Optimized Non-Obstructive Particle Damping (NOPD) Treatment for Composite Honeycomb Structures
NASA Technical Reports Server (NTRS)
Panossian, H.
2008-01-01
Non-Obstructive Particle Damping (NOPD) technology is a passive vibration damping approach whereby metallic or non-metallic particles in spherical or irregular shapes, of heavy or light consistency, and even liquid particles are placed inside cavities or attached to structures by an appropriate means at strategic locations, to absorb vibration energy. The objective of the work described herein is the development of a design optimization procedure and discussion of test results for such a NOPD treatment on honeycomb (HC) composite structures, based on finite element modeling (FEM) analyses, optimization and tests. Modeling and predictions were performed and tests were carried out to correlate the test data with the FEM. The optimization procedure consisted of defining a global objective function, using finite difference methods, to determine the optimal values of the design variables through quadratic linear programming. The optimization process was carried out by targeting the highest dynamic displacements of several vibration modes of the structure and finding an optimal treatment configuration that will minimize them. An optimal design was thus derived and laboratory tests were conducted to evaluate its performance under different vibration environments. Three honeycomb composite beams, with Nomex core and aluminum face sheets, empty (untreated), uniformly treated with NOPD, and optimally treated with NOPD, according to the analytically predicted optimal design configuration, were tested in the laboratory. It is shown that the beam with optimal treatment has the lowest response amplitude. Described below are results of modal vibration tests and FEM analyses from predictions of the modal characteristics of honeycomb beams under zero, 50% uniform treatment and an optimal NOPD treatment design configuration and verification with test data.
Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight
Guo, Siqiu; Zhang, Tao; Song, Yulong
2018-01-01
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios. PMID:29690610
Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng
2018-04-23
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.
Aerosol delivery and humidification with the Boussignac continuous positive airway pressure device.
Thille, Arnaud W; Bertholon, Jean-François; Becquemin, Marie-Hélène; Roy, Monique; Lyazidi, Aissam; Lellouche, François; Pertusini, Esther; Boussignac, Georges; Maître, Bernard; Brochard, Laurent
2011-10-01
A simple method for effective bronchodilator aerosol delivery while administering continuing continuous positive airway pressure (CPAP) would be useful in patients with severe bronchial obstruction. To assess the effectiveness of bronchodilator aerosol delivery during CPAP generated by the Boussignac CPAP system and its optimal humidification system. First we assessed the relationship between flow and pressure generated in the mask with the Boussignac CPAP system. Next we measured the inspired-gas humidity during CPAP, with several humidification strategies, in 9 healthy volunteers. We then measured the bronchodilator aerosol particle size during CPAP, with and without heat-and-moisture exchanger, in a bench study. Finally, in 7 patients with acute respiratory failure and airway obstruction, we measured work of breathing and gas exchange after a β(2)-agonist bronchodilator aerosol (terbutaline) delivered during CPAP or via standard nebulization. Optimal humidity was obtained only with the heat-and-moisture exchanger or heated humidifier. The heat-and-moisture exchanger had no influence on bronchodilator aerosol particle size. Work of breathing decreased similarly after bronchodilator via either standard nebulization or CPAP, but P(aO(2)) increased significantly only after CPAP aerosol delivery. CPAP bronchodilator delivery decreases the work of breathing as effectively as does standard nebulization, but produces a greater oxygenation improvement in patients with airway obstruction. To optimize airway humidification, a heat-and-moisture exchanger could be used with the Boussignac CPAP system, without modifying aerosol delivery.
NASA Astrophysics Data System (ADS)
Fackerell, E. D.; Hartley, D.; Tucker, R. W.
We examine in detail the Cauchy problem for a class of non-linear hyperbolic equations in two independent variables. This class is motivated by the analysis of the dynamics of a line of non-linearly coupled particles by Fermi, Pasta, and Ulam and extends the recent investigation of this problem by Gardner and Kamran. We find conditions for the existence of a 1-stable Cartan characteristic of a Pfaffian exterior differential system whose integral curves provide a solution to the Cauchy problem. The same obstruction to involution is exposed in Darboux's method of integration and the two approaches are compared. A class of particular solutions to the obstruction is constructed.
Bajantri, Bharat; Lvovsky, Dmitry
2018-01-01
Obstructive sleep apnea syndrome is a disorder of sleep breathing that is a result of recurrent and intermittent hypoxia during sleep induced by the repeated partial or complete collapse of the upper airway, eventually causing chronic intermittent hypoxia. Non-alcoholic fatty liver disease is divided into non-alcoholic fatty liver and non-alcoholic steatohepatitis. Animal and human studies showed that obesity is associated with chronic liver hypoxia, even in the presence of systemic normoxia causing inflammation and release of cytokines. A “two-hit” model has been proposed. The first hit is characterized by insulin resistance and excess hepatic lipid accumulation secondary to abnormal fatty acid metabolism. Oxidative stress and inflammation are thought to comprise the second hit. Gold standard for the diagnosis of non-alcoholic steatohepatitis is a liver biopsy. Many clinical scores and non-invasive tools are used for the diagnosis of non-alcoholic steatohepatitis. Conservative management with lifestyle modifications including diet, exercise and weight loss remains the therapy of choice today. We present a case report of a 39-year-old man who was diagnosed with concomitant non-alcoholic steatohepatitis and severe obstructive sleep apnea. He was started treatment with continuous positive airway pressure and demonstrated excellent adherence to therapy for 6 years, with concomitant obstructive sleep apnea and non-alcoholic steatohepatitis which reversed with prolonged optimal continuous positive airway pressure therapy. Physical examination remained unremarkable except for morbid obesity. His abdominal girth, as well as body mass index, remained unchanged. After 6 years of optimal continuous positive airway pressure therapy, liver enzymes and relevant lipid panel normalized, suggesting reversal of non-alcoholic steatohepatitis. PMID:29915639
Highlights of the high-temperature falling particle receiver project: 2012 - 2016
NASA Astrophysics Data System (ADS)
Ho, C. K.; Christian, J.; Yellowhair, J.; Jeter, S.; Golob, M.; Nguyen, C.; Repole, K.; Abdel-Khalik, S.; Siegel, N.; Al-Ansary, H.; El-Leathy, A.; Gobereit, B.
2017-06-01
A 1 MWt continuously recirculating falling particle receiver has been demonstrated at Sandia National Laboratories. Free-fall and obstructed-flow receiver designs were tested with particle mass flow rates of ˜1 - 7 kg/s and average irradiances up to 1,000 suns. Average particle outlet temperatures exceeded 700 °C for the free-fall tests and reached nearly 800 °C for the obstructed-flow tests, with peak particle temperatures exceeding 900 °C. High particle heating rates of ˜50 to 200 °C per meter of illuminated drop length were achieved for the free-fall tests with mass flow rates ranging from 1 - 7 kg/s and for average irradiances up to ˜ 700 kW/m2. Higher temperatures were achieved at the lower particle mass flow rates due to less shading. The obstructed-flow design yielded particle heating rates over 300 °C per meter of illuminated drop length for mass flow rates of 1 - 3 kg/s for irradiances up to ˜1,000 kW/m2. The thermal efficiency was determined to be ˜60 - 70% for the free-falling particle tests and up to ˜80% for the obstructed-flow tests. Challenges encountered during the tests include particle attrition and particle loss through the aperture, reduced particle mass flow rates at high temperatures due to slot aperture narrowing and increased friction, and deterioration of the obstructed-flow structures due to wear and oxidation. Computational models were validated using the test data and will be used in future studies to design receiver configurations that can increase the thermal efficiency.
Calcium score of coronary artery stratifies the risk of obstructive coronary artery diseases.
Ibrahim, O; Oteh, M; Anwar, I R; Che Hassan, H H; Choor, C K; Hamzaini, A H; Rahman, M M
2013-01-01
Coronary heart disease is a major health problem in Malaysia with high morbidity and mortality. Common primary screening tool of cardiovascular risk stratification is exercise treadmill test (ETT). This communication is to determine the performance of coronary artery calcium score a new method to stratify the presence of obstructive coronary artery disease (CAD) in comparison to traditional ETT in patients having coronary artery diseases. Patients between 30 to 60 years old attended the ETT to screen for ischemic heart disease were recruited for Agatston coronary artery calcium score (CACS) of multi-sliced computed tomography (MSCT). Subsequently all patients underwent a full MSCT coronary angiography. The major determinant was the state of CAD whether obstructive (50% stenosis or more) or non-obstructive (less than 50% stenosis). All patients diagnosed with obstructive CAD on MSCT coronary angiogram were subjected to invasive coronary angiogram (ICA) to confirm the findings and planned the need for revascularization. The CACS was 100% sensitivity and 97.5% specificity in detecting obstructive CAD at the optimal cut-off value of 106.5 and above. The positive predictive value (PPV) at CACS ≥ 106 was 71.4% and the negative predictive value (NPV) was consistent at 100%. Compare to ETT, the CACS discriminative value and diagnostic performance was much better (PPV 71.4% vs. 45.5%), respectively. CACS can be a good diagnostic screening tool in patients suspected of CAD, and particularly within the non-diagnostic ETT subgroup with low to moderate cardiovascular risks.
Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease
Investigation has repeatedly demonstrated an association between exposure to ambient air pollution particles and numerous indices of human morbidity and mortality. Individuals with chronic obstructive pulmonary disease (COPD) are among those with an increased sensitivity to air p...
Costa, Gianluca; Ruscelli, Paolo; Balducci, Genoveffa; Buccoliero, Francesco; Lorenzon, Laura; Frezza, Barbara; Chirletti, Piero; Stagnitti, Franco; Miniello, Stefano; Stella, Francesco
2016-01-01
Intestinal obstructions/pseudo-obstruction of the small/large bowel are frequent conditions but their management could be challenging. Moreover, a general agreement in this field is currently lacking, thus SICUT Society designed a consensus study aimed to define their optimal workout. The Delphi methodology was used to reach consensus among 47 Italian surgical experts in two study rounds. Consensus was defined as an agreement of 75.0% or greater. Four main topic areas included nosology, diagnosis, management and treatment. A bowel obstruction was defined as an obstacle to the progression of intestinal contents and fluids generally beginning with a sudden onset. The panel identified four major criteria of diagnosis including absence of flatus, presence of >3.5 cm ileal levels or >6 cm colon dilatation and abdominal distension. Panel also recommended a surgical admission, a multidisciplinary approach, and a gastrografin swallow for patients presenting occlusions. Criteria for immediate surgery included: presence of strangulated hernia, a >10 cm cecal dilatation, signs of vascular pedicles obstructions and persistence of metabolic acidosis. Moreover, rules for non-operative management (to be conducted for maximum 72 hours) included a naso-gastric drainage placement and clinical and laboratory controls each 12 hours. Non-operative treatment should be suspended if any suspects of intra-abdominal complications, high level of lactates, leukocytosis (>18.000/mm3 or Neutrophils >85%) or a doubling of creatinine level comparing admission. Conversely, consensus was not reached regarding the exact timing of CT scan and the appropriateness of colonic stenting. This consensus is in line with current international strategies and guidelines, and it could be a useful tool in the safe basic daily management of these common and peculiar diseases. Delphi study, Intestinal obstruction, Large bowel obstruction, Pseudo-obstruction, Small bowel.
Georges, Marjolaine; Attali, Valérie; Golmard, Jean Louis; Morélot-Panzini, Capucine; Crevier-Buchman, Lise; Collet, Jean-Marc; Tintignac, Anne; Morawiec, Elise; Trosini-Desert, Valery; Salachas, François; Similowski, Thomas; Gonzalez-Bermejo, Jesus
2016-10-01
Non-invasive ventilation (NIV) is part of standard care in amyotrophic lateral sclerosis (ALS). Intolerance or unavailability of NIV, as well as the quality of correction of nocturnal hypoventilation, has a direct impact on prognosis. We describe the importance of NIV failure due to upper airway obstructive events, the clinical characteristics, as well as their impact on the prognosis of ALS. Retrospective analysis of the data of 190 patients with ALS and NIV in a single centre for the period 2011-2014. 179 patients tolerating NIV for more than 4 h per night without leaks were analysed. Among the 179 patients, after correction of leaks, 73 remained inadequately ventilated at night (defined as more than 5% of the night spent at <90% of SpO2), as a result of obstructive events in 67% of cases (n=48). Patients who remained inadequately ventilated after optimal adjustment of ventilator settings presented with shorter survival than adequately ventilated patients. Unexpectedly, patients with upper airway obstructive events without nocturnal desaturation and in whom no adjustment of treatment was therefore performed also presented with shorter survival. On initiation of NIV, no difference was demonstrated between patients with and without upper airway obstructive events. In all patients, upper airway obstruction was concomitant with reduction of ventilatory drive. This study shows that upper airway obstruction during NIV occurs in patients with ALS and is associated with poorer prognosis. Such events should be identified as they can be corrected by adjusting ventilator settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Polprasert, Jirawadee; Ongsakul, Weerakorn; Dieu, Vo Ngoc
2011-06-01
This paper proposes a self-organizing hierarchical particle swarm optimization (SPSO) with time-varying acceleration coefficients (TVAC) for solving economic dispatch (ED) problem with non-smooth functions including multiple fuel options (MFO) and valve-point loading effects (VPLE). The proposed SPSO with TVAC is the new approach optimizer and good performance for solving ED problems. It can handle the premature convergence of the problem by re-initialization of velocity whenever particles are stagnated in the search space. To properly control both local and global explorations of the swarm during the optimization process, the performance of TVAC is included. The proposed method is tested in different ED problems with non-smooth cost functions and the obtained results are compared to those from many other methods in the literature. The results have revealed that the proposed SPSO with TVAC is effective in finding higher quality solutions for non-smooth ED problems than many other methods.
Poisson-Spot Intensity Reduction with a Partially-Transparent Petal-Shaped Optical Mask
NASA Technical Reports Server (NTRS)
Shiri, Shahram; Wasylkiwskyj, Wasyl
2013-01-01
The presence of Poisson's spot, also known as the spot of Arago, formed along the optical axis in the geometrical shadow behind an obstruction, has been known since the 18th century. The presence of this spot can best be described as the consequence of constructive interference of light waves diffracted on the edge of the obstruction where its central position can··be determined by the symmetry of the object More recently, the elimination of this spot has received attention in the fields of particle physics, high-energy lasers, astronomy and lithography. In this paper, we introduce a novel, partially transparent petaled mask shape that suppresses the bright spot by up to 10 orders of magnitude in intensity, with powerful applications to many of the above fields. The optimization technique formulated in this design can identify mask shapes having partial transparency only near the petal tips.
Lalas, Antonios; Nousias, Stavros; Kikidis, Dimitrios; Lalos, Aris; Arvanitis, Gerasimos; Sougles, Christos; Moustakas, Konstantinos; Votis, Konstantinos; Verbanck, Sylvia; Usmani, Omar; Tzovaras, Dimitrios
2017-12-20
Chronic obstructive pulmonary disease (COPD) and asthma are considered as the two most widespread obstructive lung diseases, whereas they affect more than 500 million people worldwide. Unfortunately, the requirement for detailed geometric models of the lungs in combination with the increased computational resources needed for the simulation of the breathing did not allow great progress to be made in the past for the better understanding of inflammatory diseases of the airways through detailed modelling approaches. In this context, computational fluid dynamics (CFD) simulations accompanied by fluid particle tracing (FPT) analysis of the inhaled ambient particles are deemed critical for lung function assessment. Also they enable the understanding of particle depositions on the airways of patients, since these accumulations may affect or lead to inflammations. In this direction, the current study conducts an initial investigation for the better comprehension of particle deposition within the lungs. More specifically, accurate models of the airways obstructions that relate to pulmonary disease are developed and a thorough assessment of the airflow behavior together with identification of the effects of inhaled particle properties, such as size and density, is conducted. Our approach presents a first step towards an effective personalization of pulmonary treatment in regards to the geometric characteristics of the lungs and the in depth understanding of airflows within the airways. A geometry processing technique involving contraction algorithms is established and used to employ the different respiratory arrangements associated with lung related diseases that exhibit airways obstructions. Apart from the normal lung case, two categories of obstructed cases are examined, i.e. models with obstructions in both lungs and models with narrowings in the right lung only. Precise assumptions regarding airflow and deposition fraction (DF) over various sections of the lungs are drawn by simulating these distinct incidents through the finite volume method (FVM) and particularly the CFD and FPT algorithms. Moreover, a detailed parametric analysis clarifies the effects of the particles size and density in terms of regional deposition upon several parts of the pulmonary system. In this manner, the deposition pattern of various substances can be assessed. For the specific case of the unobstructed lung model most particles are detected on the right lung (48.56% of total, when the air flowrate is 12.6 L/min), a fact that is also true when obstructions arise symmetrically in both lungs (51.45% of total, when the air flowrate is 6.06 L/min and obstructions occur after the second generation). In contrast, when narrowings are developed on the right lung only, most particles are pushed on the left section (68.22% of total, when the air flowrate is 11.2 L/min) indicating that inhaled medication is generally deposited away from the areas of inflammation. This observation is useful when designing medical treatment of lung diseases. Furthermore, particles with diameters from 1 μm to 10 μm are shown to be mainly deposited on the lower airways, whereas particles with diameters of 20 μm and 30 μm are mostly accumulated in the upper airways. As a result, the current analysis indicates increased DF levels in the upper airways when the particle diameter is enlarged. Additionally, when the particles density increases from 1000 Kg/m 3 to 2000 Kg/m 3 , the DF is enhanced on every generation and for all cases investigated herein. The results obtained by our simulations provide an accurate and quantitative estimation of all important parameters involved in lung modeling. The treatment of respiratory diseases with inhaled medical substances can be advanced by the clinical use of accurate CFD and FPT simulations and specifically by evaluating the deposition of inhaled particles in a regional oriented perspective in regards to different particle sizes and particle densities. Since a drug with specific characteristics (i.e. particle size and density) exhibits maximum deposition on particular lung areas, the current study provides initial indications to a qualified physician for proper selection of medication.
Sonnappa, Samatha; Martin, Richard; Israel, Elliot; Postma, Dirkje; van Aalderen, Wim; Burden, Annie; Usmani, Omar S; Price, David B
2017-01-01
Regular use of inhaled corticosteroids (ICS) in patients with obstructive lung diseases has been associated with a higher risk of pneumonia, particularly in COPD. The risk of pneumonia has not been previously evaluated in relation to ICS particle size and dose used. Historical cohort, UK database study of 23,013 patients with obstructive lung disease aged 12-80 years prescribed extra-fine or fine-particle ICS. The endpoints assessed during the outcome year were diagnosis of pneumonia, acute exacerbations and acute respiratory events in relation to ICS dose. To determine the association between ICS particle size, dose and risk of pneumonia in unmatched and matched treatment groups, logistic and conditional logistic regression models were used. 14788 patients were stepped-up to fine-particle ICS and 8225 to extra-fine ICS. On unmatched analysis, patients stepping-up to extra-fine ICS were significantly less likely to be coded for pneumonia (adjusted odds ratio [aOR] 0.60; 95% CI 0.37, 0.97]); experience acute exacerbations (adjusted risk ratio [aRR] 0.91; 95%CI 0.85, 0.97); and acute respiratory events (aRR 0.90; 95%CI 0.86, 0.94) compared with patients stepping-up to fine-particle ICS. Patients prescribed daily ICS doses in excess of 700 mcg (fluticasone propionate equivalent) had a significantly higher risk of pneumonia (OR [95%CI] 2.38 [1.17, 4.83]) compared with patients prescribed lower doses, irrespective of particle size. These findings suggest that patients with obstructive lung disease on extra-fine particle ICS have a lower risk of pneumonia than those on fine-particle ICS, with those receiving higher ICS doses being at a greater risk.
Yang, C; Jiang, W; Chen, D-H; Adiga, U; Ng, E G; Chiu, W
2009-03-01
The three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes.
Takiguchi, Hiroto; Takeuchi, Tomoe; Niimi, Kyoko; Tomomatsu, Hiromi; Tomomatsu, Katsuyoshi; Hayama, Naoki; Oguma, Tsuyoshi; Aoki, Takuya; Urano, Tetsuya; Asai, Satomi; Miyachi, Hayato; Asano, Koichiro
2018-01-01
Chronic obstructive pulmonary disease (COPD) mainly develops after long-term exposure to cigarette or biomass fuel smoke, but also occurs in non-smokers with or without a history of asthma. We investigated the proportion and clinical characteristics of non-smokers among middle-aged to elderly subjects with airflow obstruction. We retrospectively analyzed 1,892 subjects aged 40-89 years who underwent routine preoperative spirometry at a tertiary university hospital in Japan. Airflow obstruction was defined as a forced expiratory volume in 1 second (FEV1)/forced vital capacity < 0.7 or as the lower limit of the normal. Among 323 patients presenting with FEV1/forced vital capacity < 0.7, 43 had asthma and 280 did not. Among the non-asthmatic patients with airflow obstruction, 94 (34%) were non-smokers. A larger number of women than men with airflow obstruction had asthma (26% vs. 7.6%, p < 0.001), or were non-smokers among non-asthmatics (72% vs. 20%, p < 0.001). Non-asthmatic non-smokers, rather than non-asthmatic smokers, asthmatic non-smokers, and asthmatic smokers, exhibited better pulmonary function (median FEV1: 79% of predicted FEV1 vs. 73%, 69%, and 66%, respectively, p = 0.005) and less dyspnea on exertion (1% vs. 12%, 12%, and 28%, respectively, p = 0.001). Pulmonary emphysema on thoracic computed tomography was less common in non-smokers (p < 0.001). Using the lower limit of the normal to define airflow obstruction yielded similar results. There are a substantial number of non-smokers with airflow obstruction compatible with COPD in Japan. In this study, airflow obstruction in non-smokers was more common in women and likelier to result in mild functional and pathological abnormalities than in smokers. Further studies are warranted to investigate the long-term prognosis and appropriate management of this population in developed countries, especially in women.
Takiguchi, Hiroto; Takeuchi, Tomoe; Niimi, Kyoko; Tomomatsu, Hiromi; Tomomatsu, Katsuyoshi; Hayama, Naoki; Oguma, Tsuyoshi; Urano, Tetsuya; Asai, Satomi; Miyachi, Hayato; Asano, Koichiro
2018-01-01
Background and objectives Chronic obstructive pulmonary disease (COPD) mainly develops after long-term exposure to cigarette or biomass fuel smoke, but also occurs in non-smokers with or without a history of asthma. We investigated the proportion and clinical characteristics of non-smokers among middle-aged to elderly subjects with airflow obstruction. Methods We retrospectively analyzed 1,892 subjects aged 40–89 years who underwent routine preoperative spirometry at a tertiary university hospital in Japan. Airflow obstruction was defined as a forced expiratory volume in 1 second (FEV1)/forced vital capacity < 0.7 or as the lower limit of the normal. Results Among 323 patients presenting with FEV1/forced vital capacity < 0.7, 43 had asthma and 280 did not. Among the non-asthmatic patients with airflow obstruction, 94 (34%) were non-smokers. A larger number of women than men with airflow obstruction had asthma (26% vs. 7.6%, p < 0.001), or were non-smokers among non-asthmatics (72% vs. 20%, p < 0.001). Non-asthmatic non-smokers, rather than non-asthmatic smokers, asthmatic non-smokers, and asthmatic smokers, exhibited better pulmonary function (median FEV1: 79% of predicted FEV1 vs. 73%, 69%, and 66%, respectively, p = 0.005) and less dyspnea on exertion (1% vs. 12%, 12%, and 28%, respectively, p = 0.001). Pulmonary emphysema on thoracic computed tomography was less common in non-smokers (p < 0.001). Using the lower limit of the normal to define airflow obstruction yielded similar results. Conclusions There are a substantial number of non-smokers with airflow obstruction compatible with COPD in Japan. In this study, airflow obstruction in non-smokers was more common in women and likelier to result in mild functional and pathological abnormalities than in smokers. Further studies are warranted to investigate the long-term prognosis and appropriate management of this population in developed countries, especially in women. PMID:29742176
Multi-Objective Bidding Strategy for Genco Using Non-Dominated Sorting Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Saksinchai, Apinat; Boonchuay, Chanwit; Ongsakul, Weerakorn
2010-06-01
This paper proposes a multi-objective bidding strategy for a generation company (GenCo) in uniform price spot market using non-dominated sorting particle swarm optimization (NSPSO). Instead of using a tradeoff technique, NSPSO is introduced to solve the multi-objective strategic bidding problem considering expected profit maximization and risk (profit variation) minimization. Monte Carlo simulation is employed to simulate rivals' bidding behavior. Test results indicate that the proposed approach can provide the efficient non-dominated solution front effectively. In addition, it can be used as a decision making tool for a GenCo compromising between expected profit and price risk in spot market.
Deposition efficiency optimization in cold spraying of metal-ceramic powder mixtures
NASA Astrophysics Data System (ADS)
Klinkov, S. V.; Kosarev, V. F.
2017-10-01
In the present paper, results of optimization of the cold spray deposition process of a metal-ceramic powder mixture involving impacts of ceramic particles onto coating surface are reported. In the optimization study, a two-probability model was used to take into account the surface activation induced by the ceramic component of the mixture. The dependence of mixture deposition efficiency on the concentration and size of ceramic particles was analysed to identify the ranges of both parameters in which the effect due to ceramic particles on the mixture deposition efficiency was positive. The dependences of the optimum size and concentration of ceramic particles, and also the maximum gain in deposition efficiency, on the probability of adhesion of metal particles to non-activated coating surface were obtained.
Nurwidya, Fariz; Damayanti, Triya; Yunus, Faisal
2016-01-01
Chronic obstructive pulmonary disease (COPD) is a chronic and progressive inflammatory disease of the airways and lungs that results in limitations of continuous airflow and is caused by exposure to noxious gasses and particles. A major cause of morbidity and mortality in adults, COPD is a complex disease pathologically mediated by many inflammatory pathways. Macrophages, neutrophils, dendritic cells, and CD8+ T-lymphocytes are the key inflammatory cells involved in COPD. Recently, the non-coding small RNA, micro-RNA, have also been intensively investigated and evidence suggest that it plays a role in the pathogenesis of COPD. Here, we discuss the accumulated evidence that has since revealed the role of each inflammatory cell and their involvement in the immunopathogenesis of COPD. Mechanisms of steroid resistance in COPD will also be briefly discussed.
NASA Astrophysics Data System (ADS)
Meerson, Baruch
2015-05-01
Suppose that a point-like steady source at x = 0 injects particles into a half-infinite line. The particles diffuse and die. At long times a non-equilibrium steady state sets in, and we assume that it involves many particles. If the particles are non-interacting, their total number N in the steady state is Poisson-distributed with mean \\bar{N} predicted from a deterministic reaction-diffusion equation. Here we determine the most likely density history of this driven system conditional on observing a given N. We also consider two prototypical examples of interacting diffusing particles: (i) a family of mortal diffusive lattice gases with constant diffusivity (as illustrated by the simple symmetric exclusion process with mortal particles), and (ii) random walkers that can annihilate in pairs. In both examples we calculate the variances of the (non-Poissonian) stationary distributions of N.
NASA Astrophysics Data System (ADS)
Forsling, Robin; Sanders, Lloyd P.; Ambjörnsson, Tobias; Lizana, Ludvig
2014-09-01
The standard setup for single-file diffusion is diffusing particles in one dimension which cannot overtake each other, where the dynamics of a tracer (tagged) particle is of main interest. In this article, we generalize this system and investigate first-passage properties of a tracer particle when flanked by identical crowder particles which may, besides diffuse, unbind (rebind) from (to) the one-dimensional lattice with rates koff (kon). The tracer particle is restricted to diffuse with rate kD on the lattice and the density of crowders is constant (on average). The unbinding rate koff is our key parameter and it allows us to systematically study the non-trivial transition between the completely Markovian case (koff ≫ kD) to the non-Markovian case (koff ≪ kD) governed by strong memory effects. This has relevance for several quasi one-dimensional systems. One example is gene regulation where regulatory proteins are searching for specific binding sites on a crowded DNA. We quantify the first-passage time distribution, f (t) (t is time), numerically using the Gillespie algorithm, and estimate f (t) analytically. In terms of koff (keeping kD fixed), we study the transition between the two known regimes: (i) when koff ≫ kD the particles may effectively pass each other and we recover the single particle result f (t) ˜ t-3/2, with a reduced diffusion constant; (ii) when koff ≪ kD unbinding is rare and we obtain the single-file result f (t) ˜ t-7/4. The intermediate region displays rich dynamics where both the characteristic f (t) - peak and the long-time power-law slope are sensitive to koff.
De Falco, Gianluigi; Colarusso, Chiara; Terlizzi, Michela; Popolo, Ada; Pecoraro, Michela; Commodo, Mario; Minutolo, Patrizia; Sirignano, Mariano; D’Anna, Andrea; Aquino, Rita P.; Pinto, Aldo; Molino, Antonio; Sorrentino, Rosalinda
2017-01-01
Chronic obstructive pulmonary disease (COPD) is considered the fourth-leading causes of death worldwide; COPD is caused by inhalation of noxious indoor and outdoor particles, especially cigarette smoke that represents the first risk factor for this respiratory disorder. To mimic the effects of particulate matter on COPD, we isolated peripheral blood mononuclear cells (PBMCs) and treated them with combustion-generated ultrafine particles (UFPs) obtained from two different fuel mixtures, namely, pure ethylene and a mixture of ethylene and dimethylfuran (the latter mimicking the combustion of biofuels). UFPs were separated in two fractions: (1) sub-10 nm particles, named nano organic carbon (NOC) particles and (2) primarily soot particles of 20–40 nm and their agglomerates (200 nm). We found that both NOC and soot UFPs induced the release of IL-18 and IL-33 from unstable/exacerbated COPD-derived PBMCs. This effect was associated with higher levels of mitochondrial dysfunction and derived reactive oxygen species, which were higher in PBMCs from unstable COPD patients after combustion-generated UFP exposure. Moreover, lower mRNA expression of the repairing enzyme OGG1 was associated with the higher levels of 8-OH-dG compared with non-smoker and smokers. It was interesting that IL-18 and IL-33 release from PBMCs of unstable COPD patients was not NOD-like receptor 3/caspase-1 or caspase-8-dependent, but rather correlated to caspase-4 release. This effect was not evident in stable COPD-derived PBMCs. Our data suggest that combustion-generated UFPs induce the release of caspase-4-dependent inflammasome from PBMCs of COPD patients compared with healthy subjects, shedding new light into the biology of this key complex in COPD. PMID:29123531
Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah
2015-01-01
The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
Swelling Mechanisms of UO2 Lattices with Defect Ingrowths
Günay, Seçkin D.
2015-01-01
The swelling that occurs in uranium dioxide as a result of radiation-induced defect ingrowth is not fully understood. Experimental and theoretical groups have attempted to explain this phenomenon with various complex theories. In this study, experimental lattice expansion and lattice super saturation were accurately reproduced using a molecular dynamics simulation method. Based on their resemblance to experimental data, the simulation results presented here show that fission induces only oxygen Frenkel pairs while alpha particle irradiation results in both oxygen and uranium Frenkel pair defects. Moreover, in this work, defects are divided into two sub-groups, obstruction type defects and distortion type defects. It is shown that obstruction type Frenkel pairs are responsible for both fission- and alpha-particle-induced lattice swelling. Relative lattice expansion was found to vary linearly with the number of obstruction type uranium Frenkel defects. Additionally, at high concentrations, some of the obstruction type uranium Frenkel pairs formed diatomic and triatomic structures with oxygen ions in their octahedral cages, increasing the slope of the linear dependence. PMID:26244777
Andersson, Hedvig Bille; Pedersen, Frants; Engstrøm, Thomas; Helqvist, Steffen; Jensen, Morten Kvistholm; Jørgensen, Erik; Kelbæk, Henning; Räder, Sune Bernd Emil Werner; Saunamäki, Kari; Bates, Eric; Grande, Peer; Holmvang, Lene; Clemmensen, Peter
2018-01-07
We aimed to study survival and causes of death in patients with ST-elevation acute coronary syndrome (STE-ACS) with and without obstructive coronary artery disease (CAD). We included 4793 consecutive patients with STE-ACS triaged for acute coronary angiography at a large cardiac invasive centre (2009-2014). Of these, 88% had obstructive CAD (stenosis ≥50%), 6% had non-obstructive CAD (stenosis 1-49%), and 5% had normal coronary arteries. Patients without obstructive CAD were younger and more often female with fewer cardiovascular risk factors. Median follow-up time was 2.6 years. Compared with patients with obstructive CAD, the short-term hazard of death (≤30 days) was lower in both patients with non-obstructive CAD [hazard ratio (HR) 0.49, 95% confidence interval (CI) 0.27-0.89, P = 0.018] and normal coronary arteries (HR 0.31, 95% CI 0.11-0.83, P = 0.021). In contrast, the long-term hazard of death (>30 days) was similar in patients with non-obstructive CAD (HR 1.15, 95% CI 0.77-1.72, P = 0.487) and higher in patients with normal coronary arteries (HR 2.44, 95% CI 1.58-3.76, P < 0.001), regardless of troponin levels. Causes of death were cardiovascular in 70% of patients with obstructive CAD, 38% with non-obstructive CAD, and 32% with normal coronary arteries. Finally, patients without obstructive CAD had lower survival compared with an age and sex matched general population. STE-ACS patients without obstructive CAD had a long-term risk of death similar to or higher than patients with obstructive CAD. Causes of death were less often cardiovascular. This suggests that STE-ACS patients without obstructive CAD warrant medical attention and close follow-up. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Sahib, Mohanad Naji; Darwis, Yusrida; Peh, Kok Khiang; Abdulameer, Shaymaa Abdalwahed; Tan, Yvonne Tze Fung
2011-01-01
Background Inhaled corticosteroids provide unique systems for local treatment of asthma or chronic obstructive pulmonary disease. However, the use of poorly soluble drugs for nebulization has been inadequate, and many patients rely on large doses to achieve optimal control of their disease. Theoretically, nanotechnology with a sustained-release formulation may provide a favorable therapeutic index. The aim of this study was to determine the feasibility of using sterically stabilized phospholipid nanomicelles of budesonide for pulmonary delivery via nebulization. Methods PEG5000-DSPE polymeric micelles containing budesonide (BUD-SSMs) were prepared by the coprecipitation and reconstitution method, and the physicochemical and pharmacodynamic characteristics of BUD-SSMs were investigated. Results The optimal concentration of solubilized budesonide at 5 mM PEG5000-DSPE was 605.71 ± 6.38 μg/mL, with a single-sized peak population determined by photon correlation spectroscopy and a particle size distribution of 21.51 ± 1.5 nm. The zeta potential of BUD-SSMs was −28.43 ± 1.98 mV. The percent entrapment efficiency, percent yield, and percent drug loading of the lyophilized formulations were 100.13% ± 1.09%, 97.98% ± 1.95%, and 2.01% ± 0.02%, respectively. Budesonide was found to be amorphous by differential scanning calorimetry, and had no chemical interaction with PEGylated polymer according to Fourier transform infrared spectroscopy. Transmission electron microscopic images of BUD-SSMs revealed spherical nanoparticles. BUD-SSMs exhibited prolonged dissolution behavior compared with Pulmicort Respules® (P < 0.05). Aerodynamic characteristics indicated significantly higher deposition in the lungs compared with Pulmicort Respules®. The mass median aerodynamic, geometric standard deviation, percent emitted dose, and the fine particle fraction were 2.83 ± 0.08 μm, 2.33 ± 0.04 μm, 59.13% ± 0.19%, and 52.31% ± 0.25%, respectively. Intratracheal administration of BUD-SSMs 23 hours before challenge (1 mg/kg) in an asthmatic/chronic obstructive pulmonary disease rat model led to a significant reduction in inflammatory cell counts (76.94 ± 5.11) in bronchoalveolar lavage fluid compared with administration of Pulmicort Respules® (25.06 ± 6.91). Conclusion The BUD-SSMs system might be advantageous for asthma or chronic obstructive pulmonary disease and other inflammatory airway diseases. PMID:22072872
Characteristics of the clinical presentation, physiologic changes, and pathology of the human response to particulate matter (PM) are comparable to inflammatory airway disease (lAD) and recurrent airway obstruction (RAO)lheaves in the horse. Both present with symptoms of cough,...
Steinhaus, J; Berent, A C; Weisse, C; Eatroff, A; Donovan, T; Haddad, J; Bagley, D
2015-01-01
Circumcaval ureters (CU) are a rare embryological malformation resulting in ventral displacement of the caudal vena cava, which crosses the ureter, potentially causing a ureteral stricture. To evaluate cats with obstructed CU(s) and report the presenting signs, diagnostics, treatment(s), and outcomes. Cats with obstructed CU(s) were compared to ureterally obstructed cats without CU(s). 193 cats; 22 circumcaval obstructed (Group 1); 106 non-circumcaval obstructed (Group 2); 65 non-obstructed necropsy cases (Group 3). Retrospective study, review of medical records for cats treated for benign ureteral obstructions from AMC and University of Pennsylvania between 2009 and 2013. surgical treatment of benign ureteral obstruction, complete medical record including radiographic, ultrasonographic, biochemistry, and surgical findings. Seventeen percent (22/128) of obstructed cats had a CU (80% right-sided) compared to 14% (9/65) non-obstructed necropsy cats (89% right-sided). Clinical presentation, radiographic findings, and creatinine were not statistically different between Groups 1 and 2. Strictures were a statistically more common (40%) cause of ureteral obstruction in Group 1 compared to Group 2 (17%) (P = .01). The MST for Groups 1 and 2 after ureteral decompression was 923 and 762 days, respectively (P = .62), with the MST for death secondary to kidney disease in both groups being >1,442 days. Re-obstruction was the most common complication in Group 1 (24%) occurring more commonly in ureters of cats treated with a ureteral stent(s) (44%) compared to the subcutaneous ureteral bypass (SUB) device (8%) (P = .01). Ureteral obstructions in cats with a CU(s) have a similar outcome to those cats with a ureteral obstruction and normal ureteral anatomy. Long-term prognosis is good for benign ureteral obstructions treated with a double pigtail stent or a SUB device. The SUB device re-obstructed less commonly than the ureteral stent, especially when a ureteral stricture was present. Copyright © 2014 by the American College of Veterinary Internal Medicine.
Design of multi-modal obstruction to control tonal fan noise using modulation principles
NASA Astrophysics Data System (ADS)
Gérard, Anthony; Moreau, Stéphane; Berry, Alain; Masson, Patrice
2015-11-01
The approach presented in this paper uses a combination of obstructions in the upstream flow of subsonic axial fans with B blades to destructively interfere with the primary tonal noise at the blade passage frequency. The first step of the proposed experimental method consists in identifying the independent radiation of B - 1 and B lobed obstructions at the control microphones. During this identification step, rotating obstructions allow for the frequencies of primary and secondary tonal noise to be slightly shifted in the spectrum due to modulation principles. The magnitude of the secondary tonal noise generated by each obstruction can be adjusted by varying the size of the lobes of the obstruction, and the phase of the secondary tonal noise is related to the angular position of the obstruction. The control obstructions are then optimized by combining the B - 1 and B lobed obstructions to significantly reduce the acoustic power at blade passage frequency.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Chen, J.
2017-09-01
A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multi-objective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid's area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Pareto-optimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effectively deal with multi-objective optimizations with black-box functions.
CFTR gene variant IVS8-5T in disseminated bronchiectasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pignatti, P.F.; Bombieri, C.; Benetazzo, M.
1996-04-01
Obstructive pulmonary disease includes asthma, chronic obstructive pulmonary disease (COPD; i.e., pulmonary emphysema and chronic bronchitis), bronchiectasis, and cystic fibrosis (CF). It represents a leading cause of death in developed countries. Both familial clustering of non-CF obstructive pulmonary disease and familial aggregation of impaired lung function have been described. This suggests that genetic factors contribute to non-CF obstructive pulmonary disease, even if it is difficult to determine the relative contribution of environmental factors. 11 refs., 1 tab.
NASA Astrophysics Data System (ADS)
Luu, Keurfon; Noble, Mark; Gesret, Alexandrine; Belayouni, Nidhal; Roux, Pierre-François
2018-04-01
Seismic traveltime tomography is an optimization problem that requires large computational efforts. Therefore, linearized techniques are commonly used for their low computational cost. These local optimization methods are likely to get trapped in a local minimum as they critically depend on the initial model. On the other hand, global optimization methods based on MCMC are insensitive to the initial model but turn out to be computationally expensive. Particle Swarm Optimization (PSO) is a rather new global optimization approach with few tuning parameters that has shown excellent convergence rates and is straightforwardly parallelizable, allowing a good distribution of the workload. However, while it can traverse several local minima of the evaluated misfit function, classical implementation of PSO can get trapped in local minima at later iterations as particles inertia dim. We propose a Competitive PSO (CPSO) to help particles to escape from local minima with a simple implementation that improves swarm's diversity. The model space can be sampled by running the optimizer multiple times and by keeping all the models explored by the swarms in the different runs. A traveltime tomography algorithm based on CPSO is successfully applied on a real 3D data set in the context of induced seismicity.
Timkova, Vladimira; Nagyova, Iveta; Reijneveld, Sijmen A; Tkacova, Ruzena; van Dijk, Jitse P; Bültmann, Ute
2018-04-17
To examine whether Obstructive Sleep Apnoea severity, sleep-related problems, and anxiety are associated with work functioning in Obstructive Sleep Apnoea patients, when controlled for age, gender and type of occupation. To investigate whether anxiety moderates the associations between sleep-related problems and work functioning. We included 105 Obstructive Sleep Apnoea patients (70% male; mean age 46.62 ± 9.79 years). All patients completed the Pittsburgh Sleep Quality Index, the Epworth Sleepiness Scale, the Beck Anxiety Inventory, and the Work Role Functioning Questionnaire-2.0. Obstructive Sleep Apnoea-severity, poor nighttime sleep quality, and anxiety were univariately associated with impaired work functioning. Multivariate analyzes revealed that poor perceived sleep quality was more strongly associated with work functioning than sleep efficiency and daily disturbances. Anxiety was strongly associated with impaired work functioning. After adding anxiety, the explained variance in work functioning increased from 20% to 25%. Anxiety moderated the association between low and medium levels of nighttime sleep quality problems and work functioning. Poor perceived sleep quality and anxiety were strongly associated with impaired work functioning in Obstructive Sleep Apnoea patients. These findings may help to optimize management, standard treatment, and work functioning in people with Obstructive Sleep Apnoea when confirmed in longitudinal studies. Implications for Rehabilitation Studies show an impairment of functional status, including work functioning, in obstructive sleep apnea patients. Aside from physical disorders, obstructive sleep apnea patients often experience mental problems, such as anxiety. As many people with obstructive sleep apnea are undiagnosed, our results demonstrate to employers and healthcare professionals the need to encourage patients for obstructive sleep apnea screening, especially in the situation of impaired work functioning, increased anxiety, and poor sleep quality. The associations between obstructive sleep apnea, sleep and anxiety might increase the awareness of health professionals towards optimizing diagnostic accuracy and standard treatment.
Surgical management of nasal obstruction.
Moche, Jason A; Palmer, Orville
2012-05-01
The proper evaluation of the patient with nasal obstruction relies on a comprehensive history and physical examination. Once the site of obstruction is accurately identified, the patient may benefit from a trial of medical management. At times however, the definitive treatment of nasal obstruction relies on surgical management. Recognizing the nasal septum, nasal valve, and turbinates as possible sites of obstruction and addressing them accordingly can dramatically improve a patient's nasal breathing. Conservative resection of septal cartilage, submucous reduction of the inferior turbinate, and structural grafting of the nasal valve when appropriate will provide the optimal improvement in nasal airflow and allow for the most stable results. Copyright © 2012. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Buyuk, Ersin; Karaman, Abdullah
2017-04-01
We estimated transmissivity and storage coefficient values from the single well water-level measurements positioned ahead of the mining face by using particle swarm optimization (PSO) technique. The water-level response to the advancing mining face contains an semi-analytical function that is not suitable for conventional inversion shemes because the partial derivative is difficult to calculate . Morever, the logaritmic behaviour of the model create difficulty for obtaining an initial model that may lead to a stable convergence. The PSO appears to obtain a reliable solution that produce a reasonable fit between water-level data and model function response. Optimization methods have been used to find optimum conditions consisting either minimum or maximum of a given objective function with regard to some criteria. Unlike PSO, traditional non-linear optimization methods have been used for many hydrogeologic and geophysical engineering problems. These methods indicate some difficulties such as dependencies to initial model, evolution of the partial derivatives that is required while linearizing the model and trapping at local optimum. Recently, Particle swarm optimization (PSO) became the focus of modern global optimization method that is inspired from the social behaviour of birds of swarms, and appears to be a reliable and powerful algorithms for complex engineering applications. PSO that is not dependent on an initial model, and non-derivative stochastic process appears to be capable of searching all possible solutions in the model space either around local or global optimum points.
[Increased risk of chronic obstructive pulmonary disease among tunnel construction workers].
Ulvestad, Bente; Lund, May Brit
2003-08-28
As tunnel workers are exposed to particles from drilling, blasting and diesel exhaust, we aimed to assess the occurrence of respiratory symptoms and lung function decline in underground construction workers and relate these findings to exposure. 212 tunnel workers and a reference group of 205 outdoor construction workers participated in a cross-sectional study. Respiratory symptoms and lung function were studied in relation to exposure. A subgroup of 29 non-smoking concrete workers who had been exposed to tunnel environment for one year, were examined by acoustic rhinometry, exhaled NO, spirometry and a questionnaire. Finally 122 tunnel workers were included in a prospective study in 1991 and re-examined in 1999. Among the tunnel workers the prevalence of chronic obstructive pulmonary disease (COPD) was 14% vs. 8% in the reference subjects. Compared to the reference subjects, the tunnel workers had a significant decrease in FEV1, related to years of exposure. Concrete workers from the tunnel site had significantly increased exhaled NO levels and nasal mucosal swelling compared to subjects who had performed similar tasks outdoors. The decrease in FEV1 was associated with cumulative exposure to respirable dust and quartz. Inhalation of construction-generated dust and gases enhances the risk of chronic obstructive pulmonary disease in tunnel workers.
NASA Astrophysics Data System (ADS)
Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao
2018-03-01
The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.
Pathogenesis, imaging and clinical characteristics of CF and non-CF bronchiectasis.
Schäfer, Jürgen; Griese, Matthias; Chandrasekaran, Ravishankar; Chotirmall, Sanjay H; Hartl, Dominik
2018-05-22
Bronchiectasis is a common feature of severe inherited and acquired pulmonary disease conditions. Among inherited diseases, cystic fibrosis (CF) is the major disorder associated with bronchiectasis, while acquired conditions frequently featuring bronchiectasis include post-infective bronchiectasis and chronic obstructive pulmonary disease (COPD). Mechanistically, bronchiectasis is driven by a complex interplay of inflammation and infection with neutrophilic inflammation playing a predominant role. The clinical characterization and management of bronchiectasis should involve a precise diagnostic workup, tailored therapeutic strategies and pulmonary imaging that has become an essential tool for the diagnosis and follow-up of bronchiectasis. Prospective future studies are required to optimize the diagnostic and therapeutic management of bronchiectasis, particularly in heterogeneous non-CF bronchiectasis populations.
Validity of peak expiratory flow measurement in assessing reversibility of airflow obstruction.
Dekker, F W; Schrier, A C; Sterk, P J; Dijkman, J H
1992-01-01
BACKGROUND: Assessing the reversibility of airflow obstruction by peak expiratory (PEF) measurements would be practicable in general practice, but its usefulness has not been investigated. METHODS: PEF measurements were performed (miniWright peak flow meter) in 73 general practice patients (aged 40 to 84) with a history of asthma or chronic obstructive lung disease before and after 400 micrograms inhaled sulbutamol. The change in PEF was compared with the change in forced expiratory volume in one second (FEV1). Reversible airflow obstruction was analysed in two ways according to previous criteria. When defined as a 9% or greater increase in FEV1 expressed as a percentage of predicted values reversibility was observed in 42% of patients. Relative operating characteristic analysis showed that an absolute improvement in PEF of 60 l/min or more gave optimal discrimination between patients with reversible and irreversible airflow obstruction (the sensitivity and specificity of an increase of 60 l/min in detecting a 9% or more increase in FEV1 as a percentage of predicted values were 68% and 93% respectively, with a positive predictive value of 87%). When defined as an increase of 190 ml or more in FEV1, reversible airflow obstruction was observed in 53% of patients. Again an absolute improvement in PEF of 60 l/min or more gave optimal discrimination between patients with reversible and irreversible airflow obstruction (sensitivity 56%, specificity 94%, and positive predictive value 92%). CONCLUSION: Absolute changes in PEF can be used as a simple technique to diagnose reversible airflow obstruction in patients from general practice. PMID:1519192
NASA Astrophysics Data System (ADS)
Reyes López, Yaidel; Roose, Dirk; Recarey Morfa, Carlos
2013-05-01
In this paper, we present a dynamic refinement algorithm for the smoothed particle Hydrodynamics (SPH) method. An SPH particle is refined by replacing it with smaller daughter particles, which positions are calculated by using a square pattern centered at the position of the refined particle. We determine both the optimal separation and the smoothing distance of the new particles such that the error produced by the refinement in the gradient of the kernel is small and possible numerical instabilities are reduced. We implemented the dynamic refinement procedure into two different models: one for free surface flows, and one for post-failure flow of non-cohesive soil. The results obtained for the test problems indicate that using the dynamic refinement procedure provides a good trade-off between the accuracy and the cost of the simulations.
2018-06-21
Lung Transplant; Lung Resection; Lung Cancer; Asthma; Cystic Fibrosis; Chronic Obstructive Pulmonary Disease; Emphysema; Mesothelioma; Asbestosis; Pulmonary Embolism; Interstitial Lung Disease; Pulmonary Fibrosis; Bronchiectasis; Seasonal Allergies; Cold Virus; Lung Infection; Pulmonary Hypertension; Pulmonary Dysplasia; Obstructive Sleep Apnea
Randall, Victoria D.; Boston, Sarah E.; Gardner, Heather L.; Griffin, Lynn; Oblak, Michelle L.; Kubicek, Lyndsay
2016-01-01
A pubectomy was carried out to relieve obstruction of the pelvic canal in a 6-year-old dog diagnosed with sacral osteosarcoma. Two days after surgery, the dog was ambulatory with normal urination and defecation. Pubectomy is a viable option to relieve clinical signs in patients with pelvic canal obstruction due to a non-resectable tumor. PMID:27587885
Lung health in era of climate change and dust storms.
Schweitzer, Michael D; Calzadilla, Andrew S; Salamo, Oriana; Sharifi, Arash; Kumar, Naresh; Holt, Gregory; Campos, Michael; Mirsaeidi, Mehdi
2018-05-01
Dust storms are strong winds which lead to particle exposure over extensive areas. These storms influence air quality on both a local and global scale which lead to both short and long-term effects. The frequency of dust storms has been on the rise during the last decade. Forecasts suggest that their incidence will increase as a response to the effects of climate change and anthropogenic activities. Elderly people, young children, and individuals with chronic cardiopulmonary diseases are at the greatest risk for health effects of dust storms. A wide variety of infectious and non-infectious diseases have been associated with dust exposure. Influenza A virus, pulmonary coccidioidomycosis, bacterial pneumonia, and meningococcal meningitis are a few examples of dust-related infectious diseases. Among non-infectious diseases, chronic obstructive pulmonary disease, asthma, sarcoidosis and pulmonary fibrosis have been associated with dust contact. Here, we review two molecular mechanisms of dust induced lung disease for asthma and sarcoidosis. We can also then further understand the mechanisms by which dust particles disturb airway epithelial and immune cells. Copyright © 2018 Elsevier Inc. All rights reserved.
The efficacy of inhaled pharmaceuticals depends, in part, on their site of respiratory deposition. Markedly nonuniform ventilation distribution may occur in persons with obstructive airways diseases and may affect particle deposition. We studied the relationship between regional ...
Dai, Juan; Ji, Zhong; Du, Yubao
2017-08-01
Existing near-infrared non-invasive blood glucose detection modelings mostly detect multi-spectral signals with different wavelength, which is not conducive to the popularization of non-invasive glucose meter at home and does not consider the physiological glucose dynamics of individuals. In order to solve these problems, this study presented a non-invasive blood glucose detection model combining particle swarm optimization (PSO) and artificial neural network (ANN) by using the 1 550 nm near-infrared absorbance as the independent variable and the concentration of blood glucose as the dependent variable, named as PSO-2ANN. The PSO-2ANN model was based on two sub-modules of neural networks with certain structures and arguments, and was built up after optimizing the weight coefficients of the two networks by particle swarm optimization. The results of 10 volunteers were predicted by PSO-2ANN. It was indicated that the relative error of 9 volunteers was less than 20%; 98.28% of the predictions of blood glucose by PSO-2ANN were distributed in the regions A and B of Clarke error grid, which confirmed that PSO-2ANN could offer higher prediction accuracy and better robustness by comparison with ANN. Additionally, even the physiological glucose dynamics of individuals may be different due to the influence of environment, temper, mental state and so on, PSO-2ANN can correct this difference only by adjusting one argument. The PSO-2ANN model provided us a new prospect to overcome individual differences in blood glucose prediction.
Andreini, Daniele; Pontone, Gianluca; Mushtaq, Saima; Gransar, Heidi; Conte, Edoardo; Bartorelli, Antonio L; Pepi, Mauro; Opolski, Maksymilian P; Ó Hartaigh, Bríain; Berman, Daniel S; Budoff, Matthew J; Achenbach, Stephan; Al-Mallah, Mouaz; Cademartiri, Filippo; Callister, Tracy Q; Chang, Hyuk-Jae; Chinnaiyan, Kavitha; Chow, Benjamin J W; Cury, Ricardo; Delago, Augustin; Hadamitzky, Martin; Hausleiter, Joerg; Feuchtner, Gudrun; Kim, Yong-Jin; Kaufmann, Philipp A; Leipsic, Jonathon; Lin, Fay Y; Maffei, Erica; Raff, Gilbert; Shaw, Leslee J; Villines, Todd C; Dunning, Allison; Marques, Hugo; Rubinshtein, Ronen; Hindoyan, Niree; Gomez, Millie; Min, James K
2017-03-15
Non-obstructive coronary artery disease (CAD) identified by coronary computed tomography angiography (CCTA) demonstrated prognostic value. CT-adapted Leaman score (CT-LeSc) showed to improve the prognostic stratification. Aim of the study was to evaluate the capability of CT-LeSc to assess long-term prognosis of patients with non-obstructive (CAD). From 17 centers, we enrolled 2402 patients without prior CAD history who underwent CCTA that showed non-obstructive CAD and provided complete information on plaque composition. Patients were divided into a group without CAD and a group with non-obstructive CAD (<50% stenosis). Segment-involvement score (SIS) and CT-LeSc were calculated. Outcomes were non-fatal myocardial infarction (MI) and the combined end-point of MI and all-cause mortality. Patient mean age was 56±12years. At follow-up (mean 59.8±13.9months), 183 events occurred (53 MI, 99 all-cause deaths and 31 late revascularizations). CT-LeSc was the only multivariate predictor of MI (HRs 2.84 and 2.98 in two models with Framingham and risk factors, respectively) and of MI plus all-cause mortality (HR 2.48 and 1.94 in two models with Framingham and risk factors, respectively). This was confirmed by a net reclassification analysis confirming that the CT-LeSc was able to correctly reclassify a significant proportion of patients (cNRI 0.28 and 0.23 for MI and MI plus all-cause mortality, respectively) vs. baseline model, whereas SIS did not. CT-LeSc is an independent predictor of major acute cardiac events, improving prognostic stratification of patients with non-obstructive CAD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2012-01-01
Background Air pollution, mainly from combustion, is one of the leading global health risk factors. A susceptible group is the more than 200 million people worldwide suffering from chronic obstructive pulmonary disease (COPD). There are few data on lung deposition of airborne particles in patients with COPD and none for combustion particles. Objectives To determine respiratory tract deposition of diesel combustion particles in patients with COPD during spontaneous breathing. Methods Ten COPD patients and seven healthy subjects inhaled diesel exhaust particles generated during idling and transient driving in an exposure chamber. The respiratory tract deposition of the particles was measured in the size range 10–500 nm during spontaneous breathing. Results The deposited dose rate increased with increasing severity of the disease. However, the deposition probability of the ultrafine combustion particles (< 100 nm) was decreased in COPD patients. The deposition probability was associated with both breathing parameters and lung function, but could be predicted only based on lung function. Conclusions The higher deposited dose rate of inhaled air pollution particles in COPD patients may be one of the factors contributing to their increased vulnerability. The strong correlations between lung function and particle deposition, especially in the size range of 20–30 nm, suggest that altered particle deposition could be used as an indicator respiratory disease. PMID:22839109
Hypertension, Snoring, and Obstructive Sleep Apnea During Pregnancy: A Cohort Study
O’Brien, Louise M.; Bullough, Alexandra S.; Chames, Mark C.; Shelgikar, Anita V.; Armitage, Roseanne; Guilleminualt, Christian; Sullivan, Colin E.; Johnson, Timothy R. B.; Chervin, Ronald D.
2014-01-01
Objective To assess the frequency of obstructive sleep apnea among women with and without hypertensive disorders of pregnancy. Design Cohort study. Setting Obstetric clinics at an academic medical center. Population Pregnant women with hypertensive disorders (chronic hypertension, gestational hypertension, or pre-eclampsia) and normotensive women. Methods Women completed a questionnaire about habitual snoring and underwent overnight ambulatory polysomnography. Main Outcome Measures The presence and severity of obstructive sleep apnea. Results Obstructive sleep apnoea was found among 21 of 51 women with hypertensive disorders (41%), but in only three of 16 women who were normotensive (19%, chi-square test, P = 0.005). Non-snoring hypertensive women typically had mild obstructive sleep apnea but >25% of snoring hypertensive women had moderate-to-severe obstructive sleep apnea. Among the hypertensive women, the mean apnea/hypopnea index was substantially higher in snorers than non-snorers (19.9±34.1 vs. 3.4±3.1, p=0.013) and the oxyhemoglobin saturation nadir was significantly lower (86.4±6.6 vs. 90.2±3.5, p=0.021). Among hypertensive women, after stratification by obesity the pooled relative risk for obstructive sleep apnea in snoring women with hypertension compared to non-snoring hypertension was 2.0 [95%CI 1.4–2.8]. Conclusions Pregnant women with hypertension are at high risk for unrecognised obstructive sleep apnea. While longitudinal and intervention studies are urgently needed, it would seem pertinent given the known relationship between obstructive sleep apnea and hypertension in the general population, that hypertensive pregnant women who snore should be tested for obstructive sleep apnea, a condition believed to cause or promote hypertension. PMID:24888772
Hypertension, snoring, and obstructive sleep apnoea during pregnancy: a cohort study.
O'Brien, L M; Bullough, A S; Chames, M C; Shelgikar, A V; Armitage, R; Guilleminualt, C; Sullivan, C E; Johnson, T R B; Chervin, R D
2014-12-01
To assess the frequency of obstructive sleep apnoea among women with and without hypertensive disorders of pregnancy. Cohort study. Obstetric clinics at an academic medical centre. Pregnant women with hypertensive disorders (chronic hypertension, gestational hypertension, or pre-eclampsia) and women who were normotensive. Women completed a questionnaire about habitual snoring and underwent overnight ambulatory polysomnography. The presence and severity of obstructive sleep apnoea. Obstructive sleep apnoea was found among 21 of 51 women with hypertensive disorders (41%), but in only three of 16 women who were normotensive (19%, chi-square test, P=0.005). [Author correction added on 16 June 2014, after first online publication: Results mentioned in the abstract were amended.] Non-snoring women with hypertensive disorders typically had mild obstructive sleep apnoea, but >25% of snoring women with hypertensive disorders had moderate to severe obstructive sleep apnoea. Among women with hypertensive disorders, the mean apnoea/hypopnoea index was substantially higher in snorers than in non-snorers (19.9±34.1 versus 3.4±3.1, P=0.013), and the oxyhaemoglobin saturation nadir was significantly lower (86.4±6.6 versus 90.2±3.5, P=0.021). Among women with hypertensive disorders, after stratification by obesity, the pooled relative risk for obstructive sleep apnoea in snoring women with hypertension compared with non-snoring women with hypertension was 2.0 (95% CI 1.4-2.8). Pregnant women with hypertension are at high risk for unrecognised obstructive sleep apnoea. Although longitudinal and intervention studies are urgently needed, given the known relationship between obstructive sleep apnoea and hypertension in the general population, it would seem pertinent that hypertensive pregnant women who snore should be tested for obstructive sleep apnoea, a condition believed to cause or promote hypertension. © 2014 Royal College of Obstetricians and Gynaecologists.
[Neurogenic inflammation and chronic rhinosinusitis].
Lacroix, J S; Ricchetti Coignard, A
2005-10-19
The nasal mucosa is one of the anatomical region which have the highest density of sensory innervation. The function of this sensory innervation is probably linked to the protection of the lower airways against inhalation of airborne particles and potentially harmful substances. Chronic rhinosinusitis (CRS) is associated with nasal obstruction, rhinorrhea, loss of sense of smell and facial pain or headaches. When allergy or specific hyperreactivity, infection, systemic or genetic deseases have been excluded, the diagnosis of non specific hyperreactivity or neurogenic inflammation is proposed. Sensory neuropeptides released by sensory nerves endings have powerful proinflammatory effects. The best treatment yet available include nasal lavages and the local application of topical corticosteroid spray.
Drug-eluting stent in malignant biliary obstruction
NASA Astrophysics Data System (ADS)
Lee, Dong-Ki; Jang, Sung Ill
2012-10-01
Endoscopic stent insertion is the treatment of choice for patients with malignant biliary obstruction. However, conventional stents enable only mechanical palliation of the obstruction, without any anti-tumor effects. Drugeluting stent (DES), which was first introduced in coronary artery disease, are currently under investigation for sustaining stent patency and prolonging patient survival by inhibiting tumor ingrowth in malignant biliary obstruction. Many factors affecting efficient drug delivery have been studied to determine how drugs with antitumor effects suppress tumor ingrowth, including the specific drugs incorporated, means of incorporating the drugs, mode of drug release, and stent structure. Advances have resulted in the construction of more effective non-vascular DES and ongoing clinical research. Non-vascular DES is expected to play a vital role in prolonging the survival of patients with malignant biliary obstruction.
Srinivasan, Asha R; Shoyele, Sunday A
2013-03-01
The ability to produce submicron particles of monoclonal antibodies of different sizes and shapes would enhance their application to pulmonary delivery. Although non-ionic surfactants are widely used as stabilizers in protein formulations, we hypothesized that non-ionic surfactants will affect the shape and size of submicron IgG particles manufactured through precipitation. Submicron particles of IgG1 were produced by a precipitation process which explores the fact that proteins have minimum solubility but maximum precipitation at the isoelectric point. Non-ionic surfactants were used for size and shape control, and as stabilizing agents. Aerosol performance of the antibody nanoparticles was assessed using Andersen Cascade Impactor. Spinhaler® and Handihaler® were used as model DPI devices. SEM micrographs revealed that the shape of the submicron particles was altered by varying the type of surfactant added to the precipitating medium. Particle size as measured by dynamic light scattering was also varied based on the type and concentration of the surfactant. The surfactants were able to stabilize the IgG during the precipitation process. Polyhedral, sponge-like, and spherical nanoparticles demonstrated improved aerosolization properties compared to irregularly shaped (>20 μm) unprocessed particles. Stable antibody submicron particles of different shapes and sizes were prepared. Careful control of the shape of such particles is critical to ensuring optimized lung delivery by dry powder inhalation.
Obstructive sleep apnoea in adults: body postures and weight changes interactions.
Oksenberg, Arie; Dynia, Aida; Nasser, Khitam; Gadoth, Natan
2012-08-01
The aim of this work was to study the relationship between changes of body posture dominance and changes of body weight overtime in adults with obstructive sleep apnoea. The participants were 112 non-treated adults with obstructive sleep apnoea who underwent two polysomnographic evaluations at our Sleep Disorders Unit during an average of 6.2years interval. Positional patients - having most of their breathing abnormalities in the supine posture and who became non-positional patients - had a significant gain in weight and a significant increase in apnoea-hypopnoea index, mainly in lateral apnoea-hypopnoea index. On the contrary, non-positional patients who became positional patients had a significant decrease in weight (but less than the increase in weight of positional patients who became non-positional patients) and showed a significant improvement in apnoea-hypopnoea index, again mainly in lateral apnoea-hypopnoea index. These non-positional patients who became positional patients initially had a less severe disease, as judged by apnoea-hypopnoea index, lateral apnoea-hypopnoea index and minimum SaO(2) during non-rapid eye movement sleep, and were less obese than non-positional patients who remained non-positional patients. The later were the patients who showed initially the worst disease and were more obese than the rest of the patients, and their condition did not change significantly over time. Non-positional patients who converted to positional patients showed a decrease in body weight and improvement of obstructive sleep apnoea, while positional patients who converted to non-positional patients showed an increase in body weight and worsening of obstructive sleep apnoea. It appears that weight changes have a modulatory effect on positional dominance, and lateral apnoea-hypopnoea index appears to be a sensitive parameter of these changes. © 2011 European Sleep Research Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, Khadija; Capaldi, Dante PI; Parraga, Grace
Purpose: Functional lung avoidance radiotherapy promises optimized therapy planning by minimizing dose to well-functioning lung and maximizing dose to the rest of the lung. Patients with NSCLC commonly present with co-morbid COPD and heterogeneously distributed ventilation abnormalities stemming from emphysema, airways disease, and tumour burden. We hypothesized that pulmonary functional imaging methods may be used to optimize radiotherapy plans to avoid regions of well-functioning lung and significantly improve outcomes like quality-of-life and survival. To ascertain the utility of functional lung avoidance therapy in clinical practice, we measured COPD phenotypes in NSCLC patients enrolled in a randomized-controlled-clinical-trial prior to curative intentmore » therapy. Methods: Thirty stage IIIA/IIIB NSCLC patients provided written informed consent to a randomized-controlled-clinical-trial ( http://clinicaltrials.gov/ct2/show/NCT02002052 ) comparing outcomes in patients randomized to standard or image-guided radiotherapy. Hyperpolarized noble gas MRI ventilation-defect-percent (VDP) (Kirby et al, Acad Radiol, 2012) as well as CT-emphysema measurements were determined. Patients were stratified based on quantitative imaging evidence of ventilation-defects and emphysema into two subgroups: 1) tumour-specific ventilation defects only (TSD), and, 2) tumour-specific and other ventilation defects with and without emphysema (TSD{sub VE}). Receiver-operating-characteristic (ROC) curves were used to characterize the performance of clinical measures as predictors of the presence of non-tumour specific ventilation defects. Results: Twenty-one out of thirty subjects (70%) had non-tumour specific ventilation defects (TSD{sub VE}) and nine subjects had ONLY tumour-specific defects (TSD). Subjects in the TSD{sub VE} group had significantly greater smoking-history (p=.006) and airflow obstruction (FEV{sub 1}/FVC) (p=.001). ROC analysis demonstrated an 87% classification rate for smoking pack-years, 90% for FEV{sub 1}/FVC, and 56% for tumour RECIST measurements for identifying patients with non-tumour and tumour-specific ventilation abnormalities. Conclusion: 70% of NSCLC patients had ventilation abnormalities stemming from emphysema, airways disease and tumour burden. Smoking-history and airflow obstruction, but not RECIST, identified NSCLC patients with ventilation abnormalities appropriate for functional lung avoidance therapy.« less
Alkhawam, Hassan; Nguyen, James; Sayanlar, Jason; Sogomonian, Robert; Desai, Ronak; Jolly, JoshPaul; Vyas, Neil; Syed, Umer; Homsi, Maher; Rubinstein, David
2016-01-01
In this study, we evaluated obesity as a single risk factor for coronary artery disease (CAD), along with the synergistic effect of obesity and other risk factors. A retrospective study of 7,567 patients admitted to hospital for chest pain from 2005 to 2014 and underwent cardiac catheterization. Patients were divided into two groups: obese and normal with body mass index (BMI) calculated as ≥30 kg/m(2) and <25, respectively. We assessed the modifiable and non-modifiable risk factors in obese patients and the degree of CAD. Of the 7,567 patients who underwent cardiac catheterization, 414 (5.5%) had a BMI ≥30. Of 414 obese patients, 332 (80%) had evidence of CAD. Obese patients displayed evidence of CAD at the age of 57 versus 63.3 in non-obese patients (p<0.001). Of the 332 patients with CAD and obesity, 55.4% had obstructive CAD versus 44.6% with non-obstructive CAD. In obese patients with CAD, male gender and history of smoking were major risk factors for development of obstructive CAD (p=0.001 and 0.01, respectively) while dyslipidemia was a major risk factor for non-obstructive CAD (p=0.01). Additionally, obese patients with more than one risk factor developed obstructive CAD compared to non-obstructive CAD (p=0.003). Having a BMI ≥30 appears to be a risk factor for early development of CAD. Severity of CAD in obese patients is depicted on non-modifiable and modifiable risk factors such as the male gender and smoking or greater than one risk factor, respectively.
Operative rigid bronchoscopy: indications, basic techniques and results.
Petrella, Francesco; Borri, Alessandro; Casiraghi, Monica; Cavaliere, Sergio; Donghi, Stefano; Galetta, Domenico; Gasparri, Roberto; Guarize, Juliana; Pardolesi, Alessandro; Solli, Piergiorgio; Tessitore, Adele; Venturino, Marco; Veronesi, Giulia; Spaggiari, Lorenzo
2014-05-27
Palliative airway treatments are essential to improve quality and length of life in lung cancer patients with central airway obstruction. Rigid bronchoscopy has proved to be an excellent tool to provide airway access and control in this cohort of patients. The main indication for rigid bronchoscopy in adult bronchology remains central airway obstruction due to neoplastic or non-neoplastic disease. We routinely use negative pressure ventilation (NPV) under general anaesthesia to prevent intraoperative apnoea and respiratory acidosis. This procedure allows opioid sparing, a shorter recovery time and avoids manually assisted ventilation, thereby reducing the amount of oxygen needed, while maintaining optimal surgical conditions. The major indication for NPV rigid bronchoscopy at our institution has been airway obstruction by neoplastic tracheobronchial tissue, mainly treated by laser-assisted mechanical dissection. When strictly necessary, we use silicone stents for neoplastic or cicatricial strictures, reserving metal stents to cover tracheo-oesophageal fistulae. NPV rigid bronchoscopy is an excellent tool for the endoscopic treatment of locally advanced tumours of the lung, especially when patients have exhausted the conventional therapeutic resources. Laser-assisted mechanical resection and stent placement are the most effective procedures for preserving quality of life in patients with advanced stage cancer. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-thoracic Surgery. All rights reserved.
ULTRAFINE PARTICLE DISPOSITION IN THE HEALTHY AND MILDLY OBSTRUCTED LUNG
ABSTRACT
We have shown previously that EGF receptor signaling is triggered by metals associated with ambient air particles. Specifically, we demonstrated that As, Zn and V activated the EGF receptor tyrosine kinase and the downstream kinases, MEK1/2 and ERK1/2. In this study, ...
Miller, Christine L; Bischoff, Karyn L; Hoff, Brent
2009-12-01
Two birds from a zoological collection suffered fatal intestinal obstruction after each ingested single particles of polyacrylamide gel. Polyacrylamide gel, used in soils for gardening and agriculture, exists as small granules in the dehydrated state but expands markedly upon exposure to water. Polyacrylamide gel might, therefore, be an unrecognized hazard for captive and wild birds and other small animals if consumed.
Indications and interventional options for non-resectable tracheal stenosis
Bacon, Jenny Louise; Patterson, Caroline Marie
2014-01-01
Non-specific presentation and normal examination findings in early disease often result in tracheal obstruction being overlooked as a diagnosis until patients present acutely. Once diagnosed, surgical options should be considered, but often patient co-morbidity necessitates other interventional options. Non-resectable tracheal stenosis can be successfully managed by interventional bronchoscopy, with therapeutic options including airway dilatation, local tissue destruction and airway stenting. There are common aspects to the management of tracheal obstruction, tracheomalacia and tracheal fistulae. This paper reviews the pathogenesis, presentation, investigation and management of tracheal disease, with a focus on tracheal obstruction and the role of endotracheal intervention in management. PMID:24624290
NASA Astrophysics Data System (ADS)
Diyana Rosli, Anis; Adenan, Nur Sabrina; Hashim, Hadzli; Ezan Abdullah, Noor; Sulaiman, Suhaimi; Baharudin, Rohaiza
2018-03-01
This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit’s skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample’s surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively.
A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations
NASA Technical Reports Server (NTRS)
Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw
2005-01-01
A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.
Clinical questions and the role CFD can play
NASA Astrophysics Data System (ADS)
Basu, Phd, Saikat; Kimbell, Phd, Julia S.; Zanation, Md, Adam M.; Ebert, Md, Charles S.; Senior, Md, Brent A.
2016-11-01
Use of computational fluid dynamics has revolutionized our perspectives on flow problems in engineering. These tools are however still underused in exploring clinical questions. Here we present some representative CFD-based findings that can improve current clinical practice. Chronic rhinosinusitis (CRS) is a complex inflammatory disease affecting over 11 million Americans yearly. It obstructs sinus pathways, thus hindering ventilation and clearance. Prescribed topical medications are often ineffective even after surgeries, partially owing to scanty drug delivery to the affected areas. We focus on improving the use of the most frequently used topical nasal sprays. From computed tomography (CT) scans, we develop 3D sinonasal airway models on the medical imaging software MimicsTM, which are then meshed using ICEM-CFDTM followed by airflow and particle simulations on FluentTM (v.14.5, ANSYS, Inc.). The results quantify aerosol particle delivery to target cavities before and after surgical alleviation. Various combinations of breathing techniques and head-nozzle orientations can increase target-site particle deposition over depositions using prevalent physician recommendations, and our findings facilitate identification of such optimal conditions. Supported by the National Institutes of Health (NIH) Grant R01 HL122154. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Tanis, Wilco; Habets, Jesse; van den Brink, Renee B A; Symersky, Petr; Budde, Ricardo P J; Chamuleau, Steven A J
2014-02-01
For acquired mechanical prosthetic heart valve (PHV) obstruction and suspicion on thrombosis, recently updated European Society of Cardiology guidelines advocate the confirmation of thrombus by transthoracic echocardiography, transesophageal echocardiography (TEE), and fluoroscopy. However, no evidence-based diagnostic algorithm is available for correct thrombus detection, although this is clinically important as fibrinolysis is contraindicated in non-thrombotic obstruction (isolated pannus). Here, we performed a review of the literature in order to propose a diagnostic algorithm. We performed a systematic search in Pubmed and Embase. Included publications were assessed on methodological quality based on the validated Quality Assessment of Diagnostic Accuracy Studies (QUADAS) II checklist. Studies were scarce (n = 15) and the majority were of moderate methodological quality. In total, 238 mechanical PHV's with acquired obstruction and a reliable reference standard were included for the evaluation of the role of fluoroscopy, echocardiography, or multidetector-row computed tomography (MDCT). In acquired PHV obstruction caused by thrombosis, mass detection by TEE and leaflet restriction detected by fluoroscopy were observed in the majority of cases (96 and 100%, respectively). In contrast, in acquired PHV obstruction free of thrombosis (pannus), leaflet restriction detected by fluoroscopy was absent in some cases (17%) and mass detection by TEE was absent in the majority of cases (66%). In case of mass detection by TEE, predictors for obstructive thrombus masses (compared with pannus masses) were leaflet restriction, soft echo density, and increased mass length. In situations of inconclusive echocardiography, MDCT may correctly detect pannus/thrombus based on the morphological aspects and localization. In acquired mechanical PHV obstruction without leaflet restriction and absent mass on TEE, obstructive PHV thrombosis cannot be confirmed and consequently, fibrinolysis is not advised. Based on the literature search and our opinion, a diagnostic algorithm is provided to correctly identify non-thrombotic PHV obstruction, which is highly relevant in daily clinical practice.
Exposure to particulate matter (PM2.5-10), including diesel exhaust particles (DEP) has been reported to induce lung injury and exacerbation of asthma and chronic obstructive pulmonary disease. Alveolar macrophages play a major role in the lung's response to inhaled particles and...
Improvements of the Radiation Code "MstrnX" in AORI/NIES/JAMSTEC Models
NASA Astrophysics Data System (ADS)
Sekiguchi, M.; Suzuki, K.; Takemura, T.; Watanabe, M.; Ogura, T.
2015-12-01
There is a large demand for an accurate yet rapid radiation transfer scheme accurate for general climate models. The broadband radiative transfer code "mstrnX", ,which was developed by Atmosphere and Ocean Research Institute (AORI) and was implemented in several global and regional climate models cooperatively developed in the Japanese research community, for example, MIROC (the Model for Interdisciplinary Research on Climate) [Watanabe et al., 2010], NICAM (Non-hydrostatic Icosahedral Atmospheric Model) [Satoh et al, 2008], and CReSS (Cloud Resolving Storm Simulator) [Tsuboki and Sakakibara, 2002]. In this study, we improve the gas absorption process and the scattering process of ice particles. For update of gas absorption process, the absorption line database is replaced by the latest versions of the Harvard-Smithsonian Center, HITRAN2012. An optimization method is adopted in mstrnX to decrease the number of integration points for the wavenumber integration using the correlated k-distribution method and to increase the computational efficiency in each band. The integration points and weights of the correlated k-distribution are optimized for accurate calculation of the heating rate up to altitude of 70 km. For this purpose we adopted a new non-linear optimization method of the correlated k-distribution and studied an optimal initial condition and the cost function for the non-linear optimization. It is known that mstrnX has a considerable bias in case of quadrapled carbon dioxide concentrations [Pincus et al., 2015], however, the bias is decreased by this improvement. For update of scattering process of ice particles, we adopt a solid column as an ice crystal habit [Yang et al., 2013]. The single scattering properties are calculated and tabulated in advance. The size parameter of this table is ranged from 0.1 to 1000 in mstrnX, we expand the maximum to 50000 in order to correspond to large particles, like fog and rain drop. Those update will be introduced to MIROC and adopted for CMIP6 experiment.
Although numerous field and epidemiological studies of particulate matter (PM) have strongly suggested that patients with COPD and smokers may be susceptible to fine particles (PM2.5), very little is known about the health effects on such sub-populations. In a randomized double...
Atar, Arda; Oktar, Tayfun; Kucukgergin, Canan; Kalelioglu, Ibrahim; Seckin, Sule; Ander, Haluk; Ziylan, Orhan; Kadioglu, Teoman Cem
2015-06-01
Serum carbohydrate antigen (CA) 19-9 has been clinically applied as a valuable tumor marker for pancreatic and gastrointestinal carcinoma. CA 19-9 is expressed in normal excretory epithelium tissues. Increased CA 19-9 has also been observed in uroepithelial tumors as well as in nonmalignant conditions including hydronephrosis secondary to ureteral stones. The purpose of this article is to evaluate the role of urinary CA 19-9 as a non-invasive biomarker in the postnatal differentiation of obstructive and non-obstructive hydronephrosis in patients with unilateral antenatal hydronephrosis. Infants with isolated renal pelvic dilatation, defined as the presence of anteroposterior pelvic diameter (APPD) equal to or greater than 7 mm based on antenatal ultrasound after 28 weeks' gestation, underwent systematic investigation for uropathies and were prospectively followed up. The pyeloplasty group consisted of 17 patients with ureteropelvic junction (UPJ) obstruction who had undergone pyeloplasty. The non-obstructive dilatation (NOD) group consisted of 17 patients with non-obstructive hydronephrosis, and the control group consisted of 21 healthy children. Commercial enzyme-linked immunosorbent assay (ELISA) kits were used to measure the urinary and serum CA 19-9 levels. In both hydronephrosis groups (pyeloplasty and non-obstructive dilatation), the correlations between urinary and serum CA 19-9 levels with the anteroposterior pelvic diameter measured at the third trimester and the postnatal initial evaluation and differential renal function were investigated. The initial median urinary CA 19-9 levels were significantly greater in children who underwent pyeloplasty than in both the non-obstructive hydronephrosis (143 ± 38 vs. 68 ± 23, respectively; p = 0.007) and the healthy control groups (143 ± 38 vs. 13 ± 3, respectively; p = 0.001) (Figure). Three months after surgery, the urinary CA 19-9 levels had decreased significantly according to the preoperative levels in the pyeloplasty group (143 ± 38 vs. 55 ± 16, p = 0.039). In both the pyeloplasty and NOD groups, there was a correlation of urinary CA 19-9 levels with differential renal function and a correlation of serum CA 19-9 levels with the initial anteroposterior pelvic diameter. Receiver operator characteristic (ROC) analysis revealed a better diagnostic profile for the urinary CA 19-9 level than for the serum CA 19-9 level in terms of identifying obstruction in the hydronephrosis groups (areas under the curve = 0.8 and 0.7, respectively). The best cut-off value of for urinary CA 19-9 was 85.5 U/mL with 76% sensitivity, 85% specificity. The negative predictive value was 80%. The results suggest that voided urine CA 19-9 levels seems to be a more useful marker than serum CA 19-9 in obstructive dilatation. An appropriate decrease in urinary CA 19-9 levels after pyeloplasty may be used as a predictor of surgical outcome. In addition, the results have a number of important diagnostic implications that should be further validated in a larger study population. Based on these results, we suggest that a high urinary CA 19-9 level is a non-invasive clinically applicable marker for differentiating between obstruction and non-obstructive dilatation. Copyright © 2015 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Tsuchiya, Kazuo; Toyoshima, Mikio; Kamiya, Yosuke; Nakamura, Yutaro; Baba, Satoshi; Suda, Takafumi
2017-01-01
An 85-year-old, never-smoking man presented with exertional dyspnea. He had been exposed to silica dust in the work place. Chest computed tomography revealed bronchial wall thickening without emphysema. A pulmonary function test showed airflow obstruction without impaired gas transfer. Airway hyperresponsiveness and reversibility were not evident. A transbronchial lung biopsy showed findings suggestive of mineral dust exposure, such as fibrosis and slight pigmentation of bronchioles. He was diagnosed with non-smoking chronic obstructive pulmonary disease (COPD) due to occupational exposure to silica dust. His symptoms were improved using an inhaled long-acting bronchodilator. The clinical characteristics of non-smoking COPD are discussed in this report.
Spectral analysis of bowel sounds in intestinal obstruction using an electronic stethoscope.
Ching, Siok Siong; Tan, Yih Kai
2012-09-07
To determine the value of bowel sounds analysis using an electronic stethoscope to support a clinical diagnosis of intestinal obstruction. Subjects were patients who presented with a diagnosis of possible intestinal obstruction based on symptoms, signs, and radiological findings. A 3M™ Littmann(®) Model 4100 electronic stethoscope was used in this study. With the patients lying supine, six 8-second recordings of bowel sounds were taken from each patient from the lower abdomen. The recordings were analysed for sound duration, sound-to-sound interval, dominant frequency, and peak frequency. Clinical and radiological data were reviewed and the patients were classified as having either acute, subacute, or no bowel obstruction. Comparison of bowel sound characteristics was made between these subgroups of patients. In the presence of an obstruction, the site of obstruction was identified and bowel calibre was also measured to correlate with bowel sounds. A total of 71 patients were studied during the period July 2009 to January 2011. Forty patients had acute bowel obstruction (27 small bowel obstruction and 13 large bowel obstruction), 11 had subacute bowel obstruction (eight in the small bowel and three in large bowel) and 20 had no bowel obstruction (diagnoses of other conditions were made). Twenty-five patients received surgical intervention (35.2%) during the same admission for acute abdominal conditions. A total of 426 recordings were made and 420 recordings were used for analysis. There was no significant difference in sound-to-sound interval, dominant frequency, and peak frequency among patients with acute bowel obstruction, subacute bowel obstruction, and no bowel obstruction. In acute large bowel obstruction, the sound duration was significantly longer (median 0.81 s vs 0.55 s, P = 0.021) and the dominant frequency was significantly higher (median 440 Hz vs 288 Hz, P = 0.003) when compared to acute small bowel obstruction. No significant difference was seen between acute large bowel obstruction and large bowel pseudo-obstruction. For patients with small bowel obstruction, the sound-to-sound interval was significantly longer in those who subsequently underwent surgery compared with those treated non-operatively (median 1.29 s vs 0.63 s, P < 0.001). There was no correlation between bowel calibre and bowel sound characteristics in both acute small bowel obstruction and acute large bowel obstruction. Auscultation of bowel sounds is non-specific for diagnosing bowel obstruction. Differences in sound characteristics between large bowel and small bowel obstruction may help determine the likely site of obstruction.
Spectral analysis of bowel sounds in intestinal obstruction using an electronic stethoscope
Ching, Siok Siong; Tan, Yih Kai
2012-01-01
AIM: To determine the value of bowel sounds analysis using an electronic stethoscope to support a clinical diagnosis of intestinal obstruction. METHODS: Subjects were patients who presented with a diagnosis of possible intestinal obstruction based on symptoms, signs, and radiological findings. A 3M™ Littmann® Model 4100 electronic stethoscope was used in this study. With the patients lying supine, six 8-second recordings of bowel sounds were taken from each patient from the lower abdomen. The recordings were analysed for sound duration, sound-to-sound interval, dominant frequency, and peak frequency. Clinical and radiological data were reviewed and the patients were classified as having either acute, subacute, or no bowel obstruction. Comparison of bowel sound characteristics was made between these subgroups of patients. In the presence of an obstruction, the site of obstruction was identified and bowel calibre was also measured to correlate with bowel sounds. RESULTS: A total of 71 patients were studied during the period July 2009 to January 2011. Forty patients had acute bowel obstruction (27 small bowel obstruction and 13 large bowel obstruction), 11 had subacute bowel obstruction (eight in the small bowel and three in large bowel) and 20 had no bowel obstruction (diagnoses of other conditions were made). Twenty-five patients received surgical intervention (35.2%) during the same admission for acute abdominal conditions. A total of 426 recordings were made and 420 recordings were used for analysis. There was no significant difference in sound-to-sound interval, dominant frequency, and peak frequency among patients with acute bowel obstruction, subacute bowel obstruction, and no bowel obstruction. In acute large bowel obstruction, the sound duration was significantly longer (median 0.81 s vs 0.55 s, P = 0.021) and the dominant frequency was significantly higher (median 440 Hz vs 288 Hz, P = 0.003) when compared to acute small bowel obstruction. No significant difference was seen between acute large bowel obstruction and large bowel pseudo-obstruction. For patients with small bowel obstruction, the sound-to-sound interval was significantly longer in those who subsequently underwent surgery compared with those treated non-operatively (median 1.29 s vs 0.63 s, P < 0.001). There was no correlation between bowel calibre and bowel sound characteristics in both acute small bowel obstruction and acute large bowel obstruction. CONCLUSION: Auscultation of bowel sounds is non-specific for diagnosing bowel obstruction. Differences in sound characteristics between large bowel and small bowel obstruction may help determine the likely site of obstruction. PMID:22969233
[The ultrasonic diagnosis of jaundice. 199 cases (author's transl)].
Weill, F; Marmier, A; Paronneau, P; Zeltner, F; Charton, M N
1978-11-25
Thank to a thorough ultrasonographic analysis of biliary tree ("shotgun sign"), liver and pancreas, a positive diagnosis of obstruction was carried out in 92% of cases. The success rate in diagnosis of level of obstruction was also 92%. Aetiologic diagnosis was successful in 61% of cases only (almost 100% in jaundices of pancreatic origine). No false positive diagnosis of obstruction was made in non-obstructive jaundice. This enabled to carry out instrumental cholangiography (i.e. "skinny" needle percutaneous cholangiography, and ERC) only in case of clinical, biological and sonographic discrepancies, or in hilar obstructions.
Kubo, Toru; Okumiya, Toshika; Baba, Yuichi; Hirota, Takayoshi; Tanioka, Katsutoshi; Yamasaki, Naohito; Sugiura, Tetsuro; Doi, Yoshinori L; Kitaoka, Hiroaki
2016-03-01
Erythrocyte creatine, a marker of erythrocyte age that increases with shortening of erythrocyte survival, has been reported to be a quantitative and reliable marker for intravascular hemolysis. We hypothesized that hemolysis could also occur due to intraventricular obstruction in patients with hypertrophic cardiomyopathy (HCM). The purpose of this study was to examine the presence of subclinical hemolysis and the relation between intravascular hemolysis and intraventricular pressure gradient (IVPG). We measured erythrocyte creatine in 92 HCM patients. Twelve patients had left ventricular outflow tract obstruction (LVOTO), 4 had midventricular obstruction (MVO), and the remaining 76 were non-obstructive. Erythrocyte creatine levels ranged from 0.92 to 4.36μmol/g hemoglobin. Higher levels of erythrocyte creatine were associated with higher IVPG (r=0.437, p<0.001). If erythrocyte creatine levels are high (≥1.8μmol/g hemoglobin), subclinical hemolysis is considered to be present. Half of LVOTO patients and no MVO patients showed high erythrocyte creatine levels. Although non-obstructive patients did not show significant intraventricular obstruction at rest, some showed high erythrocyte creatine levels. When LVOT-PG was measured during the strain phase of the Valsalva maneuver in 20 non-obstructive patients, 7 of those 20 patients showed LVOTO. In the 20 patients, there was no relation between erythrocyte creatine levels and LVOT-PG before the Valsalva maneuver (r=0.125, p=0.600), whereas there was a significant correlation between erythrocyte creatine and LVOT-PG provoked by the Valsalva maneuver (r=0.695, p=0.001). There is biochemical evidence of subclinical hemolysis in patients with HCM, and this hemolysis seems to be associated with LVOTO provoked by daily physical activities. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Fiddyment, Sarah; Barceló-Batllori, Sílvia; Pocoví, Miguel; García-Otín, Angel-Luis
2011-11-01
Apolipoprotein A-I Zaragoza (L144R) (apo A-I Z), has been associated with severe hypoalphalipoproteinemia and an enhanced effect of high density lipoprotein (HDL) reverse cholesterol transport. In order to perform further studies with this protein we have optimized an expression and purification method of recombinant wild-type apo A-I and apo A-I Z and produced mimetic HDL particles with each protein. An pET-45 expression system was used to produce N-terminal His-tagged apo A-I, wild-type or mutant, in Escherichia coli BL21 (DE3) which was subsequently purified by affinity chromatography in non-denaturing conditions. HDL particles were generated via a modified sodium cholate method. Expression and purification of both proteins was verified by SDS-PAGE, MALDI-TOF MS and immunochemical procedures. Yield was 30mg of purified protein (94% purity) per liter of culture. The reconstituted HDL particles checked via non-denaturing PAGE showed high homogeneity in their size when reconstituted both with wild-type apo A-I and apo A-I Z. An optimized system for the expression and purification of wild-type apo A-I and apo A-I Z with high yield and purity grade has been achieved, in addition to their use in reconstituted HDL particles, as a basis for further studies. Copyright © 2011 Elsevier Inc. All rights reserved.
Lai, Chi-Chih; Friedman, Michael; Lin, Hsin-Ching; Wang, Pa-Chun; Hwang, Michelle S; Hsu, Cheng-Ming; Lin, Meng-Chih; Chin, Chien-Hung
2015-08-01
To identify standard clinical parameters that may predict the optimal level of continuous positive airway pressure (CPAP) in adult patients with obstructive sleep apnea/hypopnea syndrome (OSAHS). This is a retrospective study in a tertiary academic medical center that included 129 adult patients (117 males and 12 females) with OSAHS confirmed by diagnostic polysomnography (PSG). All OSAHS patients underwent successful full-night manual titration to determine the optimal CPAP pressure level for OSAHS treatment. The PSG parameters and completed physical examination, including body mass index, tonsil size grading, modified Mallampati grade (also known as updated Friedman's tongue position [uFTP]), uvular length, neck circumference, waist circumference, hip circumference, thyroid-mental distance, and hyoid-mental distance (HMD) were recorded. When the physical examination variables and OSAHS disease were correlated singly with the optimal CPAP pressure, we found that uFTP, HMD, and apnea/hypopnea index (AHI) were reliable predictors of CPAP pressures (P = .013, P = .002, and P < .001, respectively, by multiple regression). When all important factors were considered in a stepwise multiple linear regression analysis, a significant correlation with optimal CPAP pressure was formulated by factoring the uFTP, HMD, and AHI (optimal CPAP pressure = 1.01 uFTP + 0.74 HMD + 0.059 AHI - 1.603). This study distinguished the correlation between uFTP, HMD, and AHI with the optimal CPAP pressure. The structure of the upper airway (especially tongue base obstruction) and disease severity may predict the effective level of CPAP pressure. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Non linear predictive control of a LEGO mobile robot
NASA Astrophysics Data System (ADS)
Merabti, H.; Bouchemal, B.; Belarbi, K.; Boucherma, D.; Amouri, A.
2014-10-01
Metaheuristics are general purpose heuristics which have shown a great potential for the solution of difficult optimization problems. In this work, we apply the meta heuristic, namely particle swarm optimization, PSO, for the solution of the optimization problem arising in NLMPC. This algorithm is easy to code and may be considered as alternatives for the more classical solution procedures. The PSO- NLMPC is applied to control a mobile robot for the tracking trajectory and obstacles avoidance. Experimental results show the strength of this approach.
Diouf, Joseph Samba; Diallo, Bay Karim; Diop-Ba, Khady; Badiane, Alpha; Ngom, Papa Ibrahima; Sonko, Ousmane; Diagne, Falou
2018-06-01
The role of obstructive tonsils in ventilatory disorders and abnormal lip posture is widely discussed in the literature but remains controversial. The data reported on the probable relationship between obstructive tonsils and an existing breathing disorder or lip incompetence were subjective. The purpose of this study was to evaluate the relationship between the obstructive character of the tonsils and the type of ventilation and lip posture. This is a cross-sectional study performed in children aged from 6 to 12 years old. The subjects were divided into two groups (A and B) according to the obstructive or non-obstructive character of the palatal tonsils. Type of ventilation and lip posture at rest were recorded for each child. The collected data were analysed using the SPSS 20.0 software (for Windows). A Student's t-test and a Chi 2 test were respectively used to compare quantitative and qualitative variables according to the obstructive character of the tonsils for each group. The level of significance is fixed at P=0.05. The subjects in group B with obstructive palatal tonsils were significantly more likely to oral breathing and lip incompetence than the subjects with non-obstructive tonsils (group A). The clinical examination of children with ventilatory and postural disorders with lip incompetence must be directed towards the search for associated obstructive palatal tonsils in order to plan an early etiological treatment. This would allow to avoid subsequent problems in the dentofacial structures. Copyright © 2018. Published by Elsevier Masson SAS.
Bladder outlet obstruction in women: definition and characteristics.
Groutz, A; Blaivas, J G; Chaikin, D C
2000-01-01
The prevalence of bladder outlet obstruction in women is unknown and most probably has been underestimated. Moreover, there are no standard definitions for the diagnosis of bladder outlet obstruction in women. Our study was conducted to define as well as to examine the clinical and urodynamic characteristics of bladder outlet obstruction among women referred for evaluation of voiding symptoms. Bladder outlet obstruction was defined as a persistent, low, maximum "free" flow rate of <12 mL/s in repeated non-invasive uroflow studies, combined with high detrusor pressure at a maximum flow (p(det.Q)(max) >20 cm H(2)O) during detrusor pressure-uroflow studies. A urodynamic database of 587 consecutive women identified 38 (6.5%) women with bladder outlet obstruction. The mean age of the patients was 63.9 +/- 17.5 years. The mean maximum "free" flow, voided volume, and residual urinary volume were 9.4 +/-3.9 mL/s, 144. 9 +/- 72.7 mL, and 86.1 +/- 98.8 mL, respectively. The mean p(det. Q)(max) was 37.2 +/- 19.2 cm H(2)O. Previous anti-incontinence surgery and severe genital prolapse were the most common etiologies, accounting for half of the cases. Other, less common, etiologies included urethral stricture (13%), primary bladder neck obstruction (8%), learned voiding dysfunction (5%), and detrusor external sphincter dyssynergia (5%). Symptomatology was defined as mixed obstructive and irritative in 63% of the patients, isolated irritative in 29%, and isolated obstructive in other 8%. In conclusion, bladder outlet obstruction in women appears to be more common than was previously recognized, occurring in 6.5% of our patients. Micturition symptoms relevant to bladder outlet obstruction are non-specific, and a full urodynamic evaluation is essential in making the correct diagnosis and formulating a treatment plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jianxin; Mei, Deqing, E-mail: meidq-127@zju.edu.cn; Yang, Keji
2014-08-14
In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, anmore » approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.« less
Inflammasome Activity in Non-Microbial Lung Inflammation
Ather, Jennifer L.; Martin, Rebecca A.; Ckless, Karina; Poynter, Matthew E.
2015-01-01
The understanding of interleukin-1 (IL-1) family cytokines in inflammatory disease has rapidly developed, due in part to the discovery and characterization of inflammasomes, which are multi-subunit intracellular protein scaffolds principally enabling recognition of a myriad of cellular stimuli, leading to the activation of caspase-1 and the processing of IL-1β and IL-18. Studies continue to elucidate the role of inflammasomes in immune responses induced by both microbes and environmental factors. This review focuses on the current understanding of inflammasome activity in the lung, with particular focus on the non-microbial instigators of inflammasome activation, including inhaled antigens, oxidants, cigarette smoke, diesel exhaust particles, mineral fibers, and engineered nanomaterials, as well as exposure to trauma and pre-existing inflammatory conditions such as metabolic syndrome. Inflammasome activity in these sterile inflammatory states contribute to diseases including asthma, chronic obstructive disease, acute lung injury, ventilator-induced lung injury, pulmonary fibrosis, and lung cancer. PMID:25642415
Haule, Caspar; Ongom, Peter A; Kimuli, Timothy
2013-01-01
Introduction The treatment of adhesive small bowel obstruction is controversial, with both operative and non-operative management practiced in different centers worldwide. Non-operative management is increasingly getting popular, though operative rates still remain high. A study to compare the efficacy of an oral water-soluble medium (Gastrografin®) with standard conservative management, both non-operative methods, in the management of this condition was conducted in a tertiary Sub Saharan hospital. Methods An open randomised controlled clinical trial was conducted between September 2012 and March 2013 at Mulago National Referral and Teaching Hospital, Uganda. Fifty patients of both genders, with adhesive small bowel obstruction, in the hospital’s emergency and general surgical wards were included. Randomisation was to Gastrografin® and standard conservative treatment groups. The primary outcomes were: the time interval between admission and relief of obstruction, the length of hospital stay, and the rates of operative surgery. Results All 50 recruited patients were followed up and analysed; 25 for each group. In the Gastrografin® group, 22 (88%) patients had relief of obstruction following the intervention, with 3 (12%) requiring surgery. The conservative treatment group had 16 (64%) patients relieved of obstruction conservatively, and 9 (36%) required surgery. The difference in operative rates between the two groups was not statistically significance (P = 0.67). Average time to relief of obstruction was shorter in the Gastrografin® group (72.52 hrs) compared to the conservative treatment group (117.75 hrs), a significant difference (P = 0.023). The average length of hospital stay was shorter in the Gastrografin® group (5.62 days) compared to the conservative treatment group (10.88 days), a significant difference (P = 0.04). Conclusion The use of Gastrografin® in patients with adhesive small bowel obstruction helps in earlier resolution of obstruction and reduces the length of hospital stay compared with standard conservative management. Its role in reducing the rate of laparotomies remains inconclusive. PMID:24729947
Haule, Caspar; Ongom, Peter A; Kimuli, Timothy
2013-12-01
The treatment of adhesive small bowel obstruction is controversial, with both operative and non-operative management practiced in different centers worldwide. Non-operative management is increasingly getting popular, though operative rates still remain high. A study to compare the efficacy of an oral water-soluble medium (Gastrografin ® ) with standard conservative management, both non-operative methods, in the management of this condition was conducted in a tertiary Sub Saharan hospital. An open randomised controlled clinical trial was conducted between September 2012 and March 2013 at Mulago National Referral and Teaching Hospital, Uganda. Fifty patients of both genders, with adhesive small bowel obstruction, in the hospital's emergency and general surgical wards were included. Randomisation was to Gastrografin ® and standard conservative treatment groups. The primary outcomes were: the time interval between admission and relief of obstruction, the length of hospital stay, and the rates of operative surgery. All 50 recruited patients were followed up and analysed; 25 for each group. In the Gastrografin ® group, 22 (88%) patients had relief of obstruction following the intervention, with 3 (12%) requiring surgery. The conservative treatment group had 16 (64%) patients relieved of obstruction conservatively, and 9 (36%) required surgery. The difference in operative rates between the two groups was not statistically significance ( P = 0.67 ). Average time to relief of obstruction was shorter in the Gastrografin ® group (72.52 hrs) compared to the conservative treatment group (117.75 hrs), a significant difference ( P = 0.023 ). The average length of hospital stay was shorter in the Gastrografin ® group (5.62 days) compared to the conservative treatment group (10.88 days), a significant difference ( P = 0.04 ). The use of Gastrografin ® in patients with adhesive small bowel obstruction helps in earlier resolution of obstruction and reduces the length of hospital stay compared with standard conservative management. Its role in reducing the rate of laparotomies remains inconclusive.
NASA Technical Reports Server (NTRS)
Yoda, M.; Bailey, B. C.
2000-01-01
On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.
Lühr, Armin; Löck, Steffen; Roth, Klaus; Helmbrecht, Stephan; Jakobi, Annika; Petersen, Jørgen B; Just, Uwe; Krause, Mechthild; Enghardt, Wolfgang; Baumann, Michael
2014-02-18
Identifying those patients who have a higher chance to be cured with fewer side effects by particle beam therapy than by state-of-the-art photon therapy is essential to guarantee a fair and sufficient access to specialized radiotherapy. The individualized identification requires initiatives by particle as well as non-particle radiotherapy centers to form networks, to establish procedures for the decision process, and to implement means for the remote exchange of relevant patient information. In this work, we want to contribute a practical concept that addresses these requirements. We proposed a concept for individualized patient allocation to photon or particle beam therapy at a non-particle radiotherapy institution that bases on remote treatment plan comparison. We translated this concept into the web-based software tool ReCompare (REmote COMparison of PARticlE and photon treatment plans). We substantiated the feasibility of the proposed concept by demonstrating remote exchange of treatment plans between radiotherapy institutions and the direct comparison of photon and particle treatment plans in photon treatment planning systems. ReCompare worked with several tested standard treatment planning systems, ensured patient data protection, and integrated in the clinical workflow. Our concept supports non-particle radiotherapy institutions with the patient-specific treatment decision on the optimal irradiation modality by providing expertise from a particle therapy center. The software tool ReCompare may help to improve and standardize this personalized treatment decision. It will be available from our website when proton therapy is operational at our facility.
Pang, Zhaofei; Ding, Nan; Dong, Wei; Ni, Yang; Zhang, Tiehong; Qu, Xiao
2017-01-01
Background In the eighth TNM staging system proposal, lung cancer with part or complete obstructive pneumonitis/atelectasis was classified to T2 category, and dividing lines of T category were changed. We conducted this study to search prognostic effect of preoperative obstructive pneumonitis/atelectasis and its comparison with tumor size. Methods We collected clinical characteristics, preoperative hematological indicators, follow-up information of 1,313 lung cancer patients. Chi-square test was used to search relationship between obstruction pneumonitis/atelectasis and other factors. Kaplan-Meier (K-M) curves and cox regression methods were used for survival analysis. Results Preoperative obstructive pneumonitis/atelectasis indicated shorter OS (HR: 1.308; 95% CI: 1.058–1.619) and RFS (HR: 1.276; 95% CI: 1.032–1.579) as an independent factor. In comparison with tumor size, we found patients with obstructive pneumonitis/atelectasis and T1 size tumor had similar prognosis to those with T2 size but without obstructive pneumonitis/atelectasis, and OS, RFS of patients with obstructive pneumonitis/atelectasis and T2 size were significantly shorter than those with T2 tumor size but without obstructive pneumonitis/atelectasis, while similar to patients with T3 tumor size but without obstructive pneumonitis/atelectasis according to division by the eighth edition. We also found obstructive pneumonitis/atelectasis was significantly related to higher neutrophil (P<0.001), platelet (P<0.001), monocyte (P<0.001), NLR (P<0.001), PLR (P=0.002), ESR (P<0.001) and lower LMR (P<0.001). Conclusions Preoperative obstructive pneumonitis/atelectasis predicted poor survival independently in non-small cell lung cancer (NSCLC). And we suggested which T staging group the patients with obstructive pneumonitis/atelectasis would be divided to should depend on tumor size in the eighth TNM staging system. PMID:28449485
NASA Astrophysics Data System (ADS)
Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.
1992-10-01
The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.
Optimization design of LED heat dissipation structure based on strip fins
NASA Astrophysics Data System (ADS)
Xue, Lingyun; Wan, Wenbin; Chen, Qingguang; Rao, Huanle; Xu, Ping
2018-03-01
To solve the heat dissipation problem of LED, a radiator structure based on strip fins is designed and the method to optimize the structure parameters of strip fins is proposed in this paper. The combination of RBF neural networks and particle swarm optimization (PSO) algorithm is used for modeling and optimization respectively. During the experiment, the 150 datasets of LED junction temperature when structure parameters of number of strip fins, length, width and height of the fins have different values are obtained by ANSYS software. Then RBF neural network is applied to build the non-linear regression model and the parameters optimization of structure based on particle swarm optimization algorithm is performed with this model. The experimental results show that the lowest LED junction temperature reaches 43.88 degrees when the number of hidden layer nodes in RBF neural network is 10, the two learning factors in particle swarm optimization algorithm are 0.5, 0.5 respectively, the inertia factor is 1 and the maximum number of iterations is 100, and now the number of fins is 64, the distribution structure is 8*8, and the length, width and height of fins are 4.3mm, 4.48mm and 55.3mm respectively. To compare the modeling and optimization results, LED junction temperature at the optimized structure parameters was simulated and the result is 43.592°C which approximately equals to the optimal result. Compared with the ordinary plate-fin-type radiator structure whose temperature is 56.38°C, the structure greatly enhances heat dissipation performance of the structure.
NASA Astrophysics Data System (ADS)
Amelard, Robert; Pfisterer, Kaylen J.; Jagani, Shubh; Clausi, David A.; Wong, Alexander
2018-02-01
Obstructive sleep apnea (OSA) affects 20% of the adult population, and is associated with cardiovascular and cognitive morbidities. However, it is estimated that up to 80% of treatable OSA cases remain undiagnosed. Cur- rent methods for diagnosing OSA are expensive, labor-intensive, and involve uncomfortable wearable sensors. This study explored the feasibility of non-contact biophotonic assessment of OSA cardiovascular biomarkers via photoplethysmography imaging (PPGI). In particular, PPGI was used to monitor the hemodynamic response to obstructive respiratory events. Sleep apnea onset was simulated using Muller's maneuver in which breathing was obstructed by a respiratory clamp. A custom PPGI system, coded hemodynamic imaging (CHI), was positioned 1 m above the bed and illuminated the participant's head with 850 nm light, providing non-intrusive illumination for night-time monitoring. A video was recorded before, during and following an apnea event at 60 fps, yielding 17 ms temporal resolution. Per-pixel absorbance signals were extracted using a Beer-Lambert derived light transport model, and subsequently denoised. The extracted hemodynamic signal exhibited dynamic temporal modulation during and following the apnea event. In particular, the pulse wave amplitude (PWA) decreased during obstructed breathing, indicating vasoconstriction. Upon successful inhalation, the PWA gradually increased toward homeostasis following a temporal phase delay. This temporal vascular tone modulation provides insight into autonomic and vascular response, and may be used to assess sleep apnea using non-contact biophotonic imaging.
Pantub, Ketrawee; Wongtrakul, Paveena; Janwitayanuchit, Wicharn
2017-01-01
Nanostructured lipid carriers loaded salicylic acid (NLCs-SA) were developed and optimized by using the design of experiment (DOE). Box-Behnken experimental design of 3-factor, 3-level was applied for optimization of nanostructured lipid carriers prepared by emulsification method. The independent variables were total lipid concentration (X 1 ), stearic acid to Lexol ® GT-865 ratio (X 2 ) and Tween ® 80 concentration (X 3 ) while the particle size was a dependent variable (Y). Box-Behnken design could create 15 runs by setting response optimizer as minimum particle size. The optimized formulation consists of 10% of total lipid, a mixture of stearic acid and capric/caprylic triglyceride at a 4:1 ratio, and 25% of Tween ® 80 which the formulation was applied in order to prepare in both loaded and unloaded salicylic acid. After preparation for 24 hours, the particle size of loaded and unloaded salicylic acid was 189.62±1.82 nm and 369.00±3.37 nm, respectively. Response surface analysis revealed that the amount of total lipid is a main factor which could affect the particle size of lipid carriers. In addition, the stability studies showed a significant change in particle size by time. Compared to unloaded nanoparticles, the addition of salicylic acid into the particles resulted in physically stable dispersion. After 30 days, sedimentation of unloaded lipid carriers was clearly observed. Absolute values of zeta potential of both systems were in the range of 3 to 18 mV since non-ionic surfactant, Tween ® 80, providing steric barrier was used. Differential thermograms indicated a shift of endothermic peak from 55°C for α-crystal form in freshly prepared samples to 60°C for β´-crystal form in storage samples. It was found that the presence of capric/caprylic triglyceride oil could enhance encapsulation efficiency up to 80% and facilitate stability of the particles.
Chow, Po-Ming; Hsu, Jui-Shan; Wang, Shuo-Meng; Yu, Hong-Jheng; Pu, Yeong-Shiau; Liu, Kao-Lang
2014-06-01
To provide short-term result of the metallic ureteral stent in patients with malignant ureteral obstruction and identify radiological findings predicting stent failure. The records of all patients with non-urological malignant diseases who have received metallic ureteral stents from July 2009 to March 2012 for ureteral obstruction were reviewed. Stent failure was detected by clinical symptoms and imaging studies. Survival analysis was used to estimate patency rates and factors predicting stent failure. A total of 74 patients with 130 attempts of stent insertion were included. A total of 113 (86.9 %) stents were inserted successfully and 103 (91.2 %) achieved primary patency. After excluding cases without sufficient imaging data, 94 stents were included in the survival analysis. The median functional duration of the 94 stents was 6.2 months (range 3-476 days). Obstruction in abdominal ureter (p = 0.0279) and lymphatic metastasis around ureter (p = 0.0398) were risk factors for stent failure. The median functional durations of the stents for abdominal and pelvic obstructions were 4.5 months (range 3-263 days) and 6.5 months (range 4-476 days), respectively. The median durations of the stents with and without lymphatic metastasis were 5.3 months (range 4-398 days) and 7.8 months (range 31-476 days), respectively. Metallic ureteral stents are effective and safe in relieving ureteral obstructions resulting from non-urological malignancies, and abdominal ureteral obstruction and lymphatic metastasis around ureter were associated with shorter functional duration.
Farraj, Aimen K; Haykal-Coates, Najwa; Ledbetter, Allen D; Evansky, Paul A; Gavett, Stephen H
2006-06-01
Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.
NASA Astrophysics Data System (ADS)
Varun, Sajja; Reddy, Kalakada Bhargav Bal; Vardhan Reddy, R. R. Vishnu
2016-09-01
In this research work, development of a multi response optimization technique has been undertaken, using traditional desirability analysis and non-traditional particle swarm optimization techniques (for different customer's priorities) in wire electrical discharge machining (WEDM). Monel 400 has been selected as work material for experimentation. The effect of key process parameters such as pulse on time (TON), pulse off time (TOFF), peak current (IP), wire feed (WF) were on material removal rate (MRR) and surface roughness(SR) in WEDM operation were investigated. Further, the responses such as MRR and SR were modelled empirically through regression analysis. The developed models can be used by the machinists to predict the MRR and SR over a wide range of input parameters. The optimization of multiple responses has been done for satisfying the priorities of multiple users by using Taguchi-desirability function method and particle swarm optimization technique. The analysis of variance (ANOVA) is also applied to investigate the effect of influential parameters. Finally, the confirmation experiments were conducted for the optimal set of machining parameters, and the betterment has been proved.
Jespersen, Lasse; Abildstrom, Steen Z; Hvelplund, Anders; Madsen, Jan K; Galatius, Soren; Pedersen, Frants; Hojberg, Soren; Prescott, Eva
2014-01-01
To evaluate risk of hospitalization due to cardiovascular disease (CVD) and repeat coronary angiography (CAG) in stable angina pectoris (SAP) with no obstructive coronary artery disease (CAD) versus obstructive CAD, and asymptomatic reference individuals. We followed 11,223 patients with no prior CVD having a first-time CAG in 1998-2009 due to SAP symptoms and 5,695 asymptomatic reference individuals from the Copenhagen City Heart Study through registry linkage for 7.8 years (median). In recurrent event survival analysis, patients with SAP had 3-4-fold higher risk of hospitalization for CVD irrespective of CAG findings and cardiovascular comorbidity. Multivariable adjusted hazard ratios(95%CI) for patients with angiographically normal coronary arteries was 3.0(2.5-3.5), for angiographically diffuse non-obstructive CAD 3.9(3.3-4.6) and for 1-3-vessel disease 3.6-4.1(range)(all P<0.001). Mean accumulated hospitalization time was 3.5(3.0-4.0)(days/10 years follow-up) in reference individuals and 4.5(3.8-5.2)/7.0(5.4-8.6)/6.7(5.2-8.1)/6.1(5.2-7.4)/8.6(6.6-10.7) in patients with angiographically normal coronary arteries/angiographically diffuse non-obstructive CAD/1-, 2-, and 3-vessel disease, respectively (all P<0.05, age-adjusted). SAP symptoms predicted repeat CAG with multivariable adjusted hazard ratios for patients with angiographically normal coronary arteries being 2.3(1.9-2.9), for angiographically diffuse non-obstructive CAD 5.5(4.4-6.8) and for obstructive CAD 6.6-9.4(range)(all P<0.001). Patients with SAP symptoms and angiographically normal coronary arteries or angiographically diffuse non-obstructive CAD suffer from considerably greater CVD burdens in terms of hospitalization for CVD and repeat CAG compared with asymptomatic reference individuals even after adjustment for cardiac risk factors and exclusion of cardiovascular comorbidity as cause. Contrary to common perception, excluding obstructive CAD by CAG in such patients does not ensure a benign cardiovascular prognosis.
Sharifiaghdas, Farzaneh; Mirzaei, Mahboubeh; Ahadi, Babak
2014-03-04
To evaluate the results of percutaneous nerve evaluation (PNE) implantation in the treatment of non-obstructive urinary retention and report the changes in the urodynamic parameters. Patients with non-obstructive urinary retention or incomplete bladder emptying were included. All patients filled a 7 days voiding diary chart and underwent PNE for one week, and the patient was asked to record the second voiding diary chart and repeat urodynamic study in this period. Then the PNE lead was removed from the S3 foramen, but the connections remained fixed in place for another 3 days to exclude the placebo effects and the third voiding diary chart was completed by the patient. The patient wasn't aware of lead removal. Success was defined as, more than 50% improvement in at least one of the urinary tract symptoms. Forty five patients with a mean age of 37.1 years (ranged 9-83 years) were treated with PNE for refractory, non-obstructive urinary retention. Of study subjects 28 complained from complete urinary retention, and 17 had incomplete emptying. Of participants, 28 (62.2%) demonstrated greater than 50% improvement in the urinary symptoms. Urodynamic data, showed a statistically significant increase in maximum flow rate (8 ± 2.2 mL/sec to 16 ± 3.6 mL/sec, P = .06) and voided volume (35 mL to 187 mL, P = .032) in the responders. Any placebo effects in PNE have not been seen. Patients with complete non obstructive urinary retention were good responders to PNE. The placebo effect in sacral nerve stimulation was negligible.
Kim, Sung Han; Park, Boram; Joo, Jungnam; Joung, Jae Young; Seo, Ho Kyung; Chung, Jinsoo; Lee, Kang Hyun
2017-01-01
Objective To evaluate predictive factors for retrograde ureteral stent failure in patients with non-urological malignant ureteral obstruction. Materials and methods Between 2005 and 2014, medical records of 284 malignant ureteral obstruction patients with 712 retrograde ureteral stent trials including 63 (22.2%) having bilateral malignant ureteral obstruction were retrospectively reviewed. Retrograde ureteral stent failure was defined as the inability to place ureteral stents by cystoscopy, recurrent stent obstruction within one month, or non-relief of azotemia within one week from the prior retrograde ureteral stent. The clinicopathological parameters and first retrograde pyelographic findings were analyzed to investigate the predictive factors for retrograde ureteral stent failure and conversion to percutaneous nephrostomy in multivariate analysis with a statistical significance of p < 0.05. Results Retrograde ureteral stent failure was detected in 14.1% of patients. The mean number of retrograde ureteral stent placements and indwelling duration of the ureteral stents were 2.5 ± 2.6 times and 8.6 ± 4.0 months, respectively. Multivariate analyses identified several specific RGP findings as significant predictive factors for retrograde ureteral stent failure (p < 0.05). The significant retrograde pyelographic findings included grade 4 hydronephrosis (hazard ratio 4.10, 95% confidence interval 1.39–12.09), irreversible ureteral kinking (hazard ratio 2.72, confidence interval 1.03–7.18), presence of bladder invasion (hazard ratio 4.78, confidence interval 1.81–12.63), and multiple lesions of ureteral stricture (hazard ratio 3.46, confidence interval 1.35–8.83) (p < 0.05). Conclusion Retrograde pyelography might prevent unnecessary and ineffective retrograde ureteral stent trials in patients with advanced non-urological malignant ureteral obstruction. PMID:28931043
An online monitor of the oxidative capacity of aerosols (o-MOCA)
NASA Astrophysics Data System (ADS)
Eiguren-Fernandez, Arantzazu; Kreisberg, Nathan; Hering, Susanne
2017-02-01
The capacity of airborne particulate matter to generate reactive oxygen species (ROS) has been correlated with the generation of oxidative stress both in vitro and in vivo. The cellular damage from oxidative stress, and by implication with ROS, is associated with several common diseases, such as asthma and chronic obstructive pulmonary disease (COPD), and some neurological diseases. Yet currently available chemical and in vitro assays to determine the oxidative capacity of ambient particles require large samples, analyses are typically done offline, and the results are not immediate.Here we report the development of an online monitor of the oxidative capacity of aerosols (o-MOCA) to provide online, time-resolved assessment of the capacity of airborne particles to generate ROS. Our approach combines the Liquid Spot Sampler (LSS), which collects particles directly into small volumes of liquid, and a chemical module optimized for online measurement of the oxidative capacity of aerosol using the dithiothreitol (DTT) assay. The LSS uses a three-stage, laminar-flow water condensation approach to enable the collection of particles as small as 5 nm into liquid. The DTT assay has been improved to allow the online, time-resolved analysis of samples collected with the LSS but could be adapted to other collection methods or offline analysis of liquid extracts.The o-MOCA was optimized and its performance evaluated using the 9,10-phenanthraquinone (PQ) as a standard redox-active compound. Laboratory testing shows minimum interferences or carryover between consecutive samples, low blanks, and a reproducible, linear response between the DTT consumption rate (nmol min-1) and PQ concentration (µM). The calculated limit of detection for o-MOCA was 0.15 nmol min-1. The system was validated with a diesel exhaust particle (DEP) extract, previously characterized and used for the development, improvement, and validation of the standard DTT analysis. The DTT consumption rates (nmol min-1) obtained with the o-MOCA were within experimental uncertainties of those previously reported for these DEP samples. In ambient air testing, the fully automated o-MOCA was run unattended for 3 days with 3 h time resolution and showed a diurnal and daily variability in the measured consumption rates (nmol min-1 m-3).
Koo, Soo Kweon; Kwon, Soon Bok; Kim, Yang Jae; Moon, J I Seung; Kim, Young Jun; Jung, Sung Hoon
2017-03-01
Snoring is a sign of increased upper airway resistance and is the most common symptom suggestive of obstructive sleep apnea. Acoustic analysis of snoring sounds is a non-invasive diagnostic technique and may provide a screening test that can determine the location of obstruction sites. We recorded snoring sounds according to obstruction level, measured by DISE, using a smartphone and focused on the analysis of formant frequencies. The study group comprised 32 male patients (mean age 42.9 years). The spectrogram pattern, intensity (dB), fundamental frequencies (F 0 ), and formant frequencies (F 1 , F 2 , and F 3 ) of the snoring sounds were analyzed for each subject. On spectrographic analysis, retropalatal level obstruction tended to produce sharp and regular peaks, while retrolingual level obstruction tended to show peaks with a gradual onset and decay. On formant frequency analysis, F 1 (retropalatal level vs. retrolingual level: 488.1 ± 125.8 vs. 634.7 ± 196.6 Hz) and F 2 (retropalatal level vs. retrolingual level: 1267.3 ± 306.6 vs. 1723.7 ± 550.0 Hz) of retrolingual level obstructions showed significantly higher values than retropalatal level obstruction (p < 0.05). This suggests that the upper airway is more severely obstructed with retrolingual level obstruction and that there is a greater change in tongue position. Acoustic analysis of snoring is a non-invasive diagnostic technique that can be easily applied at a relatively low cost. The analysis of formant frequencies will be a useful screening test for the prediction of occlusion sites. Moreover, smartphone can be effective for recording snoring sounds.
Charoensri, Nicha; Suphatrakul, Amporn; Sriburi, Rungtawan; Yasanga, Thippawan; Junjhon, Jiraphan; Keelapang, Poonsook; Utaipat, Utaiwan; Puttikhunt, Chunya; Kasinrerk, Watchara; Malasit, Prida; Sittisombut, Nopporn
2014-09-01
Recombinant virus-like particles (rVLPs) of flaviviruses are non-infectious particles released from cells expressing the envelope glycoproteins prM and E. Dengue virus rVLPs are recognized as a potential vaccine candidate, but large scale production of these particles is hindered by low yields and the occurrence of cytopathic effects. In an approach to improve the yield of rVLPs from transfected insect cells, several components of a dengue serotype 2 virus prM+E expression cassette were modified and the effect of these modifications was assessed during transient expression. Enhancement of extracellular rVLP levels by simultaneous substitutions of the prM signal peptide and the stem-anchor region of E with homologous cellular and viral counterparts, respectively, was further augmented by codon optimization. Extensive formation of multinucleated cells following transfection with the codon-optimized expression cassette was abrogated by introducing an E fusion loop mutation. This mutation also helped restore the extracellular E levels affected negatively by alteration of a charged residue at the pr-M junction, which was intended to promote maturation of rVLPs during export. Optimized expression cassettes generated in this multiple add-on modification approach should be useful in the generation of stably expressing clones and production of dengue virus rVLPs for immunogenicity studies. Copyright © 2014 Elsevier B.V. All rights reserved.
McDevitt, Joseph L; Acosta-Torres, Stefany; Zhang, Ning; Hu, Tianshen; Odu, Ayobami; Wang, Jijia; Xi, Yin; Lamus, Daniel; Miller, David S; Pillai, Anil K
2017-07-01
To estimate the least costly routine exchange frequency for percutaneous nephrostomies (PCNs) placed for malignant urinary obstruction, as measured by annual hospital charges, and to estimate the financial impact of patient compliance. Patients with PCNs placed for malignant urinary obstruction were studied from 2011 to 2013. Exchanges were classified as routine or due to 1 of 3 complication types: mechanical (tube dislodgment), obstruction, or infection. Representative cases were identified, and median representative charges were used as inputs for the model. Accelerated failure time and Markov chain Monte Carlo models were used to estimate distribution of exchange types and annual hospital charges under different routine exchange frequency and compliance scenarios. Long-term PCN management was required in 57 patients, with 87 total exchange encounters. Median representative hospital charges for pyelonephritis and obstruction were 11.8 and 9.3 times greater, respectively, than a routine exchange. The projected proportion of routine exchanges increased and the projected proportion of infection-related exchanges decreased when moving from a 90-day exchange with 50% compliance to a 60-day exchange with 75% compliance, and this was associated with a projected reduction in annual charges. Projected cost reductions resulting from increased compliance were generally greater than reductions resulting from changes in exchange frequency. This simulation model suggests that the optimal routine exchange interval for PCN exchange in patients with malignant urinary obstruction is approximately 60 days and that the degree of reduction in charges likely depends more on patient compliance than exact exchange interval. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.
Aurora, R. Nisha; Putcha, Nirupama; Swartz, Rachel; Punjabi, Naresh M.
2016-01-01
Background Obstructive sleep apnea is a prevalent yet underdiagnosed condition associated with cardiovascular morbidity and mortality. Home sleep testing offers an efficient means for diagnosing obstructive sleep apnea but has primarily been deployed in clinical samples with a high pretest probability. The current study sought to assess if obstructive sleep apnea can be diagnosed with home sleep testing in a non-referred sample without involvement of a sleep medicine specialist. Methods A study of community-based adults with untreated obstructive sleep apnea was undertaken. Misclassification of disease severity based on home sleep testing with and without involvement of a sleep medicine specialist was assessed, and agreement was characterized using scatter plots, Pearson's correlation coefficient, Bland-Altman analysis, and the kappa statistic. Analyses were also conducted to assess whether any observed differences varied as a function of pretest probability of obstructive sleep apnea or subjective sleepiness. Results The sample consisted of 191 subjects with over half (56.5%) having obstructive sleep apnea. Without involvement of a sleep medicine specialist, obstructive sleep apnea was not identified in only 5.8% of the sample. Analyses comparing the categorical assessment of disease severity with and without a sleep medicine specialist showed that in total, 32 subjects (16.8%) were misclassified. Agreement in the disease severity with and without a sleep medicine specialist was not influenced by the pretest probability or daytime sleep tendency. Conclusion Obstructive sleep apnea can be reliably identified with home sleep testing in a non-referred sample irrespective of the pretest probability of the disease. PMID:26968467
Call to action: improving primary care for women with COPD.
Tsiligianni, Ioanna; Rodríguez, Miguel Román; Lisspers, Karin; LeeTan, Tze; Infantino, Antonio
2017-02-15
In this perspective-based article, which is based on findings from a comprehensive literature search, we discuss the significant and growing burden of chronic obstructive pulmonary disease in women worldwide. Chronic obstructive pulmonary disease now affects both men and women almost equally. Despite this, there remains an outdated perception of chronic obstructive pulmonary disease as a male-dominated disease. Primary care physicians play a central role in overseeing the multidisciplinary care of women with chronic obstructive pulmonary disease. Many women with chronic obstructive pulmonary disease delay seeking medical assistance, due to fear of stigmatization or dismissing symptoms as a 'smoker's cough'. Improving awareness is important to encourage women with symptoms to seek advice earlier. Once women do seek help, primary care physicians need to have knowledge of the nuances of female chronic obstructive pulmonary disease disease presentation to avoid mis- or delayed diagnosis, both of which are more common in women with chronic obstructive pulmonary disease than men. Subsequent management should consider gender-specific issues, such as differential incidences of comorbid conditions, potentially higher symptom burden, and a higher risk of exacerbations. Chronic obstructive pulmonary disease treatment and smoking cessation management should be specifically tailored to the individual woman and reviewed regularly to optimize patient outcomes. Finally, education should be an integral part of managing chronic obstructive pulmonary disease in women as it will help to empower them to take control of their disease.
Research on particle swarm optimization algorithm based on optimal movement probability
NASA Astrophysics Data System (ADS)
Ma, Jianhong; Zhang, Han; He, Baofeng
2017-01-01
The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.
Congenital Urinary Tract Obstruction: The Long View
Chevalier, Robert L.
2015-01-01
Maldevelopment of the collecting system resulting in urinary tract obstruction (UTO) is the leading identifiable cause of CKD in children. Specific etiologies are unknown; most cases are suspected by discovering hydronephrosis on prenatal ultrasonography. Congenital UTO can reduce nephron number and cause bladder dysfunction, which contribute to ongoing injury. Severe UTO can impair kidney growth in utero, and animal models of unilateral ureteral obstruction show that ischemia and oxidative stress cause proximal tubular cell death, with later development of interstitial fibrosis. Congenital obstructive nephropathy therefore results from combined developmental and obstructive renal injury. Due to inadequacy of available biomarkers, criteria for surgical correction of upper tract obstruction are poorly established. Lower tract obstruction requires fetal or immediate postnatal intervention, and the rate of progression of CKD is highly variable. New biomarkers based on proteomics and determination of glomerular number by MRI should improve future care. Angiotensin inhibitors have not been effective in slowing progression, although avoidance of nephrotoxins and timely treatment of hypertension are important. Because congenital UTO begins in fetal life, smooth transfer of care from perinatologist to pediatric and adult urology and nephrology teams should optimize quality of life and ultimate outcomes for these patients. PMID:26088076
Emami, J; Mohiti, H; Hamishehkar, H; Varshosaz, J
2015-01-01
Budesonide is a potent non-halogenated corticosteroid with high anti-inflammatory effects. The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. The aim of the present study was to develop, characterize and optimize a solid lipid nanoparticle system to deliver budesonide to the lungs. Budesonide-loaded solid lipid nanoparticles were prepared by the emulsification-solvent diffusion method. The impact of various processing variables including surfactant type and concentration, lipid content organic and aqueous volume, and sonication time were assessed on the particle size, zeta potential, entrapment efficiency, loading percent and mean dissolution time. Taguchi design with 12 formulations along with Box-Behnken design with 17 formulations was developed. The impact of each factor upon the eventual responses was evaluated, and the optimized formulation was finally selected. The size and morphology of the prepared nanoparticles were studied using scanning electron microscope. Based on the optimization made by Design Expert 7(®) software, a formulation made of glycerol monostearate, 1.2 % polyvinyl alcohol (PVA), weight ratio of lipid/drug of 10 and sonication time of 90 s was selected. Particle size, zeta potential, entrapment efficiency, loading percent, and mean dissolution time of adopted formulation were predicted and confirmed to be 218.2 ± 6.6 nm, -26.7 ± 1.9 mV, 92.5 ± 0.52 %, 5.8 ± 0.3 %, and 10.4 ± 0.29 h, respectively. Since the preparation and evaluation of the selected formulation within the laboratory yielded acceptable results with low error percent, the modeling and optimization was justified. The optimized formulation co-spray dried with lactose (hybrid microparticles) displayed desirable fine particle fraction, mass median aerodynamic diameter (MMAD), and geometric standard deviation of 49.5%, 2.06 μm, and 2.98 μm; respectively. Our results provide fundamental data for the application of SLNs in pulmonary delivery system of budesonide.
Emami, J.; Mohiti, H.; Hamishehkar, H.; Varshosaz, J.
2015-01-01
Budesonide is a potent non-halogenated corticosteroid with high anti-inflammatory effects. The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. The aim of the present study was to develop, characterize and optimize a solid lipid nanoparticle system to deliver budesonide to the lungs. Budesonide-loaded solid lipid nanoparticles were prepared by the emulsification-solvent diffusion method. The impact of various processing variables including surfactant type and concentration, lipid content organic and aqueous volume, and sonication time were assessed on the particle size, zeta potential, entrapment efficiency, loading percent and mean dissolution time. Taguchi design with 12 formulations along with Box-Behnken design with 17 formulations was developed. The impact of each factor upon the eventual responses was evaluated, and the optimized formulation was finally selected. The size and morphology of the prepared nanoparticles were studied using scanning electron microscope. Based on the optimization made by Design Expert 7® software, a formulation made of glycerol monostearate, 1.2 % polyvinyl alcohol (PVA), weight ratio of lipid/drug of 10 and sonication time of 90 s was selected. Particle size, zeta potential, entrapment efficiency, loading percent, and mean dissolution time of adopted formulation were predicted and confirmed to be 218.2 ± 6.6 nm, -26.7 ± 1.9 mV, 92.5 ± 0.52 %, 5.8 ± 0.3 %, and 10.4 ± 0.29 h, respectively. Since the preparation and evaluation of the selected formulation within the laboratory yielded acceptable results with low error percent, the modeling and optimization was justified. The optimized formulation co-spray dried with lactose (hybrid microparticles) displayed desirable fine particle fraction, mass median aerodynamic diameter (MMAD), and geometric standard deviation of 49.5%, 2.06 μm, and 2.98 μm; respectively. Our results provide fundamental data for the application of SLNs in pulmonary delivery system of budesonide. PMID:26430454
Anderson, Daniel R; Duryee, Michael J; Shurmur, Scott W; Um, John Y; Bussey, Walter D; Hunter, Carlos D; Garvin, Robert P; Sayles, Harlan R; Mikuls, Ted R; Klassen, Lynell W; Thiele, Geoffrey M
2014-01-01
Malondialdehyde-acetaldehyde adducts (MAA) have been implicated in atherosclerosis. The purpose of this study was to investigate the role of MAA in atherosclerotic disease. Serum samples from controls (n = 82) and patients with; non-obstructive coronary artery disease (CAD), (n = 40), acute myocardial infarction (AMI) (n = 42), or coronary artery bypass graft (CABG) surgery due to obstructive multi-vessel CAD (n = 72), were collected and tested for antibody isotypes to MAA-modifed human serum albumin (MAA-HSA). CAD patients had elevated relative levels of IgG and IgA anti-MAA, compared to control patients (p<0.001). AMI patients had a significantly increased relative levels of circulating IgG anti-MAA-HSA antibodies as compared to stable angina (p<0.03) or CABG patients (p<0.003). CABG patients had significantly increased relative levels of circulating IgA anti-MAA-HSA antibodies as compared to non-obstructive CAD (p<0.001) and AMI patients (p<0.001). Additionally, MAA-modified proteins were detected in the tissue of human AMI lesions. In conclusion, the IgM, IgG and IgA anti-MAA-HSA antibody isotypes are differentially and significantly associated with non-obstructive CAD, AMI, or obstructive multi-vessel CAD and may serve as biomarkers of atherosclerotic disease.
Anderson, Daniel R.; Duryee, Michael J.; Shurmur, Scott W.; Um, John Y.; Bussey, Walter D.; Hunter, Carlos D.; Garvin, Robert P.; Sayles, Harlan R.; Mikuls, Ted R.; Klassen, Lynell W.; Thiele, Geoffrey M.
2014-01-01
Malondialdehyde-acetaldehyde adducts (MAA) have been implicated in atherosclerosis. The purpose of this study was to investigate the role of MAA in atherosclerotic disease. Serum samples from controls (n = 82) and patients with; non-obstructive coronary artery disease (CAD), (n = 40), acute myocardial infarction (AMI) (n = 42), or coronary artery bypass graft (CABG) surgery due to obstructive multi-vessel CAD (n = 72), were collected and tested for antibody isotypes to MAA-modifed human serum albumin (MAA-HSA). CAD patients had elevated relative levels of IgG and IgA anti-MAA, compared to control patients (p<0.001). AMI patients had a significantly increased relative levels of circulating IgG anti-MAA-HSA antibodies as compared to stable angina (p<0.03) or CABG patients (p<0.003). CABG patients had significantly increased relative levels of circulating IgA anti-MAA-HSA antibodies as compared to non-obstructive CAD (p<0.001) and AMI patients (p<0.001). Additionally, MAA-modified proteins were detected in the tissue of human AMI lesions. In conclusion, the IgM, IgG and IgA anti-MAA-HSA antibody isotypes are differentially and significantly associated with non-obstructive CAD, AMI, or obstructive multi-vessel CAD and may serve as biomarkers of atherosclerotic disease. PMID:25210746
AP-Cloud: Adaptive particle-in-cloud method for optimal solutions to Vlasov–Poisson equation
Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin; ...
2016-04-19
We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Here, simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less
Enhancing Data Assimilation by Evolutionary Particle Filter and Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Moradkhani, H.; Abbaszadeh, P.; Yan, H.
2016-12-01
Particle Filters (PFs) have received increasing attention by the researchers from different disciplines in hydro-geosciences as an effective method to improve model predictions in nonlinear and non-Gaussian dynamical systems. The implication of dual state and parameter estimation by means of data assimilation in hydrology and geoscience has evolved since 2005 from SIR-PF to PF-MCMC and now to the most effective and robust framework through evolutionary PF approach based on Genetic Algorithm (GA) and Markov Chain Monte Carlo (MCMC), the so-called EPF-MCMC. In this framework, the posterior distribution undergoes an evolutionary process to update an ensemble of prior states that more closely resemble realistic posterior probability distribution. The premise of this approach is that the particles move to optimal position using the GA optimization coupled with MCMC increasing the number of effective particles, hence the particle degeneracy is avoided while the particle diversity is improved. The proposed algorithm is applied on a conceptual and highly nonlinear hydrologic model and the effectiveness, robustness and reliability of the method in jointly estimating the states and parameters and also reducing the uncertainty is demonstrated for few river basins across the United States.
AP-Cloud: Adaptive Particle-in-Cloud method for optimal solutions to Vlasov–Poisson equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xingyu; Samulyak, Roman, E-mail: roman.samulyak@stonybrook.edu; Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less
AP-Cloud: Adaptive particle-in-cloud method for optimal solutions to Vlasov–Poisson equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xingyu; Samulyak, Roman; Jiao, Xiangmin
We propose a new adaptive Particle-in-Cloud (AP-Cloud) method for obtaining optimal numerical solutions to the Vlasov–Poisson equation. Unlike the traditional particle-in-cell (PIC) method, which is commonly used for solving this problem, the AP-Cloud adaptively selects computational nodes or particles to deliver higher accuracy and efficiency when the particle distribution is highly non-uniform. Unlike other adaptive techniques for PIC, our method balances the errors in PDE discretization and Monte Carlo integration, and discretizes the differential operators using a generalized finite difference (GFD) method based on a weighted least square formulation. As a result, AP-Cloud is independent of the geometric shapes ofmore » computational domains and is free of artificial parameters. Efficient and robust implementation is achieved through an octree data structure with 2:1 balance. We analyze the accuracy and convergence order of AP-Cloud theoretically, and verify the method using an electrostatic problem of a particle beam with halo. Here, simulation results show that the AP-Cloud method is substantially more accurate and faster than the traditional PIC, and it is free of artificial forces that are typical for some adaptive PIC techniques.« less
Optimizing homogenization by chaotic unmixing?
NASA Astrophysics Data System (ADS)
Weijs, Joost; Bartolo, Denis
2016-11-01
A number of industrial processes rely on the homogeneous dispersion of non-brownian particles in a viscous fluid. An ideal mixing would yield a so-called hyperuniform particle distribution. Such configurations are characterized by density fluctuations that grow slower than the standard √{ N}-fluctuations. Even though such distributions have been found in several natural structures, e.g. retina receptors in birds, they have remained out of experimental reach until very recently. Over the last 5 years independent experiments and numerical simulations have shown that periodically driven suspensions can self-assemble hyperuniformally. Simple as the recipe may be, it has one important disadvantage. The emergence of hyperuniform states co-occurs with a critical phase transition from reversible to non reversible particle dynamics. As a consequence the homogenization dynamics occurs over a time that diverges with the system size (critical slowing down). Here, we discuss how this process can be sped up by exploiting the stirring properties of chaotic advection. Among the questions that we answer are: What are the physical mechanisms in a chaotic flow that are relevant for hyperuniformity? How can we tune the flow parameters such to obtain optimal hyperuniformity in the fastest way? JW acknowledges funding by NWO (Netherlands Organisation for Scientific Research) through a Rubicon Grant.
Viperin targets flavivirus virulence by inducing assembly of non-infectious capsid particles.
Vonderstein, Kirstin; Nilsson, Emma; Hubel, Philipp; Nygård Skalman, Lars; Upadhyay, Arunkumar; Pasto, Jenny; Pichlmair, Andreas; Lundmark, Richard; Överby, Anna K
2017-10-18
Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. Here we describe a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly, and involves release of malfunctional membrane associated capsid (C) particles. This mechanism is controlled by the activity of the interferon-induced protein viperin, a broad spectrum antiviral interferon stimulated gene. Through analysis of the viperin-interactome, we identified the Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1), as the cellular protein targeted by viperin. Viperin-induced antiviral activity as well as C-particle release was stimulated by GBF1 inhibition and knock down, and reduced by elevated levels of GBF1. Our results suggest that viperin targets flavivirus virulence by inducing the secretion of unproductive non-infectious virus particles, by a GBF1-dependent mechanism. This yet undescribed antiviral mechanism allows potential therapeutic intervention. Importance The interferon response can target viral infection on almost every level, however, very little is known about interference of flavivirus assembly. Here we show that interferon, through the action of viperin, can disturb assembly of tick-borne encephalitis virus. The viperin protein is highly induced after viral infection and exhibit broad-spectrum antiviral activity. However, the mechanism of action is still elusive and appear to vary between the different viruses, indicating that cellular targets utilized by several viruses might be involved. In this study we show that viperin induce capsid particle release by interacting and inhibiting the function of the cellular protein Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and essential in the life cycle of many viruses, also targeted by viperin, implicating GBF1 as a novel putative drug target. Copyright © 2017 Vonderstein et al.
2014-01-01
Background Identifying those patients who have a higher chance to be cured with fewer side effects by particle beam therapy than by state-of-the-art photon therapy is essential to guarantee a fair and sufficient access to specialized radiotherapy. The individualized identification requires initiatives by particle as well as non-particle radiotherapy centers to form networks, to establish procedures for the decision process, and to implement means for the remote exchange of relevant patient information. In this work, we want to contribute a practical concept that addresses these requirements. Methods We proposed a concept for individualized patient allocation to photon or particle beam therapy at a non-particle radiotherapy institution that bases on remote treatment plan comparison. We translated this concept into the web-based software tool ReCompare (REmote COMparison of PARticlE and photon treatment plans). Results We substantiated the feasibility of the proposed concept by demonstrating remote exchange of treatment plans between radiotherapy institutions and the direct comparison of photon and particle treatment plans in photon treatment planning systems. ReCompare worked with several tested standard treatment planning systems, ensured patient data protection, and integrated in the clinical workflow. Conclusions Our concept supports non-particle radiotherapy institutions with the patient-specific treatment decision on the optimal irradiation modality by providing expertise from a particle therapy center. The software tool ReCompare may help to improve and standardize this personalized treatment decision. It will be available from our website when proton therapy is operational at our facility. PMID:24548333
Nissen, Louise; Winther, Simon; Isaksen, Christin; Ejlersen, June Anita; Brix, Lau; Urbonaviciene, Grazina; Frost, Lars; Madsen, Lene Helleskov; Knudsen, Lars Lyhne; Schmidt, Samuel Emil; Holm, Niels Ramsing; Maeng, Michael; Nyegaard, Mette; Bøtker, Hans Erik; Bøttcher, Morten
2016-05-26
Coronary computed tomography angiography (CCTA) is an established method for ruling out coronary artery disease (CAD). Most patients referred for CCTA do not have CAD and only approximately 20-30 % of patients are subsequently referred to further testing by invasive coronary angiography (ICA) or non-invasive perfusion evaluation due to suspected obstructive CAD. In cases with severe calcifications, a discrepancy between CCTA and ICA often occurs, leading to the well-described, low-diagnostic specificity of CCTA. As ICA is cost consuming and involves a risk of complications, an optimized algorithm would be valuable and could decrease the number of ICAs that do not lead to revascularization. The primary objective of the Dan-NICAD study is to determine the diagnostic accuracy of cardiac magnetic resonance imaging (CMRI) and myocardial perfusion scintigraphy (MPS) as secondary tests after a primary CCTA where CAD could not be ruled out. The secondary objective includes an evaluation of the diagnostic precision of an acoustic technology that analyses the sound of coronary blood flow. It may potentially provide better stratification prior to CCTA than clinical risk stratification scores alone. Dan-NICAD is a multi-centre, randomised, cross-sectional trial, which will include approximately 2,000 patients without known CAD, who were referred to CCTA due to a history of symptoms suggestive of CAD and a low-risk to intermediate-risk profile, as evaluated by a cardiologist. Patient interview, sound recordings, and blood samples are obtained in connection with the CCTA. All patients with suspected obstructive CAD by CCTA are randomised to either stress CMRI or stress MPS, followed by ICA with fractional flow reserve (FFR) measurements. Obstructive CAD is defined as an FFR below 0.80 or as high-grade stenosis (>90 % diameter stenosis) by visual assessment. Diagnostic performance is evaluated as sensitivity, specificity, predictive values, likelihood ratios, and C statistics. Enrolment commenced in September 2014 and is expected to be complete in May 2016. Dan-NICAD is designed to assess whether a secondary perfusion examination after CCTA could safely reduce the number of ICAs where revascularization is not required. The results are expected to add knowledge about the optimal algorithm for diagnosing CAD. Clinicaltrials.gov identifier, NCT02264717 . Registered on 26 September 2014.
Yazdi, Ashkan K; Smyth, Hugh D C
2017-03-01
To optimize air-jet milling conditions of ibuprofen (IBU) using design of experiment (DoE) method, and to test the generalizability of the optimized conditions for the processing of another non-steroidal anti-inflammatory drug (NSAID). Bulk IBU was micronized using an Aljet mill according to a circumscribed central composite (CCC) design with grinding and pushing nozzle pressures (GrindP, PushP) varying from 20 to 110 psi. Output variables included yield and particle diameters at the 50th and 90th percentile (D 50 , D 90 ). Following data analysis, the optimized conditions were identified and tested to produce IBU particles with a minimum size and an acceptable yield. Finally, indomethacin (IND) was milled using the optimized conditions as well as the control. CCC design included eight successful runs for milling IBU from the ten total runs due to powder "blowback" from the feed hopper. DoE analysis allowed the optimization of the GrindP and PushP at 75 and 65 psi. In subsequent validation experiments using the optimized conditions, the experimental D 50 and D 90 values (1.9 and 3.6 μm) corresponded closely with the DoE modeling predicted values. Additionally, the optimized conditions were superior over the control conditions for the micronization of IND where smaller D 50 and D 90 values (1.2 and 2.7 μm vs. 1.8 and 4.4 μm) were produced. The optimization of a single-step air-jet milling of IBU using the DoE approach elucidated the optimal milling conditions, which were used to micronize IND using the optimized milling conditions.
Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu
2015-05-01
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Non-emphysematous chronic obstructive pulmonary disease is associated with diabetes mellitus.
Hersh, Craig P; Make, Barry J; Lynch, David A; Barr, R Graham; Bowler, Russell P; Calverley, Peter M A; Castaldi, Peter J; Cho, Michael H; Coxson, Harvey O; DeMeo, Dawn L; Foreman, Marilyn G; Han, MeiLan K; Harshfield, Benjamin J; Hokanson, John E; Lutz, Sharon; Ramsdell, Joe W; Regan, Elizabeth A; Rennard, Stephen I; Schroeder, Joyce D; Sciurba, Frank C; Steiner, Robert M; Tal-Singer, Ruth; van Beek, Edwin; Silverman, Edwin K; Crapo, James D
2014-10-24
Chronic obstructive pulmonary disease (COPD) has been classically divided into blue bloaters and pink puffers. The utility of these clinical subtypes is unclear. However, the broader distinction between airway-predominant and emphysema-predominant COPD may be clinically relevant. The objective was to define clinical features of emphysema-predominant and non-emphysematous COPD patients. Current and former smokers from the Genetic Epidemiology of COPD Study (COPDGene) had chest computed tomography (CT) scans with quantitative image analysis. Emphysema-predominant COPD was defined by low attenuation area at -950 Hounsfield Units (LAA-950) ≥10%. Non-emphysematous COPD was defined by airflow obstruction with minimal to no emphysema (LAA-950 < 5%). Out of 4197 COPD subjects, 1687 were classified as emphysema-predominant and 1817 as non-emphysematous; 693 had LAA-950 between 5-10% and were not categorized. Subjects with emphysema-predominant COPD were older (65.6 vs 60.6 years, p < 0.0001) with more severe COPD based on airflow obstruction (FEV1 44.5 vs 68.4%, p < 0.0001), greater exercise limitation (6-minute walk distance 1138 vs 1331 ft, p < 0.0001) and reduced quality of life (St. George's Respiratory Questionnaire score 43 vs 31, p < 0.0001). Self-reported diabetes was more frequent in non-emphysematous COPD (OR 2.13, p < 0.001), which was also confirmed using a strict definition of diabetes based on medication use. The association between diabetes and non-emphysematous COPD was replicated in the ECLIPSE study. Non-emphysematous COPD, defined by airflow obstruction with a paucity of emphysema on chest CT scan, is associated with an increased risk of diabetes. COPD patients without emphysema may warrant closer monitoring for diabetes, hypertension, and hyperlipidemia and vice versa. Clinicaltrials.gov identifiers: COPDGene NCT00608764, ECLIPSE NCT00292552.
Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells.
Thorek, Daniel L J; Tsourkas, Andrew
2008-09-01
A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking the migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite the large number of cell labeling studies that have been performed with SPIO particles of differing size and surface charge, it remains unclear which SPIO configuration provides optimal contrast in non-phagocytic cells. This is largely because contradictory findings have stemmed from the variability and imprecise control over surface charge, the general need and complexity of transfection and/or targeting agents, and the limited number of particle configurations examined in any given study. In the present study, we systematically evaluated the cellular uptake of SPIO in non-phagocytic T cells over a continuum of particle sizes ranging from 33nm to nearly 1.5microm, with precisely controlled surface properties, and without the need for transfection agents. SPIO labeling of T cells was analyzed by flow cytometry and contrast enhancement was determined by relaxometry. SPIO uptake was dose-dependent and exhibited sigmoidal charge dependence, which was shown to saturate at different levels of functionalization. Efficient labeling of cells was observed for particles up to 300nm, however, micron-sized particle uptake was limited. Our results show that an unconventional highly cationic particle configuration at 107nm maximized MR contrast of T cells, outperforming the widely utilized USPIO (<50nm).
Size, Charge and Concentration Dependent Uptake of Iron Oxide Particles by Non-Phagocytic Cells
Thorek, Daniel L.J.; Tsourkas, Andrew
2008-01-01
A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking the migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite the large number of cell labeling studies that have been performed with SPIO particles of differing size and surface charge, it remains unclear which SPIO configuration provides optimal contrast in non-phagocytic cells. This is largely because contradictory findings have stemmed from the variability and imprecise control over surface charge, the general need and complexity of transfection and/or targeting agents, and the limited number of particle configurations examined in any given study. In the present study, we systematically evaluated the cellular uptake of SPIO in non-phagocytic T cells over a continuum of particle sizes ranging from 33 nm to nearly 1.5 μm, with precisely controlled surface properties, and without the need for transfection agents. SPIO labeling of T cells was analyzed by flow cytometry and contrast enhancement was determined by relaxometry. SPIO uptake was dose dependent and exhibited sigmoidal charge dependence, which was shown to saturate at different levels of functionalization. Efficient labeling of cells was observed for particles up to 300nm, however micron-sized particle uptake was limited. Our results show that an unconventional highly cationic particle configuration at 107 nm maximized MR contrast of T cells, outperforming the widely utilized USPIO (<50 nm). PMID:18533252
(99m)Tc-DTPA diuretic renal scintigraphy in cats with nephroureterolithiasis.
Hecht, Silke; Lawson, Sarah M; Lane, India F; Sharp, Dorothy E; Daniel, Gregory B
2010-06-01
The purpose of this study was to evaluate results of diuretic renal scintigraphy in 32 feline kidneys with nephroureterolithiasis and variable degrees of renal pelvis/ureteral dilation. Six kidneys showed a non-obstructive scintigraphic pattern, with a downward slope of time-activity curves (TAC) and a median excretion half-time of radiopharmaceutical (T((1/2))) of 6.09 (5.08-8.43) min. Eight kidneys showed an obstructive pattern, with a continuous rise of TAC and median T((1/2)) of -7.91 (-43.13-0.00) min. In one kidney with presumptive partial obstruction scintigraphic results were equivocal. Seventeen kidneys, most of which had an individual kidney glomerular filtration rate below 0.5ml/min/kg, had non-diagnostic studies. Diuretic renal scintigraphy may be a useful adjunct modality in the diagnosis of ureteral obstruction in some cats if renal function is maintained. However, the large number of non-diagnostic studies in animals with decreased renal function represents a clear limitation of the technique. Copyright 2009 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Laser vaporization of trace explosives for enhanced non-contact detection
NASA Astrophysics Data System (ADS)
Furstenberg, Robert; Papantonakis, Michael; Kendziora, Christopher A.; Bubb, Daniel M.; Corgan, Jeffrey; McGill, R. Andrew
2010-04-01
Trace explosives contamination is found primarily in the form of solid particulates on surfaces, due to the low vapor pressure of most explosives materials. Today, the standard sampling procedure involves physical removal of particulate matter from surfaces of interest. A variety of collection methods have been used including air-jetting or swabbing surfaces of interest. The sampled particles are typically heated to generate vapor for analysis in hand held, bench top, or portal detection systems. These sampling methods are time-consuming (and hence costly), require a skilled technician for optimal performance, and are inherently non-selective, allowing non-explosives particles to be co-sampled and analyzed. This can adversely affect the sensitivity and selectivity of detectors, especially those with a limited dynamic range. We present a new approach to sampling solid particles on a solid surface that is targeted, non-contact, and which selectively enhances trace explosive signatures thus improving the selectivity and sensitivity of existing detectors. Our method involves the illumination of a surface of interest with infrared laser light with a wavelength that matches a distinctive vibrational mode of an explosive. The resonant coupling of laser energy results in rapid heating of explosive particles and rapid release of a vapor plume. Neighboring particles unrelated to explosives are generally not directly heated as their vibrational modes are not resonant with the laser. As a result, the generated vapor plume includes a higher concentration of explosives than if the particles were heated with a non-selective light source (e.g. heat lamp). We present results with both benchtop infrared lasers as well as miniature quantum cascade lasers.
Richard, Gontran; Touhami, Seddik; Zeghloul, Thami; Dascalescu, Lucien
2017-02-01
Plate-type electrostatic separators are commonly employed for the selective sorting of conductive and non-conductive granular materials. The aim of this work is to identify the optimal operating conditions of such equipment, when employed for separating copper and plastics from either flexible or rigid electric wire wastes. The experiments are performed according to the response surface methodology, on samples composed of either "calibrated" particles, obtained by manually cutting of electric wires at a predefined length (4mm), or actual machine-grinded scraps, characterized by a relatively-wide size distribution (1-4mm). The results point out the effect of particle size and shape on the effectiveness of the electrostatic separation. Different optimal operating conditions are found for flexible and rigid wires. A separate processing of the two classes of wire wastes is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Singh, Amarnath; Kesavachandran, Chandrasekharan Nair; Kamal, Ritul; Bihari, Vipin; Ansari, Afzal; Azeez, Parappurath Abdul; Saxena, Prem Narain; Ks, Anil Kumar; Khan, Altaf Hussain
2017-04-04
The present study is an attempt to explore the association between kitchen indoor air pollutants and physiological profiles in kitchen workers with microalbuminuria (MAU) in north India (Lucknow) and south India (Coimbatore). The subjects comprised 145 control subjects, 233 kitchen workers from north India and 186 kitchen workers from south India. Information related to the personal and occupational history and health of the subjects at both locations were collected using a custom-made questionnaire. Worker lung function was measured using a spirometer. Blood pressure was monitored using a sphygmomanometer. Urinary MAU was measured using a urine analyzer. Indoor air monitoring in kitchens for particulate matter (PM), total volatile organic compounds (TVOC), carbon dioxide (CO 2 ) and carbon monoxide (CO) was conducted using indoor air quality monitors. The size and shape of PM in indoor air was assessed using a scanning electron microscope (SEM). Fourier transform infrared (FTIR) spectroscopy was used to detect organic or inorganic compounds in the air samples. Particulate matter concentrations (PM 2.5 and PM 1 ) were significantly higher in both north and south Indian kitchens than in non-kitchen areas. The concentrations of TVOC, CO and CO 2 were higher in the kitchens of north and south India than in the control locations (non-kitchen areas). Coarse, fine and ultrafine particles and several elements were also detected in kitchens in both locations by SEM and elemental analysis. The FTIR spectra of kitchen indoor air at both locations show the presence of organic chemicals. Significant declines in systolic blood pressure and lung function were observed in the kitchen workers with MAU at both locations compared to those of the control subjects. A higher prevalence of obstruction cases with MAU was observed among the workers in the southern region than in the controls (p < 0.01). Kitchen workers in south India have lower lung capacities and a greater risk of obstructive and restrictive abnormalities than their north Indian counterparts. The study showed that occupational exposure to multiple kitchen indoor air pollutants (ultrafine particles, PM 2.5 , PM 1 , TVOC, CO, CO 2 ) and FTIR-derived compounds can be associated with a decline in lung function (restrictive and obstructive patterns) in kitchen workers with microalbuminuria. Further studies in different geographical locations in India among kitchen workers on a wider scale are required to validate the present findings.
Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges
2012-11-09
The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems to speed up the penetration of proteins into the particles. A stochastic model of the penetration of bulky proteins driven by a concentration gradient across an infinitely thin membrane of known porosity and pore size is suggested to explain this mechanism. Yet, under retained conditions, surface diffusion speeds up the mass transfer into the mesopores and levels the kinetic performance of particles built with either one or two porous shells. Copyright © 2012 Elsevier B.V. All rights reserved.
Craniofacial skeletal pattern: is it really correlated with the degree of adenoid obstruction?
Feres, Murilo Fernando Neuppmann; Muniz, Tomas Salomão; de Andrade, Saulo Henrique; Lemos, Maurilo de Mello; Pignatari, Shirley Shizue Nagata
2015-01-01
OBJECTIVE: The aim of this study was to compare the cephalometric pattern of children with and without adenoid obstruction. METHODS: The sample comprised 100 children aged between four and 14 years old, both males and females, subjected to cephalometric examination for sagittal and vertical skeletal analysis. The sample also underwent nasofiberendoscopic examination intended to objectively assess the degree of adenoid obstruction. RESULTS: The individuals presented tendencies towards vertical craniofacial growth, convex profile and mandibular retrusion. However, there were no differences between obstructive and non-obstructive patients concerning all cephalometric variables. Correlations between skeletal parameters and the percentage of adenoid obstruction were either low or not significant. CONCLUSIONS: Results suggest that specific craniofacial patterns, such as Class II and hyperdivergency, might not be associated with adenoid hypertrophy. PMID:26352848
Porous Silica-Supported Solid Lipid Particles for Enhanced Solubilization of Poorly Soluble Drugs.
Yasmin, Rokhsana; Rao, Shasha; Bremmell, Kristen E; Prestidge, Clive A
2016-07-01
Low dissolution of drugs in the intestinal fluid can limit their effectiveness in oral therapies. Here, a novel porous silica-supported solid lipid system was developed to optimize the oral delivery of drugs with limited aqueous solubility. Using lovastatin (LOV) as the model poorly water-soluble drug, two porous silica-supported solid lipid systems (SSL-A and SSL-S) were fabricated from solid lipid (glyceryl monostearate, GMS) and nanoporous silica particles Aerosil 380 (silica-A) and Syloid 244FP (silica-S) via immersion/solvent evaporation. SSL particles demonstrated significantly higher rate and extent of lipolysis in comparison with the pure solid lipid, depending on the lipid loading levels and the morphology. The highest lipid digestion was observed when silica-S was loaded with 34% (w/w) solid lipid, and differential scanning calorimeter (DSC) analysis confirmed the encapsulation of up to 2% (w/w) non-crystalline LOV in this optimal SSL-S formulation. Drug dissolution under non-digesting intestinal conditions revealed a three- to sixfold increase in dissolution efficiencies when compared to the unformulated drug and a LOV-lipid suspension. Furthermore, the SSL-S provided superior drug solubilization under simulated intestinal digesting condition in comparison with the drug-lipid suspension and drug-loaded silica. Therefore, solid lipid and nanoporous silica provides a synergistic effect on optimizing the solubilization of poorly water-soluble compound and the solid lipid-based porous carrier system provides a promising delivery approach to overcome the oral delivery challenges of poorly water-soluble drugs.
Nasir, Abdulrasheed A; Abdur-Rahman, Lukman O; Bamigbola, Kayode T; Oyinloye, Adewale O; Abdulraheem, Nurudeen T; Adeniran, James O
2013-01-01
Adhesive small bowel obstruction (ASBO) is a feared complication after abdominal operations in both children and adults. The optimal management of ASBO in the pediatric population is debated. The aim of the present study was to examine the safety and effectiveness of non-operative management in ASBO. A retrospective review of 33 patients who were admitted for ASBO over a 5-year period was carried out. Follow-up data were available for 29 patients. Demographic, clinical, and operative details and outcomes were collected for these patients. Data analysis was done with SPSS version 15.0. P ≤ 0.05 was regarded as significant. Out of 618 abdominal surgeries within the 5-year period, 34 admissions were recorded from 29 patients at the follow-up period of 1-28 months. There were 19 boys (65.5%). The median age of patients was 4.5 years. Typhoid intestinal perforation (n = 7), intussusception (n = 6), intestinal malrotation (n = 5), and appendicitis (n = 4) were the major indications for a prior abdominal surgery leading to ASBO. Twenty-five patients (73.5%) developed SBO due to adhesions within the first year of the primary procedure. Of the 34 patients admitted with ASBO, 18 (53%) underwent operative intervention and 16 (47%) were successfully managed non-operatively. There were no differences in sex (P = 0.24), initial procedure (P = 0.12), age, duration of symptoms, and time to re-admission between the patients who responded to non-operative management and those who underwent operative intervention. However, the length of hospital stay was significantly shorter in the non-operative group (P < 0.0001). Five (14.7%) patients had small bowel resection. A 43-day-old child who initially underwent Ladd's procedure died within 15 h of re-admission while being prepared for surgery, accounting for the only mortality (3.4%). Non-operative management is still a safe and preferred approach in selected patients with ASBO. However, 53% eventually required surgery.
Development of an ash particle deposition model considering build-up and removal mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kjell Strandstroem; Christian Muellera; Mikko Hupa
2007-12-15
Slagging and fouling on heat exchanger surfaces in power boilers fired with fossil fuels and fuel mixtures has a significant influence on boiler efficiency and availability. Mathematical modelling has long been considered a suitable method to assist boiler operators to determine optimized operating conditions for an existing furnace. The ultimate goal in ash deposition prediction is hereby the determination of the total amount of material deposited and hence the determination of the total reduction in efficiency. Depending on the fuels fired the total deposited mass is a combination of ash particle deposition and ash particle erosion due to non-sticky particles.more » The novel ash particle deposition model presented in this work considers deposition of sticky ash particles, cleansing of deposit by non-sticky sand particles and sticking of sand due to contact with sticky ash. The steady-state modelling results for the total amount of ash deposited on the deposition probe of an entrained flow reactor presented in this work agree well with the experimental data. Only at very high fractions of sand added as non-sticky material, a significant influence of the sand on the overall mass deposited was found. Since the model considers sticking of non-sticking sand due to contact with sticky ash, the fraction of sand deposited on the probe was especially studied. Using a correction factor to consider the influence of operating time on the steady-state simulations led to good agreement between simulations and experimental data. 12 refs., 10 figs.« less
[Respiratory symptoms and obstructive ventilatory disorder in Tunisian woman exposed to biomass].
Kwas, H; Rahmouni, N; Zendah, I; Ghedira, H
2017-04-01
In some Tunisian cities, especially semi-urbanized, the exposure to the smoke produced during combustion of the biomass, main source of pollution of indoor air, remains prevalent among non-smoking women. To assess the relationship between exposure to biomass smoke and the presence of obstructive ventilatory disorder in the non-smoking women in semi-urban areas of Tunisia. Cross etiological study, using a questionnaire, including 140 non-smoking women responsible for cooking and/or exposed during heating by traditional means with objective measurement of their respiratory functions. We found 81 women exposed to biomass for a period of≥20 hours-years and 59 unexposed women. Exposed women reported more respiratory symptoms namely exertional dyspnea and/or chronic cough than unexposed. Of the 140 women, 14 women have an FEV/FEV6<70% of which 13 are exposed to biomass. We found a correlation between respiratory symptoms and obstructive ventilatory disorder in exposed women. The air pollution inside the home during the traditional activities of cooking and/or heating is a respiratory risk factor for non-smoking women over the age of 30 years. Exposure to biomass smoke can cause chronic respiratory symptoms and persistent obstructive ventilatory disorder that can consistent with COPD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Dougherty, Thomas J.; Pandey, R. K.; Nava, Hector R.; Smith, Judy L.; Douglass, Harold O.; Edge, Stephen B.; Bellnier, David A.; O'Malley, Linda; Cooper, Michele
2000-03-01
The hexyl ether derivative or HPPH, has been identified as an optimal active in vivo photosensitizer in pre-clinical studies and has been evaluated clinically in obstructive esophageal cancer in five patients to date. The photosensitizer appears to have no systemic toxicity and be effective at low drug and light doses. Further, cutaneous photosensitivity appears to persist only 5-7 days.
Computed Intranasal Spray Penetration: Comparisons Before and After Nasal Surgery
Frank, Dennis O.; Kimbell, Julia S.; Cannon, Daniel; Rhee, John S.
2012-01-01
Background Quantitative methods for comparing intranasal drug delivery efficiencies pre- and postoperatively have not been fully utilized. The objective of this study is to use computational fluid dynamics techniques to evaluate aqueous nasal spray penetration efficiencies before and after surgical correction of intranasal anatomic deformities. Methods Ten three-dimensional models of the nasal cavities were created from pre- and postoperative computed tomography scans in five subjects. Spray simulations were conducted using a particle size distribution ranging from 10–110μm, a spray speed of 3m/s, plume angle of 68°, and with steady state, resting inspiratory airflow present. Two different nozzle positions were compared. Statistical analysis was conducted using Student T-test for matched pairs. Results On the obstructed side, posterior particle deposition after surgery increased by 118% and was statistically significant (p-value=0.036), while anterior particle deposition decreased by 13% and was also statistically significant (p-value=0.020). The fraction of particles that by-passed the airways either pre- or post-operatively was less than 5%. Posterior particle deposition differences between obstructed and contralateral sides of the airways were 113% and 30% for pre- and post-surgery, respectively. Results showed that nozzle positions can influence spray delivery. Conclusions Simulations predicted that surgical correction of nasal anatomic deformities can improve spray penetration to areas where medications can have greater effect. Particle deposition patterns between both sides of the airways are more evenly distributed after surgery. These findings suggest that correcting anatomic deformities may improve intranasal medication delivery. For enhanced particle penetration, patients with nasal deformities may explore different nozzle positions. PMID:22927179
Sail, Giyab A; Zuo, Ke-jun; Xu, Geng
2009-09-01
To observe the efficacy of nasal glucocorticoid continuously used for 12 weeks on nasal obstruction in patients with persistent non-allergic rhinitis (PNAR). The changes of nasal obstruction, nasal resistance, nasal mucous membrane and quality of life in 47 patients with PNAR were observed. The efficacy of nasal glucocorticoid (Mometasone Furoate Nasal Spray, MFNS 200 microg/day) on patients with PNAR was evaluated. The results of nasal glucocorticoid (MFNS) continuously used for 12 weeks demonstrated: (1) After treatment, the nasal obstruction, nasal discharge, nasal obstruction related dizziness, headache, hyposmia, daily life activity, whole body fatigue, mental status were significantly improved (P < 0.05). (2) Nasal resistance showed significant amelioration (pre-treatment = 0.28 +/- 0.10, post- treatment = 0.16 +/- 0.05; F = 91.471, P < 0.05). (3) SF-36 questionnaire revealed that role physical, bodily pain, general health, role emotional had significant amelioration (P < 0.01). (4) SNOT-20 questionnaire revealed that the defatigation, impaired concentration, pinch the nose, nasal discharging into the throat, sleep quality had significant amelioration (P < 0.01). (5) Continued treatment for 12 weeks was better than 4 weeks, continued treatment had good effect. The study shows that nasal glucocorticoid improved the nasal obstruction, nasal resistance, nasal mucous membrane and quality of life in patients with PNAR.
Microscopic hematuria and calculus-related ureteral obstruction.
Stewart, D P; Kowalski, R; Wong, P; Krome, R
1990-01-01
The evaluation of patients with ureteral calculi in the emergency department has historically included urinalysis (UA) and intravenous pyelograms (IVP). This retrospective study was done to determine if a statistically significant relationship existed between the degree of calculus-related ureteral obstruction, proven by IVP, and the presence or absence of microscopic hematuria. Urine red blood cells were recorded as less than 3 rbc/hpf (negative) or greater than or equal to 3 rbc/hpf (positive). IVPs were recorded as nonsevere or severe. IVP criteria were based on the presence or absence of extravasation, greater than 2-hour ureteral filling times, and a numerical scoring system of 1 to 4 for ureteral or calyceal dilatation and nephrogenic effect. Eighty-nine men (72%) had non-severe obstructions and 34 (28%) had severe obstructions. Twenty-five women (68%) had nonsevere obstructions and 12 (32%) had severe obstructions. Of the 28 patients with normal UAs, 11 had severe ureteral obstructions and 17 had nonsevere ureteral obstructions. There were no statistically significant differences between the presence or absence of significant microscopic hematuria and the presence or absence of severe ureteral obstruction. Microscopic hematuria is neither sensitive nor specific in determining the degree of calculus-related ureteral obstruction.
Cooksley, Nathania A J B; Atkinson, David; Marks, Guy B; Toelle, Brett G; Reeve, David; Johns, David P; Abramson, Michael J; Burton, Deborah L; James, Alan L; Wood-Baker, Richard; Walters, E Haydn; Buist, A Sonia; Maguire, Graeme P
2015-07-01
Mortality and hospital separation data suggest a higher burden of chronic obstructive pulmonary disease (COPD) in indigenous than non-indigenous subpopulations of high-income countries. This study sought to accurately measure the true prevalence of post-bronchodilator airflow obstruction and forced vital capacity reduction in representative samples of Indigenous and non-Indigenous Australians. This study applies cross-sectional population-based survey of Aboriginal and non-Indigenous residents of the Kimberley region of Western Australia aged 40 years or older, following the international Burden Of Lung Disease (BOLD) protocol. Quality-controlled spirometry was conducted before and after bronchodilator. COPD was defined as Global initiative for chronic Obstructive Lung Disease (GOLD) Stage 2 and above (post-bronchodilator forced expiratory volume in 1 s/forced vital capacity (FEV1 /FVC) ratio <0.7 and FEV1 < 80% predicted). Complete data were available for 704 participants. The prevalence of COPD, adjusted for age, gender and body weight in Aboriginal participants (7.2%, 95% confidence interval (CI) 3.9 to 10.4) was similar to that seen in non-Indigenous Kimberley participants (8.2%, 95% CI 5.7 to 10.7) and non-Indigenous residents of the remainder of Australia (7.1%, 95% CI 6.1 to 8.0). The prevalence of low FVC (<80% predicted) was substantially higher in Aboriginal compared with non-Indigenous participants (74.0%, 95% CI 69.1 to 78.8, vs 9.7%, 95% CI 7.1 to 12.4). Low FVC, rather than airflow obstruction, characterizes the impact of chronic lung disease previously attributed to COPD in this population subject to significant social and economic disadvantage. Environmental risk factors other than smoking as well as developmental factors must be considered. These findings require further investigation and have implications for future prevention of chronic lung disease in similar populations. © 2015 Asian Pacific Society of Respirology.
Application of particle swarm optimization in path planning of mobile robot
NASA Astrophysics Data System (ADS)
Wang, Yong; Cai, Feng; Wang, Ying
2017-08-01
In order to realize the optimal path planning of mobile robot in unknown environment, a particle swarm optimization algorithm based on path length as fitness function is proposed. The location of the global optimal particle is determined by the minimum fitness value, and the robot moves along the points of the optimal particles to the target position. The process of moving to the target point is done with MATLAB R2014a. Compared with the standard particle swarm optimization algorithm, the simulation results show that this method can effectively avoid all obstacles and get the optimal path.
NASA Technical Reports Server (NTRS)
Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw
2002-01-01
The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.
A non-urologic cause of nocturia and enuresis--obstructive sleep apnea syndrome (OSAS).
Ulfberg, J; Thuman, R
1996-04-01
Three case reports describe nocturia and enuresis as complications of the obstructive sleep apnea syndrome (OSAS). It is important to recognize the causal relationship since these troublesome symptoms are easily treated by treating the sleep apnea.
Icterus intermittens juvenilis; Low-grade chronic hyperbilirubinemia; Familial non-hemolytic-non-obstructive jaundice; Constitutional liver dysfunction; Unconjugated benign bilirubinemia; Gilbert disease
Bowen, Diana K; Yerkes, Elizabeth B; Lindgren, Bruce W; Gong, Edward M; Faasse, Mark A
2015-07-01
We report 4 pediatric cases of ureteropelvic junction obstruction involving delayed progression of initially mild postnatal hydronephrosis. All 4 children became symptomatic; however, 3 already had a substantial decrement of ipsilateral kidney function by the time of diagnosis. Two of these 3 patients had previous renal scintigraphy demonstrating normal differential function. We caution that counseling regarding hydronephrosis should emphasize the importance of prompt re-evaluation for any symptoms potentially referable to delayed presentation of ureteropelvic junction obstruction, irrespective of initial hydronephrosis grade. Future studies are needed to determine the optimal follow-up regimen for conservative management of hydronephrosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Mechanical valve obstruction: Review of diagnostic and treatment strategies
Salamon, Jason; Munoz-Mendoza, Jerson; Liebelt, Jared J; Taub, Cynthia C
2015-01-01
Prosthetic valve obstruction (PVO) is a rare but feared complication of mechanical valve replacement. Diagnostic evaluation should focus on differentiating prosthetic valve thrombosis (PVT) from pannus formation, as their treatment options differ. History of sub-optimal anti-coagulation and post-op time course to development of PVO are useful clinical characteristics in differentiating thrombus from pannus formation. Treatment of PVT is influenced by the patient’s symptoms, valve location, degree of obstruction and thrombus size and may include thrombolysis or surgical intervention. Alternatively, pannus formation requires surgical intervention. The purpose of this article is to review the pathophysiology, epidemiology, diagnostic approach and treatment options for aortic and mitral valve PVO. PMID:26730292
Lee, Tae Hee; Lee, Joon Seong; Hong, Su Jin; Jeon, Seong Ran; Kwon, Soon Ha; Kim, Wan Jung; Kim, Hyun Gun; Cho, Won Young; Cho, Joo Young; Kim, Jin-Oh; Lee, Ji Sung
2013-01-01
The causes of functional anorectal outlet obstruction (outlet obstruction) include functional defecation disorder (FDD), rectocele, and rectal intussusception (RI). It is unclear whether outlet obstruction is associated with rectal hyposensitivity (RH) in patients with functional constipation (FC). The aim of this study was to determine the association between RH and outlet obstruction in patients with FC. This was a retrospective study using a prospectively collected constipation database, and the population comprised 107 patients with FC (100 females; median age, 49 years). We performed anorectal manometry, defecography, rectal barostat, and at least two tests (balloon expulsion test, electromyography, or colon transit time study). RH was defined as one or more sensory threshold pressures raised beyond the normal range on rectal barostat. We investigated the association between the presence of RH and an outlet obstruction such as large rectocele (> 2 cm in size), RI, or FDD. Forty patients (37.4%) had RH. No significant difference was observed in RH between patients with small and large rectoceles (22 [44.9%] vs. 18 [31%], respectively; p = 0.140). No significant difference was observed in RH between the non-RI and RI groups (36 [36.7%] vs. 4 [30.8%], respectively; p = 0.599). Furthermore, no significant difference in RH was observed between the non-FDD and FDD groups (19 [35.8%] vs. 21 [38.9%], respectively; p = 0.745). RH and outlet obstruction are common entities but appear not to be significantly associated.
Acquired urethral obstruction in New World camelids: 34 cases (1995-2008).
Duesterdieck-Zellmer, K F; Van Metre, D C; Cardenas, A; Cebra, C K
2014-08-01
Document the clinical features, short- and long-term outcomes and prognostic factors in New World camelids with acquired urethral obstruction. Retrospective case study. Case data from medical records of 34 New World camelids presenting with acquired urethral obstruction were collected and follow-up information on discharged patients was obtained. Associations with short- and long-term survival were evaluated using Wilcoxon rank-sum tests, exact-logistic regressions and Kaplan-Meier survival curves. Of the 34 New World camelids 23 were intact males and 11 were castrated; 4 animals were euthanased upon presentation, 7 were treated medically and 23 surgically, including urethrotomy, bladder marsupialisation, tube cystostomy alone or combined with urethrotomy, urethrostomy or penile reefing. Necrosis of the distal penis was found in 4 animals and all were short-term non-survivors. Short-term survival for surgical cases was 65%, and 57% for medical cases. Incomplete urethral obstruction at admission and surgical treatment were associated with increased odds of short-term survival. Of 14 records available for long-term follow-up, 6 animals were alive and 8 were dead (median follow-up 4.5 years, median survival time 2.5 years). Recurrence of urethral obstruction was associated with long-term non-survival. Surgically treated New World camelids with incomplete urethral obstruction have the best odds of short-term survival and those with recurrence of urethral obstruction have a poor prognosis for long-term survival. © 2014 Australian Veterinary Association.
Mei, Dan; Wen, Meng; Xu, Xuemei; Zhu, Yuzheng; Xing, Futang
2018-04-20
In atmospheric environment, the layout difference of urban buildings has a powerful influence on accelerating or inhibiting the dispersion of particle matters (PM). In industrial cities, buildings of variable heights can obstruct the diffusion of PM from industrial stacks. In this study, PM dispersed within building groups was simulated by Reynolds-averaged Navier-Stokes equations coupled Lagrangian approach. Four typical street building arrangements were used: (a) a low-rise building block with Height/base H/b = 1 (b = 20 m); (b) step-up building layout (H/b = 1, 2, 3, 4); (c) step-down building layout (H/b = 4, 3, 2, 1); (d) high-rise building block (H/b = 5). Profiles of stream functions and turbulence intensity were used to examine the effect of various building layouts on atmospheric airflow. Here, concepts of particle suspension fraction and concentration distribution were used to evaluate the effect of wind speed on fine particle transport. These parameters showed that step-up building layouts accelerated top airflow and diffused more particles into street canyons, likely having adverse effects on resident health. In renewal old industry areas, the step-down building arrangement which can hinder PM dispersion from high-level stacks should be constructed preferentially. High turbulent intensity results in formation of a strong vortex that hinders particles into the street canyons. It is found that an increase in wind speed enhanced particle transport and reduced local particle concentrations, however, it did not affect the relative location of high particle concentration zones, which are related to building height and layout. This study has demonstrated the height variation and layout of urban architecture affect the local concentration distribution of particulate matter (PM) in the atmosphere and for the first time that wind velocity has particular effects on PM transport in various building groups. The findings may have general implications in optimization the building layout based on particle transport characteristics during the renewal of industrial cities. For city planners, the results and conclusions are useful for improving the local air quality. The study method also can be used to calculate the explosion risk of industrial dust for people who live in industrial cities.
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-03-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-01-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm. PMID:28257060
Optimal configuration of power grid sources based on optimal particle swarm algorithm
NASA Astrophysics Data System (ADS)
Wen, Yuanhua
2018-04-01
In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.
Morris, Alison; Paulson, Joseph N; Talukder, Hisham; Tipton, Laura; Kling, Heather; Cui, Lijia; Fitch, Adam; Pop, Mihai; Norris, Karen A; Ghedin, Elodie
2016-07-08
Longitudinal studies of the lung microbiome are challenging due to the invasive nature of sample collection. In addition, studies of the lung microbiome in human disease are usually performed after disease onset, limiting the ability to determine early events in the lung. We used a non-human primate model to assess lung microbiome alterations over time in response to an HIV-like immunosuppression and determined impact of the lung microbiome on development of obstructive lung disease. Cynomolgous macaques were infected with the SIV-HIV chimeric virus SHIV89.6P. Bronchoalveolar lavage fluid samples were collected pre-infection and every 4 weeks for 53 weeks post-infection. The microbiota was characterized at each time point by 16S ribosomal RNA (rRNA) sequencing. We observed individual variation in the composition of the lung microbiota with a proportion of the macaques having Tropheryma whipplei as the dominant organism in their lungs. Bacterial communities varied over time both within and between animals, but there did not appear to be a systematic alteration due to SHIV infection. Development of obstructive lung disease in the SHIV-infected animals was characterized by a relative increase in abundance of oral anaerobes. Network analysis further identified a difference in community composition that accompanied the development of obstructive disease with negative correlations between members of the obstructed and non-obstructed groups. This emphasizes how species shifts can impact multiple other species, potentially resulting in disease. This study is the first to investigate the dynamics of the lung microbiota over time and in response to immunosuppression in a non-human primate model. The persistence of oral bacteria in the lung and their association with obstruction suggest a potential role in pathogenesis. The lung microbiome in the non-human primate is a valuable tool for examining the impact of the lung microbiome in human health and disease.
Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization
NASA Astrophysics Data System (ADS)
Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo
2015-08-01
Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.
Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles.
Oliveira, Rodinelli B; Nascimento, Thais L; Lima, Eliana M
2012-01-01
Ketoprofen is a non-steroid anti-inflammatory drug (NSAID) used in the treatment of rheumatic diseases and in mild to moderate pain. Ketoprofen has a short biological half-life and the commercially available conventional release formulations require dosages to be administered at least 2-3 times a day. Due to these characteristics, ketoprofen is a good candidate for the preparation of controlled release formulations. In this work, a multiparticulate-sustained release dosage form containing ketoprofen in a carnauba wax matrix was developed. Particles were prepared by an emulsion congealing technique. System variables were optimized using fractional factorial and response surface experimental design. Characterization of the particles included size and morphology, flow rate, drug loading and in vitro drug release. Spherical particles were obtained with high drug load and sustained drug release profile. The optimized particles had an average diameter of approximately 200 µm, 50% (w/w) drug load, good flow properties and prolonged ketoprofen release for more than 24 h. Carnauba wax microspheres prepared in this work represent a new multiparticulate-sustained release system for the NSAID ketoprofen, exhibiting good potential for application in further pharmaceutical processes.
Löck, Steffen; Roth, Klaus; Skripcak, Tomas; Worbs, Mario; Helmbrecht, Stephan; Jakobi, Annika; Just, Uwe; Krause, Mechthild; Baumann, Michael; Enghardt, Wolfgang; Lühr, Armin
2015-09-01
To guarantee equal access to optimal radiotherapy, a concept of patient assignment to photon or particle radiotherapy using remote treatment plan exchange and comparison - ReCompare - was proposed. We demonstrate the implementation of this concept and present its clinical applicability. The ReCompare concept was implemented using a client-server based software solution. A clinical workflow for the remote treatment plan exchange and comparison was defined. The steps required by the user and performed by the software for a complete plan transfer were described and an additional module for dose-response modeling was added. The ReCompare software was successfully tested in cooperation with three external partner clinics and worked meeting all required specifications. It was compatible with several standard treatment planning systems, ensured patient data protection, and integrated in the clinical workflow. The ReCompare software can be applied to support non-particle radiotherapy institutions with the patient-specific treatment decision on the optimal irradiation modality by remote treatment plan exchange and comparison. Copyright © 2015. Published by Elsevier GmbH.
Cheng, Wen-Chang
2012-01-01
In this paper we propose a robust lane detection and tracking method by combining particle filters with the particle swarm optimization method. This method mainly uses the particle filters to detect and track the local optimum of the lane model in the input image and then seeks the global optimal solution of the lane model by a particle swarm optimization method. The particle filter can effectively complete lane detection and tracking in complicated or variable lane environments. However, the result obtained is usually a local optimal system status rather than the global optimal system status. Thus, the particle swarm optimization method is used to further refine the global optimal system status in all system statuses. Since the particle swarm optimization method is a global optimization algorithm based on iterative computing, it can find the global optimal lane model by simulating the food finding way of fish school or insects under the mutual cooperation of all particles. In verification testing, the test environments included highways and ordinary roads as well as straight and curved lanes, uphill and downhill lanes, lane changes, etc. Our proposed method can complete the lane detection and tracking more accurately and effectively then existing options. PMID:23235453
NASA Astrophysics Data System (ADS)
Lee, Youngjoo; Seo, Joon Beom; Kang, Bokyoung; Kim, Dongil; Lee, June Goo; Kim, Song Soo; Kim, Namkug; Kang, Suk Ho
2007-03-01
The performance of classification algorithms for differentiating among obstructive lung diseases based on features from texture analysis using HRCT (High Resolution Computerized Tomography) images was compared. HRCT can provide accurate information for the detection of various obstructive lung diseases, including centrilobular emphysema, panlobular emphysema and bronchiolitis obliterans. Features on HRCT images can be subtle, however, particularly in the early stages of disease, and image-based diagnosis is subject to inter-observer variation. To automate the diagnosis and improve the accuracy, we compared three types of automated classification systems, naÃve Bayesian classifier, ANN (Artificial Neural Net) and SVM (Support Vector Machine), based on their ability to differentiate among normal lung and three types of obstructive lung diseases. To assess the performance and cross-validation of these three classifiers, 5 folding methods with 5 randomly chosen groups were used. For a more robust result, each validation was repeated 100 times. SVM showed the best performance, with 86.5% overall sensitivity, significantly different from the other classifiers (one way ANOVA, p<0.01). We address the characteristics of each classifier affecting performance and the issue of which classifier is the most suitable for clinical applications, and propose an appropriate method to choose the best classifier and determine its optimal parameters for optimal disease discrimination. These results can be applied to classifiers for differentiation of other diseases.
Are consistent equal-weight particle filters possible?
NASA Astrophysics Data System (ADS)
van Leeuwen, P. J.
2017-12-01
Particle filters are fully nonlinear data-assimilation methods that could potentially change the way we do data-assimilation in highly nonlinear high-dimensional geophysical systems. However, the standard particle filter in which the observations come in by changing the relative weights of the particles is degenerate. This means that one particle obtains weight one, and all other particles obtain a very small weight, effectively meaning that the ensemble of particles reduces to that one particle. For over 10 years now scientists have searched for solutions to this problem. One obvious solution seems to be localisation, in which each part of the state only sees a limited number of observations. However, for a realistic localisation radius based on physical arguments, the number of observations is typically too large, and the filter is still degenerate. Another route taken is trying to find proposal densities that lead to more similar particle weights. There is a simple proof, however, that shows that there is an optimum, the so-called optimal proposal density, and that optimum will lead to a degenerate filter. On the other hand, it is easy to come up with a counter example of a particle filter that is not degenerate in high-dimensional systems. Furthermore, several particle filters have been developed recently that claim to have equal or equivalent weights. In this presentation I will show how to construct a particle filter that is never degenerate in high-dimensional systems, and how that is still consistent with the proof that one cannot do better than the optimal proposal density. Furthermore, it will be shown how equal- and equivalent-weights particle filters fit within this framework. This insight will then lead to new ways to generate particle filters that are non-degenerate, opening up the field of nonlinear filtering in high-dimensional systems.
Morales, Shannon J; Nigam, Neha; Chalhoub, Walid M; Abdelaziz, Dalia I; Lewis, James H; Benjamin, Stanley B
2017-01-01
AIM To investigate the current management of gastric antral webs (GAWs) among adults and identify optimal endoscopic and/or surgical management for these patients. METHODS We reviewed our endoscopy database seeking to identify patients in whom a GAW was visualized among 24640 esophagogastroduodenoscopies (EGD) over a seven-year period (2006-2013) at a single tertiary care center. The diagnosis of GAW was suspected during EGD if aperture size of the antrum did not vary with peristalsis or if a “double bulb” sign was present on upper gastrointestinal series. Confirmation of the diagnosis was made by demonstrating a normal pylorus distal to the GAW. RESULTS We identified 34 patients who met our inclusion criteria (incidence 0.14%). Of these, five patients presented with gastric outlet obstruction (GOO), four of whom underwent repeated sequential balloon dilations and/or needle-knife incisions with steroid injection for alleviation of GOO. The other 29 patients were incidentally found to have a non-obstructing GAW. Age at diagnosis ranged from 30-87 years. Non-obstructing GAWs are mostly incidental findings. The most frequently observed symptom prompting endoscopic work-up was refractory gastroesophageal reflux (n = 24, 70.6%) followed by abdominal pain (n = 11, 33.4%), nausea and vomiting (n = 9, 26.5%), dysphagia (n = 6, 17.6%), unexplained weight loss, (n = 4, 11.8%), early satiety (n = 4, 11.8%), and melena of unclear etiology (n = 3, 8.82%). Four of five GOO patients were treated with balloon dilation (n = 4), four-quadrant needle-knife incision (n = 3), and triamcinolone injection (n = 2). Three of these patients required repeat intervention. One patient had a significant complication of perforation after needle-knife incision. CONCLUSION Endoscopic intervention for GAW using balloon dilation or needle-knife incision is generally safe and effective in relieving symptoms, however repeat treatment may be needed and a risk of perforation exists with thermal therapies. PMID:28101304
In vitro fertilization/intracytoplasmic sperm injection for male infertility
Merchant, Rubina; Gandhi, Goral; Allahbadia, Gautam N.
2011-01-01
Progress in the field of assisted reproduction, and particularly micromanipulation, now heralds a new era in the management of severe male factor infertility, not amenable to medical or surgical correction. By overcoming natural barriers to conception, in vitro fertilization and embryo transfer (IVF-ET), subzonal sperm insemination, partial zona dissection, and intracytoplasmatic injection of sperm (ICSI) now offer couples considered irreversibly infertile, the option of parenting a genetically related child. However, unlike IVF, which necessitates an optimal sperm number and function to successfully complete the sequence of events leading to fertilization, micromanipulation techniques, such as ICSI, involving the direct injection of a spermatozoon into the oocyte, obviate all these requirements and may be used to alleviate severe male factor infertility due to the lack of sperm in the ejaculate due to severely impaired spermatogenesis (non-obstructive azoospermia) or non-reconstructable reproductive tract obstruction (obstructive azoospermia). ICSI may be performed with fresh or cryopreserved ejaculate sperm where available, microsurgically extracted epididymal or testicular sperm with satisfactory fertilization, clinical pregnancy, and ongoing pregnancy rates. However, despite a lack of consensus regarding the genetic implications of ICSI or the application and efficacy of preimplantation genetic diagnosis prior to assisted reproductive technology (ART), the widespread use of ICSI, increasing evidence of the involvement of genetic factors in male infertility and the potential risk of transmission of genetic disorders to the offspring, generate major concerns with regard to the safety of the technique, necessitating a thorough genetic evaluation of the couple, classification of infertility and adequate counseling of the implications and associated risks prior to embarking on the procedure. The objective of this review is to highlight the indications, advantages, limitations, outcomes, implications and safety of using IVF/ICSI for male factor infertility to enable a more judicious use of these techniques and maximize their potential benefits while minimizing foreseen complications. PMID:21716935
NASA Astrophysics Data System (ADS)
Yin, Yong; Chen, Lingen; Wu, Feng
2018-03-01
A generalized irreversible quantum Stirling refrigeration cycle (GIQSRC) is proposed. The working substance of the GIQSRC is a particle confined in a general 1D potential which energy spectrum can be expressed as εn = ℏωnσ . Heat leakage and non-ideal regeneration loss are taken into account. The expressions of coefficient of performance (COP) and dimensionless cooling load are obtained. The different practical cases of the energy spectrum are analyzed. The results of this paper are meaningful to understand the quantum thermodynamics cycles with a particle confined in different potential as working substance.
Pallin, Michael; O'Hare, Emer; Zaffaroni, Alberto; Boyle, Patricia; Fagan, Ciara; Kent, Brian; Heneghan, Conor; de Chazal, Philip; McNicholas, Walter T
2014-08-01
Ambulatory monitoring is of major clinical interest in the diagnosis of obstructive sleep apnoea syndrome. We compared a novel non-contact biomotion sensor, which provides an estimate of both sleep time and sleep-disordered breathing, with wrist actigraphy in the assessment of total sleep time in adult humans suspected of obstructive sleep apnoea syndrome. Both systems were simultaneously evaluated against polysomnography in 103 patients undergoing assessment for obstructive sleep apnoea syndrome in a hospital-based sleep laboratory (84 male, aged 55 ± 14 years and apnoea-hypopnoea index 21 ± 23). The biomotion sensor demonstrated similar accuracy to wrist actigraphy for sleep/wake determination (77.3%: biomotion; 76.5%: actigraphy), and the biomotion sensor demonstrated higher specificity (52%: biomotion; 34%: actigraphy) and lower sensitivity (86%: biomotion; 94%: actigraphy). Notably, total sleep time estimation by the biomotion sensor was superior to actigraphy (average overestimate of 10 versus 57 min), especially at a higher apnoea-hypopnoea index. In post hoc analyses, we assessed the improved apnoea-hypopnoea index accuracy gained by combining respiratory measurements from polysomnography for total recording time (equivalent to respiratory polygraphy) with total sleep time derived from actigraphy or the biomotion sensor. Here, the number of misclassifications of obstructive sleep apnoea severity compared with full polysomnography was reduced from 10/103 (for total respiratory recording time alone) to 7/103 and 4/103 (for actigraphy and biomotion sensor total sleep time estimate, respectively). We conclude that the biomotion sensor provides a viable alternative to actigraphy for sleep estimation in the assessment of obstructive sleep apnoea syndrome. As a non-contact device, it is suited to longitudinal assessment of sleep, which could also be combined with polygraphy in ambulatory studies. © 2014 European Sleep Research Society.
Charususin, Noppawan; Dacha, Sauwaluk; Gosselink, Rik; Decramer, Marc; Von Leupoldt, Andreas; Reijnders, Thomas; Louvaris, Zafeiris; Langer, Daniel
2018-01-01
Respiratory muscle dysfunction is common and contributes to dyspnea and exercise limitation in patients with chronic obstructive pulmonary disease (COPD). Improving dynamic function of respiratory muscles during exercise might help to reduce symptoms and improve exercise capacity. Areas covered: The aims of this review are to 1) summarize physiological mechanisms linking respiratory muscle dysfunction to dyspnea and exercise limitation; 2) provide an overview of available therapeutic approaches to better maintain load-capacity balance of respiratory muscles during exercise; and 3) to summarize current knowledge on potential mechanisms explaining effects of interventions aimed at optimizing dynamic respiratory muscle function with a special focus on inspiratory muscle training. Expert commentary: Several mechanisms which are potentially linking improvements in dynamic respiratory muscle function to symptomatic and functional benefits have not been studied so far in COPD patients. Examples of underexplored areas include the study of neural processes related to the relief of acute dyspnea and the competition between respiratory and peripheral muscles for limited energy supplies during exercise. Novel methodologies are available to non-invasively study these mechanisms. Better insights into the consequences of dynamic respiratory muscle dysfunction will hopefully contribute to further refine and individualize therapeutic approaches in patients with COPD.
Badran, Hala Mahfouz; Ibrahim, Waleed Abdou; Faheem, Naglaa; Yassin, Rehab; Alashkar, Tamer; Yacoub, Magdi
2015-01-01
Left ventricular outflow tract obstruction (LVOT) is an independent predictor of adverse outcome in hypertrophic cardiomyopathy (HCM). It is of major importance that the provocation modalities used are validated against each other. To define the magnitude of LVOT gradients provocation during both isosorbide dinitrate (ISDN) inhalation and treadmill exercise in non-obstructive HCM and analyze the correlation to the electromechanical delay using speckle tracking. We studied 39 HCM pts (64% males, mean age 38 ± 13 years) regional LV longitudinal strain and electromechanical delay (TTP) was analyzed at rest using speckle tracking. LVOT gradient was measured at rest and after ISDN then patients underwent a treadmill exercise echocardiography (EE) and LVOT gradient was measured at peak exercise. The maximum effect of ISDN on LVOT gradient was obtained at 5 minutes, it increased to a significant level in 12 (31%) patients, and in 14 (36%) patients using EE, with 85.6% sensitivity & 100% specificity. Patients with latent obstruction had larger left atrial volume and lower E/A ratio compared to the non-obstructive group (p < 0.01). LVOTG using ISDN was significantly correlated with that using EE (p < 0.0001), resting LVOTG (p < 0.0001), SAM (p < 0.0001), EF% (p < 0.02) and regional electromechanical delay but not related to global LV longitudinal strain. Using multivariate regression, resting LVOTG (p = 0.006) & TTP mid septum (p = 0.01) were found to be independent predictors of latent LVOT obstruction using ISDN. There is a comparable diagnostic value of nitrate inhalation to exercise testing in provocation of LVOT obstruction in HCM. Latent obstruction is predominantly dependent on regional electromechanical delay.
Badran, Hala Mahfouz; Ibrahim, Waleed Abdou; Faheem, Naglaa; Yassin, Rehab; Alashkar, Tamer; Yacoub, Magdi
2015-01-01
Background: Left ventricular outflow tract obstruction (LVOT) is an independent predictor of adverse outcome in hypertrophic cardiomyopathy (HCM). It is of major importance that the provocation modalities used are validated against each other. Aim: To define the magnitude of LVOT gradients provocation during both isosorbide dinitrate (ISDN) inhalation and treadmill exercise in non-obstructive HCM and analyze the correlation to the electromechanical delay using speckle tracking. Methods: We studied 39 HCM pts (64% males, mean age 38 ± 13 years) regional LV longitudinal strain and electromechanical delay (TTP) was analyzed at rest using speckle tracking. LVOT gradient was measured at rest and after ISDN then patients underwent a treadmill exercise echocardiography (EE) and LVOT gradient was measured at peak exercise. Results: The maximum effect of ISDN on LVOT gradient was obtained at 5 minutes, it increased to a significant level in 12 (31%) patients, and in 14 (36%) patients using EE, with 85.6% sensitivity & 100% specificity. Patients with latent obstruction had larger left atrial volume and lower E/A ratio compared to the non-obstructive group (p < 0.01). LVOTG using ISDN was significantly correlated with that using EE (p < 0.0001), resting LVOTG (p < 0.0001), SAM (p < 0.0001), EF% (p < 0.02) and regional electromechanical delay but not related to global LV longitudinal strain. Using multivariate regression, resting LVOTG (p = 0.006) & TTP mid septum (p = 0.01) were found to be independent predictors of latent LVOT obstruction using ISDN. Conclusion: There is a comparable diagnostic value of nitrate inhalation to exercise testing in provocation of LVOT obstruction in HCM. Latent obstruction is predominantly dependent on regional electromechanical delay. PMID:26779503
NASA Astrophysics Data System (ADS)
Gérard, Anthony; Berry, Alain; Masson, Patrice; Gervais, Yves
2009-03-01
This paper presents the acoustic performance of a novel approach for the passive adaptive control of tonal noise radiated from subsonic fans. Tonal noise originates from non-uniform flow that causes circumferentially varying blade forces and gives rise to a considerably larger radiated dipolar sound at the blade passage frequency (BPF) and its harmonics compared to the tonal noise generated by a uniform flow. The approach presented in this paper uses obstructions in the flow to destructively interfere with the primary tonal noise arising from various flow conditions. The acoustic radiation of the obstructions is first demonstrated experimentally. Indirect on-axis acoustic measurements are used to validate the analytical prediction of the circumferential spectrum of the blade unsteady lift and related indicators generated by the trapezoidal and sinusoidal obstructions presented in Ref. [A. Gérard, A. Berry, P. Masson, Y. Gervais, Modelling of tonal noise control from subsonic axial fans using flow control obstructions, Journal of Sound and Vibration (2008), this issue, doi: 10.1016/j.jsv.2008.09.027.] and also by cylindrical obstructions used in the literature. The directivity and sound power attenuation are then given in free field for the control of the BPF tone generated by rotor/outlet guide vane (OGV) interaction and the control of an amplified BPF tone generated by the rotor/OGV interaction with an added triangular obstruction between two outlet guide vanes to enhance the primary non-uniform flow. Global control was demonstrated in free field, attenuation up to 8.4 dB of the acoustic power at BPF has been measured. Finally, the aerodynamic performances of the automotive fan used in this study are almost not affected by the presence of the control obstruction.
NASA Astrophysics Data System (ADS)
Chernyak, Vladimir Y.; Chertkov, Michael; Bierkens, Joris; Kappen, Hilbert J.
2014-01-01
In stochastic optimal control (SOC) one minimizes the average cost-to-go, that consists of the cost-of-control (amount of efforts), cost-of-space (where one wants the system to be) and the target cost (where one wants the system to arrive), for a system participating in forced and controlled Langevin dynamics. We extend the SOC problem by introducing an additional cost-of-dynamics, characterized by a vector potential. We propose derivation of the generalized gauge-invariant Hamilton-Jacobi-Bellman equation as a variation over density and current, suggest hydrodynamic interpretation and discuss examples, e.g., ergodic control of a particle-within-a-circle, illustrating non-equilibrium space-time complexity.
[Respiratory symptoms and obstructive ventilatory disorder in Tunisian woman exposed to biomass].
Kwas, H; Rahmouni, N; Zendah, I; Ghédira, H
2017-06-01
In some Tunisian cities, especially semi-urbanized, the exposure to the smoke produced during combustion of the biomass, main source of pollution of indoor air, remains prevalent among non-smoking women. To assess the relationship between exposure to biomass smoke and the presence of obstructive ventilatory disorder in the non-smoking women in semi-urban areas of Tunisia. Cross etiological study, using a questionnaire, including 140 non-smoking women responsible for cooking and/or exposed during heating by traditional means with objective measurement of their respiratory functions. We found 81 women exposed to biomass for a period > or equal to 20 hours-years and 59 unexposed women. Exposed women reported more respiratory symptoms namely exertional dyspnea and/or chronic cough than unexposed. Of the 140 women, 14 women have an FEV/FEV6 <70 % of which 13 are exposed to biomass. We found a correlation between respiratory symptoms and obstructive ventilatory disorder in exposed women. The air pollution inside the home during the traditional activities of cooking and/or heating is a respiratory risk factor for non-smoking women over the age of 30 years. Exposure to biomass smoke can cause chronic respiratory symptoms and persistent obstructive ventilatory disorder that can be consistent with COPD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Blackman, Scott M.; Deering-Brose, Rebecca; McWilliams, Rita; Naughton, Kathleen; Coleman, Barbara; Lai, Teresa; Algire, Marilyn; Beck, Suzanne; Hoover-Fong, Julie; Hamosh, Ada; Fallin, M. Daniele; West, Kristen; Arking, Dan E.; Chakravarti, Aravinda; Cutler, David J.; Cutting, Garry R
2006-01-01
Background & Aims Neonatal intestinal obstruction (meconium ileus or MI) occurs in 15% of patients with cystic fibrosis (CF). Our aim was to determine the relative contribution of genetic and non-genetic modifiers to the development of this major complication of CF. Methods Using clinical data and DNA collected by the CF Twin and Sibling Study, 65 monozygous twin pairs, 23 dizygous twin/triplet sets, and 349 sets of siblings with CF were analyzed for MI status, significant covariates, and genome-wide linkage. Results Specific mutations in CFTR, the gene responsible for CF, correlated with MI indicating a role for CFTR genotype. Monozygous twins showed substantially greater concordance for MI than dizygous twins and siblings (p=1×10−5) demonstrating that modifier genes independent of CFTR contribute substantially to this trait. Regression analysis revealed that MI was correlated with distal intestinal obstruction syndrome (DIOS; p=8×10−4). Unlike MI, concordance analysis indicated that the risk for development of DIOS in CF patients is primarily due to non-genetic factors. Regions of suggestive linkage (logarithm of the odds of linkage >2.0) for modifier genes that cause MI (chromosomes 4q35.1, 8p23.1, and 11q25) or protect from MI (chromosomes 20p11.22 and 21q22.3) were identified by genome-wide analyses. These analyses did not support the existence of a major modifier gene within the CFM1 region on chromosome 19 that had previously been linked to MI. Conclusions The CFTR gene along with two or more modifier genes are the major determinants of intestinal obstruction in newborn CF patients, while intestinal obstruction in older CF patients is primarily due to non-genetic factors. PMID:17030173
Raut, Sangeeta; Raut, Smita; Sharma, Manisha; Srivastav, Chaitanya; Adhikari, Basudam; Sen, Sudip Kumar
2015-09-01
In the present study, artificial neural network (ANN) modelling coupled with particle swarm optimization (PSO) algorithm was used to optimize the process variables for enhanced low density polyethylene (LDPE) degradation by Curvularia lunata SG1. In the non-linear ANN model, temperature, pH, contact time and agitation were used as input variables and polyethylene bio-degradation as the output variable. Further, on application of PSO to the ANN model, the optimum values of the process parameters were as follows: pH = 7.6, temperature = 37.97 °C, agitation rate = 190.48 rpm and incubation time = 261.95 days. A comparison between the model results and experimental data gave a high correlation coefficient ([Formula: see text]). Significant enhancement of LDPE bio-degradation using C. lunata SG1by about 48 % was achieved under optimum conditions. Thus, the novelty of the work lies in the application of combination of ANN-PSO as optimization strategy to enhance the bio-degradation of LDPE.
León-Mejía, Grethel; Machado, Mariana Nascimento; Okuro, Renata Tiemi; Silva, Luis F O; Telles, Claudia; Dias, Johnny; Niekraszewicz, Liana; Da Silva, Juliana; Henriques, João Antônio Pêgas; Zin, Walter Araujo
2018-06-01
Continuous exposure to coal mining particles can cause a variety of lung diseases. We aimed to evaluate the outcomes of exposure to detailed characterized coal and coal fly ash (CFA) particles on DNA, lung and extrapulmonary tissues. Coal samples (COAL11 and COAL16) and CFA samples (CFA11 and CFA16) were included in this study. Intending to enhance the combustion process COAL16 was co-fired with a mixture of fuel oil and diesel oil, producing CFA16. Male BALB/c mice were intratracheally instilled with coal and CFA particles. Measurements were done 24h later. Results showed significant rigidity and obstruction of the central airways only for animals acutely exposed to coal particles. The COAL16 group also showed obstruction of the peripheral airways. Mononuclear cells were recruited in all treatment groups and expression of cytokines, particularly TNF-α and IL-1β, was observed. Only animals exposed to COAL16 showed a significant expression of IL-6 and recruitment of polymorphonuclear cells. DNA damage was demonstrated by Comet assay for all groups. Cr, Fe and Ni were detected in liver, spleen and brain, showing the efficient translocation of metals from the bloodstream to extrapulmonary organs. These effects were associated with particle composition (oxides, hydroxides, phosphates, sulfides, sulphates, silciates, organic-metalic compounds, and polycyclic aromatic hidrocarbons) rather than their size. This work provides state of knowledge on the effects of acute exposure to coal and CFA particles on respiratory mechanics, DNA damage, translocation of metals to other organs and related inflammatory processes. Copyright © 2018 Elsevier B.V. All rights reserved.
ULTRAFINE PARTICLE DEPOSITION IN HEALTHY SUBJECTS VS. PATIENTS WTH COPD
Individuals affected with chronic obstructive pulmonary disease (COPD) have increased susceptibility to adverse health effects from exposure to particulate air pollution. The dosimetry of ultrafine aerosols (diameter # 0.1 :m) is not well characterized in the healthy or diseas...
A frozen Gaussian approximation-based multi-level particle swarm optimization for seismic inversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jinglai, E-mail: jinglaili@sjtu.edu.cn; Lin, Guang, E-mail: lin491@purdue.edu; Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, WA 99352
2015-09-01
In this paper, we propose a frozen Gaussian approximation (FGA)-based multi-level particle swarm optimization (MLPSO) method for seismic inversion of high-frequency wave data. The method addresses two challenges in it: First, the optimization problem is highly non-convex, which makes hard for gradient-based methods to reach global minima. This is tackled by MLPSO which can escape from undesired local minima. Second, the character of high-frequency of seismic waves requires a large number of grid points in direct computational methods, and thus renders an extremely high computational demand on the simulation of each sample in MLPSO. We overcome this difficulty by threemore » steps: First, we use FGA to compute high-frequency wave propagation based on asymptotic analysis on phase plane; Then we design a constrained full waveform inversion problem to prevent the optimization search getting into regions of velocity where FGA is not accurate; Last, we solve the constrained optimization problem by MLPSO that employs FGA solvers with different fidelity. The performance of the proposed method is demonstrated by a two-dimensional full-waveform inversion example of the smoothed Marmousi model.« less
Lee, Hee Seung; Chung, Moon Jae; Park, Jeong Youp; Bang, Seungmin; Park, Seung Woo; Song, Si Young; Chung, Jae Bock
2018-01-01
Acute pancreatitis is a common diagnosis worldwide, with gallstone disease being the most prevalent cause (50%). The American College of Gastroenterology recommends urgent endoscopic retrograde cholangiopancreatography (ERCP) (within 24 h) for patients with biliary pancreatitis accompanied by cholangitis. Most international guidelines recommend that ERCP be performed within 72 h in patients with biliary pancreatitis and a bile duct obstruction without cholangitis, but the optimal timing for endoscopy is controversial. We investigated the optimal timing for ERCP in patients with biliary pancreatitis and a bile duct obstruction without cholangitis, and whether performing endoscopy within 24 h is superior to performing it after 24 h. We analyzed the clinical data of 505 patients with newly diagnosed acute pancreatitis, from January 1, 2005 to December 31, 2014. We divided the patients into two groups according to the timing of ERCP: < 24 h (urgent) and 24-72 h (early).Among the 505 patients, 73 were diagnosed with biliary pancreatitis and a bile duct obstruction without cholangitis. The mean age of the patients was 55 years (range: 26-90 years). Bile duct stones and biliary sludge were identified on endoscopy in 45 (61.6%) and 11 (15.0%) patients, respectively. The timing of ERCP within 72 h was not associated with ERCP-related complications (P = 0.113), and the total length of hospital stay was not different between urgent and early ERCP (5.9 vs. 5.7 days, P = 0.174). No significant differences were found in total length of hospitalization or procedural-related complications, in patients with biliary pancreatitis and a bile duct obstruction without cholangitis, according to the timing of ERCP (< 24 h vs. 24-72 h).
[Superior vena cava syndrome--clinical aspects, etiology and case reports].
Serdarevic, M; Löhr, E; Reidemeister, J C
1984-06-01
The so-called superior-Cava Syndrome is caused by obstructions by centrally localized tumors by thrombosis or by inflammations of the mediastinum. In cases of tumorous infiltration a graft can be inserted. The different phenomena of thrombosis caused by nutritial catheters and pace makers are of clinical importance. Acute thrombosis of the brachio-cervical veins and the Vena Cava can be treated successfully by means of thrombolysis. Besides CT bilateral brachial phlebography communicates optimal information concerning localization of vascular obstruction and collateral circuits.
Lee, Tae Hee; Hong, Su Jin; Jeon, Seong Ran; Kwon, Soon Ha; Kim, Wan Jung; Kim, Hyun Gun; Cho, Won Young; Cho, Joo Young; Kim, Jin-Oh; Lee, Ji Sung
2013-01-01
Background/Aims The causes of functional anorectal outlet obstruction (outlet obstruction) include functional defecation disorder (FDD), rectocele, and rectal intussusception (RI). It is unclear whether outlet obstruction is associated with rectal hyposensitivity (RH) in patients with functional constipation (FC). The aim of this study was to determine the association between RH and outlet obstruction in patients with FC. Methods This was a retrospective study using a prospectively collected constipation database, and the population comprised 107 patients with FC (100 females; median age, 49 years). We performed anorectal manometry, defecography, rectal barostat, and at least two tests (balloon expulsion test, electromyography, or colon transit time study). RH was defined as one or more sensory threshold pressures raised beyond the normal range on rectal barostat. We investigated the association between the presence of RH and an outlet obstruction such as large rectocele (> 2 cm in size), RI, or FDD. Results Forty patients (37.4%) had RH. No significant difference was observed in RH between patients with small and large rectoceles (22 [44.9%] vs. 18 [31%], respectively; p = 0.140). No significant difference was observed in RH between the non-RI and RI groups (36 [36.7%] vs. 4 [30.8%], respectively; p = 0.599). Furthermore, no significant difference in RH was observed between the non-FDD and FDD groups (19 [35.8%] vs. 21 [38.9%], respectively; p = 0.745). Conclusions RH and outlet obstruction are common entities but appear not to be significantly associated. PMID:23345997
Planer, David; Mehran, Roxana; Ohman, E Magnus; White, Harvey D; Newman, Jonathan D; Xu, Ke; Stone, Gregg W
2014-06-01
Troponin elevation is a risk factor for mortality in patients with non-ST-segment-elevation acute coronary syndromes. However, the prognosis of patients with troponin elevation and nonobstructive coronary artery disease (CAD) is unknown. Our objective was therefore to evaluate the impact of nonobstructive CAD in patients with non-ST-segment-elevation acute coronary syndromes and troponin elevation enrolled in the Acute Catheterization and Urgent Intervention Triage Strategy (ACUITY) trial. In the ACUITY trial, 3-vessel quantitative coronary angiography was performed in a formal substudy of 6921 patients presenting with non-ST-segment-elevation acute coronary syndromes. Patients with elevated admission troponin levels were stratified by the presence or absence of obstructive CAD (any lesion with quantitative diameter stenosis >50%). Propensity score matching was performed to adjust for baseline characteristics. Of 2442 patients with elevated troponin, 197 (8.8%) had nonobstructive CAD. Maximum diameter stenosis was 87.4 (73.2, 100.0) versus 22.6 (19.2, 25.7; P<0.0001) in patients with versus without obstructive CAD, respectively. Propensity matching yielded 117 patients with nonobstructive CAD and 331 patients with obstructive CAD, with no significant baseline differences between groups. In the matched cohort, overall 1-year mortality was significantly higher in patients with nonobstructive CAD (5.2% versus 1.6%; hazard ratio [95% confidence interval]=3.44 [1.05, 11.28]; P=0.04), driven by greater noncardiac mortality. Conversely, recurrent myocardial infarction and unplanned revascularization rates were significantly higher in patients with obstructive CAD. Patients with non-ST-segment-elevation acute coronary syndromes and elevated troponin levels but without obstructive CAD, while having low rates of subsequent myocardial infarction and unplanned revascularization, are still at considerable risk for 1-year mortality from noncardiac causes. http://www.clinicaltrials.gov. Unique identifier: NCT00093158. © 2014 American Heart Association, Inc.
Optimized positioning of autonomous surgical lamps
NASA Astrophysics Data System (ADS)
Teuber, Jörn; Weller, Rene; Kikinis, Ron; Oldhafer, Karl-Jürgen; Lipp, Michael J.; Zachmann, Gabriel
2017-03-01
We consider the problem of finding automatically optimal positions of surgical lamps throughout the whole surgical procedure, where we assume that future lamps could be robotized. We propose a two-tiered optimization technique for the real-time autonomous positioning of those robotized surgical lamps. Typically, finding optimal positions for surgical lamps is a multi-dimensional problem with several, in part conflicting, objectives, such as optimal lighting conditions at every point in time while minimizing the movement of the lamps in order to avoid distractions of the surgeon. Consequently, we use multi-objective optimization (MOO) to find optimal positions in real-time during the entire surgery. Due to the conflicting objectives, there is usually not a single optimal solution for such kinds of problems, but a set of solutions that realizes a Pareto-front. When our algorithm selects a solution from this set it additionally has to consider the individual preferences of the surgeon. This is a highly non-trivial task because the relationship between the solution and the parameters is not obvious. We have developed a novel meta-optimization that considers exactly this challenge. It delivers an easy to understand set of presets for the parameters and allows a balance between the lamp movement and lamp obstruction. This metaoptimization can be pre-computed for different kinds of operations and it then used by our online optimization for the selection of the appropriate Pareto solution. Both optimization approaches use data obtained by a depth camera that captures the surgical site but also the environment around the operating table. We have evaluated our algorithms with data recorded during a real open abdominal surgery. It is available for use for scientific purposes. The results show that our meta-optimization produces viable parameter sets for different parts of an intervention even when trained on a small portion of it.
NASA Astrophysics Data System (ADS)
De Rosis, Alessandro
2014-11-01
In this paper, the fluid dynamics induced by a rigid lamina undergoing harmonic oscillations in a non-Newtonian calm fluid is investigated. The fluid is modelled through the lattice Boltzmann method and the flow is assumed to be nearly incompressible. An iterative viscosity-correction based procedure is proposed to properly account for the non-Newtonian fluid feature and its accuracy is evaluated. In order to handle the mutual interaction between the lamina and the encompassing fluid, the Immersed Boundary method is adopted. A numerical campaign is performed. In particular, the effect of the non-Newtonian feature is highlighted by investigating the fluid forces acting on a harmonically oscillating lamina for different values of the Reynolds number. The findings prove that the non-Newtonian feature can drastically influence the behaviour of the fluid and, as a consequence, the forces acting upon the lamina. Several considerations are carried out on the time history of the drag coefficient and the results are used to compute the added mass through the hydrodynamic function. Moreover, the computational cost involved in the numerical simulations is discussed. Finally, two applications concerning water resources are investigated: the flow through an obstructed channel and the particle sedimentation. Present findings highlight a strong coupling between the body shape, the Reynolds number, and the flow behaviour index.
2017-11-20
Coronary; Ischemic; Arrhythmias, Cardiac; Heart Failure; Peripheral Vascular Diseases; Dementia; Stroke; Pulmonary Disease, Chronic Obstructive; Respiratory Insufficiency; Alcoholism; Cancer; Diabetes; Renal Insufficiency
Baig, Mirza Salman; Ahad, Abdul; Aslam, Mohammed; Imam, Syed Sarim; Aqil, Mohd; Ali, Asgar
2016-04-01
The aim of the present study was to develop and optimize levofloxacin loaded solid lipid nanoparticles for the treatment of conjunctivitis. Box-Behnken experimental design was applied for optimization of solid lipid nanoparticles. The independent variables were stearic acid as lipid (X1), Tween 80 as surfactant (X2) and sodium deoxycholate as co-surfactant (X3) while particle size (Y1) and entrapment efficiency (Y2) were the dependent variables. Further in vitro release and antibacterial activity in vitro were also performed. The optimized formulation of levofloxacin provides particle size of 237.82 nm and showed 78.71% entrapment efficiency and achieved flux 0.2,493 μg/cm(2)/h across excised goat cornea. In vitro release study showed prolonged drug release from the optimized formulation following Korsmeyer-Peppas model. Antimicrobial study revealed that the developed formulation possesses antibacterial activity against Staphylococcus aureus, and Escherichia coli equivalent to marketed eye drops. HET-CAM test demonstrated that optimized formulation was found to be non-irritant and safe for topical ophthalmic use. Our results concluded that solid lipid nanoparticles are an efficient carrier for ocular delivery of levofloxacin and other drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng
2016-01-01
Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapert, M.; Glaser, S. J.; Assémat, E.
We show to which extent the signal to noise ratio per unit time of a spin 1/2 particle can be maximized. We consider a cyclic repetition of experiments made of a measurement followed by a radio-frequency magnetic field excitation of the system, in the case of unbounded amplitude. In the periodic regime, the objective of the control problem is to design the initial state of the system and the pulse sequence which leads to the best signal to noise performance. We focus on two specific issues relevant in nuclear magnetic resonance, the crusher gradient and the radiation damping cases. Optimalmore » control techniques are used to solve this non-standard control problem. We discuss the optimality of the Ernst angle solution, which is commonly applied in spectroscopic and medical imaging applications. In the radiation damping situation, we show that in some cases, the optimal solution differs from the Ernst one.« less
Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery.
Gonzalez-Mira, E; Egea, M A; Souto, E B; Calpena, A C; García, M L
2011-01-28
The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol(®) 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween(®) 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE (∼90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.
Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery
NASA Astrophysics Data System (ADS)
Gonzalez-Mira, E.; Egea, M. A.; Souto, E. B.; Calpena, A. C.; García, M. L.
2011-01-01
The purpose of this study was to design and optimize a new topical delivery system for ocular administration of flurbiprofen (FB), based on lipid nanoparticles. These particles, called nanostructured lipid carriers (NLC), were composed of a fatty acid (stearic acid (SA)) as the solid lipid and a mixture of Miglyol® 812 and castor oil (CO) as the liquid lipids, prepared by the hot high pressure homogenization method. After selecting the critical variables influencing the physicochemical characteristics of the NLC (the liquid lipid (i.e. oil) concentration with respect to the total lipid (cOil/L (wt%)), the surfactant and the flurbiprofen concentration, on particle size, polydispersity index and encapsulation efficiency), a three-factor five-level central rotatable composite design was employed to plan and perform the experiments. Morphological examination, crystallinity and stability studies were also performed to accomplish the optimization study. The results showed that increasing cOil/L (wt%) was followed by an enhanced tendency to produce smaller particles, but the liquid to solid lipid proportion should not exceed 30 wt% due to destabilization problems. Therefore, a 70:30 ratio of SA to oil (miglyol + CO) was selected to develop an optimal NLC formulation. The smaller particles obtained when increasing surfactant concentration led to the selection of 3.2 wt% of Tween® 80 (non-ionic surfactant). The positive effect of the increase in FB concentration on the encapsulation efficiency (EE) and its total solubilization in the lipid matrix led to the selection of 0.25 wt% of FB in the formulation. The optimal NLC showed an appropriate average size for ophthalmic administration (228.3 nm) with a narrow size distribution (0.156), negatively charged surface (-33.3 mV) and high EE (~90%). The in vitro experiments proved that sustained release FB was achieved using NLC as drug carriers. Optimal NLC formulation did not show toxicity on ocular tissues.
[Bile duct obstruction due to non-Hodkin's lymphoma in patients with HIV infection].
Gómez-Domínguez, E; Rodríguez Serrano, D A; Mendoza, J; Iscar, T; Sarriá, C; García-Buey, L
2003-12-01
Acquired immune deficiency syndrome increases the risk of developing non-Hodgkin's B-cell lymphoma (NHL) (relative risk over 100). NHL tend to be high-grade and to affect the central nervous system and digestive tract. Biliary tract compression is usually due to external compression from enlarged lymph nodes, but is not usually the first manifestation.We describe 2 cases of bile duct obstruction secondary to NHL in patients diagnosed with HIV infection. Histological diagnosis of the lymphoma can be difficult but is necessary so that these patients do not undergo highly aggressive surgical treatment instead of chemotherapy, which currently produces the best results. Therefore, we emphasize the importance of including lymphomas in the differential diagnosis of bile duct obstruction in patients with HIV infection.
Aniwidyaningsih, Wahju; Varraso, Raphaëlle; Cano, Noel; Pison, Christophe
2008-07-01
Chronic obstructive pulmonary disease is the fifth leading cause of mortality in the world. This study reviews diet as a risk or protective factor for chronic obstructive pulmonary disease, mechanisms of malnutrition, undernutrition consequences on body functioning and how to modulate nutritional status of patients with chronic obstructive pulmonary disease. Different dietary factors (dietary pattern, foods, nutrients) have been associated with chronic obstructive pulmonary disease and the course of the disease. Mechanical disadvantage, energy imbalance, disuse muscle atrophy, hypoxemia, systemic inflammation and oxidative stress have been reported to cause systemic consequences such as cachexia and compromise whole body functioning. Nutritional intervention makes it possible to modify the natural course of the disease provided that it is included in respiratory rehabilitation combining bronchodilators optimization, infection control, exercise and, in some patients, correction of hypogonadism. Diet, as a modifiable risk factor, appears more as an option to prevent and modify the course of chronic obstructive pulmonary disease. Reduction of mechanical disadvantage, physical training and anabolic agents should be used conjointly with oral nutrition supplements to overcome undernutrition and might change the prognosis of the disease in some cases. Major research challenges address the role of systemic inflammation and the best interventions for controlling it besides smoking cessation.
A Novel Particle Swarm Optimization Algorithm for Global Optimization
Wang, Chun-Feng; Liu, Kui
2016-01-01
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387
Haden, R L; Orr, T G
1923-06-30
Experiments to determine the effect of furnishing an ample supply of sodium chloride on the toxemia of pyloric and intestinal obstruction are reported. A fall in chlorides is the first and seemingly most significant change to take place in the blood after pyloric and intestinal obstruction. The chloride is apparently utilized by the body as a protective measure against the primary toxic substance. Two dogs with pyloric obstruction were given 50 cc. of 10 per cent NaCl subcutaneously daily. One lived 3 days, the other 4. The blood showed little change, except a marked terminal rise in chlorides. Animals given a like amount of distilled water or 25 per cent glucose showed the changes typical of untreated animals. The obstruction of the pylorus was released in six dogs 48 to 72 hours after the initial operation. Two died within 24 hours after the second operation with a high non-protein nitrogen in the blood. Two survived but showed a high level of non-protein nitrogen in the blood and a high nitrogen excretion in the urine, low blood chlorides, and a marked alkalosis. One dog in such a state died on the 13th day from peritonitis, arising in a wound infection. The other showed a marked fall in non-protein nitrogen in the blood following the administration of 10 gm. of sodium chloride by mouth, but died following the intravenous injection of 25 per cent sodium chloride. Two animals were given 50 cc. of 10 per cent NaCl subcutaneously, at the time of the second operation. The blood rapidly returned to normal and complete recovery followed. Two dogs with the duodenum obstructed by section and inversion of the cut ends were treated with 10 per cent sodium chloride after the obstruction had existed for 48 hours and the characteristic blood changes had developed. The non-protein nitrogen returned to normal within 48 hours after treatment was begun. One dog died following a lateral anastomosis for relief of the obstruction. A second operation was not attempted in the other animal. Two dogs in which the duodenum was obstructed by section and inversion of the cut ends were given 500 cc. of 0.85 per cent NaCl subcutaneously on the day of operation and each day thereafter until death. One dog lived 21 days, the other 28. Both dogs showed a marked alkalosis, but never any rise in the non-protein nitrogen of the blood. The animals at autopsy showed intussusception of the ileum with extensive ulceration. In one there was a perforation and terminal peritonitis. The operation wounds healed normally. Three dogs with section of the duodenum were given 500 cc. of distilled water every day. One died in 24 hours, one in 48 hours, and the third in 72 hours. Autopsy showed no cause for death other than toxemia. One dog with section of the duodenum was given 500 cc. of 2 per cent glucose every day. The blood showed a rapid rise in non-protein nitrogen and carbon dioxide-combining power, and a fall in chlorides. The animal died 72 hours after operation. Three dogs with section of the duodenum were given 500 cc. of 1 per cent sodium bicarbonate every day. One dog died in 72 hours, one lived 7 days, and the third lived 9 days. All developed a high non-protein nitrogen in the blood and two showed marked clinical symptoms of an alkalosis. These results demonstrate that solutions of sodium chloride have a marked effect in preventing and controlling the toxemia of pyloric and intestinal obstruction as shown in clinical symptoms and in chemical changes in the blood. Dogs given an abundant supply of distilled water died more quickly than untreated control animals. Solutions of glucose have no specific value, and sodium bicarbonate solutions prolong life only a short while. Good therapeutic results have been obtained with very concentrated sodium chloride solutions, and with dry sodium chloride given by mouth. It seems evident that sodium chloride has a specific action in preventing and possibly in controlling the changes produced by the toxic body. Sodium chloride is a valuable therapeutic agent in pyloric and high intestinal obstruction.
99mTc-DTPA diuretic renal scintigraphy in dogs with nephroureterolithiasis
Hecht, Silke; Lawson, S. Meg; Lane, India F.; Sharp, Dorothy E.; Daniel, Gregory B.
2010-01-01
This study evaluated the results of diuretic renal scintigraphy in dogs with urolithiasis. Eighty-three kidneys with nephroureterolithiasis +/− renal pelvis/ureteral dilation were included in the study. Sixty-three kidneys showed a non-obstructive pattern, with a steep drop or gradual downward slope of renal time-activity curve (TAC). Excretion half-time of radiopharmaceutical (T1/2) was 3.99 (2.99 to 7.95) min. Three kidneys showed an obstructive pattern, with continuous rise of the TAC and median T1/2 of −10.71 (−5.20 to −17.56) min. Fifteen kidneys had non-diagnostic studies characterized by flat TAC. Individual kidney glomerular filtration rate was < 0.5 mL/min/kg body weight in most non-diagnostic studies. Diuretic renal scintigraphy appears to be a useful adjunct modality to rule out or confirm ureteral obstruction in dogs. Additional diagnostic procedures may be necessary to achieve a definitive diagnosis in cases of severely impaired renal function. PMID:21358928
Chlumský, J; Filipova, P; Terl, M
2006-01-01
Most patients with chronic obstructive pulmonary disease (COPD) have impaired respiratory muscle function. Maximal oesophageal pressure correlates closely with exercise tolerance and seems to predict the distance walked during the 6-min walk test. This study assessed the non-invasive parameters of respiratory muscle function in 41 patients with COPD to investigate their relationship to pulmonary function tests and exercise tolerance. The COPD patients, who demonstrated the full range of airway obstruction severity, had a mean forced expiratory volume in 1 s of 42.5% predicted (range, 20 - 79% predicted). Both the maximal inspiratory muscle strength and non-invasive tension-time index were significantly correlated with the degree of lung hyperinflation, as expressed by the ratio of residual volume to total lung capacity, and the distance walked in 6 min. We conclude that respiratory muscle function was influenced mainly by lung hyperinflation and that it had an important effect on exercise tolerance in COPD patients.
Systematic review: the influence of nasal obstruction on sleep apnea.
Migueis, Debora Petrungaro; Thuler, Luiz Claudio Santos; Lemes, Lucas Neves de Andrade; Moreira, Chirlene Santos Souza; Joffily, Lucia; Araujo-Melo, Maria Helena de
2016-01-01
Obstructive sleep apnea syndrome (OSAS) is a common disorder that can lead to cardiovascular morbidity and mortality, as well as to metabolic, neurological, and behavioral consequences. It is currently believed that nasal obstruction compromises the quality of sleep when it results in breathing disorders and fragmentation of sleep. However, recent studies have failed to objectively associate sleep quality and nasal obstruction. The aim of this systematic review is to evaluate the influence of nasal obstruction on OSAS and polysomnographic indices associated with respiratory events. Eleven original articles published from 2003 to 2013 were selected, which addressed surgical and non-surgical treatment for nasal obstruction, performing polysomnography type 1 before and after the intervention. In most trials, nasal obstruction was not related to the apnea-hypopnea index (AHI), indicating no improvement in OSAS with reduction in nasal resistance. However, few researchers evaluated other polysomnography indices, such as the arousal index and rapid eye movement (REM) sleep percentage. These could change with nasal obstruction, since it is possible that the nasal obstruction does not completely block the upper airways, but can increase negative intrathoracic pressure, leading to sleep fragmentation. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Magneto-electric nano-particles for non-invasive brain stimulation.
Yue, Kun; Guduru, Rakesh; Hong, Jeongmin; Liang, Ping; Nair, Madhavan; Khizroev, Sakhrat
2012-01-01
This paper for the first time discusses a computational study of using magneto-electric (ME) nanoparticles to artificially stimulate the neural activity deep in the brain. The new technology provides a unique way to couple electric signals in the neural network to the magnetic dipoles in the nanoparticles with the purpose to enable a non-invasive approach. Simulations of the effect of ME nanoparticles for non-invasively stimulating the brain of a patient with Parkinson's Disease to bring the pulsed sequences of the electric field to the levels comparable to those of healthy people show that the optimized values for the concentration of the 20-nm nanoparticles (with the magneto-electric (ME) coefficient of 100 V cm(-1) Oe(-1) in the aqueous solution) is 3 × 10(6) particles/cc, and the frequency of the externally applied 300-Oe magnetic field is 80 Hz.
Beyazit, Yavuz; Kekilli, Murat; Ibis, Mehmet; Kurt, Mevlut; Sayilir, Abdurrahim; Onal, Ibrahim Koral; Purnak, Tugrul; Oztas, Erkin; Tas, Adnan; Yesil, Yusuf; Arhan, Mehmet
2012-01-01
Differentiation of benign obstructive jaundice from malignant obstructive jaundice still remains difficult, despite improvements in diagnostic modalities. The aim of this study is to evaluate the usefulness of red cell distribution width (RDW) in differentiating benign and malignant causes of obstructive jaundice. One hundred and ninety four consecutive patients (101 malignant, 93 benign) with a history of obstructive jaundice were reviewed in the period between January 2008 and August 2009. Definition of biliary strictures was suggested by cholangiographic features and supported by brush cytology, fine needle aspiration (FNA) and the presence of mass or metastases by imaging and/or clinical followup. Patients were divided into two groups, benign and malignant, based on the discharge diagnosis. The receiver operating characteristic analysis showed that a RDW of 14.8% was the best cut-off value for predicting a malignant biliary stricture with a sensitivity of 72% and a specificity of 69% (AUC=0.755, 95% CI=0.649-0.810). RDW was increased (>14.8%) in 31.6% of benign cases and 68.4% of malignancies. Depressed RDW levels (<14.8%) were found in 72.9% of benign cases and 27.1% of malignancies, which was statistically significant (p<0.001). Our results show that RDW is useful in the differentiation of benign from malignant causes of biliary obstruction when using an optimized cut-off value. In patients in whom biliary obstruction is suspected, an elevated RDW value may be a reliable additional predictor for differentiating the underlying etiology of biliary obstruction.
Bohn, Justin J.; Ben-Moshe, Matti; Tikhonov, Alexander; Qu, Dan; Lamont, Daniel N.
2010-01-01
We developed a straightforward method to form non close-packed highly ordered fcc direct and inverse opal silica photonic crystals. We utilize an electrostatically self assembled crystalline colloidal array (CCA) template formed by monodisperse, highly charged polystyrene particles. We then polymerize a hydrogel around the CCA (PCCA) and condense the silica to form a highly ordered silica impregnated (siPCCA) photonic crystal. Heating at 450 °C removes the organic polymer leaving a silica inverse opal structure. By altering the colloidal particle concentration we independently control the particle spacing and the wall thickness of the inverse opal photonic crystals. This allows us to control the optical dielectric constant modulation in order to optimize the diffraction; the dielectric constant modulation is controlled independently of the photonic crystal periodicity. These fcc photonic crystals are better ordered than typical close-packed photonic crystals because their self assembly utilizes soft electrostatic repulsive potentials. We show that colloidal particle size and charge polydispersity has modest impact on ordering, in contrast to that for close-packed crystals. PMID:20163800
Obturator hernia: A diagnostic challenge.
Kulkarni, Sanjeev R; Punamiya, Aditya R; Naniwadekar, Ramchandra G; Janugade, Hemant B; Chotai, Tejas D; Vimal Singh, T; Natchair, Arafath
2013-01-01
Obturator hernia is an extremely rare type of hernia with relatively high mortality and morbidity. Its early diagnosis is challenging since the signs and symptoms are non specific. Here in we present a case of 70 years old women who presented with complaints of intermittent colicky abdominal pain and vomiting. Plain radiograph of abdomen showed acute dilatation of stomach. Ultrasonography showed small bowel obstruction at the mid ileal level with evidence of coiled loops of ileum in pelvis. On exploration, Right Obstructed Obturator hernia was found. The obstructed Intestine was reduced and resected and the obturator foramen was closed with simple sutures. Postoperative period was uneventful. Obturator hernia is a rare pelvic hernia and poses a diagnostic challenge. Obturator hernia occurs when there is protrusion of intra-abdominal contents through the obturator foramen in the pelvis. The signs and symptoms are non specific and generally the diagnosis is made during exploration for the intestinal obstruction, one of the four cardinal features. Others are pain on the medial aspect of thigh called as Howship Rombergs sign, repeated attacks of Intestinal Obstruction and palpable mass on the medial aspect of thigh. Obturator hernia is a rare but significant cause of intestinal obstruction especially in emaciated elderly woman and a diagnostic challenge for the Doctors. CT scan is valuable to establish preoperative diagnosis. Surgery either open or laproscopic, is the only treatment. The need for the awareness is stressed and CT scan can be helpful. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Jullian-Desayes, Ingrid; Tamisier, Renaud; Zarski, Jean-Pierre; Aron-Wisnewsky, Judith; Launois-Rollinat, Sandrine H; Trocme, Candice; Levy, Patrick; Joyeux-Faure, Marie; Pepin, Jean-Louis
2016-02-01
Obstructive sleep apnoea (OSA) could be an independent risk factor for non-alcoholic fatty liver disease (NAFLD) occurrence and progression. The impact of continuous positive airway pressure (CPAP) treatment on non-invasive markers of NAFLD has not been studied. The aim of this study was to evaluate the effect of 6-12 weeks of effective CPAP on the FibroMax test (comprising components including the SteatoTest, NashTest and FibroTest) through three randomized sham controlled studies. The FibroMax test was performed in 103 obstructive sleep apnoea patients (apnoea + hypopnoea index > 15/h) enrolled in a randomized study comparing sham versus effective CPAP. At baseline, 40.4% of patients in the sham CPAP group and 45.5% in the CPAP group exhibited liver steatosis. Furthermore, 39.6% of patients in the sham CPAP group and 58.4% in the CPAP group displayed borderline or possible non-alcoholic steatohepatitis (NASH). Six to twelve weeks of effective CPAP did not demonstrate any impact on reducing steatosis, NASH or liver fibrosis even after adjustment for gender, BMI, baseline apnoea + hypopnoea index and severity of liver injury. A number of non-invasive markers of liver damage are increased in untreated obstructive sleep apnoea patients, potentially contributing to cardiometabolic risk, but they do not improve after 6-12 weeks of effective CPAP treatment. NCT01196845 (ADISAS), NCT00464659 (MneSAS) and NCT00669695 (StatinflaSAS) at ClinicalTrials.gov. © 2015 Asian Pacific Society of Respirology.
Predictors of septic shock in obstructive acute pyelonephritis.
Tambo, Mitsuhiro; Okegawa, Takatsugu; Shishido, Toshihide; Higashihara, Eiji; Nutahara, Kikuo
2014-06-01
Acute pyelonephritis (APN) with obstructive uropathy is not uncommon and often causes serious conditions including sepsis and septic shock. We assessed the risk factors for septic shock in patients with obstructive APN associated with upper urinary tract calculi. We retrospectively studied 69 patients with obstructive APN associated with upper urinary tract calculi who were admitted to our hospital. Emergency drainage for decompression of the renal collecting system was performed for empirical treatment in cases of failure of initial treatment and for severe cases. We assessed the risk factors for septic shock by multivariate logistic regression analysis. Overall, 45 patients (65.2 %) underwent emergency drainage and 23 (33.3 %) patients showed septic shock. Poor performance status and the presence of diabetes mellitus (DM) in the septic shock group were more common than in the non-septic shock group (p = 0.012 and p = 0.011, respectively). The platelet count and serum albumin level in the septic shock group were significantly lower than in the non-septic shock group (p = 0.002 and p = 0.003, respectively). Positive rates of midstream urine culture and blood culture in the septic shock group were significantly higher than in the non-septic shock group (p = 0.022 and p = 0.001, respectively). Multivariate analysis showed that decreases in the platelet count (OR 5.43, p = 0.014) and serum albumin level (OR 5.88, p = 0.023) were independent risk factors for septic shock. Patients with obstructive APN associated with upper urinary tract calculi who have decreases in platelet count and serum albumin level should be treated with caution against the development of septic shock.
Gangrade, Bhushan K
2013-01-01
The introduction of the technique of intracytoplasmic sperm injection to achieve fertilization, especially using surgically retrieved testicular or epididymal sperm from men with obstructive or non-obstructive azoospermia, has revolutionized the field of assisted reproduction. The techniques for the retrieval of spermatozoa vary from relatively simple percutaneous sperm aspiration to open excision (testicular biopsy) and the more invasive Micro-TESE. The probability of retrieving spermatozoa can be as high as 100% in men with obstructive azoospermia (congenital bilateral absence of the vas deferens, status post-vasectomy). However, in non-obstructive azoospermia, successful sperm retrieval has been reported in 10-100% of cases by various investigators. The surgical retrieval and cryopreservation of sperm, especially in men with non-obstructive azoospermia, to some extent ensures the availability of sperm at the time of intracytoplasmic sperm injection. In addition, this strategy can avoid unnecessary ovarian stimulation in those patients intending to undergo in vitro fertilization-intracytoplasmic sperm injection with freshly retrieved testicular sperm when an absolute absence of sperm in the testis is identified. Several different methods for the cryopreservation of testicular and epididymal sperm are available. The choice of the container or carrier may be an important consideration and should take into account the number or concentration of the sperm in the final preparation. When the number of sperm in a testicular biopsy sample is extremely low (e.g., 1-20 total sperm available), the use of an evacuated zona pellucida to store the cryopreserved sperm has been shown to be an effective approach. PMID:23503963
Expression of Glycogen synthase kinase 3-β (GSK3-β) gene in azoospermic men.
Nazarian, Hamid; Ghaffari Novin, Marefat; Jalili, Mohammad Reza; Mirfakhraie, Reza; Heidari, Mohammad Hassan; Hosseini, Seyed Jalil; Norouzian, Mohsen; Ehsani, Nahid
2014-05-01
The Wnt/β- The Wnt/β-catenin signaling pathway is involved in many developmental processes in both fetal and adult life; its abnormalities can lead to disorders including several types of cancers and malfunction of specific cells and tissues in both animals and humans. Its role in reproductive processes has been proven. This study was designed to evaluate the expression of the key regulator of this signaling pathway GSK3-β and its presumed role in azoospermia. WNT3a protein concentration and GSK3-β gene expression levels were measured and compared between two groups of infertile men. The test groups consisted of 10 patients with obstructive and 10 non-obstructive azoospermia. The control group was selected among healthy men after vasectomies that were willing to conceive a child using a testicular biopsy technique. Samples were obtained by testicular biopsy and screened for the most common mutations (84, 86 and 255) in the SRY region before analyzing. GSK3-β gene expression was assessed quantitatively by real time-PCR. The WNT3a protein concentration had no significant difference between the two test groups and controls. Expression of GSK3-β was down-regulated in non-obstructive azoospermia (3.10±0.19) compared with normal (7.12±0.39) and obstructive azoospermia (6.32±0.42) groups (p=0.001). Down-regulation of GSK-3β may cause to non-obstructive azoospermia. Regulation and modification of GSK-3β gene expression by drugs could be used as a therapeutic solution.
Okabe, S; Chonan, T; Hida, W; Satoh, M; Kikuchi, Y; Takishima, T
1993-01-01
Upper airway dilating muscle activity increases during apneic episodes in patients with obstructive sleep apnea (OSA). To elucidate the relative contribution of chemical and nonchemical stimuli to augmentation of the upper airway dilating muscle, we measured the response of genioglossus muscle (GG) and inspiratory intercostal muscle (IIM) activities to obstructive apnea during non-REM sleep and compared them with the response to progressive hypoxia and hypercapnia during awake periods in seven male patients with OSA. GG EMG was measured with a wire electrode inserted percutaneously, and IIM EMG was measured with surface electrodes placed in the second intercostal space parasternally. Responses to hypoxia and to hypercapnia were assessed by rebreathing methods in the supine position while awake. Following these measurements, a sleep study was conducted with the EMG electrodes placed in the same locations. The relationship between GG and IIM activities during the cycle of apnea and postapneic ventilation in non-REM sleep was quasi-linear, and the slope of the regression line was significantly greater than those during progressive hypoxia and progressive hypercapnia. The amplitude of GG activity at 70% of maximum IIM activities in the hypoxic test was 140 +/- 20% (mean +/- SEM) during non-REM sleep, which was also significantly greater than that during hypoxia (51 +/- 10%) and that during hypercapnia (59 +/- 15%). These results suggest that nonchemical factors contribute considerably to augmentation of GG activity during obstructive apneic episodes. The nonchemical stimuli may arise from mechanoreceptors activated by upper airway obstruction and behavioral factors associated with change in sleep states.
Messerli, Michael; Maywald, Céline; Wälti, Stephan; Warschkow, René; Wildermuth, Simon; Alkadhi, Hatem; Leschka, Sebastian; Schiesser, Marc
2017-08-01
This study aims to determine the long-term prognostic value of coronary CT angiography (CCTA) prior to bariatric surgery in severely obese patients with a body mass index (BMI) ≥35 kg/m 2 . Seventy consecutive patients undergoing cardiac CT for coronary assessment prior to bariatric surgery were prospectively included. Images were analysed for the presence of coronary calcification and for non-obstructive (<50%) or obstructive (>50% stenosis) coronary artery disease (CAD). A median clinical follow-up of 6.1 years in 54 patients was obtained for major adverse cardiovascular events (MACEs), defined as death, non-fatal myocardial infarction or coronary revascularisation. Weight loss and BMI decrease following bariatric surgery were recorded. The median BMI prior to surgery was 46.9 kg/m 2 . The median percentage of excess BMI loss after surgery was 75%. CT showed coronary calcification in 26 (48%) patients, whereas 28 (52%) patients had no calcification. CCTA revealed normal coronaries in 47 (87%) and non-obstructive CAD in 7 (13%) patients. No obstructive CAD was found. All patients successfully underwent bariatric surgery, and no MACE occurred neither perioperatively nor in the follow-up period. The negative predictive value of CCTA was 100% (95% confidence interval of 90.1-100.0%). In severely obese patients, the absence of obstructive CAD in cardiac CT prior to bariatric surgery with subsequently marked weight reduction has strong long-term prognostic implications for ruling out major adverse cardiac events in the postoperative period.
Optimization of PIXE-sensitivity for detection of Ti in thin human skin sections
NASA Astrophysics Data System (ADS)
Pallon, Jan; Garmer, Mats; Auzelyte, Vaida; Elfman, Mikael; Kristiansson, Per; Malmqvist, Klas; Nilsson, Christer; Shariff, Asad; Wegdén, Marie
2005-04-01
Modern sunscreens contain particles like TiO2 having sizes of 25-70 nm and acting as a reflecting substance. For cosmetic reasons the particle size is minimized. Questions have been raised to what degree these nano particles penetrate the skin barrier, and how they do affect the human. The EU funded project "Quality of skin as a barrier to ultra-fine particles" - NANODERM has started with the purpose to evaluate the possible risks of TiO2 penetration into vital skin layers. The purpose of the work presented here was to find the optimal conditions for micro-PIXE analysis of Ti in thin skin sections. In the skin region where Ti is expected to be found, the naturally occurring major elements phosphorus, chlorine, sulphur and potassium have steep gradients and thus influence the X-ray background in a non-predictable manner. Based on experimental studies of Ti-exposed human skin sections using proton energies ranging from 1.8-2.55 MeV, the corresponding PIXE detection limits for Ti were calculated. The energy that was found to be the most favourable, 1.9 MeV, was then selected for future studies.
Microwave absorption in powders of small conducting particles for heating applications.
Porch, Adrian; Slocombe, Daniel; Edwards, Peter P
2013-02-28
In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.
Bjornsdottir, Erla; Keenan, Brendan T; Eysteinsdottir, Bjorg; Arnardottir, Erna Sif; Janson, Christer; Gislason, Thorarinn; Sigurdsson, Jon Fridrik; Kuna, Samuel T; Pack, Allan I; Benediktsdottir, Bryndis
2015-06-01
Obstructive sleep apnea leads to recurrent arousals from sleep, oxygen desaturations, daytime sleepiness and fatigue. This can have an adverse impact on quality of life. The aims of this study were to compare: (i) quality of life between the general population and untreated patients with obstructive sleep apnea; and (ii) changes of quality of life among patients with obstructive sleep apnea after 2 years of positive airway pressure treatment between adherent patients and non-users. Propensity score methodologies were used in order to minimize selection bias and strengthen causal inferences. The enrolled obstructive sleep apnea subjects (n = 822) were newly diagnosed with moderate to severe obstructive sleep apnea who were starting positive airway pressure treatment, and the general population subjects (n = 742) were randomly selected Icelanders. The Short Form 12 was used to measure quality of life. Untreated patients with obstructive sleep apnea had a worse quality of life when compared with the general population. This effect remained significant after using propensity scores to select samples, balanced with regard to age, body mass index, gender, smoking, diabetes, hypertension and cardiovascular disease. We did not find significant overall differences between full and non-users of positive airway pressure in improvement of quality of life from baseline to follow-up. However, there was a trend towards more improvement in physical quality of life for positive airway pressure-adherent patients, and the most obese subjects improved their physical quality of life more. The results suggest that co-morbidities of obstructive sleep apnea, such as obesity, insomnia and daytime sleepiness, have a great effect on life qualities and need to be taken into account and addressed with additional interventions. © 2014 European Sleep Research Society.
Chaotic particle swarm optimization with mutation for classification.
Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza
2015-01-01
In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.
Law, Ryan; Baron, Todd H
2013-09-01
Controversy exists on optimal endoscopic management for palliation of malignant hilar obstruction, with advocates for metal "side-by-side" (SBS) and "stent-in-stent" (SIS) techniques. We sought to evaluate the technical feasibility, efficacy, and outcomes of bilateral biliary self-expanding metal stents (SEMS) for treatment of malignant hilar obstruction using a stent with a 6Fr delivery system. This was a single-center, retrospective review of all patients who underwent bilateral placement of Zilver® biliary SEMS for malignant hilar obstruction from January 2010 to August 2012. Patients underwent endoscopic retrograde cholangiopancreatography with placement of stents using either the SIS or SBS stent techniques. Twenty-four patients (19 men, mean age 63 years) underwent bilateral stenting for malignant hilar obstruction during the study period. Seventeen and seven patients underwent the SBS and SIS technique, respectively. Cholangiocarcinoma (n=14) was the most common cause of hilar obstruction. Initial technical success was achieved in 24/24 (100%) of patients; however, 12 (50%) patients required re-intervention during the study period (median 98 days). Comparison of the SBS and SIS groups revealed no statistical difference with respect to need for re-intervention (P=0.31), successful re-intervention (P=0.60), or procedural length (P=0.89). Use of bilateral Zilver® SEMS in either the SBS or SIS configuration is safe, technically feasible, and effective for drainage of malignant hilar obstruction; however, duration of stent patency and procedure-free survival remain variable.
Genitourinary Tuberculosis: A Rare Cause of Obstructive Uropathy in Pregnancy
Duryea, Elaine L.; Sheffield, Jeanne S.
2014-01-01
Background. A rare but morbid form of extrapulmonary tuberculosis (TB), genitourinary TB is an important cause of obstructive uropathy and is likely underdiagnosed in pregnancy. Case. A 30-year-old primigravida undergoing treatment for active pulmonary TB presented with anuria at 13-14-weeks gestation. Bilateral ureteral strictures above the level of the ureterovesicular junctions were seen on imaging studies. Given her pulmonary disease, her obstructive uropathy was attributed to genitourinary TB. Bilateral percutaneous nephrostomy tubes were placed during pregnancy with successful ureteral reimplantation postpartum. Conclusion. Genitourinary TB should be considered as an etiology of urinary tract pathology during pregnancy, especially in foreign-born and immunocompromised persons. Early recognition resulting in prompt treatment can prevent further deterioration of maternal renal function and optimize pregnancy outcomes. PMID:25045558
Derin, S; Altun, I; Koseoglu, S; Sahin, C; Yilmaz, M; Akin, F; Sahan, M
2018-05-01
This study aimed to investigate the relationship of epicardial fat thickness with severity of obstructive sleep apnoea, and clinical and polysomnographic parameters, and to determine independent predictors for epicardial fat thickness. A total of 84 patients with a body mass index of less than 30 kg/m2 and suspected sleep-disordered breathing were included in the study. The correlations of epicardial fat thickness with polysomnographic and clinical data, and severity of obstructive sleep apnoea, were investigated. Mean epicardial fat thickness was 3.75 ± 1.07 mm in the study group (n = 62) and 2.97 ± 0.62 mm in the control group (n = 22) (p < 0.001). There were significant positive correlations between epicardial fat thickness and: apnoea/hypopnoea index, oxygen desaturation index 3 and minimum oxygen saturation, as well as with age, body mass index, and neck and waist circumferences. Non-obese obstructive sleep apnoea patients have thicker epicardial fat compared to controls. Oxygen desaturation index 3 has a strong correlation with epicardial fat thickness and is an independent predictor of it.
[Fiessinger-Leroy-Reiter syndrome with non-obstructive cardiomyopathy treated with methotrexate].
Blétry, O; De Prost, Y; Scheuble, C; Frank, R; Godeau, P
1979-07-01
The case of a 50 year old male with the Fiessinger-Leroy-Reiter syndrome, ankylosing spondylitis and generalised pustular psoriasis is reported. This condition wax complicated by non-obstructive cardiomyopathy, congestive cardiac failure and first-degree atrioventricular block, the site of which was localised by electrophysiological studies (nodal block with an infrahisian conduction defect). After failure of several therapeutic regimes, a spectacular improvement was obtained with Methotrexate associated with a diuretic; the signs of heart failure regressed and the cardiomyopathy stablised. A parallel improvement was seen in the skin, cardiac and articular lesions and has been maintained with an 18 months follow-up. Left ventricular performance was studied by echocardiography. The mechanism of the beneficial effect of Methotrexate is unclear; this therapeutic trial is to be extended to include other cases of primary cardiomyopathy without obstruction.
Cachexia in chronic obstructive pulmonary disease: new insights and therapeutic perspective
Sanders, Karin J. C.; Kneppers, Anita E. M.; van de Bool, Coby; Langen, Ramon C. J.
2015-01-01
Abstract Cachexia and muscle wasting are well recognized as common and partly reversible features of chronic obstructive pulmonary disease (COPD), adversely affecting disease progression and prognosis. This argues for integration of weight and muscle maintenance in patient care. In this review, recent insights are presented in the diagnosis of muscle wasting in COPD, the pathophysiology of muscle wasting, and putative mechanisms involved in a disturbed energy balance as cachexia driver. We discuss the therapeutic implications of these new insights for optimizing and personalizing management of COPD‐induced cachexia. PMID:27066314
NASA Astrophysics Data System (ADS)
Li, Haichen; Qin, Tao; Wang, Weiping; Lei, Xiaohui; Wu, Wenhui
2018-02-01
Due to the weakness in holding diversity and reaching global optimum, the standard particle swarm optimization has not performed well in reservoir optimal operation. To solve this problem, this paper introduces downhill simplex method to work together with the standard particle swarm optimization. The application of this approach in Goupitan reservoir optimal operation proves that the improved method had better accuracy and higher reliability with small investment.
Cyclooxygenase-2 (COX-2) plays an important role in the inflammatory response induced by physiologic and stress stimuli. Exposure to diesel exhaust particulate matter (DEP) has been shown to induce pulmonary inflammation and exacerbate asthma and chronic obstructive pulmonary dis...
Numerous field and epidemiological studies have shown significant associations between particulate matter (PM) exposure and various morbidity outcomes including hospital admissions for bronchitis and asthma. These population based studies indicate that persons with chronic obstru...
NASA Astrophysics Data System (ADS)
Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza
2017-06-01
Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.
Cito, Gianmartin; Coccia, Maria E; Dabizzi, Sara; Morselli, Simone; Della Camera, Pier A; Cocci, Andrea; Criscuoli, Luciana; Picone, Rita; De Carlo, Candida; Nesi, Gabriella; Micelli, Elisabetta; Serni, Sergio; Carini, Marco; Natali, Alessandro
2018-03-01
The aim of our research was to establish the relevance of testicular histopathology on sperm retrieval after testicular sperm extraction in patients with non-obstructive azoospermia and in patients with obstructive azoospermia, who already underwent a previous failure testicular fine needle aspiration. We evaluated a total of 82 azoospermic men, underwent testicular sperm extraction, referring to the Assisted Reproductive Technology Centre of the University of Florence, Italy between January 2008 and March 2017. A general and genital physical examination, scrotal and trans-rectal ultrasound, semen analysis, hormone measurements, including follicle-stimulating hormone, luteinizing hormone and total testosterone, were collected. Successful sperm retrieval was obtained in 36 men of total (43.9%). Successful sperm retrieval was 29.5% in non-obstructive azoospermia patients, while men with obstructive azoospermia, who, underwent a previous failure testicular fine needle aspiration, had sperm retrieval in 86% of cases. Mean luteinizing hormone was 6.55 IU/L, total testosterone 4.70 ng/mL, right testicular volume 13.7 mL and left testicular volume 13.6 mL. Mean Follicle-stimulating hormone was 13.45 IU/L in patients with negative sperm retrieval and 8.18 IU/L in men with successful sperm retrieval. According to histology, 20.7% had normal spermatogenesis, 35.3% hypospermatogenesis, 35.3% maturation arrest and 8.5% Sertoli cell-only syndrome. Successful sperm retrieval was 88.2% in patients with normal spermatogenesis, 24.1% in the maturation arrest group and 48.27% in patients with hypospermatogenesis, while negative sperm retrieval was reported in Sertoli cell-only syndrome patients. Seven cases with maturation arrest showed a successful sperm retrieval. Testicular histopathology after testicular sperm extraction offers important information on prediction of sperm retrieval and can guide the surgeon in choosing the more suitable therapeutic practice.
Kurstjens, Ralph L M; de Wolf, Mark A F; Konijn, Helena W; Toonder, Irwin M; Nelemans, Patricia J; van Laanen, Jorinde H H; de Graaf, Rick; Wittens, Cees H A
2018-06-01
The primary aim was to investigate whether stenting of post-thrombotic iliofemoral obstruction reduces venous hypertension. The secondary aim was to establish whether improvement in haemodynamic parameters impacts on quality of life. In this prospective observational study, 12 participants with unilateral post-thrombotic obstruction of the iliac and/or common femoral veins (CFVs) underwent a treadmill stress test with invasive pressure measurements in the CFVs and dorsal foot veins of both affected and non-affected limbs. This was performed the day before and 3 months after stenting the obstructed tract. Paired sample t-tests were used to compare the treatment effect and univariable linear regression analysis to determine the association with improvement in quality of life. Before treatment, CFV pressure increased 34.8 ± 23.1 mmHg during walking in affected limbs compared with 3.9 ± 5.8 mmHg in non-affected limbs. This pressure rise decreased to 22.3 ± 24.8 mmHg after 3 months follow up compared with a 4.0 ± 6.0 mmHg increase in non-affected limbs (-26.2 mmHg difference; 95% CI -41.2 to -11.3). No such effect was found in the dorsal foot veins. The VEINES-QOL increased 25.3 ± 11.3 points after stenting and was significantly associated with a decrease in CFV pressure rise during walking (regression coefficient 0.4; 95% CI 0.1-0.6). Stenting of post-thrombotic iliofemoral obstruction significantly reduces venous hypertension in the common femoral vein and correlates with an improvement in the quality of life. Larger studies with a broader range of degree of obstruction need be performed to assess whether pre-stenting pressure measurements can predict post stenting clinical success. Copyright © 2018 European Society for Vascular Surgery. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Paasche, H.; Tronicke, J.
2012-04-01
In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto optimality of the found solutions can be made. Identification of the leading particle traditionally requires a costly combination of ranking and niching techniques. In our approach, we use a decision rule under uncertainty to identify the currently leading particle of the swarm. In doing so, we consider the different objectives of our optimization problem as competing agents with partially conflicting interests. Analysis of the maximin fitness function allows for robust and cheap identification of the currently leading particle. The final optimization result comprises a set of possible models spread along the Pareto front. For convex Pareto fronts, solution density is expected to be maximal in the region ideally compromising all objectives, i.e. the region of highest curvature.
NASA Astrophysics Data System (ADS)
Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo
2018-01-01
We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of 26% in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the hardware specifications. The optimization process took 35 min using 50 PSO particles, 25 iterations and 5 GPUs.
Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo
2018-01-16
We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of [Formula: see text] in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the hardware specifications. The optimization process took 35 min using 50 PSO particles, 25 iterations and 5 GPUs.
Numerical investigation of adhesion effects on solid particles filtration efficiency
NASA Astrophysics Data System (ADS)
Shaffee, Amira; Luckham, Paul; Matar, Omar K.
2017-11-01
Our work investigate the effectiveness of particle filtration process, in particular using a fully-coupled Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) approach involving poly-dispersed, adhesive solid particles. We found that an increase in particle adhesion reduces solid production through the opening of a wire-wrap type filter. Over time, as particle agglomerates continuously deposit on top of the filter, layer upon layer of particles is built on top of the filter, forming a particle pack. It is observed that with increasing particle adhesion, the pack height build up also increases and hence decreases the average particle volume fraction of the pack. This trend suggests higher porosity and looser packing of solid particles within the pack with increased adhesion. Furthermore, we found that the pressure drop for adhesive case is lower compared to non-adhesive case. Our results suggest agglomerating solid particles has beneficial effects on particle filtration. One important application of these findings is towards designing and optimizing sand control process for a hydrocarbon well with excessive sand production which is major challenge in oil and gas industry. Funding from PETRONAS and RAEng UK for Research Chair (OKM) gratefully acknowledged.
Carbon dioxide narcosis due to inappropriate oxygen delivery: a case report.
Herren, Thomas; Achermann, Eva; Hegi, Thomas; Reber, Adrian; Stäubli, Max
2017-07-28
Oxygen delivery to patients with chronic obstructive pulmonary disease may be challenging because of their potential hypoxic ventilatory drive. However, some oxygen delivery systems such as non-rebreathing face masks with an oxygen reservoir bag require high oxygen flow for adequate oxygenation and to avoid carbon dioxide rebreathing. A 72-year-old Caucasian man with severe chronic obstructive pulmonary disease was admitted to the emergency department because of worsening dyspnea and an oxygen saturation of 81% measured by pulse oximetry. Oxygen was administered using a non-rebreathing mask with an oxygen reservoir bag attached. For fear of removing the hypoxic stimulus to respiration the oxygen flow was inappropriately limited to 4L/minute. The patient developed carbon dioxide narcosis and had to be intubated and mechanically ventilated. Non-rebreathing masks with oxygen reservoir bags must be fed with an oxygen flow exceeding the patient's minute ventilation (>6-10 L/minute.). If not, the amount of oxygen delivered will be too small to effectively increase the arterial oxygen saturation. Moreover, the risk of carbon dioxide rebreathing dramatically increases if the flow of oxygen to a non-rebreathing mask is lower than the minute ventilation, especially in patients with chronic obstructive pulmonary disease and low tidal volumes. Non-rebreathing masks (with oxygen reservoir bags) must be used cautiously by experienced medical staff and with an appropriately high oxygen flow of 10-15 L/minute. Nevertheless, arterial blood gases must be analyzed regularly for early detection of a rise in partial pressure of carbon dioxide in arterial blood in patients with chronic obstructive pulmonary disease and a hypoxic ventilatory drive. These patients are more safely managed using a nasal cannula with an oxygen flow of 1-2L/minute or a simple face mask with an oxygen flow of 5L/minute.
McPhedran, N. T.; Henderson, R. D.
1965-01-01
The records of 147 patients who had pruritus and jaundice (11% of a series of 1262 patients with jaundice) were reviewed in an effort to delineate more clearly the etiology of jaundice associated with pruritus. Fifty-two had obstructive jaundice caused by neoplasm, 51 had obstructive jaundice not caused by neoplasm, 42 had pruritus associated with hepatogenous jaundice, and two had jaundice and pruritus associated with a lymphoma. Pruritus occurred in 17% of all patients with non-neoplastic obstructive jaundice and in 45% of patients with neoplastic obstructive jaundice. Hepatogenous jaundice was the cause of pruritus in almost one-third of the patients in this series-occurring in 20% of patients with infectious hepatitis and in 7% of patients with cirrhosis. This large series confirms the clinical impression that pruritus occurs most often in association with extrahepatic biliary obstruction, and as well re-emphasizes the common association of pruritus with hepatogenous jaundice. PMID:14296007
[The NHG guidelines 'Adult asthma' and 'COPD'].
Geijer, Roeland M M; Tuut, Mariska K; in't Veen, Johannes C C M; Broekhuizen, Berna D L; Chavannes, Niels H; Smeele, Ivo J M
2015-01-01
The Dutch College of General Practitioners (NHG) guidelines 'Adult asthma' and 'COPD' have been revised. New spirometry reference values from the Global Lung Function Initiative are recommended. Airway obstruction is defined as a FEV1/FVC ratio below the 5th percentile for the reference population. Spirometry for diagnosis takes place without use of patients' inhaled medication and consists of measurements before and after standardized bronchodilation. In monitoring spirometry, patients continue using inhaled medication and standardized bronchodilation is not indicated. The goal of asthma management is optimal asthma control, tailored to individual goals. The most important non-drug intervention in asthma and COPD is to recommend stopping smoking. The goal of COPD management is to limit symptoms, improve exercise capacity and quality of life, and reduce the burden of disease. Inhaled corticosteroids are usually not indicated in COPD treatment. Patients with comorbid asthma and COPD are treated with non-drug interventions according to the COPD guideline and with medication according to the asthma guideline.
Lee, Chang Jun
2015-01-01
In the fields of researches associated with plant layout optimization, the main goal is to minimize the costs of pipelines and pumping between connecting equipment under various constraints. However, what is the lacking of considerations in previous researches is to transform various heuristics or safety regulations into mathematical equations. For example, proper safety distances between equipments have to be complied for preventing dangerous accidents on a complex plant. Moreover, most researches have handled single-floor plant. However, many multi-floor plants have been constructed for the last decade. Therefore, the proper algorithm handling various regulations and multi-floor plant should be developed. In this study, the Mixed Integer Non-Linear Programming (MINLP) problem including safety distances, maintenance spaces, etc. is suggested based on mathematical equations. The objective function is a summation of pipeline and pumping costs. Also, various safety and maintenance issues are transformed into inequality or equality constraints. However, it is really hard to solve this problem due to complex nonlinear constraints. Thus, it is impossible to use conventional MINLP solvers using derivatives of equations. In this study, the Particle Swarm Optimization (PSO) technique is employed. The ethylene oxide plant is illustrated to verify the efficacy of this study.
Optimization of multi-objective micro-grid based on improved particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Zhang, Jian; Gan, Yang
2018-04-01
The paper presents a multi-objective optimal configuration model for independent micro-grid with the aim of economy and environmental protection. The Pareto solution set can be obtained by solving the multi-objective optimization configuration model of micro-grid with the improved particle swarm algorithm. The feasibility of the improved particle swarm optimization algorithm for multi-objective model is verified, which provides an important reference for multi-objective optimization of independent micro-grid.
Cheng, Phillip M; Tejura, Tapas K; Tran, Khoa N; Whang, Gilbert
2018-05-01
The purpose of this pilot study is to determine whether a deep convolutional neural network can be trained with limited image data to detect high-grade small bowel obstruction patterns on supine abdominal radiographs. Grayscale images from 3663 clinical supine abdominal radiographs were categorized into obstructive and non-obstructive categories independently by three abdominal radiologists, and the majority classification was used as ground truth; 74 images were found to be consistent with small bowel obstruction. Images were rescaled and randomized, with 2210 images constituting the training set (39 with small bowel obstruction) and 1453 images constituting the test set (35 with small bowel obstruction). Weight parameters for the final classification layer of the Inception v3 convolutional neural network, previously trained on the 2014 Large Scale Visual Recognition Challenge dataset, were retrained on the training set. After training, the neural network achieved an AUC of 0.84 on the test set (95% CI 0.78-0.89). At the maximum Youden index (sensitivity + specificity-1), the sensitivity of the system for small bowel obstruction is 83.8%, with a specificity of 68.1%. The results demonstrate that transfer learning with convolutional neural networks, even with limited training data, may be used to train a detector for high-grade small bowel obstruction gas patterns on supine radiographs.
Palliative Management of Malignant Bowel Obstruction in Terminally Ill Patient
Thaker, Darshit A; Stafford, Bruce C; Gaffney, Luke S
2010-01-01
Mr. P was a 57-year-old man who presented with symptoms of bowel obstruction in the setting of a known metastatic pancreatic cancer. Diagnosis of malignant bowel obstruction was made clinically and radiologically and he was treated conservatively (non-operatively)with octreotide, metoclopromide and dexamethasone, which provided good control over symptoms and allowed him to have quality time with family until he died few weeks later with liver failure. Bowel obstruction in patients with abdominal malignancy requires careful assessment. The patient and family should always be involved in decision making. The ultimate goals of palliative care (symptom management, quality of life and dignity of death) should never be forgotten during decision making for any patient. PMID:21811356
Bozkurt, Selen; Bostanci, Asli; Turhan, Murat
2017-08-11
The goal of this study is to evaluate the results of machine learning methods for the classification of OSA severity of patients with suspected sleep disorder breathing as normal, mild, moderate and severe based on non-polysomnographic variables: 1) clinical data, 2) symptoms and 3) physical examination. In order to produce classification models for OSA severity, five different machine learning methods (Bayesian network, Decision Tree, Random Forest, Neural Networks and Logistic Regression) were trained while relevant variables and their relationships were derived empirically from observed data. Each model was trained and evaluated using 10-fold cross-validation and to evaluate classification performances of all methods, true positive rate (TPR), false positive rate (FPR), Positive Predictive Value (PPV), F measure and Area Under Receiver Operating Characteristics curve (ROC-AUC) were used. Results of 10-fold cross validated tests with different variable settings promisingly indicated that the OSA severity of suspected OSA patients can be classified, using non-polysomnographic features, with 0.71 true positive rate as the highest and, 0.15 false positive rate as the lowest, respectively. Moreover, the test results of different variables settings revealed that the accuracy of the classification models was significantly improved when physical examination variables were added to the model. Study results showed that machine learning methods can be used to estimate the probabilities of no, mild, moderate, and severe obstructive sleep apnea and such approaches may improve accurate initial OSA screening and help referring only the suspected moderate or severe OSA patients to sleep laboratories for the expensive tests.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir
2017-01-01
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2017-04-19
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.
Hooda, Aashima; Nanda, Arun; Jain, Manish; Kumar, Vikash; Rathee, Permender
2012-12-01
The current study involves the development and optimization of their drug entrapment and ex vivo bioadhesion of multiunit chitosan based floating system containing Ranitidine HCl by ionotropic gelation method for gastroretentive delivery. Chitosan being cationic, non-toxic, biocompatible, biodegradable and bioadhesive is frequently used as a material for drug delivery systems and used to transport a drug to an acidic environment where it enhances the transport of polar drugs across epithelial surfaces. The effect of various process variables like drug polymer ratio, concentration of sodium tripolyphosphate and stirring speed on various physiochemical properties like drug entrapment efficiency, particle size and bioadhesion was optimized using central composite design and analyzed using response surface methodology. The observed responses were coincided well with the predicted values given by the optimization technique. The optimized microspheres showed drug entrapment efficiency of 74.73%, particle size 707.26 μm and bioadhesion 71.68% in simulated gastric fluid (pH 1.2) after 8 h with floating lag time 40s. The average size of all the dried microspheres ranged from 608.24 to 720.80 μm. The drug entrapment efficiency of microspheres ranged from 41.67% to 87.58% and bioadhesion ranged from 62% to 86%. Accelerated stability study was performed on optimized formulation as per ICH guidelines and no significant change was found in drug content on storage. Copyright © 2012 Elsevier B.V. All rights reserved.
Subramaniam, Dhananjay Radhakrishnan; Mylavarapu, Goutham; McConnell, Keith; Fleck, Robert J; Shott, Sally R; Amin, Raouf S; Gutmark, Ephraim J
2016-05-01
Elasticity of the soft tissues surrounding the upper airway lumen is one of the important factors contributing to upper airway disorders such as snoring and obstructive sleep apnea. The objective of this study is to calculate patient specific elasticity of the pharynx from magnetic resonance (MR) images using a 'tube law', i.e., the relationship between airway cross-sectional area and transmural pressure difference. MR imaging was performed under anesthesia in children with Down syndrome (DS) and obstructive sleep apnea (OSA). An airway segmentation algorithm was employed to evaluate changes in airway cross-sectional area dilated by continuous positive airway pressure (CPAP). A pressure-area relation was used to make localized estimates of airway wall stiffness for each patient. Optimized values of patient specific Young's modulus for tissue in the velopharynx and oropharynx, were estimated from finite element simulations of airway collapse. Patient specific deformation of the airway wall under CPAP was found to exhibit either a non-linear 'hardening' or 'softening' behavior. The localized airway and tissue elasticity were found to increase with increasing severity of OSA. Elasticity based patient phenotyping can potentially assist clinicians in decision making on CPAP and airway or tissue elasticity can supplement well-known clinical measures of OSA severity.
Chaotic Particle Swarm Optimization with Mutation for Classification
Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza
2015-01-01
In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937
Spruijt, Bart; Mathijssen, Irene M J; Bredero-Boelhouwer, Hansje H; Cherian, Perumpillichira J; Corel, Linda J A; van Veelen, Marie-Lise; Hayward, Richard D; Tasker, Robert C; Joosten, Koen F M
2016-12-01
Children with syndromic craniosynostosis often have obstructive sleep apnea and intracranial hypertension. The authors aimed to evaluate (1) sleep architecture, and determine whether this is influenced by the presence of obstructive sleep apnea and/or intracranial hypertension; and (2) the effect of treatment on sleep architecture. This study included patients with syndromic craniosynostosis treated at a national referral center, undergoing screening for obstructive sleep apnea and intracranial hypertension. Obstructive sleep apnea was identified by polysomnography, and categorized into no, mild, moderate, or severe. Intracranial hypertension was identified by the presence of papilledema on funduscopy, supplemented by optical coherence tomography and/or intracranial pressure monitoring. Regarding sleep architecture, sleep was divided into rapid eye movement or non-rapid eye movement sleep; respiratory effort-related arousals and sleep efficiency were scored. The authors included 39 patients (median age, 5.9 years): 19 with neither obstructive sleep apnea nor intracranial hypertension, 11 with obstructive sleep apnea (four moderate/severe), six with intracranial hypertension, and three with obstructive sleep apnea and intracranial hypertension. Patients with syndromic craniosynostosis, independent of the presence of mild obstructive sleep apnea and/or intracranial hypertension, have normal sleep architecture compared with age-matched controls. Patients with moderate/severe obstructive sleep apnea have a higher respiratory effort-related arousal index (p < 0.01), lower sleep efficiency (p = 0.01), and less rapid eye movement sleep (p = 0.04). An improvement in sleep architecture was observed following monobloc surgery (n = 5; rapid eye movement sleep, 5.3 percent; p = 0.04). Children with syndromic craniosynostosis have in principle normal sleep architecture. However, moderate/severe obstructive sleep apnea does lead to disturbed sleep architecture, which fits within a framework of a unifying theory for obstructive sleep apnea, intracranial hypertension, and sleep. Risk, II.
[X-ray semiotics of the morphological and functional changes in chronic bronchitis].
Khomenko, A G; Dmitrieva, L I; Polak, J; Gapon'ko, G A; Starilova, I P
1985-01-01
The authors analysed structural disorders of a pulmonary pattern in patients with non-obstructive, obstructive and purulent bronchitis. Characteristic x-ray symptom-complexes were singled out for each clinical variant of the disease. In addition to roentgenomorphological changes functional disorders showing changes of biomechanics in patients with chronic bronchitis were revealed at roentgenopneumopolygraphy.
Pourmortazavi, Seied Mahdi; Taghdiri, Mehdi; Makari, Vajihe; Rahimi-Nasrabadi, Mehdi
2015-02-05
The present study is dealing with the green synthesis of silver nanoparticles using the aqueous extract of Eucalyptus oleosa as a green synthesis procedure without any catalyst, template or surfactant. Colloidal silver nanoparticles were synthesized by reacting aqueous AgNO3 with E. oleosa leaf extract at non-photomediated conditions. The significance of some synthesis conditions such as: silver nitrate concentration, concentration of the plant extract, time of synthesis reaction and temperature of plant extraction procedure on the particle size of synthesized silver particles was investigated and optimized. The participations of the studied factors in controlling the particle size of reduced silver were quantitatively evaluated via analysis of variance (ANOVA). The results of this investigation showed that silver nanoparticles could be synthesized by tuning significant parameters, while performing the synthesis procedure at optimum conditions leads to form silver nanoparticles with 21nm as averaged size. Ultraviolet-visible spectroscopy was used to monitor the development of silver nanoparticles formation. Meanwhile, produced silver nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray, and FT-IR techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Numerical Simulation and Performance Optimization of a Magnetophoretic Bio-separation chip
NASA Astrophysics Data System (ADS)
Golozar, Matin; Darabi, Jeff; Molki, Majid
Separation of micro/nanoparticles is important in biomedicine and biotechnology. This research presents the modeling and optimization of a magnetophoretic bio-separation chip for the isolation of biomaterials, such as circulating tumor cells (CTCs) from the peripheral blood. The chip consists of a continuous flow through microfluidic channels that contains locally engineered magnetic field gradients. The high gradient magnetic field produced by the magnets is spatially non-uniform and gives rise to an attractive force on magnetic particles that move through the flow channel. The computational model takes into account the magnetic and fluidic forces as well as the effect of the volume fraction of particles on the continuous phase. The model is used to investigate the effect of two-way particle-fluid coupling on both the capture efficiency and the flow pattern in the separation chip. The results show that the microfluidic device has the capability of separating CTCs from their native environment. Additionally, a parametric study is performed to investigate the effects of the channel height, substrate thickness, magnetic bead size, bioparticle size, and the number of beads per cell on the cell separation performance.
NASA Astrophysics Data System (ADS)
Pérez, Nicolás; Moya, C.; Tartaj, P.; Labarta, A.; Batlle, X.
2017-01-01
The control of magnetic interactions is becoming essential to expand/improve the applicability of magnetic nanoparticles (NPs). Here, we show that an optimized microemulsion method can be used to obtain homogenous silica coatings on even single magnetic nuclei of highly crystalline Fe3-xO4 NPs (7 and 16 nm) derived from a high-temperature method. We show that the thickness of this coating is controlled almost at will allowing much higher average separation among particles as compared to the oleic acid coating present on pristine NPs. Magnetic susceptibility studies show that the thickness of the silica coating allows the control of magnetic interactions. Specifically, as this effect is better displayed for the smallest particles, we show that dipole-dipole interparticle interactions can be tuned progressively for the 7 nm NPs, from almost non-interacting to strongly interacting particles at room temperature. The quantitative analysis of the magnetic properties unambiguously suggests that dipolar interactions significantly broaden the effective distribution of energy barriers by spreading the distribution of activation magnetic volumes.
Drug-induced sedation endoscopy in pediatric obstructive sleep apnea syndrome.
Boudewyns, A; Verhulst, S; Maris, M; Saldien, V; Van de Heyning, P
2014-12-01
To describe the pattern of upper airway (UA) obstruction during drug-induced sedation endoscopy (DISE) and to evaluate the outcome of DISE-directed treatment. Prospective study of DISE in surgically naive obstructive sleep apnea syndrome (OSAS) children without syndromic comorbidity or craniofacial abnormalities. Treatment was individually tailored according to UA findings during DISE and polysomnographic data. Reported values are median (lower-upper quartile). Thirty-seven children aged 4.1 years (2.1-6.0), with body mass index z-score 0.3 (-0.9 to 0.9), and obstructive apnea-hypopnea index (oAHI) 9.0/h (6.1-19.3) were included. Adenotonsillar obstruction was found in 33 cases (89%) as an isolated entity or as part of a multi-level obstruction. These children were treated with adenotonsillectomy (n = 28), adenoidectomy (n = 3), or tonsillectomy (n = 2). The remaining four patients received non-surgical treatment. Pre-postoperative polysomnographic data in 22 patients showed a significant improvement in oAHI from 8.6/h (6.7-20.7) to 1.0/h (0.6-2.0) (P = 0.001). Only two of these 22 children had residual OSAS (oAHI ≥ 5/h), indicating a success rate of 91%. Based on UA findings during DISE, a non-surgical treatment was proposed for 11% of children. A 91% success rate was obtained in those treated with (adeno)tonsillectomy. These data suggest that DISE may be helpful to identify patients most likely to benefit from UA surgery. Copyright © 2014 Elsevier B.V. All rights reserved.
Difference in airflow obstruction between Hispanic and non-Hispanic White female smokers.
Sood, Akshay; Stidley, Christine A; Picchi, Maria A; Celedón, Juan C; Gilliland, Frank; Crowell, Richard E; Belinsky, Steven A; Tesfaigzi, Yohannes
2008-10-01
Smoking-related respiratory diseases are a major cause of morbidity and mortality. However, the relationship between smoking and respiratory disease has not been well-studied among ethnic minorities in general and among women in particular. The objective of this cross-sectional study was to evaluate the risk of airflow obstruction and to assess lung function among Hispanic and non-Hispanic White (NHW) female smokers in a New Mexico cohort. Participants completed a questionnaire detailing smoking history and underwent spirometry testing. Outcomes studied included airflow obstruction, selected lung function parameters, and chronic mucus hyper-secretion. Chi square, logistic, and linear regression techniques were utilized. Of the 1,433 eligible women participants, 248 (17.3%) were Hispanic; and 319 had airflow obstruction (22.3%). Hispanic smokers were more likely to be current smokers, and report lower pack-years of smoking, compared to NHW smokers (p < 0.05 for all analyses). Further, Hispanic smokers were at a reduced risk of airflow obstruction compared to NHW smokers, with an O.R. of 0.51, 95% C.I. 0.34, 0.78 (p = 0.002) after adjustment for age, BMI, pack-years and duration of smoking, and current smoking status. Following adjustment for covariates, Hispanic smokers also had a higher mean absolute and percent predicted post-bronchodilator FEV(1)/FVC ratio, as well as higher mean percent predicted FEV(1) (p < 0.05 for all analyses). Hispanic female smokers in this New Mexico-based cohort had lower risk of airflow obstruction and better lung function than NHW female smokers. Further, smoking history did not completely explain these associations.
Effect of particle size of parenteral suspensions on in vitro muscle damage.
Brazeau, Gayle; Sauberan, Shauna L; Gatlin, Larry; Wisniecki, Peter; Shah, Jaymin
2011-01-01
Suspension particle size plays a key role in the release and stability of drugs for oral and parenteral formulations. However, the role of particle size in suspension formulations on tissue damage (myotoxicity) following intramuscular (IM) injection has not been systematically investigated. Myotoxicity was assessed by the release of cumulative creatine kinase (CCK) from the isolated extensor digitorium longus (EDL) and soleus (SOL) rat muscles for selected suspensions of phenytoin, bupivicane and diazepam. Particle size effects on myotoxicity, independent of any specific drug, were also investigated using characterized non-dissolving polystyrene beads. Myotoxicity was quantitated by the cumulative release of creatine kinase (CCK) from these isolated muscles over 90 or 120 min. The relationship between particle size and myotoxicity was dependent upon the drug in these suspensions. Diazepam and phenytoin suspensions were found to be less myotoxic than bupivicaine. Using unmodified and carboxy modified polystyrene beads, an optimal particle size for reduced myotoxicity following IM injection ranges from approx. 500 nm to 1 µM. The relationship between myotoxicity of IM suspensions and particle size is dependent upon the particular drug and suspension particle size.
Non-Acute Coronary Syndrome Anginal Chest Pain
Agarwal, Megha; Mehta, Puja K.; Merz, C. Noel Bairey
2010-01-01
Anginal chest pain is one of the most common complaints in the outpatient setting. While much of the focus has been on identifying obstructive atherosclerotic coronary artery disease (CAD) as the cause of anginal chest pain, it is clear that microvascular coronary dysfunction (MCD) can also cause anginal chest pain as a manifestation of ischemic heart disease (IHD), and carries an increased cardiovascular risk. Epicardial coronary vasospasm, aortic stenosis, left ventricular hypertrophy, congenital coronary anomalies, mitral valve prolapse and abnormal cardiac nociception can also present as angina of cardiac origin. For non-acute coronary syndrome (ACS) stable chest pain, exercise treadmill testing (ETT) remains the primary tool for diagnosis of ischemia and cardiac risk stratification; however, in certain subsets of patients, such as women, ETT has a lower sensitivity and specificity for identifying obstructive CAD. When combined with an imaging modality, such as nuclear perfusion or echocardiography testing, the sensitivity and specificity of stress testing for detection of obstructive CAD improves significantly. Advancements in stress cardiac magnetic resonance imaging (MRI) enables detection of perfusion abnormalities in a specific coronary artery territory, as well as subendocardial ischemia associated with MCD. Coronary computed tomography angiography (CCTA) enables visual assessment of obstructive CAD, albeit with a higher radiation dose. Invasive coronary angiography (CA) remains the gold standard for diagnosis and treatment of obstructive lesions that cause medically refractory stable angina. Furthermore, in patients with normal coronary angiograms, the addition of coronary reactivity testing (CRT) can help diagnose endothelial dependent and independent microvascular dysfunction. Life-style modification and pharmacologic intervention remains the cornerstone of therapy to reduce morbidity and mortality in patients with stable angina. This review focuses on the pathophysiology, diagnosis, and treatment of stable, non-ACS anginal chest pain. PMID:20380951
Fell, Anne Kristin Møller; Aasen, Tor Olav Brøvig; Kongerud, Johny
2014-11-01
Work-related COPD occurs as a result of exposure to harmful particles and gases/fumes in the workplace, including among non-smokers. The objective of this article is to present more recent findings on the correlation between occupational exposure and COPD. In addition, we review diagnostic and prognostic considerations and the potential for prevention. We have undertaken literature searches in Medline and EMBASE for the period May 2009 - July 2014. Studies without any measurements of pulmonary function or references to occupational exposure were excluded. We have also included three prospective studies on pulmonary function and occupational exposure that were not indexed with the search terms used for obstructive pulmonary disease. Three population studies and eight studies that described a specific industry or sector were included. Recent studies detect an association between exposure and an increased risk of COPD in the construction industry, metallurgical smelting, cement production and the textile industry. In other respects, the findings from previous review studies are confirmed. Exposure to a number of organic and inorganic particles and fumes in the workplace may cause COPD even at prevailing levels of exposure. Doctors should inquire about such exposure in cases of suspected and established COPD and should have a low threshold for referral to occupational health assessment.
Particle-in-cell/accelerator code for space-charge dominated beam simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-05-08
Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model.more » The code is guilt atop the Python interpreter language.« less
Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Xiaohui; Potok, Thomas E
2009-12-01
To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are notmore » the necessary requirements for insurgents to efficiently attain their objective.« less
Gritti, Fabrice; Guiochon, Georges
2014-08-15
In a previous report, it was reported that columns packed with fully porous 1.9μm Titan-C18 particles provided a minimum reduced plate height as small as 1.7 for the most retained compound (n-octanophenone) under RPLC conditions. These particles are characterized by a relatively narrow size distribution with a relative standard deviation (RSD) of only 10%. A column packed with classical 5μm Symmetry-C18 particles, used as a reference RPLC column, generated a minimum reduced plate height of 2.1 for the same retained compound. This work demonstrates that this was due to an unusually low intra-particle diffusivity across these particles, which leads to a small longitudinal diffusion coefficient along the column. The demonstration is based on the combination of accurate measurements of the height equivalent to a theoretical plate (HETP), inverse size exclusion chromatography (ISEC), peak parking (PP), and minor disturbance method (MDM) experiments. The experimental results show that the reduced eddy dispersion HETP term (A=0.8 for a reduced velocity of 5), the internal particle porosity (ϵp=0.35), and the enrichment of acetonitrile in the pore volume (75% acetonitrile in the bulk, 85% inside the mesoporous volume) are identical on both the Titan-C18 and Symmetry-C18 columns. The difference between the internal structures of these two brands of RPLC-C18 fully porous particles lies in the values of the internal obstruction factor γp, which is 0.42 for the Symmetry-C18 but only 0.26 for the Titan-C18 particles. This is in part related to the diffusion hindrance due to the small average pore size of the Titan-C18 particles, around 59Å versus 77Å for Symmetry-C18 particles. A simple model of constriction along diffusion paths having the shape of a truncated cone suggests that the width of the pore size distribution (RSD of 30% and 20% for Titan-C18 and Symmetry-C18 particles) is mostly responsible for the difference in their obstruction factors. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of turbinoplasty surgery efficacy in patients with and without allergic rhinitis.
Hamerschmidt, Rodrigo; Hamerschmidt, Rogério; Moreira, Ana Tereza Ramos; Tenório, Sérgio Bernardo; Timi, Jorge Rufno Ribas
2016-01-01
Turbinoplasty is a procedure that aims to reduce the size of the inferior turbinate through exuberant bone removal with high mucosal preservation. The procedure is recommended for patients with or without allergic rhinitis and those showing irreversible hypertrophy of inferior turbinates. To evaluate the efficacy of inferior turbinoplasty for obstructive and non-obstructive symptoms in patients with or without allergic rhinitis. Prospective study with 57 patients who underwent inferior turbinoplasty. They were evaluated for nasal obstruction, snoring, facial pressure, smell alterations, sneezing, nasal itching and runny nose symptoms, surgery time, and intraoperative bleeding. The last evaluation took place three months after surgery. Thirty-nine patients with allergic rhinitis and 18 without were assessed. Ninety days after surgery, 94.7% of patients showed degrees IV and V of breathing improvement; 89.5% showed moderate or complete improvement in snoring; all patients showed smell improvement (only one showed moderate improvement; all the others had full improvement); 95.5% experienced complete facial pressure improvement; and 89.7% showed moderate to complete improvement in nasal itching and runny nose symptoms, as well as in sneezing. The efficacy of inferior turbinoplasty was confirmed not only for obstructive symptoms, but also for non-obstructive symptoms in patients with and without allergic rhinitis. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
CFTR dysfunction in cystic fibrosis and chronic obstructive pulmonary disease.
Fernandez Fernandez, Elena; de Santi, Chiara; De Rose, Virginia; Greene, Catherine M
2018-05-11
Obstructive lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are causes of high morbidity and mortality worldwide. CF is a multiorgan genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is characterized by progressive chronic obstructive lung disease. Most cases of COPD are a result of noxious particles, mainly cigarette smoke but also other environmental pollutants. Areas covered: Although the pathogenesis and pathophysiology of CF and COPD differ, they do share key phenotypic features and because of these similarities there is great interest in exploring common mechanisms and/or factors affected by CFTR mutations and environmental insults involved in COPD. Various molecular, cellular and clinical studies have confirmed that CFTR protein dysfunction is common in both the CF and COPD airways. This review provides an update of our understanding of the role of dysfunctional CFTR in both respiratory diseases. Expert Commentary: Drugs developed for people with CF to improve mutant CFTR function and enhance CFTR ion channel activity might also be beneficial in patients with COPD. A move toward personalized therapy using, for example, microRNA modulators in conjunction with CFTR potentiators or correctors, could enhance treatment of both diseases.
Synthesis, optimization, and characterization of molecularly imprinted nanoparticles
NASA Astrophysics Data System (ADS)
Rostamizadeh, Kobra; Abdollahi, Hamid; Parsajoo, Cobra
2013-04-01
Nanoparticles of molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization method. Glucose was used as a template molecule. The impact of different process parameters on the preparation of nanoparticles was investigated in order to reach the maximum binding capacity of MIPs. Experimental data based on uniform design were analyzed using artificial neural network to find the optimal condition. The results showed that the binding ability of nanoparticles of MIPs prepared under optimum condition was much higher than that of the corresponding non-imprinted nanoparticles (NIPs). The findings also demonstrated high glucose selectivity of imprinted nanoparticles. The results exhibited that the particle size for MIP nanoparticles was about 557.6 nm, and the Brunauer-Emmett-Teller analysis also confirmed that the particle pores were mesopores and macropores around 40 nm and possessed higher volume, surface area, and uniform size compared to the corresponding NIPs.
Laryngeal closure impedes non-invasive ventilation at birth
Crawshaw, Jessica R; Kitchen, Marcus J; Binder-Heschl, Corinna; Thio, Marta; Wallace, Megan J; Kerr, Lauren T; Roehr, Charles C; Lee, Katie L; Buckley, Genevieve A; Davis, Peter G; Flemmer, Andreas; te Pas, Arjan B; Hooper, Stuart B
2018-01-01
Background Non-invasive ventilation is sometimes unable to provide the respiratory needs of very premature infants in the delivery room. While airway obstruction is thought to be the main problem, the site of obstruction is unknown. We investigated whether closure of the larynx and epiglottis is a major site of airway obstruction. Methods We used phase contrast X-ray imaging to visualise laryngeal function in spontaneously breathing premature rabbits immediately after birth and at approximately 1 hour after birth. Non-invasive respiratory support was applied via a facemask and images were analysed to determine the percentage of the time the glottis and the epiglottis were open. Hypothesis Immediately after birth, the larynx is predominantly closed, only opening briefly during a breath, making non-invasive intermittent positive pressure ventilation (iPPV) ineffective, whereas after lung aeration, the larynx is predominantly open allowing non-invasive iPPV to ventilate the lung. Results The larynx and epiglottis were predominantly closed (open 25.5%±1.1% and 17.1%±1.6% of the time, respectively) in pups with unaerated lungs and unstable breathing patterns immediately after birth. In contrast, the larynx and the epiglottis were mostly open (90.5%±1.9% and 72.3%±2.3% of the time, respectively) in pups with aerated lungs and stable breathing patterns irrespective of time after birth. Conclusion Laryngeal closure impedes non-invasive iPPV at birth and may reduce the effectiveness of non-invasive respiratory support in premature infants immediately after birth. PMID:29054974
Non-surgical management of obstructive sleep apnoea: a review.
Whitla, Laura; Lennon, Paul
2017-02-01
Obstructive sleep apnoea is common in children and, if untreated, can lead to multiple medical sequelae. The Childhood Adenotonsillectomy Trial demonstrated benefit from early surgical intervention, but rapid access to such treatment is not always available. To examine the recent literature on non-surgical aspects of the management of paediatric obstructive sleep apnoea (OSA). The English language literature was searched for articles on the conservative management of OSA. In mild cases of OSA, intra-nasal steroids and other anti-inflammatory medications may give relief in mild cases of OSA, but the long-term safety of these treatments has not been established. Weight loss in obese children has been shown to be effective in selected patients but is limited in practice. Non-invasive ventilation may be effective but compliance can be a major obstacle. Oral appliances are effective by stenting the pharyngeal airway, but research in this area is limited. There are number of potential, if not proven, alternative management strategies for children with OSA, which could be considered in the absence of early surgical intervention.
Paci, Anna Maria; Lattanzi, Fabio; Cabani, Enrico; Conti, Umberto; De Tommasi, Salvatore Mario
2007-04-01
Non-obstructive prosthetic valve thrombosis is a rare and underestimated complication in patients with left-sided mechanical heart valves. Systemic embolisation, mainly involving the cerebral circulation, often represents the first clinical manifestation. We report a case of multiple, successive embolizations in the coronary and cerebral circulation, presenting with an acute myocardial infarction and stroke in a patient with latent, non-obstructive thrombosis of a mechanical bileaflet aortic valve. Because of scheduled urological surgery, chronic vitamin K antagonist treatment had previously been discontinued and replaced with low-molecular-weight heparin, at inadequate dosage. Following coronary arteriography, brain computed tomography scan and transoesophageal echocardiography, thrombolysis was performed successfully. This case emphasises the utility of performing transoesophageal echocardiography routinely in the presence of ischaemic signs in patients with mechanical heart valves. In patients requiring discontinuation of oral anticoagulant therapy, accurate management and continuous monitoring of alternative medications are needed in order to avoid severe thromboembolic complications.
Ronaldson, Sarah J; Dyson, Lisa; Clark, Laura; Hewitt, Catherine E; Torgerson, David J; Cooper, Brendan G; Kearney, Matt; Laughey, William; Raghunath, Raghu; Steele, Lisa; Rhodes, Rebecca; Adamson, Joy
2018-06-01
Early identification of chronic obstructive pulmonary disease (COPD) results in patients receiving appropriate management for their condition at an earlier stage in their disease. The determining the optimal approach to identifying individuals with chronic obstructive pulmonary disease (DOC) study was a case-finding study to enhance early identification of COPD in primary care, which evaluated the diagnostic accuracy of a series of simple lung function tests and symptom-based case-finding questionnaires. Current smokers aged 35 or more were invited to undertake a series of case-finding tools, which comprised lung function tests (specifically, spirometry, microspirometry, peak flow meter, and WheezoMeter) and several case-finding questionnaires. The effectiveness of these tests, individually or in combination, to identify small airways obstruction was evaluated against the gold standard of spirometry, with the quality of spirometry tests assessed by independent overreaders. The study was conducted with general practices in the Yorkshire and Humberside area, in the UK. Six hundred eighty-one individuals met the inclusion criteria, with 444 participants completing their study appointments. A total of 216 (49%) with good-quality spirometry readings were included in the analysis. The most effective case-finding tools were found to be the peak flow meter alone, the peak flow meter plus WheezoMeter, and microspirometry alone. In addition to the main analysis, where the severity of airflow obstruction was based on fixed ratios and percent of predicted values, sensitivity analyses were conducted by using lower limit of normal values. This research informs the choice of test for COPD identification; case-finding by use of the peak flow meter or microspirometer could be used routinely in primary care for suspected COPD patients. Only those testing positive to these tests would move on to full spirometry, thereby reducing unnecessary spirometric testing. © 2018 John Wiley & Sons, Ltd.
Actigraphy scoring for sleep outcome measures in chronic obstructive pulmonary disease.
Kapella, Mary C; Vispute, Sachin; Zhu, Bingqian; Herdegen, James J
2017-09-01
Actigraphy is commonly used to measure sleep outcomes so that sleep can be measured conveniently at home over multiple nights. Actigraphy has been validated in people with sleep disturbances; however, the validity of scoring settings in people with chronic medical illnesses such as chronic obstructive pulmonary disease remains unclear. The purpose of this secondary analysis was to compare actigraphy-customized scoring settings with polysomnography (PSG) for the measurement of sleep outcomes in people with chronic obstructive pulmonary disease who have insomnia. Participants underwent overnight sleep assessment simultaneously by PSG and actigraphy at the University of Illinois of Chicago Sleep Science Center. Fifty participants (35 men and 15 women) with mild-to-severe chronic obstructive pulmonary disease and co-existing insomnia were included in the analysis. Sleep onset latency, total sleep time (TST), wake after sleep onset (WASO), and sleep efficiency (SE) were calculated independently from data derived from PSG and actigraphy. Actigraphy sleep outcome scores obtained at the default setting and several customized actigraphy settings were compared to the scored PSG results. Although no single setting was optimal for all sleep outcomes, the combination of 10 consecutive immobile minutes for sleep onset or end and an activity threshold of 10 worked well. Actigraphy overestimated TST and SE and underestimated WASO, but there was no difference in variance between PSG and actigraphy in TST and SE when the 10 × 10 combination was used. As the average TST and SE increased, the agreement between PSG and actigraphy appeared to increase, and as the average WASO decreased, the agreement between PSG and actigraphy appeared to increase. Results support the conclusion that the default actigraphy settings may not be optimal for people with chronic obstructive pulmonary disease and co-existing insomnia. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Krivec, Bojan; Voga, Gorazd; Podbregar, Matej
2004-05-31
Patients with massive pulmonary embolism and obstructive shock usually require hemodynamic stabilization and thrombolysis. Little is known about the optimal and proper use of volume infusion and vasoactive drugs, or about the titration of thrombolytic agents in patients with relative contraindication for such treatment. The aim of the study was to find the most rapidly changing hemodynamic variable to monitor and optimize the treatment of patients with obstructive shock following massive pulmonary embolism. Ten consecutive patients hospitalized in the medical intensive care unit in the community General Hospital with obstructive shock following massive pulmonary embolism were included in the prospective observational study. Heart rate, systolic arterial pressure, central venous pressure, mean pulmonary-artery pressure, cardiac index, total pulmonary vascular-resistance index, mixed venous oxygen saturation, and urine output were measured on admission and at 1, 2, 3, 4, 8, 12, and 16 hours. Patients were treated with urokinase through the distal port of a pulmonary-artery catheter. At 1 hour, mixed venous oxygen saturation, systolic arterial pressure and cardiac index were higher than their admission values (31+/-10 vs. 49+/-12%, p<0.0001; 86+/-12 vs. 105+/-17 mmHg, p<0.01; 1.5+/-0.4 vs. 1.9+/-0.7 L/min/m2, p<0.05; respectively), whereas heart rate, central venous pressure, mean pulmonary-artery pressure and urine output remained unchanged. Total pulmonary vascular-resistance index was lower than at admission (29+/-10 vs. 21+/-12 mmHg/L/min/m2, p<0.05). The relative change of mixed venous oxygen saturation at hour 1 was higher than the relative changes of all other studied variables (p<0.05). Serum lactate on admission and at 12 hours correlated to mixed venous oxygen saturation (r=-0.855, p<0.001). In obstructive shock after massive pulmonary embolism, mixed venous oxygen saturation changes more rapidly than other standard hemodynamic variables.
NASA Astrophysics Data System (ADS)
Xu, Xue-song
2014-12-01
Under complex currents, the motion governing equations of marine cables are complex and nonlinear, and the calculations of cable configuration and tension become difficult compared with those under the uniform or simple currents. To obtain the numerical results, the usual Newton-Raphson iteration is often adopted, but its stability depends on the initial guessed solution to the governing equations. To improve the stability of numerical calculation, this paper proposed separated the particle swarm optimization, in which the variables are separated into several groups, and the dimension of search space is reduced to facilitate the particle swarm optimization. Via the separated particle swarm optimization, these governing nonlinear equations can be solved successfully with any initial solution, and the process of numerical calculation is very stable. For the calculations of cable configuration and tension of marine cables under complex currents, the proposed separated swarm particle optimization is more effective than the other particle swarm optimizations.
Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing
2015-01-01
An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.
Reduced Brain Gray Matter Concentration in Patients With Obstructive Sleep Apnea Syndrome
Joo, Eun Yeon; Tae, Woo Suk; Lee, Min Joo; Kang, Jung Woo; Park, Hwan Seok; Lee, Jun Young; Suh, Minah; Hong, Seung Bong
2010-01-01
Study Objectives: To investigate differences in brain gray matter concentrations or volumes in patients with obstructive sleep apnea syndrome (OSA) and healthy volunteers. Designs: Optimized voxel-based morphometry, an automated processing technique for MRI, was used to characterize structural differences in gray matter in newly diagnosed male patients. Setting: University hospital Patients and Participants: The study consisted of 36 male OSA and 31 non-apneic male healthy volunteers matched for age (mean age, 44.8 years). Interventions: Using the t-test, gray matter differences were identified. The statistical significance level was set to a false discovery rate P < 0.05 with an extent threshold of kE > 200 voxels. Measurements and Results: The mean apnea-hypopnea index (AHI) of patients was 52.5/ h. On visual inspection of MRI, no structural abnormalities were observed. Compared to healthy volunteers, the gray matter concentrations of OSA patients were significantly decreased in the left gyrus rectus, bilateral superior frontal gyri, left precentral gyrus, bilateral frontomarginal gyri, bilateral anterior cingulate gyri, right insular gyrus, bilateral caudate nuclei, bilateral thalami, bilateral amygdalo-hippocampi, bilateral inferior temporal gyri, and bilateral quadrangular and biventer lobules in the cerebellum (false discovery rate P < 0.05). Gray matter volume was not different between OSA patients and healthy volunteers. Conclusions: The brain gray matter deficits may suggest that memory impairment, affective and cardiovascular disturbances, executive dysfunctions, and dysregulation of autonomic and respiratory control frequently found in OSA patients might be related to morphological differences in the brain gray matter areas. Citation: Joo EY; Tae WS; Lee MJ; Kang JW; Park HS; Lee JY; Suh M; Hong SB. Reduced brain gray matter concentration in patients with obstructive sleep apnea syndrome. SLEEP 2010;33(2):235-241. PMID:20175407
Tewari, Sanjit O; Getrajdman, George I; Petre, Elena N; Sofocleous, Constantinos T; Siegelbaum, Robert H; Erinjeri, Joseph P; Weiser, Martin R; Thornton, Raymond H
2015-02-01
To assess the safety and efficacy of image-guided percutaneous cecostomy/colostomy (PC) in the management of colonic obstruction in patients with cancer. Twenty-seven consecutive patients underwent image-guided PC to relieve large bowel obstruction at a single institution between 2000 and 2012. Colonic obstruction was the common indication. Patient demographics, diagnosis, procedural details, and outcomes including maximum colonic distension (MCD; ie, greatest transverse measurement of the colon on radiograph or scout computed tomography image) were recorded and retrospectively analyzed. Following PC, no patient experienced colonic perforation; pain was relieved in 24 of 27 patients (89%). Catheters with tip position in luminal gas rather than mixed stool/gas or stool were associated with greater decrease in MCD (-40%, -12%, and -16%, respectively), with the difference reaching statistical significance (P = .002 and P = .013, respectively). Catheter size was not associated with change in MCD (P = .978). Catheters were successfully removed from six of nine patients (67%) with functional obstructions and two of 18 patients (11%) with mechanical obstructions. One patient underwent endoscopic stent placement after catheter removal. Three patients required diverting colostomy after PC, and their catheters were removed at the time of surgery. One major complication (3.7%; subcutaneous emphysema, pneumomediastinum, and sepsis) occurred 8 days after PC and was successfully treated with cecostomy exchange, soft-tissue drainage, and intravenous antibiotic therapy. Image-guided PC is safe and effective for management of functional and mechanical bowel obstruction in patients with cancer. For optimal efficacy, catheters should terminate within luminal gas. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.
[Study on application of SVM in prediction of coronary heart disease].
Zhu, Yue; Wu, Jianghua; Fang, Ying
2013-12-01
Base on the data of blood pressure, plasma lipid, Glu and UA by physical test, Support Vector Machine (SVM) was applied to identify coronary heart disease (CHD) in patients and non-CHD individuals in south China population for guide of further prevention and treatment of the disease. Firstly, the SVM classifier was built using radial basis kernel function, liner kernel function and polynomial kernel function, respectively. Secondly, the SVM penalty factor C and kernel parameter sigma were optimized by particle swarm optimization (PSO) and then employed to diagnose and predict the CHD. By comparison with those from artificial neural network with the back propagation (BP) model, linear discriminant analysis, logistic regression method and non-optimized SVM, the overall results of our calculation demonstrated that the classification performance of optimized RBF-SVM model could be superior to other classifier algorithm with higher accuracy rate, sensitivity and specificity, which were 94.51%, 92.31% and 96.67%, respectively. So, it is well concluded that SVM could be used as a valid method for assisting diagnosis of CHD.
Removal of heavy metals from acid mine drainage using chicken eggshells in column mode.
Zhang, Ting; Tu, Zhihong; Lu, Guining; Duan, Xingchun; Yi, Xiaoyun; Guo, Chuling; Dang, Zhi
2017-03-01
Chicken eggshells (ES) as alkaline sorbent were immobilized in a fixed bed to remove typical heavy metals from acid mine drainage (AMD). The obtained breakthrough curves showed that the breakthrough time increased with increasing bed height, but decreased with increasing flow rate and increasing particle size. The Thomas model and bed depth service time model could accurately predict the bed dynamic behavior. At a bed height of 10 cm, a flow rate of 10 mL/min, and with ES particle sizes of 0.18-0.425 mm, for a multi-component heavy metal solution containing Cd 2+ , Pb 2+ and Cu 2+ , the ES capacities were found to be 1.57, 146.44 and 387.51 mg/g, respectively. The acidity of AMD effluent clearly decreased. The ES fixed-bed showed the highest removal efficiency for Pb with a better adsorption potential. Because of the high concentration in AMD and high removal efficiency in ES fixed-bed of iron ions, iron floccules (Fe 2 (OH) 2 CO 3 ) formed and obstructed the bed to develop the overall effectiveness. The removal process was dominated by precipitation under the alkaline reaction of ES, and the co-precipitation of heavy metals with iron ions. The findings of this work will aid in guiding and optimizing pilot-scale application of ES to AMD treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multi-Objective Mission Route Planning Using Particle Swarm Optimization
2002-03-01
solutions to complex problems using particles that interact with each other. Both Particle Swarm Optimization (PSO) and the Ant System (AS) have been...EXPERIMENTAL DESING PROCESS..............................................................55 5.1. Introduction...46 18. Phenotype level particle interaction
NASA Astrophysics Data System (ADS)
Lin, Jianhan; Li, Min; Li, Yanbin; Chen, Qi
2015-03-01
Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody-antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 μg/ml and 100 μg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 102 to 105 cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are practical for rapid screening applications; however the 30 nm magnetic particles are preferable for specific detection applications. This immunomagnetic bioseparator can be integrated with either conventional culture methods or some rapid detection methods, such as biosensors and PCR, for more sensitive detection of foodborne pathogens.
Dinesh, B V; Selvaraju, Karthikeyan; Kumar, Sampath; Thota, Sumath
2013-09-10
Cytomegalovirus (CMV) infection causes significant morbidty and mortality in immunopromised patients. Though it is usually silent in immunocompetent adults, rarely it can cause serious life-threatening complications. Gastrointestinal tract is one of the commonly involved organs, where it produces a spectrum of clinical manifestation ranging from mild non-specific abdominal pain and diarrhoea to severe infection with toxic megacolon and death. We present a 65-year-old immunocompetent male patient admitted with acute colonic obstruction secondary to CMV-induced colonic stricture, highlighting the importance of considering it as a differential diagnosis for colonic obstruction and reviewing its management.
Gan, Lu; Feng, Cong; Liu, Chunlei; Tian, Shuping; Song, Xiang; Yang, Li
2016-08-01
The aim of the present study was to explore the association between the levels of serum N-terminal pro-B-type natriuretic peptide (NT-pro BNP) and the characteristics of coronary atherosclerotic plaque detected by coronary computed tomography angiography (CCTA), in patients with unstable angina (UA). A total of 202 patients (age range, 47-82 years) were divided into the following three groups: Non-cardiac disease group (57 patients); stable angina pectoris (SAP) group (62 patients); and UA group (83 patients). There were significant differences between the serum NT-pro BNP levels among the three groups (P=0.007). However, in multivariant diagnoses, NT-pro BNP level was not an independent risk factor for UA. The levels of serum NT-pro BNP were observed to be positively correlated with the number of vessels involved (r=0.462; P<0.001), SIS (r=0.475; P<0.001), segment-stenosis score (r=0.453; P<0.001), coronary calcification score (r=0.412; P=0.001), number of obstructive diseases (r=0.346; P<0.001), and the number of segments with non-calcified plaque (r=0.235; P=0.017), mixed plaque (r=0.234; P=0.017) and calcified plaque (r=0.431; P<0.001). The levels of serum NT-pro BNP were significantly higher in patients with UA and left main-left anterior descending (LM-LAD) disease, compared with UA patients without LM-LAD disease (P<0.001). In addition, serum NT-pro BNP was significantly higher in patients with obstructive disease and UA than in those without obstructive disease (P<0.001). The area under the curve of log(NT-pro BNP) was 0.656 (P=0.006; optimal cut-off value, 1.74; sensitivity, 77.6%; specificity, 51.9%). In conclusion, the levels of serum NT-pro BNP are associated with the burden and severity of coronary artery atherosclerotic disease in patients with UA, and may be helpful in risk stratification of patients with UA.
Gan, Lu; Feng, Cong; Liu, Chunlei; Tian, Shuping; Song, Xiang; Yang, Li
2016-01-01
The aim of the present study was to explore the association between the levels of serum N-terminal pro-B-type natriuretic peptide (NT-pro BNP) and the characteristics of coronary atherosclerotic plaque detected by coronary computed tomography angiography (CCTA), in patients with unstable angina (UA). A total of 202 patients (age range, 47–82 years) were divided into the following three groups: Non-cardiac disease group (57 patients); stable angina pectoris (SAP) group (62 patients); and UA group (83 patients). There were significant differences between the serum NT-pro BNP levels among the three groups (P=0.007). However, in multivariant diagnoses, NT-pro BNP level was not an independent risk factor for UA. The levels of serum NT-pro BNP were observed to be positively correlated with the number of vessels involved (r=0.462; P<0.001), SIS (r=0.475; P<0.001), segment-stenosis score (r=0.453; P<0.001), coronary calcification score (r=0.412; P=0.001), number of obstructive diseases (r=0.346; P<0.001), and the number of segments with non-calcified plaque (r=0.235; P=0.017), mixed plaque (r=0.234; P=0.017) and calcified plaque (r=0.431; P<0.001). The levels of serum NT-pro BNP were significantly higher in patients with UA and left main-left anterior descending (LM-LAD) disease, compared with UA patients without LM-LAD disease (P<0.001). In addition, serum NT-pro BNP was significantly higher in patients with obstructive disease and UA than in those without obstructive disease (P<0.001). The area under the curve of log(NT-pro BNP) was 0.656 (P=0.006; optimal cut-off value, 1.74; sensitivity, 77.6%; specificity, 51.9%). In conclusion, the levels of serum NT-pro BNP are associated with the burden and severity of coronary artery atherosclerotic disease in patients with UA, and may be helpful in risk stratification of patients with UA. PMID:27446259
Chronic Obstructive Pulmonary Disease Mortality in Diesel-Exposed Railroad Workers
Hart, Jaime E.; Laden, Francine; Schenker, Marc B.; Garshick, Eric
2006-01-01
Diesel exhaust is a mixture of combustion gases and ultrafine particles coated with organic compounds. There is concern whether exposure can result in or worsen obstructive airway diseases, but there is only limited information to assess this risk. U.S. railroad workers have been exposed to diesel exhaust since diesel locomotives were introduced after World War II, and by 1959, 95% of the locomotives were diesel. We conducted a case–control study of railroad worker deaths between 1981 and 1982 using U.S. Railroad Retirement Board job records and next-of-kin smoking, residential, and vitamin use histories. There were 536 cases with chronic obstructive pulmonary disease (COPD) and 1,525 controls with causes of death not related to diesel exhaust or fine particle exposure. After adjustment for age, race, smoking, U.S. Census region of death, vitamin use, and total years off work, engineers and conductors with diesel-exhaust exposure from operating trains had an increased risk of COPD mortality. The odds of COPD mortality increased with years of work in these jobs, and those who had worked ≥ 16 years as an engineer or conductor after 1959 had an odds ratio of 1.61 (95% confidence interval, 1.12–2.30). These results suggest that diesel-exhaust exposure contributed to COPD mortality in these workers. Further study is needed to assess whether this risk is observed after exposure to exhaust from later-generation diesel engines with modern emission controls. PMID:16835052
[Changes of structures of anterior chamber angle in rabbit chronic high intraocular pressure model].
Lei, Xun-wen; Wei, Ping; Li, Xiao-lin; Yang, Kan; Lei, Jian-zhen
2009-10-01
To observe the anterior chamber angle changes occurred in compound Carbomer-induced chronic high intraocular pressure (IOP) model in rabbit eyes. It was an experimental study. Thirty two rabbits were randomly divided into eight groups. Compound Carbomer (0.3%, 0.3 ml) was injected into the left anterior chamber. A group of rabbits were randomly killed after 1, 2, 3, 4, 6, 8, 10 and 12 weeks. The anterior chamber of the rabbit eye specimens was observed. IOP increased slowly following the application of the drug, high IOP lasted for 3 months. The drug-induced changes of anterior chamber angle consisted of early inflammatory response and late fibrous changes. Inflammatory response occurred in early stage and reduced or disappeared after 3 weeks. Fibrous degeneration and adhesion obstruction occurred in the anterior chamber angle after 4 weeks. Under the electron microscope, the trabecular was expanded and deformed, with hyperplasia of collagen and elastic fibers. Endothelial cells were separated from the trabecular, and showed the morphology of lymphocytes, with the function similar to the macrophages. Phagocytized Carbomer particles were transported through the vacuoles of Schlemm's canal endothelial cells. Large vacuoles gradually reduced. Excessive Carbomer particles were accumulated in the endothelial cells and obstructed the Schlemm's canal. This induced the fibrous proliferation and the destruction of anterior chamber angle structures. The obstruction of aqueous humor outflow induced by compound Carbomer in rabbit high IOP model is caused mainly by the changes in trabecular endothelial cells.
A computational fluid dynamics simulation framework for ventricular catheter design optimization.
Weisenberg, Sofy H; TerMaath, Stephanie C; Barbier, Charlotte N; Hill, Judith C; Killeffer, James A
2017-11-10
OBJECTIVE Cerebrospinal fluid (CSF) shunts are the primary treatment for patients suffering from hydrocephalus. While proven effective in symptom relief, these shunt systems are plagued by high failure rates and often require repeated revision surgeries to replace malfunctioning components. One of the leading causes of CSF shunt failure is obstruction of the ventricular catheter by aggregations of cells, proteins, blood clots, or fronds of choroid plexus that occlude the catheter's small inlet holes or even the full internal catheter lumen. Such obstructions can disrupt CSF diversion out of the ventricular system or impede it entirely. Previous studies have suggested that altering the catheter's fluid dynamics may help to reduce the likelihood of complete ventricular catheter failure caused by obstruction. However, systematic correlation between a ventricular catheter's design parameters and its performance, specifically its likelihood to become occluded, still remains unknown. Therefore, an automated, open-source computational fluid dynamics (CFD) simulation framework was developed for use in the medical community to determine optimized ventricular catheter designs and to rapidly explore parameter influence for a given flow objective. METHODS The computational framework was developed by coupling a 3D CFD solver and an iterative optimization algorithm and was implemented in a high-performance computing environment. The capabilities of the framework were demonstrated by computing an optimized ventricular catheter design that provides uniform flow rates through the catheter's inlet holes, a common design objective in the literature. The baseline computational model was validated using 3D nuclear imaging to provide flow velocities at the inlet holes and through the catheter. RESULTS The optimized catheter design achieved through use of the automated simulation framework improved significantly on previous attempts to reach a uniform inlet flow rate distribution using the standard catheter hole configuration as a baseline. While the standard ventricular catheter design featuring uniform inlet hole diameters and hole spacing has a standard deviation of 14.27% for the inlet flow rates, the optimized design has a standard deviation of 0.30%. CONCLUSIONS This customizable framework, paired with high-performance computing, provides a rapid method of design testing to solve complex flow problems. While a relatively simplified ventricular catheter model was used to demonstrate the framework, the computational approach is applicable to any baseline catheter model, and it is easily adapted to optimize catheters for the unique needs of different patients as well as for other fluid-based medical devices.
[Long-term non-invasive ventilation in chronic obstructive pulmonary disease patients].
Schopfer, Léonore; Groenendijk, Lena; Janssens, Jean-Paul; Younossian, Alain Bigin; Vignaux, Laurence
2018-01-31
Non-invasive ventilation (NIV) is recognized as first line therapy in acute hypercapnic respiratory failure and chronic alveolar hypoventilation caused by several diseases (restrictive thoracic disorders, neuromuscular disease and obesity-hypoventilation syndrome). In Switzerland and other European countries, long-term NIV has also been applied in hypercapnic patients with chronic obstructive pulmonary disease (COPD). However, only recently has conclusive evidence showing benefits of long-term NIV become available. Long-term NIV in COPD has now shown its efficacy in many studies. However, despite these findings, indications, ventilatory settings and monitoring remain poorly known and topic of debate.
Acute appendicitis with unusual dual pathology.
Riddiough, Georgina E; Bhatti, Imran; Ratliff, David A
2012-01-01
Meckel's diverticulum is a rare congenital abnormality arising due to the persistence of the vitelline duct in 1-3% of the population. Clinical presentation is varied and includes rectal bleeding, intestinal obstruction, diverticulitis and ulceration; therefore diagnosis can be difficult. We report a case of acute appendicitis complicated by persistent post operative small bowel obstruction. Further surgical examination of the bowel revealed an non-inflamed, inverted Meckel's diverticulum causing intussusception. Intestinal obstruction in patients with Meckel's diverticulum may be caused by volvulus, intussusception or incarceration of the diverticulum into a hernia. Obstruction secondary to intussusception is relatively uncommon and frequently leads to a confusing and complicated clinical picture. Consideration of Meckel's diverticulum although a rare diagnosis is imperative and this case raises the question "should surgeons routinely examine the bowel for Meckel's diverticulum at laparoscopy?"
Composite Particle Swarm Optimizer With Historical Memory for Function Optimization.
Li, Jie; Zhang, JunQi; Jiang, ChangJun; Zhou, MengChu
2015-10-01
Particle swarm optimization (PSO) algorithm is a population-based stochastic optimization technique. It is characterized by the collaborative search in which each particle is attracted toward the global best position (gbest) in the swarm and its own best position (pbest). However, all of particles' historical promising pbests in PSO are lost except their current pbests. In order to solve this problem, this paper proposes a novel composite PSO algorithm, called historical memory-based PSO (HMPSO), which uses an estimation of distribution algorithm to estimate and preserve the distribution information of particles' historical promising pbests. Each particle has three candidate positions, which are generated from the historical memory, particles' current pbests, and the swarm's gbest. Then the best candidate position is adopted. Experiments on 28 CEC2013 benchmark functions demonstrate the superiority of HMPSO over other algorithms.
NASA Astrophysics Data System (ADS)
Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.
2018-05-01
The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.
Negative mobility of a Brownian particle: Strong damping regime
NASA Astrophysics Data System (ADS)
Słapik, A.; Łuczka, J.; Spiechowicz, J.
2018-02-01
We study impact of inertia on directed transport of a Brownian particle under non-equilibrium conditions: the particle moves in a one-dimensional periodic and symmetric potential, is driven by both an unbiased time-periodic force and a constant force, and is coupled to a thermostat of temperature T. Within selected parameter regimes this system exhibits negative mobility, which means that the particle moves in the direction opposite to the direction of the constant force. It is known that in such a setup the inertial term is essential for the emergence of negative mobility and it cannot be detected in the limiting case of overdamped dynamics. We analyse inertial effects and show that negative mobility can be observed even in the strong damping regime. We determine the optimal dimensionless mass for the presence of negative mobility and reveal three mechanisms standing behind this anomaly: deterministic chaotic, thermal noise induced and deterministic non-chaotic. The last origin has never been reported. It may provide guidance to the possibility of observation of negative mobility for strongly damped dynamics which is of fundamental importance from the point of view of biological systems, all of which in situ operate in fluctuating environments.
Oral water soluble contrast for the management of adhesive small bowel obstruction.
Abbas, S; Bissett, I P; Parry, B R
2007-07-18
Adhesions are the leading cause of small bowel obstruction. Gastrografin transit time may allow for the selection of appropriate patients for non-operative management. Some studies have shown when the contrast does not reach the colon after a designated time it indicates complete intestinal obstruction that is unlikely to resolve with conservative treatment. When the contrast does reach the large bowel, it indicates partial obstruction and patients are likely to respond to conservative treatment. Other studies have suggested that the administration of water-soluble contrast is therapeutic in resolving the obstruction. To determine the reliability of water-soluble contrast media and serial abdominal radiographs in predicting the success of conservative treatment in patients admitted with adhesive small bowel obstruction.Furthermore, to determine the efficacy and safety of water-soluble contrast media in reducing the need for surgical intervention and reducing hospital stay in adhesive small bowel obstruction. The search was conducted using MESH terms: ''Intestinal obstruction'', ''water-soluble contrast'', "Adhesions" and "Gastrografin". The later combined with the Cochrane Collaboration highly sensitive search strategy for identifying randomised controlled trials and controlled clinical trials. 1. Prospective studies were included to evaluate the diagnostic potential of water-soluble contrast in adhesive small bowel obstruction.2. Randomised clinical trials were selected to evaluate the therapeutic role. 1. Studies that addressed the diagnostic role of water-soluble contrast were critically appraised and data presented as sensitivities, specificities and positive and negative likelihood ratios. Results were pooled and summary ROC curve was constructed.2. A meta-analysis of the data from therapeutic studies was performed using the Mantel -Henszel test using both the fixed effect and random effect models. The appearance of water-soluble contrast in the colon on an abdominal X ray within 24 hours of its administration predicts resolution of an adhesive small bowel obstruction with a pooled sensitivity of 0.97, specificity of 0.96. The area under the curve of the summary ROC curve is 0.98. Six randomised studies dealing with the therapeutic role of gastrografin were included in the review, water-soluble contrast did not reduce the need for surgical intervention (OR 0.81, p = 0.3). Meta-analysis of four of the included studies showed that water-soluble contrast did reduce hospital stay compared with placebo (WMD= - 1.83) P<0.001. Published literature strongly supports the use of water-soluble contrast as a predictive test for non-operative resolution of adhesive small bowel obstruction. Although Gastrografin does not cause resolution of small bowel obstruction there is strong evidence that it reduces hospital stay in those not requiring surgery.
Elastohydrodynamic lubrication in point contact on the surfaces of particle-reinforced composite
NASA Astrophysics Data System (ADS)
Chen, Keying; Zeng, Liangcai; Wu, Zhenpeng; Zheng, Feilong
2018-04-01
Appreciable friction and serious wear are common challenges in the operation of advanced manufacturing equipment, and friction pairs may be susceptible to damage even with oil lubrication when point contact exists. In this study, a type of particle-reinforced composite material is introduced for one of the components of a heavy-load contact pair, and the performance improvement of elastohydrodynamic lubrication (EHL) is analyzed considering the rheological properties of non-Newtonian fluids. The Ree-Eyring EHL model is used considering the surface of the particle-reinforced composite, in which the film thickness includes the particle-induced elastic deformation. The problem of inclusions with different eigenstrains is solved by using Galerkin vectors. The influences of particle properties, size, burial depth, and interparticle distance on point-contact EHL are investigated. Furthermore, using several cases, the structural parameters of the particles in the composites are optimized, and an appropriate parameter range is obtained with the goal of reducing friction. Finally, the results for the EHL traction coefficient demonstrate that appropriate particle properties, size, burial depth, and interparticle distance can effectively reduce the traction coefficient in heavy-load contact.
Preparation and characterization of SiO2-coated submicron-sized L10 Fe-Pt particles
NASA Astrophysics Data System (ADS)
Hayashi, Yoshiaki; Ogawa, Tomoyuki; Ishiyama, Kazushi
2018-05-01
The development of magnets with higher performance is attracting increasing interest. The optimization of their microstructure is essential to enhance their properties, and a microstructure comprising magnetically isolated hard magnetic grains of a single-domain size has been proposed as an ideal structure for enhancing the coercivity of magnets. To obtain magnets with an ideal structure, we consider the fabrication of magnets by an approach based on core/shell nanoparticles with a hard magnetic core and a non-magnetic shell. In this study, to obtain particles for our proposed approach, we attempted to fabricate L10 Fe-Pt/SiO2-core/shell particles with submicron-sized cores less than the critical single-domain size. The fabrication of such core/shell particles was confirmed from morphology observations and XRD analysis of the particles. Although the formation of more desirable core/shell particles with submicron-sized single-crystal cores in the single-domain size range was not achieved, the fabricated core/shell particles showed a high coercivity of 25 kOe.
Yin, Guo-ping; Ye, Jing-ying; Han, De-min; Wang, Xiao-yi; Zhang, Yu-huan; Li, Yan-ru
2013-01-01
It is believed that defects in upper airway neuromuscular control play a role in sleep apnea pathogenesis. Currently, there is no simple and non-invasive method for evaluating neuromuscular activity for the purpose of screening in patients with obstructive sleep apnea. This study was designed to assess the validity of chin surface electromyography of routine polysomnography in evaluating the neuromuscular activity of obstructive sleep apnea subjects and probe the neuromuscular contribution in the pathogenesis of the condition. The chin surface electromyography of routine polysomnography during normal breathing and obstructive apnea were quantified in 36 male patients with obstructive sleep apnea. The change of chin surface electromyography from normal breathing to obstructive apnea was expressed as the percent compensated electromyography value, where the percent compensated electromyography value = (normal breath surface electromyography - apnea surface electromyography)/normal breath surface electromyography, and the percent compensated electromyography values among subjects were compared. The relationship between sleep apnea related parameters and the percent compensated electromyography value was examined. The percent compensated electromyography value of the subjects varied from 1% to 90% and had a significant positive correlation with apnea hypopnea index (R(2) = 0.382, P < 0.001). Recording and analyzing chin surface electromyography by routine polysomnography is a valid way of screening the neuromuscular activity in patients with obstructive sleep apnea. The neuromuscular contribution is different among subjects with obstructive sleep apnea.
Particle Swarm Optimization Toolbox
NASA Technical Reports Server (NTRS)
Grant, Michael J.
2010-01-01
The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry trajectory and guidance design for the Mars Science Laboratory mission but may be applied to any optimization problem.
An efficient algorithm for function optimization: modified stem cells algorithm
NASA Astrophysics Data System (ADS)
Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad Hadi
2013-03-01
In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).
Carlson, DA; Omari, T; Lin, Z; Rommel, N; Starkey, K; Kahrilas, PJ; Tack, J; Pandolfino, JE
2016-01-01
Background High-resolution impedance manometry (HRIM) allows evaluation of esophageal bolus retention, flow, and pressurization. We aimed to perform a collaborative analysis of HRIM metrics to evaluate patients with non-obstructive dysphagia. Methods 14 asymptomatic controls (58% female; ages 20 – 50) and 41 patients (63% female; ages 24 – 82), 18 evaluated for dysphagia, 23 for reflux (‘non-dysphagia patients’), with esophageal motility diagnoses of normal motility or ineffective esophageal motility were evaluated with HRIM and a global dysphagia symptom score (Brief Esophageal Dysphagia Questionnaire). HRIM were analyzed to assess Chicago Classification metrics, automated pressure-flow metrics, the esophageal impedance integral (EII) ratio, and the bolus flow time (BFT). Key Results Significant symptom-metric correlations were detected only with basal EGJ pressure, EII ratio, and BFT. The EII ratio, BFT, and impedance ratio differed between controls and dysphagia patients, while the EII ratio in the upright position was the only measure that differentiated dysphagia from non-dysphagia patients. Conclusions & Inferences The EII ratio and BFT appear to offer an improved diagnostic evaluation in patients with non-obstructive dysphagia without a major esophageal motility disorder. Bolus retention as measured with the EII ratio appears to carry the strongest association with dysphagia, and thus may aid in the characterization of symptomatic patients with otherwise normal manometry. PMID:27647522
Carlson, D A; Omari, T; Lin, Z; Rommel, N; Starkey, K; Kahrilas, P J; Tack, J; Pandolfino, J E
2017-03-01
High-resolution impedance manometry (HRIM) allows evaluation of esophageal bolus retention, flow, and pressurization. We aimed to perform a collaborative analysis of HRIM metrics to evaluate patients with non-obstructive dysphagia. Fourteen asymptomatic controls (58% female; ages 20-50) and 41 patients (63% female; ages 24-82), 18 evaluated for dysphagia and 23 for reflux (non-dysphagia patients), with esophageal motility diagnoses of normal motility or ineffective esophageal motility, were evaluated with HRIM and a global dysphagia symptom score (Brief Esophageal Dysphagia Questionnaire). HRIM was analyzed to assess Chicago Classification metrics, automated pressure-flow metrics, the esophageal impedance integral (EII) ratio, and the bolus flow time (BFT). Significant symptom-metric correlations were detected only with basal EGJ pressure, EII ratio, and BFT. The EII ratio, BFT, and impedance ratio differed between controls and dysphagia patients, while the EII ratio in the upright position was the only measure that differentiated dysphagia from non-dysphagia patients. The EII ratio and BFT appear to offer an improved diagnostic evaluation in patients with non-obstructive dysphagia without a major esophageal motility disorder. Bolus retention as measured with the EII ratio appears to carry the strongest association with dysphagia, and thus may aid in the characterization of symptomatic patients with otherwise normal manometry. © 2016 John Wiley & Sons Ltd.
Case Report: Filaria or Megasperm? A Cause of an Ultrasonographic "Filarial Dance Sign".
Wiggers, J Brad; Jang, Hyun-Jung; Keystone, Jay S
2018-05-14
Bancroftian filariasis can cause genital abnormalities related to chronic inflammation and obstruction of the afferent lymphatic vessels, and may demonstrate a "filarial dance sign" on scrotal ultrasound with mobile echogenic particles observed. We present a patient with a positive "filarial dance sign," travel within Latin America and negative filarial serology.
Sequential bearings-only-tracking initiation with particle filtering method.
Liu, Bin; Hao, Chengpeng
2013-01-01
The tracking initiation problem is examined in the context of autonomous bearings-only-tracking (BOT) of a single appearing/disappearing target in the presence of clutter measurements. In general, this problem suffers from a combinatorial explosion in the number of potential tracks resulted from the uncertainty in the linkage between the target and the measurement (a.k.a the data association problem). In addition, the nonlinear measurements lead to a non-Gaussian posterior probability density function (pdf) in the optimal Bayesian sequential estimation framework. The consequence of this nonlinear/non-Gaussian context is the absence of a closed-form solution. This paper models the linkage uncertainty and the nonlinear/non-Gaussian estimation problem jointly with solid Bayesian formalism. A particle filtering (PF) algorithm is derived for estimating the model's parameters in a sequential manner. Numerical results show that the proposed solution provides a significant benefit over the most commonly used methods, IPDA and IMMPDA. The posterior Cramér-Rao bounds are also involved for performance evaluation.
Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian
2008-12-01
A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.
NASA Astrophysics Data System (ADS)
Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian
2008-12-01
A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.
Particle-based platforms for malaria vaccines.
Wu, Yimin; Narum, David L; Fleury, Sylvain; Jennings, Gary; Yadava, Anjali
2015-12-22
Recombinant subunit vaccines in general are poor immunogens likely due to the small size of peptides and proteins, combined with the lack or reduced presentation of repetitive motifs and missing complementary signal(s) for optimal triggering of the immune response. Therefore, recombinant subunit vaccines require enhancement by vaccine delivery vehicles in order to attain adequate protective immunity. Particle-based delivery platforms, including particulate antigens and particulate adjuvants, are promising delivery vehicles for modifying the way in which immunogens are presented to both the innate and adaptive immune systems. These particle delivery platforms can also co-deliver non-specific immunostimodulators as additional adjuvants. This paper reviews efforts and advances of the Particle-based delivery platforms in development of vaccines against malaria, a disease that claims over 600,000 lives per year, most of them are children under 5 years of age in sub-Sahara Africa. Copyright © 2015 Elsevier Ltd. All rights reserved.
A computer controlled television detector for light, X-rays and particles
NASA Technical Reports Server (NTRS)
Kalata, K.
1981-01-01
A versatile, high resolution, software configurable, two-dimensional intensified vidicon quantum detector system has been developed for multiple research applications. A thin phosphor convertor allows the detection of X-rays below 20 keV and non-relativistic particles in addition to visible light, and a thicker scintillator can be used to detect X-rays up to 100 keV and relativistic particles. Faceplates may be changed to allow any active area from 1 to 40 mm square, and active areas up to 200 mm square are possible. The image is integrated in a digital memory on any software specified array size up to 4000 x 4000. The array size is selected to match the spatial resolution, which ranges from 10 to 100 microns depending on the operating mode, the active area, and the photon or particle energy. All scan and data acquisition parameters are under software control to allow optimal data collection for each application.
Truong, Kimberly K; Lam, Michael T; Grandner, Michael A; Sassoon, Catherine S; Malhotra, Atul
2016-07-01
Physiological and cellular functions operate in a 24-hour cyclical pattern orchestrated by an endogenous process known as the circadian rhythm. Circadian rhythms represent intrinsic oscillations of biological functions that allow for adaptation to cyclic environmental changes. Key clock genes that affect the persistence and periodicity of circadian rhythms include BMAL1/CLOCK, Period 1, Period 2, and Cryptochrome. Remarkable progress has been made in our understanding of circadian rhythms and their role in common medical conditions. A critical review of the literature supports the association between circadian misalignment and adverse health consequences in sepsis, obstructive lung disease, obstructive sleep apnea, and malignancy. Circadian misalignment plays an important role in these disease processes and can affect disease severity, treatment response, and survivorship. Normal inflammatory response to acute infections, airway resistance, upper airway collapsibility, and mitosis regulation follows a robust circadian pattern. Disruption of normal circadian rhythm at the molecular level affects severity of inflammation in sepsis, contributes to inflammatory responses in obstructive lung diseases, affects apnea length in obstructive sleep apnea, and increases risk for cancer. Chronotherapy is an underused practice of delivering therapy at optimal times to maximize efficacy and minimize toxicity. This approach has been shown to be advantageous in asthma and cancer management. In asthma, appropriate timing of medication administration improves treatment effectiveness. Properly timed chemotherapy may reduce treatment toxicities and maximize efficacy. Future research should focus on circadian rhythm disorders, role of circadian rhythm in other diseases, and modalities to restore and prevent circadian disruption.
Norman, Mark B; Pithers, Sonia M; Teng, Arthur Y; Waters, Karen A; Sullivan, Colin E
2017-03-01
To validate the Sonomat against polysomnography (PSG) metrics in children and to objectively measure snoring and stertor to produce a quantitative indicator of partial upper airway obstruction that accurately reflects the pathology of pediatric sleep-disordered breathing (SDB). Simultaneous PSG and Sonomat recordings were performed in 76 children (46 male, age 5.8 ± 2.8, BMI = 18.5 ± 3.8 kg/m2). Sleep time, individual respiratory events and the apnea/hypopnea index (AHI) were compared. Obstructed breathing sounds were measured from the unobtrusive non-contact experimental device. There was no significant difference in total sleep time (TST), respiratory events or AHI values, the latter over-estimated by 0.3 events hr-1 by the Sonomat. Poor signal quality was minimal and gender, BMI, and body position did not adversely influence event detection. Obstructive and central events were classified correctly. The number of runs and duration of snoring (13 399 events, 20% TST) and stertor (5748 events, 24% TST) were an order of magnitude greater than respiratory events (1367 events, 1% TST). Many children defined as normal by PSG had just as many or more runs of snoring and stertor as those with mild, moderate and severe obstructive sleep apnea (OSA). The Sonomat accurately diagnoses SDB in children using current metrics. In addition, it permits quantification of partial airway obstruction that can be used to better describe pediatric SDB. Its non-contact design makes it ideal for use in children. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Kabakyenga, Jerome K.; Östergren, Per-Olof; Emmelin, Maria; Kyomuhendo, Phionah; Odberg Pettersson, Karen
2011-01-01
Background Obstructed labour is still a major cause of maternal and perinatal morbidity and mortality in Uganda, where many women give birth at home alone or assisted by non-skilled birth attendants. Little is known of how the community view obstructed labour, and what actions they take in cases where this complication occurs. Objective The objective of the study was to explore community members’ understanding of and actions taken in cases of obstructed labour in south-western Uganda. Design Grounded theory (GT) was used to analyse data from 20 focus group discussions (FGDs), 10 with women and 10 with men, which were conducted in eight rural and two urban communities. Results A conceptual model based on the community members’ understanding of obstructed labour and actions taken in response is presented as a pathway initiated by women's desire to ‘protecting own integrity’ (core category). The pathway consisted of six other categories closely linked to the core category, namely: (1) ‘taking control of own birth process’; (2) ‘reaching the limit – failing to give birth’ (individual level); (3) ‘exhausting traditional options’; (4) ‘partner taking charge’; (5) ‘facing challenging referral conditions’ (community level); and finally (6) ‘enduring a non-responsive healthcare system’ (healthcare system level). Conclusions There is a need to understand and acknowledge women's reluctance to involve others during childbirth. However, the healthcare system should provide acceptable care and a functional referral system closer to the community, thus supporting the community's ability to seek timely care as a response to obstructed labour. Easy access to mobile phones may improve referral systems. Upgrading of infrastructure in the region requires a multi-sectoral approach. Testing of the conceptual model through a quantitative questionnaire is recommended. PMID:22216018
Yu, Tao; Chan, Kannie W Y; Anonuevo, Abraham; Song, Xiaolei; Schuster, Benjamin S; Chattopadhyay, Sumon; Xu, Qingguo; Oskolkov, Nikita; Patel, Himatkumar; Ensign, Laura M; van Zjil, Peter C M; McMahon, Michael T; Hanes, Justin
2015-02-01
Mucus barriers lining mucosal epithelia reduce the effectiveness of nanocarrier-based mucosal drug delivery and imaging ("theranostics"). Here, we describe liposome-based mucus-penetrating particles (MPP) capable of loading hydrophilic agents, e.g., the diaCEST MRI contrast agent barbituric acid (BA). We observed that polyethylene glycol (PEG)-coated liposomes containing ≥7 mol% PEG diffused only ~10-fold slower in human cervicovaginal mucus (CVM) compared to their theoretical speeds in water. 7 mol%-PEG liposomes contained sufficient BA loading for diaCEST contrast, and provided improved vaginal distribution compared to 0 and 3mol%-PEG liposomes. However, increasing PEG content to ~12 mol% compromised BA loading and vaginal distribution, suggesting that PEG content must be optimized to maintain drug loading and stability. Non-invasive diaCEST MRI illustrated uniform vaginal coverage and longer retention of BA-loaded 7 mol%-PEG liposomes compared to unencapsulated BA. Liposomal MPP with optimized PEG content hold promise for drug delivery and imaging at mucosal surfaces. This team of authors characterized liposome-based mucus-penetrating particles (MPP) capable of loading hydrophilic agents, such as barbituric acid (a diaCEST MRI contrast agent) and concluded that liposomal MPP with optimized PEG coating enables drug delivery and imaging at mucosal surfaces. Copyright © 2015 Elsevier Inc. All rights reserved.
Overnight fluid shifts in subjects with and without obstructive sleep apnea
Ding, Ning; Lin, Wei; Zhang, Xi-Long; Ding, Wen-Xiao; Gu, Bing; Ni, Bu-Qing; Zhang, Wei; Zhang, Shi-Jiang
2014-01-01
Objective To investigate the characteristics of baseline body fluid content and overnight fluid shifts between non-obstructive sleep apnea (non-OSA) and obstructive sleep apnea (OSA) subjects. Methods A case-controlled study was performed between February 2013 and January 2014, with 36 (18 OSA and 18 non-OSA) outpatients enrolled in this study. Polysomnographic parameters and results of body fluid were compared between the two groups. Results There were no differences in age, weight, and body mass index (BMI) between groups. Compared with the non-OSA group, OSA group had significantly higher neck circumference (NC) and fluid volume shift in the legs. OSA patients had higher left and right leg fluid indices than non-OSA subjects. There were significant correlations between apnoea-hypopnoea index and baseline fluid indices in both legs as well as the reduction in overnight change in both legs fluid volume. The increase in NC was also significantly correlated with the reduction in overnight change in both legs fluid volume, but not with the change in head and neck fluid volume. There were significant correlations between change in NC and increased fluid shifts in head and neck volume. Conclusions OSA patients had a higher baseline fluid content in both legs as compared with non-OSA subjects, which may be the basic factor with regards to fluid shifts in OSA patients. The increase in head and neck fluid shift volume did not directly correlate with the severity of OSA. PMID:25589967
Griffiths, C. J.; Pickard, R. S.
2009-01-01
Objective: This article defines the need for objective measurements to help diagnose the cause of lower urinary tract symptoms (LUTS). It describes the conventional techniques available, mainly invasive, and then summarizes the emerging range of non-invasive measurement techniques. Methods: This is a narrative review derived form the clinical and scientific knowledge of the authors together with consideration of selected literature. Results: Consideration of measured bladder pressure urinary flow rate during voiding in an invasive pressure flow study is considered the gold standard for categorization of bladder outlet obstruction (BOO). The diagnosis is currently made by plotting the detrusor pressure at maximum flow (pdetQmax) and maximum flow rate (Qmax) on the nomogram approved by the International Continence Society. This plot will categorize the void as obstructed, equivocal or unobstructed. The invasive and relatively complex nature of this investigation has led to a number of inventive techniques to categorize BOO either by measuring bladder pressure non-invasively or by providing a proxy measure such as bladder weight. Conclusion: Non-invasive methods of diagnosing BOO show great promise and a few have reached the stage of being commercially available. Further studies are however needed to validate the measurement technique and assess their worth in the assessment of men with LUTS. PMID:19468436
Endoscopic dacryocystorhinostomy without silicone stent.
Yeon, Je Yeob; Shim, Woo Sub
2012-06-01
In nasolacrimal duct (NLD) obstruction patients that undergo endoscopic dacryocystorhinostomy (DCR), creation of a patent rhinostomy with adequate epithelialization can be accomplished without a stent. However, in common canalicular obstruction patients, a silicone stent seems to have a beneficial role and to bear more favorable results. The aim of this study was to evaluate the surgical outcome of endoscopic DCR without the use of a silicone stent. In all, 36 patients (41 eyes) who underwent endoscopic DCR were enrolled in this study. The patients were classified into a DCR with silicone stent group and a DCR without silicone stent group. Then each of the groups was subdivided into common canalicular obstruction group and NLD obstruction group. Surgical outcomes were evaluated by postoperative symptom improvement and patency of the rhinostomy under nasal endoscopic exam. The epiphora was improved in 84.2% of the silicone stent group and 81.8% of the non-silicone stent group. Categorized by the level of obstruction, in common canalicular obstruction, the success rate was 84.5% (11/13) in the silicone stent group and 57.1% (4/7) in the no stent group. In NLD obstruction, the success rate was 83.0% (5/6) in the silicone stent group and 93.3% (14/15) in the no stent group.
Hydrocephalus secondary to obstruction of the lateral apertures in two dogs.
Kent, M; Glass, E N; Haley, A C; Shaikh, L S; Sequel, M; Blas-Machado, U; Bishop, T M; Holmes, S P; Platt, S R
2016-11-01
Traditionally, hydrocephalus is divided into communicating or non-communicating (obstructive) based on the identification of a blockage of cerebrospinal fluid (CSF) flow through the ventricular system. Hydrocephalus ex vacuo refers to ventricular enlargement as a consequence of neuroparenchymal loss. Hydrocephalus related to obstruction of the lateral apertures of the fourth ventricles has rarely been described. The clinicopathologic findings in two dogs with hydrocephalus secondary to obstruction of the lateral apertures of the fourth ventricle are reported. Signs were associated with a caudal cervical spinal cord lesion in one dog and a caudal brain stem lesion in the other dog. Magnetic resonance imaging (MRI) disclosed dilation of the ventricular system, including the lateral recesses of the fourth ventricle. In one dog, postmortem ventriculography confirmed obstruction of the lateral apertures. Microscopic changes were identified in the choroid plexus in both dogs, yet a definitive cause of the obstructions was not identified. The MRI findings in both dogs are similar to membranous occlusion of the lateral and median apertures in human patients. MRI detection of dilation of the entire ventricular system in the absence of an identifiable cause should prompt consideration of an obstruction of the lateral apertures. In future cases, therapeutic interventions aimed at re-establishing CSF flow or ventriculoperitoneal catheterisation should be considered. © 2016 Australian Veterinary Association.
Ultrafine particle transport and deposition in a large scale 17-generation lung model.
Islam, Mohammad S; Saha, Suvash C; Sauret, Emilie; Gemci, Tevfik; Yang, Ian A; Gu, Y T
2017-11-07
To understand how to assess optimally the risks of inhaled particles on respiratory health, it is necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the complex transport process through a non-dichotomously bifurcating network of conduit airways. It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the terminal bronchioles. The wide range of in silico available and the limited realistic model for the extrathoracic region of the lung have improved understanding of the ultrafine particle transport and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, and light activity were considered in this modelling study. A comprehensive pressure-drop along five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-drops is observed, which could aid the health risk assessment system for patients with respiratory diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in different lobes is different for various physical activities. Moreover, the numerical results showed hot spots in various locations among the different lobes for different flow rates, which could be helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chronic obstructive pulmonary disease and sleep related disorders.
Tsai, Sheila C
2017-03-01
Sleep related disorders are common and under-recognized in the chronic obstructive pulmonary disease (COPD) population. COPD symptoms can disrupt sleep. Similarly, sleep disorders can affect COPD. This review highlights the common sleep disorders seen in COPD patients, their impact, and potential management. Treatment of sleep disorders may improve quality of life in COPD patients. Optimizing inhaler therapy improves sleep quality. Increased inflammatory markers are noted in patients with the overlap syndrome of COPD and obstructive sleep apnea versus COPD alone. There are potential benefits of noninvasive positive pressure ventilation therapy for overlap syndrome patients with hypercapnia. Nocturnal supplemental oxygen may be beneficial in certain COPD subtypes. Nonbenzodiazepine hypnotic therapy for insomnia has shown benefit without associated respiratory failure or worsening respiratory symptoms. Melatonin may provide mild hypnotic and antioxidant benefits. This article discusses the impact of sleep disorders on COPD patients and the potential benefits of managing sleep disorders on respiratory disease control and quality of life.
Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem
NASA Astrophysics Data System (ADS)
Rahmalia, Dinita
2017-08-01
Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.
NASA Astrophysics Data System (ADS)
Septiani, Eka Lutfi; Widiyastuti, W.; Winardi, Sugeng; Machmudah, Siti; Nurtono, Tantular; Kusdianto
2016-02-01
Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ɛ and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.
[Health impact of indoor mineral particle pollution].
Vincent, M; Chemarin, C
2011-04-01
Mineral particle air pollution consists of both atmospheric pollution and indoor pollution. Indoor pollution comes from household products, cosmetics, combustion used to heat homes or cook food, smoking, hobbies or odd jobs. There is strong evidence that acute respiratory infections in children and chronic obstructive pulmonary disease in women are associated with indoor biomass smoke. Detailed questioning is essential to identify at risk activities and sampling of airborne particles may help with the identification of pollution risks. Particle elimination depends on the standard of ventilation of the indoor environment. Five per cent of French homes have levels of pollution greater than 180 μg/m³ for PM 10 and 2% for PM 2.5. The principal mineral particle air pollutants are probably silica, talc, asbestos and carbon, whereas tobacco smoke leads to exposure to various ultrafine particles. The toxicity of these particles could be more related to surface exchange than to density. Tissue measurements by electron microscopy and microanalysis of particle samples may identify an uptake of particles similar to those in the environmental sample. Copyright © 2011. Published by Elsevier Masson SAS.
Adaptive particle swarm optimization for optimal orbital elements of binary stars
NASA Astrophysics Data System (ADS)
Attia, Abdel-Fattah
2016-12-01
The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.
Ahmed, Tarek A; El-Say, Khalid M
2016-06-10
The goal was to develop an optimized transdermal finasteride (FNS) film loaded with drug microplates (MIC), utilizing two-step optimization, to decrease the dosing schedule and inconsistency in gastrointestinal absorption. First; 3-level factorial design was implemented to prepare optimized FNS-MIC of minimum particle size. Second; Box-Behnken design matrix was used to develop optimized transdermal FNS-MIC film. Interaction among MIC components was studied using physicochemical characterization tools. Film components namely; hydroxypropyl methyl cellulose (X1), dimethyl sulfoxide (X2) and propylene glycol (X3) were optimized for their effects on the film thickness (Y1) and elongation percent (Y2), and for FNS steady state flux (Y3), permeability coefficient (Y4), and diffusion coefficient (Y5) following ex-vivo permeation through the rat skin. Morphological study of the optimized MIC and transdermal film was also investigated. Results revealed that stabilizer concentration and anti-solvent percent were significantly affecting MIC formulation. Optimized FNS-MIC of particle size 0.93μm was successfully prepared in which there was no interaction observed among their components. An enhancement in the aqueous solubility of FNS-MIC by more than 23% was achieved. All the studied variables, most of their interaction and quadratic effects were significantly affecting the studied variables (Y1-Y5). Morphological observation illustrated non-spherical, short rods, flakes like small plates that were homogeneously distributed in the optimized transdermal film. Ex-vivo study showed enhanced FNS permeation from film loaded MIC when compared to that contains pure drug. So, MIC is a successful technique to enhance aqueous solubility and skin permeation of poor water soluble drug especially when loaded into transdermal films. Copyright © 2016 Elsevier B.V. All rights reserved.
Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan; ...
2017-09-01
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.
Management of Gastric Obstruction Caused by Adjustable Gastric Band.
Czeiger, David; Abu-Swis, Shadi; Shaked, Gad; Ovnat, Amnon; Sebbag, Gilbert
2016-12-01
Optimal adjustment of the filling volume of laparoscopic adjustable gastric banding is challenging and commonly performed empirically. Patients with band over-inflation and gastric obstruction arrive at the emergency department complaining of recurrent vomiting. In cases of gastric obstruction, intra-band pressure measurement may assist in determining the amount of fluid that should be removed from the band; however, our investigations have determined that intra-band pressure assessment need not play a role in the treatment of gastric band obstruction. In patients coming to the emergency department with gastric band obstruction, we measured intra-band pressure at arrival and following stepped removal of fluid, comparing the initial pressure with post-deflation pressure and measuring the volume of fluid removed. Forty-eight patients participated in the study. Forty-five patients had a low-pressure/high-volume band. Their mean baseline pressure was 54.6 ± 22.3 mmHg. The mean volume of fluid removed from the band was 1.3 ± 0.8 ml. The mean post-deflation pressure was 22.5 ± 16.3 mmHg. Nearly 30 % of patients required as little as 0.5 ml of fluid removal, and 60 % of them were free of symptoms with removal of 1 ml. Our results indicate that intra-band pressure measurement is of little value for determining the amount of fluid that should be removed for treatment of band obstruction. We suggest the removal of fluid in volumes of 0.5 ml until symptoms are relieved. Only in complicated cases, such as in patients having recurrent obstructions, should additional modalities be employed for further management guidance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.W.; Safai, C.; Goffinet, D.R.
Eleven patients with obstructive jaundice from unresectable cholangiocarcinoma, metastatic porta hepatis adenopathy, or direct compression from a pancreatic malignancy were treated at the Stanford University Medical Center from 1978-1983 with an external drainage procedure followed by high-dose external-beam radiotherapy and by an intracavitary boost to the site of obstruction with Iridium/sup 192/ (Ir/sup 192/). A median dose of 5000 cGy was delivered with 4-6 Mv photons to the tumor bed and regional lymphatics in 9 patients, 1 patient received 2100 cGy to the liver in accelerated fractions because of extensive intrahepatic disease, and 1 patient received 7000 equivalent cGy tomore » his pancreatic tumor bed and regional lymphatics with neon heavy particles. An Ir/sup 192/ wire source later delivered a 3100-10,647 cGy boost to the site of biliary obstruction in each patient, for a mean combined dose of 10,202 cGy to a point 5 mm from the line source. Few acute complications were noted, but 3/11 patients (27%) subsequently developed upper gastrointestinal bleeding from duodenitis or frank duodenal ulceration 4 weeks, 4 months, and 7.5 months following treatment. Eight patients died - 5 with local recurrence +/- distant metastasis, 2 with sepsis, and 1 with widespread systemic metastasis. Autopsies revealed no evidence of biliary tree obstruction in 3/3 patients. Evolution of radiation treatment technqiues for biliary obstruction in the literature is reviewed. High-dose external-beam therapy followed by high-dose Ir/sup 192/ intracavitary boost is well tolerated and provides significant palliation.« less
Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades
NASA Astrophysics Data System (ADS)
Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang
2017-12-01
This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.
Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P J; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J; Ashrafi, Solyman; Molisch, Andreas F; Tur, Moshe; Willner, Alan E
2016-03-01
We experimentally investigate the potential of using 'self-healing' Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively.
Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P. J.; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J.; Ashrafi, Solyman; Molisch, Andreas F.; Tur, Moshe; Willner, Alan E.
2016-01-01
We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively. PMID:26926068
Pabla, L; Duffin, J; Flood, L; Blackmore, K
2018-04-01
Paediatric obstructive sleep apnoea is a common clinical condition managed by most ENT clinicians. However, despite the plethora of publications on the subject, there is wide variability, in the literature and in practice, on key aspects such as diagnostic criteria, the impact of co-morbidities and the indications for surgical correction. A systematic review is presented, addressing four key questions from the available literature: (1) what is the evidence base for any definition of paediatric obstructive sleep apnoea?; (2) does it cause serious systemic illness?; (3) what co-morbidities influence the severity of paediatric obstructive sleep apnoea?; and (4) is there a medical answer? There is a considerable lack of evidence regarding most of these fundamental questions. Notably, screening measures show low specificity and can be insensitive to mild obstructive sleep apnoea. There is a surprising lack of clarity in the definition (let alone estimate of severity) of sleep-disordered breathing, relying on what may be arbitrary test thresholds. Areas of potential research might include investigation of the mechanisms through which obstructive sleep apnoea causes co-morbidities, whether neurocognitive, behavioural, metabolic or cardiovascular, and the role of non-surgical management.
Mishra, Poonam; Nugent, Clarke; Afendy, Arian; Bai, Chunhong; Bhatia, Priya; Afendy, Mariam; Fang, Yun; Elariny, Hazem; Goodman, Zachary; Younossi, Zobair M
2008-09-01
Nonalcoholic fatty liver disease (NAFLD) and obstructive sleep apnoea are associated with metabolic syndrome and atherosclerotic heart disease. This study evaluates the potential association between the NAFLD subtypes and a number of polysomnographical (PSG) parameters. This study included patients undergoing bariatric surgery with extensive clinical and histological data for whom complete PSG data before surgery were also available. Excess alcohol intake and other causes of liver disease were excluded. Apnoea, hypopnoea and apnoea-hypopnoea index (AHI) were calculated as described previously. In this study, a total of 101 patients [77 nonalcoholic steatohepatitis (NASH) and 22 non-NASH controls] with PSG data were included (age 42.9 +/- 11.4 years, body mass index 51.6 +/- 9.5 kg/m(2), fasting serum glucose 117.4 +/- 53.4 mg/dl, fasting serum triglycerides 171.3 +/- 82.9 mg/dl, 58% hypertension and 33% diabetes mellitus). Subjects with histological NASH had significantly lower lowest desaturation (77 vs. 85%, P=0.006), lower mean nocturnal oxygen saturation (91 vs. 93%, P=0.05), higher AHI (35 vs. 22, P=0.03), higher respiratory disturbance index (46 vs. 21, P=0.02) and higher alanine aminotransferase/aspartate aminotransferase ratio (1.4 vs. 1.3, P=0.05) compared with non-NASH controls. In multivariate analysis, the lowest desaturation (P=0.04) was independently associated with histological NASH. Lowest desaturation and mean nocturnal oxygen saturation were significantly lower in subjects with fibrosis (76 vs. 85%, P=0.004 and 90.4 vs. 93.0%, P=0.02). Our results suggest that the frequent nocturnal hypoxic episodes in NAFLD patients may be a risk factor for developing NASH. Additional studies are needed to study the effect of optimizing sleep apnoea management on the outcomes of patients with NAFLD.
Flanagan, Dennis
2012-06-01
People with some chronic diseases may dehydrate and develop thick, viscous inspissated oronasal secretions that include cellular debris. This material can lead to ductal or airway obstructions that can prove to be life threatening. Asthma, allergy with superinfection, cystic fibrosis, intubated ventilation, burn injuries, and medication-induced complications are discussed in this paper. Many patients with chronic debilitating conditions may also be unable to communicate, and so may be unable to verbally convey that they have a compromised airway or an obstruction. Therefore, it is essential to maintain hydration and good oral hygiene that not only addresses the teeth and prostheses, but also the oral mucosal surfaces. People who are institutionalized and bed-ridden, in particular, need to be closely monitored to prevent adverse sequellae. A daily oral sweep with a 4 × 4 surgical sponge moistened with chlorhexidine may prevent aspiration pneumonia or a fatality due to an airway obstruction. Human oronasal secretions are involved with immunity, digestion, lubrication, and speech. Saliva is the most volumetrically important. These secretions moisturize inspired and expired air but can lose water, causing an increase in viscosity. The viscous secretions trap particles, food debris, and bacterial colonies, thereby increasing inspissations that may obstruct the airway. © 2012 Special Care Dentistry Association and Wiley Periodicals, Inc.
Blum, Emily S; Porras, Antonio R; Biggs, Elijah; Tabrizi, Pooneh R; Sussman, Rachael D; Sprague, Bruce M; Shalaby-Rana, Eglal; Majd, Massoud; Pohl, Hans G; Linguraru, Marius George
2017-10-21
We sought to define features that describe the dynamic information in diuresis renograms for the early detection of clinically significant hydronephrosis caused by ureteropelvic junction obstruction. We studied the diuresis renogram of 55 patients with a mean ± SD age of 75 ± 66 days who had congenital hydronephrosis at initial presentation. Five patients had bilaterally affected kidneys for a total of 60 diuresis renograms. Surgery was performed on 35 kidneys. We extracted 45 features based on curve shape and wavelet analysis from the drainage curves recorded after furosemide administration. The optimal features were selected as the combination that maximized the ROC AUC obtained from a linear support vector machine classifier trained to classify patients as with or without obstruction. Using these optimal features we performed leave 1 out cross validation to estimate the accuracy, sensitivity and specificity of our framework. Results were compared to those obtained using post-diuresis drainage half-time and the percent of clearance after 30 minutes. Our framework had 93% accuracy, including 91% sensitivity and 96% specificity, to predict surgical cases. This was a significant improvement over the same accuracy of 82%, including 71% sensitivity and 96% specificity obtained from half-time and 30-minute clearance using the optimal thresholds of 24.57 minutes and 55.77%, respectively. Our machine learning framework significantly improved the diagnostic accuracy of clinically significant hydronephrosis compared to half-time and 30-minute clearance. This aids in the clinical decision making process by offering a tool for earlier detection of severe cases and it has the potential to reduce the number of diuresis renograms required for diagnosis. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets.
Best, Myron G; Sol, Nik; In 't Veld, Sjors G J G; Vancura, Adrienne; Muller, Mirte; Niemeijer, Anna-Larissa N; Fejes, Aniko V; Tjon Kon Fat, Lee-Ann; Huis In 't Veld, Anna E; Leurs, Cyra; Le Large, Tessa Y; Meijer, Laura L; Kooi, Irsan E; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Wedekind, Laurine E; Bracht, Jillian; Esenkbrink, Michelle; Wils, Leon; Favaro, Francesca; Schoonhoven, Jilian D; Tannous, Jihane; Meijers-Heijboer, Hanne; Kazemier, Geert; Giovannetti, Elisa; Reijneveld, Jaap C; Idema, Sander; Killestein, Joep; Heger, Michal; de Jager, Saskia C; Urbanus, Rolf T; Hoefer, Imo E; Pasterkamp, Gerard; Mannhalter, Christine; Gomez-Arroyo, Jose; Bogaard, Harm-Jan; Noske, David P; Vandertop, W Peter; van den Broek, Daan; Ylstra, Bauke; Nilsson, R Jonas A; Wesseling, Pieter; Karachaliou, Niki; Rosell, Rafael; Lee-Lewandrowski, Elizabeth; Lewandrowski, Kent B; Tannous, Bakhos A; de Langen, Adrianus J; Smit, Egbert F; van den Heuvel, Michel M; Wurdinger, Thomas
2017-08-14
Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from platelet RNA-sequencing libraries (n = 779). This resulted in accurate TEP-based detection of early- and late-stage non-small-cell lung cancer (n = 518 late-stage validation cohort, accuracy, 88%; AUC, 0.94; 95% CI, 0.92-0.96; p < 0.001; n = 106 early-stage validation cohort, accuracy, 81%; AUC, 0.89; 95% CI, 0.83-0.95; p < 0.001), independent of age of the individuals, smoking habits, whole-blood storage time, and various inflammatory conditions. PSO enabled selection of gene panels to diagnose cancer from TEPs, suggesting that swarm intelligence may also benefit the optimization of diagnostics readout of other liquid biopsy biosources. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
On the Optimization of Aerospace Plane Ascent Trajectory
NASA Astrophysics Data System (ADS)
Al-Garni, Ahmed; Kassem, Ayman Hamdy
A hybrid heuristic optimization technique based on genetic algorithms and particle swarm optimization has been developed and tested for trajectory optimization problems with multi-constraints and a multi-objective cost function. The technique is used to calculate control settings for two types for ascending trajectories (constant dynamic pressure and minimum-fuel-minimum-heat) for a two-dimensional model of an aerospace plane. A thorough statistical analysis is done on the hybrid technique to make comparisons with both basic genetic algorithms and particle swarm optimization techniques with respect to convergence and execution time. Genetic algorithm optimization showed better execution time performance while particle swarm optimization showed better convergence performance. The hybrid optimization technique, benefiting from both techniques, showed superior robust performance compromising convergence trends and execution time.
Theory of plasma confinement in non-axisymmetric magnetic fields.
Helander, Per
2014-08-01
The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.
A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction.
Konkle, Justin J; Goodwill, Patrick W; Hensley, Daniel W; Orendorff, Ryan D; Lustig, Michael; Conolly, Steven M
2015-01-01
Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.
[Chronic obstructive pulmonary disease (COPD). Current concepts and new therapeutic options].
Klemmer, A; Greulich, T; Koczulla, A R; Vogelmeier, C F
2014-04-01
Chronic obstructive pulmonary disease (COPD) is a very common chronic disease with increasing prevalence. Inhaled particles and gases (in particular tobacco smoke) induce chronic inflammation of the airways accompanied by a not fully reversible airflow limitation. Destruction of lung tissue and deterioration of gas exchange may follow. In parallel, several comorbidities can be observed. The COPD assessment was revised and now takes into account lung function, the patients' symptoms, and history of exacerbations. More recently, several new long-acting bronchodilators received approval. Combination products, consisting of long-acting β2-agonists and long-acting anticholinergics, and a new combination of a long-acting β-agonist and an inhaled corticosteroid will follow in the near future. Smoking cessation is of central importance.
NASA Astrophysics Data System (ADS)
Takemura, Yasuhiro; Sato, Jun-Ya; Nakajima, Masato
2005-01-01
A non-restrictive and non-contact respiratory movement monitoring system that finds the boundary between chest and abdomen automatically and detects the vertical movement of each part of the body separately is proposed. The system uses a fiber-grating vision sensor technique and the boundary position detection is carried out by calculating the centers of gravity of upward moving and downward moving sampling points, respectively. In the experiment to evaluate the ability to detect the respiratory movement signals of each part and to discriminate between obstructive and central apneas, detected signals of the two parts and their total clearly showed the peculiarities of obstructive and central apnea. The cross talk between the two categories classified automatically according to several rules that reflect the peculiarities was ≤ 15%. This result is sufficient for discriminating central sleep apnea syndrome from obstructive sleep apnea syndrome and indicates that the system is promising as screening equipment. Society of Japan
Nd-YAG Laser Treatment for Tracheobronchial Obstruction
Lee, Yu-Chin; Chiang, Kuo-Hwa
1996-01-01
The Nd-YAG laser has good tissue penetration and coagulation effects thus has become an important weapon for photoresection of tracheobronchial obstructive lesions since 1980. Treatment of benign lesions including benign tumors and scar tissues using the Nd-YAG laser has good results. In the treatment of malignant tumors however, it has a lower effectivity rate when compared to benign lesions. From July 1984 to September 1995, a total of 65 patients were treated with Nd-YAG laser for tracheobronchial obstruction. There were 32 (49%) malignant tumors and 33 (51%) benign lesions. 116 resections were performed in 48 patients using the non-contact Nd-YAG laser (MBB, Medilas 2) before 1992. Thereafter, another 41 resections were performed in 17 cases using contact Nd-YAG laser (SLT, CL-X). The overall effectivity rate was 60%. The effectivity rate for benign lesions was 81.3% and 39.4% for malignant tumor. The effectivity rate between non-contact and contact Nd-YAG laser was not significantly different. PMID:18493424
Nd-YAG Laser Treatment for Tracheobronchial Obstruction.
Perng, R P; Lee, Y C; Chiang, K H
1996-01-01
The Nd-YAG laser has good tissue penetration and coagulation effects thus has become an important weapon for photoresection of tracheobronchial obstructive lesions since 1980.Treatment of benign lesions including benign tumors and scar tissues using the Nd-YAG laser has good results. In the treatment of malignant tumors however, it has a lower effectivity rate when compared to benign lesions. From July 1984 to September 1995, a total of 65 patients were treated with Nd-YAG laser for tracheobronchial obstruction. There were 32 (49%) malignant tumors and 33 (51%) benign lesions. 116 resections were performed in 48 patients using the non-contact Nd-YAG laser (MBB, Medilas 2) before 1992. Thereafter, another 41 resections were performed in 17 cases using contact Nd-YAG laser (SLT, CL-X). The overall effectivity rate was 60%. The effectivity rate for benign lesions was 81.3% and 39.4% for malignant tumor. The effectivity rate between non-contact and contact Nd-YAG laser was not significantly different.
Neurotrophins including NGF, NT-3, and BDNF are linked to allergic responses. Treatment with anti-p75 (pan-neurotrophin receptor) prevents the increase in airflow obstruction caused by exposure to DEP in ovalbumin (OVA)-allergic mice (Toxicol Sci 84(S1):91, 2005). Our present goa...
Population-based studies strongly suggest that smokers and patients with COPD may be susceptible to particulate matter (PM). The reported associations were stronger with fine than coarse PM .These findings, however, have not been supported by laboratory or clinical data. We stu...
Obstructive sleep apnea and severe mental illness: evolution and consequences.
Lin, Wei-Chen; Winkelman, John W
2012-10-01
Sleep complaints are commonly encountered in psychiatric clinics. Underlying medical disorders or sleep disorders need to be identified and treated to optimize treatment of the mental illness. Excessive daytime sleepiness, which is the main symptom of obstructive sleep apnea (OSA), overlaps with those of many severe mental illnesses. Medication side effects or the disorder itself maybe account for daytime sleepiness but comorbid OSA is a possibility that should not be overlooked. The diagnosis of OSA is straightforward but treatment compliance is problematic in psychiatric patients. This article summarizes studies concerning comorbid OSA in patients with severe mental illness and includes suggestions for future investigations.
Chronic obstructive pulmonary disease exacerbations: latest evidence and clinical implications
Qureshi, Hammad; Sharafkhaneh, Amir
2014-01-01
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and results in an economic and social burden that is both substantial and increasing. The natural history of COPD is punctuated by exacerbations which have major short- and long-term implications on the patient and healthcare system. Evidence-based guidelines stipulate that early detection and prompt treatment of exacerbations are essential to ensure optimal outcomes and to reduce the burden of COPD. Several factors can identify populations at risk of exacerbations. Implementing prevention measures in patients at risk is a major goal in the management of COPD. PMID:25177479
Tulek, Baykal; Atalay, Nart Bedin; Yildirim, Gulfem; Kanat, Fikret; Süerdem, Mecit
2014-08-01
Recently, comorbidities such as impaired cognitive function have been attracting more focus when considering the management of chronic obstructive pulmonary disease (COPD). Here we investigated the relationship between cognitive function and the categories given in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines in 2011. Specifically, after controlling for non-COPD covariates, we assessed the clinical features that may be predictive of cognitive impairment in patients with COPD. We recruited 119 stable patients with mild to very severe COPD. We administered a broad array of standardized neuropsychological tests that assessed cognitive functions in the domains of attention, memory, psychomotor coordination and language. Cognitive scores were significantly different between patients falling within GOLD 2011 categories. Scores were lower in patients with high future risk compared with low future risk. In parallel, there were significant differences in cognitive function between COPD patient subgroups when patients were grouped according to the forced expiratory volume in 1 s, exacerbation history and C-reactive protein levels. After controlling for non-COPD predictors, only exacerbation history remained a significant predictor of cognitive scores. The number of exacerbation events in a year may be used as a predictor of cognitive impairment in patients with COPD. © 2014 Asian Pacific Society of Respirology.
The use of Data Mining in the categorization of patients with Azoospermia.
Mikos, Themistoklis; Maglaveras, Nikolaos; Pantazis, Konstantinos; Goulis, Dimitrios G; Bontis, John N; Papadimas, John
2005-01-01
Data Mining is a relatively new field of Medical Informatics. The aim of this study was to compare Data Mining diagnosis with clinical diagnosis by applying a Data Miner (DM) to a clinical dataset of infertile men with azoospermia. One hundred and forty-seven azoospermic men were clinically classified into four groups: a) obstructive azoospermia (n=63), b) non-obstructive azoospermia (n=71), c) hypergonadotropic hypogonadism (n=2), and d) hypogonadotropic hypogonadism (n=11). The DM (IBM's DB2/Intelligent Miner for Data 6.1) was asked to reproduce a four-cluster model. DM formed four groups of patients: a) eugonadal men with normal testicular volume and normal FSH levels (n=86), b) eugonadal men with significantly reduced testicular volume (median 6.5 cm3) and very high FSH levels (n=29), c) eugonadal men with moderately reduced testicular volume (median 14.5 cm3) and raised FSH levels (n=20), and d) hypogonadal men (n=12). Overall DM concordance rate in hypogonadal men was 92%, in obstructive azoospermia 73%, and in non-obstructive azoospermia 69%. Data Mining produces clinically meaningful results but different from those of the clinical diagnosis. It is possible that the use of large sets of structured and formalised data and continuous evaluation of DM results will generate a useful methodology for the Clinician.
Intra-tubular hydrodynamic forces influence tubulo-interstitial fibrosis in the kidney
Rohatgi, Rajeev; Flores, Daniel
2010-01-01
Purpose of review Renal epithelial cells respond to mechanical stimuli with immediate transduction events (e.g., activation of ion channels), intermediate biological responses (e.g., changes in gene expression), and long term cellular adaptation (e.g., protein expression). Progressive renal disease is characterized by disturbed glomerular hydrodynamics that contributes to glomerulosclerosis, but, how intra-tubular biomechanical forces contribute to tubulo-interstital inflammation and fibrosis is poorly understood. Recent findings In vivo and in vitro models of obstructive uropathy demonstrate that tubular stretch induces robust expression of transforming growth factor β-1 (TGFβ-1), activation of tubular apoptosis, and induction of NF-κB signaling which contribute to the inflammatory and fibrotic milieu. Non-obstructive structural kidney diseases associated with nephron loss follow a course characterized by compensatory increases of single nephron glomerular filtration rate and tubular flow rate. Resulting increases in tubular fluid shear stress (FSS) reduce tissue-plasminogen activator and urokinase enzymatic activity which diminishes breakdown of extracellular matrix. In models of high dietary Na intake, which increase tubular flow, urinary TGFβ-1 concentrations and renal mitogen activated protein kinase activity are increased. Summary In conclusion, intra-tubular biomechanical forces, stretch and FSS, generate changes in intracellular signaling and gene expression that contribute to the pathobiology of obstructive, and non-obstructive kidney disease. PMID:19851105
Furuke, Hirotaka; Komatsu, Shuhei; Ikeda, Jun; Tanaka, Sachie; Kumano, Tatsuya; Imura, Ken-Ichiro; Shimomura, Katsumi; Taniguchi, Fumihiro; Ueshima, Yasuo; Takashina, Ken-Ichiro; Lee, Chol Joo; Deguchi, Eiichi; Ikeda, Eito; Otsuji, Eigo; Shioaki, Yasuhiro
2018-03-01
The self-expandable metallic stent (SEMS) is an excellent non-invasive tool for emergent bowel obstruction. This study was designed to evaluate the clinical usefulness of the SEMS for avoiding perioperative complications. We analyzed a total of 47 consecutive patients who had a bowel obstruction due to colorectal cancer at initial diagnosis between 2012 and 2017 from hospital records. Perioperative complications occurred in 30% (14/47) of patients. Univariate and multivariate logistic regression analyses identified an age of more than 75 years [p=0.037, OR=6.84 (95% CI=1.11-41.6)] and the absence of an SEMS treatment [p=0.028, OR=18.5 (95% CI=1.36-250.0)] as independent risk factors for perioperative complications. Pneumonia (12.7% (6/47)) was the most common complication. There were no pneumonia patients (0% (0/15)) who were treated with the SEMS. In contrast to patients with the non-SEMS treatment, 18.7% (6/32) of all patients and 35.7% (5/14) of elderly patients had pneumonia. The SEMS is a safe and effective treatment for avoiding perioperative complications, particularly pneumonia, and may be a crucial strategy in elderly patients with acute obstruction due to colorectal cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiaobiao; Safranek, James
2014-09-01
Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-07-14
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.
Significance of the model considering mixed grain-size for inverse analysis of turbidites
NASA Astrophysics Data System (ADS)
Nakao, K.; Naruse, H.; Tokuhashi, S., Sr.
2016-12-01
A method for inverse analysis of turbidity currents is proposed for application to field observations. Estimation of initial condition of the catastrophic events from field observations has been important for sedimentological researches. For instance, there are various inverse analyses to estimate hydraulic conditions from topography observations of pyroclastic flows (Rossano et al., 1996), real-time monitored debris-flow events (Fraccarollo and Papa, 2000), tsunami deposits (Jaffe and Gelfenbaum, 2007) and ancient turbidites (Falcini et al., 2009). These inverse analyses need forward models and the most turbidity current models employ uniform grain-size particles. The turbidity currents, however, are the best characterized by variation of grain-size distribution. Though there are numerical models of mixed grain-sized particles, the models have difficulty in feasibility of application to natural examples because of calculating costs (Lesshaft et al., 2011). Here we expand the turbidity current model based on the non-steady 1D shallow-water equation at low calculation costs for mixed grain-size particles and applied the model to the inverse analysis. In this study, we compared two forward models considering uniform and mixed grain-size particles respectively. We adopted inverse analysis based on the Simplex method that optimizes the initial conditions (thickness, depth-averaged velocity and depth-averaged volumetric concentration of a turbidity current) with multi-point start and employed the result of the forward model [h: 2.0 m, U: 5.0 m/s, C: 0.01%] as reference data. The result shows that inverse analysis using the mixed grain-size model found the known initial condition of reference data even if the condition where the optimization started is deviated from the true solution, whereas the inverse analysis using the uniform grain-size model requires the condition in which the starting parameters for optimization must be in quite narrow range near the solution. The uniform grain-size model often reaches to local optimum condition that is significantly different from true solution. In conclusion, we propose a method of optimization based on the model considering mixed grain-size particles, and show its application to examples of turbidites in the Kiyosumi Formation, Boso Peninsula, Japan.
Saadeh, Constantine; Saadeh, Charles; Cross, Blake; Gaylor, Michael; Griffith, Melissa
2015-01-01
This retrospective study was a comparative analysis of sensitivity of impulse oscillometry and spirometry techniques for use in a mixed chronic obstructive pulmonary disease group for assessing disease severity and inhalation therapy. A total of 30 patients with mild-to-moderate chronic obstructive pulmonary disease were monitored by impulse oscillometry, followed by spirometry. Lung function was measured at baseline after bronchodilation and at follow-up (3-18 months). The impulse oscillometry parameters were resistance in the small and large airways at 5 Hz (R5), resistance in the large airways at 15 Hz (R15), and lung reactance (area under the curve X; AX). After the bronchodilator therapy, forced expiratory volume in 1 second (FEV1) readings evaluated by spirometry were unaffected at baseline and at follow-up, while impulse oscillometry detected an immediate improvement in lung function, in terms of AX (p = 0.043). All impulse oscillometry parameters significantly improved at follow-up, with a decrease in AX by 37% (p = 0.0008), R5 by 20% (p = 0.0011), and R15 by 12% (p = 0.0097). Impulse oscillometry parameters demonstrated greater sensitivity compared with spirometry for monitoring reversibility of airway obstruction and the effect of maintenance therapy. Impulse oscillometry may facilitate early treatment dose optimization and personalized medicine for chronic obstructive pulmonary disease patients.
Mokhlesi, Babak; Scoccia, Bert; Mazzone, Theodore; Sam, Susan
2011-01-01
Objective To study the risk for obstructive sleep apnea (OSA) in a group of non-obese and obese PCOS and control women. Women with polycystic ovary syndrome (PCOS) are at high risk for obstructive sleep apnea (OSA). Whether this risk is independent of obesity is not clear. Design/Patients/Interventions/Main Outcome Measures In a prospective study, 44 women with PCOS and 34 control women completed the Berlin questionnaire for assessment of OSA risk. All women underwent fasting determination of androgens, glucose and insulin. Results Women with PCOS were more obese compared to control women (p=0.02). However, there were no differences in BMI once subjects were divided into non-obese (PCOS n=17 and control n=26) and obese (PCOS n=26 and control n=8) groups. Women with PCOS had higher prevalence of high risk OSA compared to control women on the Berlin questionnaire (47% vs. 15%, P<0.01). However, none of the non-obese PCOS and control women screened positive for high risk OSA. Among the obese group, the risk did not differ between groups (77% vs. 63%, P= 0.65). Conclusions Our findings indicate that even though the risk for OSA in PCOS is high, it is related to the high prevalence of severe obesity. The risk for OSA among non-obese women with PCOS is very low. However, our findings are limited by lack of polysomnographic confirmation of OSA. PMID:22264851
Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard
2002-01-01
The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.
Truong, Kimberly K.; Lam, Michael T.; Grandner, Michael A.; Sassoon, Catherine S.
2016-01-01
Physiological and cellular functions operate in a 24-hour cyclical pattern orchestrated by an endogenous process known as the circadian rhythm. Circadian rhythms represent intrinsic oscillations of biological functions that allow for adaptation to cyclic environmental changes. Key clock genes that affect the persistence and periodicity of circadian rhythms include BMAL1/CLOCK, Period 1, Period 2, and Cryptochrome. Remarkable progress has been made in our understanding of circadian rhythms and their role in common medical conditions. A critical review of the literature supports the association between circadian misalignment and adverse health consequences in sepsis, obstructive lung disease, obstructive sleep apnea, and malignancy. Circadian misalignment plays an important role in these disease processes and can affect disease severity, treatment response, and survivorship. Normal inflammatory response to acute infections, airway resistance, upper airway collapsibility, and mitosis regulation follows a robust circadian pattern. Disruption of normal circadian rhythm at the molecular level affects severity of inflammation in sepsis, contributes to inflammatory responses in obstructive lung diseases, affects apnea length in obstructive sleep apnea, and increases risk for cancer. Chronotherapy is an underused practice of delivering therapy at optimal times to maximize efficacy and minimize toxicity. This approach has been shown to be advantageous in asthma and cancer management. In asthma, appropriate timing of medication administration improves treatment effectiveness. Properly timed chemotherapy may reduce treatment toxicities and maximize efficacy. Future research should focus on circadian rhythm disorders, role of circadian rhythm in other diseases, and modalities to restore and prevent circadian disruption. PMID:27104378
Number-unconstrained quantum sensing
NASA Astrophysics Data System (ADS)
Mitchell, Morgan W.
2017-12-01
Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.
A multipopulation PSO based memetic algorithm for permutation flow shop scheduling.
Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang
2013-01-01
The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.
Acute and chronic pseudo-obstruction: a current update.
Bernardi, Maria-Pia; Warrier, Satish; Lynch, A Craig; Heriot, Alexander G
2015-10-01
Acute colonic pseudo-obstruction (ACPO) and chronic intestinal pseudo-obstruction (CIPO) are distinct clinical entities in which patients present similarly with symptoms of a mechanical obstruction without an occlusive lesion. Unfortunately, they also share the issues related to a delay in diagnosis, including inappropriate management and poor outcomes. Advancements have been made in our understanding of the aetiologies of both conditions. Several predisposing factors linked to critical illness have been implicated in ACPO. CIPO is a functional motility disorder, historically misdiagnosed, with unnecessary surgery being performed in many patients with dire consequences. This review discusses the pathophysiology, clinical and diagnostic features, and treatment of each. For ACPO, a safer pharmacological approach to treatment is presented in a modified up-to-date algorithm. The importance of CIPO as a differential diagnosis when seeing patients with recurrent admissions for abdominal pain and distention is also discussed, as well as specific indications for surgery. While surgery is often a last resort, the role of the surgeon in the management of both ACPO and CIPO cannot be undervalued. By characterizing each condition in a common review, the knowledge gleaned aims to optimize outcomes for these frequently complex patients. © 2015 Royal Australasian College of Surgeons.
Semião-Francisco, Luciana -; Braga, Daniela Paes De Almeida Ferreira; Figueira, Rita De Cássia Savio; Madaschi, Camila; Pasqualotto, Fábio Firmbach; Iaconelli, Assumpto; Borges, Edson
2010-03-01
An azoospermic man suffers from an absence of sperm in the ejaculate and this condition is present in about 10% of infertile men. Obstructive azoospermia (OA) is characterized by an occlusion or partial absence of the reproductive tract with the presence of normal spermatogenesis. On the other hand, non-obstructive azoospermia (NOA) is characterized by impaired spermatogenesis. In these cases, spermatozoa can be obtained by percutaneous epididymal or testicular sperm aspiration (PESA and TESA, respectively) and used for intracytoplasmic injection (ICSI). To compare ICSI outcomes using spermatozoa that were surgically retrieved by PESA and TESA, azoospermic patients were divided into the following categories: (i) TESA-NOA (n = 102), (ii) TESA-OA (n = 103), and (iii) PESA-OA (n = 171). Fertilization, pregnancy, and implantation rates were compared between the groups. We noted a lower normal fertilization rate (p = 0.0017) and a higher abortion rate (p = 0.0387) among men in the TESA group who had OA when compared with men in the PESA group who had OA. On the other hand, a lower normal fertilization rate (p = 0.05) and a lower rate of non-cleaved embryos (p = 0.034) was found in the TESA group of NOA patients as compared to the TESA group of OA patients. No statistically significant differences were detected between the TESA and PESA groups and the OA and NOA groups, respectively. The clinical outcomes of embryos arising from ICSI cycles using spermatozoa harvested via PESA and TESA were similar, regardless of whether the patient had obstructive or non-obstructive azoospermia.
Acute appendicitis with unusual dual pathology
Riddiough, Georgina E.; Bhatti, Imran; Ratliff, David A.
2011-01-01
INTRODUCTION Meckel's diverticulum is a rare congenital abnormality arising due to the persistence of the vitelline duct in 1–3% of the population. Clinical presentation is varied and includes rectal bleeding, intestinal obstruction, diverticulitis and ulceration; therefore diagnosis can be difficult. PRESENTATION OF CASE We report a case of acute appendicitis complicated by persistent post operative small bowel obstruction. Further surgical examination of the bowel revealed an non-inflamed, inverted Meckel's diverticulum causing intussusception. DISCUSSION Intestinal obstruction in patients with Meckel's diverticulum may be caused by volvulus, intussusception or incarceration of the diverticulum into a hernia. Obstruction secondary to intussusception is relatively uncommon and frequently leads to a confusing and complicated clinical picture. CONCLUSION Consideration of Meckel's diverticulum although a rare diagnosis is imperative and this case raises the question “should surgeons routinely examine the bowel for Meckel's diverticulum at laparoscopy?” PMID:22288035
Saha, N; Hasanuzaman, S M; Chowdhury, L H; Talukder, S A
2012-10-01
Delayed presentation of Duodenal Obstruction is a great diagnostic dilemma due to non-specific, varied & wide spectrum presentation. In this study, a 6 years female child presented with recurrent, intermittent, colicky abdominal pain with bilious vomiting, and occasional constipation from 9 months of her age, without having any significant family history or associated condition. She was initially diagnosed as a case of recurrent small bowel obstruction due to atypical variant of malrotation. But, after laparotomy, she was finally diagnosed as a case of recurrent duodenal obstruction due to Congenital Duodenal Web (Wind-Soak Variety) with a central hole in the fourth part of the duodenum. After uneventful recovery of post operative period the patient was discharged at 7th postoperative day & followed up upto 3 months. She had been found alright without any complication.
NASA Astrophysics Data System (ADS)
Miskevich, Alexander A.; Loiko, Valery A.
2015-12-01
Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.
Parametric study for the optimization of ionic liquid pretreatment of corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papa, Gabriella; Feldman, Taya; Sale, Kenneth L.
A parametric study of the efficacy of the ionic liquid (IL) pretreatment (PT) of corn stover (CS) using 1-ethyl-3-methylimidazolium acetate ([C 2C 1Im][OAc] ) and cholinium lysinate ([Ch][Lys] ) was conducted. The impact of 50% and 15% biomass loading for milled and non-milled CS on IL-PT was evaluated, as well the impact of 20 and 5 mg enzyme/g glucan on saccharification efficiency. The glucose and xylose released were generated from 32 conditions – 2 ionic liquids (ILs), 2 temperatures, 2 particle sizes (S), 2 solid loadings, and 2 enzyme loadings. Statistical analysis indicates that sugar yields were correlated with lignin andmore » xylan removal and depends on the factors, where S did not explain variation in sugar yields. Both ILs were effective in pretreating large particle sized CS, without compromising sugar yields. The knowledge from material and energy balances is an essential step in directing optimization of sugar recovery at desirable process conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klausner, James F.; Momen, Ayyoub Mehdizadeh; Al-Raqom, Fotouh A.
Disclosed herein is a composite particle comprising a first non-metallic particle in which is dispersed a second non-metallic particle, where the first non-metallic particle and the second non-metallic particle are inorganic; and where a chemical composition of the first non-metallic particle is different from a chemical composition of the second non-metallic particle; and where the first non-metallic particle and the second non-metallic particle are metal oxides, metal carbides, metal nitrides, metal borides, metal silicides, metal oxycarbides, metal oxynitrides, metal boronitrides, metal carbonitrides, metal borocarbides, or a combination thereof.
Studying astrophysical particle acceleration with laser-driven plasmas
NASA Astrophysics Data System (ADS)
Fiuza, Frederico
2016-10-01
The acceleration of non-thermal particles in plasmas is critical for our understanding of explosive astrophysical phenomena, from solar flares to gamma ray bursts. Particle acceleration is thought to be mediated by collisionless shocks and magnetic reconnection. The microphysics underlying these processes and their ability to efficiently convert flow and magnetic energy into non-thermal particles, however, is not yet fully understood. By performing for the first time ab initio 3D particle-in-cell simulations of the interaction of both magnetized and unmagnetized laser-driven plasmas, it is now possible to identify the optimal parameters for the study of particle acceleration in the laboratory relevant to astrophysical scenarios. It is predicted for the Omega and NIF laser conditions that significant non-thermal acceleration can occur during magnetic reconnection of laser-driven magnetized plasmas. Electrons are accelerated by the electric field near the X-points and trapped in contracting magnetic islands. This leads to a power-law tail extending to nearly a hundred times the thermal energy of the plasma and that contains a large fraction of the magnetic energy. The study of unmagnetized interpenetrating plasmas also reveals the possibility of forming collisionless shocks mediated by the Weibel instability on NIF. Under such conditions, both electrons and ions can be energized by scattering out of the Weibel-mediated turbulence. This also leads to power-law spectra that can be detected experimentally. The resulting experimental requirements to probe the microphysics of plasma particle acceleration will be discussed, paving the way for the first experiments of these important processes in the laboratory. As a result of these simulations and theoretical analysis, there are new experiments being planned on the Omega, NIF, and LCLS laser facilities to test these theoretical predictions. This work was supported by the SLAC LDRD program and DOE Office of Science, Fusion Energy Science (FWP 100182).
Traboulsi, Hussein; Guerrina, Necola; Iu, Matthew; Maysinger, Dusica; Ariya, Parisa; Baglole, Carolyn J.
2017-01-01
Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood), fossil fuels (e.g., cars and trucks), incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM). PM0.1 (ultrafine particles (UFP)), those particles with a diameter less than 100 nm (includes nanoparticles (NP)) are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD) and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Epigenetic mechanisms including non-coding RNA (ncRNA) may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease. PMID:28125025
Laryngeal closure impedes non-invasive ventilation at birth.
Crawshaw, Jessica R; Kitchen, Marcus J; Binder-Heschl, Corinna; Thio, Marta; Wallace, Megan J; Kerr, Lauren T; Roehr, Charles C; Lee, Katie L; Buckley, Genevieve A; Davis, Peter G; Flemmer, Andreas; Te Pas, Arjan B; Hooper, Stuart B
2018-03-01
Non-invasive ventilation is sometimes unable to provide the respiratory needs of very premature infants in the delivery room. While airway obstruction is thought to be the main problem, the site of obstruction is unknown. We investigated whether closure of the larynx and epiglottis is a major site of airway obstruction. We used phase contrast X-ray imaging to visualise laryngeal function in spontaneously breathing premature rabbits immediately after birth and at approximately 1 hour after birth. Non-invasive respiratory support was applied via a facemask and images were analysed to determine the percentage of the time the glottis and the epiglottis were open. Immediately after birth, the larynx is predominantly closed, only opening briefly during a breath, making non-invasive intermittent positive pressure ventilation (iPPV) ineffective, whereas after lung aeration, the larynx is predominantly open allowing non-invasive iPPV to ventilate the lung. The larynx and epiglottis were predominantly closed (open 25.5%±1.1% and 17.1%±1.6% of the time, respectively) in pups with unaerated lungs and unstable breathing patterns immediately after birth. In contrast, the larynx and the epiglottis were mostly open (90.5%±1.9% and 72.3%±2.3% of the time, respectively) in pups with aerated lungs and stable breathing patterns irrespective of time after birth. Laryngeal closure impedes non-invasive iPPV at birth and may reduce the effectiveness of non-invasive respiratory support in premature infants immediately after birth. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization
Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali
2014-01-01
Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584
A particle swarm optimization variant with an inner variable learning strategy.
Wu, Guohua; Pedrycz, Witold; Ma, Manhao; Qiu, Dishan; Li, Haifeng; Liu, Jin
2014-01-01
Although Particle Swarm Optimization (PSO) has demonstrated competitive performance in solving global optimization problems, it exhibits some limitations when dealing with optimization problems with high dimensionality and complex landscape. In this paper, we integrate some problem-oriented knowledge into the design of a certain PSO variant. The resulting novel PSO algorithm with an inner variable learning strategy (PSO-IVL) is particularly efficient for optimizing functions with symmetric variables. Symmetric variables of the optimized function have to satisfy a certain quantitative relation. Based on this knowledge, the inner variable learning (IVL) strategy helps the particle to inspect the relation among its inner variables, determine the exemplar variable for all other variables, and then make each variable learn from the exemplar variable in terms of their quantitative relations. In addition, we design a new trap detection and jumping out strategy to help particles escape from local optima. The trap detection operation is employed at the level of individual particles whereas the trap jumping out strategy is adaptive in its nature. Experimental simulations completed for some representative optimization functions demonstrate the excellent performance of PSO-IVL. The effectiveness of the PSO-IVL stresses a usefulness of augmenting evolutionary algorithms by problem-oriented domain knowledge.
NASA Astrophysics Data System (ADS)
Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal
2017-04-01
Source-sink systems are very common in hydrology; in particular, some land cover types often generate runoff (e.g. embedded rocks, bare soil) , while other obstruct it (e.g. vegetation, cracked soil). Surface runoff coefficients of patchy slopes/plots covered by runoff generating and obstructing covers (e.g., bare soil and vegetation) depend critically on the percentage cover (i.e. sources/sinks abundance) and decrease strongly with observation scale. The classic mathematical percolation theory provides a powerful apparatus for describing the runoff connectivity on patchy hillslopes, but it ignores strong effect of the overland flow directionality. To overcome this and other difficulties, modified percolation theory approaches can be considered, such as straight percolation (for the planar slopes), quasi-straight percolation and models with limited obstruction. These approaches may explain both the observed critical dependence of runoff coefficients on percentage cover and their scale decrease in systems with strong flow directionality (e.g. planar slopes). The contributing area increases sharply when the runoff generating percentage cover approaches the straight percolation threshold. This explains the strong increase of the surface runoff and erosion for relatively low values (normally less than 35%) of the obstructing cover (e.g., vegetation). Combinatorial models of urns with restricted occupancy can be applied for the analytic evaluation of meaningful straight percolation quantities, such as NOGA's (Non-Obstructed Generating Area) expected value and straight percolation probability. It is shown that the nature of the cover-related runoff scale decrease is combinatorial - the probability for the generated runoff to avoid obstruction in unit area decreases with scale for the non-trivial percentage cover values. The magnitude of the scale effect is found to be a skewed non-monotonous function of the percentage cover. It is shown that the cover-related scale effect becomes less prominent if the obstructing capacity decreases, as generally occurs during heavy rainfalls. The plot width have a moderate positive statistical effect on runoff and erosion coefficients, since wider patchy plots have, on average, a greater normalized contributing area and a higher probability to have runoff of a certain length. The effect of plot width depends by itself on the percentage cover, plot length, and compared width scales. The contributing area uncertainty brought about by cover spatial arrangement is examined, including its dependence on the percentage cover and scale. In general, modified percolation theory approaches and combinatorial models of urns with restricted occupancy may link between critical dependence of runoff on percentage cover, cover-related scale effect, and statistical uncertainty of the observed quantities.
Optimizing phase to enhance optical trap stiffness.
Taylor, Michael A
2017-04-03
Phase optimization offers promising capabilities in optical tweezers, allowing huge increases in the applied forces, trap stiff-ness, or measurement sensitivity. One key obstacle to potential applications is the lack of an efficient algorithm to compute an optimized phase profile, with enhanced trapping experiments relying on slow programs that would take up to a week to converge. Here we introduce an algorithm that reduces the wait from days to minutes. We characterize the achievable in-crease in trap stiffness and its dependence on particle size, refractive index, and optical polarization. We further show that phase-only control can achieve almost all of the enhancement possible with full wavefront shaping; for instance phase control allows 62 times higher trap stiffness for 10 μm silica spheres in water, while amplitude control and non-trivial polarization further increase this by 1.26 and 1.01 respectively. This algorithm will facilitate future applications in optical trapping, and more generally in wavefront optimization.
Cai, Jin-Yuan; Huang, De-Chun; Wang, Zhi-Xiang; Dang, Bei-Lei; Wang, Qiu-Ling; Su, Xin-Guang
2012-06-01
Ibuprofen/ethyl-cellulose (EC)-polyvinylpyrrolidone (PVP) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading as the main evaluation index, orthogonal experimental design was used to optimize the preparation process of EC-PVP/ibuprofen composite particles. The experiments such as encapsulation efficiency, particle size distribution, electron microscope analysis, infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 40 degrees C, crystallization pressure 12 MPa, PVP concentration 4 mgmL(-1), and CO2 velocity 3.5 Lmin(-1). Under the optimal conditions, the drug loading and encapsulation efficiency of ibuprofen/EC-PVP composite particles were 12.14% and 52.21%, and the average particle size of the particles was 27.621 microm. IR and DSC analysis showed that PVP might complex with EC. The experiments of in vitro dissolution showed that ibuprofen/EC-PVP composite particles had good sustained-release effect. Experiment results showed that, ibuprofen/EC-PVP sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.
Obstructions in Vascular Networks: Relation Between Network Morphology and Blood Supply
Torres Rojas, Aimee M.; Meza Romero, Alejandro; Pagonabarraga, Ignacio; Travasso, Rui D. M.; Corvera Poiré, Eugenia
2015-01-01
We relate vascular network structure to hemodynamics after vessel obstructions. We consider tree-like networks with a viscoelastic fluid with the rheological characteristics of blood. We analyze the network hemodynamic response, which is a function of the frequencies involved in the driving, and a measurement of the resistance to flow. This response function allows the study of the hemodynamics of the system, without the knowledge of a particular pressure gradient. We find analytical expressions for the network response, which explicitly show the roles played by the network structure, the degree of obstruction, and the geometrical place in which obstructions occur. Notably, we find that the sequence of resistances of the network without occlusions strongly determines the tendencies that the response function has with the anatomical place where obstructions are located. We identify anatomical sites in a network that are critical for its overall capacity to supply blood to a tissue after obstructions. We demonstrate that relatively small obstructions in such critical sites are able to cause a much larger decrease on flow than larger obstructions placed in non-critical sites. Our results indicate that, to a large extent, the response of the network is determined locally. That is, it depends on the structure that the vasculature has around the place where occlusions are found. This result is manifest in a network that follows Murray’s law, which is in reasonable agreement with several mammalian vasculatures. For this one, occlusions in early generation vessels have a radically different effect than occlusions in late generation vessels occluding the same percentage of area available to flow. This locality implies that whenever there is a tissue irrigated by a tree-like in vivo vasculature, our model is able to interpret how important obstructions are for the irrigation of such tissue. PMID:26086774
Marques, Melania; Genta, Pedro R; Sands, Scott A; Azarbazin, Ali; de Melo, Camila; Taranto-Montemurro, Luigi; White, David P; Wellman, Andrew
2017-03-01
In some patients, obstructive sleep apnea (OSA) can be resolved with improvement in pharyngeal patency by sleeping lateral rather than supine, possibly as gravitational effects on the tongue are relieved. Here we tested the hypothesis that the improvement in pharyngeal patency depends on the anatomical structure causing collapse, with patients with tongue-related obstruction and epiglottic collapse exhibiting preferential improvements. Twenty-four OSA patients underwent upper airway endoscopy during natural sleep to determine the pharyngeal structure associated with obstruction, with simultaneous recordings of airflow and pharyngeal pressure. Patients were grouped into three categories based on supine endoscopy: Tongue-related obstruction (posteriorly located tongue, N = 10), non-tongue related obstruction (collapse due to the palate or lateral walls, N = 8), and epiglottic collapse (N = 6). Improvement in pharyngeal obstruction was quantified using the change in peak inspiratory airflow and minute ventilation lateral versus supine. Contrary to our hypothesis, patients with tongue-related obstruction showed no improvement in airflow, and the tongue remained posteriorly located while lateral. Patients without tongue involvement showed modest improvement in airflow (peak flow increased 0.07 L/s and ventilation increased 1.5 L/min). Epiglottic collapse was virtually abolished with lateral positioning and ventilation increased by 45% compared to supine position. Improvement in pharyngeal patency with sleeping position is structure specific, with profound improvements seen in patients with epiglottic collapse, modest effects in those without tongue involvement and-unexpectedly-no effect in those with tongue-related obstruction. Our data refute the notion that the tongue falls back into the airway during sleep via gravitational influences. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Genta, Pedro R.; Sands, Scott A.; Azarbazin, Ali; de Melo, Camila; Taranto-Montemurro, Luigi; White, David P.; Wellman, Andrew
2017-01-01
Abstract Objectives: In some patients, obstructive sleep apnea (OSA) can be resolved with improvement in pharyngeal patency by sleeping lateral rather than supine, possibly as gravitational effects on the tongue are relieved. Here we tested the hypothesis that the improvement in pharyngeal patency depends on the anatomical structure causing collapse, with patients with tongue-related obstruction and epiglottic collapse exhibiting preferential improvements. Methods: Twenty-four OSA patients underwent upper airway endoscopy during natural sleep to determine the pharyngeal structure associated with obstruction, with simultaneous recordings of airflow and pharyngeal pressure. Patients were grouped into three categories based on supine endoscopy: Tongue-related obstruction (posteriorly located tongue, N = 10), non-tongue related obstruction (collapse due to the palate or lateral walls, N = 8), and epiglottic collapse (N = 6). Improvement in pharyngeal obstruction was quantified using the change in peak inspiratory airflow and minute ventilation lateral versus supine. Results: Contrary to our hypothesis, patients with tongue-related obstruction showed no improvement in airflow, and the tongue remained posteriorly located while lateral. Patients without tongue involvement showed modest improvement in airflow (peak flow increased 0.07 L/s and ventilation increased 1.5 L/min). Epiglottic collapse was virtually abolished with lateral positioning and ventilation increased by 45% compared to supine position. Conclusions: Improvement in pharyngeal patency with sleeping position is structure specific, with profound improvements seen in patients with epiglottic collapse, modest effects in those without tongue involvement and—unexpectedly—no effect in those with tongue-related obstruction. Our data refute the notion that the tongue falls back into the airway during sleep via gravitational influences. PMID:28329099
Duţu, S; Jienescu, Z; Bîscă, N; Bistriceanu, G
1989-01-01
Of the patients with chronic obstructive pulmonary disease (COLD) and severe obstructive syndrome, 39 whose age was under 40 were selected. In 23 of them, the anamnesis revealed bronchopulmonary affections in childhood, that required admission into the hospital (19 were non-smokers). Of the rest of 16 patients, 14 were hard smokers that started to smoke before the age of 14. The functional picture was severely modified, similarly to that of the COLD patients in the 6th decade of life. This suggests that the degradation process started in the childhood, and that the chronic respiratory diseases and/or smoking at an early age had an important role.
Veremchuk, Lyudmila V; Tsarouhas, Konstantinos; Vitkina, Tatyana I; Mineeva, Elena E; Gvozdenko, Tatyana A; Antonyuk, Marina V; Rakitskii, Valeri N; Sidletskaya, Karolina A; Tsatsakis, Aristidis M; Golokhvast, Kirill S
2018-04-01
Environmental pollution, local climatic conditions and their association with the prevalence and exacerbation of asthma are topics of intense current medical investigation. Air pollution in the area of Vladivostock was estimated both by the index of emission volumes of "air gaseous components" (nitrogen oxide and nitrogen dioxide, formaldehyde, hydrogen sulfide, carbon monoxide) in urban atmosphere and by mass spectrometric analysis of precipitates in snow samples. A total of 172 local asthma patients (101 controlled-asthma patients-CAP and 71 non-controlled asthma patients - nCAP) were evaluated with the use of spirometry and body plethysmography. Airway obstruction reversibility was evaluated with the use of an inhaled bronchodilator. Using discriminant analysis the association of environmental parameters with clinical indices of asthma patients is explored and thresholds of impact are established. CAP presented high sensitivity to large-size suspended air particles and to several of the studied climatic parameters. Discriminant analysis showed high values of Wilks' lambda index (α = 0.69-0.81), which implies limited influence of environmental factors on the respiratory parameters of CAP. nCAP were more sensitive and susceptible to the majority of the environmental factors studied, including air suspended toxic metals particles (Cr, Zn and Ni). Air suspended particles showed higher tendency for pathogenicity in nCAP population than in the CAP, with a wider range of particle sizes being involved. Dust fractions ranging from 0 to 1 μm and from 50 to 100 μm were additionally implicated compared to CAP group. Considerably lowest thresholds levels of impact are calculated for nCAP. Copyright © 2017. Published by Elsevier Ltd.
Machining fixture layout optimization using particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Dou, Jianping; Wang, Xingsong; Wang, Lei
2011-05-01
Optimization of fixture layout (locator and clamp locations) is critical to reduce geometric error of the workpiece during machining process. In this paper, the application of particle swarm optimization (PSO) algorithm is presented to minimize the workpiece deformation in the machining region. A PSO based approach is developed to optimize fixture layout through integrating ANSYS parametric design language (APDL) of finite element analysis to compute the objective function for a given fixture layout. Particle library approach is used to decrease the total computation time. The computational experiment of 2D case shows that the numbers of function evaluations are decreased about 96%. Case study illustrates the effectiveness and efficiency of the PSO based optimization approach.
Enhancing magnetic nanoparticle-based DNA transfection: Intracellular-active cassette features
NASA Astrophysics Data System (ADS)
Vernon, Matthew Martin
Efficient plasmid DNA transfection of embryonic stem cells, mesenchymal stem cells, neural cell lines and the majority of primary cell lines is a current challenge in gene therapy research. Magnetic nanoparticle-based DNA transfection is a gene vectoring technique that is promising because it is capable of outperforming most other non-viral transfection methods in terms of both transfection efficiency and cell viability. The nature of the DNA vector implemented depends on the target cell phenotype, where the particle surface chemistry and DNA binding/unbinding kinetics of the DNA carrier molecule play a critical role in the many steps required for successful gene transfection. Accordingly, Neuromag, an iron oxide/polymer nanoparticle optimized for transfection of neural phenotypes, outperforms many other nanoparticles and lipidbased DNA carriers. Up to now, improvements to nanomagnetic transfection techniques have focused mostly on particle functionalization and transfection parameter optimization (cell confluence, growth media, serum starvation, magnet oscillation parameters, etc.). None of these parameters are capable of assisting the nuclear translocation of delivered plasmid DNA once the particle-DNA complex is released from the endosome and dissociates in the cell's cytoplasm. In this study, incorporation of a DNA targeting sequence (DTS) feature in the transfecting plasmid DNA confers improved nuclear translocation, demonstrating significant improvement in nanomagnetic transfection efficiency in differentiated SH-SY5Y neuroblastoma cells. Other parameters, such as days in vitro, are also found to play a role and represent potential targets for further optimization.
NASA Astrophysics Data System (ADS)
Ghosh, Pratik
1992-01-01
The investigations focussed on in vivo NMR imaging studies of magnetic particles with and within neural cells. NMR imaging methods, both Fourier transform and projection reconstruction, were implemented and new protocols were developed to perform "Neuronal Tracing with Magnetic Labels" on small animal brains. Having performed the preliminary experiments with neuronal tracing, new optimized coils and experimental set-up were devised. A novel gradient coil technology along with new rf-coils were implemented, and optimized for future use with small animals in them. A new magnetic labelling procedure was developed that allowed labelling of billions of cells with ultra -small magnetite particles in a short time. The relationships among the viability of such cells, the amount of label and the contrast in the images were studied as quantitatively as possible. Intracerebral grafting of magnetite labelled fetal rat brain cells made it possible for the first time to attempt monitoring in vivo the survival, differentiation, and possible migration of both host and grafted cells in the host rat brain. This constituted the early steps toward future experiments that may lead to the monitoring of human brain grafts of fetal brain cells. Preliminary experiments with direct injection of horse radish peroxidase-conjugated magnetite particles into neurons, followed by NMR imaging, revealed a possible non-invasive alternative, allowing serial study of the dynamic transport pattern of tracers in single living animals. New gradient coils were built by using parallel solid-conductor ribbon cables that could be wrapped easily and quickly. Rapid rise times provided by these coils allowed implementation of fast imaging methods. Optimized rf-coil circuit development made it possible to understand better the sample-coil properties and the associated trade -offs in cases of small but conducting samples.
Gas-evaporation in low-gravity field (cogelation mechanism of metal vapors) (M-14)
NASA Technical Reports Server (NTRS)
Wada, N.
1993-01-01
When metal and alloy compounds are heated and vaporized in a rare gas such as helium, argon, or xenon, the vaporized substances diffused in the rare gas are supersaturated resulting in a smoke of fine particles of the material congealing as snow or fog. The gas vaporizing method is a fine particle generation method. Though the method has a variety of applications, the material vapor flow is disturbed by gravitational convection on Earth. The inability to elucidate the fine particle generation mechanism results in an obstruction to improving the method to mass production levels. As no convection occurs in microgravity in space, the fine particle generation mechanism influenced only by diffusion can be investigated. Investigators expect that excellent particles with homogeneous diameter distribution can be obtained. Experiment data and facts will assist in improving efficiency, quality, and scale or production processes including element processes such as vaporization, diffusion, and condensation. The objective of this experiment is to obtain important information related to the mechanism of particle formation in the gas atmosphere (smoke particles) and the production of submicron powders of extremely uniform size.
Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng
2016-01-01
Convergence stagnation is the chief difficulty to solve hard optimization problems for most particle swarm optimization variants. To address this issue, a novel particle swarm optimization using multi-information characteristics of all personal-best information is developed in our research. In the modified algorithm, two positions are defined by personal-best positions and an improved cognition term with three positions of all personal-best information is used in velocity update equation to enhance the search capability. This strategy could make particles fly to a better direction by discovering useful information from all the personal-best positions. The validity of the proposed algorithm is assessed on twenty benchmark problems including unimodal, multimodal, rotated and shifted functions, and the results are compared with that obtained by some published variants of particle swarm optimization in the literature. Computational results demonstrate that the proposed algorithm finds several global optimum and high-quality solutions in most case with a fast convergence speed.
Non-Gaussian, non-dynamical stochastic resonance
NASA Astrophysics Data System (ADS)
Szczepaniec, Krzysztof; Dybiec, Bartłomiej
2013-11-01
The classical model revealing stochastic resonance is a motion of an overdamped particle in a double-well fourth order potential when combined action of noise and external periodic driving results in amplifying of weak signals. Resonance behavior can also be observed in non-dynamical systems. The simplest example is a threshold triggered device. It consists of a periodic modulated input and noise. Every time an output crosses the threshold the signal is recorded. Such a digitally filtered signal is sensitive to the noise intensity. There exists the optimal value of the noise intensity resulting in the "most" periodic output. Here, we explore properties of the non-dynamical stochastic resonance in non-equilibrium situations, i.e. when the Gaussian noise is replaced by an α-stable noise. We demonstrate that non-equilibrium α-stable noises, depending on noise parameters, can either weaken or enhance the non-dynamical stochastic resonance.
De Vito, Andrea
2018-01-01
Sleep related breathing disorders cause obstruction of the upper airway which can be alleviated by continuous positive airway pressure (CPAP) therapy, oral devices or surgical intervention. Non-surgical treatment modalities are not always accepted by patients and in order to attain successful surgical outcomes, evaluation of the upper airway is necessary to carefully select the patients who would benefit from surgery. There are numerous techniques available to assess the upper airway obstruction and these include imaging, acoustic analysis, pressure transducer recording and endoscopic evaluation. It is essential to note that the nocturnal obstructive upper airway has limited muscle control compared to the tone of the upper airway lumen during wakefulness. Thus, if one were to attempt to identify the anatomical segments contributing to upper airway obstruction in sleep related breathing disorders; it must be borne in mind that evaluation of the airway must be performed if possible when the patient is awake and asleep albeit during drug induced sleep. This fact as such limits the use of imaging techniques for the purpose. Drug induced sleep endoscopy (DISE) was pioneered at Royal National Throat, Nose and Ear Hospital, London in 1990 and initially introduced as sleep nasendoscopy. The nomenclature and the technique has been modified by various Institutions but the core value of this evaluation technique remains similar and extremely useful for identifying the anatomical segment responsible for obstructing the upper airway during sleep in patients with sleep related breathing disorders. There have been numerous controversies that have surrounded this technique but over the last two decades most of these have been addressed and it now remains in the forefront of methods of evaluating the upper airway obstruction. A variety of sedative agents and different grading systems have been described and efforts to unify various aspects of the technique have been made. This article will look at its usefulness and advantages and will discuss some important contributions made to the field of evaluation of the upper airway using DISE. PMID:29445527
Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Birge, Brian
2013-01-01
The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.
Buzmakov, Alexey; Jurek, Zoltan; Loh, Ne-Te Duane; Samoylova, Liubov; Santra, Robin; Schneidmiller, Evgeny A.; Tschentscher, Thomas; Yakubov, Sergey; Yoon, Chun Hong; Yurkov, Michael V.; Ziaja-Motyka, Beata; Mancuso, Adrian P.
2017-01-01
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs. PMID:28989713
Arterial stiffness in people with Type 2 diabetes and obstructive sleep apnoea.
Hvelplund Kristiansen, M; Banghøj, A M; Laugesen, E; Tarnow, L
2018-05-15
To examine whether people with Type 2 diabetes with concurrent obstructive sleep apnoea have increased arterial stiffness as compared with people with Type 2 diabetes without obstructive sleep apnoea. In a study with a case-control design, 40 people with Type 2 diabetes and treatment-naïve moderate to severe obstructive sleep apnoea (Apnoea-Hypopnoea Index ≥15) and a control group of 31 people with Type 2 diabetes without obstructive sleep apnoea (Apnoea-Hypopnoea Index <5) were examined. Obstructive sleep apnoea status was evaluated using the ApneaLink ® + home-monitoring device (Resmed Inc., San Diego, CA, USA), providing the Apnoea-Hypopnoea Index scores. Arterial stiffness was assessed according to carotid-femoral pulse wave velocity using the Sphygmocor device and the oscillometric Mobil-O-Graph ® (I.E.M. GmbH, Stolberg, Germany). Carotid-femoral pulse wave velocity was not significantly different between participants with Type 2 diabetes with obstructive sleep apnoea and those without obstructive sleep apnoea (10.7±2.2 m/s vs 10.3±2.1 m/s; P=0.513), whereas oscillometric pulse wave velocity was significantly higher in participants with Type 2 diabetes with obstructive sleep apnoea than in those without obstructive sleep apnoea (9.5±1.0 m/s vs 8.6±1.4 m/s; P=0.002). In multiple regression analysis, age (P=0.002), gender (men; P=0.018) and HbA 1c (P=0.027) were associated with carotid-femoral pulse wave velocity, and systolic blood pressure (P=0.004) and age (P<0.001) were associated with oscillometric pulse wave velocity. After adjustment, presence of obstructive sleep apnoea was not independently associated with pulse wave velocity whether assessed by tonometry or oscillometry. In conclusion, the present study did not find an age- and blood pressure-independent association between moderate to severe obstructive sleep apnoea and arterial stiffness in non-sleepy people with Type 2 diabetes. (Clinical trial registration number: NCT02482584). © 2018 Diabetes UK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huchon, G.J.; Russell, J.A.; Barritault, L.G.
1984-09-01
To determine the separate influences of smoking and severe air-flow limitation on aerosol deposition and respiratory epithelial permeability, we studied 26 normal nonsmokers, 12 smokers without airway obstruction, 12 nonsmokers with chronic obstructive pulmonary disease (COPD), and 11 smokers with COPD. We aerosolized 99mTc-labeled diethylene triamine pentaacetic acid to particles approximately 1 micron activity median aerodynamic diameter. Levels of radioactivity were plotted semilogarithmically against time to calculate clearance as percent per minute. The distribution of radioactivity was homogeneous in control subjects and in smokers, but patchy in both groups with COPD. No difference was found between clearances of the controlmore » group (1.18 +/- 0.31% min-1), and nonsmoker COPD group (1.37 +/- 0.82% min-1), whereas values in smokers without COPD (4.00 +/- 1.70% min-1) and smokers with COPD (3.62 +/- 2.88% min-1) were significantly greater than in both nonsmoking groups. We conclude that (1) small particles appear to deposit peripherally, even with severe COPD; (2) respiratory epithelial permeability is normal in nonsmokers with COPD; (3) smoking increases permeability by a mechanism unrelated to air-flow limitation.« less
A Novel Particle Swarm Optimization Approach for Grid Job Scheduling
NASA Astrophysics Data System (ADS)
Izakian, Hesam; Tork Ladani, Behrouz; Zamanifar, Kamran; Abraham, Ajith
This paper represents a Particle Swarm Optimization (PSO) algorithm, for grid job scheduling. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. In this paper we used a PSO approach for grid job scheduling. The scheduler aims at minimizing makespan and flowtime simultaneously. Experimental studies show that the proposed novel approach is more efficient than the PSO approach reported in the literature.
Vallejo, Enrique
2009-01-01
Coronary artery disease (CAD) remains the leading cause of death in the Western world, and early detection of CAD allows optimal therapeutic management. The gold standard has always been invasive coronary angiography, but over the years various non-invasive techniques have been developed to detect CAD, including cardiac SPECT and cardiac computed tomography (Cardiac CT). Cardiac SPECT permitted visualization of myocardial perfusion and have focused on the assessment of the hemodynamic consequences of obstructive coronary lesions as a marker of CAD. Cardiac CT focuses on the detection of atherosclerosis rather than ischemia, and permit detection of CAD at an earlier stage. Objectives of this manuscript are to discuss the clinical experience with both modalities and to provide a critical review of the strengths and limitations of Cardiac SPECT and Cardiac CT for the diagnostic and management of patients with suspected CAD or cardiac ischemic disease.
Toward an optimal design principle in symmetric and asymmetric tree flow networks.
Miguel, Antonio F
2016-01-21
Fluid flow in tree-shaped networks plays an important role in both natural and engineered systems. This paper focuses on laminar flows of Newtonian and non-Newtonian power law fluids in symmetric and asymmetric bifurcating trees. Based on the constructal law, we predict the tree-shaped architecture that provides greater access to the flow subjected to the total network volume constraint. The relationships between the sizes of parent and daughter tubes are presented both for symmetric and asymmetric branching tubes. We also approach the wall-shear stresses and the flow resistance in terms of first tube size, degree of asymmetry between daughter branches, and rheological behavior of the fluid. The influence of tubes obstructing the fluid flow is also accounted for. The predictions obtained by our theory-driven approach find clear support in the findings of previous experimental studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Karakatsani, Anna; Analitis, Antonis; Perifanou, Dimitra; Ayres, Jon G; Harrison, Roy M; Kotronarou, Anastasia; Kavouras, Ilias G; Pekkanen, Juha; Hämeri, Kaarle; Kos, Gerard Pa; de Hartog, Jeroen J; Hoek, Gerard; Katsouyanni, Klea
2012-10-05
Particulate matter air pollution has been associated with adverse health effects. The fraction of ambient particles that are mainly responsible for the observed health effects is still a matter of controversy. Better characterization of the health relevant particle fraction will have major implications for air quality policy since it will determine which sources should be controlled.The RUPIOH study, an EU-funded multicentre study, was designed to examine the distribution of various ambient particle metrics in four European cities (Amsterdam, Athens, Birmingham, Helsinki) and assess their health effects in participants with asthma or COPD, based on a detailed exposure assessment. In this paper the association of central site measurements with respiratory symptoms and restriction of activities is examined. At each centre a panel of participants with either asthma or COPD recorded respiratory symptoms and restriction of activities in a diary for six months. Exposure assessment included simultaneous measurements of coarse, fine and ultrafine particles at a central site. Data on gaseous pollutants were also collected. The associations of the 24-hour average concentrations of air pollution indices with the health outcomes were assessed in a hierarchical modelling approach. A city specific analysis controlling for potential confounders was followed by a meta-analysis to provide overall effect estimates. A 10 μg/m3 increase in previous day coarse particles concentrations was positively associated with most symptoms (an increase of 0.6 to 0.7% in average) and limitation in walking (OR= 1.076, 95% CI: 1.026-1.128). Same day, previous day and previous two days ozone concentrations were positively associated with cough (OR= 1.061, 95% CI: 1.013-1.111; OR= 1.049, 95% CI: 1.016-1.083 and OR= 1.059, 95% CI: 1.027-1.091, respectively). No consistent associations were observed between fine particle concentrations, nitrogen dioxide and respiratory health effects. As for particle number concentrations negative association (mostly non-significant at the nominal level) was observed with most symptoms whilst the positive association with limitation of activities did not reach the nominal level of significance. The observed associations with coarse particles are in agreement with the findings of toxicological studies. Together they suggest it is prudent to regulate also coarse particles in addition to fine particles.
Adesina, Simeon K.; Wight, Scott A.; Akala, Emmanuel O.
2015-01-01
Purpose Nanoparticle size is important in drug delivery. Clearance of nanoparticles by cells of the reticuloendothelial system has been reported to increase with increase in particle size. Further, nanoparticles should be small enough to avoid lung or spleen filtering effects. Endocytosis and accumulation in tumor tissue by the enhanced permeability and retention effect are also processes that are influenced by particle size. We present the results of studies designed to optimize crosslinked biodegradable stealth polymeric nanoparticles fabricated by dispersion polymerization. Methods Nanoparticles were fabricated using different amounts of macromonomer, initiators, crosslinking agent and stabilizer in a dioxane/DMSO/water solvent system. Confirmation of nanoparticle formation was by scanning electron microscopy (SEM). Particle size was measured by dynamic light scattering (DLS). D-optimal mixture statistical experimental design was used for the experimental runs, followed by model generation (Scheffe polynomial) and optimization with the aid of a computer software. Model verification was done by comparing particle size data of some suggested solutions to the predicted particle sizes. Results and Conclusion Data showed that average particle sizes follow the same trend as predicted by the model. Negative terms in the model corresponding to the crosslinking agent and stabilizer indicate the important factors for minimizing particle size. PMID:24059281
Adesina, Simeon K; Wight, Scott A; Akala, Emmanuel O
2014-11-01
Nanoparticle size is important in drug delivery. Clearance of nanoparticles by cells of the reticuloendothelial system has been reported to increase with increase in particle size. Further, nanoparticles should be small enough to avoid lung or spleen filtering effects. Endocytosis and accumulation in tumor tissue by the enhanced permeability and retention effect are also processes that are influenced by particle size. We present the results of studies designed to optimize cross-linked biodegradable stealth polymeric nanoparticles fabricated by dispersion polymerization. Nanoparticles were fabricated using different amounts of macromonomer, initiators, crosslinking agent and stabilizer in a dioxane/DMSO/water solvent system. Confirmation of nanoparticle formation was by scanning electron microscopy (SEM). Particle size was measured by dynamic light scattering (DLS). D-optimal mixture statistical experimental design was used for the experimental runs, followed by model generation (Scheffe polynomial) and optimization with the aid of a computer software. Model verification was done by comparing particle size data of some suggested solutions to the predicted particle sizes. Data showed that average particle sizes follow the same trend as predicted by the model. Negative terms in the model corresponding to the cross-linking agent and stabilizer indicate the important factors for minimizing particle size.
NASA Astrophysics Data System (ADS)
Lu, Zheng; Chen, Xiaoyi; Zhou, Ying
2018-04-01
A particle tuned mass damper (PTMD) is a creative combination of a widely used tuned mass damper (TMD) and an efficient particle damper (PD) in the vibration control area. The performance of a one-storey steel frame attached with a PTMD is investigated through free vibration and shaking table tests. The influence of some key parameters (filling ratio of particles, auxiliary mass ratio, and particle density) on the vibration control effects is investigated, and it is shown that the attenuation level significantly depends on the filling ratio of particles. According to the experimental parametric study, some guidelines for optimization of the PTMD that mainly consider the filling ratio are proposed. Furthermore, an approximate analytical solution based on the concept of an equivalent single-particle damper is proposed, and it shows satisfied agreement between the simulation and experimental results. This simplified method is then used for the preliminary optimal design of a PTMD system, and a case study of a PTMD system attached to a five-storey steel structure following this optimization process is presented.
Singh, Samipta; Singh, Mahendra; Tripathi, Chandra Bhushan; Arya, Malti; Saraf, Shubhini A
2016-02-01
Athlete's foot is a fungal infection of the foot which causes dry, itchy, flaky condition of the skin caused by Trichophyton species. In this study, the potential of ultra-small nanostructured lipid carrier (usNLC)-based topical gel of miconazole nitrate for the treatment of athlete's foot was evaluated. Nanostructure lipid carriers (NLCs) prepared by melt emulsification and sonication technique were characterized for particle size, drug entrapment, zeta potential and drug release. The optimized usNLC revealed particle size 53.79 nm, entrapment efficiency 86.77%, zeta potential -12.9 mV and polydispersity index (PDI) of 0.27. The drug release studies of usNLC showed initial fast release followed by sustained release with 91.99% drug released in 24 h. Optimized usNLCs were incorporated into carbopol-934 gel and evaluated for pH (6.8), viscosity (36,400 mPa s) and texture analysis. Antifungal activity against Trichophyton mentagrophytes exhibited wider zone of inhibition, 6.6 ± 1.5 mm for optimized usNLC3 gel viz-à-viz marketed gel formulation (3.7 ± 1.2 mm). Hen's egg test-chorioallantoic membrane (HET-CAM) irritation test confirmed optimized usNLC gel to be non-irritant to chorioallantoic membrane. Improved dermal delivery of miconazole by usNLC gel could be achieved for treatment of athlete's foot.
Prediction of Tibial Rotation Pathologies Using Particle Swarm Optimization and K-Means Algorithms.
Sari, Murat; Tuna, Can; Akogul, Serkan
2018-03-28
The aim of this article is to investigate pathological subjects from a population through different physical factors. To achieve this, particle swarm optimization (PSO) and K-means (KM) clustering algorithms have been combined (PSO-KM). Datasets provided by the literature were divided into three clusters based on age and weight parameters and each one of right tibial external rotation (RTER), right tibial internal rotation (RTIR), left tibial external rotation (LTER), and left tibial internal rotation (LTIR) values were divided into three types as Type 1, Type 2 and Type 3 (Type 2 is non-pathological (normal) and the other two types are pathological (abnormal)), respectively. The rotation values of every subject in any cluster were noted. Then the algorithm was run and the produced values were also considered. The values of the produced algorithm, the PSO-KM, have been compared with the real values. The hybrid PSO-KM algorithm has been very successful on the optimal clustering of the tibial rotation types through the physical criteria. In this investigation, Type 2 (pathological subjects) is of especially high predictability and the PSO-KM algorithm has been very successful as an operation system for clustering and optimizing the tibial motion data assessments. These research findings are expected to be very useful for health providers, such as physiotherapists, orthopedists, and so on, in which this consequence may help clinicians to appropriately designing proper treatment schedules for patients.
Xing, Haifeng; Hou, Bo; Lin, Zhihui; Guo, Meifeng
2017-10-13
MEMS (Micro Electro Mechanical System) gyroscopes have been widely applied to various fields, but MEMS gyroscope random drift has nonlinear and non-stationary characteristics. It has attracted much attention to model and compensate the random drift because it can improve the precision of inertial devices. This paper has proposed to use wavelet filtering to reduce noise in the original data of MEMS gyroscopes, then reconstruct the random drift data with PSR (phase space reconstruction), and establish the model for the reconstructed data by LSSVM (least squares support vector machine), of which the parameters were optimized using CPSO (chaotic particle swarm optimization). Comparing the effect of modeling the MEMS gyroscope random drift with BP-ANN (back propagation artificial neural network) and the proposed method, the results showed that the latter had a better prediction accuracy. Using the compensation of three groups of MEMS gyroscope random drift data, the standard deviation of three groups of experimental data dropped from 0.00354°/s, 0.00412°/s, and 0.00328°/s to 0.00065°/s, 0.00072°/s and 0.00061°/s, respectively, which demonstrated that the proposed method can reduce the influence of MEMS gyroscope random drift and verified the effectiveness of this method for modeling MEMS gyroscope random drift.
[Severity classification of chronic obstructive pulmonary disease based on deep learning].
Ying, Jun; Yang, Ceyuan; Li, Quanzheng; Xue, Wanguo; Li, Tanshi; Cao, Wenzhe
2017-12-01
In this paper, a deep learning method has been raised to build an automatic classification algorithm of severity of chronic obstructive pulmonary disease. Large sample clinical data as input feature were analyzed for their weights in classification. Through feature selection, model training, parameter optimization and model testing, a classification prediction model based on deep belief network was built to predict severity classification criteria raised by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We get accuracy over 90% in prediction for two different standardized versions of severity criteria raised in 2007 and 2011 respectively. Moreover, we also got the contribution ranking of different input features through analyzing the model coefficient matrix and confirmed that there was a certain degree of agreement between the more contributive input features and the clinical diagnostic knowledge. The validity of the deep belief network model was proved by this result. This study provides an effective solution for the application of deep learning method in automatic diagnostic decision making.
de Chazal, Philip; Heneghan, Conor; Sheridan, Elaine; Reilly, Richard; Nolan, Philip; O'Malley, Mark
2003-06-01
A method for the automatic processing of the electrocardiogram (ECG) for the detection of obstructive apnoea is presented. The method screens nighttime single-lead ECG recordings for the presence of major sleep apnoea and provides a minute-by-minute analysis of disordered breathing. A large independently validated database of 70 ECG recordings acquired from normal subjects and subjects with obstructive and mixed sleep apnoea, each of approximately eight hours in duration, was used throughout the study. Thirty-five of these recordings were used for training and 35 retained for independent testing. A wide variety of features based on heartbeat intervals and an ECG-derived respiratory signal were considered. Classifiers based on linear and quadratic discriminants were compared. Feature selection and regularization of classifier parameters were used to optimize classifier performance. Results show that the normal recordings could be separated from the apnoea recordings with a 100% success rate and a minute-by-minute classification accuracy of over 90% is achievable.
A Multipopulation PSO Based Memetic Algorithm for Permutation Flow Shop Scheduling
Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang
2013-01-01
The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP. PMID:24453841
Yalcin, Ibrahim; Berker, Bulent; Sukur, Yavuz Emre; Kahraman, Korhan; Ates, Can
2017-09-01
The aim of this study was to compare the outcome of intracytoplasmic sperm injection (ICSI) and embryo transfer between couples with infertility due to male non-obstructive azoospermia (NOA) and obstructive azoospermia (OA). A retrospective analysis of 234 couples with azoospermia who were treated by ICSI and embryo transfer between January 2007 and October 2010 was performed. There were 61 couples in NOA group and 173 couples in OA group. Fertilization rates, pregnancy and clinical pregnancy rates were the main outcome measures. The number of retrieved mature oocytes, injected oocytes, metaphase II (MII) oocytes, two distinct pronuclei oocytes, cleavage embryos and embryos transferred was not significantly different between the groups. The fertilization rate was significantly lower in NOA group when compared to OA group (56.2 vs. 66.7%, respectively; p = 0.013) and the pregnancy rate was significantly lower in NOA group than OA group (36.1 vs. 50.9%, respectively; p = 0.046). The clinical pregnancy rates were not statistically different between the patients with NOA and OA azoospermia groups (24.6 vs. 36.4%, respectively; p = 0.09). This study suggests that ICSI and embryo transfer together with testicular sperm extraction results in statistically significant lower fertilization and pregnancy rates in men with NOA when compared to men with OA.
Bai, Wei-li; Yan, Ting-yuan; Wang, Zhi-xiang; Huang, De-chun; Yan, Ting-xuan; Li, Ping
2015-01-01
Curcumin-ethyl-cellulose (EC) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading and yield of inclusion complex as evaluation indexes, on the basis of single factor tests, orthogonal experimental design was used to optimize the preparation process of curcumin-EC sustained-release composite particles. The experiments such as drug loading, yield, particle size distribution, electron microscope analysis (SEM) , infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 45 degrees C, crystallization pressure 10 MPa, curcumin concentration 8 g x L(-1), solvent flow rate 0.9 mL x min(-1), and CO2 velocity 4 L x min(-1). Under the optimal conditions, the average drug loading and yield of curcumin-EC sustained-release composite particles were 33.01% and 83.97%, and the average particle size of the particles was 20.632 μm. IR and DSC analysis showed that curcumin might complex with EC. The experiments of in vitro dissolution showed that curcumin-EC composite particles had good sustained-release effect. Curcumin-EC sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.
AutoCPAP initiation at home: optimal trial duration and cost-effectiveness.
Bachour, Adel; Virkkala, Jussi T; Maasilta, Paula K
2007-11-01
The duration of automatic computer-controlled continuous positive airway pressure device (autoCPAP) initiation at home varies largely between sleep centers. Our objectives were to evaluate the cost-effectiveness and to find the optimal trial duration. Of the 206 consecutive CPAP-naive patients with obstructive sleep apnea syndrome, who were referred to our hospital, 166 received autoCPAP for a 5-day trial at home. Of the 166 patients, 89 (15 women) showed a successful 5-day autoCPAP trial (normalized oximetry and mask-on time exceeding 4 h/day for at least 4 days). For the first trial day, 88 (53%) patients had normalized oximetry and a mask-on time exceeding 4 h. A 1-day autoCPAP trial EUR 668 was less cost-effective than a 5-day trial EUR 653, with no differences in values of efficient CPAP pressure or residual apnea-hypopnea index (AHI). The systematic requirement of oximetry monitoring raised the cost considerably from EUR 481 to EUR 668. In selected patients with obstructive sleep apnea, the optimal duration for initiating CPAP therapy at home by autoCPAP is 5 days. Although a 1-day trial was sufficient to determine the CPAP pressure requirement, it was not cost-effective and had a high rate of failure.
Inaty, Hanine; Folch, Erik; Berger, Robert; Fernandez-Bussy, Sebastian; Chatterji, Sumit; Alape, Daniel; Majid, Adnan
2016-06-01
Cryodebridement (CD) refers to the removal of obstructive material from the lumen of the tracheobronchial tree by freezing with a cryoprobe, which is usually inserted through a flexible bronchoscope. This method of achieving instant recanalization of airways has been established for over 20 years, but published experience comprises limited case series. This study describes a single large-volume referral center experience, including clinical outcomes and safety profile. Electronic medical records of 156 patients who underwent bronchoscopic CD between December 2007 and March 2012 as the primary method to relieve airway obstruction were reviewed retrospectively. The most frequent cause of airway obstruction was malignancy (n = 88), with non-small-cell lung cancer and metastatic renal cell carcinoma being the most common etiologies. The site of obstruction was localized to the central airways in 63 patients (40%) and the distal airways in 44 patients (28%), and it was diffuse in 49 patients (32%). Bronchoscopic airway patency was achieved in 95% of patients, with the highest success rates found in those with obstruction localized in the central airways. Improvement in symptoms occurred in 118 (82%) of 144 symptomatic patients. Serious complications were reported in 17 patients (11%) and included respiratory distress, severe bleeding, airway injury, and hemodynamic instability. All patients responded to treatment, and no intra- or postoperative deaths were reported. CD, when used alone or in combination with other endoscopic treatment modalities, appears to be safe and effective in treating endoluminal airway obstruction.
Epidemiology of Major Non-communicable Diseases in Ethiopia: A Systematic Review
Mariam, Damen Haile; Ali, Ahmed; Araya, Tekebash
2014-01-01
Impact of non-communicable diseases is not well-documented in Ethiopia. We aimed to document the prevalence and mortality associated with four major non-communicable diseases in Ethiopia: cardiovascular disease, cancer, diabetes, and chronic obstructive pulmonary disease. Associated risk factors: hypertension, tobacco-use, harmful use of alcohol, overweight/obesity, and khat-chewing were also studied. Systematic review of peer-reviewed and grey literature between 1960 and 2011 was done using PubMed search engines and local libraries to identify prevalence studies on the four diseases. In total, 32 studies were found, and half of these studies were from Addis Ababa. Two hospital-based studies reviewed the prevalence of cardiovascular disease and found a prevalence of 7.2% and 24%; a hospital-based study reviewed cancer prevalence and found a prevalence of 0.3%; two hospital-based studies reviewed diabetes prevalence and found a prevalence of 0.5% and 1.2%; and two hospital-based studies reviewed prevalence of asthma and found a prevalence of 1% and 3.5%. Few community-based studies were done on the prevalence of diabetes and chronic pulmonary obstructive disease among the population. Several studies reviewed the impact of these diseases on mortality: cardiovascular disease accounts for 24% of deaths in Addis Ababa, cancer causes 10% of deaths in the urban settings and 2% deaths in rural setting, and diabetes causes 5% and chronic obstructive pulmonary disease causes 3% of deaths. Several studies reviewed the impact of these diseases on hospital admissions: cardiovascular disease accounts for 3%-12.6% and found to have increased between 1970s and 2000s; cancer accounts for 1.1%-2.8%, diabetes accounts for 0.5%-1.2%, and chronic obstructive diseases account for 2.7%-4.3% of morbidity. Overall, the major non-communicable diseases and related risk factors are highly prevalent, and evidence-based interventions should be designed. PMID:24847587
Ten Broek, Richard P G; Krielen, Pepijn; Di Saverio, Salomone; Coccolini, Federico; Biffl, Walter L; Ansaloni, Luca; Velmahos, George C; Sartelli, Massimo; Fraga, Gustavo P; Kelly, Michael D; Moore, Frederick A; Peitzman, Andrew B; Leppaniemi, Ari; Moore, Ernest E; Jeekel, Johannes; Kluger, Yoram; Sugrue, Michael; Balogh, Zsolt J; Bendinelli, Cino; Civil, Ian; Coimbra, Raul; De Moya, Mark; Ferrada, Paula; Inaba, Kenji; Ivatury, Rao; Latifi, Rifat; Kashuk, Jeffry L; Kirkpatrick, Andrew W; Maier, Ron; Rizoli, Sandro; Sakakushev, Boris; Scalea, Thomas; Søreide, Kjetil; Weber, Dieter; Wani, Imtiaz; Abu-Zidan, Fikri M; De'Angelis, Nicola; Piscioneri, Frank; Galante, Joseph M; Catena, Fausto; van Goor, Harry
2018-01-01
Adhesive small bowel obstruction (ASBO) is a common surgical emergency, causing high morbidity and even some mortality. The adhesions causing such bowel obstructions are typically the footprints of previous abdominal surgical procedures. The present paper presents a revised version of the Bologna guidelines to evidence-based diagnosis and treatment of ASBO. The working group has added paragraphs on prevention of ASBO and special patient groups. The guideline was written under the auspices of the World Society of Emergency Surgery by the ASBO working group. A systematic literature search was performed prior to the update of the guidelines to identify relevant new papers on epidemiology, diagnosis, and treatment of ASBO. Literature was critically appraised according to an evidence-based guideline development method. Final recommendations were approved by the workgroup, taking into account the level of evidence of the conclusion. Adhesion formation might be reduced by minimally invasive surgical techniques and the use of adhesion barriers. Non-operative treatment is effective in most patients with ASBO. Contraindications for non-operative treatment include peritonitis, strangulation, and ischemia. When the adhesive etiology of obstruction is unsure, or when contraindications for non-operative management might be present, CT is the diagnostic technique of choice. The principles of non-operative treatment are nil per os, naso-gastric, or long-tube decompression, and intravenous supplementation with fluids and electrolytes. When operative treatment is required, a laparoscopic approach may be beneficial for selected cases of simple ASBO.Younger patients have a higher lifetime risk for recurrent ASBO and might therefore benefit from application of adhesion barriers as both primary and secondary prevention. This guideline presents recommendations that can be used by surgeons who treat patients with ASBO. Scientific evidence for some aspects of ASBO management is scarce, in particular aspects relating to special patient groups. Results of a randomized trial of laparoscopic versus open surgery for ASBO are awaited.
Sylvester, Michael J; Marchiano, Emily; Park, Richard Chan Woo; Baredes, Soly; Eloy, Jean Anderson
2017-02-01
Although chronic obstructive pulmonary disease (COPD) is a common comorbidity in patients undergoing laryngeal cancer surgery, the impact of this comorbidity in this setting is not well established. In this analysis, we used the Nationwide Inpatient Sample (NIS) to elucidate the impact of COPD on outcomes after laryngectomy for laryngeal cancer. The NIS was queried for patients admitted from 1998 to 2010 with laryngeal cancer who underwent total or partial laryngectomy. Patient demographics, type of admission, length of stay, hospital charges, and concomitant diagnoses were analyzed. Our inclusion criteria yielded a cohort of 40,441 patients: 3,051 with COPD and 37,390 without. On average, COPD was associated with an additional $12,500 (P < 0.001) in hospital charges and an additional 1.4 days (P < 0.001) of hospital stay. There was no significant difference in incidence of in-hospital mortality between the COPD and non-COPD groups after total laryngectomy (1.1% in COPD vs. 1.0% in non-COPD; P = 0.776); however, there was an increased incidence of in-hospital mortality in the COPD group compared to the non-COPD group after partial laryngectomy (3.4% in COPD vs. 0.4% in non-COPD; P < 0.001). Multivariate adjusted logistic regression revealed that COPD was associated with greater odds of pulmonary complications after both partial laryngectomy (odds ratio [OR] = 3.198; P < 0.001) and total laryngectomy (OR = 1.575; P < 0.001). Chronic obstructive pulmonary disease appears to be associated with greater hospital charges, length of stay, and postoperative pulmonary complications in patients undergoing laryngectomy for laryngeal cancer. Chronic obstructive pulmonary disease after partial, but not total, laryngectomy appears to be associated with increased risk of in-hospital mortality. 2C. Laryngoscope, 2016 127:417-423, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.
2013-12-01
Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones, and forming training sets from three or four pattern classes. The presented automated classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.
Didden, Paul; Reijm, Agnes N; Erler, Nicole S; Wolters, Leonieke M M; Tang, Thjon J; Ter Borg, Pieter C J; Leeuwenburgh, Ivonne; Bruno, Marco J; Spaander, Manon C W
2018-06-12
Covered esophageal self-expandable metal stents (SEMSs) are currently used for palliation of malignant dysphagia. The optimal extent of the covering to prevent recurrent obstruction is unknown. Therefore, we aimed to compare fully covered (FC) versus partially covered (PC) SEMSs in patients with incurable malignant esophageal stenosis. In this multicenter randomized controlled trial, 98 incurable patients with dysphagia caused by a malignant stricture of the esophagus or cardia were randomized 1:1 to an FC-SEMS or PC-SEMS. The primary outcome was recurrent obstruction after endoscopic SEMS placement. Secondary outcomes were technical and clinical success, adverse events, and health-related quality of life (HRQoL). Patients were followed until 6 months after SEMS placement or to SEMS removal, second SEMS insertion, or death, whichever came first. Recurrent obstruction after SEMS placement was similar for both types of stents: 19 % for FC-SEMSs and 22 % for PC-SEMSs ( P = 0.65). The times to recurrent obstruction did not differ. The frequency of adverse events was similar between the two groups, with major adverse events occurring in 38 % and 47 % of patients for FC-SEMSs and PC-SEMSs, respectively ( P = 0.34). No significant differences were seen in technical success, improvement of dysphagia, and HRQoL. Proximal esophageal stenosis and female sex were independently associated with recurrent obstruction and/or major adverse events. Esophageal FC-SEMSs did not reveal a lower recurrent obstruction rate compared with PC-SEMSs in the palliative management of malignant dysphagia. © Georg Thieme Verlag KG Stuttgart · New York.
Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
Rani, R Ranjani; Ramyachitra, D
2016-12-01
Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Inatomi, Osamu; Bamba, Shigeki; Shioya, Makoto; Mochizuki, Yosuke; Ban, Hiromitsu; Tsujikawa, Tomoyuki; Saito, Yasuharu; Andoh, Akira; Fujiyama, Yoshihide
2013-02-14
Although endoscopic biliary stents have been accepted as part of palliative therapy for cases of malignant hilar obstruction, the optimal endoscopic management regime remains controversial. In this study, we evaluated the safety and efficacy of placing a threaded stent above the sphincter of Oddi (threaded inside plastic stents, threaded PS) and compared the results with those of other stent types. Patients with malignant hilar obstruction, including those requiring biliary drainage for stent occlusion, were selected. Patients received either one of the following endoscopic indwelling stents: threaded PS, conventional plastic stents (conventional PS), or metallic stents (MS). Duration of stent patency and the incident of complication were compared in these patients. Forty-two patients underwent placement of endoscopic indwelling stents (threaded PS = 12, conventional PS = 17, MS = 13). The median duration of threaded PS patency was significantly longer than that of conventional PS patency (142 vs. 32 days; P = 0.04, logrank test). The median duration of threaded PS and MS patency was not significantly different (142 vs. 150 days, P = 0.83). Stent migration did not occur in any group. Among patients who underwent threaded PS placement as a salvage therapy after MS obstruction due to tumor ingrowth, the median duration of MS patency was significantly shorter than that of threaded PS patency (123 vs. 240 days). Threaded PS are safe and effective in cases of malignant hilar obstruction; moreover, it is a suitable therapeutic option not only for initial drainage but also for salvage therapy.
NASA Astrophysics Data System (ADS)
Cuny, Laure; Herrling, Maria Pia; Guthausen, Gisela; Horn, Harald; Delay, Markus
2015-11-01
The application of engineered nanoparticles (ENP) such as iron-based ENP in environmental systems or in the human body inevitably raises the question of their mobility. This also includes aspects of product optimization and assessment of their environmental fate. Therefore, the key aim was to investigate the mobility of iron-based ENP in water-saturated porous media. Laboratory-scale transport experiments were conducted using columns packed with quartz sand as model solid phase. Different superparamagnetic iron oxide nanoparticles (SPION) were selected to study the influence of primary particle size (dP = 20 nm and 80 nm) and surface functionalization (plain, -COOH and -NH2 groups) on particle mobility. In particular, the influence of natural organic matter (NOM) on the transport and retention behaviour of SPION was investigated. In our approach, a combination of conventional breakthrough curve (BTC) analysis and magnetic resonance imaging (MRI) to non-invasively and non-destructively visualize the SPION inside the column was applied. Particle surface properties (surface functionalization and resulting zeta potential) had a major influence while their primary particle size turned out to be less relevant. In particular, the mobility of SPION was significantly increased in the presence of NOM due to the sorption of NOM onto the particle surface resulting in a more negative zeta potential. MRI provided detailed spatially resolved information complementary to the quantitative BTC results. The approach can be transferred to other porous systems and contributes to a better understanding of particle transport in environmental porous media and porous media in technical applications.
Furlanetto, Karina Couto; Mantoani, Leandro Cruz; Bisca, Gianna; Morita, Andrea Akemi; Zabatiero, Juliana; Proença, Mahara; Kovelis, Demétria; Pitta, Fabio
2014-04-01
In smokers without airflow obstruction, detailed, objective and controlled quantification of the level of physical inactivity in daily life has never been performed. This study aimed to objectively assess the level of physical activity in daily life in adult smokers without airflow obstruction in comparison with matched non-smokers, and to investigate the determinants for daily physical activity in smokers. Sixty smokers (aged 50 (39-54) years) and 50 non-smokers (aged 48 (40-53) years) matched for gender, age, anthropometric characteristics, educational level, employment status and seasons of the year assessment period were cross-sectionally assessed regarding their daily physical activity with a step counter, besides assessment of lung function, functional exercise capacity, quality of life, anxiety, depression, self-reported comorbidities carbon monoxide level, nicotine dependence and smoking habits. When compared with non-smokers, smokers walked less in daily life (7923 ± 3558 vs 9553 ± 3637 steps/day, respectively), presented worse lung function, functional exercise capacity, quality of life, anxiety and depression. Multiple regression analyses identified functional exercise capacity, Borg fatigue, self-reported motivation/physical activity behaviour and cardiac disease as significant determinants of number of steps/day in smokers (partial r(2) = 0.10, 0.12, 0.16 and 0.05; b = 15, -997, 1207 and -2330 steps/day, respectively; overall fit of the model R(2) = 0.38; P < 0.001). Adult smokers without airflow obstruction presented reduced level of daily physical activity. Functional exercise capacity, extended fatigue sensation, aspects of motivation/physical activity behaviour and self-reported cardiac disease are significant determinants of physical activity in daily life in smokers. © 2014 The Authors. Respirology © 2014 Asian Pacific Society of Respirology.
Lenártová, Petra; Kopčeková, Jana; Gažarová, Martina; Mrázová, Jana; Wyka, Joanna
Chronic obstructive pulmonary disease (COPD) is an airway inflammatory disease caused by inhalation of toxic particles, mainly cigarette smoking, and now is accepted as a disease associated with systemic characteristics. The aim of this work was to investigate and compare selected biochemical parameters in patients with and without COPD. Observation group consisted of clinically stable patients with COPD (n = 60). The control group was healthy persons from the general population, without COPD, who were divided into two subgroups – smokers (n = 30) and non-smokers (n = 30). Laboratory parameters were investigated by automated clinical chemistry analyzer LISA 200th. Albumin in our measurements showed an average value of 39.55 g.l-1 in the patient population; 38.89 g.l-1 in smokers and in non-smokers group 44.65 g.l-1. The average value of pre-albumin in the group of patients was 0.28 ± 0.28 g.l-1 and 0.30 ± 0.04 g.l-1 in smokers group. The average value of the orosomucoid in patients was about 1.11 ± 0.90 mg.ml-1. In the group of smokers, the mean value of orosomucoid was 0.60 ± 0.13 mg.ml-1. The level of C-reactive protein (CRP) in the patient group reached an average value of 15.31 ± 22.04 mg.l-1, in the group of smokers was 5.18 ± 4.58 mg. l-1. Prognostic inflammatory and nutritional index (PINI) in the group of patients showed a mean value of 4.65 ± 10.77 and 0.026 ± 0.025 in smokers. The results of this work show, that the values of index PINI in COPD patients are significantly higher than in smokers (P <0.001). This along with other monitored parameters indicative inflammation as well as a catabolic process that occurs in the organism of patients with COPD.
NASA Astrophysics Data System (ADS)
Hernandez, F.; Liang, X.
2017-12-01
Reliable real-time hydrological forecasting, to predict important phenomena such as floods, is invaluable to the society. However, modern high-resolution distributed models have faced challenges when dealing with uncertainties that are caused by the large number of parameters and initial state estimations involved. Therefore, to rely on these high-resolution models for critical real-time forecast applications, considerable improvements on the parameter and initial state estimation techniques must be made. In this work we present a unified data assimilation algorithm called Optimized PareTo Inverse Modeling through Inverse STochastic Search (OPTIMISTS) to deal with the challenge of having robust flood forecasting for high-resolution distributed models. This new algorithm combines the advantages of particle filters and variational methods in a unique way to overcome their individual weaknesses. The analysis of candidate particles compares model results with observations in a flexible time frame, and a multi-objective approach is proposed which attempts to simultaneously minimize differences with the observations and departures from the background states by using both Bayesian sampling and non-convex evolutionary optimization. Moreover, the resulting Pareto front is given a probabilistic interpretation through kernel density estimation to create a non-Gaussian distribution of the states. OPTIMISTS was tested on a low-resolution distributed land surface model using VIC (Variable Infiltration Capacity) and on a high-resolution distributed hydrological model using the DHSVM (Distributed Hydrology Soil Vegetation Model). In the tests streamflow observations are assimilated. OPTIMISTS was also compared with a traditional particle filter and a variational method. Results show that our method can reliably produce adequate forecasts and that it is able to outperform those resulting from assimilating the observations using a particle filter or an evolutionary 4D variational method alone. In addition, our method is shown to be efficient in tackling high-resolution applications with robust results.
Application of Particle Swarm Optimization Algorithm in the Heating System Planning Problem
Ma, Rong-Jiang; Yu, Nan-Yang; Hu, Jun-Yi
2013-01-01
Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was improved. An actual case study was calculated to check its feasibility in practical use. The results show that the improved particle swarm optimization (IPSO) algorithm can more preferably solve the HSP problem than PSO algorithm. Moreover, the results also present the potential to provide useful information when making decisions in the practical planning process. Therefore, it is believed that if this approach is applied correctly and in combination with other elements, it can become a powerful and effective optimization tool for HSP problem. PMID:23935429
NASA Astrophysics Data System (ADS)
Mao, Heng; Wang, Xiao; Zhao, Dazun
2007-07-01
Baseline algorithm, as a tool in wavefront sensing (WFS), incorporates the phase-diverse phase retrieval (PDPR) method with hybrid-unwrapping approach to ensure a unique pupil phase estimate with high WFS accuracy even in the case of high dynamic range aberration, as long as the pupil shape is of a convex set. However, for a complicated pupil, such as that in obstructed pupil optics, the said unwrapping approach would fail owing to the fake values at points located in obstructed areas of the pupil. Thus a modified unwrapping approach that can minimize the negative effects of the obstructed areas is proposed. Simulations have shown the validity of this unwrapping approach when it is embedded in Baseline algorithm.
Roberts, C Michael; Lopez-Campos, Jose Luis; Pozo-Rodriguez, Francisco; Hartl, Sylvia
2013-12-01
Understanding how European care of chronic obstructive pulmonary disease (COPD) admissions vary against guideline standards provides an opportunity to target appropriate quality improvement interventions. In 2010-2011 an audit of care against the 2010 'Global initiative for chronic Obstructive Lung Disease' (GOLD) standards was performed in 16 018 patients from 384 hospitals in 13 countries. Clinicians prospectively identified consecutive COPD admissions over a period of 8 weeks, recording clinical care measures on a web-based data tool. Data were analysed comparing adherence to 10 key management recommendations. Adherence varied between hospitals and across countries. The lack of available spirometry results and variable use of oxygen and non-invasive ventilation (NIV) are high impact areas identified for improvement.
Goland, S; van Hagen, I M; Elbaz-Greener, G; Elkayam, U; Shotan, A; Merz, W M; Enar, S C; Gaisin, I R; Pieper, P G; Johnson, M R; Hall, R; Blatt, A; Roos-Hesselink, J W
2017-09-14
We report the maternal and foetal outcomes at birth and after 6 months in a cohort of pregnant women with hypertrophic cardiomyopathy (HCM). Although most women with HCM tolerate pregnancy well, there is an increased risk of obstetric and cardiovascular complications. All pregnant women with HCM entered into the prospective worldwide Registry of Pregnancy and Cardiac disease (ROPAC) were included in this analysis. The primary endpoint was a major adverse cardiovascular event (MACE), which included death, heart failure (HF), thrombo-embolic event, and arrhythmia. Baseline and outcome data were analysed and compared for patients with MACE vs. without MACE and for patients with obstructive HCM vs. non-obstructive HCM. Sixty pregnant women (mean age 30.4 ± 6.0 years) with HCM (41.7% obstructive) were included. No maternal mortality occurred in this cohort. In 14 (23%) patients at least one MACE occurred: 9 (15.0%) HF and 7 (12%) an arrhythmia (6 ventricular and 1 atrial fibrillation). MACE occurred most commonly during the 3rd trimester and postpartum period. In total, 3 (5.0%) women experienced foetal loss. Women with MACE had a higher rate of emergency Caesarean delivery for cardiac reasons (21.4% vs. 0%, P = 0.01). No significant differences in pregnancy outcome were found between women with obstructive and non-obstructive HCM. NYHA functional class of ≥II and signs of HF before pregnancy, were associated with MACE. Although most women with HCM tolerated pregnancy well, cardiovascular complications were not uncommon and predicted by pre-pregnancy status facilitating pre-pregnancy counselling and targeted antenatal care. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Farneti, P.; Cantore, S.; Macrì, G.; Chuchueva, N.; Cuffaro, L.; Pasquini, L.; Puxeddu, R.
2017-01-01
SUMMARY Obstructive sialadenitis is the most common non-neoplastic disease of the salivary glands, and sialendoscopy is increasingly used in both diagnosis and treatment, associated in selected cases with endoscopic laser lithotripsy. Sialendoscopy is also used for combined minimally invasive external and endoscopic approaches in patients with larger and proximal stones that would require excessively long laser procedures. The present paper reports on the technical experience from the Ear, Nose and Throat Unit of the Sant'Orsola-Malpighi Hospital of Bologna, and from the Department of Otorhinolaryngology of the University Hospital of Cagliari, Italy, including the retrospective analysis of the endoscopic and endoscopic assisted procedures performed on 48 patients (26 females and 22 males; median age 45.3; range 8-83 years) treated for chronic obstructive sialadenitis at the University Hospital of Cagliari from November 2010 to April 2016. The results from the Sant'Orsola-Malpighi Hospital of Bologna have been previously published. The technical aspects of sialendoscopy are carefully described. The retrospective analysis of the University Hospital of Cagliari shows that the disease was unilateral in 40 patients and bilateral in 8; a total of 56 major salivary glands were treated (22 submandibular glands and 34 parotids). Five patients underwent bilateral sialendoscopy for juvenile recurrent parotitis. 10 patients were treated for non-lithiasic obstructive disease. In 33 patients (68.75%) the obstruction was caused by salivary stones (bilateral parotid lithiasis in 1 case). Only 8 patients needed a sialectomy (5 submandibular glands and 3 parotids). The conservative approach to obstructive sialadenitis is feasible and can be performed either purely endoscopically or in a combined modality, with a high percentage of success. The procedure must be performed with dedicated instrumentation by a skilled surgeon after proper training since minor to major complications can be encountered. Sialectomy should be the "extrema ratio" after failure of a conservative approach. PMID:28516972
Sherrid, Mark V; Barac, Ivan; McKenna, William J; Elliott, Perry M; Dickie, Shaughan; Chojnowska, Lidia; Casey, Susan; Maron, Barry J
2005-04-19
In this study we assessed the long-term efficacy and safety of disopyramide for patients with obstructive hypertrophic cardiomyopathy (HCM). It has been reported that disopyramide may reduce left ventricular outflow gradient and improve symptoms in patients with HCM. However, long-term efficacy and safety of disopyramide has not been shown in a large cohort. Clinical and echocardiographic data were evaluated in 118 obstructive HCM patients treated with disopyramide at 4 HCM treatment centers. Mortality in the disopyramide-treated patients was compared with 373 obstructive HCM patients not treated with disopyramide. Patients were followed with disopyramide for 3.1 +/- 2.6 years; dose 432 +/- 181 mg/day (97% also received beta-blockers). Seventy-eight patients (66%) were maintained with disopyramide without the necessity for major non-pharmacologic intervention with surgical myectomy, alcohol ablation, or pacing; outflow gradient at rest decreased from 75 +/- 33 to 40 +/- 32 mm Hg (p < 0.0001) and mean New York Heart Association functional class from 2.3 +/- 0.7 to 1.7 +/- 0.6 (p < 0.0001). Forty other patients (34%) could not be satisfactorily managed with disopyramide and required major invasive interventions because of inadequate symptom and gradient control or vagolytic side effects. All-cause annual cardiac death rate between disopyramide and non-disopyramide-treated patients did not differ significantly, 1.4% versus 2.6%/year (p = 0.07). There was also no difference in sudden death rate, 1.0%/year versus 1.8%/year (p = 0.08). Two-thirds of obstructed HCM patients treated with disopyramide could be managed medically with amelioration of symptoms and about 50% reduction in subaortic gradient over >/=3 years. Disopyramide therapy does not appear to be proarrhythmic in HCM and should be considered before proceeding to surgical myectomy or alternate strategies.
High-Risk Carotid Plaques Identified by CT-Angiogram can Predict Acute Myocardial Infarction
Mosleh, Wassim; Adib, Keenan; Natdanai, Punnanithinont; Carmona-Rubio, Andres; Karki, Roshan; Paily, Jacienta; Ahmed, Mohamed Abdel-Aal; Vakkalanka, Sujit; Madam, Narasa; Gudleski, Gregory D; Chung, Charles; Sharma, Umesh C
2016-01-01
Purpose Prior studies identified the incremental value of non-invasive imaging by CT-angiogram (CTA) to detect high-risk coronary atherosclerotic plaques. Due to their superficial locations, larger calibers and motion-free imaging, the carotid arteries provide the best anatomic access for the non-invasive characterization of atherosclerotic plaques. We aim to assess the ability of predicting obstructive coronary artery disease (CAD) or acute myocardial infarction (MI) based on high-risk carotid plaque features identified by CTA. Methods We retrospectively examined carotid CTAs of 492 patients that presented with acute stroke to characterize the atherosclerotic plaques of the carotid arteries and examined development of acute MI and obstructive CAD within 12-months. Carotid lesions were defined in terms of calcifications (large or speckled), presence of low-attenuation plaques, positive remodeling, and presence of napkin ring sign (NRS). Adjusted relative risks were calculated for each plaque features. Results Patients with speckled (<3mm) calcifications and/or larger calcifications on CTA had a higher risk of developing an MI and/or obstructive CAD within one year compared to patients without [adjusted RR of 7.51, 95%CI 1.26 to 73.42, P= 0.001]. Patients with low-attenuation plaques on CTA had a higher risk of developing an MI and/or obstructive CAD within one year than patients without [adjusted RR of 2.73, 95%CI 1.19 to 8.50, P= 0.021]. Presence of carotid calcifications and low-attenuation plaques also portended higher sensitivity (100% and 79.17%, respectively) for the development of acute MI. Conclusions Presence of carotid calcifications and low-attenuation plaques can predict the risk of developing acute MI and/or obstructive CAD within 12-months. Given their high sensitivity, their absence can reliably exclude 12-month events. PMID:27866279
High-risk carotid plaques identified by CT-angiogram can predict acute myocardial infarction.
Mosleh, Wassim; Adib, Keenan; Natdanai, Punnanithinont; Carmona-Rubio, Andres; Karki, Roshan; Paily, Jacienta; Ahmed, Mohamed Abdel-Aal; Vakkalanka, Sujit; Madam, Narasa; Gudleski, Gregory D; Chung, Charles; Sharma, Umesh C
2017-04-01
Prior studies identified the incremental value of non-invasive imaging by CT-angiogram (CTA) to detect high-risk coronary atherosclerotic plaques. Due to their superficial locations, larger calibers and motion-free imaging, the carotid arteries provide the best anatomic access for the non-invasive characterization of atherosclerotic plaques. We aim to assess the ability of predicting obstructive coronary artery disease (CAD) or acute myocardial infarction (MI) based on high-risk carotid plaque features identified by CTA. We retrospectively examined carotid CTAs of 492 patients that presented with acute stroke to characterize the atherosclerotic plaques of the carotid arteries and examined development of acute MI and obstructive CAD within 12-months. Carotid lesions were defined in terms of calcifications (large or speckled), presence of low-attenuation plaques, positive remodeling, and presence of napkin ring sign. Adjusted relative risks were calculated for each plaque features. Patients with speckled (<3 mm) calcifications and/or larger calcifications on CTA had a higher risk of developing an MI and/or obstructive CAD within 1 year compared to patients without (adjusted RR of 7.51, 95%CI 1.26-73.42, P = 0.001). Patients with low-attenuation plaques on CTA had a higher risk of developing an MI and/or obstructive CAD within 1 year than patients without (adjusted RR of 2.73, 95%CI 1.19-8.50, P = 0.021). Presence of carotid calcifications and low-attenuation plaques also portended higher sensitivity (100 and 79.17%, respectively) for the development of acute MI. Presence of carotid calcifications and low-attenuation plaques can predict the risk of developing acute MI and/or obstructive CAD within 12-months. Given their high sensitivity, their absence can reliably exclude 12-month events.
The generation of myricetin-nicotinamide nanococrystals by top down and bottom up technologies
NASA Astrophysics Data System (ADS)
Liu, Mingyu; Hong, Chao; Li, Guowen; Ma, Ping; Xie, Yan
2016-09-01
Myricetin-nicotinamide (MYR-NIC) nanococrystal preparation methods were developed and optimized using both top down and bottom up approaches. The grinding (top down) method successfully achieved nanococrystals, but there were some micrometer range particles and aggregation. The key consideration of the grinding technology was to control the milling time to determine a balance between the particle size and distribution. In contrast, a modified bottom up approach based on a solution method in conjunction with sonochemistry resulted in a uniform MYR-NIC nanococrystal that was confirmed by powder x-ray diffraction, scanning electron microscopy, dynamic light scattering, and differential scanning calorimeter, and the particle dissolution rate and amount were significantly greater than that of MYR-NIC cocrystal. Notably, this was a simple method without the addition of any non-solvent. We anticipate our findings will provide some guidance for future nanococrystal preparation as well as its application in both chemical and pharmaceutical area.
Computer simulation of metal wire explosion under high rate heating
NASA Astrophysics Data System (ADS)
Zolnikov, K. P.; Kryzhevich, D. S.; Korchuganov, A. V.
2017-05-01
Synchronous electric explosion of metal wires and synthesis of bicomponent nanoparticles were investigated on the base of molecular dynamics method. Copper and nickel nanosized crystallites of cylindrical shape were chosen as conductors for explosion. The embedded atom approximation was used for calculation of the interatomic interactions. The agglomeration process after explosion metal wires was the main mechanism for particle synthesis. The distribution of chemical elements was non-uniform over the cross section of the bicomponent particles. The copper concentration in the surface region was higher than in the bulk of the synthesized particle. By varying the loading parameters (heating temperature, the distance between the wires) one can control the size and internal structure of the synthesized bicomponent nanoparticles. The obtained results showed that the method of molecular dynamics can be effectively used to determine the optimal technological mode of nanoparticle synthesis on the base of electric explosion of metal wires.
Ko, J Ky; Chai, J; Lee, V Cy; Li, R Hw; Lau, E; Ho, K L; Tam, P C; Yeung, W Sb; Ho, P C; Ng, E Hy
2016-12-01
There are currently no local data on the sperm retrieval and pregnancy rates in in-vitro fertilisation and testicular sperm extraction cycles, especially with regard to the presence of genetic abnormalities. This study aimed to determine the sperm retrieval and pregnancy rates in infertile couples who underwent in-vitro fertilisation and testicular sperm extraction for non-obstructive azoospermia. This retrospective case series was conducted at a tertiary assisted reproduction unit in Hong Kong. Men with non-obstructive azoospermia who underwent in-vitro fertilisation and testicular sperm extraction between January 2001 and December 2013 were included. The main outcome measures were sperm retrieval and pregnancy rates. During the study period, 89 men with non-obstructive azoospermia underwent in-vitro fertilisation and testicular sperm extraction. Sperm was successfully retrieved in 40 (44.9%) men. There was no statistically significant difference in the sperm retrieval rate of those with karyotypic abnormalities (2/5, 40.0% vs 28/61, 45.9%; P=1.000) and AZFc microdeletion (3/6, 50.0% vs 28/61, 45.9%; P=1.000) compared with those without. Sperms were successfully retrieved in patients who had mosaic Klinefelter syndrome (2/3, 66.7%) but not in the patient with non-mosaic Klinefelter syndrome. No sperms were found in men with AZFa or AZFb microdeletions. Pregnancy test was positive in 15 (16.9%) patients and the clinical pregnancy rate was 13.5% (12/89) per cycle. The clinical pregnancy rate per transfer was 34.3% (12/35). The sperm retrieval rate and clinical pregnancy rate per initiated cycle in men undergoing in-vitro fertilisation and testicular sperm extraction in our unit were 44.9% and 13.5%, respectively. No sperms could be retrieved in the presence of AZFa and AZFb microdeletions, but karyotype and AZFc microdeletion abnormalities otherwise did not predict the success of sperm retrieval in couples undergoing in-vitro fertilisation and testicular sperm extraction. Genetic tests are important prior to testicular sperm extraction for patient selection and genetic counselling.
Optimal design of the satellite constellation arrangement reconfiguration process
NASA Astrophysics Data System (ADS)
Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid
2016-08-01
In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.
Gelation And Mechanical Response of Patchy Rods
NASA Astrophysics Data System (ADS)
Kazem, Navid; Majidi, Carmel; Maloney, Craig
We perform Brownian Dynamics simulations to study the gelation of suspensions of attractive, rod-like particles. We show that details of the particle-particle interactions can dramatically affect the dynamics of gelation and the structure and mechanics of the networks that form. If the attraction between the rods is perfectly smooth along their length, they will collapse into compact bundles. If the attraction is sufficiently corrugated or patchy, over time, a rigid space spanning network forms. We study the structure and mechanical properties of the networks that form as a function of the fraction of the surface that is allowed to bind. Surprisingly, the structural and mechanical properties are non-monotonic in the surface coverage. At low coverage, there are not a sufficient number of cross-linking sites to form networks. At high coverage, rods bundle and form disconnected clusters. At intermediate coverage, robust networks form. The elastic modulus and yield stress are both non-monotonic in the surface coverage. The stiffest and strongest networks show an essentially homogeneous deformation under strain with rods re-orienting along the extensional axis. Weaker, clumpy networks at high surface coverage exhibit relatively little re-orienting with strong non-affine deformation. These results suggest design strategies for tailoring surface interactions between rods to yield rigid networks with optimal properties. National Science Foundation and the Air Force Office of Scientific Research.
Evaluation of different strategies for magnetic particle functionalization with DNA aptamers.
Pérez-Ruiz, Elena; Lammertyn, Jeroen; Spasic, Dragana
2016-12-25
The optimal bio-functionalization of magnetic particles is essential for developing magnetic particle-based bioassays. Whereas functionalization with antibodies is generally well established, immobilization of DNA probes, such as aptamers, is not yet fully explored. In this work, four different types of commercially available magnetic particles, coated with streptavidin, maleimide or carboxyl groups, were evaluated for their surface coverage with aptamer bioreceptors, efficiency in capturing target protein and non-specific protein adsorption on their surface. A recently developed aptamer against the peanut allergen, Ara h 1 protein, was used as a model system. Conjugation of biotinylated Ara h 1 aptamer to the streptavidin particles led to the highest surface coverage, whereas the coverage of maleimide particles was 25% lower. Carboxylated particles appeared to be inadequate for DNA functionalization. Streptavidin particles also showed the greatest target capturing efficiency, comparable to the one of particles functionalized with anti-Ara h 1 antibody. The performance of streptavidin particles was additionally tested in a sandwich assay with the aptamer as a capture receptor on the particle surface. While the limit of detection obtained was comparable to the same assay system with antibody as capture receptor, it was superior to previously reported values using the same aptamer in similar assay schemes with different detection platforms. These results point to the promising application of the Ara h 1 aptamer-functionalized particles in bioassay development. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Chang; Qin, Xin; Liu, Yan; Zhang, Wenchao
2016-06-01
An adaptive inertia weight particle swarm algorithm is proposed in this study to solve the local optimal problem with the method of traditional particle swarm optimization in the process of estimating magnetic resonance(MR)image bias field.An indicator measuring the degree of premature convergence was designed for the defect of traditional particle swarm optimization algorithm.The inertia weight was adjusted adaptively based on this indicator to ensure particle swarm to be optimized globally and to avoid it from falling into local optimum.The Legendre polynomial was used to fit bias field,the polynomial parameters were optimized globally,and finally the bias field was estimated and corrected.Compared to those with the improved entropy minimum algorithm,the entropy of corrected image was smaller and the estimated bias field was more accurate in this study.Then the corrected image was segmented and the segmentation accuracy obtained in this research was 10% higher than that with improved entropy minimum algorithm.This algorithm can be applied to the correction of MR image bias field.
Wang, Xue; Wang, Sheng; Ma, Jun-Jie
2007-01-01
The effectiveness of wireless sensor networks (WSNs) depends on the coverage and target detection probability provided by dynamic deployment, which is usually supported by the virtual force (VF) algorithm. However, in the VF algorithm, the virtual force exerted by stationary sensor nodes will hinder the movement of mobile sensor nodes. Particle swarm optimization (PSO) is introduced as another dynamic deployment algorithm, but in this case the computation time required is the big bottleneck. This paper proposes a dynamic deployment algorithm which is named “virtual force directed co-evolutionary particle swarm optimization” (VFCPSO), since this algorithm combines the co-evolutionary particle swarm optimization (CPSO) with the VF algorithm, whereby the CPSO uses multiple swarms to optimize different components of the solution vectors for dynamic deployment cooperatively and the velocity of each particle is updated according to not only the historical local and global optimal solutions, but also the virtual forces of sensor nodes. Simulation results demonstrate that the proposed VFCPSO is competent for dynamic deployment in WSNs and has better performance with respect to computation time and effectiveness than the VF, PSO and VFPSO algorithms.
Defect reduction of high-density full-field patterns in jet and flash imprint lithography
NASA Astrophysics Data System (ADS)
Singh, Lovejeet; Luo, Kang; Ye, Zhengmao; Xu, Frank; Haase, Gaddi; Curran, David; LaBrake, Dwayne; Resnick, Douglas; Sreenivasan, S. V.
2011-04-01
Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash Imprint Lithography (J-FIL) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned resist on the substrate. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the defect specifications of high end memory devices. Typical defectivity targets are on the order of 0.10/cm2. This work summarizes the results of defect inspections focusing on two key defect types; random non-fill defects occurring during the resist filling process and repeater defects caused by interactions with particles on the substrate. Non-fill defectivity must always be considered within the context of process throughput. The key limiting throughput step in an imprint process is resist filling time. As a result, it is critical to characterize the filling process by measuring non-fill defectivity as a function of fill time. Repeater defects typically have two main sources; mask defects and particle related defects. Previous studies have indicated that soft particles tend to cause non-repeating defects. Hard particles, on the other hand, can cause either resist plugging or mask damage. In this work, an Imprio 500 twenty wafer per hour (wph) development tool was used to study both defect types. By carefully controlling the volume of inkjetted resist, optimizing the drop pattern and controlling the resist fluid front during spreading, fill times of 1.5 seconds were achieved with non-fill defect levels of approximately 1.2/cm2. Longevity runs were used to study repeater defects and a nickel contamination was identified as the key source of particle induced repeater defects.
Preoperative Obstructive Sleep Apnea Screening in Gynecologic Oncology Patients.
Harrison, Ross F; Medlin, Erin E; Petersen, Chase B; Rose, Stephen L; Hartenbach, Ellen M; Kushner, David M; Spencer, Ryan J; Rice, Laurel W; Al-Niaimi, Ahmed N
2018-05-21
Women with a gynecologic cancer tend to be older, obese, and postmenopausal, characteristics that are associated with an increased risk for obstructive sleep apnea. However, there is limited investigation regarding the condition's prevalence in this population or its impact on postoperative outcomes. In other surgical populations, patients with obstructive sleep apnea have been observed to be at increased risk for adverse postoperative events. To estimate the prevalence of obstructive sleep apnea among gynecologic oncology patients undergoing elective surgery and to investigate for a relationship between obstructive sleep apnea and postoperative outcomes. Patients referred to an academic gynecologic oncology practice were approached for enrollment in this prospective, observational study. Patients were considered eligible for study enrollment if they were scheduled for a non-emergent inpatient surgery and could provide informed consent. Enrolled patients were evaluated for a preexisting diagnosis of obstructive sleep apnea. Those without a prior diagnosis were screened using the validated, 4-item STOP [i.e. Snore loudly, daytime Tiredness, Observed apnea, elevated blood Pressure] questionnaire. All patients who screened positive for obstructive sleep apnea were referred for polysomnography. The primary outcome was the prevalence of women with obstructive sleep apnea or those who screened at high risk for the condition. Secondary outcomes examined the correlation between body mass index (kg/m 2 ) with obstructive sleep apnea and assessed for a relationship between obstructive sleep apnea and postoperative outcomes. Over a 22-month accrual period, 383 eligible patients were consecutively approached to participate in the study. A cohort of 260 patients were enrolled. A total of 33/260 patients (13%) were identified as having a previous diagnosis of obstructive sleep apnea. An additional 66/260 (25%) screened at risk for the condition using the STOP questionnaire. Of the patients who screened positive, 8/66 (12%) completed polysomnography, all of whom (8/8 [100%]) were found to have obstructive sleep apnea. The prevalence of previously-diagnosed obstructive sleep apnea or screening at risk for the condition increased as body mass index increased (p < 0.001). Women with untreated obstructive sleep apnea and those who screened at risk for the condition were found to have an increased risk for postoperative hypoxemia (OR = 3.5 [1.8-4.7]; p = 0.011) and delayed return of bowel function (OR = 2.1 [1.3-4.5]; p = 0.009). The prevalence of obstructive sleep apnea or screening at risk for the condition is high among women presenting for surgery with a gynecologic oncologist. Providers should consider evaluating a patient's risk for obstructive sleep apnea in the preoperative setting, especially when risk factors for the condition are present. Copyright © 2018. Published by Elsevier Inc.
Optimization of a pressure control valve for high power automatic transmission considering stability
NASA Astrophysics Data System (ADS)
Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong
2018-02-01
The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.
Nefedov, V B; Shergina, E A; Popova, L A
2006-01-01
In 91 patients with chronic obstructive lung disease (COLD), the severity of this disease according to the Classifications of the European Respiratory Society (ERS) and the Global Initiative on Chronic Obstructive Lung Disease (GOLD) was compared with that of pulmonary dysfunction according to the data of a comprehensive study, involving the determination of bronchial patency, lung volumes, capacities, and gas-exchange function. This follows that the ERS and GOLD classifications are to be positively appraised as they provide an eligible group of patients for clinical practice in terms of the severity of pulmonary dysfunction and that of COLD. However, the concomitant clinical use of both classifications cannot be regarded as justifiable due to that there are differences in the number of detectable grades (stages) of COLD and borderline (COLD differentiating grades (stages) values of EFV1). In this connection, both classifications have approximately equally significant merits and shortcomings and it is practically impossible to give preference to one of them as the best one. The optimal way out of the established situation is to develop a new (improved) classification of the severity of COLD on the bases of these two existing classifications.
Occupation and chronic obstructive pulmonary disease (COPD).
Cullinan, Paul
2012-01-01
There is growing interest in preventable, non-smoking causes of chronic obstructive pulmonary disease (COPD), among which are chronic exposures to respiratory irritants in the workplace. Reviews of occupational COPD in specific occupations and industries and in general populations; supplemented with other or more recently published material. There is good evidence for an increased risk of COPD from certain specific exposures (coal mine dust, silica, welding fume, textile dust, agricultural dust, cadmium fume). Less clear is the causal role of non-specific dusts or fumes/gases in general populations where the available literature is notably uncritical. Other specific exposures, such as diesel fume; interactions between specific exposures and cigarette smoking; the development of safe working limits. Occupations with large numbers of exposed employees, particularly in low-income countries.
[Epidemiology of chronic non-specific pulmonary diseases in Yugoslavia (author's transl)].
Goldmann, S; Zrilić, V; Acketa, M
1977-01-01
In Yugoslavia the diseases of the respiratory system (without tuberculosis) ranges with 23% in front of all other organ-localised diseases. 53--95% of all chronic non-specific lung diseases are registrated in the chest clinics of the different republics. 67% of all lung diseases registrated belong to the obstructive syndrom, 6% are bronchial carcinomas and 27% represent the group of other chronic pulmonary diseases. 31,5% of all patients with chronic obstructive bronchitis are younger than 50 years old, 34,7% are in the age-group between 50-65 years. Assuming the best registered incidence and prevalence rates of bronchial carcinoma, chronic bronchitis, asthma and emphysema in Slowenia as a basis, the expected morbidity of these diseases in each autonomic republic are compared.
Digby, Geneviève C; Robinson, Andrew
2017-11-01
Patients with lung cancer (LC) frequently have chronic obstructive pulmonary disease (COPD), the optimization of which improves outcomes. A 2014 Queen's University Hospitals audit demonstrated that COPD was underdiagnosed and undertreated in outpatients with LC. We sought to improve the diagnosis and management of COPD in this population. We implemented change using a Define/Measure/Analyze/Improve/Control (DMAIC) improvement cycle. Data were obtained by chart review from the Cancer Care Ontario database and e-Patient System for patients with newly diagnosed LC, including patient characteristics, pulmonary function test (PFT) data, and bronchodilator therapies. Improvement cycle 1 included engaging stakeholders and prioritizing COPD management by respirologists in the Lung Diagnostic Assessment Program. Improvement cycle 2 included physician restructuring and developing a standard work protocol. Data were analyzed monthly and presented on statistical process control P-charts, which assessed differences over time. The χ 2 and McNemar tests assessed for significance between independent and dependent groups, respectively. A total of 477 patients were studied (165 patients at baseline, 166 patients in cycle 1, and 127 patients in cycle 2). There was no change in PFT completion over time, although respirology-managed patients were significantly more likely to undergo a PFT than patients who were not managed by respirology (56.7% v 96.1%; P < .00001). The proportion of respirology-managed patients with LC with airflow obstruction receiving inhaled bronchodilator significantly increased (baseline, 46.3%; cycle 1, 51.0%; and cycle 2, 74.3%). By cycle 2, patients with airflow obstruction were more likely to receive a long-acting bronchodilator if managed by respirology (74.3% v 44.8%; P = .0009). COPD is underdiagnosed and undertreated in outpatients with LC. A DMAIC quality improvement strategy emphasizing COPD treatment during LC evaluation in the Lung Diagnostic Assessment Program significantly improved COPD management.
Electromagnetic sunscreen model: design of experiments on particle specifications.
Lécureux, Marie; Deumié, Carole; Enoch, Stefan; Sergent, Michelle
2015-10-01
We report a numerical study on sunscreen design and optimization. Thanks to the combined use of electromagnetic modeling and design of experiments, we are able to screen the most relevant parameters of mineral filters and to optimize sunscreens. Several electromagnetic modeling methods are used depending on the type of particles, density of particles, etc. Both the sun protection factor (SPF) and the UVB/UVA ratio are considered. We show that the design of experiments' model should include interactions between materials and other parameters. We conclude that the material of the particles is a key parameter for the SPF and the UVB/UVA ratio. Among the materials considered, none is optimal for both. The SPF is also highly dependent on the size of the particles.
Zhang, Y; Gao, Y; Ma, Q; Dang, C; Wei, W; De Antoni, F; Rocci, R; Chen, W
2006-03-01
To investigate the effects of combined administration of octreotide and methylglucamine diatrizoate in the older persons with adhesive small bowel obstruction. One hundred and sixty-two consecutive patients who had suffered from adhesive intestinal obstruction without clinical evidence of strangulation or gangrene were randomised into two groups, a control group (treated conservatively, n=82) and a contrast group (treated with combined administration of octreotide and methylglucamine diatrizoate, n=80). A laparotomy was performed in both the two groups if symptoms of strangulation developed or the obstruction did not resolve spontaneously after 72 h. Statistically significant rapid reduction in pain score, lower amount of nasogastric drainage, shorter hospital stay, lower operative rate and lower postoperative morbidity were observed in the contrast group. Among the non-operative patients, earlier passage of stool and gas, earlier first oral intake and shorter duration of nasogastric tube placement were significantly more frequently observed in the contrast group. No difference in the rate of readmission was found between the two groups. Combined administration of octreotide and methylglucamine diatrizoate accelerates resolution of small bowel obstruction by a specific therapeutic effect and is safe for the older persons.
Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization.
Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Wong, Wai Peng; Chen, Chun-Hung
2017-04-01
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.
Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization
Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Chen, Chun-Hung
2017-01-01
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort. PMID:29170617
The eye in sleep apnea syndrome.
Abdal, Helen; Pizzimenti, Joseph J; Purvis, Cheryl C
2006-03-01
Sleep apnea syndrome (SAS) is a disease characterized by recurrent complete or partial upper airway obstructions during sleep. The majority of patients with SAS demonstrate this obstruction either at the nasopharynx or the oropharynx. Risk factors for SAS include obesity, male gender, upper airway abnormalities, alcohol use, snoring, and neck girth of more than 17 in. in men or 16 in. in women. Reported ophthalmic findings in patients with SAS include floppy eyelid syndrome (FES), glaucoma, and non-arteritic anterior ischemic optic neuropathy (NAION).
Traveling Salesman Problem for Surveillance Mission Using Particle Swarm Optimization
2001-03-20
design of experiments, results of the experiments, and qualitative and quantitative analysis . Conclusions and recommendations based on the qualitative and...characterize the algorithm. Such analysis and comparison between LK and a non-deterministic algorithm produces claims such as "Lin-Kernighan algorithm takes... based on experiments 5 and 6. All other parameters are the same as the baseline (see 4.2.1.2). 4.2.2.6 Experiment 10 - Fine Tuning PSO AS: 85,95% Global
Nanostructured lipid carriers to enhance transdermal delivery and efficacy of diclofenac.
Nguyen, Chien Ngoc; Nguyen, Thi Thuy Trang; Nguyen, Hanh Thuy; Tran, Tuan Hiep
2017-10-01
Lipid carrier-mediated transdermal drug delivery offers several advantages because it is non-irritating and non-toxic, provides effective control of drug release, and forms an adhesive film that hydrates the outer skin layers. However, to penetrate the deeper skin layers, these formulations need to overcome several barriers in the stratum corneum. This study evaluates factors influencing particle size and drug-loading capacity, which play a key role in drug permeation and efficacy. Diclofenac sodium was chosen as the model drug. The fabrication of diclofenac sodium-loaded lipid nanoparticles was optimized by modulating several parameters, including the lipids and surfactants employed, the drug/lipid ratio, and the pH of the aqueous phase. The physical properties and loading efficiencies of the nanoparticles were characterized. The optimized formulation was then dispersed into a polymer solution to form a gel, which demonstrated a sustained ex vivo permeation of diclofenac sodium over 24 h through excised rat skin and a higher drug penetrating capacity than that of a commercially available gel. In vivo anti-inflammatory activity was assessed in a rat carrageenan-induced paw edema model; the anti-edema effects of the prepared gel and commercially available gel over 24 h were comparable. The present findings indicate the effects of particle size and drug loading on the ability of nanostructured lipid carrier preparations to provide transdermal drug delivery.
Influence of lubrication forces in direct numerical simulations of particle-laden flows
NASA Astrophysics Data System (ADS)
Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans
2016-11-01
Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).
Mixing, segregation, and flow of granular materials
NASA Astrophysics Data System (ADS)
McCarthy, Joseph J.
1998-11-01
This dissertation addresses mixing, segregation, and flow of granular materials with the ultimate goal of providing fundamental understanding and tools for the rational design and optimization of mixing devices. In particular, the paradigm cases of a slowly rotated tumbler mixer and flow down an inclined plane are examined. Computational work, as well as supporting experiments, are used to probe both two and three dimensional systems. In the avalanching regime, the mixing and flow can be viewed either on a global-scale or a local-scale. On the global-scale, material is transported via avalanches whose gross motion can be well described by geometrical considerations. On the local-scale, the dynamics of the particle motion becomes important; particles follow complicated trajectories that are highly sensitive to differences in size/density/morphology. By decomposing the problem in this way, it is possible to study the implications of the geometry and dynamics separately and to add complexities in a controlled fashion. This methodology allows even seemingly difficult problems (i.e., mixing in non-convex geometries, and mixing of dissimilar particles) to be probed in a simple yet methodical way. In addition this technique provides predictions of optimal mixing conditions in an avalanching tumbler, a criterion for evaluating the effect of mixer shape, and mixing enhancement strategies for both two and three dimensional mixers. In the continuous regime, the flow can be divided into two regions: a rapid flow region of the cascading layer at the free surface, and a fixed bed region undergoing solid body rotation. A continuum-based description, in which averages are taken across the layer, generates quantitative predictions about the flow in the cascading layer and agrees well with experiment. Incorporating mixing through a diffusive flux (as well as constitutive expression for segregation) within the cascading layer allows for the determination of optimal mixing conditions. Segregation requires a detailed understanding of the interplay between the flow and the properties of the particles. A relatively mature simulation technique, particle dynamics (PD), aptly captures these effects and is eminently suited to mixing studies; particle properties can be varied on a particle-by-particle basis and detailed mixed structures are easily captured and visualized. However, PD is computationally intensive and is therefore of questionable general utility. By combining PD and geometrical insight-in essence, by focusing the particle dynamics simulation only where it is needed-a new hybrid method of simulation, which is much faster than a conventional particle dynamics method, can be achieved. This technique can yield more than an order of magnitude increase in computational speed while maintaining the versatility of a particle dynamics simulation. Alternatively, by utilizing PD to explore segregation mechanisms in simple flows-e.g., flow down an inclined plane-heuristic models and constitutive relations for segregation can be tested. Incorporating these segregation flux terms into a continuum description of the flow in a tumbler allows rapid Lagrangian simulation of the competition between mixing and segregation. For the case of density segregation, this produces good agreement between theory and experiment with essentially no adjustable parameters. In addition, an accurate quantitative prediction of the optimal mixing time is obtained.
Chou, Sheng-Kai; Jiau, Ming-Kai; Huang, Shih-Chia
2016-08-01
The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP.
How do we recognize the child with OSAS?
Joosten, Koen F; Larramona, Helena; Miano, Silvia; Van Waardenburg, Dick; Kaditis, Athanasios G; Vandenbussche, Nele; Ersu, Refika
2017-02-01
Obstructive sleep-disordered breathing includes a spectrum of clinical entities with variable severity ranging from primary snoring to obstructive sleep apnea syndrome (OSAS). The clinical suspicion for OSAS is most often raised by parental report of specific symptoms and/or abnormalities identified by the physical examination which predispose to upper airway obstruction (e.g., adenotonsillar hypertrophy, obesity, craniofacial abnormalities, neuromuscular disorders). Symptoms and signs of OSAS are classified into those directly related to the intermittent pharyngeal airway obstruction (e.g., parental report of snoring, apneic events) and into morbidity resulting from the upper airway obstruction (e.g., increased daytime sleepiness, hyperactivity, poor school performance, inadequate somatic growth rate or enuresis). History of premature birth and a family history of OSAS as well as obesity and African American ethnicity are associated with increased risk of sleep-disordered breathing in childhood. Polysomnography is the gold standard method for the diagnosis of OSAS but may not be always feasible, especially in low-income countries or non-tertiary hospitals. Nocturnal oximetry and/or sleep questionnaires may be used to identify the child at high risk of OSAS when polysomnography is not an option. Endoscopy and MRI of the upper airway may help to identify the level(s) of upper airway obstruction and to evaluate the dynamic mechanics of the upper airway, especially in children with combined abnormalities. Pediatr Pulmonol. 2017;52:260-271. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation
NASA Astrophysics Data System (ADS)
Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah
2018-04-01
The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.
New numerical methods for open-loop and feedback solutions to dynamic optimization problems
NASA Astrophysics Data System (ADS)
Ghosh, Pradipto
The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development is that the resulting control law has an algebraic closed-form structure. The proposed method uses an optimal spatial statistical predictor called universal kriging to construct the surrogate model of a feedback controller, which is capable of quickly predicting an optimal control estimate based on current state (and time) information. With universal kriging, an approximation to the optimal feedback map is computed by conceptualizing a set of state-control samples from pre-computed extremals to be a particular realization of a jointly Gaussian spatial process. Feedback policies are computed for a variety of example dynamic optimization problems in order to evaluate the effectiveness of this methodology. This feedback synthesis approach is found to combine good numerical accuracy with low computational overhead, making it a suitable candidate for real-time applications. Particle swarm and universal kriging are combined for a capstone example, a near optimal, near-admissible, full-state feedback control law is computed and tested for the heat-load-limited atmospheric-turn guidance of an aeroassisted transfer vehicle. The performance of this explicit guidance scheme is found to be very promising; initial errors in atmospheric entry due to simulated thruster misfirings are found to be accurately corrected while closely respecting the algebraic state-inequality constraint.
Guo, Weian; Si, Chengyong; Xue, Yu; Mao, Yanfen; Wang, Lei; Wu, Qidi
2017-05-04
Particle Swarm Optimization (PSO) is a popular algorithm which is widely investigated and well implemented in many areas. However, the canonical PSO does not perform well in population diversity maintenance so that usually leads to a premature convergence or local optima. To address this issue, we propose a variant of PSO named Grouping PSO with Personal- Best-Position (Pbest) Guidance (GPSO-PG) which maintains the population diversity by preserving the diversity of exemplars. On one hand, we adopt uniform random allocation strategy to assign particles into different groups and in each group the losers will learn from the winner. On the other hand, we employ personal historical best position of each particle in social learning rather than the current global best particle. In this way, the exemplars diversity increases and the effect from the global best particle is eliminated. We test the proposed algorithm to the benchmarks in CEC 2008 and CEC 2010, which concern the large scale optimization problems (LSOPs). By comparing several current peer algorithms, GPSO-PG exhibits a competitive performance to maintain population diversity and obtains a satisfactory performance to the problems.
Incremental social learning in particle swarms.
de Oca, Marco A Montes; Stutzle, Thomas; Van den Enden, Ken; Dorigo, Marco
2011-04-01
Incremental social learning (ISL) was proposed as a way to improve the scalability of systems composed of multiple learning agents. In this paper, we show that ISL can be very useful to improve the performance of population-based optimization algorithms. Our study focuses on two particle swarm optimization (PSO) algorithms: a) the incremental particle swarm optimizer (IPSO), which is a PSO algorithm with a growing population size in which the initial position of new particles is biased toward the best-so-far solution, and b) the incremental particle swarm optimizer with local search (IPSOLS), in which solutions are further improved through a local search procedure. We first derive analytically the probability density function induced by the proposed initialization rule applied to new particles. Then, we compare the performance of IPSO and IPSOLS on a set of benchmark functions with that of other PSO algorithms (with and without local search) and a random restart local search algorithm. Finally, we measure the benefits of using incremental social learning on PSO algorithms by running IPSO and IPSOLS on problems with different fitness distance correlations.
PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.
Ng, Marcus C K; Fong, Simon; Siu, Shirley W I
2015-06-01
Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .
The why, when and how to test for obstructive sleep apnea in patients with atrial fibrillation.
Desteghe, Lien; Hendriks, Jeroen M L; McEvoy, R Doug; Chai-Coetzer, Ching Li; Dendale, Paul; Sanders, Prashanthan; Heidbuchel, Hein; Linz, Dominik
2018-04-12
Sleep apnea is associated with increased cardiovascular risk and may be important in atrial fibrillation (AF) management. It is present in up to 62% of the AF population and is highly under-recognized and underdiagnosed. Obstructive sleep apnea (OSA) is strongly associated with AF and non-randomized trials have shown that its treatment can help to reduce AF recurrences and maintain sinus rhythm. The 2016 European Society of Cardiology guidelines for the management of AF recommend that AF patients should be questioned regarding the symptoms of OSA and that OSA-treatment should be optimized to improve AF treatment results. However, strategies on how to implement OSA testing in the standard work-up of AF patients are not provided in the guidelines. Additionally, overnight OSA monitoring rather than interrogation for OSA-related clinical signs alone may be necessary to reliably identify OSA in the majority of AF patients. This review summarizes the available clinical data on OSA in AF patients, and discusses the following key questions: Why and When is testing for OSA needed in AF patients? How and Where should it be performed and coordinated? and Who should test for OSA? To implement OSA testing in a cardiology or electrophysiology clinic, we propose a multidisciplinary integrated care approach based on a chronic care model. We describe the tools, infrastructure and coordination needed to test for OSA in the standard workup of patients with symptomatic AF prior to the initiation of directed invasive or pharmacological rhythm control management.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, alan H.; Cucinotta, Francis A.
2008-01-01
For future space missions with longer duration, exposure to large solar particle events (SPEs) with high energy levels is the major concern during extra-vehicular activities (EVAs) on the lunar and Mars surface. The expected SPE propensity for large proton fluence was estimated from a non-homogeneous Poisson model using the historical database for measurements of protons with energy > 30 MeV, Phi(sub 30). The database includes a continuous data set for the past 5 solar cycles. The resultant SPE risk analysis for a specific mission period was made including the 95% confidence level. In addition to total particle intensity of SPE, the detailed energy spectra of protons especially at high energy levels were recognized as extremely important parameter for the risk assessment, since there remains a significant cancer risks from those energetic particles for large events. Using all the recorded proton fluence of SPEs for energies >60 and >100 MeV, Phi(sub 60) and Phi(sub 100), respectively, the expected propensities of SPEs abundant with high energy protons were estimated from the same non-homogeneous Poisson model and the representative cancer risk was analyzed. The dependencies of risk with different energy spectra, for e.g. between soft and hard SPEs, were evaluated. Finally, we describe approaches to improve radiation protection of astronauts and optimize mission planning for future space missions.
NASA Astrophysics Data System (ADS)
Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard
2008-10-01
In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.
Basha, Mona; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; El Awdan, Sally; Awad, Gamal
2015-01-01
The aim of the present work is the development and evaluation of solid lipid nanoparticles (SLNs) as carrier system for topical delivery of benzocaine (BZC) improving its local anesthesia aiming to produce a fast acting and long lasting topical formulation. BZC loaded SLNs were prepared using a full factorial design to study the influence of the type of polyoxyethylene sorbitan ester surfactants as well as their concentration as independent variables on the particle size, entrapment efficacy and zeta potential selected as dependent variables. Design of experiment (DOE) and the analysis of variance (ANOVA) were conducted to assess the optimization of the developed formulations. The results indicated that the fatty acid chain length of tested surfactants and their concentration had a significant effect on the studied responses. The optimized formulations were spherical in shape of mean particle diameters<350 nm with negatively charged surface <-20mV. Particles were characterized using differential scanning calorimetry and X-ray powder diffraction confirming the amorphous nature and the uniformity of drug inclusion in the lipid matrix. Optimized BZC-SLNs were incorporated into hydrogels characterized by a pseudoplastic non-Newtonian behavior. In vitro release study revealed an apparently biphasic release process with sustained release profile following Higuchi kinetics. BZC loaded SLNs hydrogels showed more potent anesthetic effect compared to BZC hydrogel evaluated using tail-flick analgesimeter, confirming significant improvement in both the intensity and duration of anesthetic effect. The above results proved that SLNs represent good candidates to encapsulate BZC improving its therapeutic efficacy for the topical treatment of pain.
The importance of system band broadening in modern size exclusion chromatography.
Goyon, Alexandre; Guillarme, Davy; Fekete, Szabolcs
2017-02-20
In the last few years, highly efficient UHP-SEC columns packed with sub-3μm particles were commercialized by several providers. Besides the particle size reduction, the dimensions of modern SEC stationary phases (150×4.6mm) was also modified compared to regular SEC columns (300×6 or 300×8mm). Because the analytes are excluded from the pores in SEC, the retention factors are very low, ranging from -1
Pourmehran, Oveis; Gorji, Tahereh B; Gorji-Bandpy, Mofid
2016-10-01
Magnetic drug targeting (MDT) is a local drug delivery system which aims to concentrate a pharmacological agent at its site of action in order to minimize undesired side effects due to systemic distribution in the organism. Using magnetic drug particles under the influence of an external magnetic field, the drug particles are navigated toward the target region. Herein, computational fluid dynamics was used to simulate the air flow and magnetic particle deposition in a realistic human airway geometry obtained by CT scan images. Using discrete phase modeling and one-way coupling of particle-fluid phases, a Lagrangian approach for particle tracking in the presence of an external non-uniform magnetic field was applied. Polystyrene (PMS40) particles were utilized as the magnetic drug carrier. A parametric study was conducted, and the influence of particle diameter, magnetic source position, magnetic field strength and inhalation condition on the particle transport pattern and deposition efficiency (DE) was reported. Overall, the results show considerable promise of MDT in deposition enhancement at the target region (i.e., left lung). However, the positive effect of increasing particle size on DE enhancement was evident at smaller magnetic field strengths (Mn [Formula: see text] 1.5 T), whereas, at higher applied magnetic field strengths, increasing particle size has a inverse effect on DE. This implies that for efficient MTD in the human respiratory system, an optimal combination of magnetic drug career characteristics and magnetic field strength has to be achieved.
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-01-01
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption. PMID:27428971
Romem, Anat; Tom, Sarah E; Beauchene, Michelle; Babington, Lynn; Scharf, Steven M; Romem, Ayal
2015-05-01
Limited data exist concerning the unique pain characteristics of patients with non-cancer terminal diseases referred for inpatient hospice care. To define the unique pain characteristics of patients admitted to an acute inpatient hospice setting with end-stage dementia or chronic obstructive lung disease (or chronic obstructive pulmonary disease) and to compare them to patients with end-stage cancer. Retrospective patient chart review. Demographic, physiological, pain parameters, and medication utilization data were extracted. Associations between pain characteristics, medication utilization, and admission diagnoses were assessed. Analyses included descriptive statistics. In total, 146 patients admitted to an acute inpatient hospice between 1 April 2011 and 31 March 2012 with an underlying primary diagnosis of chronic obstructive pulmonary disease (n = 51), dementia (n = 48), or cancer (n = 47). Pain was highly prevalent in all diagnostic groups, with cancer patients experiencing more severe pain on admission. Cancer patients received a significantly higher cumulative opioid dose compared with dementia and chronic obstructive pulmonary disease patients. Pain control within 24 h of pain onset was achieved in less than half of all patient groups with chronic obstructive pulmonary disease patients the least likely to achieve pain control. Despite the fact that pain is the most common complaint at the end of life, pain management may be suboptimal for some primary diagnoses. Admission diagnosis is the strongest predictor of pain control. Patient with cancer achieve the best pain control, and chronic obstructive pulmonary disease patients are the least likely to have their pain adequately treated. © The Author(s) 2015.
Multilayer design of hybrid phosphor film for application in LEDs
NASA Astrophysics Data System (ADS)
Güner, Tuğrul; Köseoğlu, Devrim; Demir, Mustafa M.
2016-10-01
Crosslinked polydimethylsiloxane (PDMS) composite coatings containing luminescent micrometer-sized yellow Y3Al5O12:Ce3+ (YAG:Ce3+) particles were prepared by spraying for potential applications in solid-state lighting. Blue light was down converted by phosphor particles to produce white light, yet poor color properties of YAG:Ce3+ stemmed from a deficiency of red. When nitride-based red phosphor was simply blended into the system, the electrostatic interaction of negatively charged YAG:Ce3+ and positively charged red phosphor particles caused remarkable clustering and heterogeneity in particle dispersion. Consequently, the light is dominantly blue and shifted to cold white. In other case, phosphor particles were sprayed onto the diffused polycarbonate substrate in stacked layers. Coatings with >80% inorganic content by mass with a thickness of 60 μm were subjected to thermal crosslinking, which the presence of the phosphor particles obstructed, presumably due to the hindrance of large phosphor particles in the diffusion of PDMS precursors. The coating of YAG:Ce3+ first followed by red phosphor in stacked layers produced better light output and color properties than the coating obtained by spraying the mixture at once. Monte Carlo simulation validated the hypothesis.
Press, Neil J; Taylor, Roger J; Fullerton, Joseph D; Tranter, Pamela; McCarthy, Clive; Keller, Thomas H; Arnold, Nicola; Beer, David; Brown, Lyndon; Cheung, Robert; Christie, Julie; Denholm, Alastair; Haberthuer, Sandra; Hatto, Julia D I; Keenan, Mark; Mercer, Mark K; Oakman, Helen; Sahri, Helene; Tuffnell, Andrew R; Tweed, Morris; Trifilieff, Alexandre
2015-09-10
Herein we describe the optimization of a series of PDE4 inhibitors, with special focus on solubility and pharamcokinetics, to clinical compound 2, 4-(8-(3-fluorophenyl)-1,7-naphthyridin-6-yl)transcyclohexanecarboxylic acid. Although compound 2 produces emesis in humans when given as a single dose, its exemplary pharmacokinetic properties enabled a novel dosing regime comprising multiple escalating doses and the resultant achievement of high plasma drug levels without associated nausea or emesis.
Yu, Xiang; Zhang, Xueqing
2017-01-01
Comprehensive learning particle swarm optimization (CLPSO) is a powerful state-of-the-art single-objective metaheuristic. Extending from CLPSO, this paper proposes multiswarm CLPSO (MSCLPSO) for multiobjective optimization. MSCLPSO involves multiple swarms, with each swarm associated with a separate original objective. Each particle's personal best position is determined just according to the corresponding single objective. Elitists are stored externally. MSCLPSO differs from existing multiobjective particle swarm optimizers in three aspects. First, each swarm focuses on optimizing the associated objective using CLPSO, without learning from the elitists or any other swarm. Second, mutation is applied to the elitists and the mutation strategy appropriately exploits the personal best positions and elitists. Third, a modified differential evolution (DE) strategy is applied to some extreme and least crowded elitists. The DE strategy updates an elitist based on the differences of the elitists. The personal best positions carry useful information about the Pareto set, and the mutation and DE strategies help MSCLPSO discover the true Pareto front. Experiments conducted on various benchmark problems demonstrate that MSCLPSO can find nondominated solutions distributed reasonably over the true Pareto front in a single run.
NASA Astrophysics Data System (ADS)
Nabiev, F. H.; Dobrodeev, A. S.; Libin, P. V.; Kotov, I. I.; Ovsyannikov, A. G.
2015-11-01
The paper defines the therapeutic and rehabilitation approach to the patients with Angle's classification Class II dento-facial anomalies, accompanied by obstructive sleep apnea (OSA). The proposed comprehensive approach to the diagnostics and treatment of patients with posterior occlusion, accompanied by OSA, allows for objective evaluation of intensity of a dento-facial anomaly and accompanying respiratory disorders in the nasal and oral pharynx, which allows for the pathophysiological mechanisms of OSA to be identified, and an optimal plan for surgical procedures to be developed. The proposed comprehensive approach to the diagnostics and treatment of patients with Angle's classification Class II dento-facial anomalies provides high functional and aesthetic results.
Schwarz, Esther I; Stradling, John R; Kohler, Malcolm
2018-01-01
Randomised controlled trials (RCTs) of continuous positive airway pressure (CPAP) in obstructive sleep apnoea (OSA) are time consuming, and their findings often inconclusive or limited due to suboptimal CPAP adherence in CPAP-naïve patients with OSA. Short-term CPAP withdrawal in patients with prior optimal CPAP adherence results in recurrence of OSA and its consequences. Thus, this experimental model serves as an efficient tool to investigate both the consequences of untreated OSA, and potential treatment alternatives to CPAP. The CPAP withdrawal protocol has been thoroughly validated, and applied in several RCTs focusing on cardiovascular and metabolic consequences of untreated OSA, as well as the assessment of treatment alternatives to CPAP.
Stradling, John R.; Kohler, Malcolm
2018-01-01
Randomised controlled trials (RCTs) of continuous positive airway pressure (CPAP) in obstructive sleep apnoea (OSA) are time consuming, and their findings often inconclusive or limited due to suboptimal CPAP adherence in CPAP-naïve patients with OSA. Short-term CPAP withdrawal in patients with prior optimal CPAP adherence results in recurrence of OSA and its consequences. Thus, this experimental model serves as an efficient tool to investigate both the consequences of untreated OSA, and potential treatment alternatives to CPAP. The CPAP withdrawal protocol has been thoroughly validated, and applied in several RCTs focusing on cardiovascular and metabolic consequences of untreated OSA, as well as the assessment of treatment alternatives to CPAP. PMID:29445525
Stegink, Eva E; van der Voort, Trijntje Y G Nienke; van der Hooft, Truus; Kupka, Ralph W; Goossens, Peter J J; Beekman, Aartjan T F; van Meijel, Berno
2015-10-01
Despite treatment, many patients with bipolar disorder experience impaired functioning and a decreased quality of life. Optimal collaboration between patient and mental health care providers could enhance treatment outcomes. The goal of this qualitative study, performed in a trial investigating the effect of collaborative care, was to gain more insight in patients' experiences regarding the helpful and obstructive elements of the working alliance between the patient recovering from a depressive episode and their nurse. Three core themes underpinned the nurses' support during recovery: a safe and supportive environment, assistance in clarifying thoughts and feelings, and support in undertaking physical activities. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Shanlin; Zhu, Weidong; Chen, Li
The particle swarm, which optimizes neural networks, has overcome its disadvantage of slow convergent speed and shortcoming of local optimum. The parameter that the particle swarm optimization relates to is not much. But it has strongly sensitivity to the parameter. In this paper, we applied PSO-BP to evaluate the environmental effect of an agricultural project, and researched application and Particle Swarm learning algorithm based on adjustment of parameter. This paper, we use MATLAB language .The particle number is 5, 30, 50, 90, and the inertia weight is 0.4, 0.6, and 0.8 separately. Calculate 10 times under each same parameter, and analyze the influence under the same parameter. Result is indicated that the number of particles is in 25 ~ 30 and the inertia weight is in 0.6 ~ 0.7, and the result of optimization is satisfied.
Obstructive sleep apnea syndrome and fatty liver: Association or causal link?
Ahmed, Mohamed H; Byrne, Christopher D
2010-01-01
Obstructive sleep apnea (OSA) is a complex disorder that consists of upper airway obstruction, chronic intermittent hypoxia and sleep fragmentation. OSA is well known to be associated with hypoxia, insulin resistance and glucose intolerance, and these factors can occur in the presence or absence of obesity and metabolic syndrome. Although it is well established that insulin resistance, glucose intolerance and obesity occur frequently with non-alcoholic fatty liver disease (NAFLD), it is now becoming apparent that hypoxia might also be important in the development of NAFLD, and it is recognized that there is increased risk of NAFLD with OSA. This review discusses the association between OSA, NAFLD and cardiovascular disease, and describes the potential role of hypoxia in the development of NAFLD with OSA. PMID:20818807
Ioachimescu, Octavian C.; Anthony, Jeremy; Constantin, Tina; Ciavatta, Mary-Margaret; McCarver, Kandace; Sweeney, Mary Ellen
2017-01-01
Study Objectives: Obstructive sleep apnea (OSA) and type 2 diabetes mellitus (T2DM) are prevalent disorders that pose increased risk of cardiovascular disease and death. The objective of this study was to clarify if continuous positive airway pressure (CPAP) therapy for OSA affects T2DM control and emergence. Methods: Point-of-care, comparative effectiveness study; cross-sectional and longitudinal analyses. Results: Our cohort included 928 consecutive patients; 13% were women; 36% were Caucasians and 61% African-Americans. OSA was diagnosed in approximately 738 patients and CPAP was initiated in 718 patients; median duration of therapy was 5 mo (25% to 75% interquartile range [IQR] 3–14). Patients with OSA used CPAP therapy for a median duration of 4.8 h, 34.5% of the nights. Adherence to CPAP was prespecified as follows: good (≥ 70% nights and ≥ 4 h/night), excellent (≥ 80% nights and ≥ 6 h/night) or outstanding (≥ 90% of nights and 8 h/night). Based on objective data, good, excellent, and outstanding compliance were found in only 30%, 20%, and 6%, respectively. Three percent of subjects without CPAP follow-up and less than 4% of those nonadherent to CPAP therapy (based on the established criteria) developed incident T2DM. Incident T2DM developed in only 0.8% of those with good compliance and in none (0%) of those in the excellent and outstanding groups. During follow-up, median weight change was +0.3 kg (IQR −1.8 to 2.7). Conclusions: We found that an outstanding compliance to CPAP reduced fasting blood glucose in patients with OSA. Longitudinally, higher levels of therapeutic adherence may affect the rate of incident impaired fasting glucose, prediabetes, and T2DM, despite the observed weight gains. Commentary: A commentary on this article appears in this issue on page 365. Citation: Ioachimescu OC, Anthony Jr J, Constantin T, Ciavatta MM, McCarver K, Sweeney ME. VAMONOS (Veterans Affairs' Metabolism, Obstructed and Non-Obstructed Sleep) study: effects of CPAP therapy on glucose metabolism in patients with obstructive sleep apnea. J Clin Sleep Med. 2017;13(3):455–466. PMID:28095965
Altered Sputum Microstructure as a Marker of Airway Obstruction in Cystic Fibrosis Patients
NASA Astrophysics Data System (ADS)
Duncan, Gregg; Jung, James; West, Natalie; Boyle, Michael; Suk, Jung Soo; Hanes, Justin
In the lungs of cystic fibrosis (CF) patients, highly viscoelastic mucus remains stagnant in the lung leading to obstructed airways prone to recurrent infections. Bulk-fluid rheological measurement is primarily used to assess the pathological features of mucus. However, this approach is limited in detecting microscopic properties on the length scale of pathogens and immune cells. We have shown in prior work based on the transport of muco-inert nanoparticles (MIP) in CF sputum that patients can carry significantly different microstructural properties. In this study, we aimed to determine the factors leading to variations between patients in sputum microstructure and their clinical implications. The microrheological properties of CF sputum were measured using multi-particle tracking experiments of MIP. MIP were made by grafting polyethylene glycol onto the surface of polystyrene nanoparticles which prior work has shown prevents adhesion to CF sputum. Biochemical analyses show that sputum microstructure was significantly altered by elevated mucin and DNA content. Reduction in sputum pore size is characteristic of patients with obstructed airways as indicated by measured pulmonary function tests. Our microstructural read-out may serve as a novel biomarker for CF.
Neimark, A I; Samchuk, Yu G; Gatkin, M Ya; Momot, A P
2017-06-01
To investigate the effectiveness of cryoprecipitate in the comprehensive conservative therapy of patients with acute purulent pyelonephritis. We conducted a retrospective analysis of medical records of patients who were diagnosed with acute non-obstructive pyelonephritis from 2007to 2015. During this period, a total of 3912 patients with acute non-obstructive pyelonephritis were treated at the Department of Urology. Patients were assigned to either receive or not receive cryoprecipitate in the comprehensive conservative therapy. The comprehensive conservative therapy of both groups included antibacterial agents, detoxification, anti-inflammatory therapy. In the study group, patients received additional treatment with cryoprecipitate. By that way we estimated the number of patients who avoided surgery in both groups. There were 3912 patients divided into two groups. The first group included 756 patients (19.3%) who received cryoprecipitate in the comprehensive therapy of pyelonephritis. Of them, 735 patients (97.3%) did not require surgical treatment, and only 21 patients (2.7%) underwent surgery. The second group comprised 3156 patients (80.7%) who did not receive cryoprecipitate. Of them, 2974 patients (94.2%) were treated conservatively without surgical intervention and 182 patients (5.8%) received conservative therapy concurrently with surgical treatment. Therefore, including cryoprecipitate in the comprehensive conservative therapy of acute non-obstructive pyelonephritis results in twice smaller percentage of patients (2.7% vs 5.8%) requiring surgery compared to the comprehensive conservative therapy alone.
Mukai, Tsuyoshi; Yasuda, Ichiro; Isayama, Hiroyuki; Iwashita, Takuji; Itoi, Takao; Kawakami, Hiroshi; Kogure, Hirofumi; Nakai, Yousuke
2016-09-01
In patients with unresectable malignant distal biliary obstruction, covered self-expandable metallic stents (CSEMS) may remain patent longer than uncovered self-expandable metallic stents as a result of tumor ingrowth prevention. One main cause of recurrent biliary obstruction (RBO) in CSEMS is sludge formation, which can be prevented using a large-bore stent. Therefore, we developed a novel, 12-mm diameter fully covered SEMS (FCSEMS) and investigated its clinical safety, efficacy, and rate of adverse events. This prospective, multicenter pilot study, which ran between June 2011 and November 2012, included 38 consecutive patients with unresectable malignant distal biliary obstruction. All patients underwent endoscopic insertion of our novel stent. Primary endpoint was non-RBO rate 6 months after placement. Technical and functional success rates of the procedures were 100%. Six-month non-RBO rate was 50%, and median time to RBO was 184 days. Median survival time was 241 days. Twelve patients died within 6 months after stent placement without RBO. RBO was observed in 10 patients (26%), with seven experiencing stent occlusion and three experiencing stent migration. Adverse events other than RBO (at <30 days) developed in six patients (16%; cholecystitis, one; pancreatitis, one; hyperamylasemia, one; pancreatic ductitis, one; abdominal pain, two). Stent removal for reintervention was successfully completed in eight patients. Our novel FCSEMS may be safe and effective for managing malignant distal obstruction with an acceptable incidence of adverse events. © 2016 Japan Gastroenterological Endoscopy Society.
Li, Chuan; Peng, Juan; Liang, Ming
2014-01-01
Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements. PMID:24686730
Li, Chuan; Peng, Juan; Liang, Ming
2014-03-28
Oil debris sensors are effective tools to monitor wear particles in lubricants. For in situ applications, surrounding noise and vibration interferences often distort the oil debris signature of the sensor. Hence extracting oil debris signatures from sensor signals is a challenging task for wear particle monitoring. In this paper we employ the maximal overlap discrete wavelet transform (MODWT) with optimal decomposition depth to enhance the wear particle monitoring capability. The sensor signal is decomposed by the MODWT into different depths for detecting the wear particle existence. To extract the authentic particle signature with minimal distortion, the root mean square deviation of kurtosis value of the segmented signal residue is adopted as a criterion to obtain the optimal decomposition depth for the MODWT. The proposed approach is evaluated using both simulated and experimental wear particles. The results show that the present method can improve the oil debris monitoring capability without structural upgrade requirements.
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.
Sun, Tao; Xu, Ming-Hai
2017-01-01
Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.
Maron, David J; Hochman, Judith S; O'Brien, Sean M; Reynolds, Harmony R; Boden, William E; Stone, Gregg W; Bangalore, Sripal; Spertus, John A; Mark, Daniel B; Alexander, Karen P; Shaw, Leslee; Berger, Jeffrey S; Ferguson, T Bruce; Williams, David O; Harrington, Robert A; Rosenberg, Yves
2018-07-01
Prior trials comparing a strategy of optimal medical therapy with or without revascularization have not shown that revascularization reduces cardiovascular events in patients with stable ischemic heart disease (SIHD). However, those trials only included participants in whom coronary anatomy was known prior to randomization and did not include sufficient numbers of participants with significant ischemia. It remains unknown whether a routine invasive approach offers incremental value over a conservative approach with catheterization reserved for failure of medical therapy in patients with moderate or severe ischemia. The ISCHEMIA trial is a National Heart, Lung, and Blood Institute supported trial, designed to compare an initial invasive or conservative treatment strategy for managing SIHD patients with moderate or severe ischemia on stress testing. Five thousand one-hundred seventy-nine participants have been randomized. Key exclusion criteria included estimated glomerular filtration rate (eGFR) <30 mL/min, recent myocardial infarction (MI), left ventricular ejection fraction <35%, left main stenosis >50%, or unacceptable angina at baseline. Most enrolled participants with normal renal function first underwent blinded coronary computed tomography angiography (CCTA) to exclude those with left main coronary artery disease (CAD) and without obstructive CAD. All randomized participants receive secondary prevention that includes lifestyle advice and pharmacologic interventions referred to as optimal medical therapy (OMT). Participants randomized to the invasive strategy underwent routine cardiac catheterization followed by revascularization with percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) surgery, when feasible, as selected by the local Heart Team to achieve optimal revascularization. Participants randomized to the conservative strategy undergo cardiac catheterization only for failure of OMT. The primary endpoint is a composite of cardiovascular (CV) death, nonfatal myocardial infarction (MI), hospitalization for unstable angina, hospitalization for heart failure, or resuscitated cardiac arrest. Assuming the primary endpoint will occur in 16% of the conservative group within 4 years, estimated power exceeds 80% to detect an 18.5% reduction in the primary endpoint. Major secondary endpoints include the composite of CV death and nonfatal MI, net clinical benefit (primary and secondary endpoints combined with stroke), angina-related symptoms and disease-specific quality of life, as well as a cost-effectiveness assessment in North American participants. Ancillary studies of patients with advanced chronic kidney disease and those with documented ischemia and non-obstructive coronary artery disease are being conducted concurrently. ISCHEMIA will provide new scientific evidence regarding whether an invasive management strategy improves clinical outcomes when added to optimal medical therapy in patients with SIHD and moderate or severe ischemia. Copyright © 2018 Elsevier Inc. All rights reserved.
3D SAPIV particle field reconstruction method based on adaptive threshold.
Qu, Xiangju; Song, Yang; Jin, Ying; Li, Zhenhua; Wang, Xuezhen; Guo, ZhenYan; Ji, Yunjing; He, Anzhi
2018-03-01
Particle image velocimetry (PIV) is a necessary flow field diagnostic technique that provides instantaneous velocimetry information non-intrusively. Three-dimensional (3D) PIV methods can supply the full understanding of a 3D structure, the complete stress tensor, and the vorticity vector in the complex flows. In synthetic aperture particle image velocimetry (SAPIV), the flow field can be measured with large particle intensities from the same direction by different cameras. During SAPIV particle reconstruction, particles are commonly reconstructed by manually setting a threshold to filter out unfocused particles in the refocused images. In this paper, the particle intensity distribution in refocused images is analyzed, and a SAPIV particle field reconstruction method based on an adaptive threshold is presented. By using the adaptive threshold to filter the 3D measurement volume integrally, the three-dimensional location information of the focused particles can be reconstructed. The cross correlations between images captured from cameras and images projected by the reconstructed particle field are calculated for different threshold values. The optimal threshold is determined by cubic curve fitting and is defined as the threshold value that causes the correlation coefficient to reach its maximum. The numerical simulation of a 16-camera array and a particle field at two adjacent time events quantitatively evaluates the performance of the proposed method. An experimental system consisting of a camera array of 16 cameras was used to reconstruct the four adjacent frames in a vortex flow field. The results show that the proposed reconstruction method can effectively reconstruct the 3D particle fields.
NASA Astrophysics Data System (ADS)
Yadav, Basant; Ch, Sudheer; Mathur, Shashi; Adamowski, Jan
2016-12-01
In-situ bioremediation is the most common groundwater remediation procedure used for treating organically contaminated sites. A simulation-optimization approach, which incorporates a simulation model for groundwaterflow and transport processes within an optimization program, could help engineers in designing a remediation system that best satisfies management objectives as well as regulatory constraints. In-situ bioremediation is a highly complex, non-linear process and the modelling of such a complex system requires significant computational exertion. Soft computing techniques have a flexible mathematical structure which can generalize complex nonlinear processes. In in-situ bioremediation management, a physically-based model is used for the simulation and the simulated data is utilized by the optimization model to optimize the remediation cost. The recalling of simulator to satisfy the constraints is an extremely tedious and time consuming process and thus there is need for a simulator which can reduce the computational burden. This study presents a simulation-optimization approach to achieve an accurate and cost effective in-situ bioremediation system design for groundwater contaminated with BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes) compounds. In this study, the Extreme Learning Machine (ELM) is used as a proxy simulator to replace BIOPLUME III for the simulation. The selection of ELM is done by a comparative analysis with Artificial Neural Network (ANN) and Support Vector Machine (SVM) as they were successfully used in previous studies of in-situ bioremediation system design. Further, a single-objective optimization problem is solved by a coupled Extreme Learning Machine (ELM)-Particle Swarm Optimization (PSO) technique to achieve the minimum cost for the in-situ bioremediation system design. The results indicate that ELM is a faster and more accurate proxy simulator than ANN and SVM. The total cost obtained by the ELM-PSO approach is held to a minimum while successfully satisfying all the regulatory constraints of the contaminated site.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-07
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
NASA Astrophysics Data System (ADS)
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2016-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6±15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size. PMID:27991456
Shen, Zhen; Zheng, Shan; Dong, Rui; Chen, Gong
2017-12-01
The purpose of this study was to study whether color difference in facial color truly exists between neonates with obstructive and nonobstructive jaundice, and whether the color difference could be objectified by spectrophotometer. Twelve biliary atresia patients were enrolled in an obstructive jaundice group and 15 neonates admitted for non-conjugated hyperbilirubinemia in a nonobstructive group. Nine patients with syphilis (n=6) and sacrococcygeal teratoma (n=3) were studied as control. Transcutaneous total bilirubin (TB) and hemoglobin were recorded. Face color was measured by spectrophotometer. Spectral reflection curve and L*a*b* model parameters were studied. Facial color of jaundiced neonates were characteristic in waveform that reflectivity at wavelength of 550nm was significantly decreased compared with control by 16.4±3.4%, while not significantly different between obstructive and nonobstructive jaundice (p=0.124). At 650nm, reflection in nonobstructive jaundice was decreased by 8.4±2.3% (p<0.01), and reflection in obstructive jaundice was (9.6±3.2) % lower compared with nonobstructive jaundice (p<0.01). In L*a*b* model, mean color difference between obstructive and nonobstructive jaundice was 9.60. L* was significantly different: control (71.84±3.75%)>obstructive jaundice (58.09±1.25%)>nonobstructive jaundice (54.25±7.27%). Value b* was higher in jaundiced patients compared to normal control (11.88±2.16, p<0.001), but not significantly different in obstructive and nonobstructive jaundice (20.12±2.17vs18.25±4.58). Value a* was not significantly different between normal control (5.57±2.38) and obstructive jaundice (5.25±1.19), but was lower than nonobstructive jaundice (14.03±3.29, p<0.001). TB was significantly correlated with b* (R=0.526, p=0.014), while hemoglobin was correlated with a* (R=0.791, p<.001) and L* (R=-0.707, p<.001). Obstructive and nonobstructive jaundice could be objectively differentiated through facial color inspection by spectrophotometer. Study of Diagnostic Test. Level II. Copyright © 2017 Elsevier Inc. All rights reserved.
2013-01-01
Background Although endoscopic biliary stents have been accepted as part of palliative therapy for cases of malignant hilar obstruction, the optimal endoscopic management regime remains controversial. In this study, we evaluated the safety and efficacy of placing a threaded stent above the sphincter of Oddi (threaded inside plastic stents, threaded PS) and compared the results with those of other stent types. Methods Patients with malignant hilar obstruction, including those requiring biliary drainage for stent occlusion, were selected. Patients received either one of the following endoscopic indwelling stents: threaded PS, conventional plastic stents (conventional PS), or metallic stents (MS). Duration of stent patency and the incident of complication were compared in these patients. Results Forty-two patients underwent placement of endoscopic indwelling stents (threaded PS = 12, conventional PS = 17, MS = 13). The median duration of threaded PS patency was significantly longer than that of conventional PS patency (142 vs. 32 days; P = 0.04, logrank test). The median duration of threaded PS and MS patency was not significantly different (142 vs. 150 days, P = 0.83). Stent migration did not occur in any group. Among patients who underwent threaded PS placement as a salvage therapy after MS obstruction due to tumor ingrowth, the median duration of MS patency was significantly shorter than that of threaded PS patency (123 vs. 240 days). Conclusions Threaded PS are safe and effective in cases of malignant hilar obstruction; moreover, it is a suitable therapeutic option not only for initial drainage but also for salvage therapy. PMID:23410217
Tyagi, Himanshu; Kushwaha, Ajay; Kumar, Anshuman; Aslam, Mohammed
2016-12-01
The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations.
Varia, Jigisha K; Dodiya, Shamsunder S; Sawant, Krutika K
2008-01-01
Solid lipid nanoparticles (SLNs) loaded with Cyclosporine A using glyceryl monostearate (GMS) and glyceryl palmitostearate (GPS) as lipid matrices were prepared by melt-homogenization using high-pressure homogenizer. Various process parameters such as homogenization pressure, homogenization cycles and formulation parameters such as ratio of drug: lipid, emulsifier: lipid and emulsifier: co-emulsifier were optimized using particle size and entrapment efficiencies as the dependent variables. The mean particle size of optimized batches of the GMS SLN and GPS SLN were found to be 131 nm and 158 nm and their entrapment efficiencies were 83 +/- 3.08% and 97 +/- 2.59% respectively. To improve the handling processing and stability of the prepared SLNs, the SLN dispersions were spray dried and its effect on size and reconstitution parameters were evaluated. The spray drying of SLNs did not significantly alter the size of SLNs and they exhibited good redispersibility. Solid state studies such as Infra Red Spectroscopy and Differential Scanning Calorimetry indicated absence of any chemical interaction between Cyclosporine A and the lipids. Scanning Electron Microscopy of optimized formulations showed spherical shape with smooth and non porous surface. In vitro release studies revealed that GMS based SLNs released the drug faster (41.12% in 20 hours) than GPS SLNs (7.958% in 20 hours). Release of Cyclosporine A from GMS SLN followed Higuchi equation better than first order while release from GPS SLN followed first order better than Higuchi model.
NASA Astrophysics Data System (ADS)
Schmitt, M.
2015-05-01
The migration and transport of polymerization initiators are problematic for commercially used polymerization procedures. For example, UV printing of packaging generates products with potentially harmful components that come in contact with food. Enlarging the size of the initiator is the only way to prevent contamination, e.g., by gas phase transport. In this manuscript, the synthesis and advanced and full analyses of novel nanoparticle-based types of non-migration, fragmenting and non-fragmenting photo-initiators will be presented in detail. This study introduces non-fragmenting/``Norrish type II'' and fragmenting/``Norrish type I'' ZnO nanoparticle-based initiators and compares them with two commercial products, a ``Norrish type I'' initiator and a ``Norrish type II'' initiator. Therefore, inter alia, the recently developed analysis involves examining the solidification by UV-vis and the double bond content by Raman. Irradiation is performed using absolute and spectrally calibrated xenon flash lights. A novel procedure for absolute and spectral calibration of such light sources is also presented. The non-optimized ``Norrish type II'' particle-based initiator is already many times faster than benzophenone, which is a molecular initiator of the same non-fragmenting type. This experimentally observed difference in reactive particle-based systems without co-initiators is unexpected. Co-initiators are normally an additional molecular species, which leads to migration problems. The discovery of significant initiation potential resulting in a very well-dispersed organic-inorganic hybrid material suggests a new field of research opportunities at the interface of physical chemistry, polymer chemistry and engineering science, with enormous value for human health.The migration and transport of polymerization initiators are problematic for commercially used polymerization procedures. For example, UV printing of packaging generates products with potentially harmful components that come in contact with food. Enlarging the size of the initiator is the only way to prevent contamination, e.g., by gas phase transport. In this manuscript, the synthesis and advanced and full analyses of novel nanoparticle-based types of non-migration, fragmenting and non-fragmenting photo-initiators will be presented in detail. This study introduces non-fragmenting/``Norrish type II'' and fragmenting/``Norrish type I'' ZnO nanoparticle-based initiators and compares them with two commercial products, a ``Norrish type I'' initiator and a ``Norrish type II'' initiator. Therefore, inter alia, the recently developed analysis involves examining the solidification by UV-vis and the double bond content by Raman. Irradiation is performed using absolute and spectrally calibrated xenon flash lights. A novel procedure for absolute and spectral calibration of such light sources is also presented. The non-optimized ``Norrish type II'' particle-based initiator is already many times faster than benzophenone, which is a molecular initiator of the same non-fragmenting type. This experimentally observed difference in reactive particle-based systems without co-initiators is unexpected. Co-initiators are normally an additional molecular species, which leads to migration problems. The discovery of significant initiation potential resulting in a very well-dispersed organic-inorganic hybrid material suggests a new field of research opportunities at the interface of physical chemistry, polymer chemistry and engineering science, with enormous value for human health. Electronic supplementary information (ESI) available: Multiple additional figures and images concerning the synthesis, characterization, data evaluation, TEMs and ESR spectra are available free of charge. See DOI: 10.1039/c5nr00850f
NASA Astrophysics Data System (ADS)
Vysotskii, V. I.; Vysotskyy, M. V.
2017-08-01
We consider a method for optimizing the tunnel effect for low-energy particles by using coherent correlated states formed under controllable pulsed action on these particles. Typical examples of such actions are the effect of a pulsed magnetic field on charged particles in a gas or plasma. Coherent correlated states are characterized most comprehensively by the correlation coefficient r( t); an increase of this factor elevates the probability of particle tunneling through a high potential barrier by several orders of magnitude without an appreciable increase in their energy. It is shown for the first time that the formation of coherent correlated states, as well as maximal | r( t)|max and time-averaged 〈| r( t)|〉 amplitudes of the correlation coefficient and the corresponding tunneling probability are characterized by a nonmonotonic (oscillating) dependence on the forming pulse duration and amplitude. This result makes it possible to optimize experiments on the realization of low-energy nuclear fusion and demonstrates the incorrectness of the intuitive idea that the tunneling probability always increases with the amplitude of an external action on a particle. Our conclusions can be used, in particular, for explaining random (unpredictable and low-repeatability) experimental results on optimization of energy release from nuclear reactions occurring under a pulsed action with fluctuations of the amplitude and duration. We also consider physical premises for the observed dependences and obtain optimal relations between the aforementioned parameters, which ensure the formation of an optimal coherent correlated state and optimal low-energy tunneling in various physical systems with allowance for the dephasing action of a random force. The results of theoretical analysis are compared with the data of successful experiments on the generation of neutrons and alpha particles in an electric discharge in air and gaseous deuterium.
Resistant Hypertension and Chronotherapy
Prkacin, Ingrid; Balenovic, Diana; Djermanovic-Dobrota, Vesna; Lukac, Iva; Drazic, Petra; Pranjic, Iva-Klara
2015-01-01
Resistant hypertension is defined as blood pressure that remains above 140/90 mmHg in spite of the continuous use of three antihypertensive agents in optimal dose, including diuretic, and lifestyle changes. According to data from United States of America and Europe, the prevalence ranges from 10 up to 30% in patients with hypertension. Numerous biological and lifestyle factors can contribute to the development of resistant hypertension: medications, volume overload, obesity, diabetes mellitus, older age, renal parenchymal and renovascular disease, primary aldosteronism, obstructive sleep apnea, pheochormocytoma, Cushing’s syndrome, thyroid diseases, aortic coarctation. For diagnosing patient’s history is important, assessing compliance, regular blood pressure measurement, physical examination, biochemical evaluation and noninvasive imaging. The evaluation including 24h ambulatory monitoring of blood pressure (ABPM) in the identification of “non-dipper” hypertension. Non-dipper has particular importance and the prevalence of abnormally high sleep blood pressure is very often in chronic kidney patients. Therapeutic restoration of normal physiologic blood pressure reduction during night-time sleep (circadial variation) is the most significant independent predictor of decreased risk and the basis for the chronotherapy. The resistant hypertension treatment is achieved with nonpharmacological and pharmacological approach, treating secondary hypertension causes and invasive procedures. PMID:26005390
Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels
NASA Astrophysics Data System (ADS)
Wang, Jiuling; Yang, Yiwei; Yu, Miaorong; Hu, Guoqing; Gan, Yong; Gao, Huajian; Shi, Xinghua
2018-03-01
It is known that rod-like nanoparticles (NPs) can achieve higher diffusivity than their spherical counterparts in biological porous media such as mucus and tumor interstitial matrix, but the underlying mechanisms still remain elusive. Here, we present a joint experimental and theoretical study to show that the aspect ratio (AR) of NPs and their adhesive interactions with the host medium play key roles in such anomalous diffusion behaviors of nanorods. In an adhesive polymer solution/gel (e.g., mucus), hopping diffusion enables nanorods to achieve higher diffusivity than spherical NPs with diameters equal to the minor axis of the rods, and there exists an optimal AR that leads to maximum diffusivity. In contrast, the diffusivity of nanorods decreases monotonically with increasing AR in a non-adhesive polymer solution/gel (e.g., hydroxyethyl cellulose, HEC). Our theoretical model, which captures all the experimental observations, generalizes the so-called obstruction-scaling model by incorporating the effects of the NPs/matrix interaction via the mean first passage time (MFPT) theory. This work reveals the physical origin of the anomalous diffusion behaviors of rod-like NPs in biological gels and may provide guidelines for a range of applications that involve NPs diffusion in complex porous media.
Azbay, Sule; Bostanci, Asli; Aysun, Yasin; Turhan, Murat
2016-09-01
The aim of this study was to evaluate the influence of multilevel upper airway surgery on subsequent continuous positive airway pressure (CPAP) use and tolerance in patients with moderate to severe obstructive sleep apnea (OSA). The study cohort enrolled 67 consecutive patients, who underwent septoplasty plus modified uvulopharyngopalatoplasty (mUPPP) with or without modified tongue base suspension (mTBS) due to CPAP intolerance, and who had residual OSA requiring CPAP therapy [non-responders to surgery, apnea-hypopnea index (AHI) >15 events/h] that had been confirmed by control polysomnography at the sixth month postoperatively. A questionnaire including questions on postoperative CPAP use, problems faced during CPAP use after the surgery, change in OSA symptoms, and satisfaction with the surgery was designed, and filled through interviews. Seventeen (25.4 %) patients had septoplasty plus mUPPP and 50 (74.6 %) had septoplasty plus mUPPP combined with mTBS. Postoperatively, mean AHI (45.00 ± 19.76 vs. 36.60 ± 18.34), Epworth sleepiness scale (ESS) score (18.00 ± 4.45 vs. 13.00 ± 4.72), oxygen desaturation index (ODI) (48.98 ± 16.73 vs. 37.81 ± 17.03), and optimal CPAP level (11.80 ± 1.40 vs. 8.96 ± 1.20) were decreased (p < 0.001 for all parameters). Fifty-nine percent of patients reported that they fairly satisfied with the surgery and 49.2 % reported that their symptoms were completely resolved. While none of the cases could tolerate CPAP before surgery, almost half (47.8 %) of the cases used CPAP without problems postoperatively. Postoperative CPAP users had significantly higher postoperative AHI (p = 0.001), supine AHI (p = 0.009), ESS (p = 0.019), and ODI (p = 0.014), and significantly lower postoperative minimum O2 saturation (p = 0.001) compared with non-users. Multilevel upper airway surgery with less invasive techniques may improve CPAP tolerance in well-selected patients.
Optimization of Dynamic Aperture of PEP-X Baseline Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Min-Huey; /SLAC; Cai, Yunhai
2010-08-23
SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. Themore » latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.« less
[Asymptomatic kidney stones: active surveillance vs. treatment].
Neisius, A; Thomas, C; Roos, F C; Hampel, C; Fritsche, H-M; Bach, T; Thüroff, J W; Knoll, T
2015-09-01
The prevalence of kidney stones is increasing worldwide. Asymptomatic non-obstructing kidney stones are increasingly detected as an incidental finding on radiologic imaging, which has been performed more frequently over the last decades. Beside the current interventional treatment modalities such as extracorporeal shockwave lithotripsy (ESWL), ureterorenoscopy (URS) and percutaneous nephrolithotomy (PNL), active surveillance of asymptomatic kidney stones has been a focus of discussion lately, not only for attending physicians, but even more so for patients. The current German and European guidelines recommend active surveillance for patients with asymptomatic kidney stones if no interventional therapy is mandatory because of pain or medical factors. Herein we review the current literature on risks and benefits of active surveillance of asymptomatic non-obstructing kidney stones. © Georg Thieme Verlag KG Stuttgart · New York.
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
Inversion method based on stochastic optimization for particle sizing.
Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix
2016-08-01
A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem.
Wang, Xingmei; Hao, Wenqian; Li, Qiming
2017-12-18
This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.
Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo
2017-01-01
In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human planner intervention. A comparison of the results with the optimized solution obtained using a similar optimization model but with human planner intervention revealed that the proposed algorithm produced optimized plans superior to that developed using the manual plan. The proposed algorithm can generate admissible solutions within reasonable computational times and can be used to develop fully automated IMRT treatment planning methods, thus reducing human planners' workloads during iterative processes. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Work extraction and thermodynamics for individual quantum systems
NASA Astrophysics Data System (ADS)
Skrzypczyk, Paul; Short, Anthony J.; Popescu, Sandu
2014-06-01
Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a ‘weight’ that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine.
Work extraction and thermodynamics for individual quantum systems.
Skrzypczyk, Paul; Short, Anthony J; Popescu, Sandu
2014-06-27
Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a 'weight' that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine.
The surgical treatment of ilio-femoral venous obstruction.
Illuminati, G; Caliò, F G; D'Urso, A; Mancini, P; Papaspyropoulos, V; Ceccanei, G; Lorusso, R; Vietri, F
2004-01-01
A series of 9 patients of a mean age of 48 years, operated on for compression of the ilio-femoral venous axis is reported. The cause of obstruction was external compression in 3 cases, a retroperitoneal sarcoma in 1 case, and an infrarenal aortic aneurysm in 2. Two patients presented with a Cockett's syndrome, 3 with a chronic ilio-femoral thrombosis, and one with a post-traumatic segmentary stenosis. Treatment consisted in a resection/Dacron grafting of 2 infrarenal aortic aneurysms, one femoro-caval bypass graft, 2 transpositions of the right common iliac artery in the left hypogastric artery for Cockett's syndrome, 3 Palma's operations for chronic thrombosis, and one internal jugular vein interposition for segmentary stenosis. There were no postoperative deaths and no early thromboses of venous reconstructions performed. All the patients were relieved of symptoms during the follow-up period, whose mean length was 38 months. The cause of venous obstruction and the presence of symptoms which are resistant to medical treatment are the main indications to ilio-femoral venous revascularization. The choice of the optimal treatment in each single case yields satisfactory results.
The role of telemedicine in obstructive sleep apnea management.
Lugo, Vera; Villanueva, Jair Asir; Garmendia, Onintza; Montserrat, Josep M
2017-09-01
Obstructive sleep apnea (OSA) is a common disease that leads in notorious symptoms and comorbidities. Although general measures are important, continuous positive airway pressure (CPAP) is the best treatment option. However, compliance can be suboptimal and telemedicine may play a role to improve it. Areas covered: Review authors searched EMBASE, PubMed and Cochrane data bases using the following keywords: continuous positive airway pressure, Obstructive sleep apnea, telemedicine, respiratory telemedicine, information and communication technology. Papers published between 2000 and 2016 in English language were considered. Expert commentary: To improve OSA management, there is a pressing need to develop new cost-effective strategies, particularly those related to OSA treatment, from measures such as lifestyle changes to CPAP use. Two broad strategies should be implemented: 1) adequate pre-, peri-, and post-titration measures to ensure correct diagnosis, adequate training, and appropriate support during follow up; and 2) the use of technological advances including both the optimization of CPAP devices and the use of telemedicine, specially focused on the first days or weeks of treatment. Telemedicine can help with these processes, especially when it is personalized to the needs of each patient group.
Guided particle swarm optimization method to solve general nonlinear optimization problems
NASA Astrophysics Data System (ADS)
Abdelhalim, Alyaa; Nakata, Kazuhide; El-Alem, Mahmoud; Eltawil, Amr
2018-04-01
The development of hybrid algorithms is becoming an important topic in the global optimization research area. This article proposes a new technique in hybridizing the particle swarm optimization (PSO) algorithm and the Nelder-Mead (NM) simplex search algorithm to solve general nonlinear unconstrained optimization problems. Unlike traditional hybrid methods, the proposed method hybridizes the NM algorithm inside the PSO to improve the velocities and positions of the particles iteratively. The new hybridization considers the PSO algorithm and NM algorithm as one heuristic, not in a sequential or hierarchical manner. The NM algorithm is applied to improve the initial random solution of the PSO algorithm and iteratively in every step to improve the overall performance of the method. The performance of the proposed method was tested over 20 optimization test functions with varying dimensions. Comprehensive comparisons with other methods in the literature indicate that the proposed solution method is promising and competitive.
Study on loading path optimization of internal high pressure forming process
NASA Astrophysics Data System (ADS)
Jiang, Shufeng; Zhu, Hengda; Gao, Fusheng
2017-09-01
In the process of internal high pressure forming, there is no formula to describe the process parameters and forming results. The article use numerical simulation to obtain several input parameters and corresponding output result, use the BP neural network to found their mapping relationship, and with weighted summing method make each evaluating parameters to set up a formula which can evaluate quality. Then put the training BP neural network into the particle swarm optimization, and take the evaluating formula of the quality as adapting formula of particle swarm optimization, finally do the optimization and research at the range of each parameters. The results show that the parameters obtained by the BP neural network algorithm and the particle swarm optimization algorithm can meet the practical requirements. The method can solve the optimization of the process parameters in the internal high pressure forming process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, K; Weber, U; Simeonov, Y
Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular andmore » thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.« less
Bilateral parotitis in a patient under continuous positive airway pressure treatment.
Abdullayev, Ruslan; Saral, Filiz Cosku; Kucukebe, Omer Burak; Sayiner, Hakan Sezgin; Bayraktar, Cem; Akgun, Sadik
Many conditions such as bacterial and viral infectious diseases, mechanical obstruction due to air and calculi and drugs can cause parotitis. We present a case of unusual bilateral parotitis in a patient under non-invasive continuous positive airway pressure (CPAP) therapy for chronic obstructive pulmonary disease exacerbation in intensive care unit. A 36-year-old patient was admitted to intensive care unit with the diagnosis of chronic obstructive pulmonary disease exacerbation. Antibiotherapy, bronchodilator therapy and non-invasive positive pressure ventilation were applied as treatment regimen. Painless swellings developed on the 3rd day of admission on the right and a day after this on the left parotid glands. Amylase levels were increased and ultrasonographic evaluation revealed bilateral parotitis. No intervention was made and the therapy was continued. The patient was discharged on the 6th day with clinical improvement and regression of parotid swellings without any complications. Parotitis may have occurred after retrograde air flow in the Stensen duct during CPAP application. After the exclusion of possible viral and bacteriological etiologies and possible drug reactions we can focus on this diagnosis. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
de Bessa, Jose; Rodrigues, Cicilia M; Chammas, Maria Cristina; Miranda, Eduardo P; Gomes, Cristiano M; Moscardi, Paulo R; Bessa, Marcia C; Molina, Carlos A; Tiraboschi, Ricardo B; Netto, Jose M; Denes, Francisco T
2018-01-01
Ureteropelvic junction obstruction (UPJO) is a common congenital anomaly leading to varying degrees of hydronephrosis (HN), ranging from no apparent effect on the renal function to atrophy. Evaluation of these children is based on Diuretic Renal Scintigraphy (DRS) and Ultrasonography (US). Recent studies have suggested that new parameters of conventional and color Doppler ultrasonography (CDUS) may be useful in discriminating which kidneys are obstructed. The present study aims to assess the diagnostic accuracy of such parameters in the diagnosis of obstruction in children with UPJO. We evaluated 44 patients (33 boys) with a mean age of 6.53 ± 4.39 years diagnosed with unilateral high-grade hydronephrosis (SFU grades 3 and 4). All underwent DRS and index tests (conventional US and CDUS to evaluate ureteral jets frequency) within a maximum interval of two weeks. Hydronephrotic units were reclassified according to the alternative grading system (AGS) proposed by Onen et al. Obstruction in the DRS was defined as a differential renal function <40% on the affected side and/or features indicating poor drainage function like T1/2 >20 minutes after the administration of furosemide, and a plateau or ascending pattern of the excretion curve. Nineteen hydronephrotic units (43.1%) were obstructed. Some degree of cortical atrophy-grades 3 (segmental) or 4 (diffuse)-was present in those obstructed units. AGS grades had 100% sensitivity, 76% of specificity and 86.4% of accuracy. The absence of ureteral jets had a sensitivity of 73.68%, a specificity of 100% with an accuracy of 88.6%. When we analyzed the two aspects together and considered obstructed the renal units classified as AGS grade 3 or 4 with no jets, sensitivity increased to 78.9%, accuracy to 92%, remaining with a maximum specificity of 100%. These features combined would allow us to avoid performing DRS in 61% of our patients, leaving more invasive tests to inconclusive cases. Although DRS remains the mainstay to distinguishing obstructive from non-obstructive kidneys, grade of hydronephrosis and frequency of ureteral jets, independently or in combination may be a reliable alternative in the mostly cases.This alternative approach has high accuracy, it is less invasive, easily reproducible and may play a role in the diagnosis of obstruction in pediatric population.
Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues
Lai, Samuel K.; Wang, Ying-Ying; Hanes, Justin
2009-01-01
Mucus is a viscoelastic and adhesive gel that protects the lung airways, gastrointestinal (GI) tract, vagina, eye and other mucosal surfaces. Most foreign particulates, including conventional particle-based drug delivery systems, are efficiently trapped in human mucus layers by steric obstruction and/or adhesion. Trapped particles are typically removed from the mucosal tissue within seconds to a few hours depending on anatomical location, thereby strongly limiting the duration of sustained drug delivery locally. A number of debilitating diseases could be treated more effectively and with fewer side effects if drugs and genes could be more efficiently delivered to the underlying mucosal tissues in a controlled manner. This review first describes the tenacious mucus barrier properties that have precluded the efficient penetration of therapeutic particles. It then reviews the design and development of new mucus-penetrating particles that may avoid rapid mucus clearance mechanisms, and thereby provide targeted or sustained drug delivery for localized therapies in mucosal tissues. PMID:19133304
Flow and Sedimentation of particulate suspensions in Fractures
NASA Astrophysics Data System (ADS)
Lo, Tak Shing; Koplik, Joel
2011-03-01
Suspended particles are commonly found in reservoir fluids. They alter the rheology of the flowing liquids and may obstruct transport by narrowing flow channels due to gravitational sedimentation. An understanding of the dynamics of particle transport and deposition is, therefore, important to many geological, enviromental and industrial processes. Realistic geological fractures usually have irregular surfaces with self-affine structures, and the surface roughness plays a crucial role in the flow and sedimentation processes. Recently, we have used the lattice Boltzmann method to study the combined effects of sedimentation and transport of particles suspended in a Newtonian fluid in a pressure-driven flow in self-affine channels, which is especially relevant to clogging phenomena where sediments may block fluid flows in narrow constrictions of the channels. The lattice Boltzmann method is flexible and particularly suitable for handling irregular geometry. Our work covers a broad range in Reynolds and buoyancy numbers, and in particle concentrations. In this talk, we focus on the transitions between the ``jammed'' and the ``flow'' states in fractures, and on the effects of nonuniform particle size distributions. Work supported by DOE and NERSC.
Airway obstruction related to diacetyl exposure at microwave popcorn production facilities.
Lockey, J E; Hilbert, T J; Levin, L P; Ryan, P H; White, K L; Borton, E K; Rice, C H; McKay, R T; LeMasters, G K
2009-07-01
Obstructive lung diseases including bronchiolitis obliterans have been reported among microwave popcorn production employees. Butter flavourings including diacetyl have been associated with these findings. The present study was initiated at four microwave popcorn production plants to determine if exposure to diacetyl was associated with decrements in pulmonary function. Comprehensive diacetyl exposure assessment was undertaken for all job tasks. Spirometry was conducted for 765 full-time employees between 2005 and 2006. Outcomes included decrement in forced expiratory volume in one second (FEV(1)) % predicted, airway obstruction and persistent decline in FEV(1). Inclusion in the high-exposure group (mixers) prior to respirator use was associated with a significantly decreased FEV(1) % pred in non-Asian and Asian males at -6.1 and -11.8% pred, respectively, and an eight-fold increased risk for airway obstruction. Cumulative diacetyl exposure >or=0.8 ppm-yr caused similar results. No significant impact was seen in nonmixers or between current diacetyl exposure and persistent decline in FEV(1). Unprotected exposure as a mixer to butter flavouring including diacetyl resulted in decrements in FEV(1) (% pred) and increased airway obstruction. Control of employee exposure to butter flavouring additives is warranted in regard to both short-term peak and 8-h workday exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.
1994-05-01
In patients with internal carotid and major cerebral arterial obstructions, it is clinically important to know the presence of collateral circulation. However, this information is not available from Tc-99m HMPAO perfusion SPECT alone. To investigate the usefulness of Tc-99m HMPAO radionuclide angiography (RNA) in the diagnosis of collaterals, we retrospectively studied 39 patients (pts) cerebrovascular diseases (CVD) with HMPAO RNA and SPECT. Contrast angiography was done on all pts. Of these, 11 internal carotid artery (ICA), 1 anterior cerebral artery (ACA), and 3 middle cerebral artery (MCA) obstructions were found angiographically. Non- or decreased visualization of ICA was found inmore » 11 of 11 pts of ICA obstruction. In 1 pt of ICA obstruction, the collaterals were directly visualized with RNA. Early perfusion deficient area with delayed filling-in with Tc-HMPAO was found in 7 of 11 pts of ICA, 1 of 1 pt of ACA, and 2 of 3 pts of MCA obstructions. In all pts with the delayed filling-in sign on RNA, collateral circulations were confirmed angiographically. We conclude that the delayed filling-in of Tc-HMPAO is a useful sign of collateral circulation in the CVD pts.« less
Cağlikülekçi, Mehmet; Ozçay, Necdet; Oruğ, Taner; Aydoğ, Gülden; Renda, Nurten; Atalay, Fuat
2002-03-01
Several clinical and experimental studies have shown that obstructive jaundice delays wound healing. Growth hormone may prevent delayed wound healing, since it has effects on the release of mediators in jaundice, as well as increasing the protein synthesis. Forty male Wistar rats were allocated to four groups: Group I (n=10): intestinal anastomosis to normal small bowel, Group II (n=10): intestinal anastomosis to normal small bowel followed by growth hormone therapy (2mg/kg/day, subcutaneously), Group III (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel, Group IV (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel followed by growth hormone therapy at the same dosage The animals were observed for seven days then killed. Intraabdominal adhesions, anastomotic complications and anastomotic bursting pressures were recorded and tissue samples from the anastomotic site were obtained to measure hydroxyproline levels and for histopathologic examination. Growth hormone had a beneficial effect on the healing of intestinal anastomosis in both jaundiced and non-jaundiced rats. This was demonstrated by clinical and mechanical parameters such as a significant increase in anastomotic bursting pressure, hydroxyproline content and histopathological scores. Growth hormone reverses the adverse effects of obstructive jaundice on small bowel anastomotic healing. It can be hypothesized that this effect is due to augmentation of insulin-like growth factors, protection of hepatocytes, enhancement of intestinal epithelization, and reversal of the resultant malnutritional state caused by growth hormone in obstructive jaundice.
Over diagnosis of chronic obstructive pulmonary disease in an underserved patient population.
Ghattas, Christian; Dai, Allen; Gemmel, David J; Awad, Magdi H
2013-01-01
While cross-national studies have documented rates of chronic obstructive pulmonary disease (COPD) misdiagnosis among patients in primary care, US studies are scarce. Studies investigating diagnosis among uninsured patients are lacking. The purpose of this study is to identify patients who are over diagnosed and thus, mistreated, for COPD in a federally qualified health center. A descriptive study was conducted for a retrospective cohort from February 2011 to June 2012. Spirometry was performed by trained personnel following American Thoracic Society recommendations. Patients were referred for spirometry to confirm previous COPD diagnosis or to assess uncontrolled COPD symptoms. Airway obstruction was defined as a forced expiratory volume in the first second of expiration (FEV1) to forced vital capacity ratio less than 0.7. Reversibility was defined as a postbronchodilator increase in FEV1 greater than 200 mL and greater than 12%. Eighty patients treated for a previous diagnosis of COPD (n = 72) or on anticholinergic inhalers (n = 8) with no COPD diagnosis were evaluated. The average age was 52.9 years; 71% were uninsured. Only 17.5% (14/80) of patients reported previous spirometry. Spirometry revealed that 42.5% had no obstruction, 22.5% had reversible obstruction, and 35% had non-reversible obstruction. Symptoms and smoking history are insufficient to diagnose COPD. Prevalence of COPD over diagnosis among uninsured patient populations may be higher than previously reported. Confirming previous COPD diagnosis with spirometry is essential to avoid unnecessary and potentially harmful treatment.
Family involvement is helpful and harmful to patients’ self-care and glycemic control
Mayberry, Lindsay Satterwhite; Osborn, Chandra Y.
2014-01-01
Objective We assessed the relationships between supportive and obstructive family behaviors and patients’ diabetes self-care activities and HbA1C, and potential interaction effects and differences by demographic characteristics. Methods In a cross-sectional study, 192 adults with type 2 diabetes completed the Diabetes Family Behavior Checklist-II, the Summary of Diabetes Self-Care Activities, and a glycemic control (HbA1C) test. Results Participants reported similar rates of supportive and obstructive behaviors that were positively correlated (rho=0.61, p<.001). In adjusted analyses, supportive family behaviors were associated with adherence to different self-care behaviors (β=0.20–0.50, p<.05), whereas obstructive family behaviors were associated with less adherence to self-care behaviors (β=−0.28–−0.39, p<.01) and worse HbA1C (β=0.18, p<.05). Supportive behaviors protected against the detrimental effect of obstructive behaviors on HbA1C (interaction β=−0.22, p<.001). Non-Whites reported more supportive and obstructive behaviors than Whites, but race did not affect the relationships between family behaviors and self-care or HbA1C. Conclusion Involving family members in patients’ diabetes management may compromise patients’ self-care and glycemic control unless family members are taught to avoid obstructive behaviors. Practice Implications Our findings endorse interventions that help family members develop actionable plans to support patients’ self-care and train them to communicate productively about diabetes management. PMID:25282327
Mixedness determination of rare earth-doped ceramics
NASA Astrophysics Data System (ADS)
Czerepinski, Jennifer H.
The lack of chemical uniformity in a powder mixture, such as clustering of a minor component, can lead to deterioration of materials properties. A method to determine powder mixture quality is to correlate the chemical homogeneity of a multi-component mixture with its particle size distribution and mixing method. This is applicable to rare earth-doped ceramics, which require at least 1-2 nm dopant ion spacing to optimize optical properties. Mixedness simulations were conducted for random heterogeneous mixtures of Nd-doped LaF3 mixtures using the Concentric Shell Model of Mixedness (CSMM). Results indicate that when the host to dopant particle size ratio is 100, multi-scale concentration variance is optimized. In order to verify results from the model, experimental methods that probe a mixture at the micro, meso, and macro scales are needed. To directly compare CSMM results experimentally, an image processing method was developed to calculate variance profiles from electron images. An in-lens (IL) secondary electron image is subtracted from the corresponding Everhart-Thornley (ET) secondary electron image in a Field-Emission Scanning Electron Microscope (FESEM) to produce two phases and pores that can be quantified with 50 nm spatial resolution. A macro was developed to quickly analyze multi-scale compositional variance from these images. Results for a 50:50 mixture of NdF3 and LaF3 agree with the computational model. The method has proven to be applicable only for mixtures with major components and specific particle morphologies, but the macro is useful for any type of imaging that produces excellent phase contrast, such as confocal microscopy. Fluorescence spectroscopy was used as an indirect method to confirm computational results for Nd-doped LaF3 mixtures. Fluorescence lifetime can be used as a quantitative method to indirectly measure chemical homogeneity when the limits of electron microscopy have been reached. Fluorescence lifetime represents the compositional fluctuations of a dopant on the nanoscale while accounting for billions of particles in a fast, non-destructive manner. The significance of this study will show how small-scale fluctuations in homogeneity limit the optimization of optical properties, which can be improved by the proper selection of particle size and mixing method.
Mehdi, Syed Basharath; Madi, Salem; Sudworth, Jordan
2016-10-28
Trans-diaphragmatic intercostal hernia is a rare entity. Patient with multiple medical comorbidities, including obstructive sleep apnoea, presents with shortness of breath, leg oedema and a bulging swelling through the right chest wall. CT shows partial herniation of the right lung and liver through intercostal space and an echocardiogram reveals right heart failure. He was treated initially with continuous positive airway pressure with poor response and subsequently treated with adaptive servo ventilation with much better symptomatic relief and treatment tolerance. 2016 BMJ Publishing Group Ltd.
A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models
Wong, Weng Kee; Chen, Ray-Bing; Huang, Chien-Chih; Wang, Weichung
2015-01-01
Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been shown to be successful in solving a wide variety of real and complicated optimization problems in engineering and computer science. This paper introduces a projection based PSO technique, named ProjPSO, to efficiently find different types of optimal designs, or nearly optimal designs, for mixture models with and without constraints on the components, and also for related models, like the log contrast models. We also compare the modified PSO performance with Fedorov's algorithm, a popular algorithm used to generate optimal designs, Cocktail algorithm, and the recent algorithm proposed by [1]. PMID:26091237