Debabrata; Kapoor, Komal; Jha, Sanjay Kumar
2017-12-01
The paper presents a new methodology for detection and evaluation of mild steel (MS) can material embedded into oxide dispersion strengthened (ODS) steel tubes by magnetic Barkhausen emission (MBE) technique. The high frequency MBE measurements (125 Hz sweep frequency and 70-200 kHz analyzing frequency) are found to be very sensitive for detection of presence of MS on the surface of the ODS steel tube. However, due to a shallow depth of information from the high frequency MBE measurements, it cannot be used for evaluation of the thickness of the embedded MS. The low frequency MBE measurements (0.5 Hz sweep frequency and 2-20 kHz analyzing frequency) indicate presence of two MBE RMS voltage peaks corresponding to the MS and the ODS steel. The ratio of the two peaks changes with the thickness of the MS and hence, can be used for measurement of the thickness of the MS layer.
Effect of tensile deformation on micromagnetic parameters in 0.2% carbon steel and 2.25Cr-1Mo steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorthy, V.; Vaidyanathan, S.; Jayakumar, T.
The influence of prior tensile deformation on the magnetic Barkhausen emission (MBE) and the hysteresis (B-H) curve has been studied in 0.2% carbon steel and 2.25Cr-1Mo steel under different tempered conditions. This study shows that the micromagnetic parameters can be used to identify the four stages of deformation, namely (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding and (4) progressive plastic deformation. However, it is observed that the MBE profile shows more distinct changes at different stages of tensile deformation than the hysteresis curve. It has been established that the beginning of microplastic yielding and macroyielding can be identified frommore » the MBE profile which is not possible from the stress-strain plot. The onset of microplastic yielding can be identified from the decrease in the MBE peak height. The macroyielding can be identified from the merging of the initially present two-peak MBE profile into a single central peak with relatively higher peak height and narrow profile width. The difference between the variation of MBE and hysteresis curve parameters with strain beyond macroyielding indicates the difference in the deformation state of the surface and bulk of the sample.« less
Russo, Daniela; Miglionico, Rocchina; Carmosino, Monica; Bisaccia, Faustino; Armentano, Maria Francesca
2018-01-01
Sclerocarya birrea (A.Rich.) Hochst (Anacardiaceae) is a savannah tree that has long been used in sub-Saharan Africa as a medicinal remedy for numerous ailments. The purpose of this study was to increase the scientific knowledge about this plant by evaluating the total content of polyphenols, flavonoids, and tannins in the methanol extracts of the leaves and bark (MLE and MBE, respectively), as well as the in vitro antioxidant activity and biological activities of these extracts. Reported results show that MLE is rich in flavonoids (132.7 ± 10.4 mg of quercetin equivalents/g), whereas MBE has the highest content of tannins (949.5 ± 29.7 mg of tannic acid equivalents/g). The antioxidant activity was measured using four different in vitro tests: β-carotene bleaching (BCB), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), O2−•, and nitric oxide (NO•) assays. In all cases, MBE was the most active compared to MLE and the standards used (Trolox and ascorbic acid). Furthermore, MBE and MLE were tested to evaluate their activity in HepG2 and fibroblast cell lines. A higher cytotoxic activity of MBE was evidenced and confirmed by more pronounced alterations in cell morphology. MBE induced cell death, triggering the intrinsic apoptotic pathway by reactive oxygen species (ROS) generation, which led to a loss of mitochondrial membrane potential with subsequent cytochrome c release from the mitochondria into the cytosol. Moreover, MBE showed lower cytotoxicity in normal human dermal fibroblasts, suggesting its potential as a selective anticancer agent. PMID:29316691
Russo, Daniela; Miglionico, Rocchina; Carmosino, Monica; Bisaccia, Faustino; Andrade, Paula B; Valentão, Patrícia; Milella, Luigi; Armentano, Maria Francesca
2018-01-08
Sclerocarya birrea (A.Rich.) Hochst (Anacardiaceae) is a savannah tree that has long been used in sub-Saharan Africa as a medicinal remedy for numerous ailments. The purpose of this study was to increase the scientific knowledge about this plant by evaluating the total content of polyphenols, flavonoids, and tannins in the methanol extracts of the leaves and bark (MLE and MBE, respectively), as well as the in vitro antioxidant activity and biological activities of these extracts. Reported results show that MLE is rich in flavonoids (132.7 ± 10.4 mg of quercetin equivalents/g), whereas MBE has the highest content of tannins (949.5 ± 29.7 mg of tannic acid equivalents/g). The antioxidant activity was measured using four different in vitro tests: β-carotene bleaching (BCB), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), O₂ -• , and nitric oxide (NO • ) assays. In all cases, MBE was the most active compared to MLE and the standards used (Trolox and ascorbic acid). Furthermore, MBE and MLE were tested to evaluate their activity in HepG2 and fibroblast cell lines. A higher cytotoxic activity of MBE was evidenced and confirmed by more pronounced alterations in cell morphology. MBE induced cell death, triggering the intrinsic apoptotic pathway by reactive oxygen species (ROS) generation, which led to a loss of mitochondrial membrane potential with subsequent cytochrome c release from the mitochondria into the cytosol. Moreover, MBE showed lower cytotoxicity in normal human dermal fibroblasts, suggesting its potential as a selective anticancer agent.
Hsu, C H; Brown, C M; Murphy, J M; Haskell, M G; Williams, C; Feldman, K; Mitchell, K; Blanton, J D; Petersen, B W; Wallace, R M
2017-03-01
Current guidelines in the setting of exposures to potentially rabid bats established by the Advisory Committee on Immunization Practices (ACIP) address post-exposure prophylaxis (PEP) administration in situations where a person may not be aware that a bite or direct contact has occurred and the bat is not available for diagnostic testing. These include instances when a bat is discovered in a room where a person awakens from sleep, is a child without an adult witness, has a mental disability or is intoxicated. The current ACIP guidelines, however, do not address PEP in the setting of multiple persons exposed to a bat or a bat colony, otherwise known as mass bat exposure (MBE) events. Due to a dearth of recommendations for response to these events, the reported reactions by public health agencies have varied widely. To address this perceived limitation, a survey of 45 state public health agencies was conducted to characterize prior experiences with MBE and practices to mitigate the public health risks. In general, most states (69% of the respondents) felt current ACIP guidelines were unclear in MBE scenarios. Thirty-three of the 45 states reported prior experience with MBE, receiving an average of 16.9 MBE calls per year and an investment of 106.7 person-hours annually on MBE investigations. PEP criteria, investigation methods and the experts recruited in MBE investigations varied between states. These dissimilarities could reflect differences in experience, scenario and resources. The lack of consistency in state responses to potential mass exposures to a highly fatal disease along with the large contingent of states dissatisfied with current ACIP guidance warrants the development of national guidelines in MBE settings. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Zoonoses and Public Health published by Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Shi, Y.; Gosselink, D.; Gharavi, K.; Baugh, J.; Wasilewski, Z. R.
2017-11-01
The optimization of metamorphic buffers for InSb/AlInSb QWs grown on GaAs (0 0 1) substrates is presented. With increasing surface offcut angle towards [ 1 1 bar 0 ] direction, the interaction of spiral growth around threading dislocations (TDs) with the offcut-induced atomic steps leads to a gradual change in the morphology of the AlSb buffer from one dominated by hillocks to that exhibiting near-parallel steps, and finally to a surface with increasing number of localized depressions. With the growth conditions used, the smoothest AlSb surface morphology was obtained for the offcut angles range of 0.8-1.3°. On substrates with 0° offcut, subsequent 3 repeats of Al0.24In0.76 Sb/Al0.12In0.88 Sb interlayers reduces the TD density of AlSb buffer by a factor of 10, while 70 times reduction in the surface density of TD-related hillocks is observed. The remaining hillocks have rectangular footprint and small facet angles with respect to GaAs (0 0 1) surface: 0.4° towards [ 1 1 bar 0 ] direction and 0.7° towards [1 1 0] direction. Their triangular-shaped sidewalls with regularly spaced atomic steps show occasional extra step insertion sites, characteristic of TD outcrops. Many of the observed sidewalls are dislocation free and offer atomically smooth areas of up to 1 μm2, already suitable for high-quality InSb growth and subsequent top-down fabrication of InSb nanowires. It is proposed that the sidewalls of the remaining hillocks offer local vicinal surfaces with atomic step density optimal for suppression of TD-induced spiral growth, thus providing the important information on the exact substrate offcut needed to achieve large hillock-free and atomically smooth areas on AlInSb metamorphic buffers.
NASA Astrophysics Data System (ADS)
Nandi, U.; Norman, J. C.; Gossard, A. C.; Lu, H.; Preu, S.
2018-04-01
ErAs:In(Al)GaAs superlattice photoconductors are grown using molecular beam epitaxy (MBE) with excellent material characteristics for terahertz time-domain spectroscopy (TDS) systems operating at 1550 nm. The transmitter material (Tx) features a record resistivity of 3.85 kΩcm and record breakdown field strength of 170 ± 40 kV/cm (dark) and 130 ± 20 kV/cm (illuminated with 45 mW laser power). Receivers (Rx) with different superlattice structures were fabricated showing very high mobility (775 cm2/Vs). The TDS system using these photoconductors features a bandwidth larger than 6.5 THz with a laser power of 45 mW at Tx and 16 mW at Rx.
High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Meng; Zhao, Yuning; Yan, Xiaodong
2015-12-07
Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current <3 nA/cm{sup 2} is obtained with reverse bias voltage up to −20 V. With a 400 nm thick n-drift region, an on-resistance of 0.23 mΩ cm{sup 2} is achieved, with a breakdown voltage corresponding to a peak electric field of ∼3.1 MV/cm in GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.
Pressure and PL study of dilute-N GaInNAs films for applications in photovoltaics
NASA Astrophysics Data System (ADS)
Lindberg, George; Fukuda, Miwa; Al Khalfioui, M.; Hossain, Khalid; Sellers, Ian; Weinstein, Bernard
2013-03-01
Multi-junction photovoltaic devices employing dilute-N GaInNAs alloys are currently of high interest for efficient solar energy conversion. The negative band-bowing produced by introducing a few percent N into GaInAs provides a convenient way to match the 1eV component of the solar spectrum, providing recombination losses in localized states can be reduced while maintaining favorable carrier extraction. High pressure photoluminescence (PL) experiments exploring the localization of band-edge excitons in dilute-N GaInNAs films grown by plasma assisted MBE will be discussed. The effects of post-growth annealing and hydrogen incorporation on the PL spectra of the films are considered. Research supported by Amethyst Research Inc. through the State of Oklahoma, ONAP program.
Direct visualization of a two-dimensional topological insulator in the single-layer 1 T'-WT e2
NASA Astrophysics Data System (ADS)
Jia, Zhen-Yu; Song, Ye-Heng; Li, Xiang-Bing; Ran, Kejing; Lu, Pengchao; Zheng, Hui-Jun; Zhu, Xin-Yang; Shi, Zhi-Qiang; Sun, Jian; Wen, Jinsheng; Xing, Dingyu; Li, Shao-Chun
2017-07-01
We have grown nearly freestanding single-layer 1 T'-WT e2 on graphitized 6 H -SiC(0001) by using molecular beam epitaxy (MBE), and characterized its electronic structure with scanning tunneling microscopy/spectroscopy (STM/STS). The existence of topological edge states at the periphery of single-layer WT e2 islands was confirmed. Surprisingly, a bulk band gap at the Fermi level and insulating behaviors were also found in single-layer WT e2 at low temperature, which are likely associated with an incommensurate charge order transition. The realization of two-dimensional topological insulators (2D TIs) in single-layer transition-metal dichalcogenide provides a promising platform for further exploration of the 2D TIs' physics and related applications.
Wide-band (2.5 - 10.5 µm), high-frame rate IRFPAs based on high-operability MCT on silicon
NASA Astrophysics Data System (ADS)
Crosbie, Michael J.; Giess, Jean; Gordon, Neil T.; Hall, David J.; Hails, Janet E.; Lees, David J.; Little, Christopher J.; Phillips, Tim S.
2010-04-01
We have previously presented results from our mercury cadmium telluride (MCT, Hg1-xCdxTe) growth on silicon substrate technology for different applications, including negative luminescence, long waveband and mid/long dual waveband infrared imaging. In this paper, we review recent developments in QinetiQ's combined molecular beam epitaxy (MBE) and metal-organic vapor phase epitaxy (MOVPE) MCT growth on silicon; including MCT defect density, uniformity and reproducibility. We also present a new small-format (128 x 128) focal plane array (FPA) for high frame-rate applications. A custom high-speed readout integrated circuit (ROIC) was developed with a large pitch and large charge storage aimed at producing a very high performance FPA (NETD ~10mK) operating at frame rates up to 2kHz for the full array. The array design allows random addressing and this allows the maximum frame rate to be increased as the window size is reduced. A broadband (2.5-10.5 μm) MCT heterostructure was designed and grown by the MBE/MOVPE technique onto silicon substrates. FPAs were fabricated using our standard techniques; wet-etched mesa diodes passivated with epitaxial CdTe and flip-chip bonded to the ROIC. The resulting focal plane arrays were characterized at the maximum frame rate and shown to have the high operabilities and low NETD values characteristic of our LWIR MCT on silicon technology.
A DoD/DESAT Phase I Final Report,
1982-06-30
19-22, 1982 in Albuquerque, New Mexico: 1) Spatially Correlated Redistribution of Mn and Ge in Inl.x Gax As MBE layers, E. Silberg , T.Y. Chang, and...Urbana-Champaign. 2) Spatially correlated redistribution of Mn and Ge in InGaAs MBE layers in conjunction with E. Silberg , T.Y. Chang and E.A. Caridi at...AlGaAs MBE layers. 2) A group headed by Ors. T. Chang and E. Silberg of Bell Laboratories in Holmdel, New Jersey, have been involved in growing Mn and
Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices
NASA Astrophysics Data System (ADS)
Patel, Sahil Jaykumar
Spintronic devices, where information is carried by the quantum spin state of the electron instead of purely its charge, have gained considerable interest for their use in future computing technologies. For optimal performance, a pure spin current, where all electrons have aligned spins, must be generated and transmitted across many interfaces and through many types of materials. While conventional spin sources have historically been elemental ferromagnets, like Fe or Co, these materials pro duce only partially spin polarized currents. To increase the spin polarization of the current, materials like half-metallic ferromagnets, where there is a gap in the minority spin density of states around the Fermi level, or topological insulators, where the current transport is dominated by spin-locked surface states, show promise. A class of materials called Heusler compounds, with electronic structures that range from normal metals, to half metallic ferromagnets, semiconductors, superconductors and even topological insulators, interfaces well with existing device technologies, and through the use of molecular beam epitaxy (MBE) high quality heterostructures and films can be grown. This dissertation examines the electronic structure of surfaces and interfaces of both topological insulator (PtLuSb-- and PtLuBi--) and half-metallic ferromagnet (Co2MnSi-- and Co2FeSi--) III-V semiconductor heterostructures. PtLuSb and PtLuBi growth by MBE was demonstrated on Alx In1--xSb (001) ternaries. PtLuSb (001) surfaces were observed to reconstruct with either (1x3) or c(2x2) unit cells depending on Sb overpressure and substrate temperature. viii The electronic structure of these films was studied by scanning tunneling microscopy/spectroscopy (STM/STS) and photoemission spectroscopy. STS measurements as well as angle resolved photoemission spectropscopy (ARPES) suggest that PtLuSb has a zero-gap or semimetallic band structure. Additionally, the observation of linearly dispersing surface states, with an approximate crossing point 240meV above the Fermi level, suggests that PtLuSb (001) films are topologically non-trivial. PtLuBi films also display a Fermi level position approximately 500meV below the valence band maximum. Co2MnSi and Co2FeSi were also grown by MBE on GaAs (001) for use as spin injectors into GaAs lateral spin valve devices. By the growth of the quaternary alloy Co2FexMn1-- xSi and varying x, electron doping of the full Heusler compound was demonstrated by observation of a crossover from a majority spin polarization of Co2MnSi to a minority spin polarization in Co2FeSi. Co2MnSi films were studied as a function of the nucleation sequence, using either Co-- or MnSi-- initiated films on c(4x4) GaAs. Studies using x-ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM) suggest that the bulk of the Co2MnSi films and the interfacial structure between Co 2MnSi and GaAs is not modified by the nucleation sequence, but a change in spin transport characteristics suggests a modification of semiconductor band structure at the Co2MnSi/GaAs interface due to diffusion of Mn leading to compensation of the Schottky barrier contact. Diffusion of Mn into the GaAs was confirmed by secondary ion mass spectrometry (SIMS) measurements. The proposed mechanism for the modified spin transport characteristics for MnSi initiated films is that additional diffusion of Mn into the GaAs, widens the Schottky barrier contact region. These studies suggest that the ideal initiation sequence for Co2MnSi/GaAs (001) lateral spin valve devices is achieved by deposition of Co first.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, C. W.
The focus of this work is to improve the quality of GaInNAs by advanced thin-film growth techniques, such as digital-alloy growth techniques and migration-enhanced epitaxy (MEE). The other focus is to further investigate the properties of such materials, which are potentially beneficial for high-efficiency, multijunction solar cells. 400-nm-thick strain-compensated Ga0.92In0.08As/GaN0.03As0.97 short-period superlattices (SPSLs) are grown lattice-matched to GaAs substrates. The photoluminescence (PL) intensity of digital alloys is 3 times higher than that of random alloys at room temperature, and the improvement is even greater at low temperature, by a factor of about 12. The room-temperature PL intensity of the GaInNAsmore » quantum well grown by the strained InAs/GaN0.023As SPSL growth mode is higher by a factor 5 as compare to the continuous growth mode. The SPSL growth method allows for independent adjustment of the In-to-Ga ratio without group III competition. MEE reduces the low-energy tail of PL, and PL peaks become more intense and sharper. The twin peaks photoluminescence of GaNAs grown on GaAs was observed at room temperature. The peaks splitting increase with increase in nitrogen alloy content. The strain-induced splitting of light-hole and heavy-hole bands of tensile-strained GaNAs is proposed as an explanation of such behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y.; Clavel, M.; Goley, P.
Mixed-anion, GaAs{sub 1-y}Sb{sub y} metamorphic materials with a wide range of antimony (Sb) compositions extending from 15% to 62%, were grown by solid source molecular beam epitaxy (MBE) on GaAs substrates. The impact of different growth parameters on the Sb composition in GaAs{sub 1-y}Sb{sub y} materials was systemically investigated. The Sb composition was well-controlled by carefully optimizing the As/Ga ratio, the Sb/Ga ratio, and the substrate temperature during the MBE growth process. High-resolution x-ray diffraction demonstrated a quasi-complete strain relaxation within each composition of GaAs{sub 1-y}Sb{sub y}. Atomic force microscopy exhibited smooth surface morphologies across the wide range of Sbmore » compositions in the GaAs{sub 1-y}Sb{sub y} structures. Selected high-κ dielectric materials, Al{sub 2}O{sub 3}, HfO{sub 2}, and Ta{sub 2}O{sub 5} were deposited using atomic layer deposition on the GaAs{sub 0.38}Sb{sub 0.62} material, and their respective band alignment properties were investigated by x-ray photoelectron spectroscopy (XPS). Detailed XPS analysis revealed a valence band offset of >2 eV for all three dielectric materials on GaAs{sub 0.38}Sb{sub 0.62}, indicating the potential of utilizing these dielectrics on GaAs{sub 0.38}Sb{sub 0.62} for p-type metal-oxide-semiconductor (MOS) applications. Moreover, both Al{sub 2}O{sub 3} and HfO{sub 2} showed a conduction band offset of >2 eV on GaAs{sub 0.38}Sb{sub 0.62}, suggesting these two dielectrics can also be used for n-type MOS applications. The well-controlled Sb composition in several GaAs{sub 1-y}Sb{sub y} material systems and the detailed band alignment analysis of multiple high-κ dielectric materials on a fixed Sb composition, GaAs{sub 0.38}Sb{sub 0.62}, provides a pathway to utilize GaAs{sub 1-y}Sb{sub y} materials in future microelectronic and optoelectronic applications.« less
Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, C. Y.; Torfi, A.; Pei, C.
2016-05-09
In this work, the effects of substrate orientation on InSb quantum structure growth by molecular beam epitaxy (MBE) are presented. Motivated by the observation that (411) evolves naturally as a stable facet during MBE crystal growth, comparison studies have been carried out to investigate the effects of the crystal orientation of the underlying GaSb substrate on the growth of InSb by MBE. By depositing InSb on a number of different substrate orientations, namely: (100), (311), (411), and (511), a higher nanostructure density was observed on the (411) surface compared with the other orientations. This result suggests that the (411) orientationmore » presents a superior surface in MBE growth to develop a super-flat GaSb buffer surface, naturally favorable for nanostructure growth.« less
44. VIEW TO SOUTHWEST; MBE BUILDING, THIRD FLOOR, CONDUCTORS' LOCKER ...
44. VIEW TO SOUTHWEST; MBE BUILDING, THIRD FLOOR, CONDUCTORS' LOCKER ROOM LAVATORY (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA
42. VIEW TO SOUTHEAST; MBE BUILDING, THIRD FLOOR, CONDUCTORS' LOCKER ...
42. VIEW TO SOUTHEAST; MBE BUILDING, THIRD FLOOR, CONDUCTORS' LOCKER ROOM INTERIOR (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA
43. VIEW TO NORTHEAST; MBE BUILDING, THIRD FLOOR, CONDUCTORS' LOCKER ...
43. VIEW TO NORTHEAST; MBE BUILDING, THIRD FLOOR, CONDUCTORS' LOCKER ROOM INTERIOR (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA
Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.
Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei
2013-02-01
High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.
Enhanced radial growth of Mg doped GaN nanorods: A combined experimental and first-principles study
NASA Astrophysics Data System (ADS)
Nayak, Sanjay; Kumar, Rajendra; Pandey, Nidhi; Nagaraja, K. K.; Gupta, Mukul; Shivaprasad, S. M.
2018-04-01
We discuss the microstructural origin of enhanced radial growth in magnesium (Mg) doped single crystalline wurtzite gallium nitride (w-GaN) nanorods (NRs) grown by MBE, using electron microscopy and first-principles Density Functional Theory calculations. Experimentally, we observe that Mg incorporation increases the surface coverage of the grown samples as a consequence of an increase in the radial growth rate of the NRs. We also observe that the coalescence of NRs becomes prominent and the height at which coalescence between proximal rods occurs decreases with increase in Mg concentration. From first-principles calculations, we find that the surface free energy of the Mg doped surface reduces with increasing Mg concentration in the samples. The calculations further suggest a reduction in the adsorption energy and the diffusion barrier of Ga adatoms along [ 11 2 ¯ 0 ] on the side wall surface of the NRs as the underlying mechanism for the observed enhancement in the radial growth rate of GaN NRs. The physics and chemistry behind reduction of the adsorption energy of Ga ad-atoms on the doped surface are explained in the light of electronic structure of the relevant surfaces.
Defects in Arsenic Implanted p + -n- and n + -p- Structures Based on MBE Grown CdHgTe Films
NASA Astrophysics Data System (ADS)
Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytskyy, H. V.; Świątek, Z.
2018-02-01
Complex studies of the defect structure of arsenic-implanted (with the energy of 190 keV) Cd x Hg 1-x Te ( x = 0.22) films grown by molecular-beam epitaxy are carried out. The investigations were performed using secondary-ion mass spectroscopy, transmission electron microscopy, optical reflection in the visible region of the spectrum, and electrical measurements. Radiation donor defects were studied in n +- p- and n +- n-structures obtained by implantation and formed on the basis of p-type and n-type materials, respectively, without activation annealing. It is shown that in the layer of the distribution of implanted ions, a layer of large extended defects with low density is formed in the near-surface region followed by a layer of smaller extended defects with larger density. A different character of accumulation of electrically active donor defects in the films with and without a protective graded-gap surface layer has been revealed. It is demonstrated that p +- n- structures are formed on the basis of n-type material upon activation of arsenic in the process of postimplantation thermal annealing with 100% activation of impurity and complete annihilation of radiation donor defects.
Photoluminescence and contactless electroreflectance characterization of BexCd1-xSe alloys
NASA Astrophysics Data System (ADS)
Huang, P. J.; Huang, Y. S.; Firszt, F.; Meczynska, H.; Maksimov, O.; Tamargo, M. C.; Tiong, K. K.
2007-01-01
A detailed optical characterization of a Bridgman-grown wurtzite- (WZ-) type Be0.075Cd0.925Se mixed crystal and three zinc-blende (ZB) BexCd1-xSe epilayers grown by MBE on InP substrates has been carried out via photoluminescence (PL) and contactless electroreflectance (CER) in the temperature range of 15-400 K. The PL spectrum of the WZ-BeCdSe at low temperature consists of an exciton line, an edge emission feature due to recombination of donor-acceptor pairs, and a broad band related to recombination through deep-level defects, while the PL emission peaks of the ZB-BeCdSe epilayers show an asymmetric shape with a tail on the low-energy side. Various interband transitions, originating from the band edge and spin-orbit splitting critical points, of the samples have been observed in the CER spectra. The peak positions of the exciton emission lines in the PL spectra correspond quite well to the energies of the fundamental transitions determined from electromodulation data. The parameters that describe the temperature dependence of the fundamental and spin split-off bandgaps and the broadening function of the band-edge exciton are evaluated and discussed.
Growth and characterization of AlInAsSb layers lattice-matched to GaSb
NASA Astrophysics Data System (ADS)
Tournet, J.; Rouillard, Y.; Tournié, E.
2017-11-01
We report on the growth by solid-source MBE of random-alloy AlxIn1-xAsySb1-y layers lattice-matched to (0 0 1)-GaSb substrates, with xAl ∈ [0.25; 0.75]. The samples quality and morphology were characterized by X-ray diffraction, Nomarski microscopy and atomic force microscopy. Layers grown at 400 °C demonstrated smooth surfaces and no sign of phase decomposition. Samples with xAl ≤ 0.60 demonstrated photoluminescence (PL) at 300 K whereas samples with higher Al content only demonstrated PL at low temperature. Samples grown at 430 °C, in contrast, exhibited PL at low temperature only, whatever their composition. Inferred bandgap energies corroborate the estimation of a non-null quaternary bowing parameter made by Donati, Kaspi and Malloy in Journal of Applied Physics 94 (2003) 5814. Upon annealing, the PL peak energies increased, getting even closer to the theoretical values. These results are in agreement with recently published results on digital AlInAsSb alloys. Our work, which reports the first evidence for PL emission from random-alloy AlInAsSb layers lattice-matched to GaSb, opens the way to their use in optoelectronic devices.
Growth and Properties of Lattice Matched GaAsSbN Epilayer on GaAs for Solar Cell Applications
NASA Technical Reports Server (NTRS)
Bharatan, Sudhakar; Iyer, Shanthi; Matney, Kevin; Collis, Ward J.; Nunna Kalyan; Li, Jia; Wu, Liangjin; McGuire, Kristopher; McNeil, Laurie E.
2006-01-01
The growth and properties of GaAsSbN single quantum wells (SQWs) are investigated in this work. The heterostructures were grown on GaAs substrates in an elemental solid source molecular beam epitaxy (MBE) system assisted with a RF plasma nitrogen source. A systematic study has been carried out to determine the influence of various growth conditions, such as the growth temperature and the source shutter-opening sequence, on the quality of the grown layers and the incorporation of N and Sb. The effects of ex situ and in situ annealing under As overpressure on the optical properties of the layers have also been investigated. Substrate temperature in the range of 450-470 C was found to be optimum. Simultaneous opening of the source shutters was found to yield sharper QW interfaces. N and Sb incorporations were found to depend strongly upon substrate temperatures and source shutter opening sequences. A significant increase in PL intensity with a narrowing of PL line shape and blue shift in emission energy were observed on annealing the GaAsSbN/GaAs SQW, with in situ annealing under As overpressure providing better results, compared to ex situ annealing.
15. VIEW TO SOUTHWEST; EAST BACK MBE BUILDING, THIRD AND ...
15. VIEW TO SOUTHWEST; EAST BACK MBE BUILDING, THIRD AND SECOND FLOORS; GASOLINE PUMPS CENTER (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA
Self-consistent expansion for the molecular beam epitaxy equation
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2002-03-01
Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-->-r',t-t')=2D0\\|r-->- r'\\|2ρ-dδ(t-t'). I find a lower critical dimension dc(ρ)=4+2ρ, above which the linear MBE solution appears. Below the lower critical dimension a ρ-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.
Self-consistent expansion for the molecular beam epitaxy equation.
Katzav, Eytan
2002-03-01
Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-r('),t-t('))=2D(0)[r-->-r(')](2rho-d)delta(t-t(')). I find a lower critical dimension d(c)(rho)=4+2rho, above which the linear MBE solution appears. Below the lower critical dimension a rho-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.
Improvements to III-nitride light-emitting diodes through characterization and material growth
NASA Astrophysics Data System (ADS)
Getty, Amorette Rose Klug
A variety of experiments were conducted to improve or aid the improvement of the efficiency of III-nitride light-emitting diodes (LEDs), which are a critical area of research for multiple applications, including high-efficiency solid state lighting. To enhance the light extraction in ultraviolet LEDs grown on SiC substrates, a distributed Bragg reflector (DBR) optimized for operation in the range from 250 to 280 nm has been developed using MBE growth techniques. The best devices had a peak reflectivity of 80% with 19.5 periods, which is acceptable for the intended application. DBR surfaces were sufficiently smooth for subsequent epitaxy of the LED device. During the course of this work, pros and cons of AlGaN growth techniques, including analog versus digital alloying, were examined. This work highlighted a need for more accurate values of the refractive index of high-Al-content AlxGa1-xNin the UV wavelength range. We present refractive index results for a wide variety of materials pertinent to the fabrication of optical III-nitride devices. Characterization was done using Variable-Angle Spectroscopic Ellipsometry. The three binary nitrides, and all three ternaries, have been characterized to a greater or lesser extent depending on material compositions available. Semi-transparent p-contact materials and other thin metals for reflecting contacts have been examined to allow optimization of deposition conditions and to allow highly accurate modeling of the behavior of light within these devices. Standard substrate materials have also been characterized for completeness and as an indicator of the accuracy of our modeling technique. We have demonstrated a new technique for estimating the internal quantum efficiency (IQE) of nitride light-emitting diodes. This method is advantageous over the standard low-temperature photoluminescence-based method of estimating IQE, as the new method is conducted under the same conditions as normal device operation. We have developed processing techniques and have characterized patternable absorbing materials which eliminate scattered light within the device, allowing an accurate simulation of the device extraction efficiency. This efficiency, with measurements of the input current and optical output power, allow a straightforward calculation of the IQE. Two sets of devices were measured, one of material grown in-house, with a rough p-GaN surface, and one of commercial LED material, with smooth interfaces and very high internal quantum efficiency.
Interfacing epitaxial oxides to gallium nitride
NASA Astrophysics Data System (ADS)
Losego, Mark Daniel
Molecular beam epitaxy (MBE) is lauded for its ability to control thin film material structures at the atomic level. This precision of control can improve performance of microelectronic devices and cultivate the development of novel device structures. This thesis explores the utility of MBE for designing interfaces between oxide epilayers and the wide band gap semiconductor gallium nitride (GaN). The allure of wide gap semiconductor microelectronics (like GaN, 3.4 eV) is their ability to operate at higher frequencies, higher powers, and higher temperatures than current semiconductor platforms. Heterostructures between ferroelectric oxides and GaN are also of interest for studying the interaction between GaN's fixed polarization and the ferroelectric's switchable polarization. Two major obstacles to successful integration of oxides with GaN are: (1) interfacial trap states; and (2) small electronic band offsets across the oxide/nitride interface due to the semiconductor's large band gap. For this thesis, epitaxial rocksalt oxide interfacial layers (˜8 eV band gap) are investigated as possible solutions to overcoming the challenges facing oxide integration with GaN. The cubic close-packed structure of rocksalt oxides forms a suitable epitaxial interface with the hexagonal close-packed wurtzite lattice of GaN. Three rocksalt oxide compounds are investigated in this thesis: MgO, CaO, and YbO. All are found to have a (111) MO || (0001) GaN; <1 10> MO || <11 20> GaN epitaxial relationship. Development of the epilayer microstructure is dominated by the high-energy polar growth surface (drives 3D nucleation) and the interfacial symmetry, which permits the formation of twin boundaries. Using STEM, strain relief for these ionicly bonded epilayers is observed to occur through disorder within the initial monolayer of growth. All rocksalt oxides demonstrate chemical stability with GaN to >1000°C. Concurrent MBE deposition of MgO and CaO is known to form complete solid solutions. By controlling the composition of these alloys, the oxide's lattice parameter can be engineered to match GaN and reduce interfacial state density. Compositional control is a universal challenge to oxide MBE, and the MgO-CaO system (MCO) is further complicated by magnesium's high volatility and the lack of a thermodynamically stable phase. Through a detailed investigation of MgO's deposition rate and subsequent impact on MCO composition, the process space for achieving lattice-matched compositions to GaN are fully mapped. Lattice-matched compositions are demonstrated to have the narrowest off-axis rocking curve widths ever reported for an epitaxial oxide deposited directly on GaN (0.7° in φ-circle for 200 reflection). Epitaxial deposition of the ferroelectric (Ba,Sr)TiO3 by hot RF sputtering on GaN surfaces is also demonstrated. Simple MOS capacitors are fabricated from epitaxial rocksalt oxides and (Ba,Sr)TiO3 layers deposited on n-GaN substrates. Current-voltage measurements reveal that BST epilayers have 5 orders of magnitude higher current leakage than rocksalt epilayers. This higher leakage is attributed to the smaller band offset expected at this interface; modeling confirms that electronic transport occurs by Schottky emission. In contrast, current transport across the rocksalt oxide/GaN interface occurs by Frenkel-Poole emission and can be reduced with pre-deposition surface treatments. Finally, through this work, it is realized that the integration of oxides with III-nitrides requires an appreciation of many different fields of research including materials science, surface science, and electrical engineering. By recognizing the importance that each of these fields play in designing oxide/III-nitride interfaces, this thesis has the opportunity to explore other related phenomena including accessing metastable phases through MBE (ytterbium monoxide), spinodal decomposition in metastable alloys (MCO), how polar surfaces grown by MBE compensate their bound surface charge, room temperature epitaxy, and the use of surface modification to achieve selective epitaxial deposition (SeEDed growth).
Safety and Toxicology of Magnolol and Honokiol.
Sarrica, Andrea; Kirika, Natalja; Romeo, Margherita; Salmona, Mario; Diomede, Luisa
2018-06-20
Magnolia officinalis and Magnolia obovata bark extracts have been used for thousands of years in Chinese and Japanese traditional medicines and are still widely employed as herbal preparations for their sedative, antioxidant, anti-inflammatory, antibiotic, and antispastic effects. Neolignans, particularly magnolol and honokiol, are the main substances responsible for the beneficial properties of the magnolia bark extract (MBE). The content of magnolol and honokiol in MBE depends on different factors, including the Magnolia plant species, the area of origin, the part of the plant employed, and the method used to prepare the extract. The biological and pharmacological activities of magnolol and honokiol have been extensively investigated. Here we review the safety and toxicological properties of magnolol and honokiol as pure substances or as components of concentrated MBE, including the potential side-effects in humans after oral intake. In vitro and in vivo genotoxicity studies indicated that concentrated MBE has no mutagenic and genotoxic potential, while a subchronic study performed according to OECD (Organisation for Economic Co-operation and Development) guidelines established a no adverse effect level for concentrated MBE > 240 mg/kg b.w/d. Similar to other dietary polyphenols, magnolol and honokiol are subject to glucuronidation, and despite a relatively quick clearance, an interaction with pharmaceutical active principles or other herbal constituents cannot be excluded. However, intervention trials employing concentrated MBE for up to 1 y did not report adverse effects. In conclusion, over the recent years different food safety authorities evaluated magnolol and honokiol and considered them safe. Georg Thieme Verlag KG Stuttgart · New York.
Singlemode 1.1 μm InGaAs quantum well microstructured photonic crystal VCSEL
NASA Astrophysics Data System (ADS)
Stevens, Renaud; Gilet, Philippe; Larrue, Alexandre; Grenouillet, Laurent; Olivier, Nicolas; Grosse, Philippe; Gilbert, Karen; Teysseyre, Raphael; Chelnokov, Alexei
2008-02-01
In this article, we present our results on long wavelength (1.1 μm) single-mode micro-structured photonic crystal strained InGaAs quantum wells VCSELs for optical interconnection applications. Single fundamental mode roomtemperature continuous-wave lasing operation was demonstrated for devices designed and processed with a number of different two-dimensional etched patterns. The conventional epitaxial structure was grown by Molecular Beam Epitaxy (MBE) and contains fully doped GaAs/AlGaAs DBRs, one oxidation layer and three strained InGaAs quantum wells. The holes were etched half-way through the top-mirror following various designs (triangular and square lattices) and with varying hole's diameters and pitches. At room temperature and in continuous wave operation, micro-structured 50 µm diameter mesa VCSELs with 10 μm oxidation aperture exhibited more than 1 mW optical power, 2 to 5 mA threshold currents and more than 30 dB side mode suppression ratio at a wavelength of 1090 nm. These structures show slight power reduction but similar electrical performances than unstructured devices. Systematic static electrical, optical and spectral characterization was performed on wafer using an automated probe station. Numerical modeling using the MIT Photonic-Bands (MPB [1]) package of the transverse modal behaviors in the photonic crystal was performed using the plane wave method in order to understand the index-guiding effects of the chosen patterns, and to further optimize the design structures for mode selection at extended wavelength range.
Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb
Kim, Honggyu; Meng, Yifei; Klem, John F.; ...
2018-04-28
Here, we show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with our scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase inmore » strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ~1 nm, which suggest the presence of point defects.« less
Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors
NASA Astrophysics Data System (ADS)
Augel, L.; Fischer, I. A.; Dunbar, L. A.; Bechler, S.; Berrier, A.; Etezadi, D.; Hornung, F.; Kostecki, K.; Ozdemir, C. I.; Soler, M.; Altug, H.; Schulze, J.
2016-03-01
Nanohole array surface plasmon resonance (SPR) sensors offer a promising platform for high-throughput label-free biosensing. Integrating nanohole arrays with group-IV semiconductor photodetectors could enable low-cost and disposable biosensors compatible to Si-based complementary metal oxide semiconductor (CMOS) technology that can be combined with integrated circuitry for continuous monitoring of biosamples and fast sensor data processing. Such an integrated biosensor could be realized by structuring a nanohole array in the contact metal layer of a photodetector. We used Fouriertransform infrared spectroscopy to investigate nanohole arrays in a 100 nm Al film deposited on top of a vertical Si-Ge photodiode structure grown by molecular beam epitaxy (MBE). We find that the presence of a protein bilayer, constitute of protein AG and Immunoglobulin G (IgG), leads to a wavelength-dependent absorptance enhancement of ~ 8 %.
The growth of high-Al-content InAlGaN quaternary alloys by RF-MBE
NASA Astrophysics Data System (ADS)
Wang, B. Z.; Wang, X. L.; Wang, X. Y.; Guo, L. C.; Wang, X. H.; Xiao, H. L.; Liu, H. X.
2007-02-01
High-Al-content InxAlyGa1-x-yN (x = 1-10%, y = 34-45%) quaternary alloys were grown on sapphire by radio-frequency plasma-excited molecular beam epitaxy. Rutherford back-scattering spectrometry, high resolution x-ray diffraction and cathodoluminescence were used to characterize the InAlGaN alloys. The experimental results show that InAlGaN with an appropriate Al/In ratio (near 4.7, which is a lattice-match to the GaN under-layer) has better crystal and optical quality than the InAlGaN alloys whose Al/In ratios are far from 4.7. Some cracks and V-defects occur in high-Al/In-ratio InAlGaN alloys. In the CL image, the cracks and V-defect regions are the emission-enhanced regions.
YCo5±x thin films with perpendicular anisotropy grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Sharma, S.; Hildebrandt, E.; Sharath, S. U.; Radulov, I.; Alff, L.
2017-06-01
The synthesis conditions of buffer-free (00l) oriented YCo5 and Y2Co17 thin films onto Al2O3 (0001) substrates have been explored by molecular beam epitaxy (MBE). The manipulation of the ratio of individual atomic beams of Yttrium, Y and Cobalt, Co, as well as growth rate variations allows establishing a thin film phase diagram. Highly textured YCo5±x thin films were stabilized with saturation magnetization of 517 emu/cm3 (0.517 MA/m), coercivity of 4 kOe (0.4 T), and anisotropy constant, K1, equal to 5.34 ×106 erg/cm3 (0.53 MJ/m3). These magnetic parameters and the perpendicular anisotropy obtained without additional underlayers make the material system interesting for application in magnetic recording devices.
Design and fabrication of low power GaAs/AlAs resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Md Zawawi, Mohamad Adzhar; Missous, Mohamed
2017-12-01
A very low peak voltage GaAs/AlAs resonant tunneling diode (RTD) grown by molecular beam epitaxy (MBE) has been studied in detail. Excellent growth control with atomic-layer precision resulted in a peak voltage of merely 0.28 V (0.53 V) in forward (reverse) direction. The peak current density in forward bias is around 15.4 kA/cm2 with variation of within 7%. As for reverse bias, the peak current density is around 22.8 kA/cm2 with 4% variation which implies excellent scalability. In this work, we have successfully demonstrated the fabrication of a GaAs/AlAs RTD by using a conventional optical lithography and chemical wet-etching with very low peak voltage suitable for application in low dc input power RTD-based sub-millimetre wave oscillators.
Fabrication and characterization of complex oxide RENiO3/LaAlO3 superlattices
NASA Astrophysics Data System (ADS)
Kareev, M.; Freeland, J. W.; Liu, J.; Kirby, B.; Keimer, B.; Chakhalian, J.
2008-03-01
Nowadays there has been growing interest to synthesis of atomically thin complex oxide superlattices which can result in novel electronic and magnetic properties at the interface. Here we report on digital synthesis of single unit cell nickel based heterostructures of RENiO3/LaAlO3 (RE = La, Nd and Pr) superlattices on SrTiO3 and LaAlO3 by laser MBE. RHEED analysis, grazing angle XRD and AFM imaging have confirmed the high quality of the epitaxially grown superlattices. The magnetic and electronic properties of the superlattices have been elucidated by polarized X-ray spectroscopies, which show a non-trivial evolution of magnetism and charge of the LNO layer with increasing LNO layer thickness. The work has been supported by U.S. DOD-ARO under Contract No. 0402-17291.
Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb
NASA Astrophysics Data System (ADS)
Kim, Honggyu; Meng, Yifei; Klem, John F.; Hawkins, Samuel D.; Kim, Jin K.; Zuo, Jian-Min
2018-04-01
We show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with the scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase in strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ˜1 nm, which suggest the presence of point defects.
Monolayer-by-monolayer compositional analysis of InAs/InAsSb superlattices with cross-sectional STM
Wood, M. R.; Kanedy, K.; Lopez, F.; ...
2015-02-23
In this paper, we use cross-sectional scanning tunneling microscopy (STM) to reconstruct the monolayer-by-monolayer composition profile across a representative subset of MBE-grown InAs/InAsSb superlattice layers and find that antimony segregation frustrates the intended compositional discontinuities across both antimonide-on-arsenide and arsenide-on-antimonide heterojunctions. Graded, rather than abrupt, interfaces are formed in either case. We likewise find that the incorporated antimony per superlattice period varies measurably from beginning to end of the multilayer stack. Finally, although the intended antimony discontinuities predict significant discrepancies with respect to the experimentally observed high-resolution x-ray diffraction spectrum, dynamical simulations based on the STM-derived profiles provide an excellentmore » quantitative match to all important aspects of the x-ray data.« less
Sb-induced strain fluctuations in a strained layer superlattice of InAs/InAsSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Honggyu; Meng, Yifei; Klem, John F.
Here, we show that Sb substitution for As in a MBE grown InAs/InAsSb strained layer superlattice (SLS) is accompanied by significant strain fluctuations. The SLS was observed using scanning transmission electron microscopy along the [100] zone axis where the cation and anion atomic columns are separately resolved. Strain analysis based on atomic column positions reveals asymmetrical transitions in the strain profile across the SLS interfaces. The averaged strain profile is quantitatively fitted to the segregation model, which yields a distribution of Sb in agreement with our scanning tunneling microscopy result. The subtraction of the calculated strain reveals an increase inmore » strain fluctuations with the Sb concentration, as well as isolated regions with large strain deviations extending spatially over ~1 nm, which suggest the presence of point defects.« less
Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2.
Asaba, Tomoya; Wang, Yongjie; Li, Gang; Xiang, Ziji; Tinsman, Colin; Chen, Lu; Zhou, Shangnan; Zhao, Songrui; Laleyan, David; Li, Yi; Mi, Zetian; Li, Lu
2018-04-25
In conventional superconductors an external magnetic field generally suppresses superconductivity. This results from a simple thermodynamic competition of the superconducting and magnetic free energies. In this study, we report the unconventional features in the superconducting epitaxial thin film tungsten telluride (WTe 2 ). Measuring the electrical transport properties of Molecular Beam Epitaxy (MBE) grown WTe 2 thin films with a high precision rotation stage, we map the upper critical field H c2 at different temperatures T. We observe the superconducting transition temperature T c is enhanced by in-plane magnetic fields. The upper critical field H c2 is observed to establish an unconventional non-monotonic dependence on temperature. We suggest that this unconventional feature is due to the lifting of inversion symmetry, which leads to the enhancement of H c2 in Ising superconductors.
Exciton emission of quasi-2D InGaN in GaN matrix grown by molecular beam epitaxy
Ma, Dingyu; Rong, Xin; Zheng, Xiantong; Wang, Weiying; Wang, Ping; Schulz, Tobias; Albrecht, Martin; Metzner, Sebastian; Müller, Mathias; August, Olga; Bertram, Frank; Christen, Jürgen; Jin, Peng; Li, Mo; Zhang, Jian; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Ge, Weikun; Shen, Bo; Wang, Xinqiang
2017-01-01
We investigate the emission from confined excitons in the structure of a single-monolayer-thick quasi-two-dimensional (quasi-2D) InxGa1−xN layer inserted in GaN matrix. This quasi-2D InGaN layer was successfully achieved by molecular beam epitaxy (MBE), and an excellent in-plane uniformity in this layer was confirmed by cathodoluminescence mapping study. The carrier dynamics have also been investigated by time-resolved and excitation-power-dependent photoluminescence, proving that the recombination occurs via confined excitons within the ultrathin quasi-2D InGaN layer even at high temperature up to ~220 K due to the enhanced exciton binding energy. This work indicates that such structure affords an interesting opportunity for developing high-performance photonic devices. PMID:28417975
Low-Cost Lattice Matching Zn(Se)Te/Si Composite Substrates for HgCdSe and Type-2 Superlattices
2013-09-01
far from optimized. In similar fashion, we studied the impact of Zn/Te flux ratio during ZnTe growth. In this case , three ZnTe(100) layers were...6.1 Å, such as HgCdSe and GaSb-based type-II strained-layer superlattices. In this report, we present our findings on the systematic studies of...versus lattice parameter for several semiconductor material systems. We conducted systematic studies on the MBE growth of ZnTe on Si in both (211) and
Minority Business Enterprise/Women's Business Enterprise (MBE/WBE) overview
The data base allows Minority Business Enterprise/Women's Business Enterprise (MBE/WBE) Coordinators to input fair share goals negotiated by EPA and the recipient. This system also provides to all users the ability to see recipient fair share goals.
50. VIEW TO EAST; SOUTH END OF MBE BUILDING, FIRST ...
50. VIEW TO EAST; SOUTH END OF MBE BUILDING, FIRST FLOOR; SAFE, DOOR OPEN ELECTRONIC FLASH INTERIOR ILLUMINATION (Andersen) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA
39. VIEW TO NORTHEAST; WEST FRONT MBE BUILDING, FIRST FLOOR, ...
39. VIEW TO NORTHEAST; WEST FRONT MBE BUILDING, FIRST FLOOR, FRED HARVEY NEWSSTAND STOREROOM (AREA BURNED BY VANDALS) (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA
MBE growth of vertical-cavity surface-emitting laser structure without real-time monitoring
NASA Astrophysics Data System (ADS)
Wu, C. Z.; Tsou, Y.; Tsai, C. M.
1999-05-01
Evaluation of producing a vertical-cavity surface-emitting laser (VCSEL) epitaxial structure by molecular beam epitaxy (MBE) without resorting to any real-time monitoring technique is reported. Continuous grading of Al xGa 1- xAs between x=0.12 to x=0.92 was simply achieved by changing the Al and Ga cell temperatures in no more than three steps per DBR period. Highly uniform DBR and VCSEL structures were demonstrated with a multi-wafer MBE system. Run-to-run standard deviation of reflectance spectrum center wavelength was 0.5% and 1.4% for VCSEL etalon wavelength.
The Ciprofloxacin Impact on Biofilm Formation by Proteus Mirabilis and P. Vulgaris Strains
Kwiecinska-Pirog, Joanna; Skowron, Krzysztof; Bartczak, Wojciech; Gospodarek-Komkowska, Eugenia
2016-01-01
Background Proteus spp. bacilli belong to opportunistic human pathogens, which are primarily responsible for urinary tract and wound infections. An important virulence factor is their ability to form biofilms that greatly reduce the effectiveness of antibiotics in the site of infection. Objectives The aim of this study was to determine the value of the minimum concentration of ciprofloxacin that eradicates a biofilm of Proteus spp. strains. Materials and Methods A biofilm formation of 20 strains of P. mirabilis and 20 strains of P. vulgaris were evaluated by a spectrophotometric method using 0.1% 2, 3, 5-Triphenyl-tetrazolium chloride solution (TTC, AVANTORTM). On the basis of the results of the absorbance of the formazan, a degree of reduction of biofilm and minimum biofilm eradication (MBE) values of MBE50 and MBE90 were determined. Results All tested strains formed a biofilm. A value of 1.0 μg/mL ciprofloxacin is MBE50 for the strains of both tested species. An MBE90 value of ciprofloxacin for isolates of P. vulgaris was 2 μg/mL and for P. mirabilis was 512 μg/mL. Conclusions Minimum biofilm eradication values of ciprofloxacin obtained in the study are close to the values of the minimal inhibition concentration (MIC). PMID:27303616
MBE HgCdTe for HDVIP Devices: Horizontal Integration in the US HgCdTe FPA Industry
NASA Astrophysics Data System (ADS)
Aqariden, F.; Elsworth, J.; Zhao, J.; Grein, C. H.; Sivananthan, S.
2012-10-01
Molecular beam epitaxy (MBE) growth of HgCdTe offers the possibility of fabricating multilayer device structures with an almost unlimited choice of infrared sensor designs for focal-plane array (FPA) fabrication. HgCdTe offers two major advantages that explain its dominance in the infrared photon detector marketplace. The thermal generation rate per unit volume of the material is lower and the quantum efficiency for photon absorption in the infrared is higher in HgCdTe than in any competing material—it yields devices with quantum efficiencies as high as 0.99. Recently, EPIR Technologies and DRS Infrared Technologies agreed to collaborate and examine: (i) the feasibility of employing MBE HgCdTe in the fabrication of high-density vertically interconnected photodiodes (HDVIPs), which are usually fabricated with liquid-phase epitaxy material, and (ii) the potential benefits of horizontal integration, with EPIR supplying the MBE materials to DRS for device and array fabrication. The team designed and developed passivation-absorber-passivation structures that are heavily used by DRS. This paper provides an overview of the characteristics of HDVIP devices and arrays fabricated from MBE HgCdTe and the anticipated advantages of horizontal integration in the industry. Material growth, device fabrication, and test results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, A. A.; Hesjedal, T.; Diamond Light Source, Didcot OX11 0DE
We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined withmore » ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr{sub 2}O{sub 3} on c-plane sapphire and ferrimagnetic Fe{sub 3}O{sub 4} on MgO (001)« less
Lattice Gas Model Based Optimization of Plasma-Surface Processes for GaN-Based Compound Growth
NASA Astrophysics Data System (ADS)
Nonokawa, Kiyohide; Suzuki, Takuma; Kitamori, Kazutaka; Sawada, Takayuki
2001-10-01
Progress of the epitaxial growth technique for GaN-based compounds makes these materials attractive for applications in high temperature/high-power electronic devices as well as in short-wavelength optoelectronic devices. For MBE growth of GaN epilayer, atomic nitrogen is usually supplied from ECR-plasma while atomic Ga is supplied from conventional K-cell. To grow high-quality epilayer, fundamental knowledge of the detailed atomic process, such as adsorption, surface migration, incorporation, desorption and so forth, is required. We have studied the influence of growth conditions on the flatness of the growth front surface and the growth rate using Monte Carlo simulation based on the lattice gas model. Under the fixed Ga flux condition, the lower the nitrogen flux and/or the higher the growth temperature, the better the flatness of the front surface at the sacrifice of the growth rate of the epilayer. When the nitrogen flux is increased, the growth rate reaches saturation value determined from the Ga flux. At a fixed growth temperature, increasing of nitrogen to Ga flux ratio results in rough surface owing to 3-dimensional island formation. Other characteristics of MBE-GaN growth using ECR-plasma can be well reproduced.
Epitaxial GaN layers formed on langasite substrates by the plasma-assisted MBE method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobanov, D. N., E-mail: dima@ipmras.ru; Novikov, A. V.; Yunin, P. A.
2016-11-15
In this publication, the results of development of the technology of the epitaxial growth of GaN on single-crystal langasite substrates La{sub 3}Ga{sub 5}SiO{sub 14} (0001) by the plasma-assisted molecular-beam epitaxy (PA MBE) method are reported. An investigation of the effect of the growth temperature at the initial stage of deposition on the crystal quality and morphology of the obtained GaN layer is performed. It is demonstrated that the optimal temperature for deposition of the initial GaN layer onto the langasite substrate is about ~520°C. A decrease in the growth temperature to this value allows the suppression of oxygen diffusion frommore » langasite into the growing layer and a decrease in the dislocation density in the main GaN layer upon its subsequent high-temperature deposition (~700°C). Further lowering of the growth temperature of the nucleation layer leads to sharp degradation of the GaN/LGS layer crystal quality. As a result of the performed research, an epitaxial GaN/LGS layer with a dislocation density of ~10{sup 11} cm{sup –2} and low surface roughness (<2 nm) is obtained.« less
NASA Astrophysics Data System (ADS)
Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.
2000-06-01
The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).
NASA Astrophysics Data System (ADS)
Daboo, C.; Bland, J. A. C.; Hicken, R. J.; Ives, A. J. R.; Baird, M. J.; Walker, M. J.
1993-05-01
We report the magnetization reversal and magnetic anisotropy behavior of ultrathin Co/Cu(111)/Co (dCu=20 and 27 Å) trilayer structures prepared by MBE on a 500-Å Ge/GaAs(110) epilayer. We describe an arrangement in which the magnetization components parallel and perpendicular to the applied field are both determined from longitudinal MOKE measurements. For the samples examined, coherent rotation of the magnetization vector is observed when the magnetic field is applied along the hard in-plane anisotropy axis, with the magnitude of the magnetization vector constant and close to its bulk value. Results of micromagnetic calculations closely reproduce the observed parallel and perpendicular magnetization loops, and yield strong uniaxial magnetic anisotropies in both layers while the interlayer coupling appears to be absent or negligible in comparison with the anisotropy strengths. An absence of antiferromagnetic (AF) coupling has been observed previously [W. F. Egelhoff, Jr. and M. T. Kief, Phys. Rev. B 45, 7795 (1992)] in contrast to recent results, indicating that AF coupling [M. T. Johnson et al., Phys. Rev. Lett. 69, 969 (1992)] and GMR [D. Grieg et al., J. Magn. Magn. Mater. 110, L239 (1992)] can occur in Co/Cu(111)/Co structures grown by MBE, but these properties are sensitively dependent on growth conditions. The absence of coupling in our samples is attributed to the presence of a significant interface roughness induced by the Ge epilayer. The uniaxial anisotropies are assumed to arise from strain or defects induced in the film.
NASA Astrophysics Data System (ADS)
Finger, G.; Baker, I.; Downing, M.; Alvarez, D.; Ives, D.; Mehrgan, L.; Meyer, M.; Stegmeier, J.; Weller, H. J.
2017-11-01
Large format near infrared HgCdTe 2Kx2K and 4Kx4K MBE arrays have reached a level of maturity which meets most of the specifications required for near infrared (NIR) astronomy. The only remaining problem is the persistence effect which is device specific and not yet fully under control. For ground based multi-object spectroscopy on 40 meter class telescopes larger pixels would be advantageous. For high speed near infrared fringe tracking and wavefront sensing the only way to overcome the CMOS noise barrier is the amplification of the photoelectron signal inside the infrared pixel by means of the avalanche gain. A readout chip for a 320x256 pixel HgCdTe eAPD array will be presented which has 32 parallel video outputs being arranged in such a way that the full multiplex advantage is also available for small sub-windows. In combination with the high APD gain this allows reducing the readout noise to the subelectron level by applying nondestructive readout schemes with subpixel sampling. Arrays grown by MOVPE achieve subelectron readout noise and operate with superb cosmetic quality at high APD gain. Efforts are made to reduce the dark current of those arrays to make this technology also available for large format focal planes of NIR instruments offering noise free detectors for deep exposures. The dark current of the latest MOVPE eAPD arrays is already at a level adequate for noiseless broad and narrow band imaging in scientific instruments.
52. VIEW TO EAST; SOUTH END OF MBE BUILDING, SECOND ...
52. VIEW TO EAST; SOUTH END OF MBE BUILDING, SECOND FLOOR; HIGHLY ALTERED INTERIOR OFFICE SPACE, FORMERLY REGIONAL OFFICES OF REA (Andersen) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA
47. VIEW TO WEST; SOUTH END OF MBE BUILDING, FIRST ...
47. VIEW TO WEST; SOUTH END OF MBE BUILDING, FIRST FLOOR; FORMER PACKAGE HANDLING AREA ADJACENT TO FORMER PACIFIC ELECTRIC RAILWAY TERMINAL (Andersen) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA
Applying CLIPS to control of molecular beam epitaxy processing
NASA Technical Reports Server (NTRS)
Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.
1990-01-01
A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.
NASA Astrophysics Data System (ADS)
Komissarova, T. A.; Lebedev, M. V.; Sorokin, S. V.; Klimko, G. V.; Sedova, I. V.; Gronin, S. V.; Komissarov, K. A.; Calvet, W.; Drozdov, M. N.; Ivanov, S. V.
2017-04-01
A study of electronic, structural and chemical properties of GaAs/ZnSe heterovalent interfaces (HI) in dependence on molecular beam epitaxy (MBE) growth conditions and post-growth annealing was performed. Initial GaAs surface reconstructions ((2 × 4)As or c(4 × 4)As) and ZnSe growth mode (MBE or migration-enhanced epitaxy (MEE)) were varied for different undoped and n-doped heterovalent structures. Although all the structures have low extended defect density (less than 106 cm-2) and rather small (less than 5 nm) atomic interdiffusion at the HI, the structural, chemical and electronic properties of the near-interface area (short-distance interdiffusion effects, dominant chemical bonds, and valence band offset values) as well as electrical properties of the n-GaAs/n-ZnSe heterovalent structures were found to be influenced strongly by the MBE growth conditions and post-growth annealing.
Bipolar Cascade Vertical-Cavity Surface-Emitting Lasers for RF Photonic Link Applications
2007-09-01
6 IV Current versus Voltage . . . . . . . . . . . . . . . . . . . . . 7 MBE Molecular Beam Epitaxy ...of carrying maximum photocur- rent. Numerous material parameters have been studied. Growth parameters for molecular beam epitaxy (MBE), metal-organic...12 MOCVD Metal-Organic Chemical Vapor Deposition . . . . . . . . . . 12 CBE Chemical Beam Epitaxy . . . . . . . . . . . . . . . . . . . . 12 LPE
Variable electron correlation in high-quality MBE- and PLD-grown SrRuO3 thin films.
NASA Astrophysics Data System (ADS)
Siemons, Wolter; Koster, Gertjan; Yamamoto, Hideki; Vailionis, Arturas; Geballe, Theodore; Blank, Dave; Beasley, Malcolm
2007-03-01
We show that systematic variations in the degree of correlation can occur within SrRuO3 as a function of disorder/off-stoichiometry. In particular, we find that one source of disorder can be controlled in SrRuO3 thin films by varying the deposition conditions or the deposition technique. Specifically, we clearly demonstrate that variation of vacancies on the ruthenium site gives rise to a variation in correlated behavior as seen in the photoemission spectra (XPS and UPS),. Moreover, the transport properties of our samples are clearly linked to their photoemission spectra, and independently the crystal unit cell parameters. SrRuO3 appears to be a system where these effects can be studied in a more systematic fashion, usually not easily accessible, but we suspect that the underlying physics is generic in complex oxidesWork supported by the DoE BES and EPRI.
Screening effect of graphite and bilayer graphene on excitons in MoSe2 monolayer
NASA Astrophysics Data System (ADS)
Wang, Yuan; Zhang, Shuai; Huang, Di; Cheng, Jingxin; Li, Yingguo; Wu, Shiwei
2017-03-01
Excitons in transition metal dichalcogenide monolayer have recently attracted great interest due to their extremely large binding energy, causing giant bandgap renormalization. In this work, we examined the screening effect of graphite and bilayer graphene on the excitons in molybdenum diselenide (MoSe2) monolayer grown by molecular beam epitaxy (MBE). Through the combinational study of scanning tunneling spectroscopy (STS) and photoluminescence (PL) measurements, we determined the binding energy of ~0.58 eV for MoSe2 monolayer on both substrates at 16 K, and no obvious difference between them. Our result is consistent with a previous report [Zhang et al 2015 Nano Letters 15, 6494], but is contradictory to another one [Ugeda 2014 Nature Materials 13, 1091]. Physical picture for no noticeable difference on screening effect between bilayer graphene and graphite substrate is discussed. Possible reasons for causing the discrepancy are also mentioned.
NASA Astrophysics Data System (ADS)
Melikhov, Y.; Konstantynov, P.; Domagala, J.; Sadowski, J.; Chernyshova, M.; Wojciechowski, T.; Syryanyy, Y.; Demchenko, I. N.
2016-05-01
The redistribution of Mn atoms in Ga1-xMnxAs layer during medium-temperature annealing, 250-450 oC, by Mn K-edge X-ray absorption fine structure (XAFS) recorded at ALBA facility, was studied. For this purpose Ga1-xMnxAs thin layer with x=0.01 was grown on AlAs buffer layer deposited on GaAs(100) substrate by molecular beam epitaxy (MBE) followed by annealing. The examined layer was detached from the substrate using a “lift-off” procedure in order to eliminate elastic scattering in XAFS spectra. Fourier transform analysis of experimentally obtained EXAFS spectra allowed to propose a model which describes a redistribution/diffusion of Mn atoms in the host matrix. Theoretical XANES spectra, simulated using multiple scattering formalism (FEFF code) with the support of density functional theory (WIEN2k code), qualitatively describe the features observed in the experimental fine structure.
CdHgTe heterostructures for new-generation IR photodetectors operating at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varavin, V. S.; Vasilyev, V. V.; Guzev, A. A.
2016-12-15
The parameters of multilayer Cd{sub x}Hg{sub 1–x}Te heterostructures for photodetectors operating at wavelengths of up to 5 μm, grown by molecular-beam epitaxy (MBE) on silicon substrates, are studied. The passivating properties of thin CdTe layers on the surface of these structures are analyzed by measuring the C–V characteristics. The temperature dependences of the minority carrier lifetime in the photoabsorption layer after growth and thermal annealing are investigated. Samples of p{sup +}–n-type photodiodes are fabricated by the implantation of arsenic ions into n-type layers, doped with In to a concentration of (1–5) × 10{sup 15} cm{sup –3}. The temperature dependences ofmore » the reverse currents are measured at several bias voltages; these currents turn out to be almost two orders of magnitude lower than those for n{sup +}–p-type diodes.« less
Structural enhancement of ZnO on SiO2 for photonic applications
NASA Astrophysics Data System (ADS)
Ruth, Marcel; Meier, Cedrik
2013-07-01
Multi-layer thin films are often the basis of photonic devices. Zinc oxide (ZnO) with its excellent optoelectronic properties can serve as a high quality emitter in structures like microdisks or photonic crystals. Here, we present a detailed study on the enhancement of the structural properties of low-temperature MBE grown ZnO on silica (SiO2). By thermal annealing a grain coalescence of the initially polycrystalline layer leads to an enhancement of the electronic structure, indicated by a blue shift of the photoluminescence (PL) signal maximum. Oxygen atmosphere during the annealing process prevents the creation of intrinsic defects by out-diffusion. Pre-annealing deposited SiO2 capping layers instead obstruct the recrystallization and lead to less intense emission. While thin capping layers partially detach from the ZnO film at high temperatures and cause higher surface roughness and the weakest emission, thicker layers remain smoother and exhibit a significantly stronger photoluminescence.
NASA Astrophysics Data System (ADS)
Tellekamp, M. Brooks; Greenlee, Jordan D.; Shank, Joshua C.; Doolittle, W. Alan
2015-09-01
In order to consistently grow high quality niobium oxides and lithium niobium oxides, a novel solid/liquid state oxygen source, LiClO4, has been implemented in a molecular beam epitaxy (MBE) system. LiClO4 is shown to decompose into both molecular and atomic oxygen upon heating. This allows oxidation rates similar to that of molecular oxygen but at a reduced overall beam flux, quantified by in situ Auger analysis. LiClO4 operation is decomposition limited to less than 400 °C, and other material limitations are identified. The design of a custom near-ambient NbCl5 effusion cell is presented, which improves both short and long term stability. Films of Nb oxidation state +2, +3, and +5 are grown using these new tools, including the multi-functional sub-oxide LiNbO2.
NASA Astrophysics Data System (ADS)
Bae, Hyojung; Rho, Hokyun; Min, Jung-Wook; Lee, Yong-Tak; Lee, Sang Hyun; Fujii, Katsushi; Lee, Hyo-Jong; Ha, Jun-Seok
2017-11-01
Gallium nitride (GaN) nanowires are one of the most promising photoelectrode materials due to their high stability in acidic and basic electrolytes, and tunable band edge potentials. In this study, GaN nanowire arrays (GaN NWs) were prepared by molecular beam epitaxy (MBE); their large surface area enhanced the solar to hydrogen conversion efficiency. More significantly, graphene was grown by chemical vapor deposition (CVD), which enhanced the electron transfer between NWs for water splitting and protected the GaN NW surface. Structural characterizations of the prepared composite were performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocurrent density of Gr/GaN NWs exhibited a two-fold increase over pristine GaN NWs and sustained water splitting up to 70 min. These improvements may accelerate possible applications for hydrogen generation with high solar to hydrogen conversion efficiency.
In-plane isotropic magnetic and electrical properties of MnAs/InAs/GaAs (111) B hybrid structure
NASA Astrophysics Data System (ADS)
Islam, Md. Earul; Akabori, Masashi
2018-03-01
We characterized in-plane magnetic and electrical properties of MnAs/InAs/GaAs (111) B hybrid structure grown by molecular beam epitaxy (MBE). We observed isotropic easy magnetization in two crystallographic in-plane directions, [ 2 ̅ 110 ] and [ 0 1 ̅ 10 ] of hexagonal MnAs i.e. [ 1 ̅ 10 ] and [ 11 2 ̅ ] of cubic InAs. We also fabricated transmission line model (TLM) devices, and observed almost isotropic electrical properties in two crystallographic in-plane directions, [ 1 ̅ 10 ] and [ 11 2 ̅ ] of cubic InAs. Also we tried to fabricate and characterize lateral spin-valve (LSV) devices from the hybrid structure. We could roughly estimate the spin injection efficiency and the spin diffusion length at room temperature in [ 11 2 ̅ ] direction. We believe that the hybrid structures are helpful to design spintronic device with good flexibility in-plane.
Annealing effect of the InAs dot-in-well structure grown by MBE
NASA Astrophysics Data System (ADS)
Zhao, Xuyi; Wang, Peng; Cao, Chunfang; Yan, Jinyi; Zha, Fangxing; Wang, Hailong; Gong, Qian
2017-12-01
We have demonstrated that in situ annealing effect has to be taken into account in order to realize the 1.31 μm InAs quantum dot (QD) lasers with the dot-in-well (DWELL) structure. The photoluminescence (PL) properties have been investigated for the InAs DWELL samples annealed at different temperatures in situ, simulating the annealing process during the growth of the top cladding AlGaAs layer in the laser structure. The QDs with large size in the DWELL structure are vulnerable to the annealing process at temperatures above 550 °C, revealed by the drastic change in the PL spectra. However, the DWELL structure is stable during the annealing process at 540 °C for three hours. The thermal stability of the QDs in the DWELL structure has to be considered in the growth of QD lasers for long wavelength operation.
Stabilization and enhanced energy gap by Mg doping in ɛ-phase Ga2O3 thin films
NASA Astrophysics Data System (ADS)
Bi, Xiaoyu; Wu, Zhenping; Huang, Yuanqi; Tang, Weihua
2018-02-01
Mg-doped Ga2O3 thin films with different doping concentrations were deposited on sapphire substrates using laser molecular beam epitaxy (L-MBE) technique. X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-vis) absorption spectrum were used to characterize the crystal structure and optical properties of the as-grown films. Compared to pure Ga2O3 thin film, the Mg-doped thin films have transformed from the most stable β-phase into ɛ-phase. The absorption edge shifted to about 205 nm and the optical bandgap increased to ˜ 6 eV. These properties reveal that Mg-doped Ga2O3 films may have potential applications in the field of deep ultraviolet optoelectronic devices, such as deep ultraviolet photodetectors, short wavelength light emitting devices and so on.
Doping-assisted defect control in compound semiconductors
Specht, Petra; Weber, Eicke R.; Weatherford, Todd Russell
2006-07-11
The present invention relates to the production of thin film epilayers of III–V and other compounds with acceptor doping wherein the acceptor thermally stabilizes the epilayer, stabilize the naturally incorporated native defect population and therewith maintain the epilayer's beneficial properties upon annealing among other advantageous effects. In particular, balanced doping in which the acceptor concentration is similar to (but does not exceed) the antisite defects in the as-grown material is shown to be particularly advantageous in providing thermal stability, high resistivity and ultrashort trapping times. In particular, MBE growth of LT-GaAs epilayers with balanced Be doping is described in detail. The growth conditions greatly enhance the materials reproducibility (that is, the yield in processed devices). Such growth techniques can be transferred to other III–V materials if the growth conditions are accurately reproduced. Materials produced herein also demonstrate advantages in reproducibility, reliability and radiation hardening.
NASA Astrophysics Data System (ADS)
Mizutani, Mitsuhiro; Teramae, Fumiharu; Takeuchi, Kazutaka; Murase, Tatsunori; Naritsuka, Shigeya; Maruyama, Takahiro
2006-04-01
A vertical-cavity surface-emitting laser (VCSEL) was fabricated using a in situ reflectance monitor by molecular beam epitaxy (MBE). Both the center wavelength of the stop band of the distributed Bragg reflector (DBR) and the resonant wavelength of the optical cavity were successfully controlled using the monitor. However, these wavelengths shifted with decreasing substrate temperature after the growth, which could be reasonably explained by the temperature dependence of refractive index. Therefore, it is necessary to set a target wavelength at a growth temperature, considering the change. The desirable laser performance of the VCSEL fabricated from the wafer indicates marked increases in the controllability and reproducibility of growth with the aid of the in situ reflectance monitor. Since it can directly measure the optical properties of the grown layers, the reflectance monitor greatly helps in the fabrication of a structure with the designed optical performance.
Massless Dirac fermions in semimetal HgCdTe
NASA Astrophysics Data System (ADS)
Marchewka, M.; Grendysa, J.; Żak, D.; Tomaka, G.; Śliż, P.; Sheregii, E. M.
2017-01-01
Magneto-transport results obtained for the strained 100 nm thick Hg1-x CdxTe (x=0.135) layer grown by MBE on the CdTe/GaAs substrate are interpreted by the 8×8 kp model with the in-plane tensile strain. The dispersion relation for the investigated structure proves that the Dirac point is located in the gap caused by the strain. It is also shown that the fan of the Landau Levels (LL's) energy calculated for topological protected surface states for the studied HgCdTe alloy corresponds to the fan of the LL's calculated using the graphen-like Hamiltonian which gives excellent agreement with the experimental data for velocity on the Fermi level equal to vf ≈ 0.85×106 m/s. That characterized strained Hg1-x CdxTe layers (0.13 < x < 0.14) are a perfect Topological Insulator with good perspectives of further applications.
InP-based millimeter-wave PIN diodes for switching and phase-shifting application
NASA Astrophysics Data System (ADS)
Pavlidis, Dimitris; Alekseev, Egor; Hong, Kyushik; Cui, Delong
1997-10-01
InP-based PIN design, technology and circuit implementation were addressed and successfully applied to millimeter-wave MMIC switches and phase shifters. A wet etchant based via technology was developed and applied to InP MMIC fabrication. MOCVD and MBE material growth was used for PIN realization and PIN specific growth optimization is discussed. Experimentally determined electrical characteristics and good performance is presented for a variety of InP-based PIN MMICs including coplanar and microstrip Ka-band SPST switches, W-band microstrip SPST switches and a 90-degree phase shifter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S.; Ermakova, M. A.
2015-08-15
The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for themore » (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure.« less
Band offset and electron affinity of MBE-grown SnSe2
NASA Astrophysics Data System (ADS)
Zhang, Qin; Li, Mingda Oscar; Lochocki, Edward B.; Vishwanath, Suresh; Liu, Xinyu; Yan, Rusen; Lien, Huai-Hsun; Dobrowolska, Malgorzata; Furdyna, Jacek; Shen, Kyle M.; Cheng, Guangjun; Hight Walker, Angela R.; Gundlach, David J.; Xing, Huili G.; Nguyen, N. V.
2018-01-01
SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.
NASA Astrophysics Data System (ADS)
Tran, Dat Q.; Pham, Huyen T.; Higashimine, Koichi; Oshima, Yoshifumi; Akabori, Masashi
2018-05-01
We report on crystallographic behaviors of inclined GaAs nanowires (NWs) self-crystallized on GaAs (001) substrate. The NWs were grown on hydrogen-silsesquioxane (HSQ) covered substrates using molecular beam epitaxy (MBE). Commonly, the epitaxial growth of GaAs < 111>B (B-polar) NWs is prominently observed on GaAs (001); however, we yielded a remarkable number of epitaxially grown GaAs < 111>A (A-polar) NWs in addition to the majorly obtained B-polar NWs. Such NW orientations are always accompanied by a typical inclined angle of 35° from (001) plane. NWs with another inclined angle of 74° were additionally observed and attributed to be < 111>-oriented, not in direct epitaxial relation with the substrate. Such 74° NWs' existence is related to first-order three-dimensional (3D) lattice rotation taking place at the very beginning of the growth. It turns out that spatially 60° lattice rotation around < 111> directions at GaAs seeds is essentially in charge of A- and B-polar 74° NWs. Transmission electron microscope observations reveal a high density of twinning in the B-polar NWs and twin-free characteristic in the A-polar NWs.
NASA Astrophysics Data System (ADS)
Yurasov, D. V.; Antonov, A. V.; Drozdov, M. N.; Yunin, P. A.; Andreev, B. A.; Bushuykin, P. A.; Baydakova, N. A.; Novikov, A. V.
2018-06-01
In this paper we report about the formation of ultra heavy doped n-Ge layers on Si(0 0 1) substrates by molecular beam epitaxy and their characterization by different independent techniques. Combined study of structural and electrical properties of fabricated layers using secondary ion mass spectroscopy, X-ray diffraction, Hall effect and reflection measurements was carried out and it has revealed the achievable charge carrier densities exceeding 1020 cm-3 without deterioration of crystalline quality of such doped layers. It was also shown that X-ray analysis can be used as a fast, reliable and non-destructive method for evaluation of the electrically active Sb concentration in heavy doped Ge layers. The appropriate set of doping density allowed to adjust the plasmonic resonance position in Ge:Sb layers in a rather wide range reaching the wavelength of 3.6 μm for the highest doping concentration. Room temperature photoluminescence confirmed the high crystalline quality of such doped layers. Our results indicated the attainability of high electron concentration in Ge:Sb layers grown on Si substrates without crystalline quality deterioration which may find potential applications in the fields of Si-based photonics and mid-IR plasmonics.
Deep level defects in dilute GaAsBi alloys grown under intense UV illumination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooney, P. M.; Tarun, Marianne; Beaton, D. A.
2016-07-21
Dilute GaAs1-xBix alloys exhibiting narrow band edge photoluminescence (PL) were recently grown by molecular beam epitaxy (MBE) with the growth surface illuminated by intense UV radiation. To investigate whether the improved optical quality of these films results from a reduction in the concentration of deep level defects, p+/n and n+/p junction diodes were fabricated on both the illuminated and dark areas of several samples. Deep Level Transient Spectroscopy (DLTS) measurements show that the illuminated and dark areas of both the n- and p-type GaAs1-xBix epi-layers have similar concentrations of near mid-gap electron and hole traps, in the 1015 cm-3 range.more » Thus the improved PL spectra cannot be explained by a reduction in non-radiative recombination at deep level defects. We note that carrier freeze-out above 35 K is significantly reduced in the illuminated areas of the p-type GaAs1-xBix layers compared to the dark areas, allowing the first DLTS measurements of defect energy levels close to the valence band edge. These defect levels may account for differences in the PL spectra from the illuminated and dark areas of un-doped layers with a similar Bi fraction.« less
A Multivariate Generalizability Analysis of the Multistate Bar Examination
ERIC Educational Resources Information Center
Yin, Ping
2005-01-01
The main purpose of this study is to examine the content structure of the Multistate Bar Examination (MBE) using the "table of specifications" model from the perspective of multivariate generalizability theory. Specifically, using MBE data collected over different years (six administrations: three from the February test and three from July test),…
NASA Astrophysics Data System (ADS)
Bandić, Z. Z.; Hauenstein, R. J.; O'Steen, M. L.; McGill, T. C.
1996-03-01
Microscopic growth processes associated with GaN/GaAs molecular beam epitaxy (MBE) are examined through the introduction of a first-order kinetic model. The model is applied to the electron cyclotron resonance microwave plasma-assisted MBE (ECR-MBE) growth of a set of δ-GaNyAs1-y/GaAs strained-layer superlattices that consist of nitrided GaAs monolayers separated by GaAs spacers, and that exhibit a strong decrease of y with increasing T over the range 540-580 °C. This y(T) dependence is quantitatively explained in terms of microscopic anion exchange, and thermally activated N surface-desorption and surface-segregation processes. N surface segregation is found to be significant during GaAs overgrowth of GaNyAs1-y layers at typical GaN ECR-MBE growth temperatures, with an estimated activation energy Es˜0.9 eV. The observed y(T) dependence is shown to result from a combination of N surface segregation/desorption processes.
High-power broad-area diode lasers optimized for fiber laser pumping
NASA Astrophysics Data System (ADS)
Gilly, J.; Friedmann, P.; Kissel, H.; Biesenbach, J.; Kelemen, M. T.
2012-03-01
In diode laser applications for fibre laser pumping and materials processing high brightness becomes more and more important. At the moment fibre coupled modules benefit from continuous improvement of Broad-Area (BA) lasers on the chip level regarding output power, efficiency and far-field characteristics. To achieve high brightness not only the output power must be increased, but also the far field angles have to be maintained or even decreased because brightness is proportional to output power divided by beam quality. Typically fast axis far fields show mostly a current independent behaviour, for broad-area lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness. These limitations can be overcomed by carefully optimizing epitaxy-design and processing and also thermal management of the mounted device. The easiest way to achieve a good thermal management of BA-Lasers is to increase the resonator length while simultaneously decreasing internal losses of the epitaxy structure. To fulfill these issues, we have realized MBE grown InGaAs/AlGaAs broad-area with resonator lengths between 4mm and 6mm emitting at 976nm. To evaluate the brightness of these broad-area lasers single emitters have been mounted p-side down. Near- and far-fields have been carefully investigated. For a 4mm long broad-area laser with around 100μm emission width a beam parameter product of less than 3.5 mm x mrad has been achieved at 10W with a slope efficiency of more than 1.1W/A and a maximum wall-plug efficiency of more than 67%. For a device with 6mm resonator length we have reached a BPP of less than 3.5mm x mrad at 14W in slow axis direction which results in a brightness around 130MW/cm2 sr, which is to our knowledge the highest brightness reported so far for BA-lasers.
Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim; Engel-Herbert, Roman
2016-07-01
The synthesis of a 50 unit cell thick n = 4 Srn+1TinO3n+1 (Sr5Ti4O13) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO2 layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO2 layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried out over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO3 perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.
NASA Astrophysics Data System (ADS)
Gilet, Ph.; Pougeoise, E.; Grenouillet, L.; Grosse, Ph.; Olivier, N.; Poncet, S.; Chelnokov, A.; Gérard, J. M.; Stevens, R.; Hamelin, R.; Hammar, M.; Berggren, J.; Sundgren, P.
2007-02-01
In this article, we report our results on 1.3μm VCSELs for optical interconnection applications. Room temperature continuous-wave lasing operation is demonstrated for top emitting oxide-confined devices with three different active materials, highly strained InGaAs/GaAs(A) and GaInNAs/GaAs (B) multiple quantum wells (MQW) or InAs/GaAs (C) quantum dots (QD). Conventional epitaxial structures grown respectively by Metal Organic Vapour Phase Epitaxy (MOVPE), Molecular Beam Epitaxy (MBE) and MBE, contain fully doped GaAs/AlGaAs DBRs. All three epilayers are processed in the same way. Current and optical confinement are realized by selective wet oxidation. Circular apertures from 2 (micron)m to 16 (micron)m diameters are defined. At room temperature and in continuous wave operation, all three systems exhibit lasing operation at wavelengths above 1 275nm and reached 1 300nm for material (A). Typical threshold currents are in the range [1- 10]mA and are strongly dependent firstly on oxide diameter and secondly on temperature. Room temperature cw maximum output power corresponds respectively to 1.77mW, 0.5mW and 0.6mW. By increasing driving current, multimode operation occurs at different level depending on the oxide diameter. In case (A), non conventional modal behaviors will be presented and explained by the presence of specific oxide modes. Thermal behaviors of the different devices have been compared. In case (A) and (C) we obtain a negative T0. We will conclude on the different active materials in terms of performances with respect to 1300nm VCSEL applications.
Optimized MCT IR-modules for high-performance imaging applications
NASA Astrophysics Data System (ADS)
Breiter, R.; Eich, D.; Figgemeier, H.; Lutz, H.; Wendler, J.; Rühlich, I.; Rutzinger, S.; Schallenberg, T.
2014-06-01
In today's typical military operations situational awareness is a key element for mission success. In contrast to what is known from conventional warfare with typical targets such as tanks, asymmetric scenarios now dominate military operations. These scenarios require improved identification capabilities, for example the assessment of threat levels posed by personnel targets. Also, it is vital to identify and reliably distinguish between combatants, non-combatants and friendly forces. To satisfy these requirements, high-definition (HD) large format systems are well suited due to their high spatial and thermal resolution combined with high contrast. Typical applications are sights for long-range surveillance, targeting and reconnaissance platforms as well as rotorcraft pilotage sight systems. In 2012 AIM presented first prototypes of large format detectors with 1280 × 1024 elements in a 15μm pitch for both spectral bands MWIR and LWIR. The modular design allows integration of different cooler types, like AIM's split linear coolers SX095 or SX040 or rotary integral types depending whatever fits best to the application. Large format FPAs have been fabricated using liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) grown MCT. To offer high resolution in a more compact configuration AIM started the development of a 1024 × 768 10μm pitch IRmodule. Keeping electro/optical performance is achieved by a higher specific charge handling capacity of the readout integrated circuit (ROIC) in a 0.18μm Si CMOS technology. The FPA size fits to a dewar cooler configuration used for 640 × 512 15μm pitch modules.
NASA Astrophysics Data System (ADS)
Komissarova, T. A.; Wang, P.; Paturi, P.; Wang, X.; Ivanov, S. V.
2017-11-01
Influence of the molecular beam epitaxy (MBE) growth conditions on the electrical properties of the InN epilayers in terms of minimization of the effect of spontaneously formed In nanoparticles was studied. A three-step growth sequence was used, including direct MBE growth of an InN nucleation layer, migration enhanced epitaxy (MEE) of an InN buffer layer, and In-rich MBE growth of the main InN layer, utilizing the droplet elimination by radical-beam irradiation (DERI) technique. The three-step growth regime was found to lead to decreasing the relative amount of In nanoparticles to 4.8% and 3.8% in In-rich and near-stoichiometric conditions, respectively, whereas the transport properties are better for the In-rich growth. Further reduction of the metallic indium inclusions in the InN films, while keeping simultaneously satisfactory transport parameters, is hardly possible due to fundamental processes of InN thermal decomposition and formation of the nitrogen vacancy conglomerates in the InN matrix. The In inclusions are shown to dominate the electrical conductivity of the InN films even at their minimum amount.
Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection
Hedberg, Thomas; Lubell, Joshua; Fischer, Lyle; Maggiano, Larry; Feeney, Allison Barnard
2016-01-01
A number of manufacturing companies have reported anecdotal evidence describing the benefits of Model-Based Enterprise (MBE). Based on this evidence, major players in industry have embraced a vision to deploy MBE. In our view, the best chance of realizing this vision is the creation of a single “digital thread.” Under MBE, there exists a Model-Based Definition (MBD), created by the Engineering function, that downstream functions reuse to complete Model-Based Manufacturing and Model-Based Inspection activities. The ensemble of data that enables the combination of model-based definition, manufacturing, and inspection defines this digital thread. Such a digital thread would enable real-time design and analysis, collaborative process-flow development, automated artifact creation, and full-process traceability in a seamless real-time collaborative development among project participants. This paper documents the strengths and weaknesses in the current, industry strategies for implementing MBE. It also identifies gaps in the transition and/or exchange of data between various manufacturing processes. Lastly, this paper presents measured results from a study of model-based processes compared to drawing-based processes and provides evidence to support the anecdotal evidence and vision made by industry. PMID:27325911
The controlled growth of perovskite thin films: Opportunities, challenges, and synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlom, D.G.; Theis, C.D.; Hawley, M.E.
1997-10-01
The broad spectrum of electronic and optical properties exhibited by perovskites offers tremendous opportunities for microelectronic devices, especially when a combination of properties in a single device is desired. Molecular beam epitaxy (MBE) has achieved unparalleled control in the integration of semiconductors at the monolayer-level; its use for the integration of perovskites with similar nanoscale customization appears promising. Composition control and oxidation are often significant challenges to the growth of perovskites by MBE, but we show that these can be met through the use of purified ozone as an oxidant and real-time atomic absorption composition control. The opportunities, challenges, andmore » synthesis of oxide heterostructures by reactive MBE are described, with examples taken from the growth of oxide superconductors and oxide ferroelectrics.« less
Advanced Shutter Control for a Molecular Beam Epitaxy Reactor
An open-source hardware and software-based shutter controller solution was developed that communicates over Ethernet with our original equipment...manufacturer (OEM) molecular beam epitaxy (MBE) reactor control software. An Arduino Mega microcontroller is the used for the brain of the shutter... controller , while a custom-designed circuit board distributes 24-V power to each of the 16 shutter solenoids available on the MBE. Using Ethernet
NASA Astrophysics Data System (ADS)
Pramanik, Pallabi; Sen, Sayantani; Singha, Chirantan; Roy, Abhra Shankar; Das, Alakananda; Sen, Susanta; Bhattacharyya, A.
2016-10-01
Ultraviolet (UV) MSM photodetectors (PD) based on AlGaN alloys find many applications, including flame sensing. In this work we investigate the dependence of AlGaN based photodetectors grown by MBE on the kinetics of growth. MSM photodetectors were fabricated in the interdigitated configuration with Ni/Au contacts having 400 μm finger length and 10 μm finger spacing. Bulk Al0.4Ga0.6N films were grown on to sapphire substrates using an AlN buffer layer. A series of PDs were developed using the Al0.4Ga0.6N films grown under different group III/V flux ratios ranging from stoichiometric conditions to much higher than unity. Upon testing, it was observed that the otherwise identical photodetectors show significant decrease in dark current as AlGaN deposition conditions change from stoichiometric to excess group III, due to reduction of unintentional incorporation of oxygen-related point defects. In addition, the intensity and spectral dependence of the photocurrent also change, showing an extended low energy tail for the former and a sharp and prominent excitonic peak for the latter. The optical transmission measurements indicate a variation in Urbach energy with deposition conditions of the AlGaN films, although they have the same absorption edge. While all samples show a single red-shifted photoluminescence peak at room temperature, upon cooling, multiple higher energy peaks appear in the photoluminescence (PL) spectra, indicating that the alloys contain complex compositional inhomogeneities. Two types of alloy fluctuations, determined by the growth conditions, have been identified that modulate the optoelectronic properties of AlGaN by changing the spatial localization of excitons, thereby altering their stability. We identified that growth under stoichiometric conditions leads to compositional inhomogeneities that play a detrimental role in the operation of MSM photodetectors, which reduces the sharpness of the sensitivity edge, while growth under excess metal conditions enhances it.
Walker, Jessica; Imboeck, Julia Maria; Walker, Joel Michael; Maitra, Amarnath; Haririan, Hady; Rausch-Fan, Xiaohui; Dodds, Michael; Inui, Taichi; Somoza, Veronika
2016-01-01
Inflammatory diseases of the periodontal tissues are known health problems worldwide. Therefore, anti-inflammatory active compounds are used in oral care products to reduce long-term inflammation. In addition to inducing inflammation, pathogen attack leads to an increased production of reactive oxygen species (ROS), which may lead to oxidative damage of macromolecules. Magnolia officinalis L. bark extract (MBE) has been shown to possess antioxidant and anti-inflammatory potential in vitro. In the present study, the influence of MBE-fortified chewing gum on the resistance against lipopolysaccharide (LPS)-induced inflammation and oxidative stress of oral epithelial cells was investigated in a four-armed parallel designed human intervention trial with 40 healthy volunteers. Ex vivo stimulation of oral epithelial cells with LPS from Porphyromonas gingivalis for 6[Formula: see text]h increased the mRNA expression and release of the pro-inflammatory cytokines IL-1[Formula: see text], IL-[Formula: see text], IL-8, MIP-1[Formula: see text], and TNF[Formula: see text]. Chewing MBE-fortified gum for 10[Formula: see text]min reduced the ex vivo LPS-induced increase of IL-8 release by 43.8 [Formula: see text] 17.1% at the beginning of the intervention. In addition, after the two-week intervention with MBE-fortified chewing gum, LPS-stimulated TNF[Formula: see text] release was attenuated by 73.4 [Formula: see text] 12.0% compared to chewing regular control gum. This increased resistance against LPS-induced inflammation suggests that MBE possesses anti-inflammatory activity in vivo when added to chewing gum. In contrast, the conditions used to stimulate an immune response of oral epithelial cells failed to induce oxidative stress, measured by catalase activity, or oxidative DNA damage.
Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature.
Yin, Qiuzhen
2013-02-14
Glacial-interglacial cycles characterized by long cold periods interrupted by short periods of warmth are the dominant feature of Pleistocene climate, with the relative intensity and duration of past and future interglacials being of particular interest for civilization. The interglacials after 430,000 years ago were characterized by warmer climates and higher atmospheric concentrations of carbon dioxide than the interglacials before, but the cause of this climatic transition (the so-called mid-Brunhes event (MBE)) is unknown. Here I show, on the basis of model simulations, that in response to insolation changes only, feedbacks between sea ice, temperature, evaporation and salinity caused vigorous pre-MBE Antarctic bottom water formation and Southern Ocean ventilation. My results also show that strong westerlies increased the pre-MBE overturning in the Southern Ocean via an increased latitudinal insolation gradient created by changes in eccentricity during austral winter and by changes in obliquity during austral summer. The stronger bottom water formation led to a cooler deep ocean during the older interglacials. These insolation-induced differences in the deep-sea temperature and in the Southern Ocean ventilation between the more recent interglacials and the older ones were not expected, because there is no straightforward systematic difference in the astronomical parameters between the interglacials before and after 430,000 years ago. Rather than being a real 'event', the apparent MBE seems to have resulted from a series of individual interglacial responses--including notable exceptions to the general pattern--to various combinations of insolation conditions. Consequently, assuming no anthropogenic interference, future interglacials may have pre- or post-MBE characteristics without there being a systematic change in forcings. These findings are a first step towards understanding the magnitude change of the interglacial carbon dioxide concentration around 430,000 years ago.
Enhancement of the Co magnetic moment in bcc Co1-xMnx on MgO
NASA Astrophysics Data System (ADS)
Snow, Ryan; Bhatkar, Harsh; N'diaye, Alpha; Arenholz, Elke; Idzerda, Yves; Montana State University Team; Lawrence Berkeley National Laboratries Team
Using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (MCD), we show that the elemental Co moment for MBE grown thin films of bcc Co1-xMnx grown on MgO(001) is enhanced by 40% to a maximum value of 2.1 μB at x =0.24. The net Mn moment is found to align parallel with Co for all concentrations and remains roughly constant until x =0.3, then drops steadily, up to x =0.7, where the total moment of the film abruptly collapses to zero. Using a low-concentration Mn moment of 3.0 μB, the average magnetization lies directly on the Slater-Pauling (SP) curve for concentrations up to about x =.25, where it reaches a maximum moment of 2.3 μB /atom. This peak is slightly shifted and the slope is steeper on the high-Mn concentration side of the peak relative to the standard SP curve. This is in stark contrast to the fcc CoMn and hcp CoCr bulk behavior which shows only a rapid total moment reduction with Mn concentration. This material is based upon work supported by the National Science Foundation under Grant ECCS-1542210. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Con.
Optical properties of beryllium-doped GaSb epilayers grown on GaAs substrate
NASA Astrophysics Data System (ADS)
Deng, Zhuo; Chen, Baile; Chen, Xiren; Shao, Jun; Gong, Qian; Liu, Huiyun; Wu, Jiang
2018-05-01
In this work, the effects of p-type beryllium (Be) doping on the optical properties of GaSb epilayers grown on GaAs substrate by Molecular Beam Epitaxy (MBE) have been studied. Temperature- and excitation power-dependent photoluminescence (PL) measurements were performed on both nominally undoped and intentionally Be-doped GaSb layers. Clear PL emissions are observable even at the temperature of 270 K from both layers, indicating the high material quality. In the Be-doped GaSb layer, the transition energies of main PL features exhibit red-shift up to ∼7 meV, and the peak widths characterized by Full-Width-at-Half-Maximum (FWHM) also decrease. In addition, analysis on the PL integrated intensity in the Be-doped sample reveals a gain of emission signal, as well as a larger carrier thermal activation energy. These distinctive PL behaviors identified in the Be-doped GaSb layer suggest that the residual compressive strain is effectively relaxed in the epilayer, due possibly to the reduction of dislocation density in the GaSb layer with the intentional incorporation of Be dopants. Our results confirm the role of Be as a promising dopant in the improvement of crystalline quality in GaSb, which is a crucial factor for growth and fabrication of high quality strain-free GaSb-based devices on foreign substrates.
NASA Astrophysics Data System (ADS)
Özden, Selin; Koc, Mumin Mehmet
2018-03-01
CdTe epitaxial thin films, for use as a buffer layer for HgCdTe defectors, were grown on GaAs (211)B using the molecular beam epitaxy method. Wet chemical etching (Everson method) was applied to the epitaxial films using various concentrations and application times to quantify the crystal quality and dislocation density. Surface characterization of the epitaxial films was achieved using Atomic force microscopy and Scanning electron microscopy (SEM) before and after each treatment. The Energy Dispersive X-Ray apparatus of SEM was used to characterize the chemical composition. Untreated CdTe films show smooth surface characteristics with root mean square (RMS) roughnesses of 1.18-3.89 nm. The thicknesses of the CdTe layers formed were calculated via FTIR spectrometry and obtained by ex situ spectroscopic ellipsometry. Raman spectra were obtained for various temperatures. Etch pit densities (EPD) were measured, from which it could be seen that EPD changes between 1.7 × 108 and 9.2 × 108 cm-2 depending on the concentration of the Everson etch solution and treatment time. Structure, shape and depth of pits resulting from each etch pit implementation were also evaluated. Pit widths varying between 0.15 and 0.71 µm with heights varying between 2 and 80 nm were observed. RMS roughness was found to vary by anything from 1.56 to 26 nm.
NASA Astrophysics Data System (ADS)
Mohamed, A. H.; Missous, M.; Lai, K. T.; Haywood, S. K.
2006-06-01
A strain-compensated AlAs/InxGa1-xAs/AlAs/InyAl1-yAs (x ap 0.8, y ap 0.5) quantum well infrared photodetector (QWIP) structure was grown by molecular beam epitaxy (MBE). Conditions of exact stoichiometric growth were applied at a temperature of ~420 °C to produce structures capable of detecting IR radiation in the 2-5 µm mid-infrared spectrum. Double crystal x-ray diffraction (DCXRD) and room temperature photoluminescence (PL) experiments confirmed the excellent structural characteristics of the grown material system. A strong room temperature intersubband absorption peak was observed at a wavelength of 2.16 µm. Current-voltage (I-V) measurements as a function of temperature were carried out to electrically characterize the fabricated QWIP devices yielding devices working under background limited infrared photodetection (BLIP) conditions at 270 K. From the I-V curves, an activation energy of 270 meV at zero bias was extracted. This is in good agreement with a current transport mechanism which is dominated by thermionic emission. Photocurrent measurements were carried out and we demonstrate devices that are capable of working at a temperature as high as 270 K at a wavelength of 2.1 µm. The experimental results are in excellent agreement with the modelled values.
Interfacial stability of CoSi2/Si structures grown by molecular beam epitaxy
NASA Technical Reports Server (NTRS)
George, T.; Fathauer, R. W.
1992-01-01
The stability of CoSi2/Si interfaces was examined in this study using columnar silicide structures grown on (111) Si substrates. In the first set of experiments, Co and Si were codeposited using MBE at 800 C and the resulting columnar silicide layer was capped by epitaxial Si. Deposition of Co on the surface of the Si capping layer at 800 C results in the growth of the buried silicide columns. The buried columns grow by subsurface diffusion of the deposited Co, suppressing the formation of surface islands of CoSi2. The column sidewalls appear to be less stable than the top and bottom interfaces, resulting in preferential lateral growth and ultimately in the coalescence of the columns to form a continuous buried CoSi2 layer. In the second set of experiments, annealing of a 250 nm-thick buried columnar layer at 1000 C under a 100 nm-thick Si capping layer results in the formation of a surface layer of CoSi2 with a reduction in the sizes of the CoSi2 columns. For a sample having a thicker Si capping layer the annealing leads to Ostwald ripening producing buried equiaxed columns. The high CoSi2/Si interfacial strain could provide the driving force for the observed behavior of the buried columns under high-temperature annealing.
2D scaling behavior of nanotextured GaN surfaces: A case study of hillocked and terraced surfaces
NASA Astrophysics Data System (ADS)
Mutta, Geeta Rani; Carapezzi, Stefania
2018-07-01
The 2D scaling properties of GaN surfaces have been studied by means of the 2D height-height correlation function (HHCF). The GaN layers under investigation presented exemplar morphologies, generated by distinct growth methods: a molecular beam epitaxy (MBE) grown surface decorated by hillocks and a metal organic vapor phase epitaxy (MOVPE) grown surface with terraced structure. The 2D statistical analysis of these surfaces has allowed assessing quantitatively the degree of morphological variability along all the different directions across each surface, their corresponding roughness exponents and correlation lengths. A scaling anisotropy as well as correlation length anisotropy has been detected for both hillocked and terraced surfaces. Especially, a marked dependence of correlation length from the direction across the terraced surface has been observed. Additionally, the terraced surfaces showed the lower root mean square (RMS) roughness value and at the same time, the lower roughness exponent value. This could appear as a contradiction, given that a low RMS value is associated to a smooth surface, and usually the roughness exponent is interpreted as a "measure" of the smoothness of the surface, the smoother the surface, the higher (approaching the unity) is the roughness exponent. Our case study is an experimental demonstration in which the roughness exponent should be, more appropriately, interpreted as a quantification of how the roughness changes with length scale.
NASA Astrophysics Data System (ADS)
Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.
2016-03-01
The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In0.4Ga0.6As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In x Ga1- x As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.
Life on the edge: squirrel-cage fringe fields and their effects in the MBE-4 combiner experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, W.M.
1996-02-01
The MBE-4 combiner experiment employs an electrostatic combined-function focusing/bending element, the so-called ``squirrel-cage`` just before the actual merging region. There has been concern that non-linear fields, primarily in the fringe regions at the beginning and end of the cage, may be strong enough to lead to significant emittance degradation. This note present the results of numerical calculations which determined the anharmonic, non-linear components of the 3D fields in the cage and the resultant, orbit-integrated effects upon the MBE-4 beamlets. We find that while the anharmonic effects are small compared to the dipole deflection, the resultant transverse emittance growth is significantmore » when compared to the expected value of the initial emittance of the individual beamlets.« less
NASA Astrophysics Data System (ADS)
Yen, Ming Y.; Haas, T. W.
1990-10-01
We present the temporal behavior of intensity oscillations in reflection high-energy electron diffraction (RHEED) during molecular beam epitaxial (MBE) growth of GaAs and A1GaAs on (1 1 1)B GaAs substrates. The RHEED intensity oscillations were examined as a function of growth parameters in order to provide the insight into the dynamic characteristics and to identify the optimal condition for the two-dimensional layer-by-layer growth. The most intense RHEED oscillation was found to occur within a very narrow temperature range which seems to optimize the surface migration kinetics of the arriving group III elements and the molecular dissodiative reaction of the group V elements. The appearance of an initial transient of the intensity upon commencement of the growth and its implications are described.
2016-09-01
The MBE system, which grows crystalline thin films in ultrahigh vacuum (UHV) with precise control of thickness, composition, and morphology, will...used on our sputtering system to fabricate thin films with interfaces. - The electronic structures of these materials will be investigated using the...magnetization/transport measurements. The MBE system, which grows crystalline thin films in ultrahigh vacuum (UHV) with precise control of thickness, composition
AlGaSb Buffer Layers for Sb-Based Transistors
2010-01-01
transistor ( HEMT ), molecular beam epitaxy (MBE), field-effect transistor (FET), buffer layer INTRODUCTION High-electron-mobility transistors ( HEMTs ) with InAs...monolayers/s. The use of thinner buffer layers reduces molecular beam epitaxial growth time and source consumption. The buffer layers also exhibit...source. In addition, some of the flux from an Sb cell in a molecular beam epitaxy (MBE) system will deposit near the mouth of the cell, eventually
Avalanche Photoconductive Switching
1989-06-01
implantation and by MBE growth , and p-type material was created by MBE growth of a Be doped layer. Ion implantation creates a heavily doped layer...which is used commonly for GaAs integrated circuits. We plan to use Ti-Pt-Au for p-type contacts in the future. Experimental Results Test Confi...optical wavelenght does not significantly affect the switching process. Another feature of this mode of operation is that there is a threshold
NASA Astrophysics Data System (ADS)
Missous, M.; Mitchell, C.; Sly, J.; Lai, K. T.; Gupta, R.; Haywood, S. K.
2004-01-01
Highly strained quantum cascade laser (QCL) and quantum well infrared photodetector (QWIPs) structures based on InxGa(1-x)As-InyAl(1-y)As (x>0.8,y<0.3) layers have been grown by molecular beam epitaxy. Conditions of exact stoichiometric growth were used at a temperature of ∼420°C to produce structures that are suitable for both emission and detection in the 2- 5 μm mid-infrared regime. High structural integrity, as assessed by double crystal X-ray diffraction, room temperature photoluminescence and electrical characteristics were observed. Strong room temperature intersubband absorption in highly tensile strained and strain-compensated In 0.84Ga 0.16As/AlAs/In 0.52Al 0.48As double barrier quantum wells grown on InP substrates is demonstrated. Γ- Γ intersubband transitions have been observed across a wide range of the mid-infrared spectrum (2- 7 μm) in three structures of differing In 0.84Ga 0.16As well width (30, 45, and 80 Å). We demonstrate short-wavelength IR, intersubband operation in both detection and emission for application in QC and QWIP structures. By pushing the InGaAs-InAlAs system to its ultimate limit, we have obtained the highest band offsets that are theoretically possible in this system both for the Γ- Γ bands and the Γ-X bands, thereby opening up the way for both high power and high efficiency coupled with short-wavelength operation at room temperature. The versatility of this material system and technique in covering a wide range of the infrared spectrum is thus demonstrated.
Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim
2016-07-25
The synthesis of a 50 unit cell thick n = 4 Sr{sub n+1}Ti{sub n}O{sub 3n+1} (Sr{sub 5}Ti{sub 4}O{sub 13}) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO{sub 2} layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO{sub 2} layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried outmore » over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO{sub 3} perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.« less
DX centers in indium aluminum arsenide heterostructures
NASA Astrophysics Data System (ADS)
Sari, Huseyin
DX centers are point defects observed in many n-type doped III-V compound semi conductors. They have unique properties, which include large differences between their optical and thermal ionization energies, and a temperature dependence of the capture cross-sections. As a result of these properties DX centers exhibit a reduction in free carrier concentration and a large persistent photoconductivity (PPC) effect. DX centers also lead to a shift in the threshold voltage of modulation doped field effect transistors (MODFET) structures, at low temperatures. Most of the studies on this defect have been carried out on the Ga xAl1-xAs material system. However, to date there is significantly less work on DX centers in InxAl1-xAs compounds. This is partly due to difficulties associated with the growth of defect free materials other than lattice matched In0.52Al 0.48As on InP and partly because the energy level of the DX center is in resonance with the conduction band in In0.52Al0.48As. The purpose of this dissertation is to extend the DX center investigation to InAlAs compounds, primarily in the indirect portion of the InAlAs bandgap. In this work the indium composition dependence of the DX centers in In xAl1-xAs/InyGa1-yAs-based heterostructure is studied experimentally. Different InxAl 1-xAs epitaxial layers with x = 0.10, x = 0.15, x = 0.20, and x = 0.34 in a MODFET-like heterostructure were grown by Molecular Beam Epitaxy (MBE) on (001) GaAs substrates. In order to compensate the lattice mismatch between epitaxial layers and their substrates, step-graded buffer layers with indium composition increments of x = 0.10, every 2000 A, were used. For the samples grown with different indium contents Hall measurements as a function of both temperature and different cooling biases were performed in order to determine their carrier concentrations. A self consistent Poisson-Schrodinger numerical software is used to model the heterostructures. With the help of this numerical model and the grand canonical ensemble (GCE) the energy levels of the DX centers relative to the conduction band edge were estimated. The optical properties of the DX centers were also investigated using a 1.0 mum thick, Si-doped bulk-like GaAlAs epitaxial layer grown by MBE on a GaAs substrate. A conductivity modulation experiment using a stripe-patterned mask has been performed at 77°K. A conductivity difference, up to 10 4 along parallel and perpendicular directions relative to the stripes, has been measured. The difference in conductivity is a result of the large PPC effect of the DX centers and clearly indicates the localized nature of these deep levels.
Nano- and picosecond 3 μm Er: YSGG lasers using InAs as passive Q-switchers and mode-lockers
NASA Astrophysics Data System (ADS)
Vodopyanov, K. L.; Lukashev, A. V.; Phillips, C. C.
1993-01-01
Recent results are reported using ultra-thin molecular beam epitaxy (MBE)-grown InAs epilayers on GaAs substrates as passive shutters for 3 μm Er: YSGG lasers ( λ = 2.8 μm). The laser photon energy is 27% higher than the InAs bandgap at 300 K and bleaching occurs due to a band filling effect with a fast recovery time of < 100 ps. Depending on the resonator geometry two modes of operation can be achieved: Q-switched with pulse duration of 35 ns and 5-6 mJ energy (TEM 00 mode) and a Q-switched/mode-locked regime with an output in the form of a train of 30 pulses separated by a 4.3 ns interval, 0.25 mJ energy per spike and 30-50 ps pulse duration in a TEM 00-mode. The latter are the shortest pulses obtained with this lasing medium to date.
NASA Technical Reports Server (NTRS)
Yang, Jian-Xun; Agahi, Farid; Dai, Dong; Musante, Charles F.; Grammer, Wes; Lau, Kei M.; Yngvesson, K. S.
1993-01-01
This paper presents a new type of electron bolometric ('hot electron') mixer. We have demonstrated a 3 order-of-magnitude improvement in the bandwidth compared with previously known types of electron bolometric mixers, by using the two-dimensional electron gas (2DEG) medium at the heterointerface between AlGaAs and GaAs. We have tested both in-house MOCVD-grown material and MBE material, with similar results. The conversion loss (Lc) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that Lc can be decreased to about 10 dB in future devices. Calculated and measured curves of Lc versus P(LO), and I(DC), respectively, agree well. We argue that there are several different configurations of electron bolometric mixers, which will all show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.
NASA Astrophysics Data System (ADS)
Godel, Florian; Meny, Christian; Doudin, Bernard; Majjad, Hicham; Dayen, Jean-François; Halley, David
2018-02-01
We report on the fabrication of ferromagnetic thin layers separated by a MgO dielectric barrier from a graphene-covered substrate. The growth of ferromagnetic metal layers—Co or Ni0.8Fe0.2—is achieved by Molecular Beam Epitaxy (MBE) on a 3 nm MgO(111) epitaxial layer deposited on graphene. In the case of a graphene, grown by chemical vapor deposition (CVD) over Ni substrates, an annealing at 450 °C, under ultra-high-vacuum (UHV) conditions, leads to the dewetting of the ferromagnetic layers, forming well-defined flat facetted clusters whose shape reflects the substrate symmetry. In the case of CVD graphene transferred on SiO2, no dewetting is observed after same annealing. We attribute this difference to the mechanical stress states induced by the substrate, illustrating how it matters for epitaxial construction through graphene. Controlling the growth parameters of such magnetic single objects or networks could benefit to new architectures for catalysis or spintronic applications.
NASA Astrophysics Data System (ADS)
Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.
2018-04-01
Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.
Effect of indium droplets on growth of InGaN film by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Zheng, Xiantong; Liang, Hongwei; Wang, Ping; Sun, Xiaoxiao; Chen, Zhaoying; Wang, Tao; Sheng, Bowen; Wang, Yixin; Chen, Ling; Wang, Ding; Rong, Xin; Li, Mo; Zhang, Jian; Wang, Xinqiang
2018-01-01
Effect of indium (In) droplets on InGaN thin films grown by molecular beam epitaxy (MBE) has been investigated. The surface of InGaN covered by In droplets shows a smoother topography than that without droplets, indicating that the presence of In droplets is beneficial to the two dimensional growth. Beneath the In droplets, many ring-like structures are observed. The arrangement of these "ring" shows the movement of the In droplets during the InGaN growth. A qualitative growth model is proposed to explain the evolution of the InGaN surface morphology in In-droplet-induced-epitaxy process, giving an explanation that a local vapor-liquid-solid (VLS) system is preferentially formed at the edge of the droplets, leading to a high growth rate. Furthermore, the energy dispersive X-ray spectroscopy results reveal that the relatively higher In/Ga flux ratio in the region covered by the In droplet results in a locally higher In content.
Superconductivity in epitaxial InN thin films with large critical fields
NASA Astrophysics Data System (ADS)
Pal, Buddhadeb; Joshi, Bhanu P.; Chakraborti, Himadri; Jain, Aditya K.; Barick, Barun K.; Ghosh, Kankat; Laha, Apurba; Dhar, Subhabrata; Gupta, Kantimay Das
2018-04-01
We report superconductivity in Chemical Vapor Deposition (CVD) and Plasma-Assisted Molecular Beam Epitaxy (PA-MBE) grown epitaxial InN films having carrier density ˜ 1019 - 1020cm-3. The superconducting phase transition starts at temperatures around Tc,onset˜3 K and the resistance goes to zero completely at Tc0 ˜ 1.6 K. The temperature dependence of the critical field HC2(T) does not obey a two fluid Casimir-Gorter (C-G) model rather it is well explained by the 2-D Tinkham model. The extrapolated value of the zero-temperature perpendicular critical field HC2(0) is found to be between 0.25 - 0.9 T, which is ten times greater than that of Indium metal. It may indicate the intrinsic nature of superconductivity in InN films. The angle dependence of critical field is well described by Lawrence-Doniach (L-D) model, which suggest the existence of quasi-2D superconducting layers.
NASA Astrophysics Data System (ADS)
Sorokin, S. V.; Sedova, I. V.; Belyaev, K. G.; Rakhlin, M. V.; Yagovkina, M. A.; Toropov, A. A.; Ivanov, S. V.
2018-03-01
Data on the molecular beam epitaxy (MBE) technology, design, and luminescent properties of heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots on InAs(001) substrates are presented. X-ray diffraction has been used to study short-period ZnTe/MgTe/MgSe superlattices used as wide-bandgap barriers in structures with CdTe/ZnTe quantum dots for the effective confinement of holes. It is shown that the design of these superlattices must take into account the replacement of Te atoms by selenium on MgSe/ZnTe and MgTe/MgSe heterointerfaces. Heterostructures with CdTe/Zn(Mg)(Se)Te quantum dots exhibit photoluminescence at temperatures up to 300 K. The spectra of microphotoluminescence at T = 10 K display a set of emission lines from separate CdTe/ZnTe quantum dots, the surface density of which is estimated at 1010 cm-2.
Ordering and bandgap reduction in InAs{sub 1{minus}x}Sb{sub x} alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follstaedt, D.M.; Biefeld, R.M.; Kurtz, S.R.
1995-02-01
InAs{sub 1{minus}x}Sb{sub x} alloys grown by MBE and MOCVD are found to have reduced emission energies due to CuPt-type order, even for Sb concentrations as low as x = 0.07 ({Delta}E = 25--65 meV). Cross-section TEM examination of such alloys shows the two {l_brace}111{r_brace}{sub B} variants are separated into regions 1--2 {mu}m across with platelet domains 10--40 nm thick on habit planes tilted {approximately}30{center_dot} from the (001) growth surface. Nomarski optical images show a cross-hatched surface pattern expected for lattice-mismatched layers. The local tilt of the surface correlates with the dominant variant in each region. InAs{sub 1{minus}x}Sb{sub x}/In{sub 1{minus}y}Ga{sub y}Asmore » strained-layer superlattices with low Sb content and flat surfaces also show CuPt ordering.« less
Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching
Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; ...
2015-01-14
The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-lossmore » spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.« less
Gate-controlled quantum collimation in nanocolumn resonant tunneling transistors.
Wensorra, J; Lepsa, M I; Trellenkamp, S; Moers, J; Indlekofer, K M; Lüth, H
2009-11-18
Nanoscaled resonant tunneling transistors (RTT) based on MBE-grown GaAs/AlAs double-barrier quantum well (DBQW) structures have been fabricated by a top-down approach using electron-beam lithographic definition of the vertical nanocolumns. In the preparation process, a reproducible mask alignment accuracy of below 10 nm has been achieved and the all-around metal gate at the level of the DBQW structure has been positioned at a distance of about 20 nm relative to the semiconductor nanocolumn. Due to the specific doping profile n++/i/n++ along the transistor nanocolumn, a particular confining potential is established for devices with diameters smaller than 70 nm, which causes a collimation effect of the propagating electrons. Under these conditions, room temperature optimum performance of the nano-RTTs is achieved with peak-to-valley current ratios above 2 and a peak current swing factor of about 6 for gate voltages between -6 and +6 V. These values indicate that our nano-RTTs can be successfully used in low power fast nanoelectronic circuits.
The demise of superfluid density in overdoped La 2-xSr xCuO 4 films grown by molecular beam epitaxy
Bozovic, I.; He, X.; Wu, J.; ...
2016-09-30
Here, we synthesize La 2–xSr xCuO 4 thin films using atomic layer-by-layer molecular beam epitaxy (ALL-MBE). The films are high-quality—singe crystal, atomically smooth, and very homogeneous. The critical temperature (T c) shows a very little (<1 K) variation within a film of 10×10 mm 2 area. The large statistics (over 2000 films) is crucial to discern intrinsic properties. We measured the absolute value of the magnetic penetration depth λ with the accuracy better than 1 % and mapped densely the entire overdoped side of the La 2–xSr xCuO 4 phase diagram. A new scaling law is established accurately for themore » dependence of T c on the superfluid density. The scaling we observe is incompatible with the standard Bardeen-Cooper-Schrieffer picture and points to local pairing.« less
Kumar, Annie; Lee, Shuh-Ying; Yadav, Sachin; Tan, Kian Hua; Loke, Wan Khai; Dong, Yuan; Lee, Kwang Hong; Wicaksono, Satrio; Liang, Gengchiau; Yoon, Soon-Fatt; Antoniadis, Dimitri; Yeo, Yee-Chia; Gong, Xiao
2017-12-11
Lasers monolithically integrated with high speed MOSFETs on the silicon (Si) substrate could be a key to realize low cost, low power, and high speed opto-electronic integrated circuits (OEICs). In this paper, we report the monolithic integration of InGaAs channel transistors with electrically pumped GaAs/AlGaAs lasers on the Si substrate for future advanced OEICs. The laser and transistor layers were grown on the Si substrate by molecular beam epitaxy (MBE) using direct epitaxial growth. InGaAs n-FETs with an I ON /I OFF ratio of more than 10 6 with very low off-state leakage and a low subthreshold swing with a minimum of 82 mV/decade were realized. Electrically pumped GaAs/AlGaAs quantum well (QW) lasers with a lasing wavelength of 795 nm at room temperature were demonstrated. The overall fabrication process has a low thermal budget of no more than 400 °C.
Characterization of HgCdTe and Related Materials For Third Generation Infrared Detectors
NASA Astrophysics Data System (ADS)
Vaghayenegar, Majid
Hg1-xCdxTe (MCT) has historically been the primary material used for infrared detectors. Recently, alternative substrates for MCT growth such as Si, as well as alternative infrared materials such as Hg1-xCdxSe, have been explored. This dissertation involves characterization of Hg-based infrared materials for third generation infrared detectors using a wide range of transmission electron microscopy (TEM) techniques. A microstructural study on HgCdTe/CdTe heterostructures grown by MBE on Si (211) substrates showed a thin ZnTe layer grown between CdTe and Si to mediate the large lattice mismatch of 19.5%. Observations showed large dislocation densities at the CdTe/ZnTe/Si (211) interfaces, which dropped off rapidly away from the interface. Growth of a thin HgTe buffer layer between HgCdTe and CdTe layers seemed to improve the HgCdTe layer quality by blocking some defects. A second study investigated the correlation of etch pits and dislocations in as-grown and thermal-cycle-annealed (TCA) HgCdTe (211) films. For as-grown samples, pits with triangular and fish-eye shapes were associated with Frank partial and perfect dislocations, respectively. Skew pits were determined to have a more complex nature. TCA reduced the etch-pit density by 72%. Although TCA processing eliminated the fish-eye pits, dislocations reappeared in shorter segments in the TCA samples. Large pits were observed in both as-grown and TCA samples, but the nature of any defects associated with these pits in the as-grown samples is unclear. Microstructural studies of HgCdSe revealed large dislocation density at ZnTe/Si(211) interfaces, which dropped off markedly with ZnTe thickness. Atomic-resolution STEM images showed that the large lattice mismatch at the ZnTe/Si interface was accommodated through {111}-type stacking faults. A detailed analysis showed that the stacking faults were inclined at angles of 19.5 and 90 degrees at both ZnTe/Si and HgCdSe/ZnTe interfaces. These stacking faults were associated with Shockley and Frank partial dislocations, respectively. Initial attempts to delineate individual dislocations by chemical etching revealed that while the etchants successfully attacked defective areas, many defects in close proximity to the pits were unaffected.
Ultra-wide bandgap beta-Ga2O3 for deep-UV solar blind photodetectors(Conference Presentation)
NASA Astrophysics Data System (ADS)
Rafique, Subrina; Han, Lu; Zhao, Hongping
2017-03-01
Deep-ultraviolet (DUV) photodetectors based on wide bandgap (WB) semiconductor materials have attracted strong interest because of their broad applications in military surveillance, fire detection and ozone hole monitoring. Monoclinic β-Ga2O3 with ultra-wide bandgap of 4.9 eV is a promising candidate for such application because of its high optical transparency in UV and visible wavelength region, and excellent thermal and chemical stability at elevated temperatures. Synthesis of high qualityβ-Ga2O3 thin films is still at its early stage and knowledge on the origins of defects in this material is lacking. The conventional epitaxy methods used to grow β-Ga2O3 thin films such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) still face great challenges such as limited growth rate and relatively high defects levels. In this work, we present the growth of β-Ga2O3 thin films on c-plane (0001) sapphire substrate by our recently developed low pressure chemical vapor deposition (LPCVD) method. The β-Ga2O3 thin films synthesized using high purity metallic gallium and oxygen as the source precursors and argon as carrier gas show controllable N-type doping and high carrier mobility. Metal-semiconductor-metal (MSM) photodetectors (PDs) were fabricated on the as-grown β-Ga2O3 thin films. Au/Ti thin films deposited by e-beam evaporation served as the contact metals. Optimization of the thin film growth conditions and the effects of thermal annealing on the performance of the PDs were investigated. The responsivity of devices under 250 nm UV light irradiation as well as dark light will be characterized and compared.
NASA Technical Reports Server (NTRS)
Pasqualini, Davide; Neto, Andrea; Wyss, Rolf A.
2001-01-01
In this work an electromagnetic model and subsequent design is presented for a traveling-wave, coplanar waveguide (CPW) based source that will operate in the THz frequency regime. The radio frequency (RF) driving current is a result of photoexcitation of a thin GaAs membrane using two frequency-offset lasers. The GaAs film is grown by molecular-beam-epitaxy (MBE) and displays sub-ps carrier lifetimes which enable the material conductivity to be modulated at a very high rate. The RF current flows between electrodes deposited on the GaAs membrane which are biased with a DC voltage source. The electrodes form a CPW and are terminated with a double slot antenna that couples the power to a quasi-optical system. The membrane is suspended above a metallic reflector to launch all radiation in one direction. The theoretical investigation and consequent design is performed in two steps. The first step consists of a direct evaluation of the magnetic current distribution on an infinitely extended coplanar waveguide excited by an impressed electric current distributed over a finite area. The result of the analysis is the difference between the incident angle of the laser beams and the length of the excited area that maximizes the RF power coupled to the CPW. The optimal values for both parameters are found as functions of the CPW and membrane dimensions as well as the dielectric constants of the layers. In the second step, a design is presented of a double slot antenna that matches the CPW characteristic impedance and gives good overall performance. The design is presently being implemented and measurements will soon be available.
USDA-ARS?s Scientific Manuscript database
In this study, experiments were performed to investigate if mycorrhizal plants grown under optimal growth conditions would improve crop quality compared to the non-mycorrhizal control. The results clearly showed that while mycorrhizal plants grown under an optimal nutrient supply did not increase t...
Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)
1994-01-01
The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.
Quaternary BeMgZnO by plasma-enhanced molecular beam epitaxy for BeMgZnO/ZnO heterostructure devices
NASA Astrophysics Data System (ADS)
Ullah, M. B.; Toporkov, M.; Avrutin, V.; Özgür, Ü.; Smith, D. J.; Morkoç, H.
2017-02-01
We investigated the crystal structure, growth kinetics and electrical properties of BeMgZnO/ZnO heterostructures grown by Molecular Beam Epitaxy (MBE). Transmission Electron Microscopy (TEM) studies revealed that incorporation of Mg into the BeZnO solid solution eliminates the high angle grain boundaries that are the major structural defects in ternary BeZnO. The significant improvement of x-ray diffraction intensity from quaternary BeMgZnO alloy compared to ternary BeZnO was attributed to the reduction of lattice strain, which is present in the latter due to the large difference of covalent radii between Be and Zn (1.22 Å for Zn, 0.96 Å for Be). Incorporation of Mg, which has a larger covalent radius of 1.41Å, reduced the strain in BeMgZnO thin films and also enhanced Be incorporation on lattice sites in the wurtzite lattice. The Zn/(Be + Mg) ratio necessary to obtain single-crystal O-polar BeMgZnO on (0001) GaN/sapphire templates was found to increase with increasing substrate temperature:3.9, 6.2, and 8.3 at substrate temperatures of 450°C, 475°C, and 500°C, respectively. Based on analysis of photoluminescence spectra from Be0.03MgyZn0.97-yO and evolution of reflection high-energy electron diffraction patterns observed in situ during the MBE growth, it has been deduced that more negative formation enthalpy of MgO compared to ZnO and the increased surface mobility of Mg adatoms at elevated substrate temperatures give rise to the nucleation of a MgO-rich wurtzite phase at relatively low Zn/(Be + Mg) ratios. We have demonstrated both theoretically and experimentally that the incorporation of Be into the barrier in Zn-polar BeMgZnO/ZnO and O-polar ZnO/BeMgZnO polarization doped heterostructures allows the alignment of piezoelectric polarization vector with that of spontaneous polarization due to the change of strain sign, thus increasing the amount of net polarization. This made it possible to achieve Zn-polar BeMgZnO/ZnO heterostructures grown on GaN/sapphire templates with two-dimensional electron gas densities substantially exceeding those in Zn-polar MgZnO/ZnO and O-polar ZnO/MgZnO heterostructures with similar Mg content.