Network planning under uncertainties
NASA Astrophysics Data System (ADS)
Ho, Kwok Shing; Cheung, Kwok Wai
2008-11-01
One of the main focuses for network planning is on the optimization of network resources required to build a network under certain traffic demand projection. Traditionally, the inputs to this type of network planning problems are treated as deterministic. In reality, the varying traffic requirements and fluctuations in network resources can cause uncertainties in the decision models. The failure to include the uncertainties in the network design process can severely affect the feasibility and economics of the network. Therefore, it is essential to find a solution that can be insensitive to the uncertain conditions during the network planning process. As early as in the 1960's, a network planning problem with varying traffic requirements over time had been studied. Up to now, this kind of network planning problems is still being active researched, especially for the VPN network design. Another kind of network planning problems under uncertainties that has been studied actively in the past decade addresses the fluctuations in network resources. One such hotly pursued research topic is survivable network planning. It considers the design of a network under uncertainties brought by the fluctuations in topology to meet the requirement that the network remains intact up to a certain number of faults occurring anywhere in the network. Recently, the authors proposed a new planning methodology called Generalized Survivable Network that tackles the network design problem under both varying traffic requirements and fluctuations of topology. Although all the above network planning problems handle various kinds of uncertainties, it is hard to find a generic framework under more general uncertainty conditions that allows a more systematic way to solve the problems. With a unified framework, the seemingly diverse models and algorithms can be intimately related and possibly more insights and improvements can be brought out for solving the problem. This motivates us to seek a generic framework for solving the network planning problem under uncertainties. In addition to reviewing the various network planning problems involving uncertainties, we also propose that a unified framework based on robust optimization can be used to solve a rather large segment of network planning problem under uncertainties. Robust optimization is first introduced in the operations research literature and is a framework that incorporates information about the uncertainty sets for the parameters in the optimization model. Even though robust optimization is originated from tackling the uncertainty in the optimization process, it can serve as a comprehensive and suitable framework for tackling generic network planning problems under uncertainties. In this paper, we begin by explaining the main ideas behind the robust optimization approach. Then we demonstrate the capabilities of the proposed framework by giving out some examples of how the robust optimization framework can be applied to the current common network planning problems under uncertain environments. Next, we list some practical considerations for solving the network planning problem under uncertainties with the proposed framework. Finally, we conclude this article with some thoughts on the future directions for applying this framework to solve other network planning problems.
Optimized planning methodologies of ASON implementation
NASA Astrophysics Data System (ADS)
Zhou, Michael M.; Tamil, Lakshman S.
2005-02-01
Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.
Active distribution network planning considering linearized system loss
NASA Astrophysics Data System (ADS)
Li, Xiao; Wang, Mingqiang; Xu, Hao
2018-02-01
In this paper, various distribution network planning techniques with DGs are reviewed, and a new distribution network planning method is proposed. It assumes that the location of DGs and the topology of the network are fixed. The proposed model optimizes the capacities of DG and the optimal distribution line capacity simultaneously by a cost/benefit analysis and the benefit is quantified by the reduction of the expected interruption cost. Besides, the network loss is explicitly analyzed in the paper. For simplicity, the network loss is appropriately simplified as a quadratic function of difference of voltage phase angle. Then it is further piecewise linearized. In this paper, a piecewise linearization technique with different segment lengths is proposed. To validate its effectiveness and superiority, the proposed distribution network planning model with elaborate linearization technique is tested on the IEEE 33-bus distribution network system.
A Wireless Communications Laboratory on Cellular Network Planning
ERIC Educational Resources Information Center
Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.
2010-01-01
The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…
Design and architecture of the Mars relay network planning and analysis framework
NASA Technical Reports Server (NTRS)
Cheung, K. M.; Lee, C. H.
2002-01-01
In this paper we describe the design and architecture of the Mars Network planning and analysis framework that supports generation and validation of efficient planning and scheduling strategy. The goals are to minimize the transmitting time, minimize the delaying time, and/or maximize the network throughputs. The proposed framework would require (1) a client-server architecture to support interactive, batch, WEB, and distributed analysis and planning applications for the relay network analysis scheme, (2) a high-fidelity modeling and simulation environment that expresses link capabilities between spacecraft to spacecraft and spacecraft to Earth stations as time-varying resources, and spacecraft activities, link priority, Solar System dynamic events, the laws of orbital mechanics, and other limiting factors as spacecraft power and thermal constraints, (3) an optimization methodology that casts the resource and constraint models into a standard linear and nonlinear constrained optimization problem that lends itself to commercial off-the-shelf (COTS)planning and scheduling algorithms.
NASA Astrophysics Data System (ADS)
Song, Chen; Zhong-Cheng, Wu; Hong, Lv
2018-03-01
Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.
Optimal Micropatterns in 2D Transport Networks and Their Relation to Image Inpainting
NASA Astrophysics Data System (ADS)
Brancolini, Alessio; Rossmanith, Carolin; Wirth, Benedikt
2018-04-01
We consider two different variational models of transport networks: the so-called branched transport problem and the urban planning problem. Based on a novel relation to Mumford-Shah image inpainting and techniques developed in that field, we show for a two-dimensional situation that both highly non-convex network optimization tasks can be transformed into a convex variational problem, which may be very useful from analytical and numerical perspectives. As applications of the convex formulation, we use it to perform numerical simulations (to our knowledge this is the first numerical treatment of urban planning), and we prove a lower bound for the network cost that matches a known upper bound (in terms of how the cost scales in the model parameters) which helps better understand optimal networks and their minimal costs.
Resource Allocation Algorithms for the Next Generation Cellular Networks
NASA Astrophysics Data System (ADS)
Amzallag, David; Raz, Danny
This chapter describes recent results addressing resource allocation problems in the context of current and future cellular technologies. We present models that capture several fundamental aspects of planning and operating these networks, and develop new approximation algorithms providing provable good solutions for the corresponding optimization problems. We mainly focus on two families of problems: cell planning and cell selection. Cell planning deals with choosing a network of base stations that can provide the required coverage of the service area with respect to the traffic requirements, available capacities, interference, and the desired QoS. Cell selection is the process of determining the cell(s) that provide service to each mobile station. Optimizing these processes is an important step towards maximizing the utilization of current and future cellular networks.
NASA Astrophysics Data System (ADS)
Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng
2018-02-01
Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.
Grid Transmission Expansion Planning Model Based on Grid Vulnerability
NASA Astrophysics Data System (ADS)
Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang
2018-03-01
Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.
DOT National Transportation Integrated Search
2017-07-04
This paper presents a stochastic multi-agent optimization model that supports energy infrastruc- : ture planning under uncertainty. The interdependence between dierent decision entities in the : system is captured in an energy supply chain network, w...
Eggimann, Sven; Truffer, Bernhard; Maurer, Max
2015-11-01
The strong reliance of most utility services on centralised network infrastructures is becoming increasingly challenged by new technological advances in decentralised alternatives. However, not enough effort has been made to develop planning tools designed to address the implications of these new opportunities and to determine the optimal degree of centralisation of these infrastructures. We introduce a planning tool for sustainable network infrastructure planning (SNIP), a two-step techno-economic heuristic modelling approach based on shortest path-finding and hierarchical-agglomerative clustering algorithms to determine the optimal degree of centralisation in the field of wastewater management. This SNIP model optimises the distribution of wastewater treatment plants and the sewer network outlay relative to several cost and sewer-design parameters. Moreover, it allows us to construct alternative optimal wastewater system designs taking into account topography, economies of scale as well as the full size range of wastewater treatment plants. We quantify and confirm that the optimal degree of centralisation decreases with increasing terrain complexity and settlement dispersion while showing that the effect of the latter exceeds that of topography. Case study results for a Swiss community indicate that the calculated optimal degree of centralisation is substantially lower than the current level. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nourifar, Raheleh; Mahdavi, Iraj; Mahdavi-Amiri, Nezam; Paydar, Mohammad Mahdi
2017-09-01
Decentralized supply chain management is found to be significantly relevant in today's competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final product is appropriated with stochastic and fuzzy numbers. We provide mathematical formulation of the problem as a bi-level mixed integer linear programming model. Due to problem's convolution, a structure to solve is developed that incorporates a novel heuristic algorithm based on Kth-best algorithm, fuzzy approach and chance constraint approach. Ultimately, a numerical example is constructed and worked through to demonstrate applicability of the optimization model. A sensitivity analysis is also made.
NASA Astrophysics Data System (ADS)
Shi, Y.; Long, Y.; Wi, X. L.
2014-04-01
When tourists visiting multiple tourist scenic spots, the travel line is usually the most effective road network according to the actual tour process, and maybe the travel line is different from planned travel line. For in the field of navigation, a proposed travel line is normally generated automatically by path planning algorithm, considering the scenic spots' positions and road networks. But when a scenic spot have a certain area and have multiple entrances or exits, the traditional described mechanism of single point coordinates is difficult to reflect these own structural features. In order to solve this problem, this paper focuses on the influence on the process of path planning caused by scenic spots' own structural features such as multiple entrances or exits, and then proposes a doubleweighted Graph Model, for the weight of both vertexes and edges of proposed Model can be selected dynamically. And then discusses the model building method, and the optimal path planning algorithm based on Dijkstra algorithm and Prim algorithm. Experimental results show that the optimal planned travel line derived from the proposed model and algorithm is more reasonable, and the travelling order and distance would be further optimized.
Planning Multitechnology Access Networks with Performance Constraints
NASA Astrophysics Data System (ADS)
Chamberland, Steven
Considering the number of access network technologies and the investment needed for the “last mile” of a solution, in today’s highly competitive markets, planning tools are crucial for the service providers to optimize the network costs and accelerate the planning process. In this paper, we propose to tackle the problem of planning access networks composed of four technologies/architectures: the digital subscriber line (xDSL) technologies deployed directly from the central office (CO), the fiber-to-the-node (FTTN), the fiber-to-the-micro-node (FTTn) and the fiber-to-the-premises (FTTP). A mathematical programming model is proposed for this planning problem that is solved using a commercial implementation of the branch-and-bound algorithm. Next, a detailed access network planning example is presented followed by a systematic set of experiments designed to assess the performance of the proposed approach.
Drug delivery optimization through Bayesian networks.
Bellazzi, R.
1992-01-01
This paper describes how Bayesian Networks can be used in combination with compartmental models to plan Recombinant Human Erythropoietin (r-HuEPO) delivery in the treatment of anemia of chronic uremic patients. Past measurements of hematocrit or hemoglobin concentration in a patient during the therapy can be exploited to adjust the parameters of a compartmental model of the erythropoiesis. This adaptive process allows more accurate patient-specific predictions, and hence a more rational dosage planning. We describe a drug delivery optimization protocol, based on our approach. Some results obtained on real data are presented. PMID:1482938
Wireless Sensor Network Optimization: Multi-Objective Paradigm.
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-07-20
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.
Basic Principles of Electrical Network Reliability Optimization in Liberalised Electricity Market
NASA Astrophysics Data System (ADS)
Oleinikova, I.; Krishans, Z.; Mutule, A.
2008-01-01
The authors propose to select long-term solutions to the reliability problems of electrical networks in the stage of development planning. The guide lines or basic principles of such optimization are: 1) its dynamical nature; 2) development sustainability; 3) integrated solution of the problems of network development and electricity supply reliability; 4) consideration of information uncertainty; 5) concurrent consideration of the network and generation development problems; 6) application of specialized information technologies; 7) definition of requirements for independent electricity producers. In the article, the major aspects of liberalized electricity market, its functions and tasks are reviewed, with emphasis placed on the optimization of electrical network development as a significant component of sustainable management of power systems.
An Efficient, Hierarchical Viewpoint Planning Strategy for Terrestrial Laser Scanner Networks
NASA Astrophysics Data System (ADS)
Jia, F.; Lichti, D. D.
2018-05-01
Terrestrial laser scanner (TLS) techniques have been widely adopted in a variety of applications. However, unlike in geodesy or photogrammetry, insufficient attention has been paid to the optimal TLS network design. It is valuable to develop a complete design system that can automatically provide an optimal plan, especially for high-accuracy, large-volume scanning networks. To achieve this goal, one should look at the "optimality" of the solution as well as the computational complexity in reaching it. In this paper, a hierarchical TLS viewpoint planning strategy is developed to solve the optimal scanner placement problems. If one targeted object to be scanned is simplified as discretized wall segments, any possible viewpoint can be evaluated by a score table representing its visible segments under certain scanning geometry constraints. Thus, the design goal is to find a minimum number of viewpoints that achieves complete coverage of all wall segments. The efficiency is improved by densifying viewpoints hierarchically, instead of a "brute force" search within the entire workspace. The experiment environments in this paper were simulated from two buildings located on University of Calgary campus. Compared with the "brute force" strategy in terms of the quality of the solutions and the runtime, it is shown that the proposed strategy can provide a scanning network with a compatible quality but with more than a 70 % time saving.
Mixed Integer Programming and Heuristic Scheduling for Space Communication
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2013-01-01
Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.
NASA Astrophysics Data System (ADS)
Tan, Zhukui; Xie, Baiming; Zhao, Yuanliang; Dou, Jinyue; Yan, Tong; Liu, Bin; Zeng, Ming
2018-06-01
This paper presents a new integrated planning framework for effective accommodating electric vehicles in smart distribution systems (SDS). The proposed method incorporates various investment options available for the utility collectively, including distributed generation (DG), capacitors and network reinforcement. Using a back-propagation algorithm combined with cost-benefit analysis, the optimal network upgrade plan, allocation and sizing of the selected components are determined, with the purpose of minimizing the total system capital and operating costs of DG and EV accommodation. Furthermore, a new iterative reliability test method is proposed. It can check the optimization results by subsequently simulating the reliability level of the planning scheme, and modify the generation reserve margin to guarantee acceptable adequacy levels for each year of the planning horizon. Numerical results based on a 32-bus distribution system verify the effectiveness of the proposed method.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
Wireless Sensor Network Optimization: Multi-Objective Paradigm
Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad
2015-01-01
Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271
Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.
Lee, Seungseob; Lee, SuKyoung; Kim, Kyungsoo; Kim, Yoon Hyuk
2015-01-01
Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets), in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms of system throughput performance.
Zhang, Yichuan; Wang, Jiangping
2015-07-01
Rivers serve as a highly valued component in ecosystem and urban infrastructures. River planning should follow basic principles of maintaining or reconstructing the natural landscape and ecological functions of rivers. Optimization of planning scheme is a prerequisite for successful construction of urban rivers. Therefore, relevant studies on optimization of scheme for natural ecology planning of rivers is crucial. In the present study, four planning schemes for Zhaodingpal River in Xinxiang City, Henan Province were included as the objects for optimization. Fourteen factors that influenced the natural ecology planning of urban rivers were selected from five aspects so as to establish the ANP model. The data processing was done using Super Decisions software. The results showed that important degree of scheme 3 was highest. A scientific, reasonable and accurate evaluation of schemes could be made by ANP method on natural ecology planning of urban rivers. This method could be used to provide references for sustainable development and construction of urban rivers. ANP method is also suitable for optimization of schemes for urban green space planning and design.
Network aggregation in transportation planning models
DOT National Transportation Integrated Search
1979-06-01
This report contains six papers addressed at mathematical and computation aspects of an extraction aggregation model often employed in transportation planning studies. This model concerns the optimal flowing of an extracted subnetwork of a given netw...
Lin, Na; Chen, Hanning; Jing, Shikai; Liu, Fang; Liang, Xiaodan
2017-03-01
In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS 2 Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS 2 O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS 2 O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm's performance. Then PS 2 O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.
DOT National Transportation Integrated Search
2014-05-01
Assessing the current "state of health" of individual transit networks is a fundamental part of studies aimed at planning changes and/or upgrades to the transportation network serving a region. To be able to effect changes that benefit both the indiv...
NASA Astrophysics Data System (ADS)
Lu, Siqi; Wang, Xiaorong; Wu, Junyong
2018-01-01
The paper presents a method to generate the planning scenarios, which is based on K-means clustering analysis algorithm driven by data, for the location and size planning of distributed photovoltaic (PV) units in the network. Taken the power losses of the network, the installation and maintenance costs of distributed PV, the profit of distributed PV and the voltage offset as objectives and the locations and sizes of distributed PV as decision variables, Pareto optimal front is obtained through the self-adaptive genetic algorithm (GA) and solutions are ranked by a method called technique for order preference by similarity to an ideal solution (TOPSIS). Finally, select the planning schemes at the top of the ranking list based on different planning emphasis after the analysis in detail. The proposed method is applied to a 10-kV distribution network in Gansu Province, China and the results are discussed.
An optimization model for the US Air-Traffic System
NASA Technical Reports Server (NTRS)
Mulvey, J. M.
1986-01-01
A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.
On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; Gonzalez-Castaño, Francisco Javier
2013-01-01
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively. PMID:23939582
On maximizing the lifetime of Wireless Sensor Networks by optimally assigning energy supplies.
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; González-Castano, Francisco Javier
2013-08-09
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively.
Implementation of a Web-Based Collaborative Process Planning System
NASA Astrophysics Data System (ADS)
Wang, Huifen; Liu, Tingting; Qiao, Li; Huang, Shuangxi
Under the networked manufacturing environment, all phases of product manufacturing involving design, process planning, machining and assembling may be accomplished collaboratively by different enterprises, even different manufacturing stages of the same part may be finished collaboratively by different enterprises. Based on the self-developed networked manufacturing platform eCWS(e-Cooperative Work System), a multi-agent-based system framework for collaborative process planning is proposed. In accordance with requirements of collaborative process planning, share resources provided by cooperative enterprises in the course of collaboration are classified into seven classes. Then a reconfigurable and extendable resource object model is built. Decision-making strategy is also studied in this paper. Finally a collaborative process planning system e-CAPP is developed and applied. It provides strong support for distributed designers to collaboratively plan and optimize product process though network.
Optimizing Organization Design for the Future.
ERIC Educational Resources Information Center
Creth, Sheila
2000-01-01
Discussion of planning organization design within the higher education environment stresses the goal of integrating structure and process to maintain stability while increasing organizational flexibility. Considers organization culture, organization structure and processes, networked organizations, a networked organization in action, and personal…
A proposal of optimal sampling design using a modularity strategy
NASA Astrophysics Data System (ADS)
Simone, A.; Giustolisi, O.; Laucelli, D. B.
2016-08-01
In real water distribution networks (WDNs) are present thousands nodes and optimal placement of pressure and flow observations is a relevant issue for different management tasks. The planning of pressure observations in terms of spatial distribution and number is named sampling design and it was faced considering model calibration. Nowadays, the design of system monitoring is a relevant issue for water utilities e.g., in order to manage background leakages, to detect anomalies and bursts, to guarantee service quality, etc. In recent years, the optimal location of flow observations related to design of optimal district metering areas (DMAs) and leakage management purposes has been faced considering optimal network segmentation and the modularity index using a multiobjective strategy. Optimal network segmentation is the basis to identify network modules by means of optimal conceptual cuts, which are the candidate locations of closed gates or flow meters creating the DMAs. Starting from the WDN-oriented modularity index, as a metric for WDN segmentation, this paper proposes a new way to perform the sampling design, i.e., the optimal location of pressure meters, using newly developed sampling-oriented modularity index. The strategy optimizes the pressure monitoring system mainly based on network topology and weights assigned to pipes according to the specific technical tasks. A multiobjective optimization minimizes the cost of pressure meters while maximizing the sampling-oriented modularity index. The methodology is presented and discussed using the Apulian and Exnet networks.
Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization
Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong
2014-01-01
This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness. PMID:24592200
Hierarchical artificial bee colony algorithm for RFID network planning optimization.
Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong
2014-01-01
This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.
NASA Astrophysics Data System (ADS)
Kholil, Muhammad; Nurul Alfa, Bonitasari; Hariadi, Madjumsyah
2018-04-01
Network planning is one of the management techniques used to plan and control the implementation of a project, which shows the relationship between activities. The objective of this research is to arrange network planning on house construction project on CV. XYZ and to know the role of network planning in increasing the efficiency of time so that can be obtained the optimal project completion period. This research uses descriptive method, where the data collected by direct observation to the company, interview, and literature study. The result of this research is optimal time planning in project work. Based on the results of the research, it can be concluded that the use of the both methods in scheduling of house construction project gives very significant effect on the completion time of the project. The company’s CPM (Critical Path Method) method can complete the project with 131 days, PERT (Program Evaluation Review and Technique) Method takes 136 days. Based on PERT calculation obtained Z = -0.66 or 0,2546 (from normal distribution table), and also obtained the value of probability or probability is 74,54%. This means that the possibility of house construction project activities can be completed on time is high enough. While without using both methods the project completion time takes 173 days. So using the CPM method, the company can save time up to 42 days and has time efficiency by using network planning.
Enabling Incremental Query Re-Optimization.
Liu, Mengmeng; Ives, Zachary G; Loo, Boon Thau
2016-01-01
As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs , and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries ; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations.
Enabling Incremental Query Re-Optimization
Liu, Mengmeng; Ives, Zachary G.; Loo, Boon Thau
2017-01-01
As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs, and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations. PMID:28659658
NASA Technical Reports Server (NTRS)
Thakoor, Anil
1990-01-01
Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.
Path Searching Based Fault Automated Recovery Scheme for Distribution Grid with DG
NASA Astrophysics Data System (ADS)
Xia, Lin; Qun, Wang; Hui, Xue; Simeng, Zhu
2016-12-01
Applying the method of path searching based on distribution network topology in setting software has a good effect, and the path searching method containing DG power source is also applicable to the automatic generation and division of planned islands after the fault. This paper applies path searching algorithm in the automatic division of planned islands after faults: starting from the switch of fault isolation, ending in each power source, and according to the line load that the searching path traverses and the load integrated by important optimized searching path, forming optimized division scheme of planned islands that uses each DG as power source and is balanced to local important load. Finally, COBASE software and distribution network automation software applied are used to illustrate the effectiveness of the realization of such automatic restoration program.
2018-01-01
In this work, a multi-hop string network with a single sink node is analyzed. A periodic optimal scheduling for TDMA operation that considers the characteristic long propagation delay of the underwater acoustic channel is presented. This planning of transmissions is obtained with the help of a new geometrical method based on a 2D lattice in the space-time domain. In order to evaluate the performance of this optimal scheduling, two service policies have been compared: FIFO and Round-Robin. Simulation results, including achievable throughput, packet delay, and queue length, are shown. The network fairness has also been quantified with the Gini index. PMID:29462966
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor)
1990-01-01
Various papers on intelligent control and adaptive systems are presented. Individual topics addressed include: control architecture for a Mars walking vehicle, representation for error detection and recovery in robot task plans, real-time operating system for robots, execution monitoring of a mobile robot system, statistical mechanics models for motion and force planning, global kinematics for manipulator planning and control, exploration of unknown mechanical assemblies through manipulation, low-level representations for robot vision, harmonic functions for robot path construction, simulation of dual behavior of an autonomous system. Also discussed are: control framework for hand-arm coordination, neural network approach to multivehicle navigation, electronic neural networks for global optimization, neural network for L1 norm linear regression, planning for assembly with robot hands, neural networks in dynamical systems, control design with iterative learning, improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm.
Generation capacity expansion planning in deregulated electricity markets
NASA Astrophysics Data System (ADS)
Sharma, Deepak
With increasing demand of electric power in the context of deregulated electricity markets, a good strategic planning for the growth of the power system is critical for our tomorrow. There is a need to build new resources in the form of generation plants and transmission lines while considering the effects of these new resources on power system operations, market economics and the long-term dynamics of the economy. In deregulation, the exercise of generation planning has undergone a paradigm shift. The first stage of generation planning is now undertaken by the individual investors. These investors see investments in generation capacity as an increasing business opportunity because of the increasing market prices. Therefore, the main objective of such a planning exercise, carried out by individual investors, is typically that of long-term profit maximization. This thesis presents some modeling frameworks for generation capacity expansion planning applicable to independent investor firms in the context of power industry deregulation. These modeling frameworks include various technical and financing issues within the process of power system planning. The proposed modeling frameworks consider the long-term decision making process of investor firms, the discrete nature of generation capacity addition and incorporates transmission network modeling. Studies have been carried out to examine the impact of the optimal investment plans on transmission network loadings in the long-run by integrating the generation capacity expansion planning framework within a modified IEEE 30-bus transmission system network. The work assesses the importance of arriving at an optimal IRR at which the firm's profit maximization objective attains an extremum value. The mathematical model is further improved to incorporate binary variables while considering discrete unit sizes, and subsequently to include the detailed transmission network representation. The proposed models are novel in the sense that the planning horizon is split into plan sub-periods so as to minimize the overall risks associated with long-term plan models, particularly in the context of deregulation.
Modification Propagation in Complex Networks
NASA Astrophysics Data System (ADS)
Mouronte, Mary Luz; Vargas, María Luisa; Moyano, Luis Gregorio; Algarra, Francisco Javier García; Del Pozo, Luis Salvador
To keep up with rapidly changing conditions, business systems and their associated networks are growing increasingly intricate as never before. By doing this, network management and operation costs not only rise, but are difficult even to measure. This fact must be regarded as a major constraint to system optimization initiatives, as well as a setback to derived economic benefits. In this work we introduce a simple model in order to estimate the relative cost associated to modification propagation in complex architectures. Our model can be used to anticipate costs caused by network evolution, as well as for planning and evaluating future architecture development while providing benefit optimization.
Convex relaxations for gas expansion planning
Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; ...
2016-01-01
Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less
Capacity planning of link restorable optical networks under dynamic change of traffic
NASA Astrophysics Data System (ADS)
Ho, Kwok Shing; Cheung, Kwok Wai
2005-11-01
Future backbone networks shall require full-survivability and support dynamic changes of traffic demands. The Generalized Survivable Networks (GSN) was proposed to meet these challenges. GSN is fully-survivable under dynamic traffic demand changes, so it offers a practical and guaranteed characterization framework for ASTN / ASON survivable network planning and bandwidth-on-demand resource allocation 4. The basic idea of GSN is to incorporate the non-blocking network concept into the survivable network models. In GSN, each network node must specify its I/O capacity bound which is taken as constraints for any allowable traffic demand matrix. In this paper, we consider the following generic GSN network design problem: Given the I/O bounds of each network node, find a routing scheme (and the corresponding rerouting scheme under failure) and the link capacity assignment (both working and spare) which minimize the cost, such that any traffic matrix consistent with the given I/O bounds can be feasibly routed and it is single-fault tolerant under the link restoration scheme. We first show how the initial, infeasible formal mixed integer programming formulation can be transformed into a more feasible problem using the duality transformation of the linear program. Then we show how the problem can be simplified using the Lagrangian Relaxation approach. Previous work has outlined a two-phase approach for solving this problem where the first phase optimizes the working capacity assignment and the second phase optimizes the spare capacity assignment. In this paper, we present a jointly optimized framework for dimensioning the survivable optical network with the GSN model. Experiment results show that the jointly optimized GSN can bring about on average of 3.8% cost savings when compared with the separate, two-phase approach. Finally, we perform a cost comparison and show that GSN can be deployed with a reasonable cost.
Multi-objective optimization of riparian buffer networks; valuing present and future benefits
Multi-objective optimization has emerged as a popular approach to support water resources planning and management. This approach provides decision-makers with a suite of management options which are generated based on metrics that represent different social, economic, and environ...
Fuel efficient traffic signal operation and evaluation: Garden Grove Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-02-01
The procedures and results of a case study of fuel efficient traffic signal operation and evaluation in the City of Garden Grove, California are documented. Improved traffic signal timing was developed for a 70-intersection test network in Garden Grove using an optimization tool called the TRANSYT Version 8 computer program. Full-scale field testing of five alternative timing plans was conducted using two instrumented vehicles equipped to measure traffic performance characteristics and fuel consumption. The field tests indicated that significant improvements in traffic flow and fuel consumption result from the use of timing plans generated by the TRANSYT optimization model. Changingmore » from pre-existing to an optimized timing plan yields a networkwide 5 percent reduction in total travel time, more than 10 percent reduction in both the number of stops and stopped delay time, and 6 percent reduction in fuel consumption. Projections are made of the benefits and costs of implementing such a program at the 20,000 traffic signals in networks throughout the State of California.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldin, Ilya; Huang, Shu; Gopidi, Rajesh
This final project report describes the accomplishments, products and publications from the award. It includes the overview of the project goals to devise a framework for managing resources in multi-domain, multi-layer networks, as well the details of the mathematical problem formulation and the description of the prototype built to prove the concept.
Hybrid algorithms for fuzzy reverse supply chain network design.
Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua
2014-01-01
In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.
Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design
Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.
2014-01-01
In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057
A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks.
Miguel, Marcio L F; Jamhour, Edgard; Pellenz, Marcelo E; Penna, Manoel C
2017-03-25
The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality.
Satellites vs. fiber optics based networks and services - Road map to strategic planning
NASA Astrophysics Data System (ADS)
Marandi, James H. R.
An overview of a generic telecommunications network and its components is presented, and the current developments in satellite and fiber optics technologies are discussed with an eye on the trends in industry. A baseline model is proposed, and a cost comparison of fiber- vs satellite-based networks is made. A step-by-step 'road map' to the successful strategic planning of telecommunications services and facilities is presented. This road map provides for optimization of the current and future networks and services through effective utilization of both satellites and fiber optics. The road map is then applied to different segments of the telecommunications industry and market place, to show its effectiveness for the strategic planning of executives of three types: (1) those heading telecommunications manufacturing concerns, (2) those leading communication service companies, and (3) managers of telecommunication/MIS departments of major corporations. Future networking issues, such as developments in integrated-services digital network standards and technologies, are addressed.
A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks
Miguel, Marcio L. F.; Jamhour, Edgard; Pellenz, Marcelo E.; Penna, Manoel C.
2017-01-01
The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality. PMID:28346339
NASA Astrophysics Data System (ADS)
Chaerani, D.; Lesmana, E.; Tressiana, N.
2018-03-01
In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.
Ring-like reliable PON planning with physical constraints for a smart grid
NASA Astrophysics Data System (ADS)
Wang, Xin; Gu, Rentao; Ji, Yuefeng
2016-01-01
Due to the high reliability requirements in the communication networks of a smart grid, a ring-like reliable PON is an ideal choice to carry power distribution information. Economical network planning is also very important for the smart grid communication infrastructure. Although the ring-like reliable PON has been widely used in the real applications, as far as we know, little research has been done on the network optimization subject of the ring-like reliable PON. Most PON planning research studies only consider a star-like topology or cascaded PON network, which barely guarantees the reliability requirements of the smart grid. In this paper, we mainly investigate the economical network planning problem for the ring-like reliable PON of the smart grid. To address this issue, we built a mathematical model for the planning problem of the ring-like reliable PON, and the objective was to minimize the total deployment costs under physical constraints. The model is simplified such that all of the nodes have the same properties, except OLT, because each potential splitter site can be located in the same ONU position in power communication networks. The simplified model is used to construct an optimal main tree topology in the complete graph and a backup-protected tree topology in the residual graph. An efficient heuristic algorithm, called the Constraints and Minimal Weight Oriented Fast Searching Algorithm (CMW-FSA), is proposed. In CMW-FSA, a feasible solution can be obtained directly with oriented constraints and a few recursive search processes. From the simulation results, the proposed planning model and CMW-FSA are verified to be accurate (the error rates are less than 0.4%) and effective compared with the accurate solution (CAESA), especially in small and sparse scenarios. The CMW-FSA significantly reduces the computation time compared with the CAESA. The time complexity algorithm of the CMW-FSA is acceptable and calculated as T(n) = O(n3). After evaluating the effects of the parameters of the two PON systems, the total planning costs of each scenario show a general declining trend and reach a threshold as the respective maximal transmission distances and maximal time delays increase.
Access to specialist care: Optimizing the geographic configuration of trauma systems.
Jansen, Jan O; Morrison, Jonathan J; Wang, Handing; He, Shan; Lawrenson, Robin; Hutchison, James D; Campbell, Marion K
2015-11-01
The optimal geographic configuration of health care systems is key to maximizing accessibility while promoting the efficient use of resources. This article reports the use of a novel approach to inform the optimal configuration of a national trauma system. This is a prospective cohort study of all trauma patients, 15 years and older, attended to by the Scottish Ambulance Service, between July 1, 2013, and June 30, 2014. Patients underwent notional triage to one of three levels of care (major trauma center [MTC], trauma unit, or local emergency hospital). We used geographic information systems software to calculate access times, by road and air, from all incident locations to all candidate hospitals. We then modeled the performance of all mathematically possible network configurations and used multiobjective optimization to determine geospatially optimized configurations. A total of 80,391 casualties were included. A network with only high- or moderate-volume MTCs (admitting at least 650 or 400 severely injured patients per year, respectively) would be optimally configured with a single MTC. A network accepting lower-volume MTCs (at least 240 severely injured patients per year) would be optimally configured with two MTCs. Both configurations would necessitate an increase in the number of helicopter retrievals. This study has shown that a novel combination of notional triage, network analysis, and mathematical optimization can be used to inform the planning of a national clinical network. Scotland's trauma system could be optimized with one or two MTCs. Care management study, level IV.
NASA Astrophysics Data System (ADS)
Hassan, Mahmoud A.
2004-02-01
Digital elevation models (DEMs) are important tools in the planning, design and maintenance of mobile communication networks. This research paper proposes a method for generating high accuracy DEMs based on SPOT satellite 1A stereo pair images, ground control points (GCP) and Erdas OrthoBASE Pro image processing software. DEMs with 0.2911 m mean error were achieved for the hilly and heavily populated city of Amman. The generated DEM was used to design a mobile communication network resulted in a minimum number of radio base transceiver stations, maximum number of covered regions and less than 2% of dead zones.
Planning and Scheduling for Environmental Sensor Networks
NASA Astrophysics Data System (ADS)
Frank, J. D.
2005-12-01
Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory resources and to reduce the costs of communication. Planning and scheduling is generally a heavy consumer of time, memory and energy resources. This means careful thought must be given to how much planning and scheduling should be done on the sensors themselves, and how much to do elsewhere. The difficulty of planning and scheduling is exacerbated when reasoning about uncertainty. More time, memory and energy is needed to solve such problems, leading either to more expensive sensors, or suboptimal plans. For example, scientifically interesting events may happen at random times, making it difficult to ensure that sufficient resources are availanble. Since uncertainty is usually lowest in proximity to the sensors themselves, this argues for planning and scheduling onboard the sensors. However, cost minimization dictates sensors be kept as simple as possible, reducing the amount of planning and scheduling they can do themselves. Furthermore, coordinating each sensor's independent plans can be difficult. In the full presentation, we will critically review the planning and scheduling systems used by previously fielded sensor networks. We do so primarily from the perspective of the computational sciences, with a focus on taming computational complexity when operating sensor networks. The case studies are derived from sensor networks based on UAVs, satellites, and planetary rovers. Planning and scheduling considerations include multi-sensor coordination, optimizing science value, onboard power management, onboard memory, planning movement actions to acquire data, and managing communications.These case studies offer lessons for future designs of environmental sensor networks.
NASA Astrophysics Data System (ADS)
Snyder, A.; Dietterich, T.; Selker, J. S.
2017-12-01
Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these errors to those of manually designed weather station networks in West Africa, planned by the respective host-country's meteorological agency.
Mission Data System Java Edition Version 7
NASA Technical Reports Server (NTRS)
Reinholtz, William K.; Wagner, David A.
2013-01-01
The Mission Data System framework defines closed-loop control system abstractions from State Analysis including interfaces for state variables, goals, estimators, and controllers that can be adapted to implement a goal-oriented control system. The framework further provides an execution environment that includes a goal scheduler, execution engine, and fault monitor that support the expression of goal network activity plans. Using these frameworks, adapters can build a goal-oriented control system where activity coordination is verified before execution begins (plan time), and continually during execution. Plan failures including violations of safety constraints expressed in the plan can be handled through automatic re-planning. This version optimizes a number of key interfaces and features to minimize dependencies, performance overhead, and improve reliability. Fault diagnosis and real-time projection capabilities are incorporated. This version enhances earlier versions primarily through optimizations and quality improvements that raise the technology readiness level. Goals explicitly constrain system states over explicit time intervals to eliminate ambiguity about intent, as compared to command-oriented control that only implies persistent intent until another command is sent. A goal network scheduling and verification process ensures that all goals in the plan are achievable before starting execution. Goal failures at runtime can be detected (including predicted failures) and handled by adapted response logic. Responses can include plan repairs (try an alternate tactic to achieve the same goal), goal shedding, ignoring the fault, cancelling the plan, or safing the system.
Access to specialist care: Optimizing the geographic configuration of trauma systems
Jansen, Jan O.; Morrison, Jonathan J.; Wang, Handing; He, Shan; Lawrenson, Robin; Hutchison, James D.; Campbell, Marion K.
2015-01-01
BACKGROUND The optimal geographic configuration of health care systems is key to maximizing accessibility while promoting the efficient use of resources. This article reports the use of a novel approach to inform the optimal configuration of a national trauma system. METHODS This is a prospective cohort study of all trauma patients, 15 years and older, attended to by the Scottish Ambulance Service, between July 1, 2013, and June 30, 2014. Patients underwent notional triage to one of three levels of care (major trauma center [MTC], trauma unit, or local emergency hospital). We used geographic information systems software to calculate access times, by road and air, from all incident locations to all candidate hospitals. We then modeled the performance of all mathematically possible network configurations and used multiobjective optimization to determine geospatially optimized configurations. RESULTS A total of 80,391 casualties were included. A network with only high- or moderate-volume MTCs (admitting at least 650 or 400 severely injured patients per year, respectively) would be optimally configured with a single MTC. A network accepting lower-volume MTCs (at least 240 severely injured patients per year) would be optimally configured with two MTCs. Both configurations would necessitate an increase in the number of helicopter retrievals. CONCLUSION This study has shown that a novel combination of notional triage, network analysis, and mathematical optimization can be used to inform the planning of a national clinical network. Scotland’s trauma system could be optimized with one or two MTCs. LEVEL OF EVIDENCE Care management study, level IV. PMID:26335775
Design of shared unit-dose drug distribution network using multi-level particle swarm optimization.
Chen, Linjie; Monteiro, Thibaud; Wang, Tao; Marcon, Eric
2018-03-01
Unit-dose drug distribution systems provide optimal choices in terms of medication security and efficiency for organizing the drug-use process in large hospitals. As small hospitals have to share such automatic systems for economic reasons, the structure of their logistic organization becomes a very sensitive issue. In the research reported here, we develop a generalized multi-level optimization method - multi-level particle swarm optimization (MLPSO) - to design a shared unit-dose drug distribution network. Structurally, the problem studied can be considered as a type of capacitated location-routing problem (CLRP) with new constraints related to specific production planning. This kind of problem implies that a multi-level optimization should be performed in order to minimize logistic operating costs. Our results show that with the proposed algorithm, a more suitable modeling framework, as well as computational time savings and better optimization performance are obtained than that reported in the literature on this subject.
Supply chain planning classification
NASA Astrophysics Data System (ADS)
Hvolby, Hans-Henrik; Trienekens, Jacques; Bonde, Hans
2001-10-01
Industry experience a need to shift in focus from internal production planning towards planning in the supply network. In this respect customer oriented thinking becomes almost a common good amongst companies in the supply network. An increase in the use of information technology is needed to enable companies to better tune their production planning with customers and suppliers. Information technology opportunities and supply chain planning systems facilitate companies to monitor and control their supplier network. In spite if these developments, most links in today's supply chains make individual plans, because the real demand information is not available throughout the chain. The current systems and processes of the supply chains are not designed to meet the requirements now placed upon them. For long term relationships with suppliers and customers, an integrated decision-making process is needed in order to obtain a satisfactory result for all parties. Especially when customized production and short lead-time is in focus. An effective value chain makes inventory available and visible among the value chain members, minimizes response time and optimizes total inventory value held throughout the chain. In this paper a supply chain planning classification grid is presented based current manufacturing classifications and supply chain planning initiatives.
A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.
Shamsan Saleh, Ahmed M; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A; Ismail, Alyani
2012-01-01
Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.
Wood transportation systems-a spin-off of a computerized information and mapping technique
William W. Phillips; Thomas J. Corcoran
1978-01-01
A computerized mapping system originally developed for planning the control of the spruce budworm in Maine has been extended into a tool for planning road net-work development and optimizing transportation costs. A budgetary process and a mathematical linear programming routine are used interactively with the mapping and information retrieval capabilities of the system...
Managing Information Technology as a Catalyst of Change. Track V: Optimizing the Infrastructure.
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
This track of the 1993 CAUSE Conference presents eight papers on developments in computer network infrastructure and the challenges for those who plan for, implement, and manage it in colleges and universities. Papers include: (1) "Where Do We Go from Here: Summative Assessment of a Five-Year Strategic Plan for Linking and Integrating…
A Study on Market-based Strategic Procurement Planning in Convergent Supply Networks
NASA Astrophysics Data System (ADS)
Opadiji, Jayeola Femi; Kaihara, Toshiya
We present a market-based decentralized approach which uses a market-oriented programming algorithm to obtain Pareto-optimal allocation of resources traded among agents which represent enterprise units in a supply network. The proposed method divides the network into a series of Walrsian markets in order to obtain procurement budgets for enterprises in the network. An interaction protocol based on market value propagation is constructed to coordinate the flow of resources across the network layers. The method mitigates the effect of product complementarity in convergent network by allowing for enterprises to hold private valuations of resources in the markets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Zhenhong; Liu, Changzheng; Yin, Yafeng
The objective of this study is to evaluate the opportunity for public charging for a subset of US cities by using available public parking lot data. The capacity of the parking lots weighted by the daily parking occupancy rate is used as a proxy for daily parking demand. The city s public charging opportunity is defined as the percentage of parking demand covered by chargers on the off-street parking network. We assess this opportunity under the scenario of optimal deployment of public chargers. We use the maximum coverage model to optimally locate those facilities on the public garage network. Wemore » compare the optimal results to the actual placement of chargers. These empirical findings are of great interest to policymakers as those showcase the potential of increasing opportunities for charging under optimal charging location planning.« less
Cyber situational awareness and differential hardening
NASA Astrophysics Data System (ADS)
Dwivedi, Anurag; Tebben, Dan
2012-06-01
The advent of cyber threats has created a need for a new network planning, design, architecture, operations, control, situational awareness, management, and maintenance paradigms. Primary considerations include the ability to assess cyber attack resiliency of the network, and rapidly detect, isolate, and operate during deliberate simultaneous attacks against the network nodes and links. Legacy network planning relied on automatic protection of a network in the event of a single fault or a very few simultaneous faults in mesh networks, but in the future it must be augmented to include improved network resiliency and vulnerability awareness to cyber attacks. Ability to design a resilient network requires the development of methods to define, and quantify the network resiliency to attacks, and to be able to develop new optimization strategies for maintaining operations in the midst of these newly emerging cyber threats. Ways to quantify resiliency, and its use in visualizing cyber vulnerability awareness and in identifying node or link criticality, are presented in the current work, as well as a methodology of differential network hardening based on the criticality profile of cyber network components.
NASA Astrophysics Data System (ADS)
Jia, F.; Lichti, D.
2017-09-01
The optimal network design problem has been well addressed in geodesy and photogrammetry but has not received the same attention for terrestrial laser scanner (TLS) networks. The goal of this research is to develop a complete design system that can automatically provide an optimal plan for high-accuracy, large-volume scanning networks. The aim in this paper is to use three heuristic optimization methods, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO), to solve the first-order design (FOD) problem for a small-volume indoor network and make a comparison of their performances. The room is simplified as discretized wall segments and possible viewpoints. Each possible viewpoint is evaluated with a score table representing the wall segments visible from each viewpoint based on scanning geometry constraints. The goal is to find a minimum number of viewpoints that can obtain complete coverage of all wall segments with a minimal sum of incidence angles. The different methods have been implemented and compared in terms of the quality of the solutions, runtime and repeatability. The experiment environment was simulated from a room located on University of Calgary campus where multiple scans are required due to occlusions from interior walls. The results obtained in this research show that PSO and GA provide similar solutions while SA doesn't guarantee an optimal solution within limited iterations. Overall, GA is considered as the best choice for this problem based on its capability of providing an optimal solution and fewer parameters to tune.
Multimodal Freight Distribution to Support Increased Port Operations
DOT National Transportation Integrated Search
2016-10-01
To support improved port operations, three different aspects of multimodal freight distribution are investigated: (i) Efficient load planning for double stack trains at inland ports; (ii) Optimization of a multimodal network for environmental sustain...
Optimizing automatic traffic recorders network in Minnesota.
DOT National Transportation Integrated Search
2016-01-01
Accurate traffic counts are important for budgeting, traffic planning, and roadway design. With thousands of : centerline miles of roadways, it is not possible to install continuous counters at all locations of interest (e.g., : intersections). There...
A systematic conservation planning approach to fire risk management in Natura 2000 sites.
Foresta, Massimiliano; Carranza, Maria Laura; Garfì, Vittorio; Di Febbraro, Mirko; Marchetti, Marco; Loy, Anna
2016-10-01
A primary challenge in conservation biology is to preserve the most representative biodiversity while simultaneously optimizing the efforts associated with conservation. In Europe, the implementation of the Natura 2000 network requires protocols to recognize and map threats to biodiversity and to identify specific mitigation actions. We propose a systematic conservation planning approach to optimize management actions against specific threats based on two fundamental parameters: biodiversity values and threat pressure. We used the conservation planning software Marxan to optimize a fire management plan in a Natura 2000 coastal network in southern Italy. We address three primary questions: i) Which areas are at high fire risk? ii) Which areas are the most valuable for threatened biodiversity? iii) Which areas should receive priority risk-mitigation actions for the optimal effect?, iv) which fire-prevention actions are feasible in the management areas?. The biodiversity values for the Natura 2000 spatial units were derived from the distribution maps of 18 habitats and 89 vertebrate species of concern in Europe (Habitat Directive 92/43/EEC). The threat pressure map, defined as fire probability, was obtained from digital layers of fire risk and of fire frequency. Marxan settings were defined as follows: a) planning units of 40 × 40 m, b) conservation features defined as all habitats and vertebrate species of European concern occurring in the study area, c) conservation targets defined according with fire sensitivity and extinction risk of conservation features, and d) costs determined as the complement of fire probabilities. We identified 23 management areas in which to concentrate efforts for the optimal reduction of fire-induced effects. Because traditional fire prevention is not feasible for most of policy habitats included in the management areas, alternative prevention practices were identified that allows the conservation of the vegetation structure. The proposed approach has potential applications for multiple landscapes, threats and spatial scales and could be extended to other valuable natural areas, including protected areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
An auxiliary optimization method for complex public transit route network based on link prediction
NASA Astrophysics Data System (ADS)
Zhang, Lin; Lu, Jian; Yue, Xianfei; Zhou, Jialin; Li, Yunxuan; Wan, Qian
2018-02-01
Inspired by the missing (new) link prediction and the spurious existing link identification in link prediction theory, this paper establishes an auxiliary optimization method for public transit route network (PTRN) based on link prediction. First, link prediction applied to PTRN is described, and based on reviewing the previous studies, the summary indices set and its algorithms set are collected for the link prediction experiment. Second, through analyzing the topological properties of Jinan’s PTRN established by the Space R method, we found that this is a typical small-world network with a relatively large average clustering coefficient. This phenomenon indicates that the structural similarity-based link prediction will show a good performance in this network. Then, based on the link prediction experiment of the summary indices set, three indices with maximum accuracy are selected for auxiliary optimization of Jinan’s PTRN. Furthermore, these link prediction results show that the overall layout of Jinan’s PTRN is stable and orderly, except for a partial area that requires optimization and reconstruction. The above pattern conforms to the general pattern of the optimal development stage of PTRN in China. Finally, based on the missing (new) link prediction and the spurious existing link identification, we propose optimization schemes that can be used not only to optimize current PTRN but also to evaluate PTRN planning.
Capacity planning of a wide-sense nonblocking generalized survivable network
NASA Astrophysics Data System (ADS)
Ho, Kwok Shing; Cheung, Kwok Wai
2006-06-01
Generalized survivable networks (GSNs) have two interesting properties that are essential attributes for future backbone networks--full survivability against link failures and support for dynamic traffic demands. GSNs incorporate the nonblocking network concept into the survivable network models. Given a set of nodes and a topology that is at least two-edge connected, a certain minimum capacity is required for each edge to form a GSN. The edge capacity is bounded because each node has an input-output capacity limit that serves as a constraint for any allowable traffic demand matrix. The GSN capacity planning problem is nondeterministic polynomial time (NP) hard. We first give a rigorous mathematical framework; then we offer two different solution approaches. The two-phase approach is fast, but the joint optimization approach yields a better bound. We carried out numerical computations for eight networks with different topologies and found that the cost of a GSN is only a fraction (from 52% to 89%) more than that of a static survivable network.
Convergent evolution of vascular optimization in kelp (Laminariales).
Drobnitch, Sarah Tepler; Jensen, Kaare H; Prentice, Paige; Pittermann, Jarmila
2015-10-07
Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been overwhelmingly adopted by extant species. To truly evaluate the dominance and universality of vascular optimization, however, it is critical to examine other, lesser-known, vascularized phyla. The brown algae (Phaeophyceae) are one such group--as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong scaling relationships between all tested vascular parameters and agrees with our model; other species within the Laminariales display weak or inconsistent vascular allometries. The lack of universal scaling in the kelps and the presence of optimized transport anatomy in M. pyrifera raises important questions about the evolution of optimization and the possible competitive advantage conferred by optimized vascular systems to multicellular phyla. © 2015 The Author(s).
Fisher, Jason C.
2013-01-01
Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells can be removed from the USGS-INL network before the water table map degradation accelerates. The optimal network designs indicate the robustness of the network design tool. Observation wells were removed from high well-density areas of the network while retaining the spatial pattern of the existing water-table map.
Popoola, Segun I; Atayero, Aderemi A; Faruk, Nasir
2018-02-01
The behaviour of radio wave signals in a wireless channel depends on the local terrain profile of the propagation environments. In view of this, Received Signal Strength (RSS) of transmitted signals are measured at different points in space for radio network planning and optimization. However, these important data are often not publicly available for wireless channel characterization and propagation model development. In this data article, RSS data of a commercial base station operating at 900 and 1800 MHz were measured along three different routes of Lagos-Badagry Highway, Nigeria. In addition, local terrain profile data of the study area (terrain elevation, clutter height, altitude, and the distance of the mobile station from the base station) are extracted from Digital Terrain Map (DTM) to account for the unique environmental features. Statistical analyses and probability distributions of the RSS data are presented in tables and graphs. Furthermore, the degree of correlations (and the corresponding significance) between the RSS and the local terrain parameters were computed and analyzed for proper interpretations. The data provided in this article will help radio network engineers to: predict signal path loss; estimate radio coverage; efficiently reuse limited frequencies; avoid interferences; optimize handover; and adjust transmitted power level.
Incentive-Compatible Robust Line Planning
NASA Astrophysics Data System (ADS)
Bessas, Apostolos; Kontogiannis, Spyros; Zaroliagis, Christos
The problem of robust line planning requests for a set of origin-destination paths (lines) along with their frequencies in an underlying railway network infrastructure, which are robust to fluctuations of real-time parameters of the solution. In this work, we investigate a variant of robust line planning stemming from recent regulations in the railway sector that introduce competition and free railway markets, and set up a new application scenario: there is a (potentially large) number of line operators that have their lines fixed and operate as competing entities issuing frequency requests, while the management of the infrastructure itself remains the responsibility of a single entity, the network operator. The line operators are typically unwilling to reveal their true incentives, while the network operator strives to ensure a fair (or socially optimal) usage of the infrastructure, e.g., by maximizing the (unknown to him) aggregate incentives of the line operators.
Current-Sensitive Path Planning for an Underactuated Free-Floating Ocean Sensorweb
NASA Technical Reports Server (NTRS)
Dahl, Kristen P.; Thompson, David R.; McLaren, David; Chao, Yi; Chien, Steve
2011-01-01
This work investigates multi-agent path planning in strong, dynamic currents using thousands of highly under-actuated vehicles. We address the specific task of path planning for a global network of ocean-observing floats. These submersibles are typified by the Argo global network consisting of over 3000 sensor platforms. They can control their buoyancy to float at depth for data collection or rise to the surface for satellite communications. Currently, floats drift at a constant depth regardless of the local currents. However, accurate current forecasts have become available which present the possibility of intentionally controlling floats' motion by dynamically commanding them to linger at different depths. This project explores the use of these current predictions to direct float networks to some desired final formation or position. It presents multiple algorithms for such path optimization and demonstrates their advantage over the standard approach of constant-depth drifting.
Network Hardware Virtualization for Application Provisioning in Core Networks
Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp; ...
2017-02-03
We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less
Network Hardware Virtualization for Application Provisioning in Core Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp
We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less
Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks
DOT National Transportation Integrated Search
2016-05-01
Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...
Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration plan.
DOT National Transportation Integrated Search
2015-01-01
This report describes the INFLO Prototype Small-Scale Demonstration to be performed in Seattle Washington. This demonstration is intended to demonstrate that the INFLO Prototype, previously demonstrated in a controlled environment, functions well in ...
NASA Astrophysics Data System (ADS)
Prathabrao, M.; Nawawi, Azli; Sidek, Noor Azizah
2017-04-01
Radio Frequency Identification (RFID) system has multiple benefits which can improve the operational efficiency of the organization. The advantages are the ability to record data systematically and quickly, reducing human errors and system errors, update the database automatically and efficiently. It is often more readers (reader) is needed for the installation purposes in RFID system. Thus, it makes the system more complex. As a result, RFID network planning process is needed to ensure the RFID system works perfectly. The planning process is also considered as an optimization process and power adjustment because the coordinates of each RFID reader to be determined. Therefore, algorithms inspired by the environment (Algorithm Inspired by Nature) is often used. In the study, PSO algorithm is used because it has few number of parameters, the simulation time is fast, easy to use and also very practical. However, PSO parameters must be adjusted correctly, for robust and efficient usage of PSO. Failure to do so may result in disruption of performance and results of PSO optimization of the system will be less good. To ensure the efficiency of PSO, this study will examine the effects of two parameters on the performance of PSO Algorithm in RFID tag coverage optimization. The parameters to be studied are the swarm size and iteration number. In addition to that, the study will also recommend the most optimal adjustment for both parameters that is, 200 for the no. iterations and 800 for the no. of swarms. Finally, the results of this study will enable PSO to operate more efficiently in order to optimize RFID network planning system.
NASA Astrophysics Data System (ADS)
Leśko, Michał; Bujalski, Wojciech
2017-12-01
The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way - allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.
Calibration of neural networks using genetic algorithms, with application to optimal path planning
NASA Technical Reports Server (NTRS)
Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel
1987-01-01
Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.
Talbot, Jean A; Coburn, Andrew; Croll, Zach; Ziller, Erika
2013-06-01
The Affordable Care Act (ACA) requires Health Insurance Exchanges (HIEs) to specify network adequacy standards for the Qualified Health Plans (QHPs) they offer to consumers. This article examines rural issues surrounding network adequacy standards, and offers recommendations for crafting standards that optimize rural access. This policy analysis reviews ACA requirements for QHP network adequacy standards, considering Medicaid managed care and Medicare Advantage (MA) standards as models. We analyze the implications of stringent vs flexible access standards in terms of how choices might affect health plans' participation in rural markets and rural enrollees' access to care. Finally, we propose strategies for designing standards with the degree of flexibility most likely to benefit rural consumers. A traditional approach to safeguarding rural access is to impose strict network adequacy standards on plans in rural areas. However, if strict standards prove difficult to meet due to rural provider scarcity, they might diminish QHPs' willingness to serve rural areas. Thus, they could exacerbate rather than alleviate rural access problems. To benefit rural communities, network adequacy standards must be strong enough to provide real protections for beneficiaries, yet flexible enough to accommodate rural delivery system constraints and remain attainable for QHPs. Useful strategies to achieve this balance might include: adjusting standards according to degrees of rurality and rural utilization norms; counting midlevel clinicians toward fulfillment of patient-provider ratios; and allowing plans to ensure rural access through delivery system innovations such as telehealth. © 2013 National Rural Health Association.
NASA Astrophysics Data System (ADS)
Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth
2017-04-01
In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.
Calculations of dose distributions using a neural network model
NASA Astrophysics Data System (ADS)
Mathieu, R.; Martin, E.; Gschwind, R.; Makovicka, L.; Contassot-Vivier, S.; Bahi, J.
2005-03-01
The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journées Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map.
Calculations of dose distributions using a neural network model.
Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J
2005-03-07
The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map.
Neural Network Solves "Traveling-Salesman" Problem
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P.; Moopenn, Alexander W.
1990-01-01
Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.
Drainage network optimization for inundation mitigation case study of ITS Surabaya
NASA Astrophysics Data System (ADS)
Savitri, Yang Ratri; Lasminto, Umboro
2017-06-01
Institut Teknologi Sepuluh Nopember (ITS) Surabaya is one of engineering campus in Surabaya with an area of ± 187 ha, which consists of building and campus facilities. The campus is supported by drainage system planned according to the ITS Master Plan on 2002. The drainage system is planned with numbers of retention and detention pond based on the city concept of Zero Delta Q concept. However, in the rainy season, it frequently has inundation problems in several locations. The problems could be identified from two major sources, namely the internal campus facilities and external condition connected with the city drainage system. This paper described the capabilities of drainage network optimization to mitigate local urban drainage problem. The hydrology-hydraulic investigation was done by utilizing the Storm Water Management Model (SWMM) developed by US Environmental Protection Agency (EPA). The mitigation is based on several alternative that based on the existing condition and regarding the social problem. The study results showed that the management of the flow from external source could reduce final stored volume of the campus main channel by 31.75 %.
NASA Astrophysics Data System (ADS)
Pesaresi, D.; Busby, R.
2013-08-01
The number and quality of seismic stations and networks in Europe continually improves, nevertheless there is always scope to optimize their performance. In this session we welcomed contributions from all aspects of seismic network installation, operation and management. This includes site selection; equipment testing and installation; planning and implementing communication paths; policies for redundancy in data acquisition, processing and archiving; and integration of different datasets including GPS and OBS.
Iterative free-energy optimization for recurrent neural networks (INFERNO).
Pitti, Alexandre; Gaussier, Philippe; Quoy, Mathias
2017-01-01
The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes' synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle.
Optimization of offsets and cycle length using high resolution signal event data.
DOT National Transportation Integrated Search
2011-01-01
Traffic signal systems represent a substantial component of the highway transportation network in the United States. It is challenging for most agencies to find engineering resources to properly update signal policies and timing plans to accommodate ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaohu; Shi, Di; Wang, Zhiwei
Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus systemmore » demonstrate the effectiveness of the proposed planning model.« less
Campaign-level dynamic network modelling for spaceflight logistics for the flexible path concept
NASA Astrophysics Data System (ADS)
Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert
2016-06-01
This paper develops a network optimization formulation for dynamic campaign-level space mission planning. Although many past space missions have been designed mainly from a mission-level perspective, a campaign-level perspective will be important for future space exploration. In order to find the optimal campaign-level space transportation architecture, a mixed-integer linear programming (MILP) formulation with a generalized multi-commodity flow and a time-expanded network is developed. Particularly, a new heuristics-based method, a partially static time-expanded network, is developed to provide a solution quickly. The developed method is applied to a case study containing human exploration of a near-Earth object (NEO) and Mars, related to the concept of the Flexible Path. The numerical results show that using the specific combinations of propulsion technologies, in-situ resource utilization (ISRU), and other space infrastructure elements can reduce the initial mass in low-Earth orbit (IMLEO) significantly. In addition, the case study results also show that we can achieve large IMLEO reduction by designing NEO and Mars missions together as a campaign compared with designing them separately owing to their common space infrastructure pre-deployment. This research will be an important step toward efficient and flexible campaign-level space mission planning.
Telestroke network fundamentals.
Meyer, Brett C; Demaerschalk, Bart M
2012-10-01
The objectives of this manuscript are to identify key components to maintaining the logistic and/or operational sustainability of a telestroke network, to identify best practices to be considered for assessment and management of acute stroke when planning for and developing a telestroke network, to show practical steps to enable progress toward implementing a telestroke solution for optimizing acute stroke care, to incorporate evidence-based practice guidelines and care pathways into a telestroke network, to emphasize technology variables and options, and to propose metrics to use when determining the performance, outcomes, and quality of a telestroke network. Copyright © 2012 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Zhang, Xuejun; Lei, Jiaxing
2015-01-01
Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840
Developing a Framework for Effective Network Capacity Planning
NASA Technical Reports Server (NTRS)
Yaprak, Ece
2005-01-01
As Internet traffic continues to grow exponentially, developing a clearer understanding of, and appropriately measuring, network's performance is becoming ever more critical. An important challenge faced by the Information Resources Directorate (IRD) at the Johnson Space Center in this context remains not only monitoring and maintaining a secure network, but also better understanding the capacity and future growth potential boundaries of its network. This requires capacity planning which involves modeling and simulating different network alternatives, and incorporating changes in design as technologies, components, configurations, and applications change, to determine optimal solutions in light of IRD's goals, objectives and strategies. My primary task this summer was to address this need. I evaluated network-modeling tools from OPNET Technologies Inc. and Compuware Corporation. I generated a baseline model for Building 45 using both tools by importing "real" topology/traffic information using IRD's various network management tools. I compared each tool against the other in terms of the advantages and disadvantages of both tools to accomplish IRD's goals. I also prepared step-by-step "how to design a baseline model" tutorial for both OPNET and Compuware products.
AllAboard: Visual Exploration of Cellphone Mobility Data to Optimise Public Transport.
Di Lorenzo, G; Sbodio, M; Calabrese, F; Berlingerio, M; Pinelli, F; Nair, R
2016-02-01
The deep penetration of mobile phones offers cities the ability to opportunistically monitor citizens' mobility and use data-driven insights to better plan and manage services. With large scale data on mobility patterns, operators can move away from the costly, mostly survey based, transportation planning processes, to a more data-centric view, that places the instrumented user at the center of development. In this framework, using mobile phone data to perform transit analysis and optimization represents a new frontier with significant societal impact, especially in developing countries. In this paper we present AllAboard, an intelligent tool that analyses cellphone data to help city authorities in visually exploring urban mobility and optimizing public transport. This is performed within a self contained tool, as opposed to the current solutions which rely on a combination of several distinct tools for analysis, reporting, optimisation and planning. An interactive user interface allows transit operators to visually explore the travel demand in both space and time, correlate it with the transit network, and evaluate the quality of service that a transit network provides to the citizens at very fine grain. Operators can visually test scenarios for transit network improvements, and compare the expected impact on the travellers' experience. The system has been tested using real telecommunication data for the city of Abidjan, Ivory Coast, and evaluated from a data mining, optimisation and user prospective.
NASA Astrophysics Data System (ADS)
Lee, Allen
The recent natural gas boom has opened much discussion about the potential of natural gas and specifically Liquefied Natural Gas (LNG) in the United States transportation sector. The switch from diesel to natural gas vehicles would reduce foreign dependence on oil, spur domestic economic growth, and potentially reduce greenhouse gas emissions. LNG provides the most potential for the medium to heavy-duty vehicle market partially due to unstable oil prices and stagnant natural gas prices. As long as the abundance of unconventional gas in the United States remains cheap, fuel switching to natural gas could provide significant cost savings for long haul freight industry. Amid a growing LNG station network and ever increasing demand for freight movement, LNG heavy-duty truck sales are less than anticipated and the industry as a whole is less economic than expected. In spite of much existing and mature natural gas infrastructure, the supply chain for LNG is different and requires explicit and careful planning. This thesis proposes research to explore the claim that the largest obstacle to widespread LNG market penetration is sub-optimal infrastructure planning. No other study we are aware of has explicitly explored the LNG transportation fuel supply chain for heavy-duty freight trucks. This thesis presents a novel methodology that links a network infrastructure optimization model (represents supply side) with a vehicle stock and economic payback model (represents demand side). The model characterizes both a temporal and spatial optimization model of future LNG transportation fuel supply chains in the United States. The principal research goal is to assess the economic feasibility of the current LNG transportation fuel industry and to determine an optimal pathway to achieve ubiquitous commercialization of LNG vehicles in the heavy-duty transport sector. The results indicate that LNG is not economic as a heavy-duty truck fuel until 2030 under current market conditions unless a significant station capital subsidy, upwards of 50 percent and even then it might not be enough. However, a doubling of LNG truck demand will initialize network commercialization in the modeling base year, 2012 (the same year Clean Energy Corp. launched their national LNG network) in California and then gradually establish in other hotspot regions in Mid-West and Mid-Atlantic throughout the time horizon. The model shows that trucking routes in California are highly commercial due to high traffic volume and regional advantages. The model can be used by industry to inform necessary policies and to plan future infrastructure deployment along trucking routes that are likely to provide the highest returns.
A linguistic geometry for 3D strategic planning
NASA Technical Reports Server (NTRS)
Stilman, Boris
1995-01-01
This paper is a new step in the development and application of the Linguistic Geometry. This formal theory is intended to discover the inner properties of human expert heuristics, which have been successful in a certain class of complex control systems, and apply them to different systems. In this paper we investigate heuristics extracted in the form of hierarchical networks of planning paths of autonomous agents. Employing Linguistic Geometry tools the dynamic hierarchy of networks is represented as a hierarchy of formal attribute languages. The main ideas of this methodology are shown in this paper on the new pilot example of the solution of the extremely complex 3D optimization problem of strategic planning for the space combat of autonomous vehicles. This example demonstrates deep and highly selective search in comparison with conventional search algorithms.
Design of an advanced flight planning system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Goka, T.
1985-01-01
The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).
HURON (HUman and Robotic Optimization Network) Multi-Agent Temporal Activity Planner/Scheduler
NASA Technical Reports Server (NTRS)
Hua, Hook; Mrozinski, Joseph J.; Elfes, Alberto; Adumitroaie, Virgil; Shelton, Kacie E.; Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.
2012-01-01
HURON solves the problem of how to optimize a plan and schedule for assigning multiple agents to a temporal sequence of actions (e.g., science tasks). Developed as a generic planning and scheduling tool, HURON has been used to optimize space mission surface operations. The tool has also been used to analyze lunar architectures for a variety of surface operational scenarios in order to maximize return on investment and productivity. These scenarios include numerous science activities performed by a diverse set of agents: humans, teleoperated rovers, and autonomous rovers. Once given a set of agents, activities, resources, resource constraints, temporal constraints, and de pendencies, HURON computes an optimal schedule that meets a specified goal (e.g., maximum productivity or minimum time), subject to the constraints. HURON performs planning and scheduling optimization as a graph search in state-space with forward progression. Each node in the graph contains a state instance. Starting with the initial node, a graph is automatically constructed with new successive nodes of each new state to explore. The optimization uses a set of pre-conditions and post-conditions to create the children states. The Python language was adopted to not only enable more agile development, but to also allow the domain experts to easily define their optimization models. A graphical user interface was also developed to facilitate real-time search information feedback and interaction by the operator in the search optimization process. The HURON package has many potential uses in the fields of Operations Research and Management Science where this technology applies to many commercial domains requiring optimization to reduce costs. For example, optimizing a fleet of transportation truck routes, aircraft flight scheduling, and other route-planning scenarios involving multiple agent task optimization would all benefit by using HURON.
Interdependent Network Recovery Games.
Smith, Andrew M; González, Andrés D; Dueñas-Osorio, Leonardo; D'Souza, Raissa M
2017-10-30
Recovery of interdependent infrastructure networks in the presence of catastrophic failure is crucial to the economy and welfare of society. Recently, centralized methods have been developed to address optimal resource allocation in postdisaster recovery scenarios of interdependent infrastructure systems that minimize total cost. In real-world systems, however, multiple independent, possibly noncooperative, utility network controllers are responsible for making recovery decisions, resulting in suboptimal decentralized processes. With the goal of minimizing recovery cost, a best-case decentralized model allows controllers to develop a full recovery plan and negotiate until all parties are satisfied (an equilibrium is reached). Such a model is computationally intensive for planning and negotiating, and time is a crucial resource in postdisaster recovery scenarios. Furthermore, in this work, we prove this best-case decentralized negotiation process could continue indefinitely under certain conditions. Accounting for network controllers' urgency in repairing their system, we propose an ad hoc sequential game-theoretic model of interdependent infrastructure network recovery represented as a discrete time noncooperative game between network controllers that is guaranteed to converge to an equilibrium. We further reduce the computation time needed to find a solution by applying a best-response heuristic and prove bounds on ε-Nash equilibrium, where ε depends on problem inputs. We compare best-case and ad hoc models on an empirical interdependent infrastructure network in the presence of simulated earthquakes to demonstrate the extent of the tradeoff between optimality and computational efficiency. Our method provides a foundation for modeling sociotechnical systems in a way that mirrors restoration processes in practice. © 2017 Society for Risk Analysis.
Optimizing snow plowing operations in urban road networks : final research report.
DOT National Transportation Integrated Search
2015-01-01
Due to the disruptive effect of snowstorms on cities, both in terms of : mobility and safety, the faster the streets can be cleared the better. Yet in : most cities (including Pittsburgh), static plans for snowplowing are : developed using simple all...
Optimal cost for strengthening or destroying a given network
NASA Astrophysics Data System (ADS)
Patron, Amikam; Cohen, Reuven; Li, Daqing; Havlin, Shlomo
2017-05-01
Strengthening or destroying a network is a very important issue in designing resilient networks or in planning attacks against networks, including planning strategies to immunize a network against diseases, viruses, etc. Here we develop a method for strengthening or destroying a random network with a minimum cost. We assume a correlation between the cost required to strengthen or destroy a node and the degree of the node. Accordingly, we define a cost function c (k ) , which is the cost of strengthening or destroying a node with degree k . Using the degrees k in a network and the cost function c (k ) , we develop a method for defining a list of priorities of degrees and for choosing the right group of degrees to be strengthened or destroyed that minimizes the total price of strengthening or destroying the entire network. We find that the list of priorities of degrees is universal and independent of the network's degree distribution, for all kinds of random networks. The list of priorities is the same for both strengthening a network and for destroying a network with minimum cost. However, in spite of this similarity, there is a difference between their pc, the critical fraction of nodes that has to be functional to guarantee the existence of a giant component in the network.
Optimal cost for strengthening or destroying a given network.
Patron, Amikam; Cohen, Reuven; Li, Daqing; Havlin, Shlomo
2017-05-01
Strengthening or destroying a network is a very important issue in designing resilient networks or in planning attacks against networks, including planning strategies to immunize a network against diseases, viruses, etc. Here we develop a method for strengthening or destroying a random network with a minimum cost. We assume a correlation between the cost required to strengthen or destroy a node and the degree of the node. Accordingly, we define a cost function c(k), which is the cost of strengthening or destroying a node with degree k. Using the degrees k in a network and the cost function c(k), we develop a method for defining a list of priorities of degrees and for choosing the right group of degrees to be strengthened or destroyed that minimizes the total price of strengthening or destroying the entire network. We find that the list of priorities of degrees is universal and independent of the network's degree distribution, for all kinds of random networks. The list of priorities is the same for both strengthening a network and for destroying a network with minimum cost. However, in spite of this similarity, there is a difference between their p_{c}, the critical fraction of nodes that has to be functional to guarantee the existence of a giant component in the network.
Artificial Intelligence based technique for BTS placement
NASA Astrophysics Data System (ADS)
Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.
2013-12-01
The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.
A Framework for Dimensioning VDL-2 Air-Ground Networks
NASA Technical Reports Server (NTRS)
Ribeiro, Leila Z.; Monticone, Leone C.; Snow, Richard E.; Box, Frank; Apaza, Rafel; Bretmersky, Steven
2014-01-01
This paper describes a framework developed at MITRE for dimensioning a Very High Frequency (VHF) Digital Link Mode 2 (VDL-2) Air-to-Ground network. This framework was developed to support the FAA's Data Communications (Data Comm) program by providing estimates of expected capacity required for the air-ground network services that will support Controller-Pilot-Data-Link Communications (CPDLC), as well as the spectrum needed to operate the system at required levels of performance. The Data Comm program is part of the FAA's NextGen initiative to implement advanced communication capabilities in the National Airspace System (NAS). The first component of the framework is the radio-frequency (RF) coverage design for the network ground stations. Then we proceed to describe the approach used to assess the aircraft geographical distribution and the data traffic demand expected in the network. The next step is the resource allocation utilizing optimization algorithms developed in MITRE's Spectrum ProspectorTM tool to propose frequency assignment solutions, and a NASA-developed VDL-2 tool to perform simulations and determine whether a proposed plan meets the desired performance requirements. The framework presented is capable of providing quantitative estimates of multiple variables related to the air-ground network, in order to satisfy established coverage, capacity and latency performance requirements. Outputs include: coverage provided at different altitudes; data capacity required in the network, aggregated or on a per ground station basis; spectrum (pool of frequencies) needed for the system to meet a target performance; optimized frequency plan for a given scenario; expected performance given spectrum available; and, estimates of throughput distributions for a given scenario. We conclude with a discussion aimed at providing insight into the tradeoffs and challenges identified with respect to radio resource management for VDL-2 air-ground networks.
Topography-based Flood Planning and Optimization Capability Development Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judi, David R.; Tasseff, Byron A.; Bent, Russell W.
2014-02-26
Globally, water-related disasters are among the most frequent and costly natural hazards. Flooding inflicts catastrophic damage on critical infrastructure and population, resulting in substantial economic and social costs. NISAC is developing LeveeSim, a suite of nonlinear and network optimization models, to predict optimal barrier placement to protect critical regions and infrastructure during flood events. LeveeSim currently includes a high-performance flood model to simulate overland flow, as well as a network optimization model to predict optimal barrier placement during a flood event. The LeveeSim suite models the effects of flooding in predefined regions. By manipulating a domain’s underlying topography, developers alteredmore » flood propagation to reduce detrimental effects in areas of interest. This numerical altering of a domain’s topography is analogous to building levees, placing sandbags, etc. To induce optimal changes in topography, NISAC used a novel application of an optimization algorithm to minimize flooding effects in regions of interest. To develop LeveeSim, NISAC constructed and coupled hydrodynamic and optimization algorithms. NISAC first implemented its existing flood modeling software to use massively parallel graphics processing units (GPUs), which allowed for the simulation of larger domains and longer timescales. NISAC then implemented a network optimization model to predict optimal barrier placement based on output from flood simulations. As proof of concept, NISAC developed five simple test scenarios, and optimized topographic solutions were compared with intuitive solutions. Finally, as an early validation example, barrier placement was optimized to protect an arbitrary region in a simulation of the historic Taum Sauk dam breach.« less
NASA Astrophysics Data System (ADS)
Li, J. C.; Gong, B.; Wang, H. G.
2016-08-01
Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.
Detecting and Jamming Dynamic Communication Networks in Anti-Access Environments
2011-03-01
P.M. Pardalos, Y. Ye. and C.W. Commander (eds) V. Boginski. Sensors: Theory , Algorithms, and Applications. Springer, to appear in 2009. [21] Joseph C...Sumeetpal S. Singh. Nikolaos Kantas , Ba-Ngu Vo, Arnaud Doucet, and Robin J. Evans. Simulation-based optimal sensor scheduling with application to...observer trajectory planning. Aotomatica, 43(5):817-830, 2007. [27] Anthony Man-Cho So and Yinyu Ye. Theory of semidefinite programming for sensor network
A greedy-navigator approach to navigable city plans
NASA Astrophysics Data System (ADS)
Lee, Sang Hoon; Holme, Petter
2013-01-01
We use a set of four theoretical navigability indices for street maps to investigate the shape of the resulting street networks, if they are grown by optimizing these indices. The indices compare the performance of simulated navigators (having a partial information about the surroundings, like humans in many real situations) to the performance of optimally navigating individuals. We show that our simple greedy shortcut construction strategy generates the emerging structures that are different from real road network, but not inconceivable. The resulting city plans, for all navigation indices, share common qualitative properties such as the tendency for triangular blocks to appear, while the more quantitative features, such as degree distributions and clustering, are characteristically different depending on the type of metrics and routing strategies. We show that it is the type of metrics used which determines the overall shapes characterized by structural heterogeneity, but the routing schemes contribute to more subtle details of locality, which is more emphasized in case of unrestricted connections when the edge crossing is allowed.
Optimal planning and design of a renewable energy based supply system for microgrids
Hafez, Omar; Bhattacharya, Kankar
2012-03-03
This paper presents a technique for optimal planning and design of hybrid renewable energy systems for microgrid applications. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is used to determine the optimal size and type of distributed energy resources (DERs) and their operating schedules for a sample utility distribution system. Using the DER-CAM results, an evaluation is performed to evaluate the electrical performance of the distribution circuit if the DERs selected by the DER-CAM optimization analyses are incorporated. Results of analyses regarding the economic benefits of utilizing the optimal locations identified for the selected DER within the system are alsomore » presented. The actual Brookhaven National Laboratory (BNL) campus electrical network is used as an example to show the effectiveness of this approach. The results show that these technical and economic analyses of hybrid renewable energy systems are essential for the efficient utilization of renewable energy resources for microgird applications.« less
Strategies on the Implementation of China's Logistics Information Network
NASA Astrophysics Data System (ADS)
Dong, Yahui; Li, Wei; Guo, Xuwen
The economic globalization and trend of e-commerce network have determined that the logistics industry will be rapidly developed in the 21st century. In order to achieve the optimal allocation of resources, a worldwide rapid and sound customer service system should be established. The establishment of a corresponding modern logistics system is the inevitable choice of this requirement. It is also the inevitable choice for the development of modern logistics industry in China. The perfect combination of modern logistics and information network can better promote the development of the logistics industry. Through the analysis of Status of Logistics Industry in China, this paper summed up the domestic logistics enterprise logistics information system in the building of some common problems. According to logistics information systems planning methods and principles set out logistics information system to optimize the management model.
Adaptive Optimization of Aircraft Engine Performance Using Neural Networks
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Long, Theresa W.
1995-01-01
Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.
Operation and planning of coordinated natural gas and electricity infrastructures
NASA Astrophysics Data System (ADS)
Zhang, Xiaping
Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and reliability. With the growing reliance on natural gas and widespread utilization of highly efficient combined heat and power (CHP), it is also questionable that whether the independent design of infrastructures can meet potential challenges of future energy supply. To address this issue, this thesis proposed an optimization framework for a sustainable multiple energy system expansion planning based on an energy hub model while considering the energy efficiency, emission and reliability performance. In addition, we introduced the probabilistic reliability evaluation and flow network analysis into the multiple energy system design in order to obtain an optimal and reliable network topology.
Feleppa, Ernest J; Porter, Christopher R; Ketterling, Jeffrey; Lee, Paul; Dasgupta, Shreedevi; Urban, Stella; Kalisz, Andrew
2004-07-01
Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radiofrequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employed and evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show cancerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy.
Feleppa, Ernest J.; Porter, Christopher R.; Ketterling, Jeffrey; Lee, Paul; Dasgupta, Shreedevi; Urban, Stella; Kalisz, Andrew
2006-01-01
Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radio frequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employedand evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show can cerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy. PMID:15754797
Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.
Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks
Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883
Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm
NASA Astrophysics Data System (ADS)
Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.
2014-11-01
minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several cities optimally or connecting all cities with minimum total road length.
NASA Astrophysics Data System (ADS)
Xie, Chen; Yang, Fan; Liu, Guoqing; Liu, Yang; Wang, Long; Fan, Ziwu
2017-01-01
Water environment of urban rivers suffers degradation with the impacts of urban expansion, especially in Yangtze River Delta. The water area in cites decreased sharply, and some rivers were cut off because of estate development, which brings the problems of urban flooding, flow stagnation and water deterioration. The approach aims to enhance flood control capability and improve the urban river water quality by planning gate-pump stations surrounding the cities and optimizing the locations and functions of the pumps, sluice gates, weirs in the urban river network. These gate-pump stations together with the sluice gates and weirs guarantee the ability to control the water level in the rivers and creating hydraulic gradient artificially according to mathematical model. Therefore the flow velocity increases, which increases the rate of water exchange, the DO concentration and water body self-purification ability. By site survey and prototype measurement, the river problems are evaluated and basic data are collected. The hydrodynamic model of the river network is established and calibrated to simulate the scenarios. The schemes of water quality improvement, including optimizing layout of the water distribution projects, improvement of the flow discharge in the river network and planning the drainage capacity are decided by comprehensive Analysis. Finally the paper introduces the case study of the approach in Changshu City, where the approach is successfully implemented.
Piao, Wenhua; Kim, Changwon; Cho, Sunja; Kim, Hyosoo; Kim, Minsoo; Kim, Yejin
2016-12-01
In wastewater treatment plants (WWTPs), the portion of operating costs related to electric power consumption is increasing. If the electric power consumption decreased, however, it would be difficult to comply with the effluent water quality requirements. A protocol was proposed to minimize the environmental impacts as well as to optimize the electric power consumption under the conditions needed to meet the effluent water quality standards in this study. This protocol was comprised of six phases of procedure and was tested using operating data from S-WWTP to prove its applicability. The 11 major operating variables were categorized into three groups using principal component analysis and K-mean cluster analysis. Life cycle assessment (LCA) was conducted for each group to deduce the optimal operating conditions for each operating state. Then, employing mathematical modeling, six improvement plans to reduce electric power consumption were deduced. The electric power consumptions for suggested plans were estimated using an artificial neural network. This was followed by a second round of LCA conducted on the plans. As a result, a set of optimized improvement plans were derived for each group that were able to optimize the electric power consumption and life cycle environmental impact, at the same time. Based on these test results, the WWTP operating management protocol presented in this study is deemed able to suggest optimal operating conditions under which power consumption can be optimized with minimal life cycle environmental impact, while allowing the plant to meet water quality requirements.
Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN
NASA Astrophysics Data System (ADS)
Peter, Josephine; Doloi, B.; Bhattacharyya, B.
2011-01-01
The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actual experimental observations.
NASA Astrophysics Data System (ADS)
Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan
2015-02-01
An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.
Department of Defense Information Enterprise: Strategic Plan 2010-2012
2010-04-01
migrate from circuit-based technology to a converged (voice, video , and data) IP network and UC services environment. Ensure the optimal...Kevin Coleman, “Cyber Attacks on Supply Chain Systems,” Defense Tech, April 15, 2009 8 Lolita C. Baldor, “Federal Web Sites Knocked Out by Cyber Attack
[Construction and optimization of ecological network for nature reserves in Fujian Province, China].
Gu, Fan; Huang, Yi Xiong; Chen, Chuan Ming; Cheng, Dong Liang; Guo, Jia Lei
2017-03-18
The nature reserve is very important to biodiversity maintenance. However, due to the urbanization, the nature reserve has been fragmented with reduction in area, leading to the loss of species diversity. Establishing ecological network can effectively connect the fragmented habitats and plays an important role in species conversation. In this paper, based on deciding habitat patches and the landscape cost surface in ArcGIS, a minimum cumulative resistance model was used to simulate the potential ecological network of Fujian provincial nature reserves. The connectivity and importance of network were analyzed and evaluated based on comparison of connectivity indices (including the integral index of connectivity and probability of connectivity) and gravity model both before and after the potential ecological network construction. The optimum ecological network optimization measures were proposed. The result demonstrated that woodlands, grasslands and wetlands together made up the important part of the nature reserve ecological network. The habitats with large area had a higher degree of importance in the network. After constructing the network, the connectivity level was significantly improved. Although interaction strength between different patches va-ried greatly, the corridors between patches with large interaction were very important. The research could provide scientific reference and basis for nature protection and planning in Fujian Province.
A controllable sensor management algorithm capable of learning
NASA Astrophysics Data System (ADS)
Osadciw, Lisa A.; Veeramacheneni, Kalyan K.
2005-03-01
Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.
NASA Astrophysics Data System (ADS)
Huang, Y.; Liu, B. Z.; Wang, K. Y.; Ai, X.
2017-12-01
In response to the new requirements of the operation mode of wind-storage combined system and demand side response for transmission network planning, this paper presents a joint planning of energy storage and transmission considering wind-storage combined system and demand side response. Firstly, the charge-discharge strategy of energy storage system equipped at the outlet of wind farm and demand side response strategy are analysed to achieve the best comprehensive benefits through the coordination of the two. Secondly, in the general transmission network planning model with wind power, both energy storage cost and demand side response cost are added to the objective function. Not only energy storage operation constraints and but also demand side response constraints are introduced into the constraint condition. Based on the classical formulation of TEP, a new formulation is developed considering the simultaneous addition of the charge-discharge strategy of energy storage system equipped at the outlet of the wind farm and demand side response strategy, which belongs to a typical mixed integer linear programming model that can be solved by mature optimization software. The case study based on the Garver-6 bus system shows that the validity of the proposed model is verified by comparison with general transmission network planning model. Furthermore, the results demonstrate that the joint planning model can gain more economic benefits through setting up different cases.
Bohoudi, O; Bruynzeel, A M E; Senan, S; Cuijpers, J P; Slotman, B J; Lagerwaard, F J; Palacios, M A
2017-12-01
To implement a robust and fast stereotactic MR-guided adaptive radiation therapy (SMART) online strategy in locally advanced pancreatic cancer (LAPC). SMART strategy for plan adaptation was implemented with the MRIdian system (ViewRay Inc.). At each fraction, OAR (re-)contouring is done within a distance of 3cm from the PTV surface. Online plan re-optimization is based on robust prediction of OAR dose and optimization objectives, obtained by building an artificial neural network (ANN). Proposed limited re-contouring strategy for plan adaptation (SMART 3CM ) is evaluated by comparing 50 previously delivered fractions against a standard (re-)planning method using full-scale OAR (re-)contouring (FULLOAR). Plan quality was assessed using PTV coverage (V 95% , D mean , D 1cc ) and institutional OAR constraints (e.g. V 33Gy ). SMART 3CM required a significant lower number of optimizations than FULLOAR (4 vs 18 on average) to generate a plan meeting all objectives and institutional OAR constraints. PTV coverage with both strategies was identical (mean V 95% =89%). Adaptive plans with SMART 3CM exhibited significant lower intermediate and high doses to all OARs than FULLOAR, which also failed in 36% of the cases to adhere to the V 33Gy dose constraint. SMART 3CM approach for LAPC allows good OAR sparing and adequate target coverage while requiring only limited online (re-)contouring from clinicians. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Yifei; Kang, Jian
2017-11-01
The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity coefficient for local roads. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.
Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.
Pervasive Radio Mapping of Industrial Environments Using a Virtual Reality Approach
Nedelcu, Adrian-Valentin; Machedon-Pisu, Mihai; Talaba, Doru
2015-01-01
Wireless communications in industrial environments are seriously affected by reliability and performance issues, due to the multipath nature of obstacles within such environments. Special attention needs to be given to planning a wireless industrial network, so as to find the optimum spatial position for each of the nodes within the network, and especially for key nodes such as gateways or cluster heads. The aim of this paper is to present a pervasive radio mapping system which captures (senses) data regarding the radio spectrum, using low-cost wireless sensor nodes. This data is the input of radio mapping algorithms that generate electromagnetic propagation profiles. Such profiles are used for identifying obstacles within the environment and optimum propagation pathways. With the purpose of further optimizing the radio planning process, the authors propose a novel human-network interaction (HNI) paradigm that uses 3D virtual environments in order to display the radio maps in a natural, easy-to-perceive manner. The results of this approach illustrate its added value to the field of radio resource planning of industrial communication systems. PMID:26167533
Pervasive Radio Mapping of Industrial Environments Using a Virtual Reality Approach.
Nedelcu, Adrian-Valentin; Machedon-Pisu, Mihai; Duguleana, Mihai; Talaba, Doru
2015-01-01
Wireless communications in industrial environments are seriously affected by reliability and performance issues, due to the multipath nature of obstacles within such environments. Special attention needs to be given to planning a wireless industrial network, so as to find the optimum spatial position for each of the nodes within the network, and especially for key nodes such as gateways or cluster heads. The aim of this paper is to present a pervasive radio mapping system which captures (senses) data regarding the radio spectrum, using low-cost wireless sensor nodes. This data is the input of radio mapping algorithms that generate electromagnetic propagation profiles. Such profiles are used for identifying obstacles within the environment and optimum propagation pathways. With the purpose of further optimizing the radio planning process, the authors propose a novel human-network interaction (HNI) paradigm that uses 3D virtual environments in order to display the radio maps in a natural, easy-to-perceive manner. The results of this approach illustrate its added value to the field of radio resource planning of industrial communication systems.
Reaching Agreement in Quantum Hybrid Networks.
Shi, Guodong; Li, Bo; Miao, Zibo; Dower, Peter M; James, Matthew R
2017-07-20
We consider a basic quantum hybrid network model consisting of a number of nodes each holding a qubit, for which the aim is to drive the network to a consensus in the sense that all qubits reach a common state. Projective measurements are applied serving as control means, and the measurement results are exchanged among the nodes via classical communication channels. In this way the quantum-opeartion/classical-communication nature of hybrid quantum networks is captured, although coherent states and joint operations are not taken into consideration in order to facilitate a clear and explicit analysis. We show how to carry out centralized optimal path planning for this network with all-to-all classical communications, in which case the problem becomes a stochastic optimal control problem with a continuous action space. To overcome the computation and communication obstacles facing the centralized solutions, we also develop a distributed Pairwise Qubit Projection (PQP) algorithm, where pairs of nodes meet at a given time and respectively perform measurements at their geometric average. We show that the qubit states are driven to a consensus almost surely along the proposed PQP algorithm, and that the expected qubit density operators converge to the average of the network's initial values.
Winter Simulation Conference, Miami Beach, Fla., December 4-6, 1978, Proceedings. Volumes 1 & 2
NASA Technical Reports Server (NTRS)
Highland, H. J. (Editor); Nielsen, N. R.; Hull, L. G.
1978-01-01
The papers report on the various aspects of simulation such as random variate generation, simulation optimization, ranking and selection of alternatives, model management, documentation, data bases, and instructional methods. Simulation studies in a wide variety of fields are described, including system design and scheduling, government and social systems, agriculture, computer systems, the military, transportation, corporate planning, ecosystems, health care, manufacturing and industrial systems, computer networks, education, energy, production planning and control, financial models, behavioral models, information systems, and inventory control.
Managing search complexity in linguistic geometry.
Stilman, B
1997-01-01
This paper is a new step in the development of linguistic geometry. This formal theory is intended to discover and generalize the inner properties of human expert heuristics, which have been successful in a certain class of complex control systems, and apply them to different systems. In this paper, we investigate heuristics extracted in the form of hierarchical networks of planning paths of autonomous agents. Employing linguistic geometry tools the dynamic hierarchy of networks is represented as a hierarchy of formal attribute languages. The main ideas of this methodology are shown in the paper on two pilot examples of the solution of complex optimization problems. The first example is a problem of strategic planning for the air combat, in which concurrent actions of four vehicles are simulated as serial interleaving moves. The second example is a problem of strategic planning for the space comb of eight autonomous vehicles (with interleaving moves) that requires generation of the search tree of the depth 25 with the branching factor 30. This is beyond the capabilities of modern and conceivable future computers (employing conventional approaches). In both examples the linguistic geometry tools showed deep and highly selective searches in comparison with conventional search algorithms. For the first example a sketch of the proof of optimality of the solution is considered.
Effects of cost metric on cost-effectiveness of protected-area network design in urban landscapes.
Burkhalter, J C; Lockwood, J L; Maslo, B; Fenn, K H; Leu, K
2016-04-01
A common goal in conservation planning is to acquire areas that are critical to realizing biodiversity goals in the most cost-effective manner. The way monetary acquisition costs are represented in such planning is an understudied but vital component to realizing cost efficiencies. We sought to design a protected-area network within a forested urban region that would protect 17 birds of conservation concern. We compared the total costs and spatial structure of the optimal protected-area networks produced using three acquisition-cost surrogates (area, agricultural land value, and tax-assessed land value). Using the tax-assessed land values there was a 73% and 78% cost savings relative to networks derived using area or agricultural land value, respectively. This cost reduction was due to the considerable heterogeneity in acquisition costs revealed in tax-assessed land values, especially for small land parcels, and the corresponding ability of the optimization algorithm to identify lower-cost parcels for inclusion that had equal value to our target species. Tax-assessed land values also reflected the strong spatial differences in acquisition costs (US$0.33/m(2)-$55/m(2)) and thus allowed the algorithm to avoid inclusion of high-cost parcels when possible. Our results add to a nascent but growing literature that suggests conservation planners must consider the cost surrogate they use when designing protected-area networks. We suggest that choosing cost surrogates that capture spatial- and size-dependent heterogeneity in acquisition costs may be relevant to establishing protected areas in urbanizing ecosystems. © 2015 Society for Conservation Biology.
User’s guide to SNAP for ArcGIS® :ArcGIS interface for scheduling and network analysis program
Woodam Chung; Dennis Dykstra; Fred Bower; Stephen O’Brien; Richard Abt; John. and Sessions
2012-01-01
This document introduces a computer software named SNAP for ArcGIS® , which has been developed to streamline scheduling and transportation planning for timber harvest areas. Using modern optimization techniques, it can be used to spatially schedule timber harvest with consideration of harvesting costs, multiple products, alternative...
ERIC Educational Resources Information Center
Schlager, Kenneth J.
2008-01-01
This report describes a communications system engineering planning process that demonstrates an ability to design and deploy cost-effective broadband networks in low density rural areas. The emphasis in on innovative solutions and systems optimization because of the marginal nature of rural telecommunications infrastructure investments. Otherwise,…
NASA Astrophysics Data System (ADS)
Rajora, M.; Zou, P.; Xu, W.; Jin, L.; Chen, W.; Liang, S. Y.
2017-12-01
With the rapidly changing demands of the manufacturing market, intelligent techniques are being used to solve engineering problems due to their ability to handle nonlinear complex problems. For example, in the conventional production of stator cores, it is relied upon experienced engineers to make an initial plan on the number of compensation sheets to be added to achieve uniform pressure distribution throughout the laminations. Additionally, these engineers must use their experience to revise the initial plans based upon the measurements made during the production of stator core. However, this method yields inconsistent results as humans are incapable of storing and analysing large amounts of data. In this article, first, a Neural Network (NN), trained using a hybrid Levenberg-Marquardt (LM) - Genetic Algorithm (GA), is developed to assist the engineers with the decision-making process. Next, the trained NN is used as a fitness function in an optimization algorithm to find the optimal values of the initial compensation sheet plan with the aim of minimizing the required revisions during the production of the stator core.
NASA Astrophysics Data System (ADS)
Jonrinaldi, Hadiguna, Rika Ampuh; Salastino, Rades
2017-11-01
Environmental consciousness has paid many attention nowadays. It is not only about how to recycle, remanufacture or reuse used end products but it is also how to optimize the operations of the reverse system. A previous research has proposed a design of reverse supply chain of biodiesel network from used cooking oil. However, the research focused on the design of the supply chain strategy not the operations of the supply chain. It only decided how to design the structure of the supply chain in the next few years, and the process of each stage will be conducted in the supply chain system in general. The supply chain system has not considered operational policies to be conducted by the companies in the supply chain. Companies need a policy for each stage of the supply chain operations to be conducted so as to produce the optimal supply chain system, including how to use all the resources that have been designed in order to achieve the objectives of the supply chain system. Therefore, this paper proposes a model to optimize the operational planning of a biodiesel supply chain network from used cooking oil. A mixed integer linear programming is developed to model the operational planning of biodiesel supply chain in order to minimize the total operational cost of the supply chain. Based on the implementation of the model developed, the total operational cost of the biodiesel supply chain incurred by the system is less than the total operational cost of supply chain based on the previous research during seven days of operational planning about amount of 2,743,470.00 or 0.186%. Production costs contributed to 74.6 % of total operational cost and the cost of purchasing the used cooking oil contributed to 24.1 % of total operational cost. So, the system should pay more attention to these two aspects as changes in the value of these aspects will cause significant effects to the change in the total operational cost of the supply chain.
Supply chain optimization: a practitioner's perspective on the next logistics breakthrough.
Schlegel, G L
2000-08-01
The objective of this paper is to profile a practitioner's perspective on supply chain optimization and highlight the critical elements of this potential new logistics breakthrough idea. The introduction will briefly describe the existing distribution network, and business environment. This will include operational statistics, manufacturing software, and hardware configurations. The first segment will cover the critical success factors or foundations elements that are prerequisites for success. The second segment will give you a glimpse of a "working game plan" for successful migration to supply chain optimization. The final segment will briefly profile "bottom-line" benefits to be derived from the use of supply chain optimization as a strategy, tactical tool, and competitive advantage.
Optimization of Nd: YAG Laser Marking of Alumina Ceramic Using RSM And ANN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, Josephine; Doloi, B.; Bhattacharyya, B.
The present research papers deals with the artificial neural network (ANN) and the response surface methodology (RSM) based mathematical modeling and also an optimization analysis on marking characteristics on alumina ceramic. The experiments have been planned and carried out based on Design of Experiment (DOE). It also analyses the influence of the major laser marking process parameters and the optimal combination of laser marking process parametric setting has been obtained. The output of the RSM optimal data is validated through experimentation and ANN predictive model. A good agreement is observed between the results based on ANN predictive model and actualmore » experimental observations.« less
Smith, Wade P; Kim, Minsun; Holdsworth, Clay; Liao, Jay; Phillips, Mark H
2016-03-11
To build a new treatment planning approach that extends beyond radiation transport and IMRT optimization by modeling the radiation therapy process and prognostic indicators for more outcome-focused decision making. An in-house treatment planning system was modified to include multiobjective inverse planning, a probabilistic outcome model, and a multi-attribute decision aid. A genetic algorithm generated a set of plans embodying trade-offs between the separate objectives. An influence diagram network modeled the radiation therapy process of prostate cancer using expert opinion, results of clinical trials, and published research. A Markov model calculated a quality adjusted life expectancy (QALE), which was the endpoint for ranking plans. The Multiobjective Evolutionary Algorithm (MOEA) was designed to produce an approximation of the Pareto Front representing optimal tradeoffs for IMRT plans. Prognostic information from the dosimetrics of the plans, and from patient-specific clinical variables were combined by the influence diagram. QALEs were calculated for each plan for each set of patient characteristics. Sensitivity analyses were conducted to explore changes in outcomes for variations in patient characteristics and dosimetric variables. The model calculated life expectancies that were in agreement with an independent clinical study. The radiation therapy model proposed has integrated a number of different physical, biological and clinical models into a more comprehensive model. It illustrates a number of the critical aspects of treatment planning that can be improved and represents a more detailed description of the therapy process. A Markov model was implemented to provide a stronger connection between dosimetric variables and clinical outcomes and could provide a practical, quantitative method for making difficult clinical decisions.
NASA Technical Reports Server (NTRS)
Kalu, Alex
1990-01-01
The increasing load density in the LC-39 area of Kennedy Space Center (KSC) can be met by either modifying the existing substation and increasing its capacity or by planning an additional new substation. Evidence that the later approach is more economical, enhances the system reliability, and would produce more satisfactory performance indices is provided. Network theory is the basis for the optimal location determination of the proposed substation. A load reallocation plan which minimizes investment cost and power losses and meets other desirable system features is drafted. The report should be useful to the system designer and can be a useful guideline for future facility planners.
Planning and management of cloud computing networks
NASA Astrophysics Data System (ADS)
Larumbe, Federico
The evolution of the Internet has a great impact on a big part of the population. People use it to communicate, query information, receive news, work, and as entertainment. Its extraordinary usefulness as a communication media made the number of applications and technological resources explode. However, that network expansion comes at the cost of an important power consumption. If the power consumption of telecommunication networks and data centers is considered as the power consumption of a country, it would rank at the 5 th place in the world. Furthermore, the number of servers in the world is expected to grow by a factor of 10 between 2013 and 2020. This context motivates us to study techniques and methods to allocate cloud computing resources in an optimal way with respect to cost, quality of service (QoS), power consumption, and environmental impact. The results we obtained from our test cases show that besides minimizing capital expenditures (CAPEX) and operational expenditures (OPEX), the response time can be reduced up to 6 times, power consumption by 30%, and CO2 emissions by a factor of 60. Cloud computing provides dynamic access to IT resources as a service. In this paradigm, programs are executed in servers connected to the Internet that users access from their computers and mobile devices. The first advantage of this architecture is to reduce the time of application deployment and interoperability, because a new user only needs a web browser and does not need to install software on local computers with specific operating systems. Second, applications and information are available from everywhere and with any device with an Internet access. Also, servers and IT resources can be dynamically allocated depending on the number of users and workload, a feature called elasticity. This thesis studies the resource management of cloud computing networks and is divided in three main stages. We start by analyzing the planning of cloud computing networks to get a comprehensive vision. The first question to be solved is what are the optimal data center locations. We found that the location of each data center has a big impact on cost, QoS, power consumption, and greenhouse gas emissions. An optimization problem with a multi-criteria objective function is proposed to decide jointly the optimal location of data centers and software components, link capacities, and information routing. Once the network planning has been analyzed, the problem of dynamic resource provisioning in real time is addressed. In this context, virtualization is a key technique in cloud computing because each server can be shared by multiple Virtual Machines (VMs) and the total power consumption can be reduced. In the same line of location problems, we propose a Green Cloud Broker that optimizes VM placement across multiple data centers. In fact, when multiple data centers are considered, response time can be reduced by placing VMs close to users, cost can be minimized, power consumption can be optimized by using energy efficient data centers, and CO2 emissions can be decreased by choosing data centers provided with renewable energy sources. The third stage of the analysis is the short-term management of a cloud data center. In particular, a method is proposed to assign VMs to servers by considering communication traffic among VMs. Cloud data centers receive new applications over time and these applications need on-demand resource provisioning. Each application is composed of multiple types of VMs that interact among themselves. A program called scheduler must place each new VM in a server and that impacts the QoS and power consumption. Our method places VMs that communicate among themselves in servers that are close to each other in the network topology, thus reducing communication delay and increasing the throughput available among VMs. Furthermore, the power consumption of each type of server is considered and the most efficient ones are chosen to place the VMs. The number of VMs of each application can be dynamically changed to match the workload and servers not needed in a particular period can be suspended to save energy. The methodology developed is based on Mixed Integer Programming (MIP) models to formalize the problems and use state of the art optimization solvers. Then, heuristics are developed to solve cases with more than 1,000 potential data center locations for the planning problem, 1,000 nodes for the cloud broker, and 128,000 servers for the VM placement problem. Solutions with very short optimality gaps, between 0% and 1.95%, are obtained, and execution time in the order of minutes for the planning problem and less than a second for real time cases. We consider that this thesis on resource provisioning of cloud computing networks includes important contributions on this research area, and innovative commercial applications based on the proposed methods have promising future.
Improving effectiveness of systematic conservation planning with density data.
Veloz, Samuel; Salas, Leonardo; Altman, Bob; Alexander, John; Jongsomjit, Dennis; Elliott, Nathan; Ballard, Grant
2015-08-01
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High-density model Zonation rankings protected more individuals per species when networks protected the highest priority 10-40% of the landscape. Compared with density-based models, the occurrence-based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density-based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts. © 2015, Society for Conservation Biology.
Yan, Yiming; Tan, Zhichao; Su, Nan; Zhao, Chunhui
2017-08-24
In this paper, a building extraction method is proposed based on a stacked sparse autoencoder with an optimized structure and training samples. Building extraction plays an important role in urban construction and planning. However, some negative effects will reduce the accuracy of extraction, such as exceeding resolution, bad correction and terrain influence. Data collected by multiple sensors, as light detection and ranging (LIDAR), optical sensor etc., are used to improve the extraction. Using digital surface model (DSM) obtained from LIDAR data and optical images, traditional method can improve the extraction effect to a certain extent, but there are some defects in feature extraction. Since stacked sparse autoencoder (SSAE) neural network can learn the essential characteristics of the data in depth, SSAE was employed to extract buildings from the combined DSM data and optical image. A better setting strategy of SSAE network structure is given, and an idea of setting the number and proportion of training samples for better training of SSAE was presented. The optical data and DSM were combined as input of the optimized SSAE, and after training by an optimized samples, the appropriate network structure can extract buildings with great accuracy and has good robustness.
Bode, Michael; Williamson, David H.; Weeks, Rebecca; Jones, Geoff P.; Almany, Glenn R.; Harrison, Hugo B.; Hopf, Jess K.; Pressey, Robert L.
2016-01-01
Marine reserve networks must ensure the representation of important conservation features, and also guarantee the persistence of key populations. For many species, designing reserve networks is complicated by the absence or limited availability of spatial and life-history data. This is particularly true for data on larval dispersal, which has only recently become available. However, systematic conservation planning methods currently incorporate demographic processes through unsatisfactory surrogates. There are therefore two key challenges to designing marine reserve networks that achieve feature representation and demographic persistence constraints. First, constructing a method that efficiently incorporates persistence as well as complementary feature representation. Second, incorporating persistence using a mechanistic description of population viability, rather than a proxy such as size or distance. Here we construct a novel systematic conservation planning method that addresses both challenges, and parameterise it to design a hypothetical marine reserve network for fringing coral reefs in the Keppel Islands, Great Barrier Reef, Australia. For this application, we describe how demographic persistence goals can be constructed for an important reef fish species in the region, the bar-cheeked trout (Plectropomus maculatus). We compare reserve networks that are optimally designed for either feature representation or demographic persistence, with a reserve network that achieves both goals simultaneously. As well as being practically applicable, our analyses also provide general insights into marine reserve planning for both representation and demographic persistence. First, persistence constraints for dispersive organisms are likely to be much harder to achieve than representation targets, due to their greater complexity. Second, persistence and representation constraints pull the reserve network design process in divergent directions, making it difficult to efficiently achieve both constraints. Although our method can be readily applied to the data-rich Keppel Islands case study, we finally consider the factors that limit the method’s utility in information-poor contexts common in marine conservation. PMID:27168206
Optimization of RFID network planning using Zigbee and WSN
NASA Astrophysics Data System (ADS)
Hasnan, Khalid; Ahmed, Aftab; Badrul-aisham, Bakhsh, Qadir
2015-05-01
Everyone wants to be ease in their life. Radio frequency identification (RFID) wireless technology is used to make our life easier. RFID technology increases productivity, accuracy and convenience in delivery of service in supply chain. It is used for various applications such as preventing theft of automobiles, tolls collection without stopping, no checkout lines at grocery stores, managing traffic, hospital management, corporate campuses and airports, mobile asset tracking, warehousing, tracking library books, and to track a wealth of assets in supply chain management. Efficiency of RFID can be enhanced by integrating with wireless sensor network (WSN), zigbee mesh network and internet of things (IOT). The proposed system is used for identifying, sensing and real-time locating system (RTLS) of items in an indoor heterogeneous region. The system gives real-time richer information of object's characteristics, location and their environmental parameters like temperature, noise and humidity etc. RTLS reduce human error, optimize inventory management, increase productivity and information accuracy at indoor heterogeneous network. The power consumption and the data transmission rate of the system can be minimized by using low power hardware design.
An Optimal Centralized Carbon Dioxide Repository for Florida, USA
Poiencot, Brandon; Brown, Christopher
2011-01-01
For over a decade, the United States Department of Energy, and engineers, geologists, and scientists from all over the world have investigated the potential for reducing atmospheric carbon emissions through carbon sequestration. Numerous reports exist analyzing the potential for sequestering carbon dioxide at various sites around the globe, but none have identified the potential for a statewide system in Florida, USA. In 2005, 83% of Florida’s electrical energy was produced by natural gas, coal, or oil (e.g., fossil fuels), from power plants spread across the state. In addition, only limited research has been completed on evaluating optimal pipeline transportation networks to centralized carbon dioxide repositories. This paper describes the feasibility and preliminary locations for an optimal centralized Florida-wide carbon sequestration repository. Linear programming optimization modeling is used to plan and route an idealized pipeline network to existing Florida power plants. Further analysis of the subsurface geology in these general locations will provide insight into the suitability of the subsurface conditions and the available capacity for carbon sequestration at selected possible repository sites. The identification of the most favorable site(s) is also presented. PMID:21695024
An optimal centralized carbon dioxide repository for Florida, USA.
Poiencot, Brandon; Brown, Christopher
2011-04-01
For over a decade, the United States Department of Energy, and engineers, geologists, and scientists from all over the world have investigated the potential for reducing atmospheric carbon emissions through carbon sequestration. Numerous reports exist analyzing the potential for sequestering carbon dioxide at various sites around the globe, but none have identified the potential for a statewide system in Florida, USA. In 2005, 83% of Florida's electrical energy was produced by natural gas, coal, or oil (e.g., fossil fuels), from power plants spread across the state. In addition, only limited research has been completed on evaluating optimal pipeline transportation networks to centralized carbon dioxide repositories. This paper describes the feasibility and preliminary locations for an optimal centralized Florida-wide carbon sequestration repository. Linear programming optimization modeling is used to plan and route an idealized pipeline network to existing Florida power plants. Further analysis of the subsurface geology in these general locations will provide insight into the suitability of the subsurface conditions and the available capacity for carbon sequestration at selected possible repository sites. The identification of the most favorable site(s) is also presented.
Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco
2012-01-01
In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228
Dao, Nhu-Ngoc; Park, Minho; Kim, Joongheon; Cho, Sungrae
2017-01-01
As an important part of IoTization trends, wireless sensing technologies have been involved in many fields of human life. In cellular network evolution, the long term evolution advanced (LTE-A) networks including machine-type communication (MTC) features (named LTE-M) provide a promising infrastructure for a proliferation of Internet of things (IoT) sensing platform. However, LTE-M may not be optimally exploited for directly supporting such low-data-rate devices in terms of energy efficiency since it depends on core technologies of LTE that are originally designed for high-data-rate services. Focusing on this circumstance, we propose a novel adaptive modulation and coding selection (AMCS) algorithm to address the energy consumption problem in the LTE-M based IoT-sensing platform. The proposed algorithm determines the optimal pair of MCS and the number of primary resource blocks (#PRBs), at which the transport block size is sufficient to packetize the sensing data within the minimum transmit power. In addition, a quantity-oriented resource planning (QORP) technique that utilizes these optimal MCS levels as main criteria for spectrum allocation has been proposed for better adapting to the sensing node requirements. The simulation results reveal that the proposed approach significantly reduces the energy consumption of IoT sensing nodes and #PRBs up to 23.09% and 25.98%, respectively.
Dao, Nhu-Ngoc; Park, Minho; Kim, Joongheon
2017-01-01
As an important part of IoTization trends, wireless sensing technologies have been involved in many fields of human life. In cellular network evolution, the long term evolution advanced (LTE-A) networks including machine-type communication (MTC) features (named LTE-M) provide a promising infrastructure for a proliferation of Internet of things (IoT) sensing platform. However, LTE-M may not be optimally exploited for directly supporting such low-data-rate devices in terms of energy efficiency since it depends on core technologies of LTE that are originally designed for high-data-rate services. Focusing on this circumstance, we propose a novel adaptive modulation and coding selection (AMCS) algorithm to address the energy consumption problem in the LTE-M based IoT-sensing platform. The proposed algorithm determines the optimal pair of MCS and the number of primary resource blocks (#PRBs), at which the transport block size is sufficient to packetize the sensing data within the minimum transmit power. In addition, a quantity-oriented resource planning (QORP) technique that utilizes these optimal MCS levels as main criteria for spectrum allocation has been proposed for better adapting to the sensing node requirements. The simulation results reveal that the proposed approach significantly reduces the energy consumption of IoT sensing nodes and #PRBs up to 23.09% and 25.98%, respectively. PMID:28796804
Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations
NASA Astrophysics Data System (ADS)
Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.
2011-12-01
HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of each timestep and minimize computational overhead. Power generation for each reservoir is estimated using a 2-dimensional regression that accounts for both the available head and turbine efficiency. The object-oriented architecture makes run configuration easy to update. The dynamic model inputs include inflow and meteorological forecasts while static inputs include bathymetry data, reservoir and power generation characteristics, and topological descriptors. Ensemble forecasts of hydrological and meteorological conditions are supplied in real-time by Pacific Northwest National Laboratory and are used as a proxy for uncertainty, which is carried through the simulation and optimization process to produce output that describes the probability that different operational scenario's will be optimal. The full toolset, which includes HydroSCOPE, is currently being tested on the Feather River system in Northern California and the Upper Colorado Storage Project.
Planning for robust reserve networks using uncertainty analysis
Moilanen, A.; Runge, M.C.; Elith, Jane; Tyre, A.; Carmel, Y.; Fegraus, E.; Wintle, B.A.; Burgman, M.; Ben-Haim, Y.
2006-01-01
Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence?absence in sites, or on species-specific distributions of model predicted probabilities of occurrence in grid cells. There are practically always errors in input data?erroneous species presence?absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.
Hopfield networks for solving Tower of Hanoi problems
NASA Astrophysics Data System (ADS)
Kaplan, G. B.; Güzeliş, Cüneyt
2001-08-01
In this paper, Hopfield neural networks have been considered in solving the Tower of Hanoi test which is used in the determining of deficit of planning capability of the human prefrontal cortex. The main difference between this paper and the ones in the literature which use neural networks is that the Tower of Hanoi problem has been formulated here as a special shortest-path problem. In the literature, some Hopfield networks are developed for solving the shortest path problem which is a combinatorial optimization problem having a diverse field of application. The approach given in this paper gives the possibility of solving the Tower of Hanoi problem using these Hopfield networks. Also, the paper proposes new Hopfield network models for the shortest path and hence the Tower of Hanoi problems and compares them to the available ones in terms of the memory and time (number of steps) needed in the simulations.
Chang, Ni-Bin; Ning, Shu-Kuang; Chen, Jen-Chang
2006-08-01
Due to increasing environmental consciousness in most countries, every utility that owns a commercial nuclear power plant has been required to have both an on-site and off-site emergency response plan since the 1980s. A radiation monitoring network, viewed as part of the emergency response plan, can provide information regarding the radiation dosage emitted from a nuclear power plant in a regular operational period and/or abnormal measurements in an emergency event. Such monitoring information might help field operators and decision-makers to provide accurate responses or make decisions to protect the public health and safety. This study aims to conduct an integrated simulation and optimization analysis looking for the relocation strategy of a long-term regular off-site monitoring network at a nuclear power plant. The planning goal is to downsize the current monitoring network but maintain its monitoring capacity as much as possible. The monitoring sensors considered in this study include the thermoluminescence dosimetry (TLD) and air sampling system (AP) simultaneously. It is designed for detecting the radionuclide accumulative concentration, the frequency of violation, and the possible population affected by a long-term impact in the surrounding area regularly while it can also be used in an accidental release event. With the aid of the calibrated Industrial Source Complex-Plume Rise Model Enhancements (ISC-PRIME) simulation model to track down the possible radionuclide diffusion, dispersion, transport, and transformation process in the atmospheric environment, a multiobjective evaluation process can be applied to achieve the screening of monitoring stations for the nuclear power plant located at Hengchun Peninsula, South Taiwan. To account for multiple objectives, this study calculated preference weights to linearly combine objective functions leading to decision-making with exposure assessment in an optimization context. Final suggestions should be useful for narrowing the set of scenarios that decision-makers need to consider in this relocation process.
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.
2011-01-01
Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic. The information carried by CGR contact plan messages is useful not only for dynamic route computation, but also for the implementation of rate control, congestion forecasting, transmission episode initiation and termination, timeout interval computation, and retransmission timer suspension and resumption.
Research on Taxiway Path Optimization Based on Conflict Detection
Zhou, Hang; Jiang, Xinxin
2015-01-01
Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency. PMID:26226485
Research on Taxiway Path Optimization Based on Conflict Detection.
Zhou, Hang; Jiang, Xinxin
2015-01-01
Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency.
A business planning model to identify new safety net clinic locations.
Langabeer, James; Helton, Jeffrey; DelliFraine, Jami; Dotson, Ebbin; Watts, Carolyn; Love, Karen
2014-01-01
Community health clinics serving the poor and underserved are geographically expanding due to changes in U.S. health care policy. This paper describes the experience of a collaborative alliance of health care providers in a large metropolitan area who develop a conceptual and mathematical decision model to guide decisions on expanding its network of community health clinics. Community stakeholders participated in a collaborative process that defined constructs they deemed important in guiding decisions on the location of community health clinics. This collaboration also defined key variables within each construct. Scores for variables within each construct were then totaled and weighted into a community-specific optimal space planning equation. This analysis relied entirely on secondary data available from published sources. The model built from this collaboration revolved around the constructs of demand, sustainability, and competition. It used publicly available data defining variables within each construct to arrive at an optimal location that maximized demand and sustainability and minimized competition. This is a model that safety net clinic planners and community stakeholders can use to analyze demographic and utilization data to optimize capacity expansion to serve uninsured and Medicaid populations. Communities can use this innovative model to develop a locally relevant clinic location-planning framework.
Next-generation Event Horizon Telescope developments: new stations for enhanced imaging
NASA Astrophysics Data System (ADS)
Palumbo, Daniel; Johnson, Michael; Doeleman, Sheperd; Chael, Andrew; Bouman, Katherine
2018-01-01
The Event Horizon Telescope (EHT) is a multinational Very Long Baseline Interferometry (VLBI) network of dishes joined to resolve general relativistic behavior near a supermassive black hole. The imaging quality of the EHT is largely dependent upon the sensitivity and spatial frequency coverage of the many baselines between its constituent telescopes. The EHT already contains many highly sensitive dishes, including the crucial Atacama Large Millimeter/Submillimeter Array (ALMA), making it viable to add smaller, cheaper telescopes to the array, greatly improving future capabilities of the EHT. We develop tools for optimizing the positions of new dishes in planned arrays. We also explore the feasibility of adding small orbiting dishes to the EHT, and develop orbital optimization tools for space-based VLBI imaging. Unlike the Millimetron mission planned to be at L2, we specifically treat near-earth orbiters, and find rapid filling of spatial frequency coverage across a large range of baseline lengths. Finally, we demonstrate significant improvement in image quality when adding small dishes to planned arrays in simulated observations.
Rapid, parallel path planning by propagating wavefronts of spiking neural activity
Ponulak, Filip; Hopfield, John J.
2013-01-01
Efficient path planning and navigation is critical for animals, robotics, logistics and transportation. We study a model in which spatial navigation problems can rapidly be solved in the brain by parallel mental exploration of alternative routes using propagating waves of neural activity. A wave of spiking activity propagates through a hippocampus-like network, altering the synaptic connectivity. The resulting vector field of synaptic change then guides a simulated animal to the appropriate selected target locations. We demonstrate that the navigation problem can be solved using realistic, local synaptic plasticity rules during a single passage of a wavefront. Our model can find optimal solutions for competing possible targets or learn and navigate in multiple environments. The model provides a hypothesis on the possible computational mechanisms for optimal path planning in the brain, at the same time it is useful for neuromorphic implementations, where the parallelism of information processing proposed here can fully be harnessed in hardware. PMID:23882213
Networked sensors for the combat forces
NASA Astrophysics Data System (ADS)
Klager, Gene
2004-11-01
Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details of these products and recent test results will be presented.
Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura
2015-01-01
A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.
Contrast research of CDMA and GSM network optimization
NASA Astrophysics Data System (ADS)
Wu, Yanwen; Liu, Zehong; Zhou, Guangyue
2004-03-01
With the development of mobile telecommunication network, users of CDMA advanced their request of network service quality. While the operators also change their network management object from signal coverage to performance improvement. In that case, reasonably layout & optimization of mobile telecommunication network, reasonably configuration of network resource, improvement of the service quality, and increase the enterprise's core competition ability, all those have been concerned by the operator companies. This paper firstly looked into the flow of CDMA network optimization. Then it dissertated to some keystones in the CDMA network optimization, like PN code assignment, calculation of soft handover, etc. As GSM is also the similar cellular mobile telecommunication system like CDMA, so this paper also made a contrast research of CDMA and GSM network optimization in details, including the similarity and the different. In conclusion, network optimization is a long time job; it will run through the whole process of network construct. By the adjustment of network hardware (like BTS equipments, RF systems, etc.) and network software (like parameter optimized, configuration optimized, capacity optimized, etc.), network optimization work can improve the performance and service quality of the network.
Robust, Optimal Water Infrastructure Planning Under Deep Uncertainty Using Metamodels
NASA Astrophysics Data System (ADS)
Maier, H. R.; Beh, E. H. Y.; Zheng, F.; Dandy, G. C.; Kapelan, Z.
2015-12-01
Optimal long-term planning plays an important role in many water infrastructure problems. However, this task is complicated by deep uncertainty about future conditions, such as the impact of population dynamics and climate change. One way to deal with this uncertainty is by means of robustness, which aims to ensure that water infrastructure performs adequately under a range of plausible future conditions. However, as robustness calculations require computationally expensive system models to be run for a large number of scenarios, it is generally computationally intractable to include robustness as an objective in the development of optimal long-term infrastructure plans. In order to overcome this shortcoming, an approach is developed that uses metamodels instead of computationally expensive simulation models in robustness calculations. The approach is demonstrated for the optimal sequencing of water supply augmentation options for the southern portion of the water supply for Adelaide, South Australia. A 100-year planning horizon is subdivided into ten equal decision stages for the purpose of sequencing various water supply augmentation options, including desalination, stormwater harvesting and household rainwater tanks. The objectives include the minimization of average present value of supply augmentation costs, the minimization of average present value of greenhouse gas emissions and the maximization of supply robustness. The uncertain variables are rainfall, per capita water consumption and population. Decision variables are the implementation stages of the different water supply augmentation options. Artificial neural networks are used as metamodels to enable all objectives to be calculated in a computationally efficient manner at each of the decision stages. The results illustrate the importance of identifying optimal staged solutions to ensure robustness and sustainability of water supply into an uncertain long-term future.
Wavelength routing beyond the standard graph coloring approach
NASA Astrophysics Data System (ADS)
Blankenhorn, Thomas
2004-04-01
When lightpaths are routed in the planning stage of transparent optical networks, the textbook approach is to use algorithms that try to minimize the overall number of wavelengths used in the . We demonstrate that this method cannot be expected to minimize actual costs when the marginal cost of instlling more wavelengths is a declining function of the number of wavelengths already installed, as is frequently the case. We further demonstrate how cost optimization can theoretically be improved with algorithms based on Prim"s algorithm. Finally, we test this theory with simulaion on a series of actual network topologies, which confirm the theoretical analysis.
Higher Intelligence Is Associated with Less Task-Related Brain Network Reconfiguration
Cole, Michael W.
2016-01-01
The human brain is able to exceed modern computers on multiple computational demands (e.g., language, planning) using a small fraction of the energy. The mystery of how the brain can be so efficient is compounded by recent evidence that all brain regions are constantly active as they interact in so-called resting-state networks (RSNs). To investigate the brain's ability to process complex cognitive demands efficiently, we compared functional connectivity (FC) during rest and multiple highly distinct tasks. We found previously that RSNs are present during a wide variety of tasks and that tasks only minimally modify FC patterns throughout the brain. Here, we tested the hypothesis that, although subtle, these task-evoked FC updates from rest nonetheless contribute strongly to behavioral performance. One might expect that larger changes in FC reflect optimization of networks for the task at hand, improving behavioral performance. Alternatively, smaller changes in FC could reflect optimization for efficient (i.e., small) network updates, reducing processing demands to improve behavioral performance. We found across three task domains that high-performing individuals exhibited more efficient brain connectivity updates in the form of smaller changes in functional network architecture between rest and task. These smaller changes suggest that individuals with an optimized intrinsic network configuration for domain-general task performance experience more efficient network updates generally. Confirming this, network update efficiency correlated with general intelligence. The brain's reconfiguration efficiency therefore appears to be a key feature contributing to both its network dynamics and general cognitive ability. SIGNIFICANCE STATEMENT The brain's network configuration varies based on current task demands. For example, functional brain connections are organized in one way when one is resting quietly but in another way if one is asked to make a decision. We found that the efficiency of these updates in brain network organization is positively related to general intelligence, the ability to perform a wide variety of cognitively challenging tasks well. Specifically, we found that brain network configuration at rest was already closer to a wide variety of task configurations in intelligent individuals. This suggests that the ability to modify network connectivity efficiently when task demands change is a hallmark of high intelligence. PMID:27535904
A Risk-Based Multi-Objective Optimization Concept for Early-Warning Monitoring Networks
NASA Astrophysics Data System (ADS)
Bode, F.; Loschko, M.; Nowak, W.
2014-12-01
Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources which cannot be eliminated, especially in urban regions. As matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs.In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations and the early warning time and to minimize the installation and operating costs of the monitoring network. A qualitative risk ranking is used to prioritize the known risk sources for monitoring. The unknown risk sources can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well.We classify risk sources into four different categories: severe, medium and tolerable for known risk sources and an extra category for the unknown ones. With that, early warning time and detection probability become individual objectives for each risk class. Thus, decision makers can identify monitoring networks which are valid for controlling the top risk sources, and evaluate the capabilities (or search for least-cost upgrade) to also cover moderate, tolerable and unknown risk sources. Monitoring networks which are valid for the remaining risk also cover all other risk sources but the early-warning time suffers.The data provided for the optimization algorithm are calculated in a preprocessing step by a flow and transport model. Uncertainties due to hydro(geo)logical phenomena are taken into account by Monte-Carlo simulations. To avoid numerical dispersion during the transport simulations we use the particle-tracking random walk method.
Efficiency and robustness of different bus network designs
NASA Astrophysics Data System (ADS)
Pang, John Zhen Fu; Bin Othman, Nasri; Ng, Keng Meng; Monterola, Christopher
2015-07-01
We compare the efficiencies and robustness of four transport networks that can be possibly formed as a result of deliberate city planning. The networks are constructed based on their spatial resemblance to the cities of Manhattan (lattice), Sudan (random), Beijing (single-blob) and Greater Cairo (dual-blob). For a given type, a genetic algorithm is employed to obtain an optimized set of the bus routes. We then simulate how commuter travels using Yen's algorithms for k shortest paths on an adjacency matrix. The cost of traveling such as walking between stations is captured by varying the weighted sums of matrices. We also consider the number of transfers a posteriori by looking at the computed shortest paths. With consideration to distances via radius of gyration, redundancies of travel and number of bus transfers, our simulations indicate that random and dual-blob are more efficient than single-blob and lattice networks. Moreover, dual-blob type is least robust when node removals are targeted but is most resilient when node failures are random. The work hopes to guide and provide technical perspectives on how geospatial distribution of a city limits the optimality of transport designs.
Optimal investments in digital communication systems in primary exchange area
NASA Astrophysics Data System (ADS)
Garcia, R.; Hornung, R.
1980-11-01
Integer linear optimization theory, following Gomory's method, was applied to the model planning of telecommunication networks in which all future investments are made in digital systems only. The integer decision variables are the number of digital systems set up on cable or radiorelay links that can be installed. The objective function is the total cost of the extension of the existing line capacity to meet the demand between primary and local exchanges. Traffic volume constraints and flow conservation in transit nodes complete the model. Results indicating computing time and method efficiency are illustrated by an example.
Imran, Muhammad; Zafar, Nazir Ahmad
2012-01-01
Maintaining inter-actor connectivity is extremely crucial in mission-critical applications of Wireless Sensor and Actor Networks (WSANs), as actors have to quickly plan optimal coordinated responses to detected events. Failure of a critical actor partitions the inter-actor network into disjoint segments besides leaving a coverage hole, and thus hinders the network operation. This paper presents a Partitioning detection and Connectivity Restoration (PCR) algorithm to tolerate critical actor failure. As part of pre-failure planning, PCR determines critical/non-critical actors based on localized information and designates each critical node with an appropriate backup (preferably non-critical). The pre-designated backup detects the failure of its primary actor and initiates a post-failure recovery process that may involve coordinated multi-actor relocation. To prove the correctness, we construct a formal specification of PCR using Z notation. We model WSAN topology as a dynamic graph and transform PCR to corresponding formal specification using Z notation. Formal specification is analyzed and validated using the Z Eves tool. Moreover, we simulate the specification to quantitatively analyze the efficiency of PCR. Simulation results confirm the effectiveness of PCR and the results shown that it outperforms contemporary schemes found in the literature.
Multi-Disciplinary Ocean Sensors for Environmental Analyses and Networks (MOSEAN)
2004-01-01
will require optimization for their application . Modifications will include: a) Size and power reduction of the electro-fluidic component to match...be configured for detection of CDOM, phycocyanin , phycoerythrin, and chlorophyll-a depending upon the specific wavelengths chosen. Efforts on this...OPL in Santa Barbara. Discussions centered on new instrumentation designed for coastal applications and plans for the CHARM mooring (site selection
Multi-disciplinary Ocean Sensors for Environmental Analyses and Networks (MOSEAN)
2003-09-30
will require optimization for their application . Modifications will include: a) Size and power reduction of the electro-fluidic component to match...instrument can be configured for detection of CDOM, phycocyanin , phycoerythrin, and chlorophyll-a depending upon the specific wavelengths chosen. Efforts...OPL in Santa Barbara. Discussions centered on new instrumentation designed for coastal applications and plans for the CHARM mooring (site selection
NASA Astrophysics Data System (ADS)
Hamdi, Hadiwardoyo, Sigit P.; Correia, A. Gomes; Pereira, Paulo
2017-06-01
A road network requires timely maintenance to keep the road surface in good condition onward better services to improve accessibility and mobility. Strategies and maintenance techniques must be chosen in order to maximize road service level through cost-effective interventions. This approach requires an updated database, which the road network in Indonesia is supported by a manual and visual survey, also using NAASRA profiler. Furthermore, in this paper, the deterministic model of deterioration was used. This optimization model uses life cycle cost analysis (LCCA), applied in an integrated manner, using IRI indicator, and allows determining the priority of treatment, type of treatment and its relation to the cost. The purpose of this paper was focussed on the aspects of road maintenance management, i.e., maintenance optimization models for different levels of traffic and various initial of road distress conditions on the national road network in Indonesia. The implementation of Integrated Road Management System (IRMS) can provide a solution to the problem of cost constraints in the maintenance of the national road network. The results from this study found that as the lowest as agency cost, it will affect the increasing of user cost. With the achievement of the target plan scenario Pl000 with initial value IRI 2, it was found that the routine management throughout the year and in early reconstruction and periodic maintenance with a 30 mm thick overlay, will simultaneously provide a higher net benefit value and has the lowest total cost of transportation.
Default Network Modulation and Large-Scale Network Interactivity in Healthy Young and Old Adults
Schacter, Daniel L.
2012-01-01
We investigated age-related changes in default, attention, and control network activity and their interactions in young and old adults. Brain activity during autobiographical and visuospatial planning was assessed using multivariate analysis and with intrinsic connectivity networks as regions of interest. In both groups, autobiographical planning engaged the default network while visuospatial planning engaged the attention network, consistent with a competition between the domains of internalized and externalized cognition. The control network was engaged for both planning tasks. In young subjects, the control network coupled with the default network during autobiographical planning and with the attention network during visuospatial planning. In old subjects, default-to-control network coupling was observed during both planning tasks, and old adults failed to deactivate the default network during visuospatial planning. This failure is not indicative of default network dysfunction per se, evidenced by default network engagement during autobiographical planning. Rather, a failure to modulate the default network in old adults is indicative of a lower degree of flexible network interactivity and reduced dynamic range of network modulation to changing task demands. PMID:22128194
Bayesian Decision Support for Adaptive Lung Treatments
NASA Astrophysics Data System (ADS)
McShan, Daniel; Luo, Yi; Schipper, Matt; TenHaken, Randall
2014-03-01
Purpose: A Bayesian Decision Network will be demonstrated to provide clinical decision support for adaptive lung response-driven treatment management based on evidence that physiologic metrics may correlate better with individual patient response than traditional (population-based) dose and volume-based metrics. Further, there is evidence that information obtained during the course of radiation therapy may further improve response predictions. Methods: Clinical factors were gathered for 58 patients including planned mean lung dose, and the bio-markers IL-8 and TGF-β1 obtained prior to treatment and two weeks into treatment along with complication outcomes for these patients. A Bayesian Decision Network was constructed using Netica 5.0.2 from Norsys linking these clinical factors to obtain a prediction of radiation induced lung disese (RILD) complication. A decision node was added to the network to provide a plan adaption recommendation based on the trade-off between the RILD prediction and complexity of replanning. A utility node provides the weighting cost between the competing factors. Results: The decision node predictions were optimized against the data for the 58 cases. With this decision network solution, one can consider the decision result for a new patient with specific findings to obtain a recommendation to adaptively modify the originally planned treatment course. Conclusions: A Bayesian approach allows handling and propagating probabilistic data in a logical and principled manner. Decision networks provide the further ability to provide utility-based trade-offs, reflecting non-medical but practical cost/benefit analysis. The network demonstrated illustrates the basic concept, but many other factors may affect these decisions and work on building better models are being designed and tested. Acknowledgement: Supported by NIH-P01-CA59827
The Italian VLBI Network: First Results and Future Perspectives
NASA Astrophysics Data System (ADS)
Stagni, Matteo; Negusini, Monia; Bianco, Giuseppe; Sarti, Pierguido
2016-12-01
A first 24-hour Italian VLBI geodetic experiment, involving the Medicina, Noto, and Matera antennas, shaped as an IVS standard EUROPE, was successfully performed. In 2014, starting from the correlator output, a geodetic database was created and a typical solution of a small network was achieved, here presented. From this promising result we have planned new observations in 2016, involving the three Italian geodetic antennas. This could be the beginning of a possible routine activity, creating a data set that can be combined with GNSS observations to contribute to the National Geodetic Reference Datum. Particular care should be taken in the scheduling of the new experiments in order to optimize the number of usable observations. These observations can be used to study and plan future experiments in which the time and frequency standards can be given by an optical fiber link, thus having a common clock at different VLBI stations.
Simulation of short-term electric load using an artificial neural network
NASA Astrophysics Data System (ADS)
Ivanin, O. A.
2018-01-01
While solving the task of optimizing operation modes and equipment composition of small energy complexes or other tasks connected with energy planning, it is necessary to have data on energy loads of a consumer. Usually, there is a problem with obtaining real load charts and detailed information about the consumer, because a method of load-charts simulation on the basis of minimal information should be developed. The analysis of work devoted to short-term loads prediction allows choosing artificial neural networks as a most suitable mathematical instrument for solving this problem. The article provides an overview of applied short-term load simulation methods; it describes the advantages of artificial neural networks and offers a neural network structure for electric loads of residential buildings simulation. The results of modeling loads with proposed method and the estimation of its error are presented.
Global Optimization of Emergency Evacuation Assignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Lee; Yuan, Fang; Chin, Shih-Miao
2006-01-01
Conventional emergency evacuation plans often assign evacuees to fixed routes or destinations based mainly on geographic proximity. Such approaches can be inefficient if the roads are congested, blocked, or otherwise dangerous because of the emergency. By not constraining evacuees to prespecified destinations, a one-destination evacuation approach provides flexibility in the optimization process. We present a framework for the simultaneous optimization of evacuation-traffic distribution and assignment. Based on the one-destination evacuation concept, we can obtain the optimal destination and route assignment by solving a one-destination traffic-assignment problem on a modified network representation. In a county-wide, large-scale evacuation case study, the one-destinationmore » model yields substantial improvement over the conventional approach, with the overall evacuation time reduced by more than 60 percent. More importantly, emergency planners can easily implement this framework by instructing evacuees to go to destinations that the one-destination optimization process selects.« less
Performance Analysis of a NASA Integrated Network Array
NASA Technical Reports Server (NTRS)
Nessel, James A.
2012-01-01
The Space Communications and Navigation (SCaN) Program is planning to integrate its individual networks into a unified network which will function as a single entity to provide services to user missions. This integrated network architecture is expected to provide SCaN customers with the capabilities to seamlessly use any of the available SCaN assets to support their missions to efficiently meet the collective needs of Agency missions. One potential optimal application of these assets, based on this envisioned architecture, is that of arraying across existing networks to significantly enhance data rates and/or link availabilities. As such, this document provides an analysis of the transmit and receive performance of a proposed SCaN inter-network antenna array. From the study, it is determined that a fully integrated internetwork array does not provide any significant advantage over an intra-network array, one in which the assets of an individual network are arrayed for enhanced performance. Therefore, it is the recommendation of this study that NASA proceed with an arraying concept, with a fundamental focus on a network-centric arraying.
A 16-bit Coherent Ising Machine for One-Dimensional Ring and Cubic Graph Problems
NASA Astrophysics Data System (ADS)
Takata, Kenta; Marandi, Alireza; Hamerly, Ryan; Haribara, Yoshitaka; Maruo, Daiki; Tamate, Shuhei; Sakaguchi, Hiromasa; Utsunomiya, Shoko; Yamamoto, Yoshihisa
2016-09-01
Many tasks in our modern life, such as planning an efficient travel, image processing and optimizing integrated circuit design, are modeled as complex combinatorial optimization problems with binary variables. Such problems can be mapped to finding a ground state of the Ising Hamiltonian, thus various physical systems have been studied to emulate and solve this Ising problem. Recently, networks of mutually injected optical oscillators, called coherent Ising machines, have been developed as promising solvers for the problem, benefiting from programmability, scalability and room temperature operation. Here, we report a 16-bit coherent Ising machine based on a network of time-division-multiplexed femtosecond degenerate optical parametric oscillators. The system experimentally gives more than 99.6% of success rates for one-dimensional Ising ring and nondeterministic polynomial-time (NP) hard instances. The experimental and numerical results indicate that gradual pumping of the network combined with multiple spectral and temporal modes of the femtosecond pulses can improve the computational performance of the Ising machine, offering a new path for tackling larger and more complex instances.
Heuristic urban transportation network design method, a multilayer coevolution approach
NASA Astrophysics Data System (ADS)
Ding, Rui; Ujang, Norsidah; Hamid, Hussain bin; Manan, Mohd Shahrudin Abd; Li, Rong; Wu, Jianjun
2017-08-01
The design of urban transportation networks plays a key role in the urban planning process, and the coevolution of urban networks has recently garnered significant attention in literature. However, most of these recent articles are based on networks that are essentially planar. In this research, we propose a heuristic multilayer urban network coevolution model with lower layer network and upper layer network that are associated with growth and stimulate one another. We first use the relative neighbourhood graph and the Gabriel graph to simulate the structure of rail and road networks, respectively. With simulation we find that when a specific number of nodes are added, the total travel cost ratio between an expanded network and the initial lower layer network has the lowest value. The cooperation strength Λ and the changeable parameter average operation speed ratio Θ show that transit users' route choices change dramatically through the coevolution process and that their decisions, in turn, affect the multilayer network structure. We also note that the simulated relation between the Gini coefficient of the betweenness centrality, Θ and Λ have an optimal point for network design. This research could inspire the analysis of urban network topology features and the assessment of urban growth trends.
A Case Study: Optimal Stage Gauge NetworkUsing Multi Objective Genetic Algorithm
NASA Astrophysics Data System (ADS)
Joo, H. J.; Han, D.; Jung, J.; Kim, H. S.
2017-12-01
Recently, the possibility of occurrence of localized strong heavy rainfall due to climate change is increasing and flood damage is also increasing trend in Korea. Therefore we need more precise hydrologic analysis for preparing alternatives or measures for flood reduction by considering climate conditions which we have difficulty in the prediction. To do this, obtaining reliable hydrologic data, for an example, stage data, is very important. However, the existing stage gauge stations are scattered around the country, making it difficult to maintain them in a stable manner, and subsequently hard to acquire the hydrologic data that could be used for reflecting the localized hydrologic characteristics. In order to overcome such restrictions, this paper not only aims to establish a plan to acquire the water stage data in a constant and proper manner by using limited manpower and costs, but also establishes the fundamental technology for acquiring the water level observation data or the stage data. For that, this paper identifies the current status of the stage gauge stations installed in the Chung-Ju dam in Han river, Korea and extract the factors related to the division and characteristics of basins. Then, the obtained factors are used to develop the representative unit hydrograph that shows the characteristics of flow. After that, the data are converted into the probability density function and the stations at individual basins are selected by using the entropy theory. In last step, we establish the optimized stage gauge network by the location of the stage station and grade using the Multi Objective Genetic Algorithm(MOGA) technique that takes into account for the combinations of the number of the stations. It is expected that this paper can help establish an optimal observational network of stage guages as it can be applied usefully not only for protecting against floods in a stable manner, but also for acquiring the hydrologic data in an efficient manner. Keywords : Unit Hydrograph, Entropy, Grade of Stage Gauge Station, Multi Objective Genetic Algorithm(MOGA), Optimal Stage Guage Network Acknowledgements This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2017R1A2B3005695)
NASA Astrophysics Data System (ADS)
Obara, Shin'ya; Kudo, Kazuhiko
Reduction in fuel cell capacity linked to a fuel cell network system is considered. When the power demand of the whole network is small, some of the electric power generated by the fuel cell is supplied to a water electrolysis device, and hydrogen and oxygen gases are generated. Both gases are compressed with each compressor and they are stored in cylinders. When the electric demand of the whole network is large, both gases are supplied to the network, and fuel cells are operated by these hydrogen and oxygen gases. Furthermore, an optimization plan is made to minimize the quantity of heat release of the hot water piping that connects each building. Such an energy network is analyzed assuming connection of individual houses, a hospital, a hotel, a convenience store, an office building, and a factory. Consequently, compared with the conventional system, a reduction of 46% of fuel cell capacity is expected.
Künster, A K; Knorr, C; Fegert, J M; Ziegenhain, U
2010-11-01
Child protection can only be successfully solved by interdisciplinary cooperation and networking. The individual, heterogeneous, and complex needs of families cannot be met sufficiently by one profession alone. To guarantee efficient interdisciplinary cooperation, there should not be any gaps in the network. In addition, each actor in the network should be placed at an optimal position regarding function, responsibilities, and skills. Actors that serve as allocators, such as pediatricians or youth welfare officers, should be in key player positions within the network. Furthermore, successful child protection is preventive and starts early. Social network analysis is an adequate technique to assess network structures and to plan interventions to improve networking. In addition, it is very useful to evaluate the effectiveness of interventions like round tables. We present data from our pilot project which was part of "Guter Start ins Kinderleben" ("a good start into a child's life"). Exemplary network data from one community show that networking is already quite effective with a satisfactory mean density throughout the network. There is potential for improvement in cooperation, especially at the interface between the child welfare and health systems.
Use of mathematical decomposition to optimize investments in gas production and distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougherty, E.L.; Lombardino, E.; Hutchinson, P.
1986-01-01
This paper presents an analytical approach based upon the decomposition method of mathematical programming for determining the optimal investment sequence in each year of a planning horizon for a group of reservoirs that produce gas and gas liquids through a trunk-line network and a gas processing plant. The paper describes the development of the simulation and investment planning system (SIPS) to perform the required calculations. Net present value (NPV) is maximized with the requirement that the incremental present value ratio (PWPI) of any investment in any reservoir be greater than a specified minimum value. A unique feature is a gasmore » reservoir simulation model that aids SIPS in evaluating field development investments. The optimal solution supplies specified dry gas offtake requirements through time until the remaining reserves are insufficient to meet requirements economically. The sales value of recovered liquids contributes significantly to NPV, while the required spare gas-producing capacity reduces NPV. Sips was used successfully for 4 years to generate annual investment plans and operating budgets, and to perform many special studies for a producing complex containing over 50 reservoirs. This experience is reviewed. In considering this large problem, SIPS converges to the optimal solution in 10 to 20 iterations. The primary factor that determines this number is how good the starting guess is. Although sips can generate a starting guess, beginning with a previous optimal solution ordinarily results in faster convergence. Computing time increases in proportion to the number of reservoirs because more than 90% of computing time is spent solving the, reservoir, subproblems.« less
Architectures and Design for Next-Generation Hybrid Circuit/Packet Networks
NASA Astrophysics Data System (ADS)
Vadrevu, Sree Krishna Chaitanya
Internet traffic is increasing rapidly at an annual growth rate of 35% with aggregate traffic exceeding several Exabyte's per month. The traffic is also becoming heterogeneous in bandwidth and quality-of-service (QoS) requirements with growing popularity of cloud computing, video-on-demand (VoD), e-science, etc. Hybrid circuit/packet networks which can jointly support circuit and packet services along with the adoption of high-bit-rate transmission systems form an attractive solution to address the traffic growth. 10 Gbps and 40 Gbps transmission systems are widely deployed in telecom backbone networks such as Comcast, AT&T, etc., and network operators are considering migration to 100 Gbps and beyond. This dissertation proposes robust architectures, capacity migration strategies, and novel service frameworks for next-generation hybrid circuit/packet architectures. In this dissertation, we study two types of hybrid circuit/packet networks: a) IP-over-WDM networks, in which the packet (IP) network is overlaid on top of the circuit (optical WDM) network and b) Hybrid networks in which the circuit and packet networks are deployed side by side such as US DoE's ESnet. We investigate techniques to dynamically migrate capacity between the circuit and packet sections by exploiting traffic variations over a day, and our methods show that significant bandwidth savings can be obtained with improved reliability of services. Specifically, we investigate how idle backup circuit capacity can be used to support packet services in IP-over-WDM networks, and similarly, excess capacity in packet network to support circuit services in ESnet. Control schemes that enable our mechanisms are also discussed. In IP-over-WDM networks, with upcoming 100 Gbps and beyond, dedicated protection will induce significant under-utilization of backup resources. We investigate design strategies to loan idle circuit backup capacity to support IP/packet services. However, failure of backup circuits will preempt IP services routed over them, and thus it is important to ensure IP topology survivability to successfully re-route preempted IP services. Integer-linear-program (ILP) and heuristic solutions have been developed and network cost reduction up to 60% has been observed. In ESnet, we study loaning packet links to support circuit services. Mixed-line-rate (MLR) networks supporting 10/40/100 Gbps on the same fiber are becoming increasingly popular. Services that accept degradation in bandwidth, latency, jitter, etc. under failure scenarios for lower cost are known as degraded services. We study degradation in bandwidth for lower cost under failure scenarios, a concept called partial protection, in the context of MLR networks. We notice partial protection enables significant cost savings compared to full protection. To cope with traffic growth, network operators need to deploy equipment at periodic time intervals, and this is known as the multi-period planning and upgrade problem. We study three important multi-period planning approaches, namely incremental planning, all-period planning, and two-period planning with mixed line rates. Our approaches predict the network equipment that needs to be deployed optimally at which nodes and at which time periods in the network to meet QoS requirements.
Indoor radio measurement and planning for UMTS/HSDPA with antennas
NASA Astrophysics Data System (ADS)
Eheduru, Marcellinus
Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator's point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product's response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation and some important properties of antennas which must be considered when choosing an antenna for indoor radio propagation. The challenges of in-building network coverage and also the objectives of this thesis are also mentioned in this chapter. The evolution and standardization, network architecture, radio features and most importantly, the radio resource management features of UMTS/HSDPA are given in chapter two. In this chapter, the reason why Wideband Code Division Multiple Access (WCDMA) was specified and selected for 3G (UMTS) systems would be seen. The architecture of the radio access network, interfaces with the radio access network between base stations and radio network controllers (RNC), and the interface between the radio access network and the core network are also described in this chapter. The main features of HSDPA are mentioned at the end of the chapter. In chapter three the principles of the WCDMA air interface, including spreading, Rake reception, signal fading, power control and handovers are introduced. The different types and characteristics of the propagation environments and how they influence radio wave propagation are mentioned. UMTS transport, logical and physical channels are also mentioned, highlighting their significance and relationship in and with the network. Radio network planning for UMTS is discussed in chapter four. The outdoor planning process which includes dimensioning, detailed planning, optimization and monitoring is outlined. Indoor radio planning with distributed antenna systems (DAS), which is the idea and motivation behind this thesis work, is also discussed. The various antennas considered and the antenna that was selected for this thesis experiment was discussed in chapter five. The antenna radiation pattern, directivity, gain and input impedance were the properties of the antenna that were taken into consideration. The importance of the choice of the antenna for any particular type of indoor environment is also mentioned. In chapter six, the design and fabrication of the monopole antennas used for the experimental measurement is mentioned. The procedure for measurement and the equipment used are also discussed. The results gotten from the experiment are finally analyzed and discussed. In this chapter the effect of walls, floors, doors, ceilings and other obstacles on radio wave propagation will be seen. Finally, chapter seven concludes this thesis work and gives some directions for future work.
Goal-Directed Decision Making with Spiking Neurons.
Friedrich, Johannes; Lengyel, Máté
2016-02-03
Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast, the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeconomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential decision-making tasks with multiple rewards. Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive. We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a novel way. The synaptic weights of our network can be learned using local plasticity rules such that its dynamics devise a near-optimal plan of action. By systematically comparing our model results to experimental data, we show that it reproduces behavioral decision times and choice probabilities as well as neural responses in a rich set of tasks. Our results thus offer the first biologically realistic account for complex goal-directed decision making at a computational, algorithmic, and implementational level. Copyright © 2016 the authors 0270-6474/16/361529-18$15.00/0.
Goal-Directed Decision Making with Spiking Neurons
Lengyel, Máté
2016-01-01
Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast, the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeconomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential decision-making tasks with multiple rewards. SIGNIFICANCE STATEMENT Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive. We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a novel way. The synaptic weights of our network can be learned using local plasticity rules such that its dynamics devise a near-optimal plan of action. By systematically comparing our model results to experimental data, we show that it reproduces behavioral decision times and choice probabilities as well as neural responses in a rich set of tasks. Our results thus offer the first biologically realistic account for complex goal-directed decision making at a computational, algorithmic, and implementational level. PMID:26843636
Physical impairment aware transparent optical networks
NASA Astrophysics Data System (ADS)
Antona, Jean-Christophe; Morea, Annalisa; Zami, Thierry; Leplingard, Florence
2009-11-01
As illustrated by optical fiber and optical amplification, optical telecommunications have appeared for the last ten years as one of the most promising candidates to increase the transmission capacities. More recently, the concept of optical transparency has been investigated and introduced: it consists of the optical routing of Wavelength Division Multiplexed (WDM) channels without systematic optoelectronic processing at nodes, as long as propagation impairments remain acceptable [1]. This allows achieving less power-consuming, more scalable and flexible networks, and today partial optical transparency has become a reality in deployed systems. However, because of the evolution of traffic features, optical networks are facing new challenges such as demand for higher transmitted capacity, further upgradeability, and more automation. Making all these evolutions compliant on the same current network infrastructure with a minimum of upgrades is one of the main issues for equipment vendors and operators. Hence, an automatic and efficient management of the network needs a control plan aware of the expected Quality of Transmission (QoT) of the connections to set-up with respect to numerous parameters such as: the services demanded by the customers in terms of protection/restoration; the modulation rate and format of the connection under test and also of its adjacent WDM channels; the engineering rules of the network elements traversed with an accurate knowledge of the associated physical impairments. Whatever the method and/or the technology used to collect this information, the issue about its accuracy is one of the main concerns of the network system vendors, because an inaccurate knowledge could yield a sub-optimal dimensioning and so additional costs when installing the network in the field. Previous studies [1], [2] illustrated the impact of this knowledge accuracy on the ability to predict the connection feasibility. After describing usual methods to build performance estimators, this paper reports on this impact but at the global network level, quantifying the importance to account for these uncertainties from the early network planning step; it also proposes an improvement of the accuracy of the Quality of Transmission (QoT) estimator to reduce the raise of planned resources due to these uncertainties.
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin
As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.
Situational Awareness of Network System Roles (SANSR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huffer, Kelly M; Reed, Joel W
In a large enterprise it is difficult for cyber security analysts to know what services and roles every machine on the network is performing (e.g., file server, domain name server, email server). Using network flow data, already collected by most enterprises, we developed a proof-of-concept tool that discovers the roles of a system using both clustering and categorization techniques. The tool's role information would allow cyber analysts to detect consequential changes in the network, initiate incident response plans, and optimize their security posture. The results of this proof-of-concept tool proved to be quite accurate on three real data sets. Wemore » will present the algorithms used in the tool, describe the results of preliminary testing, provide visualizations of the results, and discuss areas for future work. Without this kind of situational awareness, cyber analysts cannot quickly diagnose an attack or prioritize remedial actions.« less
Buitrago, Jaime; Asfour, Shihab
2017-01-01
Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable input (NARX). The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input.more » Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. Finally, the New England electrical load data are used to train and validate the forecast prediction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buitrago, Jaime; Asfour, Shihab
Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable input (NARX). The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input.more » Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. Finally, the New England electrical load data are used to train and validate the forecast prediction.« less
Improving the energy efficiency of telecommunication networks
NASA Astrophysics Data System (ADS)
Lange, Christoph; Gladisch, Andreas
2011-05-01
The energy consumption of telecommunication networks has gained increasing interest throughout the recent past: Besides its environmental implications it has been identified to be a major contributor to operational expenditures of network operators. Targeting at sustainable telecommunication networks, thus, it is important to find appropriate strategies for improving their energy efficiency before the background of rapidly increasing traffic volumes. Besides the obvious benefits of increasing energy efficiency of network elements by leveraging technology progress, load-adaptive network operation is a very promising option, i.e. using network resources only to an extent and for the time they are actually needed. In contrast, current network operation takes almost no advantage of the strongly time-variant behaviour of the network traffic load. Mechanisms for energy-aware load-adaptive network operation can be subdivided in techniques based on local autonomous or per-link decisions and in techniques relying on coordinated decisions incorporating information from several links. For the transformation from current network structures and operation paradigms towards energy-efficient and sustainable networks it will be essential to use energy-optimized network elements as well as including the overall energy consumption in network design and planning phases together with the energy-aware load-adaptive operation. In load-adaptive operation it will be important to establish the optimum balance between local and overarching power management concepts in telecommunication networks.
NASA Astrophysics Data System (ADS)
Junqueira Leão, Rodrigo; Raffaelo Baldo, Crhistian; Collucci da Costa Reis, Maria Luisa; Alves Trabanco, Jorge Luiz
2018-03-01
The building blocks of particle accelerators are magnets responsible for keeping beams of charged particles at a desired trajectory. Magnets are commonly grouped in support structures named girders, which are mounted on vertical and horizontal stages. The performance of this type of machine is highly dependent on the relative alignment between its main components. The length of particle accelerators ranges from small machines to large-scale national or international facilities, with typical lengths of hundreds of meters to a few kilometers. This relatively large volume together with micrometric positioning tolerances make the alignment activity a classical large-scale dimensional metrology problem. The alignment concept relies on networks of fixed monuments installed on the building structure to which all accelerator components are referred. In this work, the Sirius accelerator is taken as a case study, and an alignment network is optimized via computational methods in terms of geometry, densification, and surveying procedure. Laser trackers are employed to guide the installation and measure the girders’ positions, using the optimized network as a reference and applying the metric developed in part I of this paper. Simulations demonstrate the feasibility of aligning the 220 girders of the Sirius synchrotron to better than 0.080 mm, at a coverage probability of 95%.
Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.
Flassig, R J; Sundmacher, K
2012-12-01
Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html. flassig@mpi-magdeburg.mpg.de Supplementary data are are available at Bioinformatics online.
a Stochastic Approach to Multiobjective Optimization of Large-Scale Water Reservoir Networks
NASA Astrophysics Data System (ADS)
Bottacin-Busolin, A.; Worman, A. L.
2013-12-01
A main challenge for the planning and management of water resources is the development of multiobjective strategies for operation of large-scale water reservoir networks. The optimal sequence of water releases from multiple reservoirs depends on the stochastic variability of correlated hydrologic inflows and on various processes that affect water demand and energy prices. Although several methods have been suggested, large-scale optimization problems arising in water resources management are still plagued by the high dimensional state space and by the stochastic nature of the hydrologic inflows. In this work, the optimization of reservoir operation is approached using approximate dynamic programming (ADP) with policy iteration and function approximators. The method is based on an off-line learning process in which operating policies are evaluated for a number of stochastic inflow scenarios, and the resulting value functions are used to design new, improved policies until convergence is attained. A case study is presented of a multi-reservoir system in the Dalälven River, Sweden, which includes 13 interconnected reservoirs and 36 power stations. Depending on the late spring and summer peak discharges, the lowlands adjacent to Dalälven can often be flooded during the summer period, and the presence of stagnating floodwater during the hottest months of the year is the cause of a large proliferation of mosquitos, which is a major problem for the people living in the surroundings. Chemical pesticides are currently being used as a preventive countermeasure, which do not provide an effective solution to the problem and have adverse environmental impacts. In this study, ADP was used to analyze the feasibility of alternative operating policies for reducing the flood risk at a reasonable economic cost for the hydropower companies. To this end, mid-term operating policies were derived by combining flood risk reduction with hydropower production objectives. The performance of the resulting policies was evaluated by simulating the online operating process for historical inflow scenarios and synthetic inflow forecasts. The simulations are based on a combined mid- and short-term planning model in which the value function derived in the mid-term planning phase provides the value of the policy at the end of the short-term operating horizon. While a purely deterministic linear analysis provided rather optimistic results, the stochastic model allowed for a more accurate evaluation of trade-offs and limitations of alternative operating strategies for the Dalälven reservoir network.
NASA Astrophysics Data System (ADS)
Housh, M.; Ng, T.; Cai, X.
2012-12-01
The environmental impact is one of the major concerns of biofuel development. While many other studies have examined the impact of biofuel expansion on stream flow and water quality, this study examines the problem from the other side - will and how a biofuel production target be affected by given environmental constraints. For this purpose, an integrated model comprises of different sub-systems of biofuel refineries, transportation, agriculture, water resources and crops/ethanol market has been developed. The sub-systems are integrated into one large-scale model to guide the optimal development plan considering the interdependency between the subsystems. The optimal development plan includes biofuel refineries location and capacity, refinery operation, land allocation between biofuel and food crops, and the corresponding stream flow and nitrate load in the watershed. The watershed is modeled as a network flow, in which the nodes represent sub-watersheds and the arcs are defined as the linkage between the sub-watersheds. The runoff contribution of each sub-watershed is determined based on the land cover and the water uses in that sub-watershed. Thus, decisions of other sub-systems such as the land allocation in the land use sub-system and the water use in the refinery sub-system define the sources and the sinks of the network. Environmental policies will be addressed in the integrated model by imposing stream flow and nitrate load constraints. These constraints can be specified by location and time in the watershed to reflect the spatial and temporal variation of the regulations. Preliminary results show that imposing monthly water flow constraints and yearly nitrate load constraints will change the biofuel development plan dramatically. Sensitivity analysis is performed to examine how the environmental constraints and their spatial and the temporal distribution influence the overall biofuel development plan and the performance of each of the sub-systems. Additional scenarios are analyzed to show the synergies of crop pattern choice (first versus second generation of biofuel crops), refinery technology adaptation (particularly on water use), refinery plant distribution, and economic incentives in terms of balanced environmental protection and bioenergy development objectives.
Drawing Road Networks with Mental Maps.
Lin, Shih-Syun; Lin, Chao-Hung; Hu, Yan-Jhang; Lee, Tong-Yee
2014-09-01
Tourist and destination maps are thematic maps designed to represent specific themes in maps. The road network topologies in these maps are generally more important than the geometric accuracy of roads. A road network warping method is proposed to facilitate map generation and improve theme representation in maps. The basic idea is deforming a road network to meet a user-specified mental map while an optimization process is performed to propagate distortions originating from road network warping. To generate a map, the proposed method includes algorithms for estimating road significance and for deforming a road network according to various geometric and aesthetic constraints. The proposed method can produce an iconic mark of a theme from a road network and meet a user-specified mental map. Therefore, the resulting map can serve as a tourist or destination map that not only provides visual aids for route planning and navigation tasks, but also visually emphasizes the presentation of a theme in a map for the purpose of advertising. In the experiments, the demonstrations of map generations show that our method enables map generation systems to generate deformed tourist and destination maps efficiently.
High Level Rule Modeling Language for Airline Crew Pairing
NASA Astrophysics Data System (ADS)
Mutlu, Erdal; Birbil, Ş. Ilker; Bülbül, Kerem; Yenigün, Hüsnü
2011-09-01
The crew pairing problem is an airline optimization problem where a set of least costly pairings (consecutive flights to be flown by a single crew) that covers every flight in a given flight network is sought. A pairing is defined by using a very complex set of feasibility rules imposed by international and national regulatory agencies, and also by the airline itself. The cost of a pairing is also defined by using complicated rules. When an optimization engine generates a sequence of flights from a given flight network, it has to check all these feasibility rules to ensure whether the sequence forms a valid pairing. Likewise, the engine needs to calculate the cost of the pairing by using certain rules. However, the rules used for checking the feasibility and calculating the costs are usually not static. Furthermore, the airline companies carry out what-if-type analyses through testing several alternate scenarios in each planning period. Therefore, embedding the implementation of feasibility checking and cost calculation rules into the source code of the optimization engine is not a practical approach. In this work, a high level language called ARUS is introduced for describing the feasibility and cost calculation rules. A compiler for ARUS is also implemented in this work to generate a dynamic link library to be used by crew pairing optimization engines.
NASA Technical Reports Server (NTRS)
Lagar, Gunnar
1994-01-01
The scope of this presentation is to give a state-of-the-art report on the present situation of Nordic technology libraries, to elaborate on a plan for national resource libraries in Sweden, and to share how the Royal Institute of Technology Library in Stockholm (KTHB) has fostered a network of cooperating libraries in order to optimize government funding for the system of resource libraries.
Optimal topologies for maximizing network transmission capacity
NASA Astrophysics Data System (ADS)
Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.
2018-04-01
It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.
Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan
NASA Astrophysics Data System (ADS)
Huang, P. S.; Chiu, Y.
2015-12-01
In 1970's, the agriculture and aquaculture were rapidly developed at Pingtung coastal area in southern Taiwan. The groundwater aquifers were over-pumped and caused the seawater intrusion. In order to remedy the contaminated groundwater and find the best strategies of groundwater usage, a management model to search the optimal groundwater operational strategies is developed in this study. The objective function is to minimize the total amount of injection water and a set of constraints are applied to ensure the groundwater levels and concentrations are satisfied. A three-dimension density-dependent flow and transport simulation model, called SEAWAT developed by U.S. Geological Survey, is selected to simulate the phenomenon of seawater intrusion. The simulation model is well calibrated by the field measurements and replaced by the surrogate model of trained artificial neural networks (ANNs) to reduce the computational time. The ANNs are embedded in the management model to link the simulation and optimization models, and the global optimizer of differential evolution (DE) is applied for solving the management model. The optimal results show that the fully trained ANNs could substitute the original simulation model and reduce much computational time. Under appropriate setting of objective function and constraints, DE can find the optimal injection rates at predefined barriers. The concentrations at the target locations could decrease more than 50 percent within the planning horizon of 20 years. Keywords : Seawater intrusion, groundwater management, numerical model, artificial neural networks, differential evolution
Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks.
Zou, Tengyue; Lin, Shouying; Feng, Qijie; Chen, Yanlian
2016-01-04
Wireless sensor networks equipped with rechargeable batteries are useful for outdoor environmental monitoring. However, the severe energy constraints of the sensor nodes present major challenges for long-term applications. To achieve sustainability, solar cells can be used to acquire energy from the environment. Unfortunately, the energy supplied by the harvesting system is generally intermittent and considerably influenced by the weather. To improve the energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their scheduling plans accordingly to best suit their energy production and residual battery levels. Furthermore, we introduce clustering and routing selection methods to optimize the data transmission, and a Bayesian network is used for warning notifications of bottlenecks along the path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded platform, and the experimental results indicate that these mechanisms sustain the networks' activities in an uninterrupted and efficient manner.
Electric power market agent design
NASA Astrophysics Data System (ADS)
Oh, Hyungseon
The electric power industry in many countries has been restructured in the hope of a more economically efficient system. In the restructured system, traditional operating and planning tools based on true marginal cost do not perform well since information required is strictly confidential. For developing a new tool, it is necessary to understand offer behavior. The main objective of this study is to create a new tool for power system planning. For the purpose, this dissertation develops models for a market and market participants. A new model is developed in this work for explaining a supply-side offer curve, and several variables are introduced to characterize the curve. Demand is estimated using a neural network, and a numerical optimization process is used to determine the values of the variables that maximize the profit of the agent. The amount of data required for the optimization is chosen with the aid of nonlinear dynamics. To suggest an optimal demand-side bidding function, two optimization problems are constructed and solved for maximizing consumer satisfaction based on the properties of two different types of demands: price-based demand and must-be-served demand. Several different simulations are performed to test how an agent reacts in various situations. The offer behavior depends on locational benefit as well as the offer strategies of competitors.
NASA Astrophysics Data System (ADS)
Heidari Haratmeh, B.; Rai, A.; Minsker, B. S.
2016-12-01
Green Infrastructure (GI) has become widely known as a sustainable solution for stormwater management in urban environments. Despite more recognition and acknowledgment, researchers and practitioners lack clear and explicit guidelines on how GI practices should be implemented in urban settings. This study is developing a noisy-based multi-objective, multi-scaled genetic algorithm that determines optimal GI networks for environmental, economic and social objectives. The methodology accounts for uncertainty in modeling results and is designed to perform at sub-watershed as well as patch scale using two different simulation models, SWMM and RHESSys, in a Cloud-based implementation using a Web interface. As an initial case study, a semi-urbanized watershed— DeadRun 5— in Baltimore County, Maryland, is selected. The objective of the study is to minimize life cycle cost, maximize human preference for human well-being and the difference between pre-development hydrographs generated from current rainfall events and design storms, as well as those that result from proposed GI scenarios. Initial results for DeadRun5 watershed suggest that placing GI in the proximity of the watershed outlet optimizes life cycle cost, stormwater volume, and peak flow capture. The framework can easily present outcomes of GI design scenarios to both designers and local stakeholders, and future plans include receiving feedback from users on candidate designs, and interactively updating optimal GI network designs in a crowd-sourced design process. This approach can also be helpful in deriving design guidelines that better meet stakeholder needs.
Optimal cost design of water distribution networks using a decomposition approach
NASA Astrophysics Data System (ADS)
Lee, Ho Min; Yoo, Do Guen; Sadollah, Ali; Kim, Joong Hoon
2016-12-01
Water distribution network decomposition, which is an engineering approach, is adopted to increase the efficiency of obtaining the optimal cost design of a water distribution network using an optimization algorithm. This study applied the source tracing tool in EPANET, which is a hydraulic and water quality analysis model, to the decomposition of a network to improve the efficiency of the optimal design process. The proposed approach was tested by carrying out the optimal cost design of two water distribution networks, and the results were compared with other optimal cost designs derived from previously proposed optimization algorithms. The proposed decomposition approach using the source tracing technique enables the efficient decomposition of an actual large-scale network, and the results can be combined with the optimal cost design process using an optimization algorithm. This proves that the final design in this study is better than those obtained with other previously proposed optimization algorithms.
Fraass, Benedick A.; Steers, Jennifer M.; Matuszak, Martha M.; McShan, Daniel L.
2012-01-01
Purpose: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1–2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). Methods: The IO-3D dose calculation and optimization functionality is integrated in the in-house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO-3D, and an improved, reimplemented edge/octree calculation algorithm. The IO-3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various user-controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO-3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO-3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans. Results: IO-3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO-3D plans have many fewer degrees of freedom for the optimization, this work finds that IO-3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO-3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO-3D plans were 22%–68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%–84% than the 0.5 cm × 0.5 cm beamlet IMRT plans. Conclusions: The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients. PMID:22755717
Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach
Ferri, Gabriele; Cococcioni, Marco; Alvarez, Alberto
2015-01-01
This paper describes an optimal sampling approach to support glider fleet operators and marine scientists during the complex task of planning the missions of fleets of underwater gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under investigation. Different criteria (e.g., A, G, or E optimality), used in geosciences to obtain an optimum design, lead to different sampling strategies. In particular, the A criterion produces paths for the gliders that minimize the overall level of uncertainty over the area of interest. However, there are commonly operative situations in which the marine scientists may prefer not to minimize the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss here an approach named sampling on-demand that explicitly addresses this need. In our approach the user provides an objective map, setting both the amount and the geographic distribution of the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel optimality criterion, called Aη, is proposed and the resulting minimization problem is solved by using a Simulated Annealing based optimizer that takes into account the constraints imposed by the glider navigation features, the desired geometry of the paths and the problems of reachability caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called SoDDS (Sampling on-Demand and Decision Support). The tool is able to automatically download the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease the input process of mission parameters and targets. The results obtained by running SoDDS on three different scenarios are provided and show that SoDDS, which is currently used at NATO STO Centre for Maritime Research and Experimentation (CMRE), can represent a step forward towards a systematic mission planning of glider fleets, dramatically reducing the efforts of glider operators. PMID:26712763
Mission Planning and Decision Support for Underwater Glider Networks: A Sampling on-Demand Approach.
Ferri, Gabriele; Cococcioni, Marco; Alvarez, Alberto
2015-12-26
This paper describes an optimal sampling approach to support glider fleet operators and marine scientists during the complex task of planning the missions of fleets of underwater gliders. Optimal sampling, which has gained considerable attention in the last decade, consists in planning the paths of gliders to minimize a specific criterion pertinent to the phenomenon under investigation. Different criteria (e.g., A, G, or E optimality), used in geosciences to obtain an optimum design, lead to different sampling strategies. In particular, the A criterion produces paths for the gliders that minimize the overall level of uncertainty over the area of interest. However, there are commonly operative situations in which the marine scientists may prefer not to minimize the overall uncertainty of a certain area, but instead they may be interested in achieving an acceptable uncertainty sufficient for the scientific or operational needs of the mission. We propose and discuss here an approach named sampling on-demand that explicitly addresses this need. In our approach the user provides an objective map, setting both the amount and the geographic distribution of the uncertainty to be achieved after assimilating the information gathered by the fleet. A novel optimality criterion, called A η , is proposed and the resulting minimization problem is solved by using a Simulated Annealing based optimizer that takes into account the constraints imposed by the glider navigation features, the desired geometry of the paths and the problems of reachability caused by ocean currents. This planning strategy has been implemented in a Matlab toolbox called SoDDS (Sampling on-Demand and Decision Support). The tool is able to automatically download the ocean fields data from MyOcean repository and also provides graphical user interfaces to ease the input process of mission parameters and targets. The results obtained by running SoDDS on three different scenarios are provided and show that SoDDS, which is currently used at NATO STO Centre for Maritime Research and Experimentation (CMRE), can represent a step forward towards a systematic mission planning of glider fleets, dramatically reducing the efforts of glider operators.
Advanced Distribution Network Modelling with Distributed Energy Resources
NASA Astrophysics Data System (ADS)
O'Connell, Alison
The addition of new distributed energy resources, such as electric vehicles, photovoltaics, and storage, to low voltage distribution networks means that these networks will undergo major changes in the future. Traditionally, distribution systems would have been a passive part of the wider power system, delivering electricity to the customer and not needing much control or management. However, the introduction of these new technologies may cause unforeseen issues for distribution networks, due to the fact that they were not considered when the networks were originally designed. This thesis examines different types of technologies that may begin to emerge on distribution systems, as well as the resulting challenges that they may impose. Three-phase models of distribution networks are developed and subsequently utilised as test cases. Various management strategies are devised for the purposes of controlling distributed resources from a distribution network perspective. The aim of the management strategies is to mitigate those issues that distributed resources may cause, while also keeping customers' preferences in mind. A rolling optimisation formulation is proposed as an operational tool which can manage distributed resources, while also accounting for the uncertainties that these resources may present. Network sensitivities for a particular feeder are extracted from a three-phase load flow methodology and incorporated into an optimisation. Electric vehicles are the focus of the work, although the method could be applied to other types of resources. The aim is to minimise the cost of electric vehicle charging over a 24-hour time horizon by controlling the charge rates and timings of the vehicles. The results demonstrate the advantage that controlled EV charging can have over an uncontrolled case, as well as the benefits provided by the rolling formulation and updated inputs in terms of cost and energy delivered to customers. Building upon the rolling optimisation, a three-phase optimal power flow method is developed. The formulation has the capability to provide optimal solutions for distribution system control variables, for a chosen objective function, subject to required constraints. It can, therefore, be utilised for numerous technologies and applications. The three-phase optimal power flow is employed to manage various distributed resources, such as photovoltaics and storage, as well as distribution equipment, including tap changers and switches. The flexibility of the methodology allows it to be applied in both an operational and a planning capacity. The three-phase optimal power flow is employed in an operational planning capacity to determine volt-var curves for distributed photovoltaic inverters. The formulation finds optimal reactive power settings for a number of load and solar scenarios and uses these reactive power points to create volt-var curves. Volt-var curves are determined for 10 PV systems on a test feeder. A universal curve is also determined which is applicable to all inverters. The curves are validated by testing them in a power flow setting over a 24-hour test period. The curves are shown to provide advantages to the feeder in terms of reduction of voltage deviations and unbalance, with the individual curves proving to be more effective. It is also shown that adding a new PV system to the feeder only requires analysis for that system. In order to represent the uncertainties that inherently occur on distribution systems, an information gap decision theory method is also proposed and integrated into the three-phase optimal power flow formulation. This allows for robust network decisions to be made using only an initial prediction for what the uncertain parameter will be. The work determines tap and switch settings for a test network with demand being treated as uncertain. The aim is to keep losses below a predefined acceptable value. The results provide the decision maker with the maximum possible variation in demand for a given acceptable variation in the losses. A validation is performed with the resulting tap and switch settings being implemented, and shows that the control decisions provided by the formulation keep losses below the acceptable value while adhering to the limits imposed by the network.
Spatially-Correlated Risk in Nature Reserve Site Selection
Albers, Heidi J.; Busby, Gwenlyn M.; Hamaide, Bertrand; Ando, Amy W.; Polasky, Stephen
2016-01-01
Establishing nature reserves protects species from land cover conversion and the resulting loss of habitat. Even within a reserve, however, many factors such as fires and defoliating insects still threaten habitat and the survival of species. To address the risk to species survival after reserve establishment, reserve networks can be created that allow some redundancy of species coverage to maximize the expected number of species that survive in the presence of threats. In some regions, however, the threats to species within a reserve may be spatially correlated. As examples, fires, diseases, and pest infestations can spread from a starting point and threaten neighboring parcels’ habitats, in addition to damage caused at the initial location. This paper develops a reserve site selection optimization framework that compares the optimal reserve networks in cases where risks do and do not reflect spatial correlation. By exploring the impact of spatially-correlated risk on reserve networks on a stylized landscape and on an Oregon landscape, this analysis demonstrates an appropriate and feasible method for incorporating such post-reserve establishment risks in the reserve site selection literature as an additional tool to be further developed for future conservation planning. PMID:26789127
An Optimization Model for the Selection of Bus-Only Lanes in a City.
Chen, Qun
2015-01-01
The planning of urban bus-only lane networks is an important measure to improve bus service and bus priority. To determine the effective arrangement of bus-only lanes, a bi-level programming model for urban bus lane layout is developed in this study that considers accessibility and budget constraints. The goal of the upper-level model is to minimize the total travel time, and the lower-level model is a capacity-constrained traffic assignment model that describes the passenger flow assignment on bus lines, in which the priority sequence of the transfer times is reflected in the passengers' route-choice behaviors. Using the proposed bi-level programming model, optimal bus lines are selected from a set of candidate bus lines; thus, the corresponding bus lane network on which the selected bus lines run is determined. The solution method using a genetic algorithm in the bi-level programming model is developed, and two numerical examples are investigated to demonstrate the efficacy of the proposed model.
Polsky, Daniel; Cidav, Zuleyha; Swanson, Ashley
2016-10-01
The introduction of health insurance Marketplaces under the Affordable Care Act has been associated with growth of restricted provider networks. The value of this plan design strategy, including its association with lower premiums, is uncertain. We used data from all silver plans offered in the 2014 health insurance exchanges in the fifty states and the District of Columbia to estimate the association between the breadth of a provider network and plan premiums. We found that within a market, for plans of otherwise equivalent design and controlling for issuer-specific pricing strategy, a plan with an extra-small network had a monthly premium that was 6.7 percent less expensive than that of a plan with a large network. Because narrow networks remain an important strategy available to insurance companies to offer lower-cost plans on health insurance Marketplaces, the success of health insurance coverage expansions may be tied to the successful implementation of narrow networks. Project HOPE—The People-to-People Health Foundation, Inc.
A method of network topology optimization design considering application process characteristic
NASA Astrophysics Data System (ADS)
Wang, Chunlin; Huang, Ning; Bai, Yanan; Zhang, Shuo
2018-03-01
Communication networks are designed to meet the usage requirements of users for various network applications. The current studies of network topology optimization design mainly considered network traffic, which is the result of network application operation, but not a design element of communication networks. A network application is a procedure of the usage of services by users with some demanded performance requirements, and has obvious process characteristic. In this paper, we first propose a method to optimize the design of communication network topology considering the application process characteristic. Taking the minimum network delay as objective, and the cost of network design and network connective reliability as constraints, an optimization model of network topology design is formulated, and the optimal solution of network topology design is searched by Genetic Algorithm (GA). Furthermore, we investigate the influence of network topology parameter on network delay under the background of multiple process-oriented applications, which can guide the generation of initial population and then improve the efficiency of GA. Numerical simulations show the effectiveness and validity of our proposed method. Network topology optimization design considering applications can improve the reliability of applications, and provide guidance for network builders in the early stage of network design, which is of great significance in engineering practices.
Mathematical model of highways network optimization
NASA Astrophysics Data System (ADS)
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.
Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.
Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei
2016-01-29
In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.
Practical synchronization on complex dynamical networks via optimal pinning control
NASA Astrophysics Data System (ADS)
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.
Wang, Hui; Liu, Chunyue; Rong, Luge; Wang, Xiaoxu; Sun, Lina; Luo, Qing; Wu, Hao
2018-01-09
River monitoring networks play an important role in water environmental management and assessment, and it is critical to develop an appropriate method to optimize the monitoring network. In this study, an effective method was proposed based on the attainment rate of National Grade III water quality, optimal partition analysis and Euclidean distance, and Hun River was taken as a method validation case. There were 7 sampling sites in the monitoring network of the Hun River, and 17 monitoring items were analyzed once a month during January 2009 to December 2010. The results showed that the main monitoring items in the surface water of Hun River were ammonia nitrogen (NH 4 + -N), chemical oxygen demand, and biochemical oxygen demand. After optimization, the required number of monitoring sites was reduced from seven to three, and 57% of the cost was saved. In addition, there were no significant differences between non-optimized and optimized monitoring networks, and the optimized monitoring networks could correctly represent the original monitoring network. The duplicate setting degree of monitoring sites decreased after optimization, and the rationality of the monitoring network was improved. Therefore, the optimal method was identified as feasible, efficient, and economic.
Dossani, Rimal H; Kalakoti, Piyush; Nanda, Anil; Guthikonda, Bharat; Tumialán, Luis M
2018-02-06
The main objective of the Affordable Care Act (ACA) was to make health insurance affordable to all Americans while addressing the lack of coverage for 48 million people. In the face of rapidly increasing enrollment and rising demand for inexpensive plans, insurance providers are limiting in-network physicians. Provider networks offering plans with limited in-network physicians have become known as "narrow networks." To assesses the adequacy of ACA marketplace plans for outpatient neurosurgery in Louisiana. The Marketplace Public Use Files were searched for all "silver" plans. A total of 7 silver plans were identified in Louisiana. Using the plans' online directories, a search of in-network neurosurgeons in Louisiana parishes with >100 000 population was performed. The primary outcome was lack of in-network neurosurgeon(s) in silver plans within 50 miles of selected zip code for each parish with >100 000 population. Plans without in-network neurosurgeon(s) are labeled as neurosurgeon-deficient plans. Several plans in Louisiana are neurosurgeon deficient, ie no in-network neurosurgeon within 50 miles of the designated parish zip code. Company A's plan 3 is deficient in all 5 parishes, while company C and company D silver plans are deficient in 4 out of 14 (29%). Combined results from all counties and plans demonstrate that 43% (3 out of 7) of all silver plans in Louisiana are neurosurgeon deficient in at least 4 parishes with population >100 000. In Louisiana, narrow networks have limited access to neurosurgical care for those patients with ACA silver plans. Copyright © 2018 by the Congress of Neurological Surgeons
Narrow Networks on the Individual Marketplace in 2017.
Polski, Daniel; Weiner, Janet; Zhang, Yuehan
2017-09-01
This Issue Brief describes the breadth of physician networks on the ACA marketplaces in 2017. We find that the overall rate of narrow networks is 21%, which is a decline since 2014 (31%) and 2016 (25%). Narrow networks are concentrated in plans sold on state-based marketplaces, at 42%, compared to 10% of plans on federally-facilitated marketplaces. Issuers that have traditionally offered Medicaid coverage have the highest prevalence of narrow network plans at 36%, with regional/local plans and provider-based plans close behind at 27% and 30%. We also find large differences in narrow networks by state and by plan type.
Robillard, Cassandra M; Kerr, Jeremy T
2017-08-01
High costs of land in agricultural regions warrant spatial prioritization approaches to conservation that explicitly consider land prices to produce protected-area networks that accomplish targets efficiently. However, land-use changes in such regions and delays between plan design and implementation may render optimized plans obsolete before implementation occurs. To measure the shelf life of cost-efficient conservation plans, we simulated a land-acquisition and restoration initiative aimed at conserving species at risk in Canada's farmlands. We accounted for observed changes in land-acquisition costs and in agricultural intensity based on censuses of agriculture taken from 1986 to 2011. For each year of data, we mapped costs and areas of conservation priority designated using Marxan. We compared plans to test for changes through time in the arrangement of high-priority sites and in the total cost of each plan. For acquisition costs, we measured the savings from accounting for prices during site selection. Land-acquisition costs and land-use intensity generally rose over time independent of inflation (24-78%), although rates of change were heterogeneous through space and decreased in some areas. Accounting for spatial variation in land price lowered the cost of conservation plans by 1.73-13.9%, decreased the range of costs by 19-82%, and created unique solutions from which to choose. Despite the rise in plan costs over time, the high conservation priority of particular areas remained consistent. Delaying conservation in these critical areas may compromise what optimized conservation plans can achieve. In the case of Canadian farmland, rapid conservation action is cost-effective, even with moderate levels of uncertainty in how to implement restoration goals. © 2016 Society for Conservation Biology.
Simulation Of Research And Development Projects
NASA Technical Reports Server (NTRS)
Miles, Ralph F.
1987-01-01
Measures of preference for alternative project plans calculated. Simulation of Research and Development Projects (SIMRAND) program aids in optimal allocation of research and development resources needed to achieve project goals. Models system subsets or project tasks as various network paths to final goal. Each path described in terms of such task variables as cost per hour, cost per unit, and availability of resources. Uncertainty incorporated by treating task variables as probabilistic random variables. Written in Microsoft FORTRAN 77.
2007-01-28
is interested in B2B and B2C e-commerce, enterprise resource planning, e-procurement, supply-chain management, data mining, and knowledge discovery... social networking tools, collaborative spaces, knowledge management, “connecting-enabling” protocols like RSS, and other tools. The intent of the ILE...delivered to them, what learning pedagogy is appropriate for them, the optimal level of social interaction for learning, and available resources
Cedar-a large scale multiprocessor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajski, D.; Kuck, D.; Lawrie, D.
1983-01-01
This paper presents an overview of Cedar, a large scale multiprocessor being designed at the University of Illinois. This machine is designed to accommodate several thousand high performance processors which are capable of working together on a single job, or they can be partitioned into groups of processors where each group of one or more processors can work on separate jobs. Various aspects of the machine are described including the control methodology, communication network, optimizing compiler and plans for construction. 13 references.
NASA Astrophysics Data System (ADS)
Keum, Jongho; Coulibaly, Paulin
2017-07-01
Adequate and accurate hydrologic information from optimal hydrometric networks is an essential part of effective water resources management. Although the key hydrologic processes in the water cycle are interconnected, hydrometric networks (e.g., streamflow, precipitation, groundwater level) have been routinely designed individually. A decision support framework is proposed for integrated design of multivariable hydrometric networks. The proposed method is applied to design optimal precipitation and streamflow networks simultaneously. The epsilon-dominance hierarchical Bayesian optimization algorithm was combined with Shannon entropy of information theory to design and evaluate hydrometric networks. Specifically, the joint entropy from the combined networks was maximized to provide the most information, and the total correlation was minimized to reduce redundant information. To further optimize the efficiency between the networks, they were designed by maximizing the conditional entropy of the streamflow network given the information of the precipitation network. Compared to the traditional individual variable design approach, the integrated multivariable design method was able to determine more efficient optimal networks by avoiding the redundant stations. Additionally, four quantization cases were compared to evaluate their effects on the entropy calculations and the determination of the optimal networks. The evaluation results indicate that the quantization methods should be selected after careful consideration for each design problem since the station rankings and the optimal networks can change accordingly.
Solving Constraint Satisfaction Problems with Networks of Spiking Neurons
Jonke, Zeno; Habenschuss, Stefan; Maass, Wolfgang
2016-01-01
Network of neurons in the brain apply—unlike processors in our current generation of computer hardware—an event-based processing strategy, where short pulses (spikes) are emitted sparsely by neurons to signal the occurrence of an event at a particular point in time. Such spike-based computations promise to be substantially more power-efficient than traditional clocked processing schemes. However, it turns out to be surprisingly difficult to design networks of spiking neurons that can solve difficult computational problems on the level of single spikes, rather than rates of spikes. We present here a new method for designing networks of spiking neurons via an energy function. Furthermore, we show how the energy function of a network of stochastically firing neurons can be shaped in a transparent manner by composing the networks of simple stereotypical network motifs. We show that this design approach enables networks of spiking neurons to produce approximate solutions to difficult (NP-hard) constraint satisfaction problems from the domains of planning/optimization and verification/logical inference. The resulting networks employ noise as a computational resource. Nevertheless, the timing of spikes plays an essential role in their computations. Furthermore, networks of spiking neurons carry out for the Traveling Salesman Problem a more efficient stochastic search for good solutions compared with stochastic artificial neural networks (Boltzmann machines) and Gibbs sampling. PMID:27065785
Vector-model-supported approach in prostate plan optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Eva Sau Fan; Department of Health Technology and Informatics, The Hong Kong Polytechnic University; Wu, Vincent Wing Cheung
Lengthy time consumed in traditional manual plan optimization can limit the use of step-and-shoot intensity-modulated radiotherapy/volumetric-modulated radiotherapy (S&S IMRT/VMAT). A vector model base, retrieving similar radiotherapy cases, was developed with respect to the structural and physiologic features extracted from the Digital Imaging and Communications in Medicine (DICOM) files. Planning parameters were retrieved from the selected similar reference case and applied to the test case to bypass the gradual adjustment of planning parameters. Therefore, the planning time spent on the traditional trial-and-error manual optimization approach in the beginning of optimization could be reduced. Each S&S IMRT/VMAT prostate reference database comprised 100more » previously treated cases. Prostate cases were replanned with both traditional optimization and vector-model-supported optimization based on the oncologists' clinical dose prescriptions. A total of 360 plans, which consisted of 30 cases of S&S IMRT, 30 cases of 1-arc VMAT, and 30 cases of 2-arc VMAT plans including first optimization and final optimization with/without vector-model-supported optimization, were compared using the 2-sided t-test and paired Wilcoxon signed rank test, with a significance level of 0.05 and a false discovery rate of less than 0.05. For S&S IMRT, 1-arc VMAT, and 2-arc VMAT prostate plans, there was a significant reduction in the planning time and iteration with vector-model-supported optimization by almost 50%. When the first optimization plans were compared, 2-arc VMAT prostate plans had better plan quality than 1-arc VMAT plans. The volume receiving 35 Gy in the femoral head for 2-arc VMAT plans was reduced with the vector-model-supported optimization compared with the traditional manual optimization approach. Otherwise, the quality of plans from both approaches was comparable. Vector-model-supported optimization was shown to offer much shortened planning time and iteration number without compromising the plan quality.« less
A Search Algorithm for Generating Alternative Process Plans in Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Tehrani, Hossein; Sugimura, Nobuhiro; Tanimizu, Yoshitaka; Iwamura, Koji
Capabilities and complexity of manufacturing systems are increasing and striving for an integrated manufacturing environment. Availability of alternative process plans is a key factor for integration of design, process planning and scheduling. This paper describes an algorithm for generation of alternative process plans by extending the existing framework of the process plan networks. A class diagram is introduced for generating process plans and process plan networks from the viewpoint of the integrated process planning and scheduling systems. An incomplete search algorithm is developed for generating and searching the process plan networks. The benefit of this algorithm is that the whole process plan network does not have to be generated before the search algorithm starts. This algorithm is applicable to large and enormous process plan networks and also to search wide areas of the network based on the user requirement. The algorithm can generate alternative process plans and to select a suitable one based on the objective functions.
Liu, Qingshan; Guo, Zhishan; Wang, Jun
2012-02-01
In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
An end-to-end workflow for engineering of biological networks from high-level specifications.
Beal, Jacob; Weiss, Ron; Densmore, Douglas; Adler, Aaron; Appleton, Evan; Babb, Jonathan; Bhatia, Swapnil; Davidsohn, Noah; Haddock, Traci; Loyall, Joseph; Schantz, Richard; Vasilev, Viktor; Yaman, Fusun
2012-08-17
We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set of software tools, organized into a four-stage toolchain: Specification, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological networks from a high-level program specification. Furthermore, the workflow's modular design allows the same program to be realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial cells.
A Three-Phase Microgrid Restoration Model Considering Unbalanced Operation of Distributed Generation
Wang, Zeyu; Wang, Jianhui; Chen, Chen
2016-12-07
Recent severe outages highlight the urgency of improving grid resiliency in the U.S. Microgrid formation schemes are proposed to restore critical loads after outages occur. Most distribution networks have unbalanced configurations that are not represented in sufficient detail by single-phase models. This study provides a microgrid formation plan that adopts a three-phase network model to represent unbalanced distribution networks. The problem formulation has a quadratic objective function with mixed-integer linear constraints. The three-phase network model enables us to examine the three-phase power outputs of distributed generators (DGs), preventing unbalanced operation that might trip DGs. Because the DG unbalanced operation constraintmore » is non-convex, an iterative process is presented that checks whether the unbalanced operation limits for DGs are satisfied after each iteration of optimization. We also develop a relatively conservative linear approximation on the unbalanced operation constraint to handle larger networks. Compared with the iterative solution process, the conservative linear approximation is able to accelerate the solution process at the cost of sacrificing optimality to a limited extent. Simulation in the IEEE 34 node and IEEE 123 test feeders indicate that the proposed method yields more practical microgrid formations results. In addition, this paper explores the coordinated operation of DGs and energy storage (ES) installations. The unbalanced three-phase outputs of ESs combined with the relatively balanced outputs of DGs could supply unbalanced loads. In conclusion, the case study also validates the DG-ES coordination.« less
A Three-Phase Microgrid Restoration Model Considering Unbalanced Operation of Distributed Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zeyu; Wang, Jianhui; Chen, Chen
Recent severe outages highlight the urgency of improving grid resiliency in the U.S. Microgrid formation schemes are proposed to restore critical loads after outages occur. Most distribution networks have unbalanced configurations that are not represented in sufficient detail by single-phase models. This study provides a microgrid formation plan that adopts a three-phase network model to represent unbalanced distribution networks. The problem formulation has a quadratic objective function with mixed-integer linear constraints. The three-phase network model enables us to examine the three-phase power outputs of distributed generators (DGs), preventing unbalanced operation that might trip DGs. Because the DG unbalanced operation constraintmore » is non-convex, an iterative process is presented that checks whether the unbalanced operation limits for DGs are satisfied after each iteration of optimization. We also develop a relatively conservative linear approximation on the unbalanced operation constraint to handle larger networks. Compared with the iterative solution process, the conservative linear approximation is able to accelerate the solution process at the cost of sacrificing optimality to a limited extent. Simulation in the IEEE 34 node and IEEE 123 test feeders indicate that the proposed method yields more practical microgrid formations results. In addition, this paper explores the coordinated operation of DGs and energy storage (ES) installations. The unbalanced three-phase outputs of ESs combined with the relatively balanced outputs of DGs could supply unbalanced loads. In conclusion, the case study also validates the DG-ES coordination.« less
NASA Astrophysics Data System (ADS)
Singh, Navneet K.; Singh, Asheesh K.; Tripathy, Manoj
2012-05-01
For power industries electricity load forecast plays an important role for real-time control, security, optimal unit commitment, economic scheduling, maintenance, energy management, and plant structure planning
Network placement optimization for large-scale distributed system
NASA Astrophysics Data System (ADS)
Ren, Yu; Liu, Fangfang; Fu, Yunxia; Zhou, Zheng
2018-01-01
The network geometry strongly influences the performance of the distributed system, i.e., the coverage capability, measurement accuracy and overall cost. Therefore the network placement optimization represents an urgent issue in the distributed measurement, even in large-scale metrology. This paper presents an effective computer-assisted network placement optimization procedure for the large-scale distributed system and illustrates it with the example of the multi-tracker system. To get an optimal placement, the coverage capability and the coordinate uncertainty of the network are quantified. Then a placement optimization objective function is developed in terms of coverage capabilities, measurement accuracy and overall cost. And a novel grid-based encoding approach for Genetic algorithm is proposed. So the network placement is optimized by a global rough search and a local detailed search. Its obvious advantage is that there is no need for a specific initial placement. At last, a specific application illustrates this placement optimization procedure can simulate the measurement results of a specific network and design the optimal placement efficiently.
A graph decomposition-based approach for water distribution network optimization
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.; Deuerlein, Jochen W.
2013-04-01
A novel optimization approach for water distribution network design is proposed in this paper. Using graph theory algorithms, a full water network is first decomposed into different subnetworks based on the connectivity of the network's components. The original whole network is simplified to a directed augmented tree, in which the subnetworks are substituted by augmented nodes and directed links are created to connect them. Differential evolution (DE) is then employed to optimize each subnetwork based on the sequence specified by the assigned directed links in the augmented tree. Rather than optimizing the original network as a whole, the subnetworks are sequentially optimized by the DE algorithm. A solution choice table is established for each subnetwork (except for the subnetwork that includes a supply node) and the optimal solution of the original whole network is finally obtained by use of the solution choice tables. Furthermore, a preconditioning algorithm is applied to the subnetworks to produce an approximately optimal solution for the original whole network. This solution specifies promising regions for the final optimization algorithm to further optimize the subnetworks. Five water network case studies are used to demonstrate the effectiveness of the proposed optimization method. A standard DE algorithm (SDE) and a genetic algorithm (GA) are applied to each case study without network decomposition to enable a comparison with the proposed method. The results show that the proposed method consistently outperforms the SDE and GA (both with tuned parameters) in terms of both the solution quality and efficiency.
Optimizing Dynamical Network Structure for Pinning Control
NASA Astrophysics Data System (ADS)
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-04-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina E.
1994-01-01
Electronic and optoelectronic hardware implementations of highly parallel computing architectures address several ill-defined and/or computation-intensive problems not easily solved by conventional computing techniques. The concurrent processing architectures developed are derived from a variety of advanced computing paradigms including neural network models, fuzzy logic, and cellular automata. Hardware implementation technologies range from state-of-the-art digital/analog custom-VLSI to advanced optoelectronic devices such as computer-generated holograms and e-beam fabricated Dammann gratings. JPL's concurrent processing devices group has developed a broad technology base in hardware implementable parallel algorithms, low-power and high-speed VLSI designs and building block VLSI chips, leading to application-specific high-performance embeddable processors. Application areas include high throughput map-data classification using feedforward neural networks, terrain based tactical movement planner using cellular automata, resource optimization (weapon-target assignment) using a multidimensional feedback network with lateral inhibition, and classification of rocks using an inner-product scheme on thematic mapper data. In addition to addressing specific functional needs of DOD and NASA, the JPL-developed concurrent processing device technology is also being customized for a variety of commercial applications (in collaboration with industrial partners), and is being transferred to U.S. industries. This viewgraph p resentation focuses on two application-specific processors which solve the computation intensive tasks of resource allocation (weapon-target assignment) and terrain based tactical movement planning using two extremely different topologies. Resource allocation is implemented as an asynchronous analog competitive assignment architecture inspired by the Hopfield network. Hardware realization leads to a two to four order of magnitude speed-up over conventional techniques and enables multiple assignments, (many to many), not achievable with standard statistical approaches. Tactical movement planning (finding the best path from A to B) is accomplished with a digital two-dimensional concurrent processor array. By exploiting the natural parallel decomposition of the problem in silicon, a four order of magnitude speed-up over optimized software approaches has been demonstrated.
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Chen, Alexander Y. K.
1991-01-01
Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two articulated arms, one movable robot head, and two charged coupled device (CCD) cameras for producing the stereoscopic views, and articulated cylindrical-type lower body, and an optional mobile base. A functional prototype is demonstrated.
A Planning Guide for Instructional Networks, Part I.
ERIC Educational Resources Information Center
Daly, Kevin F.
1994-01-01
Discusses three phases in implementing a master plan for a school-based local area network (LAN): (1) network software selection; (2) hardware selection, network topology, and site preparation; and (3) implementation time table. Sample planning and specification worksheets and a list of planning guides are included. (Contains six references.) (KRN)
Optimal synchronization in space
NASA Astrophysics Data System (ADS)
Brede, Markus
2010-02-01
In this Rapid Communication we investigate spatially constrained networks that realize optimal synchronization properties. After arguing that spatial constraints can be imposed by limiting the amount of “wire” available to connect nodes distributed in space, we use numerical optimization methods to construct networks that realize different trade offs between optimal synchronization and spatial constraints. Over a large range of parameters such optimal networks are found to have a link length distribution characterized by power-law tails P(l)∝l-α , with exponents α increasing as the networks become more constrained in space. It is also shown that the optimal networks, which constitute a particular type of small world network, are characterized by the presence of nodes of distinctly larger than average degree around which long-distance links are centered.
Tabu Search enhances network robustness under targeted attacks
NASA Astrophysics Data System (ADS)
Sun, Shi-wen; Ma, Yi-lin; Li, Rui-qi; Wang, Li; Xia, Cheng-yi
2016-03-01
We focus on the optimization of network robustness with respect to intentional attacks on high-degree nodes. Given an existing network, this problem can be considered as a typical single-objective combinatorial optimization problem. Based on the heuristic Tabu Search optimization algorithm, a link-rewiring method is applied to reconstruct the network while keeping the degree of every node unchanged. Through numerical simulations, BA scale-free network and two real-world networks are investigated to verify the effectiveness of the proposed optimization method. Meanwhile, we analyze how the optimization affects other topological properties of the networks, including natural connectivity, clustering coefficient and degree-degree correlation. The current results can help to improve the robustness of existing complex real-world systems, as well as to provide some insights into the design of robust networks.
Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy.
Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B; Gu, Xuejun
2015-11-07
In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient's unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient's geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.
Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain.
Aerts, Hannelore; Schirner, Michael; Jeurissen, Ben; Van Roost, Dirk; Achten, Eric; Ritter, Petra; Marinazzo, Daniele
2018-01-01
Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong-Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.
Optimizing Nutrient Uptake in Biological Transport Networks
NASA Astrophysics Data System (ADS)
Ronellenfitsch, Henrik; Katifori, Eleni
2013-03-01
Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.
Valente, Thomas W; Chou, Chich Ping; Pentz, Mary Ann
2007-05-01
We examined the effect of community coalition network structure on the effectiveness of an intervention designed to accelerate the adoption of evidence-based substance abuse prevention programs. At baseline, 24 cities were matched and randomly assigned to 3 conditions (control, satellite TV training, and training plus technical assistance). We surveyed 415 community leaders at baseline and 406 at 18-month follow-up about their attitudes and practices toward substance abuse prevention programs. Network structure was measured by asking leaders whom in their coalition they turned to for advice about prevention programs. The outcome was a scale with 4 subscales: coalition function, planning, achievement of benchmarks, and progress in prevention activities. We used multiple linear regression and path analysis to test hypotheses. Intervention had a significant effect on decreasing the density of coalition networks. The change in density subsequently increased adoption of evidence-based practices. Optimal community network structures for the adoption of public health programs are unknown, but it should not be assumed that increasing network density or centralization are appropriate goals. Lower-density networks may be more efficient for organizing evidence-based prevention programs in communities.
A key to success: optimizing the planning process
NASA Astrophysics Data System (ADS)
Turk, Huseyin; Karakaya, Kamil
2014-05-01
By adopting The NATO Strategic Concept Document in 2010, some important changes in the perception of threat and management of crisis were introduced. This new concept, named ''Comprehensive Approach'', includes the precautions of pre-crisis management, applications of crisis-duration management and reconstruction phase of post-intervention management. NATO will be interested in not only the political and military options , but also social, economical and informational aspects of crisis. NATO will take place in all phases of conflict. The conflicts which occur outside the borders of NATO's nations and terrorism are perceived as threat sources for peace and stability. In addition to conventional threats, cyber attacks which threaten network-supported communication systems, preventing applications from accessing to space that will be used in different fields of life. On the other hand, electronic warfare capabilities which can effect us negatively are added to threat list as new threats. In the process in which military is thought as option, a harder planning phase is waiting for NATO's decision makers who struggle for keeping peace and security. Operation planning process which depends on comprehensive approach, contains these steps: Situational awareness of battlefield, evaluation of the military intervention options, orientation, developing an operation plan, reviewing the plan and transition phases.1 To be successful in theater which is always changing with the technological advances, there has to be an accurate and timely planning on the table. So, spending time for planning can be shown as one of the biggest problem. In addition, sustaining situational awareness which is important for the whole operation planning process, technical command and control hitches, human factor, inability to determine the center of gravity of opponent in asymmetrical threat situations can be described as some of the difficulties in operation planning. In this study, a possible air operation planning process is analyzed according to a comprehensive approach. The difficulties of planning are identified. Consequently, for optimizing a decisionmaking process of an air operation, a planning process is identified in a virtual command and control structure.
Amorim, Francisco; Carvalho, Sílvia B; Honrado, João; Rebelo, Hugo
2014-01-01
Here we develop a framework to design multi-species monitoring networks using species distribution models and conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe). Maximum entropy modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or maintain suitable climatic space. We then used a decision support tool (the Marxan software) to design three optimized monitoring networks considering: a) changes in species likely occurrence, b) species conservation status, and c) level of volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment, included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional approach that only considers current species ranges, in allocating monitoring stations distributed across different categories of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also ensuring surveillance of general population trends.
NASA Astrophysics Data System (ADS)
Durden, D.; Muraoka, H.; Scholes, R. J.; Kim, D. G.; Loescher, H. W.; Bombelli, A.
2017-12-01
The development of an integrated global carbon cycle observation system to monitor changes in the carbon cycle, and ultimately the climate system, across the globe is of crucial importance in the 21stcentury. This system should be comprised of space and ground-based observations, in concert with modelling and analysis, to produce more robust budgets of carbon and other greenhouse gases (GHGs). A global initiative, the GEO Carbon and GHG Initiative, is working within the framework of Group on Earth Observations (GEO) to promote interoperability and provide integration across different parts of the system, particularly at domain interfaces. Thus, optimizing the efforts of existing networks and initiatives to reduce uncertainties in budgets of carbon and other GHGs. This is a very ambitious undertaking; therefore, the initiative is separated into tasks to provide actionable objectives. Task 3 focuses on the optimization of in-situ observational networks. The main objective of Task 3 is to develop and implement a procedure for enhancing and refining the observation system for identified essential carbon cycle variables (ECVs) that meets user-defined specifications at minimum total cost. This work focuses on the outline of the implementation plan, which includes a review of essential carbon cycle variables and observation technologies, mapping the ECVs performance, and analyzing gaps and opportunities in order to design an improved observing system. A description of the gap analysis of in-situ observations that will begin in the terrestrial domain to address issues of missing coordination and large spatial gaps, then extend to ocean and atmospheric observations in the future, will be outlined as the subsequent step to landscape mapping of existing observational networks.
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
NASA Astrophysics Data System (ADS)
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks
Zou, Tengyue; Lin, Shouying; Feng, Qijie; Chen, Yanlian
2016-01-01
Wireless sensor networks equipped with rechargeable batteries are useful for outdoor environmental monitoring. However, the severe energy constraints of the sensor nodes present major challenges for long-term applications. To achieve sustainability, solar cells can be used to acquire energy from the environment. Unfortunately, the energy supplied by the harvesting system is generally intermittent and considerably influenced by the weather. To improve the energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their scheduling plans accordingly to best suit their energy production and residual battery levels. Furthermore, we introduce clustering and routing selection methods to optimize the data transmission, and a Bayesian network is used for warning notifications of bottlenecks along the path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded platform, and the experimental results indicate that these mechanisms sustain the networks’ activities in an uninterrupted and efficient manner. PMID:26742042
Ortmann, Olaf; Helbig, Ulrike; Torode, Julie; Schreck, Stefan; Karjalainen, Sakari; Bettio, Manola; Ringborg, Ulrik; Klinkhammer-Schalke, Monika; Bray, Freddy
2018-06-01
National Cancer Control Plans (NCCPs) often describe structural requirements for high quality cancer care. During the fourth European Roundtable Meeting (ERTM) participants shared learnings from their own national setting to formulate best practice in optimizing communication strategies between parties involved in clinical cancer registries, cancer centers and guideline groups. A decentralized model of data collection close to the patient and caregiver enhances timely completion and the quality of the data captured. Nevertheless, central coordination is necessary to define datasets, indicators, standard settings, education, training and quality control to maintain standards across the network. In particular, interaction of parties in cancer care network has to be established and maintained on a regular basis. After establishing the structural requirements of cancer care networks, communication between the different components and parties is required to analyze outcome data, provide regular reporting to all and develop strategies for continuous improvement of quality across the network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghatikar, Girish; Mashayekh, Salman; Stadler, Michael
Distributed power systems in the U.S. and globally are evolving to provide reliable and clean energy to consumers. In California, existing regulations require significant increases in renewable generation, as well as identification of customer-side distributed energy resources (DER) controls, communication technologies, and standards for interconnection with the electric grid systems. As DER deployment expands, customer-side DER control and optimization will be critical for system flexibility and demand response (DR) participation, which improves the economic viability of DER systems. Current DER systems integration and communication challenges include leveraging the existing DER and DR technology and systems infrastructure, and enabling optimized cost,more » energy and carbon choices for customers to deploy interoperable grid transactions and renewable energy systems at scale. Our paper presents a cost-effective solution to these challenges by exploring communication technologies and information models for DER system integration and interoperability. This system uses open standards and optimization models for resource planning based on dynamic-pricing notifications and autonomous operations within various domains of the smart grid energy system. It identifies architectures and customer engagement strategies in dynamic DR pricing transactions to generate feedback information models for load flexibility, load profiles, and participation schedules. The models are tested at a real site in California—Fort Hunter Liggett (FHL). Furthermore, our results for FHL show that the model fits within the existing and new DR business models and networked systems for transactive energy concepts. Integrated energy systems, communication networks, and modeling tools that coordinate supply-side networks and DER will enable electric grid system operators to use DER for grid transactions in an integrated system.« less
NASA Astrophysics Data System (ADS)
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
NASA Astrophysics Data System (ADS)
WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun
2017-06-01
Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.
Network-optimized congestion pricing : a parable, model and algorithm
DOT National Transportation Integrated Search
1995-05-31
This paper recites a parable, formulates a model and devises an algorithm for optimizing tolls on a road network. Such tolls induce an equilibrium traffic flow that is at once system-optimal and user-optimal. The parable introduces the network-wide c...
Cao, Wenhua; Lim, Gino; Li, Xiaoqiang; Li, Yupeng; Zhu, X. Ronald; Zhang, Xiaodong
2014-01-01
The purpose of this study is to investigate the feasibility and impact of incorporating deliverable monitor unit (MU) constraints into spot intensity optimization in intensity modulated proton therapy (IMPT) treatment planning. The current treatment planning system (TPS) for IMPT disregards deliverable MU constraints in the spot intensity optimization (SIO) routine. It performs a post-processing procedure on an optimized plan to enforce deliverable MU values that are required by the spot scanning proton delivery system. This procedure can create a significant dose distribution deviation between the optimized and post-processed deliverable plans, especially when small spot spacings are used. In this study, we introduce a two-stage linear programming (LP) approach to optimize spot intensities and constrain deliverable MU values simultaneously, i.e., a deliverable spot intensity optimization (DSIO) model. Thus, the post-processing procedure is eliminated and the associated optimized plan deterioration can be avoided. Four prostate cancer cases at our institution were selected for study and two parallel opposed beam angles were planned for all cases. A quadratic programming (QP) based model without MU constraints, i.e., a conventional spot intensity optimization (CSIO) model, was also implemented to emulate the commercial TPS. Plans optimized by both the DSIO and CSIO models were evaluated for five different settings of spot spacing from 3 mm to 7 mm. For all spot spacings, the DSIO-optimized plans yielded better uniformity for the target dose coverage and critical structure sparing than did the CSIO-optimized plans. With reduced spot spacings, more significant improvements in target dose uniformity and critical structure sparing were observed in the DSIO- than in the CSIO-optimized plans. Additionally, better sparing of the rectum and bladder was achieved when reduced spacings were used for the DSIO-optimized plans. The proposed DSIO approach ensures the deliverability of optimized IMPT plans that take into account MU constraints. This eliminates the post-processing procedure required by the TPS as well as the resultant deteriorating effect on ultimate dose distributions. This approach therefore allows IMPT plans to adopt all possible spot spacings optimally. Moreover, dosimetric benefits can be achieved using smaller spot spacings. PMID:23835656
Optimal percolation on multiplex networks.
Osat, Saeed; Faqeeh, Ali; Radicchi, Filippo
2017-11-16
Optimal percolation is the problem of finding the minimal set of nodes whose removal from a network fragments the system into non-extensive disconnected clusters. The solution to this problem is important for strategies of immunization in disease spreading, and influence maximization in opinion dynamics. Optimal percolation has received considerable attention in the context of isolated networks. However, its generalization to multiplex networks has not yet been considered. Here we show that approximating the solution of the optimal percolation problem on a multiplex network with solutions valid for single-layer networks extracted from the multiplex may have serious consequences in the characterization of the true robustness of the system. We reach this conclusion by extending many of the methods for finding approximate solutions of the optimal percolation problem from single-layer to multiplex networks, and performing a systematic analysis on synthetic and real-world multiplex networks.
Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen
2013-02-01
This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.
Type of Plan and Provider Network (Affordable Care Act)
... insurance plan & network types: HMOs, PPOs, and more Health insurance plan & network types: HMOs, PPOs, and more 3 things to know before you pick a health insurance plan The 'metal' categories: Bronze, Silver, Gold & Platinum ...
Fast rerouting schemes for protected mobile IP over MPLS networks
NASA Astrophysics Data System (ADS)
Wen, Chih-Chao; Chang, Sheng-Yi; Chen, Huan; Chen, Kim-Joan
2005-10-01
Fast rerouting is a critical traffic engineering operation in the MPLS networks. To implement the Mobile IP service over the MPLS network, one can collaborate with the fast rerouting operation to enhance the availability and survivability. MPLS can protect critical LSP tunnel between Home Agent (HA) and Foreign Agent (FA) using the fast rerouting scheme. In this paper, we propose a simple but efficient algorithm to address the triangle routing problem for the Mobile IP over the MPLS networks. We consider this routing issue as a link weighting and capacity assignment (LW-CA) problem. The derived solution is used to plan the fast restoration mechanism to protect the link or node failure. In this paper, we first model the LW-CA problem as a mixed integer optimization problem. Our goal is to minimize the call blocking probability on the most congested working truck for the mobile IP connections. Many existing network topologies are used to evaluate the performance of our scheme. Results show that our proposed scheme can obtain the best performance in terms of the smallest blocking probability compared to other schemes.
A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.
Li, Yuhong; Gong, Guanghong; Li, Ni
2018-01-01
In this paper, we propose a novel algorithm-parallel adaptive quantum genetic algorithm-which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes.
NASA Astrophysics Data System (ADS)
Chen, Y. Y.; Ho, C. C.; Chang, L. C.
2017-12-01
The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-20
... (NOA) for Strategic Network Optimization (SNO) Program Environmental Assessment AGENCY: Defense Logistics Agency, DoD. ACTION: Notice of Availability (NOA) for Strategic Network Optimization (SNO) Program... implement the SNO initiative for improvements to material distribution network for the Department of Defense...
Coordinated and uncoordinated optimization of networks
NASA Astrophysics Data System (ADS)
Brede, Markus
2010-06-01
In this paper, we consider spatial networks that realize a balance between an infrastructure cost (the cost of wire needed to connect the network in space) and communication efficiency, measured by average shortest path length. A global optimization procedure yields network topologies in which this balance is optimized. These are compared with network topologies generated by a competitive process in which each node strives to optimize its own cost-communication balance. Three phases are observed in globally optimal configurations for different cost-communication trade offs: (i) regular small worlds, (ii) starlike networks, and (iii) trees with a center of interconnected hubs. In the latter regime, i.e., for very expensive wire, power laws in the link length distributions P(w)∝w-α are found, which can be explained by a hierarchical organization of the networks. In contrast, in the local optimization process the presence of sharp transitions between different network regimes depends on the dimension of the underlying space. Whereas for d=∞ sharp transitions between fully connected networks, regular small worlds, and highly cliquish periphery-core networks are found, for d=1 sharp transitions are absent and the power law behavior in the link length distribution persists over a much wider range of link cost parameters. The measured power law exponents are in agreement with the hypothesis that the locally optimized networks consist of multiple overlapping suboptimal hierarchical trees.
Energy optimization in mobile sensor networks
NASA Astrophysics Data System (ADS)
Yu, Shengwei
Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.
A VLBI variance-covariance analysis interactive computer program. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bock, Y.
1980-01-01
An interactive computer program (in FORTRAN) for the variance covariance analysis of VLBI experiments is presented for use in experiment planning, simulation studies and optimal design problems. The interactive mode is especially suited to these types of analyses providing ease of operation as well as savings in time and cost. The geodetic parameters include baseline vector parameters and variations in polar motion and Earth rotation. A discussion of the theroy on which the program is based provides an overview of the VLBI process emphasizing the areas of interest to geodesy. Special emphasis is placed on the problem of determining correlations between simultaneous observations from a network of stations. A model suitable for covariance analyses is presented. Suggestions towards developing optimal observation schedules are included.
Thermodynamic characterization of synchronization-optimized oscillator networks
NASA Astrophysics Data System (ADS)
Yanagita, Tatsuo; Ichinomiya, Takashi
2014-12-01
We consider a canonical ensemble of synchronization-optimized networks of identical oscillators under external noise. By performing a Markov chain Monte Carlo simulation using the Kirchhoff index, i.e., the sum of the inverse eigenvalues of the Laplacian matrix (as a graph Hamiltonian of the network), we construct more than 1 000 different synchronization-optimized networks. We then show that the transition from star to core-periphery structure depends on the connectivity of the network, and is characterized by the node degree variance of the synchronization-optimized ensemble. We find that thermodynamic properties such as heat capacity show anomalies for sparse networks.
Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus
NASA Technical Reports Server (NTRS)
Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud
1996-01-01
The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the GP model which in turn produces the pre-schedule of the optimal control model. Some preliminary results based on a hypothetical test case will be presented for the load forecasting module. The computer codes for the three modules will be made available fe adoption by bus operating agencies. Sample results will be provided using these models. The software will be a useful tool for supporting the control systems for the Electric Bus project of NASA.
Career planning and mentorship: a few key considerations for trainees.
Badawy, Sherif M
2017-01-01
Publishing and securing funding are considered our "academic currency", and therefore, both should be emphasized during training, both residency and fellowship. Trainees should make an effort to find funding opportunities at or outside of their institutions and try to identify their short- and long-term goals. Establishing a track record of publications can help trainees get hired, funded, and promoted as junior faculty, and effective networking and mentorship are critical determinants of academic success. Given the positive effects of mentorship, trainees should understand what comprises a good mentor-mentee relationship and how to optimize the mentoring process. The objective of this article is to discuss few key considerations for trainees in residency or fellowship regarding mentorship and career planning in academic medicine.
Research in Satellite-Fiber Network Interoperability
NASA Technical Reports Server (NTRS)
Edelson, Burt
1997-01-01
This four part report evaluated the performance of high data rate transmission links using the ACTS satellite, and to provide a preparatory test framework for two of the space science applications that have been approved for tests and demonstrations as part of the overall ACTS program. The test plan will provide guidance and information necessary to find the optimal values of the transmission parameters and then apply these parameters to specific applications. The first part will focus on the satellite-to-earth link. The second part is a set of tests to study the performance of ATM on the ACTS channel. The third and fourth parts of the test plan will cover the space science applications, Global Climate Modeling and Keck Telescope Acquisition Modeling and Control.
Exploiting node mobility for energy optimization in wireless sensor networks
NASA Astrophysics Data System (ADS)
El-Moukaddem, Fatme Mohammad
Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network. In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework. We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC ) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed implementations for several important network topologies and applications. Second, we consider the problem of minimizing the total energy consumption of a network. We design an iterative algorithm that improves a given configuration by relocating nodes to new positions. We show that this algorithm converges to the optimal configuration for the given transmission routes. Moreover, we propose an efficient distributed implementation that does not require explicit synchronization. Finally, we consider the problem of maximizing the lifetime of the network. We propose an approach that exploits the mobility of the nodes to balance the energy consumption throughout the network. We develop efficient algorithms for single and multiple round approaches. For all three problems, we evaluate the efficiency of our algorithms through simulations. Our simulation results based on realistic energy models obtained from existing mobile and static sensor platforms show that our approaches significantly improve the network's performance and outperform existing approaches.
NASA Astrophysics Data System (ADS)
Freund, Richard F.; Braun, Tracy D.; Kussow, Matthew; Godfrey, Michael; Koyama, Terry
2001-07-01
SPANR (Schedule, Plan, Assess Networked Resources) is (i) a pre-run, off-line planning and (ii) a runtime, just-in-time scheduling mechanism. It is designed to support primarily commercial applications in that it optimizes throughput rather than individual jobs (unless they have highest priority). Thus it is a tool for a commercial production manager to maximize total work. First the SPANR Planner is presented showing the ability to do predictive 'what-if' planning. It can answer such questions as, (i) what is the overall effect of acquiring new hardware or (ii) what would be the effect of a different scheduler. The ability of the SPANR Planner to formulate in advance tree-trimming strategies is useful in several commercial applications, such as electronic design or pharmaceutical simulations. The SPANR Planner is demonstrated using a variety of benchmarks. The SPANR Runtime Scheduler (RS) is briefly presented. The SPANR RS can provide benefit for several commercial applications, such as airframe design and financial applications. Finally a design is shown whereby SPANR can provide scheduling advice to most resource management systems.
Intensity modulated neutron radiotherapy optimization by photon proxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd
2012-08-15
Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodologymore » and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment planning optimization algorithm, potentially allowing IMNRT to achieve similar conformality in treatment as photon IMRT. The only remaining requirements for the delivery of very highly modulated neutron treatments are incremental improvements upon already implemented hardware systems that should be readily achievable.« less
Liu, Wei; Liao, Zhongxing; Schild, Steven E; Liu, Zhong; Li, Heng; Li, Yupeng; Park, Peter C; Li, Xiaoqiang; Stoker, Joshua; Shen, Jiajian; Keole, Sameer; Anand, Aman; Fatyga, Mirek; Dong, Lei; Sahoo, Narayan; Vora, Sujay; Wong, William; Zhu, X Ronald; Bues, Martin; Mohan, Radhe
2015-01-01
We compared conventionally optimized intensity modulated proton therapy (IMPT) treatment plans against worst-case scenario optimized treatment plans for lung cancer. The comparison of the 2 IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient setup, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. For each of the 9 lung cancer cases, 2 treatment plans were created that accounted for treatment uncertainties in 2 different ways. The first used the conventional method: delivery of prescribed dose to the planning target volume that is geometrically expanded from the internal target volume (ITV). The second used a worst-case scenario optimization scheme that addressed setup and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of changes in patient anatomy attributable to respiratory motion were investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the 2 groups were compared with 2-sided paired Student t tests. Without respiratory motion considered, we affirmed that worst-case scenario optimization is superior to planning target volume-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, worst-case scenario optimization still achieved more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality (D95% ITV, 96.6% vs 96.1% [P = .26]; D5%- D95% ITV, 10.0% vs 12.3% [P = .082]; D1% spinal cord, 31.8% vs 36.5% [P = .035]). Worst-case scenario optimization led to superior solutions for lung IMPT. Despite the fact that worst-case scenario optimization did not explicitly account for respiratory motion, it produced motion-resistant treatment plans. However, further research is needed to incorporate respiratory motion into IMPT robust optimization. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pasam, Gopi Krishna; Manohar, T. Gowri
2016-09-01
Determination of available transfer capability (ATC) requires the use of experience, intuition and exact judgment in order to meet several significant aspects in the deregulated environment. Based on these points, this paper proposes two heuristic approaches to compute ATC. The first proposed heuristic algorithm integrates the five methods known as continuation repeated power flow, repeated optimal power flow, radial basis function neural network, back propagation neural network and adaptive neuro fuzzy inference system to obtain ATC. The second proposed heuristic model is used to obtain multiple ATC values. Out of these, a specific ATC value will be selected based on a number of social, economic, deregulated environmental constraints and related to specific applications like optimization, on-line monitoring, and ATC forecasting known as multi-objective decision based optimal ATC. The validity of results obtained through these proposed methods are scrupulously verified on various buses of the IEEE 24-bus reliable test system. The results presented and derived conclusions in this paper are very useful for planning, operation, maintaining of reliable power in any power system and its monitoring in an on-line environment of deregulated power system. In this way, the proposed heuristic methods would contribute the best possible approach to assess multiple objective ATC using integrated methods.
Derivative-free generation and interpolation of convex Pareto optimal IMRT plans
NASA Astrophysics Data System (ADS)
Hoffmann, Aswin L.; Siem, Alex Y. D.; den Hertog, Dick; Kaanders, Johannes H. A. M.; Huizenga, Henk
2006-12-01
In inverse treatment planning for intensity-modulated radiation therapy (IMRT), beamlet intensity levels in fluence maps of high-energy photon beams are optimized. Treatment plan evaluation criteria are used as objective functions to steer the optimization process. Fluence map optimization can be considered a multi-objective optimization problem, for which a set of Pareto optimal solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained optimization method is pursued to iteratively estimate the PEF up to some predefined error. We use the property that the PEF is convex for a convex optimization problem to construct piecewise-linear upper and lower bounds to approximate the PEF from a small initial set of Pareto optimal plans. A derivative-free Sandwich algorithm is presented in which these bounds are used with three strategies to determine the location of the next Pareto optimal solution such that the uncertainty in the estimated PEF is maximally reduced. We show that an intelligent initial solution for a new Pareto optimal plan can be obtained by interpolation of fluence maps from neighbouring Pareto optimal plans. The method has been applied to a simplified clinical test case using two convex objective functions to map the trade-off between tumour dose heterogeneity and critical organ sparing. All three strategies produce representative estimates of the PEF. The new algorithm is particularly suitable for dynamic generation of Pareto optimal plans in interactive treatment planning.
Sun, Yan; Lang, Maoxiang; Wang, Danzhu
2016-01-01
The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294
Liu, Qingshan; Wang, Jun
2011-04-01
This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.
Electronic neural networks for global optimization
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.
1990-01-01
An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.
Engberg, Lovisa; Forsgren, Anders; Eriksson, Kjell; Hårdemark, Björn
2017-06-01
To formulate convex planning objectives of treatment plan multicriteria optimization with explicit relationships to the dose-volume histogram (DVH) statistics used in plan quality evaluation. Conventional planning objectives are designed to minimize the violation of DVH statistics thresholds using penalty functions. Although successful in guiding the DVH curve towards these thresholds, conventional planning objectives offer limited control of the individual points on the DVH curve (doses-at-volume) used to evaluate plan quality. In this study, we abandon the usual penalty-function framework and propose planning objectives that more closely relate to DVH statistics. The proposed planning objectives are based on mean-tail-dose, resulting in convex optimization. We also demonstrate how to adapt a standard optimization method to the proposed formulation in order to obtain a substantial reduction in computational cost. We investigated the potential of the proposed planning objectives as tools for optimizing DVH statistics through juxtaposition with the conventional planning objectives on two patient cases. Sets of treatment plans with differently balanced planning objectives were generated using either the proposed or the conventional approach. Dominance in the sense of better distributed doses-at-volume was observed in plans optimized within the proposed framework. The initial computational study indicates that the DVH statistics are better optimized and more efficiently balanced using the proposed planning objectives than using the conventional approach. © 2017 American Association of Physicists in Medicine.
Multimodal Logistics Network Design over Planning Horizon through a Hybrid Meta-Heuristic Approach
NASA Astrophysics Data System (ADS)
Shimizu, Yoshiaki; Yamazaki, Yoshihiro; Wada, Takeshi
Logistics has been acknowledged increasingly as a key issue of supply chain management to improve business efficiency under global competition and diversified customer demands. This study aims at improving a quality of strategic decision making associated with dynamic natures in logistics network optimization. Especially, noticing an importance to concern with a multimodal logistics under multiterms, we have extended a previous approach termed hybrid tabu search (HybTS). The attempt intends to deploy a strategic planning more concretely so that the strategic plan can link to an operational decision making. The idea refers to a smart extension of the HybTS to solve a dynamic mixed integer programming problem. It is a two-level iterative method composed of a sophisticated tabu search for the location problem at the upper level and a graph algorithm for the route selection at the lower level. To keep efficiency while coping with the resulting extremely large-scale problem, we invented a systematic procedure to transform the original linear program at the lower-level into a minimum cost flow problem solvable by the graph algorithm. Through numerical experiments, we verified the proposed method outperformed the commercial software. The results indicate the proposed approach can make the conventional strategic decision much more practical and is promising for real world applications.
Topology Optimization for Energy Management in Underwater Sensor Networks
2015-02-01
1 To appear in International Journal of Control as a regular paper Topology Optimization for Energy Management in Underwater Sensor Networks ⋆ Devesh...K. Jha1 Thomas A. Wettergren2 Asok Ray1 Kushal Mukherjee3 Keywords: Underwater Sensor Network , Energy Management, Pareto Optimization, Adaptation...Optimization for Energy Management in Underwater Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d
Networking and Institutional Planning.
ERIC Educational Resources Information Center
Riggs, Donald E.
1987-01-01
Explores the impact of networks and shared library resources on the library planning process. Environmental scanning techniques, the need for cooperative planning, and the formulation of strategies to achieve networking goals are discussed. (CLB)
NASA Astrophysics Data System (ADS)
Hooda, Nikhil; Damani, Om
2017-06-01
The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.
Application of SNODAS and hydrologic models to enhance entropy-based snow monitoring network design
NASA Astrophysics Data System (ADS)
Keum, Jongho; Coulibaly, Paulin; Razavi, Tara; Tapsoba, Dominique; Gobena, Adam; Weber, Frank; Pietroniro, Alain
2018-06-01
Snow has a unique characteristic in the water cycle, that is, snow falls during the entire winter season, but the discharge from snowmelt is typically delayed until the melting period and occurs in a relatively short period. Therefore, reliable observations from an optimal snow monitoring network are necessary for an efficient management of snowmelt water for flood prevention and hydropower generation. The Dual Entropy and Multiobjective Optimization is applied to design snow monitoring networks in La Grande River Basin in Québec and Columbia River Basin in British Columbia. While the networks are optimized to have the maximum amount of information with minimum redundancy based on entropy concepts, this study extends the traditional entropy applications to the hydrometric network design by introducing several improvements. First, several data quantization cases and their effects on the snow network design problems were explored. Second, the applicability the Snow Data Assimilation System (SNODAS) products as synthetic datasets of potential stations was demonstrated in the design of the snow monitoring network of the Columbia River Basin. Third, beyond finding the Pareto-optimal networks from the entropy with multi-objective optimization, the networks obtained for La Grande River Basin were further evaluated by applying three hydrologic models. The calibrated hydrologic models simulated discharges using the updated snow water equivalent data from the Pareto-optimal networks. Then, the model performances for high flows were compared to determine the best optimal network for enhanced spring runoff forecasting.
Dafny, Leemore S; Hendel, Igal; Marone, Victoria; Ody, Christopher
2017-09-01
Anecdotal reports and systematic research highlight the prevalence of narrow-network plans on the Affordable Care Act's health insurance Marketplaces. At the same time, Marketplace premiums in the period 2014-16 were much lower than projected by the Congressional Budget Office in 2009. Using detailed data on the breadth of both hospital and physician networks, we studied the prevalence of narrow networks and quantified the association between network breadth and premiums. Controlling for many potentially confounding factors, we found that a plan with narrow physician and hospital networks was 16 percent cheaper than a plan with broad networks for both, and that narrowing the breadth of just one type of network was associated with a 6-9 percent decrease in premiums. Narrow-network plans also have a sizable impact on federal outlays, as they depress the premium of the second-lowest-price silver plan, to which subsidy amounts are linked. Holding all else constant, we estimate that federal subsidies would have been 10.8 percent higher in 2014 had Marketplaces required all plans to offer broad provider networks. Narrow networks are a promising source of potential savings for other segments of the commercial insurance market. Project HOPE—The People-to-People Health Foundation, Inc.
China launched a pilot project to improve its rare disease healthcare levels.
Cui, Yazhou; Zhou, Xiaoyan; Han, Jinxiang
2014-01-27
China is facing the great challenge of serving the world's largest rare disease population. It is necessary to develop a specific medical plan to increase the levels of optimal prevention, diagnosis and treatment of rare diseases under the existing clinical service structures in China. In 2013, China launched its first pilot project focused on 20 representative rare diseases. A national network including approximately 100 provincial or municipal medical centers has been established to enable collaboration on rare diseases across China. The main objectives for this project are to develop and apply medical guidelines and clinical pathways for rare diseases, to establish a rare disease patient registry and data repository system, and to promote molecular testing for rare genetic disorders. This project also emphasizes building close links among the collaborative network, clinicians on the frontlines in basic medical services institutions and rare disease patient organizations. Primarily, this project expects to develop an actionable medical services plan to increase the delivery of quality healthcare for individuals and families living with rare diseases in China within five years.
Bio-mimic optimization strategies in wireless sensor networks: a survey.
Adnan, Md Akhtaruzzaman; Abdur Razzaque, Mohammd; Ahmed, Ishtiaque; Isnin, Ismail Fauzi
2013-12-24
For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.
Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications
NASA Astrophysics Data System (ADS)
Zu, Yue
Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Schild, S; Bues, M
Purpose: We compared conventionally optimized intensity-modulated proton therapy (IMPT) treatment plans against the worst-case robustly optimized treatment plans for lung cancer. The comparison of the two IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient set-up, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. Methods: For each of the 9 lung cancer cases two treatment plans were created accounting for treatment uncertainties in two different ways: the first used the conventional Method: delivery of prescribed dose to the planning target volume (PTV) that is geometrically expanded from themore » internal target volume (ITV). The second employed the worst-case robust optimization scheme that addressed set-up and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of the changes in patient anatomy due to respiratory motion was investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the two groups were compared using two-sided paired t-tests. Results: Without respiratory motion considered, we affirmed that worst-case robust optimization is superior to PTV-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, robust optimization still leads to more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality [D95% ITV: 96.6% versus 96.1% (p=0.26), D5% - D95% ITV: 10.0% versus 12.3% (p=0.082), D1% spinal cord: 31.8% versus 36.5% (p =0.035)]. Conclusion: Worst-case robust optimization led to superior solutions for lung IMPT. Despite of the fact that robust optimization did not explicitly account for respiratory motion it produced motion-resistant treatment plans. However, further research is needed to incorporate respiratory motion into IMPT robust optimization.« less
Wilkie, Joel R.; Matuszak, Martha M.; Feng, Mary; Moran, Jean M.; Fraass, Benedick A.
2013-01-01
Purpose: Plan degradation resulting from compromises made to enhance delivery efficiency is an important consideration for intensity modulated radiation therapy (IMRT) treatment plans. IMRT optimization and/or multileaf collimator (MLC) sequencing schemes can be modified to generate more efficient treatment delivery, but the effect those modifications have on plan quality is often difficult to quantify. In this work, the authors present a method for quantitative assessment of overall plan quality degradation due to tradeoffs between delivery efficiency and treatment plan quality, illustrated using comparisons between plans developed allowing different numbers of intensity levels in IMRT optimization and/or MLC sequencing for static segmental MLC IMRT plans. Methods: A plan quality degradation method to evaluate delivery efficiency and plan quality tradeoffs was developed and used to assess planning for 14 prostate and 12 head and neck patients treated with static IMRT. Plan quality was evaluated using a physician's predetermined “quality degradation” factors for relevant clinical plan metrics associated with the plan optimization strategy. Delivery efficiency and plan quality were assessed for a range of optimization and sequencing limitations. The “optimal” (baseline) plan for each case was derived using a clinical cost function with an unlimited number of intensity levels. These plans were sequenced with a clinical MLC leaf sequencer which uses >100 segments, assuring delivered intensities to be within 1% of the optimized intensity pattern. Each patient's optimal plan was also sequenced limiting the number of intensity levels (20, 10, and 5), and then separately optimized with these same numbers of intensity levels. Delivery time was measured for all plans, and direct evaluation of the tradeoffs between delivery time and plan degradation was performed. Results: When considering tradeoffs, the optimal number of intensity levels depends on the treatment site and on the stage in the process at which the levels are limited. The cost of improved delivery efficiency, in terms of plan quality degradation, increased as the number of intensity levels in the sequencer or optimizer decreased. The degradation was more substantial for the head and neck cases relative to the prostate cases, particularly when fewer than 20 intensity levels were used. Plan quality degradation was less severe when the number of intensity levels was limited in the optimizer rather than the sequencer. Conclusions: Analysis of plan quality degradation allows for a quantitative assessment of the compromises in clinical plan quality as delivery efficiency is improved, in order to determine the optimal delivery settings. The technique is based on physician-determined quality degradation factors and can be extended to other clinical situations where investigation of various tradeoffs is warranted. PMID:23822412
Optimization of rainfall networks using information entropy and temporal variability analysis
NASA Astrophysics Data System (ADS)
Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin
2018-04-01
Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.
Manycast routing, modulation level and spectrum assignment over elastic optical networks
NASA Astrophysics Data System (ADS)
Luo, Xiao; Zhao, Yang; Chen, Xue; Wang, Lei; Zhang, Min; Zhang, Jie; Ji, Yuefeng; Wang, Huitao; Wang, Taili
2017-07-01
Manycast is a point to multi-point transmission framework that requires a subset of destination nodes successfully reached. It is particularly applicable for dealing with large amounts of data simultaneously in bandwidth-hungry, dynamic and cloud-based applications. As rapid increasing of traffics in these applications, the elastic optical networks (EONs) may be relied on to achieve high throughput manycast. In terms of finer spectrum granularity, the EONs could reach flexible accessing to network spectrum and efficient providing exact spectrum resource to demands. In this paper, we focus on the manycast routing, modulation level and spectrum assignment (MA-RMLSA) problem in EONs. Both EONs planning with static manycast traffic and EONs provisioning with dynamic manycast traffic are investigated. An integer linear programming (ILP) model is formulated to derive MA-RMLSA problem in static manycast scenario. Then corresponding heuristic algorithm called manycast routing, modulation level and spectrum assignment genetic algorithm (MA-RMLSA-GA) is proposed to adapt for both static and dynamic manycast scenarios. The MA-RMLSA-GA optimizes MA-RMLSA problem in destination nodes selection, routing light-tree constitution, modulation level allocation and spectrum resource assignment jointly, to achieve an effective improvement in network performance. Simulation results reveal that MA-RMLSA strategies offered by MA-RMLSA-GA have slightly disparity from the optimal solutions provided by ILP model in static scenario. Moreover, the results demonstrate that MA-RMLSA-GA realizes a highly efficient MA-RMLSA strategy with the lowest blocking probability in dynamic scenario compared with benchmark algorithms.
Optimal Limited Contingency Planning
NASA Technical Reports Server (NTRS)
Meuleau, Nicolas; Smith, David E.
2003-01-01
For a given problem, the optimal Markov policy over a finite horizon is a conditional plan containing a potentially large number of branches. However, there are applications where it is desirable to strictly limit the number of decision points and branches in a plan. This raises the question of how one goes about finding optimal plans containing only a limited number of branches. In this paper, we present an any-time algorithm for optimal k-contingency planning. It is the first optimal algorithm for limited contingency planning that is not an explicit enumeration of possible contingent plans. By modelling the problem as a partially observable Markov decision process, it implements the Bellman optimality principle and prunes the solution space. We present experimental results of applying this algorithm to some simple test cases.
Designing of network planning system for small-scale manufacturing
NASA Astrophysics Data System (ADS)
Kapulin, D. V.; Russkikh, P. A.; Vinnichenko, M. V.
2018-05-01
The paper presents features of network planning in small-scale discrete production. The procedure of explosion of the production order, considering multilevel representation, is developed. The software architecture is offered. Approbation of the network planning system is carried out. This system allows carrying out dynamic updating of the production plan.
Enhanced ant colony optimization for inventory routing problem
NASA Astrophysics Data System (ADS)
Wong, Lily; Moin, Noor Hasnah
2015-10-01
The inventory routing problem (IRP) integrates and coordinates two important components of supply chain management which are transportation and inventory management. We consider a one-to-many IRP network for a finite planning horizon. The demand for each product is deterministic and time varying as well as a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, delivers the products from the warehouse to meet the demand specified by the customers in each period. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount of inventory and to construct a delivery routing that minimizes both the total transportation and inventory holding cost while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer) for each instance considered. We propose an enhanced ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. The computational experiments demonstrating the effectiveness of our approach is presented.
Salehi, Mojtaba; Bahreininejad, Ardeshir
2011-08-01
Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.
Salehi, Mojtaba
2010-01-01
Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously. PMID:21845020
Transport spatial model for the definition of green routes for city logistics centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamučar, Dragan, E-mail: dpamucar@gmail.com; Gigović, Ljubomir, E-mail: gigoviclj@gmail.com; Ćirović, Goran, E-mail: cirovic@sezampro.rs
This paper presents a transport spatial decision support model (TSDSM) for carrying out the optimization of green routes for city logistics centers. The TSDSM model is based on the integration of the multi-criteria method of Weighted Linear Combination (WLC) and the modified Dijkstra algorithm within a geographic information system (GIS). The GIS is used for processing spatial data. The proposed model makes it possible to plan routes for green vehicles and maximize the positive effects on the environment, which can be seen in the reduction of harmful gas emissions and an increase in the air quality in highly populated areas.more » The scheduling of delivery vehicles is given as a problem of optimization in terms of the parameters of: the environment, health, use of space and logistics operating costs. Each of these input parameters was thoroughly examined and broken down in the GIS into criteria which further describe them. The model presented here takes into account the fact that logistics operators have a limited number of environmentally friendly (green) vehicles available. The TSDSM was tested on a network of roads with 127 links for the delivery of goods from the city logistics center to the user. The model supports any number of available environmentally friendly or environmentally unfriendly vehicles consistent with the size of the network and the transportation requirements. - Highlights: • Model for routing light delivery vehicles in urban areas. • Optimization of green routes for city logistics centers. • The proposed model maximizes the positive effects on the environment. • The model was tested on a real network.« less
Tampekis, Stergios; Sakellariou, Stavros; Samara, Fani; Sfougaris, Athanassios; Jaeger, Dirk; Christopoulou, Olga
2015-11-01
The sustainable management of forest resources can only be achieved through a well-organized road network designed with the optimal spatial planning and the minimum environmental impacts. This paper describes the spatial layout mapping for the optimal forest road network and the environmental impacts evaluation that are caused to the natural environment based on the multicriteria evaluation (MCE) technique at the Mediterranean island of Thassos in Greece. Data analysis and its presentation are achieved through a spatial decision support system using the MCE method with the contribution of geographic information systems (GIS). With the use of the MCE technique, we evaluated the human impact intensity to the forest ecosystem as well as the ecosystem's absorption from the impacts that are caused from the forest roads' construction. For the human impact intensity evaluation, the criteria that were used are as follows: the forest's protection percentage, the forest road density, the applied skidding means (with either the use of tractors or the cable logging systems in timber skidding), the timber skidding direction, the visitors' number and truck load, the distance between forest roads and streams, the distance between forest roads and the forest boundaries, and the probability that the forest roads are located on sights with unstable soils. In addition, for the ecosystem's absorption evaluation, we used forestry, topographical, and social criteria. The recommended MCE technique which is described in this study provides a powerful, useful, and easy-to-use implement in order to combine the sustainable utilization of natural resources and the environmental protection in Mediterranean ecosystems.
Toward Optimal Transport Networks
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
Concurrent enterprise: a conceptual framework for enterprise supply-chain network activities
NASA Astrophysics Data System (ADS)
Addo-Tenkorang, Richard; Helo, Petri T.; Kantola, Jussi
2017-04-01
Supply-chain management (SCM) in manufacturing industries has evolved significantly over the years. Recently, a lot more relevant research has picked up on the development of integrated solutions. Thus, seeking a collaborative optimisation of geographical, just-in-time (JIT), quality (customer demand/satisfaction) and return-on-investment (profits), aspects of organisational management and planning through 'best practice' business-process management - concepts and application; employing system tools such as certain applications/aspects of enterprise resource planning (ERP) - SCM systems information technology (IT) enablers to enhance enterprise integrated product development/concurrent engineering principles. This article assumed three main organisation theory applications in positioning its assumptions. Thus, proposing a feasible industry-specific framework not currently included within the SCOR model's level four (4) implementation level, as well as other existing SCM integration reference models such as in the MIT process handbook's - Process Interchange Format (PIF), the TOVE project, etc. which could also be replicated in other SCs. However, the wider focus of this paper's contribution will be concentrated on a complimentary proposed framework to the SCC's SCOR reference model. Quantitative empirical closed-ended questionnaires in addition to the main data collected from a qualitative empirical real-life industrial-based pilot case study were used: To propose a conceptual concurrent enterprise framework for SCM network activities. This research adopts a design structure matrix simulation approach analysis to propose an optimal enterprise SCM-networked value-adding, customised master data-management platform/portal for efficient SCM network information exchange and an effective supply-chain (SC) network systems-design teams' structure. Furthermore, social network theory analysis will be employed in a triangulation approach with statistical correlation analysis to assess the scale/level of frequency, importance, level of collaborative-ness, mutual trust as well as roles and responsibility among the enterprise SCM network for systems product development (PD) design teams' technical communication network as well as extensive literature reviews.
DOT National Transportation Integrated Search
2014-12-01
The report documents policy considerations for the Intelligent Network Flow Optimization (INFLO) connected vehicle applications bundle. INFLO aims to optimize network flow on freeways and arterials by informing motorists of existing and impendi...
NASA Astrophysics Data System (ADS)
Branciforte, R.; Weiss, S. B.; Schaefer, N.
2008-12-01
Climate change threatens California's vast and unique biodiversity. The Bay Area Upland Habitat Goals is a comprehensive regional biodiversity assessment of the 9 counties surrounding San Francisco Bay, and is designing conservation land networks that will serve to protect, manage, and restore that biodiversity. Conservation goals for vegetation, rare plants, mammals, birds, fish, amphibians, reptiles, and invertebrates are set, and those goals are met using the optimization algorithm MARXAN. Climate change issues are being considered in the assessment and network design in several ways. The high spatial variability at mesoclimatic and topoclimatic scales in California creates high local biodiversity, and provides some degree of local resiliency to macroclimatic change. Mesoclimatic variability from 800 m scale PRISM climatic norms is used to assess "mesoclimate spaces" in distinct mountain ranges, so that high mesoclimatic variability, especially local extremes that likely support range limits of species and potential climatic refugia, can be captured in the network. Quantitative measures of network resiliency to climate change include the spatial range of key temperature and precipitation variables within planning units. Topoclimatic variability provides a finer-grained spatial patterning. Downscaling to the topoclimatic scale (10-50 m scale) includes modeling solar radiation across DEMs for predicting maximum temperature differentials, and topographic position indices for modeling minimum temperature differentials. PRISM data are also used to differentiate grasslands into distinct warm and cool types. The overall conservation strategy includes local and regional connectivity so that range shifts can be accommodated.
A fast optimization algorithm for multicriteria intensity modulated proton therapy planning.
Chen, Wei; Craft, David; Madden, Thomas M; Zhang, Kewu; Kooy, Hanne M; Herman, Gabor T
2010-09-01
To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK'S interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.
NASA Astrophysics Data System (ADS)
Gaddy, Melissa R.; Yıldız, Sercan; Unkelbach, Jan; Papp, Dávid
2018-01-01
Spatiotemporal fractionation schemes, that is, treatments delivering different dose distributions in different fractions, can potentially lower treatment side effects without compromising tumor control. This can be achieved by hypofractionating parts of the tumor while delivering approximately uniformly fractionated doses to the surrounding tissue. Plan optimization for such treatments is based on biologically effective dose (BED); however, this leads to computationally challenging nonconvex optimization problems. Optimization methods that are in current use yield only locally optimal solutions, and it has hitherto been unclear whether these plans are close to the global optimum. We present an optimization framework to compute rigorous bounds on the maximum achievable normal tissue BED reduction for spatiotemporal plans. The approach is demonstrated on liver tumors, where the primary goal is to reduce mean liver BED without compromising any other treatment objective. The BED-based treatment plan optimization problems are formulated as quadratically constrained quadratic programming (QCQP) problems. First, a conventional, uniformly fractionated reference plan is computed using convex optimization. Then, a second, nonconvex, QCQP model is solved to local optimality to compute a spatiotemporally fractionated plan that minimizes mean liver BED, subject to the constraints that the plan is no worse than the reference plan with respect to all other planning goals. Finally, we derive a convex relaxation of the second model in the form of a semidefinite programming problem, which provides a rigorous lower bound on the lowest achievable mean liver BED. The method is presented on five cases with distinct geometries. The computed spatiotemporal plans achieve 12-35% mean liver BED reduction over the optimal uniformly fractionated plans. This reduction corresponds to 79-97% of the gap between the mean liver BED of the uniform reference plans and our lower bounds on the lowest achievable mean liver BED. The results indicate that spatiotemporal treatments can achieve substantial reductions in normal tissue dose and BED, and that local optimization techniques provide high-quality plans that are close to realizing the maximum potential normal tissue dose reduction.
Li, Ruiying; Ma, Wenting; Huang, Ning; Kang, Rui
2017-01-01
A sophisticated method for node deployment can efficiently reduce the energy consumption of a Wireless Sensor Network (WSN) and prolong the corresponding network lifetime. Pioneers have proposed many node deployment based lifetime optimization methods for WSNs, however, the retransmission mechanism and the discrete power control strategy, which are widely used in practice and have large effect on the network energy consumption, are often neglected and assumed as a continuous one, respectively, in the previous studies. In this paper, both retransmission and discrete power control are considered together, and a more realistic energy-consumption-based network lifetime model for linear WSNs is provided. Using this model, we then propose a generic deployment-based optimization model that maximizes network lifetime under coverage, connectivity and transmission rate success constraints. The more accurate lifetime evaluation conduces to a longer optimal network lifetime in the realistic situation. To illustrate the effectiveness of our method, both one-tiered and two-tiered uniformly and non-uniformly distributed linear WSNs are optimized in our case studies, and the comparisons between our optimal results and those based on relatively inaccurate lifetime evaluation show the advantage of our method when investigating WSN lifetime optimization problems.
Socially optimal replacement of conventional with electric vehicles for the US household fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong
In this study, a framework is proposed for minimizing the societal cost of replacing gas-powered household passenger cars with battery electric ones (BEVs). The societal cost consists of operational costs of heterogeneous driving patterns' cars, the government investments for charging deployment, and monetized environmental externalities. The optimization framework determines the timeframe needed for conventional vehicles to be replaced with BEVs. It also determines the BEVs driving range during the planning timeframe, as well as the density of public chargers deployed on a linear transportation network over time. We leverage datasets that represent U.S. household driving patterns, as well as themore » automobile and the energy markets, to apply the model. Results indicate that it takes 8 years for 80% of our conventional vehicle sample to be replaced with electric vehicles, under the base case scenario. The socially optimal all-electric driving range is 204 miles, with chargers placed every 172 miles on a linear corridor. All of the public chargers should be deployed at the beginning of the planning horizon to achieve greater savings over the years. Sensitivity analysis reveals that the timeframe for the socially optimal conversion of 80% of the sample varies from 6 to 12 years. The optimal decision variables are sensitive to battery pack and vehicle body cost, gasoline cost, the discount rate, and conventional vehicles' fuel economy. In conclusion, faster conventional vehicle replacement is achieved when the gasoline cost increases, electricity cost decreases, and battery packs become cheaper over the years.« less
Socially optimal replacement of conventional with electric vehicles for the US household fleet
Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong; ...
2017-04-05
In this study, a framework is proposed for minimizing the societal cost of replacing gas-powered household passenger cars with battery electric ones (BEVs). The societal cost consists of operational costs of heterogeneous driving patterns' cars, the government investments for charging deployment, and monetized environmental externalities. The optimization framework determines the timeframe needed for conventional vehicles to be replaced with BEVs. It also determines the BEVs driving range during the planning timeframe, as well as the density of public chargers deployed on a linear transportation network over time. We leverage datasets that represent U.S. household driving patterns, as well as themore » automobile and the energy markets, to apply the model. Results indicate that it takes 8 years for 80% of our conventional vehicle sample to be replaced with electric vehicles, under the base case scenario. The socially optimal all-electric driving range is 204 miles, with chargers placed every 172 miles on a linear corridor. All of the public chargers should be deployed at the beginning of the planning horizon to achieve greater savings over the years. Sensitivity analysis reveals that the timeframe for the socially optimal conversion of 80% of the sample varies from 6 to 12 years. The optimal decision variables are sensitive to battery pack and vehicle body cost, gasoline cost, the discount rate, and conventional vehicles' fuel economy. In conclusion, faster conventional vehicle replacement is achieved when the gasoline cost increases, electricity cost decreases, and battery packs become cheaper over the years.« less
A New Network Modeling Tool for the Ground-based Nuclear Explosion Monitoring Community
NASA Astrophysics Data System (ADS)
Merchant, B. J.; Chael, E. P.; Young, C. J.
2013-12-01
Network simulations have long been used to assess the performance of monitoring networks to detect events for such purposes as planning station deployments and network resilience to outages. The standard tool has been the SAIC-developed NetSim package. With correct parameters, NetSim can produce useful simulations; however, the package has several shortcomings: an older language (FORTRAN), an emphasis on seismic monitoring with limited support for other technologies, limited documentation, and a limited parameter set. Thus, we are developing NetMOD (Network Monitoring for Optimal Detection), a Java-based tool designed to assess the performance of ground-based networks. NetMOD's advantages include: coded in a modern language that is multi-platform, utilizes modern computing performance (e.g. multi-core processors), incorporates monitoring technologies other than seismic, and includes a well-validated default parameter set for the IMS stations. NetMOD is designed to be extendable through a plugin infrastructure, so new phenomenological models can be added. Development of the Seismic Detection Plugin is being pursued first. Seismic location and infrasound and hydroacoustic detection plugins will follow. By making NetMOD an open-release package, it can hopefully provide a common tool that the monitoring community can use to produce assessments of monitoring networks and to verify assessments made by others.
NASA Astrophysics Data System (ADS)
Bolodurina, I. P.; Parfenov, D. I.
2017-10-01
The goal of our investigation is optimization of network work in virtual data center. The advantage of modern infrastructure virtualization lies in the possibility to use software-defined networks. However, the existing optimization of algorithmic solutions does not take into account specific features working with multiple classes of virtual network functions. The current paper describes models characterizing the basic structures of object of virtual data center. They including: a level distribution model of software-defined infrastructure virtual data center, a generalized model of a virtual network function, a neural network model of the identification of virtual network functions. We also developed an efficient algorithm for the optimization technology of containerization of virtual network functions in virtual data center. We propose an efficient algorithm for placing virtual network functions. In our investigation we also generalize the well renowned heuristic and deterministic algorithms of Karmakar-Karp.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
Optimization of cascading failure on complex network based on NNIA
NASA Astrophysics Data System (ADS)
Zhu, Qian; Zhu, Zhiliang; Qi, Yi; Yu, Hai; Xu, Yanjie
2018-07-01
Recently, the robustness of networks under cascading failure has attracted extensive attention. Different from previous studies, we concentrate on how to improve the robustness of the networks from the perspective of intelligent optimization. We establish two multi-objective optimization models that comprehensively consider the operational cost of the edges in the networks and the robustness of the networks. The NNIA (Non-dominated Neighbor Immune Algorithm) is applied to solve the optimization models. We finished simulations of the Barabási-Albert (BA) network and Erdös-Rényi (ER) network. In the solutions, we find the edges that can facilitate the propagation of cascading failure and the edges that can suppress the propagation of cascading failure. From the conclusions, we take optimal protection measures to weaken the damage caused by cascading failures. We also consider actual situations of operational cost feasibility of the edges. People can make a more practical choice based on the operational cost. Our work will be helpful in the design of highly robust networks or improvement of the robustness of networks in the future.
Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H
2003-01-01
Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935
Haeder, Simon F; Weimer, David L; Mukamel, Dana B
2015-05-01
Do insurance plans offered through the Marketplace implemented by the State of California under the Affordable Care Act restrict consumers' access to hospitals relative to plans offered on the commercial market? And are the hospitals included in Marketplace networks of lower quality compared to those included in the commercial plans? To answer these questions, we analyzed differences in hospital networks across similar plan types offered both in the Marketplace and commercially, by region and insurer. We found that the common belief that Marketplace plans have narrower networks than their commercial counterparts appears empirically valid. However, there does not appear to be a substantive difference in geographic access as measured by the percentage of people residing in at least one hospital market area. More surprisingly, depending on the measure of hospital quality employed, the Marketplace plans have networks with comparable or even higher average quality than the networks of their commercial counterparts. Project HOPE—The People-to-People Health Foundation, Inc.
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2010-09-01
This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.
Network anomaly detection system with optimized DS evidence theory.
Liu, Yuan; Wang, Xiaofeng; Liu, Kaiyu
2014-01-01
Network anomaly detection has been focused on by more people with the fast development of computer network. Some researchers utilized fusion method and DS evidence theory to do network anomaly detection but with low performance, and they did not consider features of network-complicated and varied. To achieve high detection rate, we present a novel network anomaly detection system with optimized Dempster-Shafer evidence theory (ODS) and regression basic probability assignment (RBPA) function. In this model, we add weights for each sensor to optimize DS evidence theory according to its previous predict accuracy. And RBPA employs sensor's regression ability to address complex network. By four kinds of experiments, we find that our novel network anomaly detection model has a better detection rate, and RBPA as well as ODS optimization methods can improve system performance significantly.
Murphy, Maureen; Koohsari, Mohammad Javad; Badland, Hannah; Giles-Corti, Billie
2017-12-01
To investigate dietary intake, BMI and supermarket access at varying geographic scales and transport modes across areas of socio-economic disadvantage, and to evaluate the implementation of an urban planning policy that provides guidance on spatial access to supermarkets. Cross-sectional study used generalised estimating equations to investigate associations between supermarket density and proximity, vegetable and fruit intake and BMI at five geographic scales representing distances people travel to purchase food by varying transport modes. A stratified analysis by area-level disadvantage was conducted to detect optimal distances to supermarkets across socio-economic areas. Spatial distribution of supermarket and transport access was analysed using a geographic information system. Melbourne, Australia. Adults (n 3128) from twelve local government areas (LGA) across Melbourne. Supermarket access was protective of BMI for participants in high disadvantaged areas within 800 m (P=0·040) and 1000 m (P=0·032) road network buffers around the household but not for participants in less disadvantaged areas. In urban growth area LGA, only 26 % of dwellings were within 1 km of a supermarket, far less than 80-90 % of dwellings suggested in the local urban planning policy. Low public transport access compounded disadvantage. Rapid urbanisation is a global health challenge linked to increases in dietary risk factors and BMI. Our findings highlight the importance of identifying the most appropriate geographic scale to inform urban planning policy for optimal health outcomes across socio-economic strata. Urban planning policy implementation in disadvantaged areas within cities has potential for reducing health inequities.
Bio-Mimic Optimization Strategies in Wireless Sensor Networks: A Survey
Adnan, Md. Akhtaruzzaman; Razzaque, Mohammd Abdur; Ahmed, Ishtiaque; Isnin, Ismail Fauzi
2014-01-01
For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted. PMID:24368702
Fan, Jiawei; Wang, Jiazhou; Zhang, Zhen; Hu, Weigang
2017-06-01
To develop a new automated treatment planning solution for breast and rectal cancer radiotherapy. The automated treatment planning solution developed in this study includes selection of the iterative optimized training dataset, dose volume histogram (DVH) prediction for the organs at risk (OARs), and automatic generation of clinically acceptable treatment plans. The iterative optimized training dataset is selected by an iterative optimization from 40 treatment plans for left-breast and rectal cancer patients who received radiation therapy. A two-dimensional kernel density estimation algorithm (noted as two parameters KDE) which incorporated two predictive features was implemented to produce the predicted DVHs. Finally, 10 additional new left-breast treatment plans are re-planned using the Pinnacle 3 Auto-Planning (AP) module (version 9.10, Philips Medical Systems) with the objective functions derived from the predicted DVH curves. Automatically generated re-optimized treatment plans are compared with the original manually optimized plans. By combining the iterative optimized training dataset methodology and two parameters KDE prediction algorithm, our proposed automated planning strategy improves the accuracy of the DVH prediction. The automatically generated treatment plans using the dose derived from the predicted DVHs can achieve better dose sparing for some OARs without compromising other metrics of plan quality. The proposed new automated treatment planning solution can be used to efficiently evaluate and improve the quality and consistency of the treatment plans for intensity-modulated breast and rectal cancer radiation therapy. © 2017 American Association of Physicists in Medicine.
Kierkels, Roel G J; Wopken, Kim; Visser, Ruurd; Korevaar, Erik W; van der Schaaf, Arjen; Bijl, Hendrik P; Langendijk, Johannes A
2016-12-01
Radiotherapy of the head and neck is challenged by the relatively large number of organs-at-risk close to the tumor. Biologically-oriented objective functions (OF) could optimally distribute the dose among the organs-at-risk. We aimed to explore OFs based on multivariable normal tissue complication probability (NTCP) models for grade 2-4 dysphagia (DYS) and tube feeding dependence (TFD). One hundred head and neck cancer patients were studied. Additional to the clinical plan, two more plans (an OF DYS and OF TFD -plan) were optimized per patient. The NTCP models included up to four dose-volume parameters and other non-dosimetric factors. A fully automatic plan optimization framework was used to optimize the OF NTCP -based plans. All OF NTCP -based plans were reviewed and classified as clinically acceptable. On average, the Δdose and ΔNTCP were small comparing the OF DYS -plan, OF TFD -plan, and clinical plan. For 5% of patients NTCP TFD reduced >5% using OF TFD -based planning compared to the OF DYS -plans. Plan optimization using NTCP DYS - and NTCP TFD -based objective functions resulted in clinically acceptable plans. For patients with considerable risk factors of TFD, the OF TFD steered the optimizer to dose distributions which directly led to slightly lower predicted NTCP TFD values as compared to the other studied plans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A fast optimization approach for treatment planning of volumetric modulated arc therapy.
Yan, Hui; Dai, Jian-Rong; Li, Ye-Xiong
2018-05-30
Volumetric modulated arc therapy (VMAT) is widely used in clinical practice. It not only significantly reduces treatment time, but also produces high-quality treatment plans. Current optimization approaches heavily rely on stochastic algorithms which are time-consuming and less repeatable. In this study, a novel approach is proposed to provide a high-efficient optimization algorithm for VMAT treatment planning. A progressive sampling strategy is employed for beam arrangement of VMAT planning. The initial beams with equal-space are added to the plan in a coarse sampling resolution. Fluence-map optimization and leaf-sequencing are performed for these beams. Then, the coefficients of fluence-maps optimization algorithm are adjusted according to the known fluence maps of these beams. In the next round the sampling resolution is doubled and more beams are added. This process continues until the total number of beams arrived. The performance of VMAT optimization algorithm was evaluated using three clinical cases and compared to those of a commercial planning system. The dosimetric quality of VMAT plans is equal to or better than the corresponding IMRT plans for three clinical cases. The maximum dose to critical organs is reduced considerably for VMAT plans comparing to those of IMRT plans, especially in the head and neck case. The total number of segments and monitor units are reduced for VMAT plans. For three clinical cases, VMAT optimization takes < 5 min accomplished using proposed approach and is 3-4 times less than that of the commercial system. The proposed VMAT optimization algorithm is able to produce high-quality VMAT plans efficiently and consistently. It presents a new way to accelerate current optimization process of VMAT planning.
2017-03-01
RECRUITING WITH THE NEW PLANNED RESOURCE OPTIMIZATION MODEL WITH EXPERIMENTAL DESIGN (PROM-WED) by Allison R. Hogarth March 2017 Thesis...with the New Planned Resource Optimization Model With Experimental Design (PROM-WED) 5. FUNDING NUMBERS 6. AUTHOR(S) Allison R. Hogarth 7. PERFORMING...has historically used a non -linear optimization model, the Planned Resource Optimization (PRO) model, to help inform decisions on the allocation of
Designing Industrial Networks Using Ecological Food Web Metrics.
Layton, Astrid; Bras, Bert; Weissburg, Marc
2016-10-18
Biologically Inspired Design (biomimicry) and Industrial Ecology both look to natural systems to enhance the sustainability and performance of engineered products, systems and industries. Bioinspired design (BID) traditionally has focused on a unit operation and single product level. In contrast, this paper describes how principles of network organization derived from analysis of ecosystem properties can be applied to industrial system networks. Specifically, this paper examines the applicability of particular food web matrix properties as design rules for economically and biologically sustainable industrial networks, using an optimization model developed for a carpet recycling network. Carpet recycling network designs based on traditional cost and emissions based optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis suggests that networks optimized using food web metrics also were superior from a traditional cost and emissions perspective; correlations between optimization using ecological metrics and traditional optimization ranged generally from 0.70 to 0.96, with flow-based metrics being superior to structural parameters. Four structural food parameters provided correlations nearly the same as that obtained using all structural parameters, but individual structural parameters provided much less satisfactory correlations. The analysis indicates that bioinspired design principles from ecosystems can lead to both environmentally and economically sustainable industrial resource networks, and represent guidelines for designing sustainable industry networks.
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
CFD Research, Parallel Computation and Aerodynamic Optimization
NASA Technical Reports Server (NTRS)
Ryan, James S.
1995-01-01
During the last five years, CFD has matured substantially. Pure CFD research remains to be done, but much of the focus has shifted to integration of CFD into the design process. The work under these cooperative agreements reflects this trend. The recent work, and work which is planned, is designed to enhance the competitiveness of the US aerospace industry. CFD and optimization approaches are being developed and tested, so that the industry can better choose which methods to adopt in their design processes. The range of computer architectures has been dramatically broadened, as the assumption that only huge vector supercomputers could be useful has faded. Today, researchers and industry can trade off time, cost, and availability, choosing vector supercomputers, scalable parallel architectures, networked workstations, or heterogenous combinations of these to complete required computations efficiently.
Neural network for nonsmooth pseudoconvex optimization with general convex constraints.
Bian, Wei; Ma, Litao; Qin, Sitian; Xue, Xiaoping
2018-05-01
In this paper, a one-layer recurrent neural network is proposed for solving a class of nonsmooth, pseudoconvex optimization problems with general convex constraints. Based on the smoothing method, we construct a new regularization function, which does not depend on any information of the feasible region. Thanks to the special structure of the regularization function, we prove the global existence, uniqueness and "slow solution" character of the state of the proposed neural network. Moreover, the state solution of the proposed network is proved to be convergent to the feasible region in finite time and to the optimal solution set of the related optimization problem subsequently. In particular, the convergence of the state to an exact optimal solution is also considered in this paper. Numerical examples with simulation results are given to show the efficiency and good characteristics of the proposed network. In addition, some preliminary theoretical analysis and application of the proposed network for a wider class of dynamic portfolio optimization are included. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASCOM system development plan: System description, capabilities, and plans, FY 94-2
NASA Technical Reports Server (NTRS)
1994-01-01
The Nascom System Development Plan (NSDP) for FY 94-2 contains 17 sections. It is a management document containing the approved plan for maintaining the Nascom Network System. Topics covered include an overview of Nascom systems and services, major ground communication support systems, low-speed data system, voice system, high-speed data system, Nascom support for NASA networks, Nascom planning for NASA missions, and network upgrade and advanced systems developments and plans.
Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks
Robinson, Y. Harold; Rajaram, M.
2015-01-01
Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique. PMID:26819966
A Great Lakes atmospheric mercury monitoring network: evaluation and design
Risch, Martin R.; Kenski, Donna M.; ,; David, A.
2014-01-01
As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg emissions and areas with high average weekly Hg wet deposition. In a statistical analysis, relatively strong, positive correlations in the wet deposition of Hg and sulfate were shown for co-located NADP Hg-monitoring and acid-rain monitoring sites in the Region. This finding indicated that efficiency in regional Hg monitoring can be improved by adding new Hg monitoring to existing NADP acid-rain monitoring sites. Implementation of the GLAMM network design will require Hg-wet-deposition monitoring to be: (a) continued at 12 MDN sites active in 2013 and (b) restarted or added at 9 NADP sites where it is absent in 2013. Ongoing discussions between the states in the Great Lakes Region, the Lake Michigan Air Directors Consortium (a regional planning entity), the NADP, the U.S. Environmental Protection Agency, and the U.S. Geological Survey are needed for coordinating the GLAMM network.
The navigation system of the JPL robot
NASA Technical Reports Server (NTRS)
Thompson, A. M.
1977-01-01
The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.
A case management tool for occupational health nurses: development, testing, and application.
Mannon, J A; Conrad, K M; Blue, C L; Muran, S
1994-08-01
1. Case management is a process of coordinating an individual client's health care services to achieve optimal, quality care delivered in a cost effective manner. The case manager establishes a provider network, recommends treatment plans that assure quality and efficacy while controlling costs, monitors outcomes, and maintains a strong communication link among all the parties. 2. Through development of audit tools such as the one presented in this article, occupational health nurses can document case management activities and provide employers with measurable outcomes. 3. The Case Management Activity Checklist was tested using data from 61 firefighters' musculoskeletal injury cases. 4. The activities on the checklist are a step by step process: case identification/case disposition; assessment; return to work plan; resource identification; collaborative communication; and evaluation.
NASA Astrophysics Data System (ADS)
Lange, Christoph; Hülsermann, Ralf; Kosiankowski, Dirk; Geilhardt, Frank; Gladisch, Andreas
2010-01-01
The increasing demand for higher bit rates in access networks requires fiber deployment closer to the subscriber resulting in fiber-to-the-home (FTTH) access networks. Besides higher access bit rates optical access network infrastructure and related technologies enable the network operator to establish larger service areas resulting in a simplified network structure with a lower number of network nodes. By changing the network structure network operators want to benefit from a changed network cost structure by decreasing in short and mid term the upfront investments for network equipment due to concentration effects as well as by reducing the energy costs due to a higher energy efficiency of large network sites housing a high amount of network equipment. In long term also savings in operational expenditures (OpEx) due to the closing of central office (CO) sites are expected. In this paper different architectures for optical access networks basing on state-of-the-art technology are analyzed with respect to network installation costs and power consumption in the context of access node consolidation. Network planning and dimensioning results are calculated for a realistic network scenario of Germany. All node consolidation scenarios are compared against a gigabit capable passive optical network (GPON) based FTTH access network operated from the conventional CO sites. The results show that a moderate reduction of the number of access nodes may be beneficial since in that case the capital expenditures (CapEx) do not rise extraordinarily and savings in OpEx related to the access nodes are expected. The total power consumption does not change significantly with decreasing number of access nodes but clustering effects enable a more energyefficient network operation and optimized power purchase order quantities leading to benefits in energy costs.
Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time.
Wild, Esther; Bangert, Mark; Nill, Simeon; Oelfke, Uwe
2015-05-01
The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable treatment plan quality. The authors' study reconfirms the dosimetric benefits of noncoplanar irradiation of nasopharyngeal tumors. Both SnS using optimized noncoplanar beam ensembles and VMAT using an optimized, arbitrary, noncoplanar trajectory enabled dose reductions in organs at risk compared to coplanar SnS and VMAT. Using great circles or simple couch rotations to implement noncoplanar VMAT, however, was not sufficient to yield meaningful improvements in treatment plan quality. The authors estimate that noncoplanar VMAT using arbitrary optimized irradiation trajectories comes at an increased delivery time compared to coplanar VMAT yet at a decreased delivery time compared to noncoplanar SnS IMRT.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... Plan (``Amendments'') would amend the Plans to provide that the Participants pay the Network B Administrator a fixed annual fee in exchange for its performance of Network B administrator functions under the... CTA Plan and Section IX (``Financial Matters'') of the CQ Plan each provide that a network's Operating...
Optimal resource allocation strategy for two-layer complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Wang, Lixin; Li, Sufeng; Duan, Congwen; Liu, Yu
2018-02-01
We study the traffic dynamics on two-layer complex networks, and focus on its delivery capacity allocation strategy to enhance traffic capacity measured by the critical value Rc. With the limited packet-delivering capacity, we propose a delivery capacity allocation strategy which can balance the capacities of non-hub nodes and hub nodes to optimize the data flow. With the optimal value of parameter αc, the maximal network capacity is reached because most of the nodes have shared the appropriate delivery capacity by the proposed delivery capacity allocation strategy. Our work will be beneficial to network service providers to design optimal networked traffic dynamics.
A generalized optimization principle for asymmetric branching in fluidic networks
Stephenson, David
2016-01-01
When applied to a branching network, Murray’s law states that the optimal branching of vascular networks is achieved when the cube of the parent channel radius is equal to the sum of the cubes of the daughter channel radii. It is considered integral to understanding biological networks and for the biomimetic design of artificial fluidic systems. However, despite its ubiquity, we demonstrate that Murray’s law is only optimal (i.e. maximizes flow conductance per unit volume) for symmetric branching, where the local optimization of each individual channel corresponds to the global optimum of the network as a whole. In this paper, we present a generalized law that is valid for asymmetric branching, for any cross-sectional shape, and for a range of fluidic models. We verify our analytical solutions with the numerical optimization of a bifurcating fluidic network for the examples of laminar, turbulent and non-Newtonian fluid flows. PMID:27493583
Optimization of wireless sensor networks based on chicken swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Wang, Qingxi; Zhu, Lihua
2017-05-01
In order to reduce the energy consumption of wireless sensor network and improve the survival time of network, the clustering routing protocol of wireless sensor networks based on chicken swarm optimization algorithm was proposed. On the basis of LEACH agreement, it was improved and perfected that the points on the cluster and the selection of cluster head using the chicken group optimization algorithm, and update the location of chicken which fall into the local optimum by Levy flight, enhance population diversity, ensure the global search capability of the algorithm. The new protocol avoided the die of partial node of intensive using by making balanced use of the network nodes, improved the survival time of wireless sensor network. The simulation experiments proved that the protocol is better than LEACH protocol on energy consumption, also is better than that of clustering routing protocol based on particle swarm optimization algorithm.
Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.
Liu, Meiqin
2009-09-01
This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
LinkMind: link optimization in swarming mobile sensor networks.
Ngo, Trung Dung
2011-01-01
A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.
LinkMind: Link Optimization in Swarming Mobile Sensor Networks
Ngo, Trung Dung
2011-01-01
A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation. PMID:22164070
Optimization of municipal pressure pumping station layout and sewage pipe network design
NASA Astrophysics Data System (ADS)
Tian, Jiandong; Cheng, Jilin; Gong, Yi
2018-03-01
Accelerated urbanization places extraordinary demands on sewer networks; thus optimization research to improve the design of these systems has practical significance. In this article, a subsystem nonlinear programming model is developed to optimize pumping station layout and sewage pipe network design. The subsystem model is expanded into a large-scale complex nonlinear programming system model to find the minimum total annual cost of the pumping station and network of all pipe segments. A comparative analysis is conducted using the sewage network in Taizhou City, China, as an example. The proposed method demonstrated that significant cost savings could have been realized if the studied system had been optimized using the techniques described in this article. Therefore, the method has practical value for optimizing urban sewage projects and provides a reference for theoretical research on optimization of urban drainage pumping station layouts.
Reconfiguration of Smart Distribution Network in the Presence of Renewable DG’s Using GWO Algorithm
NASA Astrophysics Data System (ADS)
Siavash, M.; Pfeifer, C.; Rahiminejad, A.; Vahidi, B.
2017-08-01
In this paper, the optimal reconfiguration of smart distribution system is performed with the aim of active power loss reduction and voltage stability improvement. The distribution network is considered equipped with wind turbines and solar cells as Renewable DG’s (RDG’s). Because of the presence of smart metering devices, the network state is known accurately at any moment. Based on the network conditions (the amount of load and generation of RDG’s), the optimal configuration of the network is obtained. The optimization problem is solved using a recently introduced method known as Grey Wolf Optimizer (GWO). The proposed approach is applied on 69-bus radial test system and the results of the GWO are compared to those of Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). The results show the effectiveness of the proposed approach and the selected optimization method.
Xie, Rui; Wan, Xianrong; Hong, Sheng; Yi, Jianxin
2017-06-14
The performance of a passive radar network can be greatly improved by an optimal radar network structure. Generally, radar network structure optimization consists of two aspects, namely the placement of receivers in suitable places and selection of appropriate illuminators. The present study investigates issues concerning the joint optimization of receiver placement and illuminator selection for a passive radar network. Firstly, the required radar cross section (RCS) for target detection is chosen as the performance metric, and the joint optimization model boils down to the partition p -center problem (PPCP). The PPCP is then solved by a proposed bisection algorithm. The key of the bisection algorithm lies in solving the partition set covering problem (PSCP), which can be solved by a hybrid algorithm developed by coupling the convex optimization with the greedy dropping algorithm. In the end, the performance of the proposed algorithm is validated via numerical simulations.
What are the reasons for clinical network success? A qualitative study.
McInnes, Elizabeth; Haines, Mary; Dominello, Amanda; Kalucy, Deanna; Jammali-Blasi, Asmara; Middleton, Sandy; Klineberg, Emily
2015-11-05
Clinical networks have been established to improve patient outcomes and processes of care by implementing a range of innovations and undertaking projects based on the needs of local health services. Given the significant investment in clinical networks internationally, it is important to assess their effectiveness and sustainability. This qualitative study investigated the views of stakeholders on the factors they thought were influential in terms of overall network success. Ten participants were interviewed using face-to-face, audio-recorded semi-structured interviews about critical factors for networks' successes over the study period 2006-2008. Respondents were purposively selected from two stakeholder groups: i) chairs of networks during the study period of 2006-2008 from high- moderate- and low-impact networks (as previously determined by an independent review panel) and ii) experts in the clinical field of the network who had a connection to the network but who were not network members. Participants were blind to the performance of the network they were interviewed about. Transcribed data were coded and analysed to generate themes relating to the study aims. Themes relating to influential factors critical to network success were: network model principles; leadership; formal organisational structures and processes; nature of network projects; external relationships; profile and credibility of the network. This study provides clinical networks with guidance on essential factors for maximising optimal network outcomes and that may assist networks to move from being a 'low-impact' to 'high-impact' network. Important ingredients for successful clinical networks were visionary and strategic leadership with strong links to external stakeholders; and having formal infrastructure and processes to enable the development and management of work plans aligned with health priorities.
Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing
2017-07-19
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.
NASA Astrophysics Data System (ADS)
Guo, Wenzhang; Wang, Hao; Wu, Zhengping
2018-03-01
Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.
NASA Astrophysics Data System (ADS)
Castelletti, A.; Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.
2017-12-01
Dams are essential to meet growing water and energy demands. While dams cumulatively impact downstream rivers on network-scales, dam development is mostly based on ad-hoc economic and environmental assessments of single dams. Here, we provide evidence that replacing this ad-hoc approach with early strategic planning of entire dam portfolios can greatly reduce conflicts between economic and environmental objectives of dams. In the Mekong Basin (800,000km2), 123 major dam sites (status-quo: 56 built and under construction) could generate 280,000 GWh/yr of hydropower. Cumulatively, dams risk interrupting the basin's sediment dynamics with severe impacts on livelihoods and eco-systems. To evaluate cumulative impacts and benefits of the ad-hoc planned status-quo portfolio, we combine the CASCADE sediment connectivity model with data on hydropower production and sediment trapping at each dam site. We couple CASCADE to a multi-objective genetic algorithm (BORG) identifying a) portfolios resulting in an optimal trade-off between cumulative sediment trapping and hydropower production and b) an optimal development sequence for each portfolio. We perform this analysis first for the pristine basin (i.e., without pre-existing dams) and then starting from the status-quo portfolio, deriving policy recommendations for which dams should be prioritized in the near future. The status-quo portfolio creates a sub-optimal trade-off between hydropower and sediment trapping, exploiting 50 % of the basin's hydro-electric potential and trapping 60 % of the sediment load. Alternative optimal portfolios could have produced equivalent hydropower for 30 % sediment trapping. Imminent development of mega-dams in the lower basin will increase hydropower production by 20 % but increase sediment trapping to >90 %. In contrast, following an optimal development sequence can still increase hydropower by 30 % with limited additional sediment trapping by prioritizing dams in upper parts of the basin. Our findings argue for reconsidering some imminent dam developments in the Mekong. With nearly 3000 dams awaiting development world-wide, results from the Mekong are of global importance, demonstrating that strategic planning and sequencing of dams is instrumental for sustainable development of dams and hydropower.
NASA Technical Reports Server (NTRS)
2004-01-01
The grant closure report is organized in the following four chapters: Chapter describes the two research areas Design optimization and Solid mechanics. Ten journal publications are listed in the second chapter. Five highlights is the subject matter of chapter three. CHAPTER 1. The Design Optimization Test Bed CometBoards. CHAPTER 2. Solid Mechanics: Integrated Force Method of Analysis. CHAPTER 3. Five Highlights: Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft. Neural Network and Regression Soft Model Extended for PX-300 Aircraft Engine. Engine with Regression and Neural Network Approximators Designed. Cascade Optimization Strategy with Neural network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design. Neural Network and Regression Approximations Used in Aircraft Design.
Influence maximization in complex networks through optimal percolation
NASA Astrophysics Data System (ADS)
Morone, Flaviano; Makse, Hernán A.
2015-08-01
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.
Influence maximization in complex networks through optimal percolation.
Morone, Flaviano; Makse, Hernán A
2015-08-06
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Despite the vast use of heuristic strategies to identify influential spreaders, the problem remains unsolved. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. These are topologically tagged as low-degree nodes surrounded by hierarchical coronas of hubs, and are uncovered only through the optimal collective interplay of all the influencers in the network. The present theoretical framework may hold a larger degree of universality, being applicable to other hard optimization problems exhibiting a continuous transition from a known phase.
Robust optimization in lung treatment plans accounting for geometric uncertainty.
Zhang, Xin; Rong, Yi; Morrill, Steven; Fang, Jian; Narayanasamy, Ganesh; Galhardo, Edvaldo; Maraboyina, Sanjay; Croft, Christopher; Xia, Fen; Penagaricano, Jose
2018-05-01
Robust optimization generates scenario-based plans by a minimax optimization method to find optimal scenario for the trade-off between target coverage robustness and organ-at-risk (OAR) sparing. In this study, 20 lung cancer patients with tumors located at various anatomical regions within the lungs were selected and robust optimization photon treatment plans including intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were generated. The plan robustness was analyzed using perturbed doses with setup error boundary of ±3 mm in anterior/posterior (AP), ±3 mm in left/right (LR), and ±5 mm in inferior/superior (IS) directions from isocenter. Perturbed doses for D 99 , D 98 , and D 95 were computed from six shifted isocenter plans to evaluate plan robustness. Dosimetric study was performed to compare the internal target volume-based robust optimization plans (ITV-IMRT and ITV-VMAT) and conventional PTV margin-based plans (PTV-IMRT and PTV-VMAT). The dosimetric comparison parameters were: ITV target mean dose (D mean ), R 95 (D 95 /D prescription ), Paddick's conformity index (CI), homogeneity index (HI), monitor unit (MU), and OAR doses including lung (D mean , V 20 Gy and V 15 Gy ), chest wall, heart, esophagus, and maximum cord doses. A comparison of optimization results showed the robust optimization plan had better ITV dose coverage, better CI, worse HI, and lower OAR doses than conventional PTV margin-based plans. Plan robustness evaluation showed that the perturbed doses of D 99 , D 98 , and D 95 were all satisfied at least 99% of the ITV to received 95% of prescription doses. It was also observed that PTV margin-based plans had higher MU than robust optimization plans. The results also showed robust optimization can generate plans that offer increased OAR sparing, especially for normal lungs and OARs near or abutting the target. Weak correlation was found between normal lung dose and target size, and no other correlation was observed in this study. © 2018 University of Arkansas for Medical Sciences. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
A two‐point scheme for optimal breast IMRT treatment planning
2013-01-01
We propose an approach to determining optimal beam weights in breast/chest wall IMRT treatment plans. The goal is to decrease breathing effect and to maximize skin dose if the skin is included in the target or, otherwise, to minimize the skin dose. Two points in the target are utilized to calculate the optimal weights. The optimal plan (i.e., the plan with optimal beam weights) consists of high energy unblocked beams, low energy unblocked beams, and IMRT beams. Six breast and five chest wall cases were retrospectively planned with this scheme in Eclipse, including one breast case where CTV was contoured by the physician. Compared with 3D CRT plans composed of unblocked and field‐in‐field beams, the optimal plans demonstrated comparable or better dose uniformity, homogeneity, and conformity to the target, especially at beam junction when supraclavicular nodes are involved. Compared with nonoptimal plans (i.e., plans with nonoptimized weights), the optimal plans had better dose distributions at shallow depths close to the skin, especially in cases where breathing effect was taken into account. This was verified with experiments using a MapCHECK device attached to a motion simulation table (to mimic motion caused by breathing). PACS number: 87.55 de PMID:24257291
NASA Astrophysics Data System (ADS)
van de Water, Steven; Albertini, Francesca; Weber, Damien C.; Heijmen, Ben J. M.; Hoogeman, Mischa S.; Lomax, Antony J.
2018-01-01
The aim of this study is to develop an anatomical robust optimization method for intensity-modulated proton therapy (IMPT) that accounts for interfraction variations in nasal cavity filling, and to compare it with conventional single-field uniform dose (SFUD) optimization and online plan adaptation. We included CT data of five patients with tumors in the sinonasal region. Using the planning CT, we generated for each patient 25 ‘synthetic’ CTs with varying nasal cavity filling. The robust optimization method available in our treatment planning system ‘Erasmus-iCycle’ was extended to also account for anatomical uncertainties by including (synthetic) CTs with varying patient anatomy as error scenarios in the inverse optimization. For each patient, we generated treatment plans using anatomical robust optimization and, for benchmarking, using SFUD optimization and online plan adaptation. Clinical target volume (CTV) and organ-at-risk (OAR) doses were assessed by recalculating the treatment plans on the synthetic CTs, evaluating dose distributions individually and accumulated over an entire fractionated 50 GyRBE treatment, assuming each synthetic CT to correspond to a 2 GyRBE fraction. Treatment plans were also evaluated using actual repeat CTs. Anatomical robust optimization resulted in adequate CTV doses (V95% ⩾ 98% and V107% ⩽ 2%) if at least three synthetic CTs were included in addition to the planning CT. These CTV requirements were also fulfilled for online plan adaptation, but not for the SFUD approach, even when applying a margin of 5 mm. Compared with anatomical robust optimization, OAR dose parameters for the accumulated dose distributions were on average 5.9 GyRBE (20%) higher when using SFUD optimization and on average 3.6 GyRBE (18%) lower for online plan adaptation. In conclusion, anatomical robust optimization effectively accounted for changes in nasal cavity filling during IMPT, providing substantially improved CTV and OAR doses compared with conventional SFUD optimization. OAR doses can be further reduced by using online plan adaptation.
Han, Bing; Peng, Qiang; Li, Ruopeng; Rong, Qikun; Ding, Yang; Akinoglu, Eser Metin; Wu, Xueyuan; Wang, Xin; Lu, Xubing; Wang, Qianming; Zhou, Guofu; Liu, Jun-Ming; Ren, Zhifeng; Giersig, Michael; Herczynski, Andrzej; Kempa, Krzysztof; Gao, Jinwei
2016-09-26
An ideal network window electrode for photovoltaic applications should provide an optimal surface coverage, a uniform current density into and/or from a substrate, and a minimum of the overall resistance for a given shading ratio. Here we show that metallic networks with quasi-fractal structure provides a near-perfect practical realization of such an ideal electrode. We find that a leaf venation network, which possesses key characteristics of the optimal structure, indeed outperforms other networks. We further show that elements of hierarchal topology, rather than details of the branching geometry, are of primary importance in optimizing the networks, and demonstrate this experimentally on five model artificial hierarchical networks of varied levels of complexity. In addition to these structural effects, networks containing nanowires are shown to acquire transparency exceeding the geometric constraint due to the plasmonic refraction.
Network Anomaly Detection System with Optimized DS Evidence Theory
Liu, Yuan; Wang, Xiaofeng; Liu, Kaiyu
2014-01-01
Network anomaly detection has been focused on by more people with the fast development of computer network. Some researchers utilized fusion method and DS evidence theory to do network anomaly detection but with low performance, and they did not consider features of network—complicated and varied. To achieve high detection rate, we present a novel network anomaly detection system with optimized Dempster-Shafer evidence theory (ODS) and regression basic probability assignment (RBPA) function. In this model, we add weights for each senor to optimize DS evidence theory according to its previous predict accuracy. And RBPA employs sensor's regression ability to address complex network. By four kinds of experiments, we find that our novel network anomaly detection model has a better detection rate, and RBPA as well as ODS optimization methods can improve system performance significantly. PMID:25254258
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breedveld, Sebastiaan; Storchi, Pascal R. M.; Voet, Peter W. J.
2012-02-15
Purpose: To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles. Methods: A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives. The higher an objective priority is, the higher the probability that the corresponding objective will be met. Beam directions are selected from an input set of candidate directions. Input sets can be restricted, e.g., to allow only generation of coplanar plans, or to avoid collisions betweenmore » patient/couch and the gantry in a noncoplanar setup. Obtaining clinically feasible calculation times was an important design criterium for development of iCycle. This could be realized by sequentially adding beams to the treatment plan in an iterative procedure. Each iteration loop starts with selection of the optimal direction to be added. Then, a Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes all so far selected directions, using a previously published algorithm for multicriterial optimization of fluence profiles for a fixed beam arrangement Breedveld et al.[Phys. Med. Biol. 54, 7199-7209 (2009)]. To select the next direction, each not yet selected candidate direction is temporarily added to the plan and an optimization problem, derived from the Lagrangian obtained from the just performed optimization for establishing the Pareto-optimal plan, is solved. For each patient, a single one-beam, two-beam, three-beam, etc. Pareto-optimal plan is generated until addition of beams does no longer result in significant plan quality improvement. Plan generation with iCycle is fully automated. Results: Performance and characteristics of iCycle are demonstrated by generating plans for a maxillary sinus case, a cervical cancer patient, and a liver patient treated with SBRT. Plans generated with beam angle optimization did better meet the clinical goals than equiangular or manually selected configurations. For the maxillary sinus and liver cases, significant improvements for noncoplanar setups were seen. The cervix case showed that also in IMRT with coplanar setups, beam angle optimization with iCycle may improve plan quality. Computation times for coplanar plans were around 1-2 h and for noncoplanar plans 4-7 h, depending on the number of beams and the complexity of the site. Conclusions: Integrated beam angle and profile optimization with iCycle may result in significant improvements in treatment plan quality. Due to automation, the plan generation workload is minimal. Clinical application has started.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, X; Sun, T; Liu, T
2014-06-01
Purpose: To evaluate the dosimetric characteristics of intensity-modulated radiotherapy (IMRT) treatment plan with beam angle optimization. Methods: Ten post-operation patients with cervical cancer were included in this analysis. Two IMRT plans using seven beams were designed in each patient. A standard coplanar equi-space beam angles were used in the first plan (plan 1), whereas the selection of beam angle was optimized by beam angle optimization algorithm in Varian Eclipse treatment planning system for the same number of beams in the second plan (plan 2). Two plans were designed for each patient with the same dose-volume constraints and prescription dose. Allmore » plans were normalized to the mean dose to PTV. The dose distribution in the target, the dose to the organs at risk and total MU were compared. Results: For conformity and homogeneity in PTV, no statistically differences were observed in the two plans. For the mean dose in bladder, plan 2 were significantly lower than plan 1(p<0.05). No statistically significant differences were observed between two plans for the mean doses in rectum, left and right femur heads. Compared with plan1, the average monitor units reduced 16% in plan 2. Conclusion: The IMRT plan based on beam angle optimization for cervical cancer could reduce the dose delivered to bladder and also reduce MU. Therefore there were some dosimetric advantages in the IMRT plan with beam angle optimization for cervical cancer.« less
NASA Astrophysics Data System (ADS)
Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik
2015-05-01
In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.
1998-05-01
Coverage Probability with a Random Optimization Procedure: An Artificial Neural Network Approach by Biing T. Guan, George Z. Gertner, and Alan B...Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach 6. AUTHOR(S) Biing...coverage based on past coverage. Approach A literature survey was conducted to identify artificial neural network analysis techniques applicable for
Bicriteria Network Optimization Problem using Priority-based Genetic Algorithm
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin; Cheng, Runwei
Network optimization is being an increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. In many applications, however, there are several criteria associated with traversing each edge of a network. For example, cost and flow measures are both important in the networks. As a result, there has been recent interest in solving Bicriteria Network Optimization Problem. The Bicriteria Network Optimization Problem is known a NP-hard. The efficient set of paths may be very large, possibly exponential in size. Thus the computational effort required to solve it can increase exponentially with the problem size in the worst case. In this paper, we propose a genetic algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including maximum flow (MXF) model and minimum cost flow (MCF) model. The objective is to find the set of Pareto optimal solutions that give possible maximum flow with minimum cost. This paper also combines Adaptive Weight Approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. Computer simulations show the several numerical experiments by using some difficult-to-solve network design problems, and show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Kaminski, Thomas; Rayner, Peter Julian
2017-10-01
Various observational data streams have been shown to provide valuable constraints on the state and evolution of the global carbon cycle. These observations have the potential to reduce uncertainties in past, current, and predicted natural and anthropogenic surface fluxes. In particular such observations provide independent information for verification of actions as requested by the Paris Agreement. It is, however, difficult to decide which variables to sample, and how, where, and when to sample them, in order to achieve an optimal use of the observational capabilities. Quantitative network design (QND) assesses the impact of a given set of existing or hypothetical observations in a modelling framework. QND has been used to optimise in situ networks and assess the benefit to be expected from planned space missions. This paper describes recent progress and highlights aspects that are not yet sufficiently addressed. It demonstrates the advantage of an integrated QND system that can simultaneously evaluate a multitude of observational data streams and assess their complementarity and redundancy.
LavaNet—Neural network development environment in a general mine planning package
NASA Astrophysics Data System (ADS)
Kapageridis, Ioannis Konstantinou; Triantafyllou, A. G.
2011-04-01
LavaNet is a series of scripts written in Perl that gives access to a neural network simulation environment inside a general mine planning package. A well known and a very popular neural network development environment, the Stuttgart Neural Network Simulator, is used as the base for the development of neural networks. LavaNet runs inside VULCAN™—a complete mine planning package with advanced database, modelling and visualisation capabilities. LavaNet is taking advantage of VULCAN's Perl based scripting environment, Lava, to bring all the benefits of neural network development and application to geologists, mining engineers and other users of the specific mine planning package. LavaNet enables easy development of neural network training data sets using information from any of the data and model structures available, such as block models and drillhole databases. Neural networks can be trained inside VULCAN™ and the results be used to generate new models that can be visualised in 3D. Direct comparison of developed neural network models with conventional and geostatistical techniques is now possible within the same mine planning software package. LavaNet supports Radial Basis Function networks, Multi-Layer Perceptrons and Self-Organised Maps.
Yao, Rui; Templeton, Alistair K; Liao, Yixiang; Turian, Julius V; Kiel, Krystyna D; Chu, James C H
2014-01-01
To validate an in-house optimization program that uses adaptive simulated annealing (ASA) and gradient descent (GD) algorithms and investigate features of physical dose and generalized equivalent uniform dose (gEUD)-based objective functions in high-dose-rate (HDR) brachytherapy for cervical cancer. Eight Syed/Neblett template-based cervical cancer HDR interstitial brachytherapy cases were used for this study. Brachytherapy treatment plans were first generated using inverse planning simulated annealing (IPSA). Using the same dwell positions designated in IPSA, plans were then optimized with both physical dose and gEUD-based objective functions, using both ASA and GD algorithms. Comparisons were made between plans both qualitatively and based on dose-volume parameters, evaluating each optimization method and objective function. A hybrid objective function was also designed and implemented in the in-house program. The ASA plans are higher on bladder V75% and D2cc (p=0.034) and lower on rectum V75% and D2cc (p=0.034) than the IPSA plans. The ASA and GD plans are not significantly different. The gEUD-based plans have higher homogeneity index (p=0.034), lower overdose index (p=0.005), and lower rectum gEUD and normal tissue complication probability (p=0.005) than the physical dose-based plans. The hybrid function can produce a plan with dosimetric parameters between the physical dose-based and gEUD-based plans. The optimized plans with the same objective value and dose-volume histogram could have different dose distributions. Our optimization program based on ASA and GD algorithms is flexible on objective functions, optimization parameters, and can generate optimized plans comparable with IPSA. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pahlavani, Parham; Sheikhian, Hossein; Bigdeli, Behnaz
2017-10-01
Air pollution assessment is an imperative part of megacities planning and control. Hence, a new comprehensive approach for air pollution monitoring and assessment was introduced in this research. It comprises of three main sections: optimizing the existing air pollutant monitoring network, locating new stations to complete the coverage of the existing network, and finally, generating an air pollution map. In the first section, Shannon information index was used to find less informative stations to be candidate for removal. Then, a methodology was proposed to determine the areas which are not sufficiently covered by the current network. These areas are candidates for establishing new monitoring stations. The current air pollution monitoring network of Tehran was used as a case study, where the air pollution issue has been worsened due to the huge population, considerable commuters' absorption and topographic barriers. In this regard, O3, NO, NO2, NOx, CO, PM10, and PM2.5 were considered as the main pollutants of Tehran. Optimization step concluded that all the 16 active monitoring stations should be preserved. Analysis showed that about 35% of the Tehran's area is not properly covered by monitoring stations and about 30% of the area needs additional stations. The winter period in Tehran always faces the most severe air pollution in the year. Hence, to produce the air pollution map of Tehran, three-month of winter measurements of the mentioned pollutants, repeated for five years in the same period, were selected and extended to the entire area using the kriging method. Experts specified the contribution of each pollutant in overall air pollution. Experts' rankings aggregated by a fuzzy-overlay process. Resulted maps characterized the study area with crucial air pollution situation. According to the maps, more than 45% of the city area faced high pollution in the study period, while only less than 10% of the area showed low pollution. This situation confirms the need for effective plans to mitigate the severity of the problem. In addition, an effort made to investigate the rationality of the acquired air pollution map respect to the urban, cultural, and environmental characteristics of Tehran, which also confirmed the results.
Solar electricity supply isolines of generation capacity and storage.
Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W
2015-03-24
The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G-S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G-S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity.
Solar electricity supply isolines of generation capacity and storage
Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W.
2015-01-01
The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G−S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G−S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity. PMID:25755261
Giżyńska, Marta K.; Kukołowicz, Paweł F.; Kordowski, Paweł
2014-01-01
Aim The aim of this work is to present a method of beam weight and wedge angle optimization for patients with prostate cancer. Background 3D-CRT is usually realized with forward planning based on a trial and error method. Several authors have published a few methods of beam weight optimization applicable to the 3D-CRT. Still, none on these methods is in common use. Materials and methods Optimization is based on the assumption that the best plan is achieved if dose gradient at ICRU point is equal to zero. Our optimization algorithm requires beam quality index, depth of maximum dose, profiles of wedged fields and maximum dose to femoral heads. The method was tested for 10 patients with prostate cancer, treated with the 3-field technique. Optimized plans were compared with plans prepared by 12 experienced planners. Dose standard deviation in target volume, and minimum and maximum doses were analyzed. Results The quality of plans obtained with the proposed optimization algorithms was comparable to that prepared by experienced planners. Mean difference in target dose standard deviation was 0.1% in favor of the plans prepared by planners for optimization of beam weights and wedge angles. Introducing a correction factor for patient body outline for dose gradient at ICRU point improved dose distribution homogeneity. On average, a 0.1% lower standard deviation was achieved with the optimization algorithm. No significant difference in mean dose–volume histogram for the rectum was observed. Conclusions Optimization shortens very much time planning. The average planning time was 5 min and less than a minute for forward and computer optimization, respectively. PMID:25337411
Miura, Hideharu; Ozawa, Shuichi; Nagata, Yasushi
2017-09-01
This study investigated position dependence in planning target volume (PTV)-based and robust optimization plans using full-arc and partial-arc volumetric modulated arc therapy (VMAT). The gantry angles at the periphery, intermediate, and center CTV positions were 181°-180° (full-arc VMAT) and 181°-360° (partial-arc VMAT). A PTV-based optimization plan was defined by 5 mm margin expansion of the CTV to a PTV volume, on which the dose constraints were applied. The robust optimization plan consisted of a directly optimized dose to the CTV under a maximum-uncertainties setup of 5 mm. The prescription dose was normalized to the CTV D 99% (the minimum relative dose that covers 99% of the volume of the CTV) as an original plan. The isocenter was rigidly shifted at 1 mm intervals in the anterior-posterior (A-P), superior-inferior (S-I), and right-left (R-L) directions from the original position to the maximum-uncertainties setup of 5 mm in the original plan, yielding recalculated dose distributions. It was found that for the intermediate and center positions, the uncertainties in the D 99% doses to the CTV for all directions did not significantly differ when comparing the PTV-based and robust optimization plans (P > 0.05). For the periphery position, uncertainties in the D 99% doses to the CTV in the R-L direction for the robust optimization plan were found to be lower than those in the PTV-based optimization plan (P < 0.05). Our study demonstrated that a robust optimization plan's efficacy using partial-arc VMAT depends on the periphery CTV position. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
IPY Education, Outreach and Communication - Some Lessons Learned (Invited)
NASA Astrophysics Data System (ADS)
Carlson, D. J.; Salmon, R.; Munro, N.
2009-12-01
IPY Education, Outreach and Communications planning and implementation occurred with a minimum of staff and resources and a maximum of international volunteer enthusiasm and energy. Although many relatively well-funded and remarkable national activities occurred, sharing and promoting these internationally depended entirely on the volunteer networks of individuals and institutions. Through these partnerships we have learned valuable lessons about impact and distribution, and challenged several assumptions about educational partnerships. For example, we learned the importance of regular pre-scheduled events, and how to use networks of volunteer translators and free geobrowser tools. We have learned how best to conduct planning meetings and live events across time zones and hemispheres, and shown how the best concepts and ideas of science education can propagate across age groups and among languages. We have learned the optimal times of year for international events, and the most effective means for international distribution and communication. We have established a rapid-response help desk without home or staff, and sustained active and high-impact interactions with journalists largely without press releases. We have shown that, in general, wide-spread distribution of freely accessible materials produces a better impact than embargoes and restrictions. Most fundamentally, we have exposed a pervasive interest in polar science and a hunger for climate information, and responded with an active, flexible, and efficient network of partners and products.
NASA Astrophysics Data System (ADS)
Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha
2014-10-01
We explore optimization methods for planning the placement, sizing and operations of flexible alternating current transmission system (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to series compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of linear programs (LP) that are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically sized networks that suffer congestion from a range of causes, including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically sized network.
Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha
2014-10-24
We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to Series Compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l 1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) which are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPowermore » Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed up that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically-sized networks that suffer congestion from a range of causes including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically-sized network.« less
Construction schedule simulation of a diversion tunnel based on the optimized ventilation time.
Wang, Xiaoling; Liu, Xuepeng; Sun, Yuefeng; An, Juan; Zhang, Jing; Chen, Hongchao
2009-06-15
Former studies, the methods for estimating the ventilation time are all empirical in construction schedule simulation. However, in many real cases of construction schedule, the many factors have impact on the ventilation time. Therefore, in this paper the 3D unsteady quasi-single phase models are proposed to optimize the ventilation time with different tunneling lengths. The effect of buoyancy is considered in the momentum equation of the CO transport model, while the effects of inter-phase drag, lift force, and virtual mass force are taken into account in the momentum source of the dust transport model. The prediction by the present model for airflow in a diversion tunnel is confirmed by the experimental values reported by Nakayama [Nakayama, In-situ measurement and simulation by CFD of methane gas distribution at a heading faces, Shigen-to-Sozai 114 (11) (1998) 769-775]. The construction ventilation of the diversion tunnel of XinTangfang power station in China is used as a case. The distributions of airflow, CO and dust in the diversion tunnel are analyzed. A theory method for GIS-based dynamic visual simulation for the construction processes of underground structure groups is presented that combines cyclic operation network simulation, system simulation, network plan optimization, and GIS-based construction processes' 3D visualization. Based on the ventilation time the construction schedule of the diversion tunnel is simulated by the above theory method.
Sutrave, Sweta; Scoglio, Caterina; Isard, Scott A; Hutchinson, J M Shawn; Garrett, Karen A
2012-01-01
Surveying invasive species can be highly resource intensive, yet near-real-time evaluations of invasion progress are important resources for management planning. In the case of the soybean rust invasion of the United States, a linked monitoring, prediction, and communication network saved U.S. soybean growers approximately $200 M/yr. Modeling of future movement of the pathogen (Phakopsora pachyrhizi) was based on data about current disease locations from an extensive network of sentinel plots. We developed a dynamic network model for U.S. soybean rust epidemics, with counties as nodes and link weights a function of host hectarage and wind speed and direction. We used the network model to compare four strategies for selecting an optimal subset of sentinel plots, listed here in order of increasing performance: random selection, zonal selection (based on more heavily weighting regions nearer the south, where the pathogen overwinters), frequency-based selection (based on how frequently the county had been infected in the past), and frequency-based selection weighted by the node strength of the sentinel plot in the network model. When dynamic network properties such as node strength are characterized for invasive species, this information can be used to reduce the resources necessary to survey and predict invasion progress.
Using neural networks and Dyna algorithm for integrated planning, reacting and learning in systems
NASA Technical Reports Server (NTRS)
Lima, Pedro; Beard, Randal
1992-01-01
The traditional AI answer to the decision making problem for a robot is planning. However, planning is usually CPU-time consuming, depending on the availability and accuracy of a world model. The Dyna system generally described in earlier work, uses trial and error to learn a world model which is simultaneously used to plan reactions resulting in optimal action sequences. It is an attempt to integrate planning, reactive, and learning systems. The architecture of Dyna is presented. The different blocks are described. There are three main components of the system. The first is the world model used by the robot for internal world representation. The input of the world model is the current state and the action taken in the current state. The output is the corresponding reward and resulting state. The second module in the system is the policy. The policy observes the current state and outputs the action to be executed by the robot. At the beginning of program execution, the policy is stochastic and through learning progressively becomes deterministic. The policy decides upon an action according to the output of an evaluation function, which is the third module of the system. The evaluation function takes the following as input: the current state of the system, the action taken in that state, the resulting state, and a reward generated by the world which is proportional to the current distance from the goal state. Originally, the work proposed was as follows: (1) to implement a simple 2-D world where a 'robot' is navigating around obstacles, to learn the path to a goal, by using lookup tables; (2) to substitute the world model and Q estimate function Q by neural networks; and (3) to apply the algorithm to a more complex world where the use of a neural network would be fully justified. In this paper, the system design and achieved results will be described. First we implement the world model with a neural network and leave Q implemented as a look up table. Next, we use a lookup table for the world model and implement the Q function with a neural net. Time limitations prevented the combination of these two approaches. The final section discusses the results and gives clues for future work.
Neural Network Prediction of New Aircraft Design Coefficients
NASA Technical Reports Server (NTRS)
Norgaard, Magnus; Jorgensen, Charles C.; Ross, James C.
1997-01-01
This paper discusses a neural network tool for more effective aircraft design evaluations during wind tunnel tests. Using a hybrid neural network optimization method, we have produced fast and reliable predictions of aerodynamical coefficients, found optimal flap settings, and flap schedules. For validation, the tool was tested on a 55% scale model of the USAF/NASA Subsonic High Alpha Research Concept aircraft (SHARC). Four different networks were trained to predict coefficients of lift, drag, moment of inertia, and lift drag ratio (C(sub L), C(sub D), C(sub M), and L/D) from angle of attack and flap settings. The latter network was then used to determine an overall optimal flap setting and for finding optimal flap schedules.
A high-efficiency low-voltage class-E PA for IoT applications in sub-1 GHz frequency range
NASA Astrophysics Data System (ADS)
Zhou, Chenyi; Lu, Zhenghao; Gu, Jiangmin; Yu, Xiaopeng
2017-10-01
We present and propose a complete and iterative integrated-circuit and electro-magnetic (EM) co-design methodology and procedure for a low-voltage sub-1 GHz class-E PA. The presented class-E PA consists of the on-chip power transistor, the on-chip gate driving circuits, the off-chip tunable LC load network and the off-chip LC ladder low pass filter. The design methodology includes an explicit design equation based circuit components values' analysis and numerical derivation, output power targeted transistor size and low pass filter design, and power efficiency oriented design optimization. The proposed design procedure includes the power efficiency oriented LC network tuning, the detailed circuit/EM co-simulation plan on integrated circuit level, package level and PCB level to ensure an accurate simulation to measurement match and first pass design success. The proposed PA is targeted to achieve more than 15 dBm output power delivery and 40% power efficiency at 433 MHz frequency band with 1.5 V low voltage supply. The LC load network is designed to be off-chip for the purpose of easy tuning and optimization. The same circuit can be extended to all sub-1 GHz applications with the same tuning and optimization on the load network at different frequencies. The amplifier is implemented in 0.13 μm CMOS technology with a core area occupation of 400 μm by 300 μm. Measurement results showed that it provided power delivery of 16.42 dBm at antenna with efficiency of 40.6%. A harmonics suppression of 44 dBc is achieved, making it suitable for massive deployment of IoT devices. Project supported by the National Natural Science Foundation of China (No. 61574125) and the Industry Innovation Project of Suzhou City of China (No. SYG201641).
Code of Federal Regulations, 2010 CFR
2010-10-01
... network requirement in § 403.806(f)(3) if its pharmacy network is not limited to mail-order pharmacies and is equivalent to the pharmacy network used in its Medicare managed care plan and such pharmacy network has been approved by the Secretary, or, if its Medicare managed care plan does not use a pharmacy...
Optimism and Planning for Future Care Needs among Older Adults
Sörensen, Silvia; Hirsch, Jameson K.; Lyness, Jeffrey M.
2015-01-01
Aging is associated with an increase in need for assistance. Preparation for future care (PFC) is related to improved coping ability as well as better mental and physical health outcomes among older adults. We examined the association of optimism with components of PFC among older adults. We also explored race differences in the relationship between optimism and PFC. In Study 1, multiple regression showed that optimism was positively related to concrete planning. In Study 2, optimism was related to gathering information. An exploratory analysis combining the samples yielded a race interaction: For Whites higher optimism, but for Blacks lower optimism was associated with more planning. High optimism may be a barrier to future planning in certain social and cultural contexts. PMID:26045699
Designing optimal greenhouse gas monitoring networks for Australia
NASA Astrophysics Data System (ADS)
Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.
2016-01-01
Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.
Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wild, Esther, E-mail: e.wild@dkfz.de; Bangert, Mark; Nill, Simeon
Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directionsmore » and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable treatment plan quality. Conclusions: The authors’ study reconfirms the dosimetric benefits of noncoplanar irradiation of nasopharyngeal tumors. Both SnS using optimized noncoplanar beam ensembles and VMAT using an optimized, arbitrary, noncoplanar trajectory enabled dose reductions in organs at risk compared to coplanar SnS and VMAT. Using great circles or simple couch rotations to implement noncoplanar VMAT, however, was not sufficient to yield meaningful improvements in treatment plan quality. The authors estimate that noncoplanar VMAT using arbitrary optimized irradiation trajectories comes at an increased delivery time compared to coplanar VMAT yet at a decreased delivery time compared to noncoplanar SnS IMRT.« less
NASA Astrophysics Data System (ADS)
Winkel, D.; Bol, G. H.; van Asselen, B.; Hes, J.; Scholten, V.; Kerkmeijer, L. G. W.; Raaymakers, B. W.
2016-12-01
To develop an automated radiotherapy treatment planning and optimization workflow to efficiently create patient specifically optimized clinical grade treatment plans for prostate cancer and to implement it in clinical practice. A two-phased planning and optimization workflow was developed to automatically generate 77Gy 5-field simultaneously integrated boost intensity modulated radiation therapy (SIB-IMRT) plans for prostate cancer treatment. A retrospective planning study (n = 100) was performed in which automatically and manually generated treatment plans were compared. A clinical pilot (n = 21) was performed to investigate the usability of our method. Operator time for the planning process was reduced to <5 min. The retrospective planning study showed that 98 plans met all clinical constraints. Significant improvements were made in the volume receiving 72Gy (V72Gy) for the bladder and rectum and the mean dose of the bladder and the body. A reduced plan variance was observed. During the clinical pilot 20 automatically generated plans met all constraints and 17 plans were selected for treatment. The automated radiotherapy treatment planning and optimization workflow is capable of efficiently generating patient specifically optimized and improved clinical grade plans. It has now been adopted as the current standard workflow in our clinic to generate treatment plans for prostate cancer.
Siebers, Jeffrey V
2008-04-04
Monte Carlo (MC) is rarely used for IMRT plan optimization outside of research centres due to the extensive computational resources or long computation times required to complete the process. Time can be reduced by degrading the statistical precision of the MC dose calculation used within the optimization loop. However, this eventually introduces optimization convergence errors (OCEs). This study determines the statistical noise levels tolerated during MC-IMRT optimization under the condition that the optimized plan has OCEs <100 cGy (1.5% of the prescription dose) for MC-optimized IMRT treatment plans.Seven-field prostate IMRT treatment plans for 10 prostate patients are used in this study. Pre-optimization is performed for deliverable beams with a pencil-beam (PB) dose algorithm. Further deliverable-based optimization proceeds using: (1) MC-based optimization, where dose is recomputed with MC after each intensity update or (2) a once-corrected (OC) MC-hybrid optimization, where a MC dose computation defines beam-by-beam dose correction matrices that are used during a PB-based optimization. Optimizations are performed with nominal per beam MC statistical precisions of 2, 5, 8, 10, 15, and 20%. Following optimizer convergence, beams are re-computed with MC using 2% per beam nominal statistical precision and the 2 PTV and 10 OAR dose indices used in the optimization objective function are tallied. For both the MC-optimization and OC-optimization methods, statistical equivalence tests found that OCEs are less than 1.5% of the prescription dose for plans optimized with nominal statistical uncertainties of up to 10% per beam. The achieved statistical uncertainty in the patient for the 10% per beam simulations from the combination of the 7 beams is ~3% with respect to maximum dose for voxels with D>0.5D(max). The MC dose computation time for the OC-optimization is only 6.2 minutes on a single 3 Ghz processor with results clinically equivalent to high precision MC computations.
Optimal Design of River Monitoring Network in Taizihe River by Matter Element Analysis
Wang, Hui; Liu, Zhe; Sun, Lina; Luo, Qing
2015-01-01
The objective of this study is to optimize the river monitoring network in Taizihe River, Northeast China. The situation of the network and water characteristics were studied in this work. During this study, water samples were collected once a month during January 2009 - December 2010 from seventeen sites. Futhermore, the 16 monitoring indexes were analyzed in the field and laboratory. The pH value of surface water sample was found to be in the range of 6.83 to 9.31, and the average concentrations of NH4 +-N, chemical oxygen demand (COD), volatile phenol and total phosphorus (TP) were found decreasing significantly. The water quality of the river has been improved from 2009 to 2010. Through the calculation of the data availability and the correlation between adjacent sections, it was found that the present monitoring network was inefficient as well as the optimization was indispensable. In order to improve the situation, the matter element analysis and gravity distance were applied in the optimization of river monitoring network, which were proved to be a useful method to optimize river quality monitoring network. The amount of monitoring sections were cut from 17 to 13 for the monitoring network was more cost-effective after being optimized. The results of this study could be used in developing effective management strategies to improve the environmental quality of Taizihe River. Also, the results show that the proposed model can be effectively used for the optimal design of monitoring networks in river systems. PMID:26023785
Han, Bing; Peng, Qiang; Li, Ruopeng; Rong, Qikun; Ding, Yang; Akinoglu, Eser Metin; Wu, Xueyuan; Wang, Xin; Lu, Xubing; Wang, Qianming; Zhou, Guofu; Liu, Jun-Ming; Ren, Zhifeng; Giersig, Michael; Herczynski, Andrzej; Kempa, Krzysztof; Gao, Jinwei
2016-01-01
An ideal network window electrode for photovoltaic applications should provide an optimal surface coverage, a uniform current density into and/or from a substrate, and a minimum of the overall resistance for a given shading ratio. Here we show that metallic networks with quasi-fractal structure provides a near-perfect practical realization of such an ideal electrode. We find that a leaf venation network, which possesses key characteristics of the optimal structure, indeed outperforms other networks. We further show that elements of hierarchal topology, rather than details of the branching geometry, are of primary importance in optimizing the networks, and demonstrate this experimentally on five model artificial hierarchical networks of varied levels of complexity. In addition to these structural effects, networks containing nanowires are shown to acquire transparency exceeding the geometric constraint due to the plasmonic refraction. PMID:27667099
National Seismic Network of Georgia
NASA Astrophysics Data System (ADS)
Tumanova, N.; Kakhoberashvili, S.; Omarashvili, V.; Tserodze, M.; Akubardia, D.
2016-12-01
Georgia, as a part of the Southern Caucasus, is tectonically active and structurally complex region. It is one of the most active segments of the Alpine-Himalayan collision belt. The deformation and the associated seismicity are due to the continent-continent collision between the Arabian and Eurasian plates. Seismic Monitoring of country and the quality of seismic data is the major tool for the rapid response policy, population safety, basic scientific research and in the end for the sustainable development of the country. National Seismic Network of Georgia has been developing since the end of 19th century. Digital era of the network started from 2003. Recently continuous data streams from 25 stations acquired and analyzed in the real time. Data is combined to calculate rapid location and magnitude for the earthquake. Information for the bigger events (Ml>=3.5) is simultaneously transferred to the website of the monitoring center and to the related governmental agencies. To improve rapid earthquake location and magnitude estimation the seismic network was enhanced by installing additional 7 new stations. Each new station is equipped with coupled Broadband and Strong Motion seismometers and permanent GPS system as well. To select the sites for the 7 new base stations, we used standard network optimization techniques. To choose the optimal sites for new stations we've taken into account geometry of the existed seismic network, topographic conditions of the site. For each site we studied local geology (Vs30 was mandatory for each site), local noise level and seismic vault construction parameters. Due to the country elevation, stations were installed in the high mountains, no accessible in winter due to the heavy snow conditions. To secure online data transmission we used satellite data transmission as well as cell data network coverage from the different local companies. As a result we've already have the improved earthquake location and event magnitudes. We've analyzed data from each station to calculate signal-to-nose ratio. Comparing these calculations with the ones for the existed stations showed that signal-to-nose ratio for new stations has much better value. National Seismic Network of Georgia is planning to install more stations to improve seismic network coverage.
Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Li, Baoqing; Yuan, Xiaobing
2017-01-01
Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum–minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms. PMID:28753962
Optimization of a large-scale microseismic monitoring network in northern Switzerland
NASA Astrophysics Data System (ADS)
Kraft, Toni; Mignan, Arnaud; Giardini, Domenico
2013-10-01
We have developed a network optimization method for regional-scale microseismic monitoring networks and applied it to optimize the densification of the existing seismic network in northeastern Switzerland. The new network will build the backbone of a 10-yr study on the neotectonic activity of this area that will help to better constrain the seismic hazard imposed on nuclear power plants and waste repository sites. This task defined the requirements regarding location precision (0.5 km in epicentre and 2 km in source depth) and detection capability [magnitude of completeness Mc = 1.0 (ML)]. The goal of the optimization was to find the geometry and size of the network that met these requirements. Existing stations in Switzerland, Germany and Austria were considered in the optimization procedure. We based the optimization on the simulated annealing approach proposed by Hardt & Scherbaum, which aims to minimize the volume of the error ellipsoid of the linearized earthquake location problem (D-criterion). We have extended their algorithm to:
We calculated optimized geometries for networks with 10-35 added stations and tested the stability of the optimization result by repeated runs with changing initial conditions. Further, we estimated the attainable magnitude of completeness (Mc) for the different sized optimal networks using the Bayesian Magnitude of Completeness (BMC) method introduced by Mignan et al. The algorithm developed in this study is also applicable to smaller optimization problems, for example, small local monitoring networks. Possible applications are volcano monitoring, the surveillance of induced seismicity associated with geotechnical operations and many more. Our algorithm is especially useful to optimize networks in populated areas with heterogeneous noise conditions and if complex velocity structures or existing stations have to be considered.
Code of Federal Regulations, 2010 CFR
2010-10-01
...— Arrangement means a written agreement between an MA organization and a provider or provider network, under which— (1) The provider or provider network agrees to furnish for a specific MA plan(s) specified... organization (PPO) that serves one or more entire regions. An MA regional plan must have a network of...
NASA Astrophysics Data System (ADS)
Bolodurina, I. P.; Parfenov, D. I.
2018-01-01
We have elaborated a neural network model of virtual network flow identification based on the statistical properties of flows circulating in the network of the data center and characteristics that describe the content of packets transmitted through network objects. This enabled us to establish the optimal set of attributes to identify virtual network functions. We have established an algorithm for optimizing the placement of virtual data functions using the data obtained in our research. Our approach uses a hybrid method of visualization using virtual machines and containers, which enables to reduce the infrastructure load and the response time in the network of the virtual data center. The algorithmic solution is based on neural networks, which enables to scale it at any number of the network function copies.
Performance evaluation of the NASA/KSC CAD/CAE and office automation LAN's
NASA Technical Reports Server (NTRS)
Zobrist, George W.
1994-01-01
This study's objective is the performance evaluation of the existing CAD/CAE (Computer Aided Design/Computer Aided Engineering) network at NASA/KSC. This evaluation also includes a similar study of the Office Automation network, since it is being planned to integrate this network into the CAD/CAE network. The Microsoft mail facility which is presently on the CAD/CAE network was monitored to determine its present usage. This performance evaluation of the various networks will aid the NASA/KSC network managers in planning for the integration of future workload requirements into the CAD/CAE network and determining the effectiveness of the planned FDDI (Fiber Distributed Data Interface) migration.
40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...
40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...
BMP analysis system for watershed-based stormwater management.
Zhen, Jenny; Shoemaker, Leslie; Riverson, John; Alvi, Khalid; Cheng, Mow-Soung
2006-01-01
Best Management Practices (BMPs) are measures for mitigating nonpoint source (NPS) pollution caused mainly by stormwater runoff. Established urban and newly developing areas must develop cost effective means for restoring or minimizing impacts, and planning future growth. Prince George's County in Maryland, USA, a fast-growing region in the Washington, DC metropolitan area, has developed a number of tools to support analysis and decision making for stormwater management planning and design at the watershed level. These tools support watershed analysis, innovative BMPs, and optimization. Application of these tools can help achieve environmental goals and lead to significant cost savings. This project includes software development that utilizes GIS information and technology, integrates BMP processes simulation models, and applies system optimization techniques for BMP planning and selection. The system employs the ESRI ArcGIS as the platform, and provides GIS-based visualization and support for developing networks including sequences of land uses, BMPs, and stream reaches. The system also provides interfaces for BMP placement, BMP attribute data input, and decision optimization management. The system includes a stand-alone BMP simulation and evaluation module, which complements both research and regulatory nonpoint source control assessment efforts, and allows flexibility in the examining various BMP design alternatives. Process based simulation of BMPs provides a technique that is sensitive to local climate and rainfall patterns. The system incorporates a meta-heuristic optimization technique to find the most cost-effective BMP placement and implementation plan given a control target, or a fixed cost. A case study is presented to demonstrate the application of the Prince George's County system. The case study involves a highly urbanized area in the Anacostia River (a tributary to Potomac River) watershed southeast of Washington, DC. An innovative system of management practices is proposed to minimize runoff, improve water quality, and provide water reuse opportunities. Proposed management techniques include bioretention, green roof, and rooftop runoff collection (rain barrel) systems. The modeling system was used to identify the most cost-effective combinations of management practices to help minimize frequency and size of runoff events and resulting combined sewer overflows to the Anacostia River.
Influence maximization in complex networks through optimal percolation
NASA Astrophysics Data System (ADS)
Morone, Flaviano; Makse, Hernan; CUNY Collaboration; CUNY Collaboration
The whole frame of interconnections in complex networks hinges on a specific set of structural nodes, much smaller than the total size, which, if activated, would cause the spread of information to the whole network, or, if immunized, would prevent the diffusion of a large scale epidemic. Localizing this optimal, that is, minimal, set of structural nodes, called influencers, is one of the most important problems in network science. Here we map the problem onto optimal percolation in random networks to identify the minimal set of influencers, which arises by minimizing the energy of a many-body system, where the form of the interactions is fixed by the non-backtracking matrix of the network. Big data analyses reveal that the set of optimal influencers is much smaller than the one predicted by previous heuristic centralities. Remarkably, a large number of previously neglected weakly connected nodes emerges among the optimal influencers. Reference: F. Morone, H. A. Makse, Nature 524,65-68 (2015)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Tao; Li, Cheng; Huang, Can
Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less
Adaptation, Growth, and Resilience in Biological Distribution Networks
NASA Astrophysics Data System (ADS)
Ronellenfitsch, Henrik; Katifori, Eleni
Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. We show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as plant and animal vasculature. In addition, we show how the incorporation of spatially collective fluctuating sources yields a minimal model of realistic reticulation in distribution networks and thus resilience against damage.
Ding, Tao; Li, Cheng; Huang, Can; ...
2017-01-09
Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less
Dynamic modeling and optimization for space logistics using time-expanded networks
NASA Astrophysics Data System (ADS)
Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert
2014-12-01
This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.
NASA Astrophysics Data System (ADS)
Kim, Y.; Hwang, T.; Vose, J. M.; Martin, K. L.; Band, L. E.
2016-12-01
Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.
NASA Astrophysics Data System (ADS)
Keum, J.; Coulibaly, P. D.
2017-12-01
Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.
[Study on network architecture of a tele-medical information sharing platform].
Pan, Lin; Yu, Lun; Chen, Jin-xiong
2006-07-01
In the article,a plan of network construction which satisfies the demand of applications for a telemedical information sharing platform is proposed. We choice network access plans in view of user actual situation, through the analysis of the service demand and many kinds of network access technologies. Hospital servers that locate in LAN link sharing platform with node servers, should separate from the broadband network of sharing platform in order to ensure the security of the internal hospital network and the administration management. We use the VPN technology to realize the safe transmission of information in the platform network. Preliminary experiments have proved the plan is practicable.
Lee, HyungJune; Kim, HyunSeok; Chang, Ik Joon
2014-01-01
We propose a technique to optimize the energy efficiency of data collection in sensor networks by exploiting a selective data compression. To achieve such an aim, we need to make optimal decisions regarding two aspects: (1) which sensor nodes should execute compression; and (2) which compression algorithm should be used by the selected sensor nodes. We formulate this problem into binary integer programs, which provide an energy-optimal solution under the given latency constraint. Our simulation results show that the optimization algorithm significantly reduces the overall network-wide energy consumption for data collection. In the environment having a stationary sink from stationary sensor nodes, the optimized data collection shows 47% energy savings compared to the state-of-the-art collection protocol (CTP). More importantly, we demonstrate that our optimized data collection provides the best performance in an intermittent network under high interference. In such networks, we found that the selective compression for frequent packet retransmissions saves up to 55% energy compared to the best known protocol. PMID:24721763
Generalized networking engineering: optimal pricing and routing in multiservice networks
NASA Astrophysics Data System (ADS)
Mitra, Debasis; Wang, Qiong
2002-07-01
One of the functions of network engineering is to allocate resources optimally to forecasted demand. We generalize the mechanism by incorporating price-demand relationships into the problem formulation, and optimizing pricing and routing jointly to maximize total revenue. We consider a network, with fixed topology and link bandwidths, that offers multiple services, such as voice and data, each having characteristic price elasticity of demand, and quality of service and policy requirements on routing. Prices, which depend on service type and origin-destination, determine demands, that are routed, subject to their constraints, so as to maximize revenue. We study the basic properties of the optimal solution and prove that link shadow costs provide the basis for both optimal prices and optimal routing policies. We investigate the impact of input parameters, such as link capacities and price elasticities, on prices, demand growth, and routing policies. Asymptotic analyses, in which network bandwidth is scaled to grow, give results that are noteworthy for their qualitative insights. Several numerical examples illustrate the analyses.
De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico
2016-11-10
A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.
Opuntia in México: Identifying Priority Areas for Conserving Biodiversity in a Multi-Use Landscape
Illoldi-Rangel, Patricia; Ciarleglio, Michael; Sheinvar, Leia; Linaje, Miguel; Sánchez-Cordero, Victor; Sarkar, Sahotra
2012-01-01
Background México is one of the world's centers of species diversity (richness) for Opuntia cacti. Yet, in spite of their economic and ecological importance, Opuntia species remain poorly studied and protected in México. Many of the species are sparsely but widely distributed across the landscape and are subject to a variety of human uses, so devising implementable conservation plans for them presents formidable difficulties. Multi–criteria analysis can be used to design a spatially coherent conservation area network while permitting sustainable human usage. Methods and Findings Species distribution models were created for 60 Opuntia species using MaxEnt. Targets of representation within conservation area networks were assigned at 100% for the geographically rarest species and 10% for the most common ones. Three different conservation plans were developed to represent the species within these networks using total area, shape, and connectivity as relevant criteria. Multi–criteria analysis and a metaheuristic adaptive tabu search algorithm were used to search for optimal solutions. The plans were built on the existing protected areas of México and prioritized additional areas for management for the persistence of Opuntia species. All plans required around one–third of México's total area to be prioritized for attention for Opuntia conservation, underscoring the implausibility of Opuntia conservation through traditional land reservation. Tabu search turned out to be both computationally tractable and easily implementable for search problems of this kind. Conclusions Opuntia conservation in México require the management of large areas of land for multiple uses. The multi-criteria analyses identified priority areas and organized them in large contiguous blocks that can be effectively managed. A high level of connectivity was established among the prioritized areas resulting in the enhancement of possible modes of plant dispersal as well as only a small number of blocks that would be recommended for conservation management. PMID:22606279
An optimization framework for measuring spatial access over healthcare networks.
Li, Zihao; Serban, Nicoleta; Swann, Julie L
2015-07-17
Measurement of healthcare spatial access over a network involves accounting for demand, supply, and network structure. Popular approaches are based on floating catchment areas; however the methods can overestimate demand over the network and fail to capture cascading effects across the system. Optimization is presented as a framework to measure spatial access. Questions related to when and why optimization should be used are addressed. The accuracy of the optimization models compared to the two-step floating catchment area method and its variations is analytically demonstrated, and a case study of specialty care for Cystic Fibrosis over the continental United States is used to compare these approaches. The optimization models capture a patient's experience rather than their opportunities and avoid overestimating patient demand. They can also capture system effects due to change based on congestion. Furthermore, the optimization models provide more elements of access than traditional catchment methods. Optimization models can incorporate user choice and other variations, and they can be useful towards targeting interventions to improve access. They can be easily adapted to measure access for different types of patients, over different provider types, or with capacity constraints in the network. Moreover, optimization models allow differences in access in rural and urban areas.
Planning Tripoli Metro Network by the Use of Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Alhusain, O.; Engedy, Gy.; Milady, A.; Paulini, L.; Soos, G.
2012-08-01
Tripoli, the capital city of Libya is going through significant and integrated development process, this development is expected to continue in the next few decades. The Libyan authorities have put it as their goal to develop Tripoli to an important metropolis in North Africa. To achieve this goal, they identified goals for the city's future development in all human, economic, cultural, touristic, and nonetheless infrastructure levels. On the infrastructure development level, among other things, they have identified the development of public transportation as one of the important development priorities. At present, public transportation in Tripoli is carried out by a limited capacity bus network alongside of individual transportation. However, movement in the city is characterized mainly by individual transportation with all its disadvantages such as traffic jams, significant air pollution with both carbon monoxide and dust, and lack of parking space. The Libyan authorities wisely opted for an efficient, modern, and environment friendly solution for public transportation, this was to plan a complex Metro Network as the backbone of public transportation in the city, and to develop and integrate the bus network and other means of transportation to be in harmony with the planned Metro network. The Metro network is planned to provide convenient connections to Tripoli International Airport and to the planned Railway station. They plan to build a system of Park and Ride (P+R) facilities at suitable locations along the Metro lines. This paper will present in details the planned Metro Network, some of the applied technological solutions, the importance of applying remote sensing and GIS technologies in different planning phases, and problems and benefits associated with the use of multi-temporal-, multi-format spatial data in the whole network planning phase.
Space Communications and Navigation (SCaN) Network Simulation Tool Development and Its Use Cases
NASA Technical Reports Server (NTRS)
Jennings, Esther; Borgen, Richard; Nguyen, Sam; Segui, John; Stoenescu, Tudor; Wang, Shin-Ywan; Woo, Simon; Barritt, Brian; Chevalier, Christine; Eddy, Wesley
2009-01-01
In this work, we focus on the development of a simulation tool to assist in analysis of current and future (proposed) network architectures for NASA. Specifically, the Space Communications and Navigation (SCaN) Network is being architected as an integrated set of new assets and a federation of upgraded legacy systems. The SCaN architecture for the initial missions for returning humans to the moon and beyond will include the Space Network (SN) and the Near-Earth Network (NEN). In addition to SCaN, the initial mission scenario involves a Crew Exploration Vehicle (CEV), the International Space Station (ISS) and NASA Integrated Services Network (NISN). We call the tool being developed the SCaN Network Integration and Engineering (SCaN NI&E) Simulator. The intended uses of such a simulator are: (1) to characterize performance of particular protocols and configurations in mission planning phases; (2) to optimize system configurations by testing a larger parameter space than may be feasible in either production networks or an emulated environment; (3) to test solutions in order to find issues/risks before committing more significant resources needed to produce real hardware or flight software systems. We describe two use cases of the tool: (1) standalone simulation of CEV to ISS baseline scenario to determine network performance, (2) participation in Distributed Simulation Integration Laboratory (DSIL) tests to perform function testing and verify interface and interoperability of geographically dispersed simulations/emulations.
Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat
2013-01-22
A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.
NASA Technical Reports Server (NTRS)
Lee, Nathaniel; Welch, Bryan W.
2018-01-01
NASA's SCENIC project aims to simplify and reduce the cost of space mission planning by replicating the analysis capabilities of commercially licensed software which are integrated with relevant analysis parameters specific to SCaN assets and SCaN supported user missions. SCENIC differs from current tools that perform similar analyses in that it 1) does not require any licensing fees, 2) will provide an all-in-one package for various analysis capabilities that normally requires add-ons or multiple tools to complete. As part of SCENIC's capabilities, the ITACA network loading analysis tool will be responsible for assessing the loading on a given network architecture and generating a network service schedule. ITACA will allow users to evaluate the quality of service of a given network architecture and determine whether or not the architecture will satisfy the mission's requirements. ITACA is currently under development, and the following improvements were made during the fall of 2017: optimization of runtime, augmentation of network asset pre-service configuration time, augmentation of Brent's method of root finding, augmentation of network asset FOV restrictions, augmentation of mission lifetimes, and the integration of a SCaN link budget calculation tool. The improvements resulted in (a) 25% reduction in runtime, (b) more accurate contact window predictions when compared to STK(Registered Trademark) contact window predictions, and (c) increased fidelity through the use of specific SCaN asset parameters.
Optimization of controllability and robustness of complex networks by edge directionality
NASA Astrophysics Data System (ADS)
Liang, Man; Jin, Suoqin; Wang, Dingjie; Zou, Xiufen
2016-09-01
Recently, controllability of complex networks has attracted enormous attention in various fields of science and engineering. How to optimize structural controllability has also become a significant issue. Previous studies have shown that an appropriate directional assignment can improve structural controllability; however, the evolution of the structural controllability of complex networks under attacks and cascading has always been ignored. To address this problem, this study proposes a new edge orientation method (NEOM) based on residual degree that changes the link direction while conserving topology and directionality. By comparing the results with those of previous methods in two random graph models and several realistic networks, our proposed approach is demonstrated to be an effective and competitive method for improving the structural controllability of complex networks. Moreover, numerical simulations show that our method is near-optimal in optimizing structural controllability. Strikingly, compared to the original network, our method maintains the structural controllability of the network under attacks and cascading, indicating that the NEOM can also enhance the robustness of controllability of networks. These results alter the view of the nature of controllability in complex networks, change the understanding of structural controllability and affect the design of network models to control such networks.
NASA Astrophysics Data System (ADS)
Welton, Ellsworth J.; Stewart, Sebastian A.; Lewis, Jasper R.; Belcher, Larry R.; Campbell, James R.; Lolli, Simone
2018-04-01
The NASA Micro Pulse Lidar Network (MPLNET) is a global federated network of Micro-Pulse Lidars (MPL) co-located with the NASA Aerosol Robotic Network (AERONET). MPLNET began in 2000, and there are currently 17 long-term sites, numerous field campaigns, and more planned sites on the way. We have developed a new Version 3 processing system including the deployment of polarized MPLs across the network. Here we provide an overview of Version 3, the polarized MPL, and current and future plans.
Wireless Cooperative Networks: Self-Configuration and Optimization
2011-09-09
TERMS wireless sensor networks , wireless cooperative networks, resource optimization, ultra-wideband, localization, ranging 16. SECURITY...Communications We consider two prevalent relay protocols for wireless sensor networks : decode-and-forward (DF) and amplify-and-forward (AF). To... sensor networks where each node may have its own sensing data to transmit, since they can maximally conserve energy while helping others as relays
High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)
1998-01-01
The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.
Trade-offs between robustness and small-world effect in complex networks
Peng, Guan-Sheng; Tan, Suo-Yi; Wu, Jun; Holme, Petter
2016-01-01
Robustness and small-world effect are two crucial structural features of complex networks and have attracted increasing attention. However, little is known about the relation between them. Here we demonstrate that, there is a conflicting relation between robustness and small-world effect for a given degree sequence. We suggest that the robustness-oriented optimization will weaken the small-world effect and vice versa. Then, we propose a multi-objective trade-off optimization model and develop a heuristic algorithm to obtain the optimal trade-off topology for robustness and small-world effect. We show that the optimal network topology exhibits a pronounced core-periphery structure and investigate the structural properties of the optimized networks in detail. PMID:27853301
Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.
Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang
2016-11-01
Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types. © 2016, National Ground Water Association.
System, apparatus and methods to implement high-speed network analyzers
Ezick, James; Lethin, Richard; Ros-Giralt, Jordi; Szilagyi, Peter; Wohlford, David E
2015-11-10
Systems, apparatus and methods for the implementation of high-speed network analyzers are provided. A set of high-level specifications is used to define the behavior of the network analyzer emitted by a compiler. An optimized inline workflow to process regular expressions is presented without sacrificing the semantic capabilities of the processing engine. An optimized packet dispatcher implements a subset of the functions implemented by the network analyzer, providing a fast and slow path workflow used to accelerate specific processing units. Such dispatcher facility can also be used as a cache of policies, wherein if a policy is found, then packet manipulations associated with the policy can be quickly performed. An optimized method of generating DFA specifications for network signatures is also presented. The method accepts several optimization criteria, such as min-max allocations or optimal allocations based on the probability of occurrence of each signature input bit.
Hierarchical winner-take-all particle swarm optimization social network for neural model fitting.
Coventry, Brandon S; Parthasarathy, Aravindakshan; Sommer, Alexandra L; Bartlett, Edward L
2017-02-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models.
The Engineering for Climate Extremes Partnership
NASA Astrophysics Data System (ADS)
Holland, G. J.; Tye, M. R.
2014-12-01
Hurricane Sandy and the recent floods in Thailand have demonstrated not only how sensitive the urban environment is to the impact of severe weather, but also the associated global reach of the ramifications. These, together with other growing extreme weather impacts and the increasing interdependence of global commercial activities point towards a growing vulnerability to weather and climate extremes. The Engineering for Climate Extremes Partnership brings academia, industry and government together with the goals encouraging joint activities aimed at developing new, robust, and well-communicated responses to this increasing vulnerability. Integral to the approach is the concept of 'graceful failure' in which flexible designs are adopted that protect against failure by combining engineering or network strengths with a plan for efficient and rapid recovery if and when they fail. Such an approach enables optimal planning for both known future scenarios and their assessed uncertainty.
NASA Astrophysics Data System (ADS)
Song, Young Joo; Woo, Jong Hun; Shin, Jong Gye
2009-12-01
Today, many middle-sized shipbuilding companies in Korea are experiencing strong competition from shipbuilding companies in other nations. This competition is particularly affecting small- and middle-sized shipyards, rather than the major shipyards that have their own support systems and development capabilities. The acquisition of techniques that would enable maximization of production efficiency and minimization of the gap between planning and execution would increase the competitiveness of small- and middle-sized Korean shipyards. In this paper, research on a simulation-based support system for ship production management, which can be applied to the shipbuilding processes of middle-sized shipbuilding companies, is presented. The simulation research includes layout optimization, load balancing, work stage operation planning, block logistics, and integrated material management. Each item is integrated into a network system with a value chain that includes all shipbuilding processes.
Networking Hawaii's School Libraries.
ERIC Educational Resources Information Center
Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.
This guide is designed to assist school librarians in becoming part of the planned statewide school library network in Hawaii. Approaches to the guide for librarians at all stages of planning are suggested, and an overview of the benefits, goals, steps, and historical development are provided together with a model of the networking plan. The steps…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-08
... Plan (``Amendments'') would amend the Plans to provide that the Participants pay the Network B Administrator a fixed annual fee in exchange for its performance of Network B administrator functions under the... Amendments Network Administrator Fees under the Plans. Section XII (``Financial Matters'') of the CTA and...
Langhans, Simone D; Hermoso, Virgilio; Linke, Simon; Bunn, Stuart E; Possingham, Hugh P
2014-01-01
River rehabilitation aims to protect biodiversity or restore key ecosystem services but the success rate is often low. This is seldom because of insufficient funding for rehabilitation works but because trade-offs between costs and ecological benefits of management actions are rarely incorporated in the planning, and because monitoring is often inadequate for managers to learn by doing. In this study, we demonstrate a new approach to plan cost-effective river rehabilitation at large scales. The framework is based on the use of cost functions (relationship between costs of rehabilitation and the expected ecological benefit) to optimize the spatial allocation of rehabilitation actions needed to achieve given rehabilitation goals (in our case established by the Swiss water act). To demonstrate the approach with a simple example, we link costs of the three types of management actions that are most commonly used in Switzerland (culvert removal, widening of one riverside buffer and widening of both riversides) to the improvement in riparian zone quality. We then use Marxan, a widely applied conservation planning software, to identify priority areas to implement these rehabilitation measures in two neighbouring Swiss cantons (Aargau, AG and Zürich, ZH). The best rehabilitation plans identified for the two cantons met all the targets (i.e. restoring different types of morphological deficits with different actions) rehabilitating 80,786 m (AG) and 106,036 m (ZH) of the river network at a total cost of 106.1 Million CHF (AG) and 129.3 Million CH (ZH). The best rehabilitation plan for the canton of AG consisted of more and better connected sub-catchments that were generally less expensive, compared to its neighbouring canton. The framework developed in this study can be used to inform river managers how and where best to spend their rehabilitation budget for a given set of actions, ensures the cost-effective achievement of desired rehabilitation outcomes, and helps towards estimating total costs of long-term rehabilitation activities. Rehabilitation plans ready to be implemented may be based on additional aspects to the ones considered here, e.g., specific cost functions for rural and urban areas and/or for large and small rivers, which can simply be added to our approach. Optimizing investments in this way will ultimately increase the likelihood of on-ground success of rehabilitation activities. Copyright © 2013 Elsevier Ltd. All rights reserved.
2017-01-01
In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718
A Guide to Networking for K-12 Schools.
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
The purpose of this guide is to provide basic networking information and planning assistance for technology coordinators and others involved in building networks for K-12 schools. The information in this guide focuses on the first few steps in the networking process. It reviews planning considerations and network design issues facing educators who…
Traffic signal coordination and queue management in oversaturated intersection.
DOT National Transportation Integrated Search
2011-03-18
Traffic signal timing optimization when done properly, could significantly improve network : performance by reducing delay, increasing network throughput, reducing number of stops, or : increasing average speed in the network. The optimization can be...
Traffic signal coordination and queue management in oversaturated intersections.
DOT National Transportation Integrated Search
2011-03-18
Traffic signal timing optimization when done properly, could significantly improve network performance by reducing delay, increasing network throughput, reducing number of stops, or increasing average speed in the network. The optimization can become...
An integrated decision support system for TRAC: A proposal
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1991-01-01
Optimal allocation and usage of resources is a key to effective management. Resources of concern to TRAC are: Manpower (PSY), Money (Travel, contracts), Computing, Data, Models, etc. Management activities of TRAC include: Planning, Programming, Tasking, Monitoring, Updating, and Coordinating. Existing systems are insufficient, not completely automated, manpower intensive, and has the potential for data inconsistency exists. A system is proposed which suggests a means to integrate all project management activities of TRAC through the development of a sophisticated software and by utilizing the existing computing systems and network resources. The systems integration proposal is examined in detail.
Optimizing topological cascade resilience based on the structure of terrorist networks.
Gutfraind, Alexander
2010-11-10
Complex socioeconomic networks such as information, finance and even terrorist networks need resilience to cascades--to prevent the failure of a single node from causing a far-reaching domino effect. We show that terrorist and guerrilla networks are uniquely cascade-resilient while maintaining high efficiency, but they become more vulnerable beyond a certain threshold. We also introduce an optimization method for constructing networks with high passive cascade resilience. The optimal networks are found to be based on cells, where each cell has a star topology. Counterintuitively, we find that there are conditions where networks should not be modified to stop cascades because doing so would come at a disproportionate loss of efficiency. Implementation of these findings can lead to more cascade-resilient networks in many diverse areas.
Reconfigurable Software for Controlling Formation Flying
NASA Technical Reports Server (NTRS)
Mueller, Joseph B.
2006-01-01
Software for a system to control the trajectories of multiple spacecraft flying in formation is being developed to reflect underlying concepts of (1) a decentralized approach to guidance and control and (2) reconfigurability of the control system, including reconfigurability of the software and of control laws. The software is organized as a modular network of software tasks. The computational load for both determining relative trajectories and planning maneuvers is shared equally among all spacecraft in a cluster. The flexibility and robustness of the software are apparent in the fact that tasks can be added, removed, or replaced during flight. In a computational simulation of a representative formation-flying scenario, it was demonstrated that the following are among the services performed by the software: Uploading of commands from a ground station and distribution of the commands among the spacecraft, Autonomous initiation and reconfiguration of formations, Autonomous formation of teams through negotiations among the spacecraft, Working out details of high-level commands (e.g., shapes and sizes of geometrically complex formations), Implementation of a distributed guidance law providing autonomous optimization and assignment of target states, and Implementation of a decentralized, fuel-optimal, impulsive control law for planning maneuvers.
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-03-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-01-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm. PMID:28257060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Chan Tseung, H; Ma, J; Ma, D
2015-06-15
Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) based biological planning for the treatment of thyroid tumors in spot-scanning proton therapy. Methods: Recently, we developed a fast and accurate GPU-based MC simulation of proton transport that was benchmarked against Geant4.9.6 and used as the dose calculation engine in a clinically-applicable GPU-accelerated IMPT optimizer. Besides dose, it can simultaneously score the dose-averaged LET (LETd), which makes fast biological dose (BD) estimates possible. To convert from LETd to BD, we used a linear relation based on cellular irradiation data. Given a thyroid patient with a 93cc tumor volume, we createdmore » a 2-field IMPT plan in Eclipse (Varian Medical Systems). This plan was re-calculated with our MC to obtain the BD distribution. A second 5-field plan was made with our in-house optimizer, using pre-generated MC dose and LETd maps. Constraints were placed to maintain the target dose to within 25% of the prescription, while maximizing the BD. The plan optimization and calculation of dose and LETd maps were performed on a GPU cluster. The conventional IMPT and biologically-optimized plans were compared. Results: The mean target physical and biological doses from our biologically-optimized plan were, respectively, 5% and 14% higher than those from the MC re-calculation of the IMPT plan. Dose sparing to critical structures in our plan was also improved. The biological optimization, including the initial dose and LETd map calculations, can be completed in a clinically viable time (∼30 minutes) on a cluster of 25 GPUs. Conclusion: Taking advantage of GPU acceleration, we created a MC-based, biologically optimized treatment plan for a thyroid patient. Compared to a standard IMPT plan, a 5% increase in the target’s physical dose resulted in ∼3 times as much increase in the BD. Biological planning was thus effective in escalating the target BD.« less
NASA Astrophysics Data System (ADS)
Kolosionis, Konstantinos; Papadopoulou, Maria P.
2017-04-01
Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.
Lagerwaard, Frank; Bohoudi, Omar; Tetar, Shyama; Admiraal, Marjan A; Rosario, Tezontl S; Bruynzeel, Anna
2018-04-05
Magnetic resonance-guided radiation therapy (MRgRT) not only allows for superior soft-tissue setup and online MR-guidance during delivery but also for inter-fractional plan re-optimization or adaptation. This plan adaptation involves repeat MR imaging, organs at risk (OARs) re-contouring, plan prediction (i.e., recalculating the baseline plan on the anatomy of that moment), plan re-optimization, and plan quality assurance. In contrast, intrafractional plan adaptation cannot be simply performed by pausing delivery at any given moment, adjusting contours, and re-optimization because of the complex and composite nature of deformable dose accumulation. To overcome this limitation, we applied a practical workaround by partitioning treatment fractions, each with half the original fraction dose. In between successive deliveries, the patient remained in the treatment position and all steps of the initial plan adaptation were repeated. Thus, this second re-optimization served as an intrafractional plan adaptation at 50% of the total delivery. The practical feasibility of this partitioning approach was evaluated in a patient treated with MRgRT for locally advanced pancreatic cancer (LAPC). MRgRT was delivered in 40Gy in 10 fractions, with two fractions scheduled successively on each treatment day. The contoured gross tumor volume (GTV) was expanded by 3 mm, excluding parts of the OARs within this expansion to derive the planning target volume for daily re-optimization (PTV OPT ). The baseline GTVV 95% achieved in this patient was 80.0% to adhere to the high-dose constraints for the duodenum, stomach, and bowel (V 33 Gy <1 cc and V 36 Gy <0.1 cc). Treatment was performed on the MRIdian (ViewRay Inc, Mountain View, USA) using video-assisted breath-hold in shallow inspiration. The dual plan adaptation resulted, for each partitioned fraction, in the generation of Plan PREDICTED1 , Plan RE-OPTIMIZED1 (inter-fractional adaptation), Plan PREDICTED2 , and Plan RE-OPTIMIZED2 (intrafractional adaptation). An offline analysis was performed to evaluate the benefit of inter-fractional versus intrafractional plan adaptation with respect to GTV coverage and high-dose OARs sparing for all five partitioned fractions. Interfractional changes in adjacent OARs were substantially larger than intrafractional changes. Mean GTV V 95% was 76.8 ± 1.8% (Plan PREDICTED1 ), 83.4 ± 5.7% (Plan RE-OPTIMIZED1 ), 82.5 ± 4.3% (Plan PREDICTED2 ),and 84.4 ± 4.4% (Plan RE-OPTIMIZED2 ). Both plan re-optimizations appeared important for correcting the inappropriately high duodenal V 33 Gy values of 3.6 cc (Plan PREDICTED1 ) and 3.9 cc (Plan PREDICTED2 ) to 0.2 cc for both re-optimizations. To a smaller extent, this improvement was also observed for V 25 Gy values. For the stomach, bowel, and all other OARs, high and intermediate doses were well below preset constraints, even without re-optimization. The mean delivery time of each daily treatment was 90 minutes. This study presents the clinical application of combined inter-fractional and intrafractional plan adaptation during MRgRT for LAPC using fraction partitioning with successive re-optimization. Whereas, in this study, interfractional plan adaptation appeared to benefit both GTV coverage and OARs sparing, intrafractional adaptation was particularly useful for high-dose OARs sparing. Although all necessary steps lead to a prolonged treatment duration, this may be applied in selected cases where high doses to adjacent OARs are regarded as critical.
Bohoudi, Omar; Tetar, Shyama; Admiraal, Marjan A; Rosario, Tezontl S; Bruynzeel, Anna
2018-01-01
Magnetic resonance-guided radiation therapy (MRgRT) not only allows for superior soft-tissue setup and online MR-guidance during delivery but also for inter-fractional plan re-optimization or adaptation. This plan adaptation involves repeat MR imaging, organs at risk (OARs) re-contouring, plan prediction (i.e., recalculating the baseline plan on the anatomy of that moment), plan re-optimization, and plan quality assurance. In contrast, intrafractional plan adaptation cannot be simply performed by pausing delivery at any given moment, adjusting contours, and re-optimization because of the complex and composite nature of deformable dose accumulation. To overcome this limitation, we applied a practical workaround by partitioning treatment fractions, each with half the original fraction dose. In between successive deliveries, the patient remained in the treatment position and all steps of the initial plan adaptation were repeated. Thus, this second re-optimization served as an intrafractional plan adaptation at 50% of the total delivery. The practical feasibility of this partitioning approach was evaluated in a patient treated with MRgRT for locally advanced pancreatic cancer (LAPC). MRgRT was delivered in 40Gy in 10 fractions, with two fractions scheduled successively on each treatment day. The contoured gross tumor volume (GTV) was expanded by 3 mm, excluding parts of the OARs within this expansion to derive the planning target volume for daily re-optimization (PTVOPT). The baseline GTVV95% achieved in this patient was 80.0% to adhere to the high-dose constraints for the duodenum, stomach, and bowel (V33 Gy <1 cc and V36 Gy <0.1 cc). Treatment was performed on the MRIdian (ViewRay Inc, Mountain View, USA) using video-assisted breath-hold in shallow inspiration. The dual plan adaptation resulted, for each partitioned fraction, in the generation of PlanPREDICTED1, PlanRE-OPTIMIZED1 (inter-fractional adaptation), PlanPREDICTED2, and PlanRE-OPTIMIZED2 (intrafractional adaptation). An offline analysis was performed to evaluate the benefit of inter-fractional versus intrafractional plan adaptation with respect to GTV coverage and high-dose OARs sparing for all five partitioned fractions. Interfractional changes in adjacent OARs were substantially larger than intrafractional changes. Mean GTV V95% was 76.8 ± 1.8% (PlanPREDICTED1), 83.4 ± 5.7% (PlanRE-OPTIMIZED1), 82.5 ± 4.3% (PlanPREDICTED2),and 84.4 ± 4.4% (PlanRE-OPTIMIZED2). Both plan re-optimizations appeared important for correcting the inappropriately high duodenal V33 Gy values of 3.6 cc (PlanPREDICTED1) and 3.9 cc (PlanPREDICTED2) to 0.2 cc for both re-optimizations. To a smaller extent, this improvement was also observed for V25 Gy values. For the stomach, bowel, and all other OARs, high and intermediate doses were well below preset constraints, even without re-optimization. The mean delivery time of each daily treatment was 90 minutes. This study presents the clinical application of combined inter-fractional and intrafractional plan adaptation during MRgRT for LAPC using fraction partitioning with successive re-optimization. Whereas, in this study, interfractional plan adaptation appeared to benefit both GTV coverage and OARs sparing, intrafractional adaptation was particularly useful for high-dose OARs sparing. Although all necessary steps lead to a prolonged treatment duration, this may be applied in selected cases where high doses to adjacent OARs are regarded as critical. PMID:29876156
Research on key technology of planning and design for AC/DC hybrid distribution network
NASA Astrophysics Data System (ADS)
Shen, Yu; Wu, Guilian; Zheng, Huan; Deng, Junpeng; Shi, Pengjia
2018-04-01
With the increasing demand of DC generation and DC load, the development of DC technology, AC and DC distribution network integrating will become an important form of future distribution network. In this paper, the key technology of planning and design for AC/DC hybrid distribution network is proposed, including the selection of AC and DC voltage series, the design of typical grid structure and the comprehensive evaluation method of planning scheme. The research results provide some ideas and directions for the future development of AC/DC hybrid distribution network.
Minimum energy control and optimal-satisfactory control of Boolean control network
NASA Astrophysics Data System (ADS)
Li, Fangfei; Lu, Xiwen
2013-12-01
In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.
Design framework for entanglement-distribution switching networks
NASA Astrophysics Data System (ADS)
Drost, Robert J.; Brodsky, Michael
2016-09-01
The distribution of quantum entanglement appears to be an important component of applications of quantum communications and networks. The ability to centralize the sourcing of entanglement in a quantum network can provide for improved efficiency and enable a variety of network structures. A necessary feature of an entanglement-sourcing network node comprising several sources of entangled photons is the ability to reconfigurably route the generated pairs of photons to network neighbors depending on the desired entanglement sharing of the network users at a given time. One approach to such routing is the use of a photonic switching network. The requirements for an entanglement distribution switching network are less restrictive than for typical conventional applications, leading to design freedom that can be leveraged to optimize additional criteria. In this paper, we present a mathematical framework defining the requirements of an entanglement-distribution switching network. We then consider the design of such a switching network using a number of 2 × 2 crossbar switches, addressing the interconnection of these switches and efficient routing algorithms. In particular, we define a worst-case loss metric and consider 6 × 6, 8 × 8, and 10 × 10 network designs that optimize both this metric and the number of crossbar switches composing the network. We pay particular attention to the 10 × 10 network, detailing novel results proving the optimality of the proposed design. These optimized network designs have great potential for use in practical quantum networks, thus advancing the concept of quantum networks toward reality.
Electric Grid Expansion Planning with High Levels of Variable Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Stanton W.; You, Shutang; Shankar, Mallikarjun
2016-02-01
Renewables are taking a large proportion of generation capacity in U.S. power grids. As their randomness has increasing influence on power system operation, it is necessary to consider their impact on system expansion planning. To this end, this project studies the generation and transmission expansion co-optimization problem of the US Eastern Interconnection (EI) power grid with a high wind power penetration rate. In this project, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. This study analyzed a time series creation method to capture the diversity of load and wind powermore » across balancing regions in the EI system. The obtained time series can be easily introduced into the MIP co-optimization problem and then solved robustly through available MIP solvers. Simulation results show that the proposed time series generation method and the expansion co-optimization model and can improve the expansion result significantly after considering the diversity of wind and load across EI regions. The improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare. This study shows that modelling load and wind variations and diversities across balancing regions will produce significantly different expansion result compared with former studies. For example, if wind is modeled in more details (by increasing the number of wind output levels) so that more wind blocks are considered in expansion planning, transmission expansion will be larger and the expansion timing will be earlier. Regarding generation expansion, more wind scenarios will slightly reduce wind generation expansion in the EI system and increase the expansion of other generation such as gas. Also, adopting detailed wind scenarios will reveal that it may be uneconomic to expand transmission networks for transmitting a large amount of wind power through a long distance in the EI system. Incorporating more details of renewables in expansion planning will inevitably increase the computational burden. Therefore, high performance computing (HPC) techniques are urgently needed for power system operation and planning optimization. As a scoping study task, this project tested some preliminary parallel computation techniques such as breaking down the simulation task into several sub-tasks based on chronology splitting or sample splitting, and then assigning these sub-tasks to different cores. Testing results show significant time reduction when a simulation task is split into several sub-tasks for parallel execution.« less
Neural dynamic programming and its application to control systems
NASA Astrophysics Data System (ADS)
Seong, Chang-Yun
There are few general practical feedback control methods for nonlinear MIMO (multi-input-multi-output) systems, although such methods exist for their linear counterparts. Neural Dynamic Programming (NDP) is proposed as a practical design method of optimal feedback controllers for nonlinear MIMO systems. NDP is an offspring of both neural networks and optimal control theory. In optimal control theory, the optimal solution to any nonlinear MIMO control problem may be obtained from the Hamilton-Jacobi-Bellman equation (HJB) or the Euler-Lagrange equations (EL). The two sets of equations provide the same solution in different forms: EL leads to a sequence of optimal control vectors, called Feedforward Optimal Control (FOC); HJB yields a nonlinear optimal feedback controller, called Dynamic Programming (DP). DP produces an optimal solution that can reject disturbances and uncertainties as a result of feedback. Unfortunately, computation and storage requirements associated with DP solutions can be problematic, especially for high-order nonlinear systems. This dissertation presents an approximate technique for solving the DP problem based on neural network techniques that provides many of the performance benefits (e.g., optimality and feedback) of DP and benefits from the numerical properties of neural networks. We formulate neural networks to approximate optimal feedback solutions whose existence DP justifies. We show the conditions under which NDP closely approximates the optimal solution. Finally, we introduce the learning operator characterizing the learning process of the neural network in searching the optimal solution. The analysis of the learning operator provides not only a fundamental understanding of the learning process in neural networks but also useful guidelines for selecting the number of weights of the neural network. As a result, NDP finds---with a reasonable amount of computation and storage---the optimal feedback solutions to nonlinear MIMO control problems that would be very difficult to solve with DP. NDP was demonstrated on several applications such as the lateral autopilot logic for a Boeing 747, the minimum fuel control of a double-integrator plant with bounded control, the backward steering of a two-trailer truck, and the set-point control of a two-link robot arm.
Wang, Jiaqiu
2015-01-01
The success or failure of the street network depends on its reliability. In this article, using resilience analysis, the author studies how the shape and appearance of street networks in self-organised and top-down planned cities influences urban transport. Considering London and Beijing as proxies for self-organised and top-down planned cities, the structural properties of London and Beijing networks first are investigated based on their primal and dual representations of planar graphs. The robustness of street networks then is evaluated in primal space and dual space by deactivating road links under random and intentional attack scenarios. The results show that the reliability of London street network differs from that of Beijing, which seems to rely more on its architecture and connectivity. It is found that top-down planned Beijing with its higher average degree in the dual space and assortativity in the primal space is more robust than self-organised London using the measures of maximum and second largest cluster size and network efficiency. The article offers an insight, from a network perspective, into the reliability of street patterns in self-organised and top-down planned city systems. PMID:26682551
Application of a neural network to simulate analysis in an optimization process
NASA Technical Reports Server (NTRS)
Rogers, James L.; Lamarsh, William J., II
1992-01-01
A new experimental software package called NETS/PROSSS aimed at reducing the computing time required to solve a complex design problem is described. The software combines a neural network for simulating the analysis program with an optimization program. The neural network is applied to approximate results of a finite element analysis program to quickly obtain a near-optimal solution. Results of the NETS/PROSSS optimization process can also be used as an initial design in a normal optimization process and make it possible to converge to an optimum solution with significantly fewer iterations.
A constraint optimization based virtual network mapping method
NASA Astrophysics Data System (ADS)
Li, Xiaoling; Guo, Changguo; Wang, Huaimin; Li, Zhendong; Yang, Zhiwen
2013-03-01
Virtual network mapping problem, maps different virtual networks onto the substrate network is an extremely challenging work. This paper proposes a constraint optimization based mapping method for solving virtual network mapping problem. This method divides the problem into two phases, node mapping phase and link mapping phase, which are all NP-hard problems. Node mapping algorithm and link mapping algorithm are proposed for solving node mapping phase and link mapping phase, respectively. Node mapping algorithm adopts the thinking of greedy algorithm, mainly considers two factors, available resources which are supplied by the nodes and distance between the nodes. Link mapping algorithm is based on the result of node mapping phase, adopts the thinking of distributed constraint optimization method, which can guarantee to obtain the optimal mapping with the minimum network cost. Finally, simulation experiments are used to validate the method, and results show that the method performs very well.
Self-configuration and self-optimization process in heterogeneous wireless networks.
Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo
2011-01-01
Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network's scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed.
42 CFR 422.50 - Eligibility to elect an MA plan.
Code of Federal Regulations, 2010 CFR
2010-10-01
... § 422.112 are met for that individual through the MA plan's established provider network. The MA...; (4) Has been a member of an Employer Group Health Plan (EGHP) that includes the elected MA plan, even... are met for that individual through the MA plan's established provider network. The MA organization...
A comprehensive formulation for volumetric modulated arc therapy planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dan; Lyu, Qihui; Ruan, Dan
2016-07-15
Purpose: Volumetric modulated arc therapy (VMAT) is a widely employed radiation therapy technique, showing comparable dosimetry to static beam intensity modulated radiation therapy (IMRT) with reduced monitor units and treatment time. However, the current VMAT optimization has various greedy heuristics employed for an empirical solution, which jeopardizes plan consistency and quality. The authors introduce a novel direct aperture optimization method for VMAT to overcome these limitations. Methods: The comprehensive VMAT (comVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term to penalize the difference between the optimized dose and the prescribed dose, as well as an anisotropicmore » total variation term to promote piecewise continuity in the fluence maps, preparing it for direct aperture optimization. A level set function was used to describe the aperture shapes and the difference between aperture shapes at adjacent angles was penalized to control MLC motion range. A proximal-class optimization solver was adopted to solve the large scale optimization problem, and an alternating optimization strategy was implemented to solve the fluence intensity and aperture shapes simultaneously. Single arc comVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme case, a lung (LNG) case, and two head and neck cases—one with three PTVs (H&N{sub 3PTV}) and one with foue PTVs (H&N{sub 4PTV})—to test the efficacy. The plans were optimized using an alternating optimization strategy. The plans were compared against the clinical VMAT (clnVMAT) plans utilizing two overlapping coplanar arcs for treatment. Results: The optimization of the comVMAT plans had converged within 600 iterations of the block minimization algorithm. comVMAT plans were able to consistently reduce the dose to all organs-at-risk (OARs) as compared to the clnVMAT plans. On average, comVMAT plans reduced the max and mean OAR dose by 6.59% and 7.45%, respectively, of the prescription dose. Reductions in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N{sub 3PTV} case. PTV coverages measured by D95, D98, and D99 were within 0.25% of the prescription dose. By comprehensively optimizing all beams, the comVMAT optimizer gained the freedom to allow some selected beams to deliver higher intensities, yielding a dose distribution that resembles a static beam IMRT plan with beam orientation optimization. Conclusions: The novel nongreedy VMAT approach simultaneously optimizes all beams in an arc and then directly generates deliverable apertures. The single arc VMAT approach thus fully utilizes the digital Linac’s capability in dose rate and gantry rotation speed modulation. In practice, the new single VMAT algorithm generates plans superior to existing VMAT algorithms utilizing two arcs.« less
Analysis of power management and system latency in wireless sensor networks
NASA Astrophysics Data System (ADS)
Oswald, Matthew T.; Rohwer, Judd A.; Forman, Michael A.
2004-08-01
Successful power management in a wireless sensor network requires optimization of the protocols which affect energy-consumption on each node and the aggregate effects across the larger network. System optimization for a given deployment scenario requires an analysis and trade off of desired node and network features with their associated costs. The sleep protocol for an energy-efficient wireless sensor network for event detection, target classification, and target tracking developed at Sandia National Laboratories is presented. The dynamic source routing (DSR) algorithm is chosen to reduce network maintenance overhead, while providing a self-configuring and self-healing network architecture. A method for determining the optimal sleep time is developed and presented, providing reference data which spans several orders of magnitude. Message timing diagrams show, that a node in a five-node cluster, employing an optimal cyclic single-radio sleep protocol, consumes 3% more energy and incurs a 16-s increase latency than nodes employing the more complex dual-radio STEM protocol.
Kell, Alexander J E; Yamins, Daniel L K; Shook, Erica N; Norman-Haignere, Sam V; McDermott, Josh H
2018-05-02
A core goal of auditory neuroscience is to build quantitative models that predict cortical responses to natural sounds. Reasoning that a complete model of auditory cortex must solve ecologically relevant tasks, we optimized hierarchical neural networks for speech and music recognition. The best-performing network contained separate music and speech pathways following early shared processing, potentially replicating human cortical organization. The network performed both tasks as well as humans and exhibited human-like errors despite not being optimized to do so, suggesting common constraints on network and human performance. The network predicted fMRI voxel responses substantially better than traditional spectrotemporal filter models throughout auditory cortex. It also provided a quantitative signature of cortical representational hierarchy-primary and non-primary responses were best predicted by intermediate and late network layers, respectively. The results suggest that task optimization provides a powerful set of tools for modeling sensory systems. Copyright © 2018 Elsevier Inc. All rights reserved.
Optimal quantum networks and one-shot entropies
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Ebler, Daniel
2016-09-01
We develop a semidefinite programming method for the optimization of quantum networks, including both causal networks and networks with indefinite causal structure. Our method applies to a broad class of performance measures, defined operationally in terms of interative tests set up by a verifier. We show that the optimal performance is equal to a max relative entropy, which quantifies the informativeness of the test. Building on this result, we extend the notion of conditional min-entropy from quantum states to quantum causal networks. The optimization method is illustrated in a number of applications, including the inversion, charge conjugation, and controlization of an unknown unitary dynamics. In the non-causal setting, we show a proof-of-principle application to the maximization of the winning probability in a non-causal quantum game.
Automated IMRT planning with regional optimization using planning scripts
Wong, Eugene; Bzdusek, Karl; Lock, Michael; Chen, Jeff Z.
2013-01-01
Intensity‐modulated radiation therapy (IMRT) has become a standard technique in radiation therapy for treating different types of cancers. Various class solutions have been developed for simple cases (e.g., localized prostate, whole breast) to generate IMRT plans efficiently. However, for more complex cases (e.g., head and neck, pelvic nodes), it can be time‐consuming for a planner to generate optimized IMRT plans. To generate optimal plans in these more complex cases which generally have multiple target volumes and organs at risk, it is often required to have additional IMRT optimization structures such as dose limiting ring structures, adjust beam geometry, select inverse planning objectives and associated weights, and additional IMRT objectives to reduce cold and hot spots in the dose distribution. These parameters are generally manually adjusted with a repeated trial and error approach during the optimization process. To improve IMRT planning efficiency in these more complex cases, an iterative method that incorporates some of these adjustment processes automatically in a planning script is designed, implemented, and validated. In particular, regional optimization has been implemented in an iterative way to reduce various hot or cold spots during the optimization process that begins with defining and automatic segmentation of hot and cold spots, introducing new objectives and their relative weights into inverse planning, and turn this into an iterative process with termination criteria. The method has been applied to three clinical sites: prostate with pelvic nodes, head and neck, and anal canal cancers, and has shown to reduce IMRT planning time significantly for clinical applications with improved plan quality. The IMRT planning scripts have been used for more than 500 clinical cases. PACS numbers: 87.55.D, 87.55.de PMID:23318393
Future Plans for NASA's Deep Space Network
NASA Technical Reports Server (NTRS)
Deutsch, Leslie J.; Preston, Robert A.; Geldzahler, Barry J.
2008-01-01
This slide presentation reviews the importance of NASA's Deep Space Network (DSN) to space exploration, and future planned improvements to the communication capabilities that the network allows, in terms of precision, and communication power.
Discrete particle swarm optimization for identifying community structures in signed social networks.
Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng
2014-10-01
Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.
Woodward, Alexander; Froese, Tom; Ikegami, Takashi
2015-02-01
The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Rubo; Yang, Yu
2017-01-01
Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution. PMID:29186166
Li, Jianjun; Zhang, Rubo; Yang, Yu
2017-01-01
Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution.
NASA Technical Reports Server (NTRS)
Leong, Harrison Monfook
1988-01-01
General formulae for mapping optimization problems into systems of ordinary differential equations associated with artificial neural networks are presented. A comparison is made to optimization using gradient-search methods. The performance measure is the settling time from an initial state to a target state. A simple analytical example illustrates a situation where dynamical systems representing artificial neural network methods would settle faster than those representing gradient-search. Settling time was investigated for a more complicated optimization problem using computer simulations. The problem was a simplified version of a problem in medical imaging: determining loci of cerebral activity from electromagnetic measurements at the scalp. The simulations showed that gradient based systems typically settled 50 to 100 times faster than systems based on current neural network optimization methods.
Design of a monitoring network over France in case of a radiological accidental release
NASA Astrophysics Data System (ADS)
Abida, Rachid; Bocquet, Marc; Vercauteren, Nikki; Isnard, Olivier
The Institute of Radiation Protection and Nuclear Safety (France) is planning the set-up of an automatic nuclear aerosol monitoring network over the French territory. Each of the stations will be able to automatically sample the air aerosol content and provide activity concentration measurements on several radionuclides. This should help monitor the French and neighbouring countries nuclear power plants set. It would help evaluate the impact of a radiological incident occurring at one of these nuclear facilities. This paper is devoted to the spatial design of such a network. Here, any potential network is judged on its ability to extrapolate activity concentrations measured on the network stations over the whole domain. The performance of a network is quantitatively assessed through a cost function that measures the discrepancy between the extrapolation and the true concentration fields. These true fields are obtained through the computation of a database of dispersion accidents over one year of meteorology and originating from 20 French nuclear sites. A close to optimal network is then looked for using a simulated annealing optimisation. The results emphasise the importance of the cost function in the design of a network aimed at monitoring an accidental dispersion. Several choices of norm used in the cost function are studied and give way to different designs. The influence of the number of stations is discussed. A comparison with a purely geometric approach which does not involve simulations with a chemistry-transport model is performed.
Guthier, Christian V; Damato, Antonio L; Hesser, Juergen W; Viswanathan, Akila N; Cormack, Robert A
2017-12-01
Interstitial high-dose rate (HDR) brachytherapy is an important therapeutic strategy for the treatment of locally advanced gynecologic (GYN) cancers. The outcome of this therapy is determined by the quality of dose distribution achieved. This paper focuses on a novel yet simple heuristic for catheter selection for GYN HDR brachytherapy and their comparison against state of the art optimization strategies. The proposed technique is intended to act as a decision-supporting tool to select a favorable needle configuration. The presented heuristic for catheter optimization is based on a shrinkage-type algorithm (SACO). It is compared against state of the art planning in a retrospective study of 20 patients who previously received image-guided interstitial HDR brachytherapy using a Syed Neblett template. From those plans, template orientation and position are estimated via a rigid registration of the template with the actual catheter trajectories. All potential straight trajectories intersecting the contoured clinical target volume (CTV) are considered for catheter optimization. Retrospectively generated plans and clinical plans are compared with respect to dosimetric performance and optimization time. All plans were generated with one single run of the optimizer lasting 0.6-97.4 s. Compared to manual optimization, SACO yields a statistically significant (P ≤ 0.05) improved target coverage while at the same time fulfilling all dosimetric constraints for organs at risk (OARs). Comparing inverse planning strategies, dosimetric evaluation for SACO and "hybrid inverse planning and optimization" (HIPO), as gold standard, shows no statistically significant difference (P > 0.05). However, SACO provides the potential to reduce the number of used catheters without compromising plan quality. The proposed heuristic for needle selection provides fast catheter selection with optimization times suited for intraoperative treatment planning. Compared to manual optimization, the proposed methodology results in fewer catheters without a clinically significant loss in plan quality. The proposed approach can be used as a decision support tool that guides the user to find the ideal number and configuration of catheters. © 2017 American Association of Physicists in Medicine.
Interactive Planning under Uncertainty with Casual Modeling and Analysis
2006-01-01
Tool ( CAT ), a system for creating and analyzing causal models similar to Bayes networks. In order to use CAT as a tool for planning, users go through...an iterative process in which they use CAT to create and an- alyze alternative plans. One of the biggest difficulties is that the number of possible...Causal Analysis Tool ( CAT ), which is a tool for representing and analyzing causal networks sim- ilar to Bayesian networks. In order to represent plans
NASA Astrophysics Data System (ADS)
Yarmand, Hamed; Winey, Brian; Craft, David
2013-09-01
Stereotactic body radiation therapy (SBRT) is characterized by delivering a high amount of dose in a short period of time. In SBRT the dose is delivered using open fields (e.g., beam’s-eye-view) known as ‘apertures’. Mathematical methods can be used for optimizing treatment planning for delivery of sufficient dose to the cancerous cells while keeping the dose to surrounding organs at risk (OARs) minimal. Two important elements of a treatment plan are quality and delivery time. Quality of a plan is measured based on the target coverage and dose to OARs. Delivery time heavily depends on the number of beams used in the plan as the setup times for different beam directions constitute a large portion of the delivery time. Therefore the ideal plan, in which all potential beams can be used, will be associated with a long impractical delivery time. We use the dose to OARs in the ideal plan to find the plan with the minimum number of beams which is guaranteed to be epsilon-optimal (i.e., a predetermined maximum deviation from the ideal plan is guaranteed). Since the treatment plan optimization is inherently a multi-criteria-optimization problem, the planner can navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing epsilon-optimality. We use mixed integer programming (MIP) for optimization. To reduce the computation time for the resultant MIP, we use two heuristics: a beam elimination scheme and a family of heuristic cuts, known as ‘neighbor cuts’, based on the concept of ‘adjacent beams’. We show the effectiveness of the proposed technique on two clinical cases, a liver and a lung case. Based on our technique we propose an algorithm for fast generation of epsilon-optimal plans.
Optimal input sizes for neural network de-interlacing
NASA Astrophysics Data System (ADS)
Choi, Hyunsoo; Seo, Guiwon; Lee, Chulhee
2009-02-01
Neural network de-interlacing has shown promising results among various de-interlacing methods. In this paper, we investigate the effects of input size for neural networks for various video formats when the neural networks are used for de-interlacing. In particular, we investigate optimal input sizes for CIF, VGA and HD video formats.
Theoretical Foundations of Wireless Networks
2015-07-22
Optimal transmission over a fading channel with imperfect channel state information,” in Global Telecommun. Conf., pp. 1–5, Houston TX , December 5-9...SECURITY CLASSIFICATION OF: The goal of this project is to develop a formal theory of wireless networks providing a scientific basis to understand...randomness and optimality. Randomness, in the form of fading, is a defining characteristic of wireless networks. Optimality is a suitable design
Jiang, Ailian; Zheng, Lihong
2018-03-29
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.
2018-01-01
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime. PMID:29596336
Maximizing algebraic connectivity in air transportation networks
NASA Astrophysics Data System (ADS)
Wei, Peng
In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the weight assignment can not be studied separately for the problem with operating cost constraint. Therefore a relaxed SDP method with golden section search is developed to solve both at the same time. The cluster decomposition is utilized to solve large scale networks.
Finding influential nodes for integration in brain networks using optimal percolation theory.
Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A
2018-06-11
Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.
Multiplex networks in metropolitan areas: generic features and local effects.
Strano, Emanuele; Shai, Saray; Dobson, Simon; Barthelemy, Marc
2015-10-06
Most large cities are spanned by more than one transportation system. These different modes of transport have usually been studied separately: it is however important to understand the impact on urban systems of coupling different modes and we report in this paper an empirical analysis of the coupling between the street network and the subway for the two large metropolitan areas of London and New York. We observe a similar behaviour for network quantities related to quickest paths suggesting the existence of generic mechanisms operating beyond the local peculiarities of the specific cities studied. An analysis of the betweenness centrality distribution shows that the introduction of underground networks operate as a decentralizing force creating congestion in places located at the end of underground lines. Also, we find that increasing the speed of subways is not always beneficial and may lead to unwanted uneven spatial distributions of accessibility. In fact, for London—but not for New York—there is an optimal subway speed in terms of global congestion. These results show that it is crucial to consider the full, multimodal, multilayer network aspects of transportation systems in order to understand the behaviour of cities and to avoid possible negative side-effects of urban planning decisions. © 2015 The Author(s).
Daigle, Rémi M; Monaco, Cristián J; Elgin, Ashley K
2015-01-01
Around the world, governments are establishing Marine Protected Area (MPA) networks to meet their commitments to the United Nations Convention on Biological Diversity. MPAs are often used in an effort to conserve biodiversity and manage fisheries stocks. However, their efficacy and effect on fisheries yields remain unclear. We conducted a case-study on the economic impact of different MPA network design strategies on the Atlantic cod ( Gadus morhua ) fisheries in Canada. The open-source R package that we developed to analyze this case study can be customized to conduct similar analyses for other systems. We used a spatially-explicit individual-based model of population growth and dispersal coupled with a fisheries management and harvesting component. We found that MPA networks that both protect the target species' habitat and were spatially optimized to improve population connectivity had the highest net present value (i.e., were most profitable for the fishing industry). These higher profits were achieved primarily by reducing the distance travelled for fishing and reducing the probability of a moratorium event. These findings add to a growing body of knowledge demonstrating the importance of incorporating population connectivity in the MPA planning process, as well as the ability of this R package to explore ecological and economic consequences of alternative MPA network designs.
Multiplex networks in metropolitan areas: generic features and local effects
Strano, Emanuele; Shai, Saray; Dobson, Simon; Barthelemy, Marc
2015-01-01
Most large cities are spanned by more than one transportation system. These different modes of transport have usually been studied separately: it is however important to understand the impact on urban systems of coupling different modes and we report in this paper an empirical analysis of the coupling between the street network and the subway for the two large metropolitan areas of London and New York. We observe a similar behaviour for network quantities related to quickest paths suggesting the existence of generic mechanisms operating beyond the local peculiarities of the specific cities studied. An analysis of the betweenness centrality distribution shows that the introduction of underground networks operate as a decentralizing force creating congestion in places located at the end of underground lines. Also, we find that increasing the speed of subways is not always beneficial and may lead to unwanted uneven spatial distributions of accessibility. In fact, for London—but not for New York—there is an optimal subway speed in terms of global congestion. These results show that it is crucial to consider the full, multimodal, multilayer network aspects of transportation systems in order to understand the behaviour of cities and to avoid possible negative side-effects of urban planning decisions. PMID:26400198
An Optimal Schedule for Urban Road Network Repair Based on the Greedy Algorithm
Lu, Guangquan; Xiong, Ying; Wang, Yunpeng
2016-01-01
The schedule of urban road network recovery caused by rainstorms, snow, and other bad weather conditions, traffic incidents, and other daily events is essential. However, limited studies have been conducted to investigate this problem. We fill this research gap by proposing an optimal schedule for urban road network repair with limited repair resources based on the greedy algorithm. Critical links will be given priority in repair according to the basic concept of the greedy algorithm. In this study, the link whose restoration produces the ratio of the system-wide travel time of the current network to the worst network is the minimum. We define such a link as the critical link for the current network. We will re-evaluate the importance of damaged links after each repair process is completed. That is, the critical link ranking will be changed along with the repair process because of the interaction among links. We repair the most critical link for the specific network state based on the greedy algorithm to obtain the optimal schedule. The algorithm can still quickly obtain an optimal schedule even if the scale of the road network is large because the greedy algorithm can reduce computational complexity. We prove that the problem can obtain the optimal solution using the greedy algorithm in theory. The algorithm is also demonstrated in the Sioux Falls network. The problem discussed in this paper is highly significant in dealing with urban road network restoration. PMID:27768732
Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction
NASA Astrophysics Data System (ADS)
Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.
2017-12-01
We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.
NASA Astrophysics Data System (ADS)
Lim, Theodore C.; Welty, Claire
2017-09-01
Green infrastructure (GI) is an approach to stormwater management that promotes natural processes of infiltration and evapotranspiration, reducing surface runoff to conventional stormwater drainage infrastructure. As more urban areas incorporate GI into their stormwater management plans, greater understanding is needed on the effects of spatial configuration of GI networks on hydrological performance, especially in the context of potential subsurface and lateral interactions between distributed facilities. In this research, we apply a three-dimensional, coupled surface-subsurface, land-atmosphere model, ParFlow.CLM, to a residential urban sewershed in Washington DC that was retrofitted with a network of GI installations between 2009 and 2015. The model was used to test nine additional GI and imperviousness spatial network configurations for the site and was compared with monitored pipe-flow data. Results from the simulations show that GI located in higher flow-accumulation areas of the site intercepted more surface runoff, even during wetter and multiday events. However, a comparison of the differences between scenarios and levels of variation and noise in monitored data suggests that the differences would only be detectable between the most and least optimal GI/imperviousness configurations.
Exploring 3D optimal channel networks by multiple organizing principles
NASA Astrophysics Data System (ADS)
Mason, Emanuele; Bizzi, Simone; Cominola, Andrea; Castelletti, Andrea; Paik, Kyungrock
2017-04-01
Catchment topography and flow networks are shaped by the interactions of water and sediment across various spatial and temporal scales. The complexity of these processes hinders the development of models able to assess the validity of general principles governing such phenomena. The theory of Optimal Channel Networks (OCNs) proved that it is possible to generate drainage networks statistically comparable to those observed in nature by minimizing the energy spent by the water flowing through them. So far, the OCN theory has been developed for planar 2D domains, assuming equal energy expenditure per unit area of channel and, correspondingly, a constant slope-discharge relationship. In this work, we apply the OCN theory to 3D problems by introducing a multi-principle minimization starting from an artificial digital elevation model of pyramidal shape. The OCN theory assumption of constant slope-area relationship is relaxed and embedded into a second-order principle. The modelled 3D channel networks achieve lower total energy expenditure corresponding to 2D sub-optimal OCNs bound to specific slope-area relationships. This is the first time we are able to explore accessible 3D OCNs starting from a general DEM. By contrasting the modelled 3D OCNs and natural river networks, we found statistical similarities of two indexes, namely the area exponent index and the profile concavity index. Among the wide range of alternative and sub-optimal river networks, a minimum degree of 3D network organization is found to guarantee the indexes values within the natural range. These networks simultaneously possess topological and topographic properties of real river networks. We found a pivotal functional link between slope-area relationship and accessible sub-optimal 2D river network paths, which suggests that geological and climate conditions producing slope-area relationships in natural basins co-determine the degree of optimality of accessible network paths.
NASA Astrophysics Data System (ADS)
Shorikov, A. F.; Butsenko, E. V.
2017-10-01
This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Eva Sau Fan; Department of Health Technology and Informatics, The Hong Kong Polytechnic University; Wu, Vincent Wing Cheung
Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, followingmore » the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality.« less
Performance evaluation of NASA/KSC CAD/CAE graphics local area network
NASA Technical Reports Server (NTRS)
Zobrist, George
1988-01-01
This study had as an objective the performance evaluation of the existing CAD/CAE graphics network at NASA/KSC. This evaluation will also aid in projecting planned expansions, such as the Space Station project on the existing CAD/CAE network. The objectives were achieved by collecting packet traffic on the various integrated sub-networks. This included items, such as total number of packets on the various subnetworks, source/destination of packets, percent utilization of network capacity, peak traffic rates, and packet size distribution. The NASA/KSC LAN was stressed to determine the useable bandwidth of the Ethernet network and an average design station workload was used to project the increased traffic on the existing network and the planned T1 link. This performance evaluation of the network will aid the NASA/KSC network managers in planning for the integration of future workload requirements into the existing network.
How to Decide? Multi-Objective Early-Warning Monitoring Networks for Water Suppliers
NASA Astrophysics Data System (ADS)
Bode, Felix; Loschko, Matthias; Nowak, Wolfgang
2015-04-01
Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources, which cannot be eliminated, especially in urban regions. As a matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs. In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations, to enhance the early warning time before detected contaminations reach the drinking water well, and to minimize the installation and operating costs of the monitoring network. Using multi-objectives optimization, we avoid the problem of having to weight these objectives to a single objective-function. These objectives are clearly competing, and it is impossible to know their mutual trade-offs beforehand - each catchment differs in many points and it is hardly possible to transfer knowledge between geological formations and risk inventories. To make our optimization results more specific to the type of risk inventory in different catchments we do risk prioritization of all known risk sources. Due to the lack of the required data, quantitative risk ranking is impossible. Instead, we use a qualitative risk ranking to prioritize the known risk sources for monitoring. Additionally, we allow for the existence of unknown risk sources that are totally uncertain in location and in their inherent risk. Therefore, they can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well. We classify risk sources into four different categories: severe, medium and tolerable for known risk sources and an extra category for the unknown ones. With that, early warning time and detection probability become individual objectives for each risk class. Thus, decision makers can identify monitoring networks valid for controlling the top risk sources, and evaluate the capabilities (or search for least-cost upgrades) to also cover moderate, tolerable and unknown risk sources. Monitoring networks, which are valid for the remaining risk also cover all other risk sources, but only with a relatively poor early-warning time. The data provided for the optimization algorithm are calculated in a preprocessing step by a flow and transport model. It simulates, which potential contaminant plumes from the risk sources would be detectable where and when by all possible candidate positions for monitoring wells. Uncertainties due to hydro(geo)logical phenomena are taken into account by Monte-Carlo simulations. These include uncertainty in ambient flow direction of the groundwater, uncertainty of the conductivity field, and different scenarios for the pumping rates of the production wells. To avoid numerical dispersion during the transport simulations, we use particle-tracking random walk methods when simulating transport.
Maeng, Daniel D; Scanlon, Dennis P; Chernew, Michael E; Gronniger, Tim; Wodchis, Walter P; McLaughlin, Catherine G
2010-01-01
Objective To examine the extent to which health plan quality measures capture physician practice patterns rather than plan characteristics. Data Source We gathered and merged secondary data from the following four sources: a private firm that collected information on individual physicians and their health plan affiliations, The National Committee for Quality Assurance, InterStudy, and the Dartmouth Atlas. Study Design We constructed two measures of physician network overlap for all health plans in our sample and linked them to selected measures of plan performance. Two linear regression models were estimated to assess the relationship between the measures of physician network overlap and the plan performance measures. Principal Findings The results indicate that in the presence of a higher degree of provider network overlap, plan performance measures tend to converge to a lower level of quality. Conclusions Standard health plan performance measures reflect physician practice patterns rather than plans' effort to improve quality. This implies that more provider-oriented measurement, such as would be possible with accountable care organizations or medical homes, may facilitate patient decision making and provide further incentives to improve performance. PMID:20403064
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y; Li, Y; Tian, Z
2015-06-15
Purpose: Pencil-beam or superposition-convolution type dose calculation algorithms are routinely used in inverse plan optimization for intensity modulated radiation therapy (IMRT). However, due to their limited accuracy in some challenging cases, e.g. lung, the resulting dose may lose its optimality after being recomputed using an accurate algorithm, e.g. Monte Carlo (MC). It is the objective of this study to evaluate the feasibility and advantages of a new method to include MC in the treatment planning process. Methods: We developed a scheme to iteratively perform MC-based beamlet dose calculations and plan optimization. In the MC stage, a GPU-based dose engine wasmore » used and the particle number sampled from a beamlet was proportional to its optimized fluence from the previous step. We tested this scheme in four lung cancer IMRT cases. For each case, the original plan dose, plan dose re-computed by MC, and dose optimized by our scheme were obtained. Clinically relevant dosimetric quantities in these three plans were compared. Results: Although the original plan achieved a satisfactory PDV dose coverage, after re-computing doses using MC method, it was found that the PTV D95% were reduced by 4.60%–6.67%. After re-optimizing these cases with our scheme, the PTV coverage was improved to the same level as in the original plan, while the critical OAR coverages were maintained to clinically acceptable levels. Regarding the computation time, it took on average 144 sec per case using only one GPU card, including both MC-based beamlet dose calculation and treatment plan optimization. Conclusion: The achieved dosimetric gains and high computational efficiency indicate the feasibility and advantages of the proposed MC-based IMRT optimization method. Comprehensive validations in more patient cases are in progress.« less
An optimization method of VON mapping for energy efficiency and routing in elastic optical networks
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Xiong, Cuilian; Chen, Yong; Li, Changping; Chen, Derun
2018-03-01
To improve resources utilization efficiency, network virtualization in elastic optical networks has been developed by sharing the same physical network for difference users and applications. In the process of virtual nodes mapping, longer paths between physical nodes will consume more spectrum resources and energy. To address the problem, we propose a virtual optical network mapping algorithm called genetic multi-objective optimize virtual optical network mapping algorithm (GM-OVONM-AL), which jointly optimizes the energy consumption and spectrum resources consumption in the process of virtual optical network mapping. Firstly, a vector function is proposed to balance the energy consumption and spectrum resources by optimizing population classification and crowding distance sorting. Then, an adaptive crossover operator based on hierarchical comparison is proposed to improve search ability and convergence speed. In addition, the principle of the survival of the fittest is introduced to select better individual according to the relationship of domination rank. Compared with the spectrum consecutiveness-opaque virtual optical network mapping-algorithm and baseline-opaque virtual optical network mapping algorithm, simulation results show the proposed GM-OVONM-AL can achieve the lowest bandwidth blocking probability and save the energy consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, S.; Benioff, R.
2011-05-01
The Coordinated Low Emissions Assistance Network (CLEAN) is a voluntary network of international practitioners supporting low-emission planning in developing countries. The network seeks to improve quality of support through sharing project information, tools, best practices and lessons, and by fostering harmonized assistance. CLEAN has developed an inventory to track and analyze international technical support and tools for low-carbon planning activities in developing countries. This paper presents a preliminary analysis of the inventory to help identify trends in assistance activities and tools available to support developing countries with low-emission planning.
Pokharel, Shyam; Rana, Suresh; Blikenstaff, Joseph; Sadeghi, Amir; Prestidge, Bradley
2013-07-08
The purpose of this study is to investigate the effectiveness of the HIPO planning and optimization algorithm for real-time prostate HDR brachytherapy. This study consists of 20 patients who underwent ultrasound-based real-time HDR brachytherapy of the prostate using the treatment planning system called Oncentra Prostate (SWIFT version 3.0). The treatment plans for all patients were optimized using inverse dose-volume histogram-based optimization followed by graphical optimization (GRO) in real time. The GRO is manual manipulation of isodose lines slice by slice. The quality of the plan heavily depends on planner expertise and experience. The data for all patients were retrieved later, and treatment plans were created and optimized using HIPO algorithm with the same set of dose constraints, number of catheters, and set of contours as in the real-time optimization algorithm. The HIPO algorithm is a hybrid because it combines both stochastic and deterministic algorithms. The stochastic algorithm, called simulated annealing, searches the optimal catheter distributions for a given set of dose objectives. The deterministic algorithm, called dose-volume histogram-based optimization (DVHO), optimizes three-dimensional dose distribution quickly by moving straight downhill once it is in the advantageous region of the search space given by the stochastic algorithm. The PTV receiving 100% of the prescription dose (V100) was 97.56% and 95.38% with GRO and HIPO, respectively. The mean dose (D(mean)) and minimum dose to 10% volume (D10) for the urethra, rectum, and bladder were all statistically lower with HIPO compared to GRO using the student pair t-test at 5% significance level. HIPO can provide treatment plans with comparable target coverage to that of GRO with a reduction in dose to the critical structures.
Hybrid protection algorithms based on game theory in multi-domain optical networks
NASA Astrophysics Data System (ADS)
Guo, Lei; Wu, Jingjing; Hou, Weigang; Liu, Yejun; Zhang, Lincong; Li, Hongming
2011-12-01
With the network size increasing, the optical backbone is divided into multiple domains and each domain has its own network operator and management policy. At the same time, the failures in optical network may lead to a huge data loss since each wavelength carries a lot of traffic. Therefore, the survivability in multi-domain optical network is very important. However, existing survivable algorithms can achieve only the unilateral optimization for profit of either users or network operators. Then, they cannot well find the double-win optimal solution with considering economic factors for both users and network operators. Thus, in this paper we develop the multi-domain network model with involving multiple Quality of Service (QoS) parameters. After presenting the link evaluation approach based on fuzzy mathematics, we propose the game model to find the optimal solution to maximize the user's utility, the network operator's utility, and the joint utility of user and network operator. Since the problem of finding double-win optimal solution is NP-complete, we propose two new hybrid protection algorithms, Intra-domain Sub-path Protection (ISP) algorithm and Inter-domain End-to-end Protection (IEP) algorithm. In ISP and IEP, the hybrid protection means that the intelligent algorithm based on Bacterial Colony Optimization (BCO) and the heuristic algorithm are used to solve the survivability in intra-domain routing and inter-domain routing, respectively. Simulation results show that ISP and IEP have the similar comprehensive utility. In addition, ISP has better resource utilization efficiency, lower blocking probability, and higher network operator's utility, while IEP has better user's utility.