Multi-objective dynamic aperture optimization for storage rings
Li, Yongjun; Yang, Lingyun
2016-11-30
We report an efficient dynamic aperture (DA) optimization approach using multiobjective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA.
SU-E-T-395: Multi-GPU-Based VMAT Treatment Plan Optimization Using a Column-Generation Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Z; Shi, F; Jia, X
Purpose: GPU has been employed to speed up VMAT optimizations from hours to minutes. However, its limited memory capacity makes it difficult to handle cases with a huge dose-deposition-coefficient (DDC) matrix, e.g. those with a large target size, multiple arcs, small beam angle intervals and/or small beamlet size. We propose multi-GPU-based VMAT optimization to solve this memory issue to make GPU-based VMAT more practical for clinical use. Methods: Our column-generation-based method generates apertures sequentially by iteratively searching for an optimal feasible aperture (referred as pricing problem, PP) and optimizing aperture intensities (referred as master problem, MP). The PP requires accessmore » to the large DDC matrix, which is implemented on a multi-GPU system. Each GPU stores a DDC sub-matrix corresponding to one fraction of beam angles and is only responsible for calculation related to those angles. Broadcast and parallel reduction schemes are adopted for inter-GPU data transfer. MP is a relatively small-scale problem and is implemented on one GPU. One headand- neck cancer case was used for test. Three different strategies for VMAT optimization on single GPU were also implemented for comparison: (S1) truncating DDC matrix to ignore its small value entries for optimization; (S2) transferring DDC matrix part by part to GPU during optimizations whenever needed; (S3) moving DDC matrix related calculation onto CPU. Results: Our multi-GPU-based implementation reaches a good plan within 1 minute. Although S1 was 10 seconds faster than our method, the obtained plan quality is worse. Both S2 and S3 handle the full DDC matrix and hence yield the same plan as in our method. However, the computation time is longer, namely 4 minutes and 30 minutes, respectively. Conclusion: Our multi-GPU-based VMAT optimization can effectively solve the limited memory issue with good plan quality and high efficiency, making GPUbased ultra-fast VMAT planning practical for real clinical use.« less
Optimization of a rod pinch diode radiography source at 2.3 MV
NASA Astrophysics Data System (ADS)
Menge, P. R.; Johnson, D. L.; Maenchen, J. E.; Rovang, D. C.; Oliver, B. V.; Rose, D. V.; Welch, D. R.
2003-08-01
Rod pinch diodes have shown considerable capability as high-brightness flash x-ray sources for penetrating dynamic radiography. The rod pinch diode uses a small diameter (0.4-2 mm) anode rod extended through a cathode aperture. When properly configured, the electron beam born off of the aperture edge can self-insulate and pinch onto the tip of the rod creating an intense, small x-ray source. Sandia's SABRE accelerator (2.3 MV, 40 Ω, 70 ns) has been utilized to optimize the source experimentally by maximizing the figure of merit (dose/spot diameter2) and minimizing the diode impedance droop. Many diode parameters have been examined including rod diameter, rod length, rod material, cathode aperture diameter, cathode thickness, power flow gap, vacuum quality, and severity of rod-cathode misalignment. The configuration producing the greatest figure of merit uses a 0.5 mm diameter gold rod, a 6 mm rod extension beyond the cathode aperture (diameter=8 mm), and a 10 cm power flow gap to produce up to 3.5 rad (filtered dose) at 1 m from a 0.85 mm x-ray on-axis spot (1.02 mm at 3° off axis). The resultant survey of parameter space has elucidated several physics issues that are discussed.
Penalization of aperture complexity in inversely planned volumetric modulated arc therapy
Younge, Kelly C.; Matuszak, Martha M.; Moran, Jean M.; McShan, Daniel L.; Fraass, Benedick A.; Roberts, Donald A.
2012-01-01
Purpose: Apertures obtained during volumetric modulated arc therapy (VMAT) planning can be small and irregular, resulting in dosimetric inaccuracies during delivery. Our purpose is to develop and integrate an aperture-regularization objective function into the optimization process for VMAT, and to quantify the impact of using this objective function on dose delivery accuracy and optimized dose distributions. Methods: An aperture-based metric (“edge penalty”) was developed that penalizes complex aperture shapes based on the ratio of MLC side edge length and aperture area. To assess the utility of the metric, VMAT plans were created for example paraspinal, brain, and liver SBRT cases with and without incorporating the edge penalty in the cost function. To investigate the dose calculation accuracy, Gafchromic EBT2 film was used to measure the 15 highest weighted apertures individually and as a composite from each of two paraspinal plans: one with and one without the edge penalty applied. Films were analyzed using a triple-channel nonuniformity correction and measurements were compared directly to calculations. Results: Apertures generated with the edge penalty were larger, more regularly shaped and required up to 30% fewer monitor units than those created without the edge penalty. Dose volume histogram analysis showed that the changes in doses to targets, organs at risk, and normal tissues were negligible. Edge penalty apertures that were measured with film for the paraspinal plan showed a notable decrease in the number of pixels disagreeing with calculation by more than 10%. For a 5% dose passing criterion, the number of pixels passing in the composite dose distributions for the non-edge penalty and edge penalty plans were 52% and 96%, respectively. Employing gamma with 3% dose/1 mm distance criteria resulted in a 79.5% (without penalty)/95.4% (with penalty) pass rate for the two plans. Gradient compensation of 3%/1 mm resulted in 83.3%/96.2% pass rates. Conclusions: The use of the edge penalty during optimization has the potential to markedly improve dose delivery accuracy for VMAT plans while still maintaining high quality optimized dose distributions. The penalty regularizes aperture shape and improves delivery efficiency. PMID:23127107
Direct aperture optimization: a turnkey solution for step-and-shoot IMRT.
Shepard, D M; Earl, M A; Li, X A; Naqvi, S; Yu, C
2002-06-01
IMRT treatment plans for step-and-shoot delivery have traditionally been produced through the optimization of intensity distributions (or maps) for each beam angle. The optimization step is followed by the application of a leaf-sequencing algorithm that translates each intensity map into a set of deliverable aperture shapes. In this article, we introduce an automated planning system in which we bypass the traditional intensity optimization, and instead directly optimize the shapes and the weights of the apertures. We call this approach "direct aperture optimization." This technique allows the user to specify the maximum number of apertures per beam direction, and hence provides significant control over the complexity of the treatment delivery. This is possible because the machine dependent delivery constraints imposed by the MLC are enforced within the aperture optimization algorithm rather than in a separate leaf-sequencing step. The leaf settings and the aperture intensities are optimized simultaneously using a simulated annealing algorithm. We have tested direct aperture optimization on a variety of patient cases using the EGS4/BEAM Monte Carlo package for our dose calculation engine. The results demonstrate that direct aperture optimization can produce highly conformal step-and-shoot treatment plans using only three to five apertures per beam direction. As compared with traditional optimization strategies, our studies demonstrate that direct aperture optimization can result in a significant reduction in both the number of beam segments and the number of monitor units. Direct aperture optimization therefore produces highly efficient treatment deliveries that maintain the full dosimetric benefits of IMRT.
Optimization study for the experimental configuration of CMB-S4
NASA Astrophysics Data System (ADS)
Barron, Darcy; Chinone, Yuji; Kusaka, Akito; Borril, Julian; Errard, Josquin; Feeney, Stephen; Ferraro, Simone; Keskitalo, Reijo; Lee, Adrian T.; Roe, Natalie A.; Sherwin, Blake D.; Suzuki, Aritoki
2018-02-01
The CMB Stage 4 (CMB-S4) experiment is a next-generation, ground-based experiment that will measure the cosmic microwave background (CMB) polarization to unprecedented accuracy, probing the signature of inflation, the nature of cosmic neutrinos, relativistic thermal relics in the early universe, and the evolution of the universe. CMB-S4 will consist of O(500,000) photon-noise-limited detectors that cover a wide range of angular scales in order to probe the cosmological signatures from both the early and late universe. It will measure a wide range of microwave frequencies to cleanly separate the CMB signals from galactic and extra-galactic foregrounds. To advance the progress towards designing the instrument for CMB-S4, we have established a framework to optimize the instrumental configuration to maximize its scientific output. The framework combines cost and instrumental models with a cosmology forecasting tool, and evaluates the scientific sensitivity as a function of various instrumental parameters. The cost model also allows us to perform the analysis under a fixed-cost constraint, optimizing for the scientific output of the experiment given finite resources. In this paper, we report our first results from this framework, using simplified instrumental and cost models. We have primarily studied two classes of instrumental configurations: arrays of large-aperture telescopes with diameters ranging from 2–10 m, and hybrid arrays that combine small-aperture telescopes (0.5-m diameter) with large-aperture telescopes. We explore performance as a function of telescope aperture size, distribution of the detectors into different microwave frequencies, survey strategy and survey area, low-frequency noise performance, and balance between small and large aperture telescopes for hybrid configurations. Both types of configurations must cover both large (~ degree) and small (~ arcmin) angular scales, and the performance depends on assumptions for performance vs. angular scale. The configurations with large-aperture telescopes have a shallow optimum around 4–6 m in aperture diameter, assuming that large telescopes can achieve good performance for low-frequency noise. We explore some of the uncertainties of the instrumental model and cost parameters, and we find that the optimum has a weak dependence on these parameters. The hybrid configuration shows an even broader optimum, spanning a range of 4–10 m in aperture for the large telescopes. We also present two strawperson configurations as an outcome of this optimization study, and we discuss some ideas for improving our simple cost and instrumental models used here. There are several areas of this analysis that deserve further improvement. In our forecasting framework, we adopt a simple two-component foreground model with spatially varying power-law spectral indices. We estimate de-lensing performance statistically and ignore non-idealities such as anisotropic mode coverage, boundary effect, and possible foreground residual. Instrumental systematics, which is not accounted for in our analyses, may also influence the conceptual design. Further study of the instrumental and cost models will be one of the main areas of study by the entire CMB-S4 community. We hope that our framework will be useful for estimating the influence of these improvements in the future, and we will incorporate them in order to further improve the optimization.
A first-order treatment of aberrations in Cassegrainian and Gregorian antennas
NASA Astrophysics Data System (ADS)
Dragone, C.
1982-05-01
The decrease in aperture efficiency caused by small aberrations in a reflector antenna is determined. The important case of a Cassegrainian (or Gregorian) antenna with a feed placed in the vicinity of the focal point is treated in detail. For this case the various aberration components due to astigmatism, coma, etc., are derived explicitly, their effect on aperture efficiency is shown, and the conditions that optimize performance are given. The results are useful for the design of multibeam antennas in ground stations and satellites.
Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy.
Hess, Samuel T; Webb, Watt W
2002-01-01
Fluorescence correlation spectroscopy (FCS) can provide a wealth of information about biological and chemical systems on a broad range of time scales (<1 micros to >1 s). Numerical modeling of the FCS observation volume combined with measurements has revealed, however, that the standard assumption of a three-dimensional Gaussian FCS observation volume is not a valid approximation under many common measurement conditions. As a result, the FCS autocorrelation will contain significant, systematic artifacts that are most severe with confocal optics when using a large detector aperture and aperture-limited illumination. These optical artifacts manifest themselves in the fluorescence correlation as an apparent additional exponential component or diffusing species with significant (>30%) amplitude that can imply extraneous kinetics, shift the measured diffusion time by as much as approximately 80%, and cause the axial ratio to diverge. Artifacts can be minimized or virtually eliminated by using a small confocal detector aperture, underfilled objective back-aperture, or two-photon excitation. However, using a detector aperture that is smaller or larger than the optimal value (approximately 4.5 optical units) greatly reduces both the count rate per molecule and the signal-to-noise ratio. Thus, there is a tradeoff between optimizing signal-to-noise and reducing experimental artifacts in one-photon FCS. PMID:12324447
Tabernero, Juan; Artal, Pablo
2012-02-01
To determine the optimum position to center a small-aperture corneal inlay and the effect of residual defocus in the surgical eye to maximize depth of focus. Laboratorio de Óptica, Universidad de Murcia, Murcia, Spain. Cohort study. Personalized eye models were built using actual data (corneal topography, eye length, ocular aberrations, and eye alignment). A small aperture 1.6 mm in diameter was placed at the corneal plane in each model. The monochromatic and polychromatic Strehl ratios were calculated as a function of the pinhole position. Different residual defocus values were also incorporated into the models, and the through-focus Strehl ratios were calculated. Sixteen eye models were built. For most subjects, the optimum location of the aperture for distance vision was close to the corneal reflex position. For a given optimized centration of the aperture, the best compromise of depth of focus was obtained when the eyes had some residual myopic defocus (range -0.75 to -1.00 diopter [D]). Strehl ratio values were over 0.1 for far distance, which led to visual acuities better than 20/20. The depth of focus was 2.50 D with a mean near visual acuity of Jaeger 1 or better. In eyes with little astigmatism and aberrations, the optimum centration of the small aperture was near the corneal reflex position. To improve optical outcomes with the inlay, some small residual myopia and correction of corneal astigmatism might be required. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
The influence of swarm deformation on the velocity behavior of falling swarms of particles
NASA Astrophysics Data System (ADS)
Mitchell, C. A.; Pyrak-Nolte, L. J.; Nitsche, L.
2017-12-01
Cohesive particle swarms have been shown to exhibit enhanced sedimentation in fractures for an optimal range of fracture apertures. Within this range, swarms travel farther and faster than a disperse (particulate) solution. This study aims to uncover the physics underlying the enhanced sedimentation. Swarm behavior at low Reynolds number in a quiescent unbounded fluid and between smooth rigid planar boundaries is investigated numerically using direct-summation, particle-mesh (PM) and particle-particle particle-mesh (P3M) methods - based upon mutually interacting viscous point forces (Stokeslet fields). Wall effects are treated with a least-squares boundary singularity method. Sub-structural effects beyond pseudo-liquid behavior (i.e., particle-scale interactions) are approximated by the P3M method much more efficiently than with direct summation. The model parameters are selected from particle swarm experiments to enable comparison. From the simulations, if the initial swarm geometry at release is unaffected by the fracture aperture, no enhanced transport occurs. The swarm velocity as a function of apertures increases monotonically until it asymptotes to the swarm velocity in an open tank. However, if the fracture aperture affects the initial swarm geometry, the swarm velocity no longer exhibits a monotonic behavior. When swarms are released between two parallel smooth walls with very small apertures, the swarm is forced to reorganize and quickly deform, which results in dramatically reduced swarm velocities. At large apertures, the swarm evolution is similar to that of a swarm in open tank and quickly flattens into a slow speed torus. In the optimal aperture range, the swarm maintains a cohesive unit behaving similarly to a falling sphere. Swarms falling in apertures less than or greater than the optimal aperture range, experience a level of anisotropy that considerably decreases velocities. Unraveling the physics that drives swarm behavior in fractured porous media is important for understanding particle sedimentation and contaminant spreading in the subsurface. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongjun; Yang, Lingyun
We report an efficient dynamic aperture (DA) optimization approach using multiobjective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA.
SU-E-T-344: Dynamic Electron Beam Therapy Using Multiple Apertures in a Single Cut-Out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, A; Yin, F; Wu, Q
2015-06-15
Purpose: Few leaf electron collimators (FLEC) or electron MLCs (eMLC) are highly desirable for dynamic electron beam therapies as they produce multiple apertures within a single delivery to achieve conformal dose distributions. However, their clinical implementation has been challenging. Alternatively, multiple small apertures in a single cut-out with variable jaw sizes could be utilized in a single dynamic delivery. In this study, we investigate dosimetric characteristics of such arrangement. Methods: Monte Carlo (EGSnrc/BEAMnrc/DOSXYnrc) simulations utilized validated Varian TrueBeam phase spaces. Investigated quantities included: Energy (6 MeV), jaw size (1×1 to 22×22 cm {sup 2}; centered to aperture), applicator/cut-out (15×15 cm{supmore » 2}), aperture (1×1, 2×2, 3×3, 4×4 cm{sup 2}), and aperture placement (on/off central axis). Three configurations were assessed: (1) single aperture on-axis, (2) single aperture off-axis, and (3) multiple apertures. Reference was configuration (1) with standard jaw size. Aperture placement and jaw size were optimized to maintain reference dosimetry and minimize leakage through unused apertures to <5%. Comparison metrics included depth dose and orthogonal profiles. Results: Configuration (1) and (2): Jaw openings were reduced to 10×10 cm{sup 2} without affecting dosimetry (gamma 2%/1mm) regardless of on- or off-axis placement. For smaller jaw sizes, reduced surface (<2%, 5% for 1×1 cm{sup 2} aperture) and increased Bremsstrahlung (<2%, 10% for 1×1 cm{sup 2} aperture) dose was observed. Configuration (3): Optimal aperture placement was in the corners (order: 1×1, 4×4, 2×2, 3×3 cm{sup 2}) and jaw sizes were 4×4, 4×4, 7×7, and 5×5 cm{sup 2} (apertures: 1×1, 2×2, 3×3, 4×4 cm{sup 2} ). Asymmetric leakage was found from upper and lower jaws. Leakage was generally within 5% with a maximum of 10% observed for the 1×1 cm{sup 2} aperture irradiation. Conclusion: Multiple apertures in a single cut-out with variable jaw size can be used in a single dynamic delivery, providing a practical alternative to FLEC or eMLC. Future simulations will expand on all variables.« less
Optimized method for manufacturing large aspheric surfaces
NASA Astrophysics Data System (ADS)
Zhou, Xusheng; Li, Shengyi; Dai, Yifan; Xie, Xuhui
2007-12-01
Aspheric optics are being used more and more widely in modern optical systems, due to their ability of correcting aberrations, enhancing image quality, enlarging the field of view and extending the range of effect, while reducing the weight and volume of the system. With optical technology development, we have more pressing requirement to large-aperture and high-precision aspheric surfaces. The original computer controlled optical surfacing (CCOS) technique cannot meet the challenge of precision and machining efficiency. This problem has been thought highly of by researchers. Aiming at the problem of original polishing process, an optimized method for manufacturing large aspheric surfaces is put forward. Subsurface damage (SSD), full aperture errors and full band of frequency errors are all in control of this method. Lesser SSD depth can be gained by using little hardness tool and small abrasive grains in grinding process. For full aperture errors control, edge effects can be controlled by using smaller tools and amendment model with material removal function. For full band of frequency errors control, low frequency errors can be corrected with the optimized material removal function, while medium-high frequency errors by using uniform removing principle. With this optimized method, the accuracy of a K9 glass paraboloid mirror can reach rms 0.055 waves (where a wave is 0.6328μm) in a short time. The results show that the optimized method can guide large aspheric surface manufacturing effectively.
Maximizing the potential of direct aperture optimization through collimator rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milette, Marie-Pierre; Otto, Karl; Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia
Intensity-modulated radiation therapy (IMRT) treatment plans are conventionally produced by the optimization of fluence maps followed by a leaf sequencing step. An alternative to fluence based inverse planning is to optimize directly the leaf positions and field weights of multileaf collimator (MLC) apertures. This approach is typically referred to as direct aperture optimization (DAO). It has been shown that equivalent dose distributions may be generated that have substantially fewer monitor units (MU) and number of apertures compared to fluence based optimization techniques. Here we introduce a DAO technique with rotated apertures that we call rotating aperture optimization (RAO). The advantagesmore » of collimator rotation in IMRT have been shown previously and include higher fluence spatial resolution, increased flexibility in the generation of aperture shapes and less interleaf effects. We have tested our RAO algorithm on a complex C-shaped target, seven nasopharynx cancer recurrences, and one multitarget nasopharynx carcinoma patient. A study was performed in order to assess the capabilities of RAO as compared to fixed collimator angle DAO. The accuracy of fixed and rotated collimator aperture delivery was also verified. An analysis of the optimized treatment plans indicates that plans generated with RAO are as good as or better than DAO while maintaining a smaller number of apertures and MU than fluence based IMRT. Delivery verification results show that RAO is less sensitive to tongue and groove effects than DAO. Delivery time is currently increased due to the collimator rotation speed although this is a mechanical limitation that can be eliminated in the future.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... Terminal (VSAT) and C-band Small Aperture Terminal (CSAT) networks. 25.134 Section 25.134 Telecommunication...) and C-band Small Aperture Terminal (CSAT) networks. (a)(1) VSAT networks operating in the 12/14 GHz bands. All applications for digital VSAT networks granted on or before September 15, 2005, with a...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Terminal (VSAT) and C-band Small Aperture Terminal (CSAT) networks. 25.134 Section 25.134 Telecommunication...) and C-band Small Aperture Terminal (CSAT) networks. (a)(1) VSAT networks operating in the 12/14 GHz bands. All applications for digital VSAT networks granted on or before September 15, 2005, with a...
Energy acceptance and on momentum aperture optimization for the Sirius project
NASA Astrophysics Data System (ADS)
Dester, P. S.; Sá, F. H.; Liu, L.
2017-07-01
A fast objective function to calculate Touschek lifetime and on momentum aperture is essential to explore the vast search space of strength of quadrupole and sextupole families in Sirius. Touschek lifetime is estimated by using the energy aperture (dynamic and physical), RF system parameters and driving terms. Non-linear induced betatron oscillations are considered to determine the energy aperture. On momentum aperture is estimated by using a chaos indicator and resonance crossing considerations. Touschek lifetime and on momentum aperture constitute the objective function, which was used in a multi-objective genetic algorithm to perform an optimization for Sirius.
NASA Astrophysics Data System (ADS)
Mazoyer, J.; Pueyo, L.; N'Diaye, M.; Fogarty, K.; Zimmerman, N.; Leboulleux, L.; St. Laurent, K. E.; Soummer, R.; Shaklan, S.; Norman, C.
2018-01-01
Future searches for bio-markers on habitable exoplanets will rely on telescope instruments that achieve extremely high contrast at small planet-to-star angular separations. Coronagraphy is a promising starlight suppression technique, providing excellent contrast and throughput for off-axis sources on clear apertures. However, the complexity of space- and ground-based telescope apertures goes on increasing over time, owing to the combination of primary mirror segmentation, the secondary mirror, and its support structures. These discontinuities in the telescope aperture limit the coronagraph performance. In this paper, we present ACAD-OSM, a novel active method to correct for the diffractive effects of aperture discontinuities in the final image plane of a coronagraph. Active methods use one or several deformable mirrors that are controlled with an interaction matrix to correct for the aberrations in the pupil. However, they are often limited by the amount of aberrations introduced by aperture discontinuities. This algorithm relies on the recalibration of the interaction matrix during the correction process to overcome this limitation. We first describe the ACAD-OSM technique and compare it to the previous active methods for the correction of aperture discontinuities. We then show its performance in terms of contrast and off-axis throughput for static aperture discontinuities (segmentation, struts) and for some aberrations evolving over the life of the instrument (residual phase aberrations, artifacts in the aperture, misalignments in the coronagraph design). This technique can now obtain the Earth-like planet detection threshold of {10}10 contrast on any given aperture over at least a 10% spectral bandwidth, with several coronagraph designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarepisheh, M; Li, R; Xing, L
Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) andmore » aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves quality of resultant treatment plans as compared with conventional VMAT or IMRT treatments.« less
NASA Astrophysics Data System (ADS)
Agrawal, Navik; Davis, Christopher C.
2008-08-01
Omnidirectional free space optical communication receivers can employ multiple non-imaging collectors, such as compound parabolic concentrators (CPCs), in an array-like fashion to increase the amount of possible light collection. CPCs can effectively channel light collected over a large aperture to a small area photodiode. The aperture to length ratio of such devices can increase the overall size of the transceiver unit, which may limit the practicality of such systems, especially when small size is desired. New non-imaging collector designs with smaller sizes, larger field of view (FOV), and comparable transmission curves to CPCs, offer alternative transceiver designs. This paper examines how transceiver performance is affected by the use of different non-imaging collector shapes that are designed for wide FOV with reduced efficiency compared with shapes such as the CPC that are designed for small FOV with optimal efficiency. Theoretical results provide evidence indicating that array-like transceiver designs using various non-imaging collector shapes with less efficient transmission curves, but a larger FOV will be an effective means for the design of omnidirectional optical transceiver units. The results also incorporate the effects of Fresnel loss at the collector exit aperture-photodiode interface, which is an important consideration for indoor omnidirectional FSO systems.
Finding Optimal Apertures in Kepler Data
NASA Astrophysics Data System (ADS)
Smith, Jeffrey C.; Morris, Robert L.; Jenkins, Jon M.; Bryson, Stephen T.; Caldwell, Douglas A.; Girouard, Forrest R.
2016-12-01
With the loss of two spacecraft reaction wheels precluding further data collection for the Kepler primary mission, even greater pressure is placed on the processing pipeline to eke out every last transit signal in the data. To that end, we have developed a new method to optimize the Kepler Simple Aperture Photometry (SAP) photometric apertures for both planet detection and minimization of systematic effects. The approach uses a per cadence modeling of the raw pixel data and then performs an aperture optimization based on signal-to-noise ratio and the Kepler Combined Differential Photometric Precision (CDPP), which is a measure of the noise over the duration of a reference transit signal. We have found the new apertures to be superior to the previous Kepler apertures. We can now also find a per cadence flux fraction in aperture and crowding metric. The new approach has also been proven to be robust at finding apertures in K2 data that help mitigate the larger motion-induced systematics in the photometry. The method further allows us to identify errors in the Kepler and K2 input catalogs.
Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope.
Burns, Stephen A; Tumbar, Remy; Elsner, Ann E; Ferguson, Daniel; Hammer, Daniel X
2007-05-01
We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide-field line scan scanning laser ophthalmoscope (SLO), and a high-resolution microelectromechanical-systems-based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point-spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the psf. The retinal image was stabilized to within 18 microm 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images.
Large Field of View, Modular, Stabilized, Adaptive-Optics-Based Scanning Laser Ophthalmoscope
Burns, Stephen A.; Tumbar, Remy; Elsner, Ann E.; Ferguson, Daniel; Hammer, Daniel X.
2007-01-01
We describe the design and performance of an adaptive optics retinal imager that is optimized for use during dynamic correction for eye movements. The system incorporates a retinal tracker and stabilizer, a wide field line scan Scanning Laser Ophthalmocsope (SLO), and a high resolution MEMS based adaptive optics SLO. The detection system incorporates selection and positioning of confocal apertures, allowing measurement of images arising from different portions of the double pass retinal point spread function (psf). System performance was excellent. The adaptive optics increased the brightness and contrast for small confocal apertures by more than 2x, and decreased the brightness of images obtained with displaced apertures, confirming the ability of the adaptive optics system to improve the pointspread function. The retinal image was stabilized to within 18 microns 90% of the time. Stabilization was sufficient for cross-correlation techniques to automatically align the images. PMID:17429477
NASA Astrophysics Data System (ADS)
O'Brien, Thomas R.; Kesler, Benjamin; Dallesasse, John M.
2017-02-01
Top emission 850-nm vertical-cavity surface-emitting lasers (VCSELs) demonstrating transverse mode selection via impurity-induced disordering (IID) are presented. The IID apertures are fabricated via closed ampoule zinc diffusion. A simple 1-D plane wave model based on the intermixing of Group III atoms during IID is presented to optimize the mirror loss of higher-order modes as a function of IID strength and depth. In addition, the impact of impurity diffusion into the cap layer of the lasers is shown to improve contact resistance. Further investigation of the mode-dependent characteristics of the device imply an increase in the thermal impedance associated with the fraction of IID contained within the oxide aperture. The optimization of the ratio of the IID aperture to oxide aperture is experimentally determined. Single fundamental mode output of 1.6 mW with 30 dBm side mode suppression ratio is achieved by a 3.0 μm oxide-confined device with an IID aperture of 1.3 μm indicating an optimal IID aperture size of 43% of the oxide aperture.
Sayseng, Vincent; Grondin, Julien; Konofagou, Elisa E
2018-05-01
Coherent compounding methods using the full or partial transmit aperture have been investigated as a possible means of increasing strain measurement accuracy in cardiac strain imaging; however, the optimal transmit parameters in either compounding approach have yet to be determined. The relationship between strain estimation accuracy and transmit parameters-specifically the subaperture, angular aperture, tilt angle, number of virtual sources, and frame rate-in partial aperture (subaperture compounding) and full aperture (steered compounding) fundamental mode cardiac imaging was thus investigated and compared. Field II simulation of a 3-D cylindrical annulus undergoing deformation and twist was developed to evaluate accuracy of 2-D strain estimation in cross-sectional views. The tradeoff between frame rate and number of virtual sources was then investigated via transthoracic imaging in the parasternal short-axis view of five healthy human subjects, using the strain filter to quantify estimation precision. Finally, the optimized subaperture compounding sequence (25-element subperture, 90° angular aperture, 10 virtual sources, 300-Hz frame rate) was compared to the optimized steered compounding sequence (60° angular aperture, 15° tilt, 10 virtual sources, 300-Hz frame rate) via transthoracic imaging of five healthy subjects. Both approaches were determined to estimate cumulative radial strain with statistically equivalent precision (subaperture compounding E(SNRe %) = 3.56, and steered compounding E(SNRe %) = 4.26).
Numerical investigation of a vortex ring impinging on a coaxial aperture
NASA Astrophysics Data System (ADS)
Hu, Jiacheng; Peterson, Sean D.
2017-11-01
Recent advancements in smart materials have sparked an interest in the development of small scale fluidic energy harvesters for powering distributed applications in aquatic environments, where coherent vortex structures are prevalent. Thus, it is crucial to investigate the interaction of viscous vortices in the proximity of a thin plate (a common harvester configuration). Hence, the present study systematically examines the interaction of a vortex ring impinging on an infinitesimally thin wall with a coaxially aligned annular aperture. The rigid aperture serves as an axisymmetric counterpart of the thin plate, and the vortex ring represents a typical coherent vortex structure. The results indicate that the vortex dynamics can be categorized into two regimes based on the aperture to ring radius ratio (Rr). The rebound regime (Rr < 0.9) exhibits the classical unsteady boundary layer interaction in a vortex ring-wall collision. The vortex ring is able to slip past the aperture when Rr >= 0.9 , and an increase in the vortex ring impulse is observed for 1.0 <= Rr <= 1.3 due to fluid entrainment. Furthermore, pressure loadings are also compared to elucidate an optimal energy harvesting strategy in vortex impact configurations. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-05778) and Alexander Graham Bell Canada Graduate Scholarship (CGS-D).
A polyvalent harmonic coil testing method for small-aperture magnets
NASA Astrophysics Data System (ADS)
Arpaia, Pasquale; Buzio, Marco; Golluccio, Giancarlo; Walckiers, Louis
2012-08-01
A method to characterize permanent and fast-pulsed iron-dominated magnets with small apertures is presented. The harmonic coil measurement technique is enhanced specifically for small-aperture magnets by (1) in situ calibration, for facing search-coil production inaccuracy, (2) rotating the magnet around its axis, for correcting systematic effects, and (3) measuring magnetic fluxes by stationary coils at different angular positions for measuring fast pulsed magnets. This method allows a quadrupole magnet for particle accelerators to be characterized completely, by assessing multipole field components, magnetic axis position, and field direction. In this paper, initially the metrological problems arising from testing small-aperture magnets are highlighted. Then, the basic ideas of the proposed method and the architecture of the corresponding measurement system are illustrated. Finally, experimental validation results are shown for small-aperture permanent and fast-ramped quadrupole magnets for the new linear accelerator Linac4 at CERN (European Organization for Nuclear Research).
Passive synthetic aperture radar imaging of ground moving targets
NASA Astrophysics Data System (ADS)
Wacks, Steven; Yazici, Birsen
2012-05-01
In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Applications and Licenses Earth Stations § 25.134 Licensing provisions for Very Small Aperture Terminal (VSAT... affected adjacent satellite operators by the operation of the non-conforming earth station. (b) VSAT...) VSAT networks operating in the 12/14 GHz bands may use more than one hub earth station, and the hubs...
Nondimensional Representations for Occulter Design and Performance Evaluation
NASA Technical Reports Server (NTRS)
Cady, Eric
2011-01-01
An occulter is a spacecraft with a precisely-shaped optical edges which ies in formation with a telescope, blocking light from a star while leaving light from nearby planets una ected. Using linear optimization, occulters can be designed for use with telescopes over a wide range of telescope aperture sizes, science bands, and starlight suppression levels. It can be shown that this optimization depends primarily on a small number of independent nondimensional parameters, which correspond to Fresnel numbers and physical scales and enter the optimization only as constraints. We show how these can be used to span the parameter space of possible optimized occulters; this data set can then be mined to determine occulter sizes for various mission scenarios and sets of engineering constraints.
A Spherical Active Coded Aperture for 4π Gamma-ray Imaging
Hellfeld, Daniel; Barton, Paul; Gunter, Donald; ...
2017-09-22
Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less
Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Men Chunhua; Romeijn, H. Edwin; Jia Xun
2010-11-15
Purpose: To develop a novel aperture-based algorithm for volumetric modulated arc therapy (VMAT) treatment plan optimization with high quality and high efficiency. Methods: The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequentialmore » way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. Results: The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. Conclusions: The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.« less
Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT).
Men, Chunhua; Romeijn, H Edwin; Jia, Xun; Jiang, Steve B
2010-11-01
To develop a novel aperture-based algorithm for volumetric modulated are therapy (VMAT) treatment plan optimization with high quality and high efficiency. The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose distribution and the second guaranteeing a smooth dose rate variation between successive gantry angles. A gantry rotation is discretized into 180 beam angles and for each beam angle, only one MLC aperture is allowed. The apertures are generated one by one in a sequential way. At each iteration of the column generation method, a deliverable MLC aperture is generated for one of the unoccupied beam angles by solving a subproblem with the consideration of MLC mechanic constraints. A subsequent master problem is then solved to determine the dose rate at all currently generated apertures by minimizing the cost function. When all 180 beam angles are occupied, the optimization completes, yielding a set of deliverable apertures and associated dose rates that produce a high quality plan. The algorithm was preliminarily tested on five prostate and five head-and-neck clinical cases, each with one full gantry rotation without any couch/collimator rotations. High quality VMAT plans have been generated for all ten cases with extremely high efficiency. It takes only 5-8 min on CPU (MATLAB code on an Intel Xeon 2.27 GHz CPU) and 18-31 s on GPU (CUDA code on an NVIDIA Tesla C1060 GPU card) to generate such plans. The authors have developed an aperture-based VMAT optimization algorithm which can generate clinically deliverable high quality treatment plans at very high efficiency.
NASA Astrophysics Data System (ADS)
Nabias, Laurent; Schanen, Isabelle; Berger, Jean-Philippe; Kern, Pierre; Malbet, Fabien; Benech, Pierre
2018-04-01
This paper, "Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
NASA Technical Reports Server (NTRS)
Neilson, Jeffrey M. (Inventor)
2002-01-01
A horn has an input aperture and an output aperture, and comprises a conductive inner surface formed by rotating a curve about a central axis. The curve comprises a first arc having an input aperture end and a transition end, and a second arc having a transition end and an output aperture end. When rotated about the central axis, the first arc input aperture end forms an input aperture, and the second arc output aperture end forms an output aperture. The curve is then optimized to provide a mode conversion which maximizes the power transfer of input energy to the Gaussian mode at the output aperture.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Applications and Licenses Earth Stations § 25.134 Licensing provisions of Very Small Aperture Terminal (VSAT... maximum outbound downlink EIRP density of +10.0 dBW/4 kHz per carrier and earth station antennas with... Order in the Matter of Routine Licensing of Earth Stations in the 6 GHz and 14 GHz Bands Using Antennas...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Applications and Licenses Earth Stations § 25.134 Licensing provisions for Very Small Aperture Terminal (VSAT... maximum outbound downlink EIRP density of +10.0 dBW/4 kHz per carrier and earth station antennas with... Order in the Matter of Routine Licensing of Earth Stations in the 6 GHz and 14 GHz Bands Using Antennas...
NASA Astrophysics Data System (ADS)
Tapia, V.; González, A.; Finger, R.; Mena, F. P.; Monasterio, D.; Reyes, N.; Sánchez, M.; Bronfman, L.
2017-03-01
We present the design, implementation, and characterization of the optics of ALMA Band 1, the lowest frequency band in the most advanced radio astronomical telescope. Band 1 covers the broad frequency range from 35 to 50 GHz, with the goal of minor degradation up to 52 GHz. This is, up to now, the largest fractional bandwidth of all ALMA bands. Since the optics is the first subsystem of any receiver, low noise figure and maximum aperture efficiency are fundamental for best sensitivity. However, a conjunction of several factors (small cryostat apertures, mechanical constraints, and cost limitations) makes extremely challenging to achieve these goals. To overcome these problems, the optics presented here includes two innovative solutions, a compact optimized-profile corrugated horn and a modified Fresnel lens. The horn profile was optimized for optimum performance and easy fabrication by a single-piece manufacturing process in a lathe. In this way, manufacturability is eased when compared with traditional fabrication methods. To minimize the noise contribution of the optics, a one-step zoned lens was designed. Its parameters were carefully optimized to maximize the frequency coverage and reduce losses. The optical assembly reported here fully complies with ALMA specifications.
3D synthetic aperture for controlled-source electromagnetics
NASA Astrophysics Data System (ADS)
Knaak, Allison
Locating hydrocarbon reservoirs has become more challenging with smaller, deeper or shallower targets in complicated environments. Controlled-source electromagnetics (CSEM), is a geophysical electromagnetic method used to detect and derisk hydrocarbon reservoirs in marine settings, but it is limited by the size of the target, low-spatial resolution, and depth of the reservoir. To reduce the impact of complicated settings and improve the detecting capabilities of CSEM, I apply synthetic aperture to CSEM responses, which virtually increases the length and width of the CSEM source by combining the responses from multiple individual sources. Applying a weight to each source steers or focuses the synthetic aperture source array in the inline and crossline directions. To evaluate the benefits of a 2D source distribution, I test steered synthetic aperture on 3D diffusive fields and view the changes with a new visualization technique. Then I apply 2D steered synthetic aperture to 3D noisy synthetic CSEM fields, which increases the detectability of the reservoir significantly. With more general weighting, I develop an optimization method to find the optimal weights for synthetic aperture arrays that adapts to the information in the CSEM data. The application of optimally weighted synthetic aperture to noisy, simulated electromagnetic fields reduces the presence of noise, increases detectability, and better defines the lateral extent of the target. I then modify the optimization method to include a term that minimizes the variance of random, independent noise. With the application of the modified optimization method, the weighted synthetic aperture responses amplifies the anomaly from the reservoir, lowers the noise floor, and reduces noise streaks in noisy CSEM responses from sources offset kilometers from the receivers. Even with changes to the location of the reservoir and perturbations to the physical properties, synthetic aperture is still able to highlight targets correctly, which allows use of the method in locations where the subsurface models are built from only estimates. In addition to the technical work in this thesis, I explore the interface between science, government, and society by examining the controversy over hydraulic fracturing and by suggesting a process to aid the debate and possibly other future controversies.
Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array.
Wang, Qi; Wang, Yingmin; Zhu, Guolei
2016-12-30
The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective.
Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array
Wang, Qi; Wang, Yingmin; Zhu, Guolei
2016-01-01
The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective. PMID:28042828
Revision of an automated microseismic location algorithm for DAS - 3C geophone hybrid array
NASA Astrophysics Data System (ADS)
Mizuno, T.; LeCalvez, J.; Raymer, D.
2017-12-01
Application of distributed acoustic sensing (DAS) has been studied in several areas in seismology. One of the areas is microseismic reservoir monitoring (e.g., Molteni et al., 2017, First Break). Considering the present limitations of DAS, which include relatively low signal-to-noise ratio (SNR) and no 3C polarization measurements, a DAS - 3C geophone hybrid array is a practical option when using a single monitoring well. Considering the large volume of data from distributed sensing, microseismic event detection and location using a source scanning type algorithm is a reasonable choice, especially for real-time monitoring. The algorithm must handle both strain rate along the borehole axis for DAS and particle velocity for 3C geophones. Only a small quantity of large SNR events will be detected throughout a large aperture encompassing the hybrid array; therefore, the aperture is to be optimized dynamically to eliminate noisy channels for a majority of events. For such hybrid array, coalescence microseismic mapping (CMM) (Drew et al., 2005, SPE) was revised. CMM forms a likelihood function of location of event and its origin time. At each receiver, a time function of event arrival likelihood is inferred using an SNR function, and it is migrated to time and space to determine hypocenter and origin time likelihood. This algorithm was revised to dynamically optimize such a hybrid array by identifying receivers where a microseismic signal is possibly detected and using only those receivers to compute the likelihood function. Currently, peak SNR is used to select receivers. To prevent false results due to small aperture, a minimum aperture threshold is employed. The algorithm refines location likelihood using 3C geophone polarization. We tested this algorithm using a ray-based synthetic dataset. Leaney (2014, PhD thesis, UBC) is used to compute particle velocity at receivers. Strain rate along the borehole axis is computed from particle velocity as DAS microseismic synthetic data. The likelihood function formed by both DAS and geophone behaves as expected with the aperture dynamically selected depending on the SNR of the event. We conclude that this algorithm can be successfully applied for such hybrid arrays to monitor microseismic activity. A study using a recently acquired dataset is planned.
Overlapped Fourier coding for optical aberration removal
Horstmeyer, Roarke; Ou, Xiaoze; Chung, Jaebum; Zheng, Guoan; Yang, Changhuei
2014-01-01
We present an imaging procedure that simultaneously optimizes a camera’s resolution and retrieves a sample’s phase over a sequence of snapshots. The technique, termed overlapped Fourier coding (OFC), first digitally pans a small aperture across a camera’s pupil plane with a spatial light modulator. At each aperture location, a unique image is acquired. The OFC algorithm then fuses these low-resolution images into a full-resolution estimate of the complex optical field incident upon the detector. Simultaneously, the algorithm utilizes redundancies within the acquired dataset to computationally estimate and remove unknown optical aberrations and system misalignments via simulated annealing. The result is an imaging system that can computationally overcome its optical imperfections to offer enhanced resolution, at the expense of taking multiple snapshots over time. PMID:25321982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellfeld, Daniel; Barton, Paul; Gunter, Donald
Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less
Transport of Particle Swarms Through Variable Aperture Fractures
NASA Astrophysics Data System (ADS)
Boomsma, E.; Pyrak-Nolte, L. J.
2012-12-01
Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity. Converging apertures caused swarms to decelerate rapidly and become trapped in the transition point between the converging and parallel regions for apertures less than 2.5 mm. In uniform aperture fractures, an optimal aperture range (5 mm to 15 mm) exists where swarm velocity was higher and the swarm maintained cohesion over a longer distance. For apertures below this range the swarms were strongly slowed due to drag from the wall, while for larger apertures the swarm velocity approached an asymptote due to the loss of the walls influence. The transport of particle swarms in fractures is strongly controlled by aperture distribution. While drag from the fracture does slow swarms, especially at small apertures, much of the interesting behavior (shape changes in diverging fracture, optimal aperture in parallel fracture) is best explained by fracture induced preferential confinement that controls the evolution of the swarm. When this confinement is suddenly changed, the swarm responds quickly and dramatically to its new environment. This has important implications for the understanding of contaminant dispersal in subsurface fracture networks because the type of aperture variation can exert a strong influence on particle swarm transport. Acknowledgment: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022).
Signal-to-noise ratio of Singer product apertures
NASA Astrophysics Data System (ADS)
Shutler, Paul M. E.; Byard, Kevin
2017-09-01
Formulae for the signal-to-noise ratio (SNR) of Singer product apertures are derived, allowing optimal Singer product apertures to be identified, and the CPU time required to decode them is quantified. This allows a systematic comparison to be made of the performance of Singer product apertures against both conventionally wrapped Singer apertures, and also conventional product apertures such as square uniformly redundant arrays. For very large images, equivalently for images at very high resolution, the SNR of Singer product apertures is asymptotically as good as the best conventional apertures, but Singer product apertures decode faster than any conventional aperture by at least a factor of ten for image sizes up to several megapixels. These theoretical predictions are verified using numerical simulations, demonstrating that coded aperture video is for the first time a realistic possibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, S; Joosten, A; Fix, MK
Purpose: To estimate the dosimetric potential of mixed beam radiotherapy (MBRT) by using a single process optimizing the shape and weight of photon and electron apertures simultaneously based on Monte Carlo beamlet dose distributions. Methods: A simulated annealing based direct aperture optimization capable to perform simultaneous optimization was developed to generate treatment plans for MERT, photon-IMRT and MBRT. Both photon and electron apertures are collimated with the photon-MLC and are delivered in a segmented manner. For dosimetric comparison and for investigating the dependency on the number of apertures, photon-IMRT, MERT and MBRT plans were generated for an academic case consistingmore » of a water phantom containing two shallow PTVs differing in the maximal depth of 5 and 7 cm, respectively and two OARs in distal and lateral direction to the PTVs. Results: For the superficial PTV, the dose homogeneity (V95%–V107%) and the mean dose (in percent of the prescribed dose) to the distal and the lateral OARs of the MBRT plan (94.9%, 16.9%, 17.8%) are superior or comparable to those for the MERT (74%, 18.4%, 15.4%) and the photon-IMRT plan (89.4%, 20.8%, 24.7%). For the enlarged PTV, the dosimetric superiority of MBRT compared to MERT and photon-IMRT is even more pronounced. Furthermore, an MBRT plan with 12 electron and 10 photon apertures lead to an objective function value 38% lower than that of a photon-IMRT plan with 40 apertures. Conclusion: The results of simultaneous optimization for MBRT are promising with regards to further OAR sparing and improved dose coverage to the PTV compared to photon-IMRT and MERT. Especially superficial targets with deeper subparts (>5 cm) could substantially benefit. Moreover, MBRT seems to be a possible solution of two downsides of photon-IMRT, namely the extended low dose bath and the requirement of numerous apertures. This work was supported by Varian Medical Systems. This work was supported by Varian Medical Systems.« less
Ma, Jianguo; Martin, K. Heath; Dayton, Paul A.; Jiang, Xiaoning
2014-01-01
Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, −6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramania, Ganapathi Subramanian; Brener, Igal; Foteinopoulou, Stavroula
2017-08-01
A structure for broadband light funneling comprises a two-dimensional periodic array of connected ultrasubwavelength apertures, each aperture comprising a large sub-aperture that aids in the coupling of the incoming incident light and a small sub-aperture that funnels a significant fraction of the incident light power. The structure possesses all the capabilities of prior extraordinary optical transmission platforms, yet operates nonresonantly on a distinctly different mechanism. The structure demonstrates efficient ultrabroadband funneling of optical power confined in an area as small as .about.(.lamda./500).sup.2, where optical fields are enhanced, thus exhibiting functional possibilities beyond resonant platforms.
Hasinoff, Samuel W; Kutulakos, Kiriakos N
2011-11-01
In this paper, we consider the problem of imaging a scene with a given depth of field at a given exposure level in the shortest amount of time possible. We show that by 1) collecting a sequence of photos and 2) controlling the aperture, focus, and exposure time of each photo individually, we can span the given depth of field in less total time than it takes to expose a single narrower-aperture photo. Using this as a starting point, we obtain two key results. First, for lenses with continuously variable apertures, we derive a closed-form solution for the globally optimal capture sequence, i.e., that collects light from the specified depth of field in the most efficient way possible. Second, for lenses with discrete apertures, we derive an integer programming problem whose solution is the optimal sequence. Our results are applicable to off-the-shelf cameras and typical photography conditions, and advocate the use of dense, wide-aperture photo sequences as a light-efficient alternative to single-shot, narrow-aperture photography.
WE-AB-209-09: Optimization of Rotational Arc Station Parameter Optimized Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, P; Xing, L; Ungun, B
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of improving VMAT in both plan quality and delivery efficiency. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based Proximal Operator Graph Solver (POGS) within seconds. Apertures with zero or low weight were thrown out. Tomore » avoid being trapped in a local minimum, a stochastic gradient descent method was employed which also greatly increased the convergence rate of the objective function. The above procedure repeated until the plan could not be improved any further. A weighting factor associated with the total plan MU also indirectly controlled the complexities of aperture shapes. The number of apertures for VMAT and SPORT was confined to 180. The SPORT allowed the coexistence of multiple apertures in a single SP. The optimization technique was assessed by using three clinical cases (prostate, H&N and brain). Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. Prostate case: the volume of the 50% prescription dose was decreased by 22% for the rectum. H&N case: SPORT improved the mean dose for the left and right parotids by 15% each. Brain case: the doses to the eyes, chiasm and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the H&N case. Conclusion: The superior dosimetric quality and delivery efficiency presented here indicates that SPORT is an intriguing alternative treatment modality.« less
NASA Astrophysics Data System (ADS)
Shen, Hong; Liu, Wen-xing; Zhou, Xue-yun; Zhou, Li-ling; Yu, Long-Kun
2018-02-01
In order to thoroughly understand the characteristics of the aperture-averaging effect of atmospheric scintillation in terrestrial optical wireless communication and provide references for engineering design and performance evaluation of the optics system employed in the atmosphere, we have theoretically deduced the generally analytic expression of the aperture-averaging factor of atmospheric scintillation, and numerically investigated characteristics of the apertureaveraging factor under different propagation conditions. The limitations of the current commonly used approximate calculation formula of aperture-averaging factor have been discussed, and the results showed that the current calculation formula is not applicable for the small receiving aperture under non-uniform turbulence link. Numerical calculation has showed that aperture-averaging factor of atmospheric scintillation presented an exponential decline model for the small receiving aperture under non-uniform turbulent link, and the general expression of the model was given. This model has certain guiding significance for evaluating the aperture-averaging effect in the terrestrial optical wireless communication.
KEPLER OBSERVATIONS OF THE SEYFERT 1 GALAXY II ZW 229.015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carini, M. T.; Ryle, Wesley T., E-mail: mike.carini@wku.edu
2012-04-10
The Seyfert 1 galaxy II ZW 229.015 has been observed with the Kepler spacecraft since quarter 4 of Kepler science operations. The results of the quarters 4-7 (1 year) Kepler observations are presented in this paper. We find the source to be highly variable on multiple timescales, with discrete variations occurring on timescales as short as tens of hours with amplitudes as small as 0.5%. Such small amplitude, rapid variability has never before been detected in active galactic nuclei. The presence of a strong galaxy component dilutes the variability determined from the photometric aperture used in the standard Kepler PDCmore » analysis. Using the tools provided by the Kepler Guest Observer Office and simultaneous V-band photometry found in the literature, we determine an optimal customized aperture for photometry of this source with Kepler. The results of a PSRESP analysis reveal tentative evidence of a characteristic variability timescale in the power spectrum. Using this timescale, we estimate the mass of the central supermassive black hole and this estimate is consistent with the virial mass estimate from reverberation mapping studies.« less
Fesenko, Pavlo; Flauraud, Valentin; Xie, Shenqi; Kang, Enpu; Uemura, Takafumi; Brugger, Jürgen; Genoe, Jan; Heremans, Paul; Rolin, Cédric
2017-07-19
To grow small molecule semiconductor thin films with domain size larger than modern-day device sizes, we evaporate the material through a dense array of small apertures, called a stencil nanosieve. The aperture size of 0.5 μm results in low nucleation density, whereas the aperture-to-aperture distance of 0.5 μm provides sufficient crosstalk between neighboring apertures through the diffusion of adsorbed molecules. By integrating the nanosieve in the channel area of a thin-film transistor mask, we show a route for patterning both the organic semiconductor and the metal contacts of thin-film transistors using one mask only and without mask realignment.
Online optimization of storage ring nonlinear beam dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiaobiao; Safranek, James
2015-08-01
We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.
NASA Technical Reports Server (NTRS)
Kochevar, H. J.
1972-01-01
A new technique has been developed to accurately measure the G/T of a small aperture antenna using geostationary satellites and the well established radio star method. A large aperture antenna having the capability of accurately measuring its G/T by using a radio star of known power density is used to obtain an accurate G/T to use as a reference. The CNR of both the large and small aperture antennas are then measured using an Applications Technology Satellite (ATS). After normalizing the two C/N ratios to the large antenna system noise temperature the G/T or the gain G of the small aperture antenna can then be determined.
A dose optimization method for electron radiotherapy using randomized aperture beams
NASA Astrophysics Data System (ADS)
Engel, Konrad; Gauer, Tobias
2009-09-01
The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.
Optimization of Dynamic Aperture of PEP-X Baseline Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Min-Huey; /SLAC; Cai, Yunhai
2010-08-23
SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. Themore » latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.« less
Considerations in Phase Estimation and Event Location Using Small-aperture Regional Seismic Arrays
NASA Astrophysics Data System (ADS)
Gibbons, Steven J.; Kværna, Tormod; Ringdal, Frode
2010-05-01
The global monitoring of earthquakes and explosions at decreasing magnitudes necessitates the fully automatic detection, location and classification of an ever increasing number of seismic events. Many seismic stations of the International Monitoring System are small-aperture arrays designed to optimize the detection and measurement of regional phases. Collaboration with operators of mines within regional distances of the ARCES array, together with waveform correlation techniques, has provided an unparalleled opportunity to assess the ability of a small-aperture array to provide robust and accurate direction and slowness estimates for phase arrivals resulting from well-constrained events at sites of repeating seismicity. A significant reason for the inaccuracy of current fully-automatic event location estimates is the use of f- k slowness estimates measured in variable frequency bands. The variability of slowness and azimuth measurements for a given phase from a given source region is reduced by the application of almost any constant frequency band. However, the frequency band resulting in the most stable estimates varies greatly from site to site. Situations are observed in which regional P- arrivals from two sites, far closer than the theoretical resolution of the array, result in highly distinct populations in slowness space. This means that the f- k estimates, even at relatively low frequencies, can be sensitive to source and path-specific characteristics of the wavefield and should be treated with caution when inferring a geographical backazimuth under the assumption of a planar wavefront arriving along the great-circle path. Moreover, different frequency bands are associated with different biases meaning that slowness and azimuth station corrections (commonly denoted SASCs) cannot be calibrated, and should not be used, without reference to the frequency band employed. We demonstrate an example where fully-automatic locations based on a source-region specific fixed-parameter template are more stable than the corresponding analyst reviewed estimates. The reason is that the analyst selects a frequency band and analysis window which appears optimal for each event. In this case, the frequency band which produces the most consistent direction estimates has neither the best SNR or the greatest beam-gain, and is therefore unlikely to be chosen by an analyst without calibration data.
NASA Astrophysics Data System (ADS)
Mazoyer, J.; Pueyo, L.; N'Diaye, M.; Fogarty, K.; Zimmerman, N.; Soummer, R.; Shaklan, S.; Norman, C.
2018-01-01
High-contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. Instrumentation techniques in this field have greatly improved over the last two decades, with the development of stellar coronagraphy, in parallel with specific methods of wavefront sensing and control. Next generation space- and ground-based telescopes will enable the characterization of cold solar-system-like planets for the first time and maybe even in situ detection of bio-markers. However, the growth of primary mirror diameters, necessary for these detections, comes with an increase of their complexity (segmentation, secondary mirror features). These discontinuities in the aperture can greatly limit the performance of coronagraphic instruments. In this context, we introduced a new technique, Active Correction of Aperture Discontinuities-Optimized Stroke Minimization (ACAD-OSM), to correct for the diffractive effects of aperture discontinuities in the final image plane of a coronagraph, using deformable mirrors. In this paper, we present several tools that can be used to optimize the performance of this technique for its application to future large missions. In particular, we analyzed the influence of the deformable setup (size and separating distance) and found that there is an optimal point for this setup, optimizing the performance of the instrument in contrast and throughput while minimizing the strokes applied to the deformable mirrors. These results will help us design future coronagraphic instruments to obtain the best performance.
Irradiation of the prostate and pelvic lymph nodes with an adaptive algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, A. B.; Chen, J.; Nguyen, T. B.
2012-02-15
Purpose: The simultaneous treatment of pelvic lymph nodes and the prostate in radiotherapy for prostate cancer is complicated by the independent motion of these two target volumes. In this work, the authors study a method to adapt intensity modulated radiation therapy (IMRT) treatment plans so as to compensate for this motion by adaptively morphing the multileaf collimator apertures and adjusting the segment weights. Methods: The study used CT images, tumor volumes, and normal tissue contours from patients treated in our institution. An IMRT treatment plan was then created using direct aperture optimization to deliver 45 Gy to the pelvic lymphmore » nodes and 50 Gy to the prostate and seminal vesicles. The prostate target volume was then shifted in either the anterior-posterior direction or in the superior-inferior direction. The treatment plan was adapted by adjusting the aperture shapes with or without re-optimizing the segment weighting. The dose to the target volumes was then determined for the adapted plan. Results: Without compensation for prostate motion, 1 cm shifts of the prostate resulted in an average decrease of 14% in D-95%. If the isocenter is simply shifted to match the prostate motion, the prostate receives the correct dose but the pelvic lymph nodes are underdosed by 14% {+-} 6%. The use of adaptive morphing (with or without segment weight optimization) reduces the average change in D-95% to less than 5% for both the pelvic lymph nodes and the prostate. Conclusions: Adaptive morphing with and without segment weight optimization can be used to compensate for the independent motion of the prostate and lymph nodes when combined with daily imaging or other methods to track the prostate motion. This method allows the delivery of the correct dose to both the prostate and lymph nodes with only small changes to the dose delivered to the target volumes.« less
NASA Astrophysics Data System (ADS)
Wild, Walter James
1988-12-01
External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work. The central concept lies in the representation of the aperture shell by a sequence of binary digits. This, coupled with the mode of operation which is data encoding within an axial slice of space, leads to the fundamental imaging equation in which the coding operation is conveniently described by a circulant matrix operator. The coding/decoding process is a classic coded-aperture problem, and various estimators to achieve decoding are discussed. Some estimators require a priori information about the object (or object class) being imaged; the only unbiased estimator that does not impose this requirement is the simple inverse-matrix operator. The effects of noise on the estimate (or reconstruction) is discussed for general noise models and various codes/decoding operators. The choice of an optimal aperture for detector count times of clinical relevance is examined using a statistical class-separability formalism.
NASA Technical Reports Server (NTRS)
Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.
1994-01-01
High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.
Tip/tilt optimizations for polynomial apodized vortex coronagraphs on obscured telescope pupils
NASA Astrophysics Data System (ADS)
Fogarty, Kevin; Pueyo, Laurent; Mazoyer, Johan; N'Diaye, Mamadou
2017-09-01
Obstructions due to large secondary mirrors, primary mirror segmentation, and secondary mirror support struts all introduce diffraction artifacts that limit the performance offered by coronagraphs. However, just as vortex coronagraphs provides theoretically ideal cancellation of on-axis starlight for clear apertures, the Polynomial Apodized Vortex Coronagraph (PAVC) completely blocks on-axis light for apertures with central obscurations, and delivers off-axis throughput that improves as the topological charge of the vortex increases. We examine the sensitivity of PAVC designs to tip/tilt aberrations and stellar angular size, and discuss methods for mitigating these effects. By imposing additional constraints on the pupil plane apodization, we decrease the sensitivity of the PAVC to the small positional shifts of the on-axis source induced by either tip/tilt or stellar angular size; providing a route to overcoming an important hurdle facing the performance of vortex coronagraphs on telescopes with complicated pupils.
A comprehensive formulation for volumetric modulated arc therapy planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dan; Lyu, Qihui; Ruan, Dan
2016-07-15
Purpose: Volumetric modulated arc therapy (VMAT) is a widely employed radiation therapy technique, showing comparable dosimetry to static beam intensity modulated radiation therapy (IMRT) with reduced monitor units and treatment time. However, the current VMAT optimization has various greedy heuristics employed for an empirical solution, which jeopardizes plan consistency and quality. The authors introduce a novel direct aperture optimization method for VMAT to overcome these limitations. Methods: The comprehensive VMAT (comVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term to penalize the difference between the optimized dose and the prescribed dose, as well as an anisotropicmore » total variation term to promote piecewise continuity in the fluence maps, preparing it for direct aperture optimization. A level set function was used to describe the aperture shapes and the difference between aperture shapes at adjacent angles was penalized to control MLC motion range. A proximal-class optimization solver was adopted to solve the large scale optimization problem, and an alternating optimization strategy was implemented to solve the fluence intensity and aperture shapes simultaneously. Single arc comVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme case, a lung (LNG) case, and two head and neck cases—one with three PTVs (H&N{sub 3PTV}) and one with foue PTVs (H&N{sub 4PTV})—to test the efficacy. The plans were optimized using an alternating optimization strategy. The plans were compared against the clinical VMAT (clnVMAT) plans utilizing two overlapping coplanar arcs for treatment. Results: The optimization of the comVMAT plans had converged within 600 iterations of the block minimization algorithm. comVMAT plans were able to consistently reduce the dose to all organs-at-risk (OARs) as compared to the clnVMAT plans. On average, comVMAT plans reduced the max and mean OAR dose by 6.59% and 7.45%, respectively, of the prescription dose. Reductions in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N{sub 3PTV} case. PTV coverages measured by D95, D98, and D99 were within 0.25% of the prescription dose. By comprehensively optimizing all beams, the comVMAT optimizer gained the freedom to allow some selected beams to deliver higher intensities, yielding a dose distribution that resembles a static beam IMRT plan with beam orientation optimization. Conclusions: The novel nongreedy VMAT approach simultaneously optimizes all beams in an arc and then directly generates deliverable apertures. The single arc VMAT approach thus fully utilizes the digital Linac’s capability in dose rate and gantry rotation speed modulation. In practice, the new single VMAT algorithm generates plans superior to existing VMAT algorithms utilizing two arcs.« less
Fully optimized shaped pupils: preparation for a test at the Subaru Telescope
NASA Astrophysics Data System (ADS)
Carlotti, Alexis; Kasdin, N. Jeremy; Martinache, Frantz; Vanderbei, Robert J.; Young, Elizabeth J.; Che, George; Groff, Tyler D.; Guyon, Olivier
2012-09-01
The SCExAO instrument at the Subaru telescope, mainly based on a PIAA coronagraph can benefit from the addition of a robust and simple shaped pupil coronagraph. New shaped pupils, fully optimized in 2 dimensions, make it possible to design optimal apodizers for arbitrarily complex apertures, for instance on-axis telescopes such as the Subaru telescope. We have designed several masks with inner working angles as small as 2.5 λ / D, and for high-contrast regions with different shapes. Using Princeton University nanofabrication facilities, we have manufactured two masks by photolithography. These masks have been tested in the laboratory, both in Princeton and in the facilities of the National Astronomical Observatory of Japan (NAOJ) in Hilo. The goal of this work is to prepare tests on the sky of a shaped pupil coronagraph in 2012.
MO-AB-BRA-01: A Global Level Set Based Formulation for Volumetric Modulated Arc Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, D; Lyu, Q; Ruan, D
2016-06-15
Purpose: The current clinical Volumetric Modulated Arc Therapy (VMAT) optimization is formulated as a non-convex problem and various greedy heuristics have been employed for an empirical solution, jeopardizing plan consistency and quality. We introduce a novel global direct aperture optimization method for VMAT to overcome these limitations. Methods: The global VMAT (gVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term and an anisotropic total variation term. A level set function was used to describe the aperture shapes and adjacent aperture shapes were penalized to control MLC motion range. An alternating optimization strategy was implemented to solvemore » the fluence intensity and aperture shapes simultaneously. Single arc gVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme (GBM), lung (LNG), and 2 head and neck cases—one with 3 PTVs (H&N3PTV) and one with 4 PTVs (H&N4PTV). The plans were compared against the clinical VMAT (cVMAT) plans utilizing two overlapping coplanar arcs. Results: The optimization of the gVMAT plans had converged within 600 iterations. gVMAT reduced the average max and mean OAR dose by 6.59% and 7.45% of the prescription dose. Reductions in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N3PTV case. PTV coverages (D95, D98, D99) were within 0.25% of the prescription dose. By globally considering all beams, the gVMAT optimizer allowed some beams to deliver higher intensities, yielding a dose distribution that resembles a static beam IMRT plan with beam orientation optimization. Conclusions: The novel VMAT approach allows for the search of an optimal plan in the global solution space and generates deliverable apertures directly. The single arc VMAT approach fully utilizes the digital linacs’ capability in dose rate and gantry rotation speed modulation. Varian Medical Systems, NIH grant R01CA188300, NIH grant R43CA183390.« less
TRIPPy: Trailed Image Photometry in Python
NASA Astrophysics Data System (ADS)
Fraser, Wesley; Alexandersen, Mike; Schwamb, Megan E.; Marsset, Michaël; Pike, Rosemary E.; Kavelaars, J. J.; Bannister, Michele T.; Benecchi, Susan; Delsanti, Audrey
2016-06-01
Photometry of moving sources typically suffers from a reduced signal-to-noise ratio (S/N) or flux measurements biased to incorrect low values through the use of circular apertures. To address this issue, we present the software package, TRIPPy: TRailed Image Photometry in Python. TRIPPy introduces the pill aperture, which is the natural extension of the circular aperture appropriate for linearly trailed sources. The pill shape is a rectangle with two semicircular end-caps and is described by three parameters, the trail length and angle, and the radius. The TRIPPy software package also includes a new technique to generate accurate model point-spread functions (PSFs) and trailed PSFs (TSFs) from stationary background sources in sidereally tracked images. The TSF is merely the convolution of the model PSF, which consists of a moffat profile, and super-sampled lookup table. From the TSF, accurate pill aperture corrections can be estimated as a function of pill radius with an accuracy of 10 mmag for highly trailed sources. Analogous to the use of small circular apertures and associated aperture corrections, small radius pill apertures can be used to preserve S/Ns of low flux sources, with appropriate aperture correction applied to provide an accurate, unbiased flux measurement at all S/Ns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, S; Kakakhel, MB; Ahmed, SBS
2015-06-15
Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shieldedmore » to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international body for the presented work.« less
Information Switching Processor (ISP) contention analysis and control
NASA Technical Reports Server (NTRS)
Shyy, D.; Inukai, T.
1993-01-01
Future satellite communications, as a viable means of communications and an alternative to terrestrial networks, demand flexibility and low end-user cost. On-board switching/processing satellites potentially provide these features, allowing flexible interconnection among multiple spot beams, direct to the user communications services using very small aperture terminals (VSAT's), independent uplink and downlink access/transmission system designs optimized to user's traffic requirements, efficient TDM downlink transmission, and better link performance. A flexible switching system on the satellite in conjunction with low-cost user terminals will likely benefit future satellite network users.
Optimal pupil design for confocal microscopy
NASA Astrophysics Data System (ADS)
Patel, Yogesh G.; Rajadhyaksha, Milind; DiMarzio, Charles A.
2010-02-01
Confocal reflectance microscopy may enable screening and diagnosis of skin cancers noninvasively and in real-time, as an adjunct to biopsy and pathology. Current instruments are large, complex, and expensive. A simpler, confocal line-scanning microscope may accelerate the translation of confocal microscopy in clinical and surgical dermatology. A confocal reflectance microscope may use a beamsplitter, transmitting and detecting through the pupil, or a divided pupil, or theta configuration, with half used for transmission and half for detection. The divided pupil may offer better sectioning and contrast. We present a Fourier optics model and compare the on-axis irradiance of a confocal point-scanning microscope in both pupil configurations, optimizing the profile of a Gaussian beam in a circular or semicircular aperture. We repeat both calculations with a cylindrical lens which focuses the source to a line. The variable parameter is the fillfactor, h, the ratio of the 1/e2 diameter of the Gaussian beam to the diameter of the full aperture. The optimal values of h, for point scanning are 0.90 (full) and 0.66 for the half-aperture. For line-scanning, the fill-factors are 1.02 (full) and 0.52 (half). Additional parameters to consider are the optimal location of the point-source beam in the divided-pupil configuration, the optimal line width for the line-source, and the width of the aperture in the divided-pupil configuration. Additional figures of merit are field-of-view and sectioning. Use of optimal designs is critical in comparing the experimental performance of the different configurations.
Wang, Jing; Sheng, Yunlong
2016-09-20
A new approach for designing the binary computer-generated hologram (CGH) of a very large number of pixels is proposed. Diffraction of the CGH apertures is computed by the analytical Abbe transform and by considering the aperture edges as the basic diffracting elements. The computation cost is independent of the CGH size. The arbitrary-shaped polygonal apertures in the CGH consist of quadrilateral apertures, which are designed by assigning the binary phases using the parallel genetic algorithm with a local search, followed by optimizing the locations of the co-vertices with a direct search. The design results in high performance with low image reconstruction error.
Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A
2016-09-05
Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles.
Xu, Renfeng; Bradley, Arthur; Thibos, Larry N.
2013-01-01
Purpose We tested the hypothesis that pupil apodization is the basis for central pupil bias of spherical refractions in eyes with spherical aberration. Methods We employed Fourier computational optics in which we vary spherical aberration levels, pupil size, and pupil apodization (Stiles Crawford Effect) within the pupil function, from which point spread functions and optical transfer functions were computed. Through-focus analysis determined the refractive correction that optimized retinal image quality. Results For a large pupil (7 mm), as spherical aberration levels increase, refractions that optimize the visual Strehl ratio mirror refractions that maximize high spatial frequency modulation in the image and both focus a near paraxial region of the pupil. These refractions are not affected by Stiles Crawford Effect apodization. Refractions that optimize low spatial frequency modulation come close to minimizing wavefront RMS, and vary with level of spherical aberration and Stiles Crawford Effect. In the presence of significant levels of spherical aberration (e.g. C40 = 0.4 µm, 7mm pupil), low spatial frequency refractions can induce −0.7D myopic shift compared to high SF refraction, and refractions that maximize image contrast of a 3 cycle per degree square-wave grating can cause −0.75D myopic drift relative to refractions that maximize image sharpness. Discussion Because of small depth of focus associated with high spatial frequency stimuli, the large change in dioptric power across the pupil caused by spherical aberration limits the effective aperture contributing to the image of high spatial frequencies. Thus, when imaging high spatial frequencies, spherical aberration effectively induces an annular aperture defining that portion of the pupil contributing to a well-focused image. As spherical focus is manipulated during the refraction procedure, the dimensions of the annular aperture change. Image quality is maximized when the inner radius of the induced annulus falls to zero, thus defining a circular near paraxial region of the pupil that determines refraction outcome. PMID:23683093
Geeslin, Andrew G; Jansson, Kyle S; Wijdicks, Coen A; Chapman, Mark A; Fok, Alex S; LaPrade, Robert F
2011-04-01
There is limited information in the literature on comparisons of antegrade versus retrograde reaming techniques and the effect on the creation of anterior cruciate ligament (ACL) tibial tunnel entry and exit apertures. Proximal and distal apertures of ACL tibial tunnels, as created with different reamers, will be affected by type of reamer design. Controlled laboratory study. Forty skeletally mature porcine tibias with bone mineral density values comparable with a young athletic population were included in this study. Five 9-mm reamer models were used (3 antegrade: A1, smooth-bore reamer; A2, acorn-head reamer; A3, flat-head reamer; 2 retrograde: R1, retrograde acorn reamer; R2, single-blade retrograde reamer), and a new reamer was used for each tibia (8 reamer-tibia pairs per reamer model). All specimens underwent micro-computed tomography scanning, and images were reconstructed and analyzed using 3-dimensional image analysis software. Aperture rim fractures were graded on a 0-IV scale that described the proportion of the fractured aperture circumference. Specimens with incomplete apertures were also recorded. Because of the unique characteristics of various tunnels, intratunnel characteristics were observed and recorded. In sum, 1 proximal and 7 distal aperture rim fractures were found; 3, 0, and 4 distal aperture rim fractures were found with groups A1, A2, and A3, respectively. Incomplete apertures were more commonly found at the distal aperture (n = 15) than the proximal aperture (n = 8); there were no tibias with this finding at both apertures. All incomplete distal apertures occurred with the retrograde technique, and all incomplete proximal apertures occurred with the antegrade technique, most commonly with reamer design A3. An added finding of tunnel curvature at the distal aspect of the tunnel was observed in all 8 tibias with R1 reamers and 5 tibias with R2 reamers. This phenomenon was not observed in any of the tibias reamed with the antegrade technique. Anterior cruciate ligament tibial tunnel aperture characteristics were highly dependent on reamer design. Optimal proximal aperture characteristics were produced by the retrograde reamers, whereas optimal distal aperture characteristics were obtained with the antegrade reamers. In addition, a phenomenon of tunnel curvature in retrograde-type reamers was found, which may have effects on ACL graft or screw fixation. Differences in tunnel aperture shapes and fractures depend on reamer design. This information is important for the creation of ACL reconstruction tunnels with different reamer designs.
Information extraction and transmission techniques for spaceborne synthetic aperture radar images
NASA Technical Reports Server (NTRS)
Frost, V. S.; Yurovsky, L.; Watson, E.; Townsend, K.; Gardner, S.; Boberg, D.; Watson, J.; Minden, G. J.; Shanmugan, K. S.
1984-01-01
Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively.
Zhu, Zhaoyi; Mu, Quanquan; Li, Dayu; Yang, Chengliang; Cao, Zhaoliang; Hu, Lifa; Xuan, Li
2016-10-17
The centroid-based Shack-Hartmann wavefront sensor (SHWFS) treats the sampled wavefronts in the sub-apertures as planes, and the slopes of the sub-wavefronts are used to reconstruct the whole pupil wavefront. The problem is that the centroid method may fail to sense the high-order modes for strong turbulences, decreasing the precision of the whole pupil wavefront reconstruction. To solve this problem, we propose a sub-wavefront estimation method for SHWFS based on the focal plane sensing technique, by which more Zernike modes than the two slopes can be sensed in each sub-aperture. In this paper, the effects on the sub-wavefront estimation method of the related parameters, such as the spot size, the phase offset with its set amplitude and the pixels number in each sub-aperture, are analyzed and these parameters are optimized to achieve high efficiency. After the optimization, open-loop measurement is realized. For the sub-wavefront sensing, we achieve a large linearity range of 3.0 rad RMS for Zernike modes Z2 and Z3, and 2.0 rad RMS for Zernike modes Z4 to Z6 when the pixel number does not exceed 8 × 8 in each sub-aperture. The whole pupil wavefront reconstruction with the modified SHWFS is realized to analyze the improvements brought by the optimized sub-wavefront estimation method. Sixty-five Zernike modes can be reconstructed with a modified SHWFS containing only 7 × 7 sub-apertures, which could reconstruct only 35 modes by the centroid method, and the mean RMS errors of the residual phases are less than 0.2 rad2, which is lower than the 0.35 rad2 by the centroid method.
Method for generating small and ultra small apertures, slits, nozzles and orifices
Khounsary, Ali M [Hinsdale, IL
2012-05-22
A method and device for one or more small apertures, slits, nozzles and orifices, preferably having a high aspect ratio. In one embodiment, one or more alternating layers of sacrificial layers and blocking layers are deposited onto a substrate. Each sacrificial layer is made of a material which preferably allows a radiation to substantially pass through. Each blocking layer is made of a material which substantially blocks the radiation.
Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.
2016-01-01
One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605
Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V
2016-01-21
One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.
Rectifying antenna and method of manufacture
NASA Technical Reports Server (NTRS)
Bhansali, Shekhar (Inventor); Buckle, Kenneth (Inventor); Goswami, D. Yogi (Inventor); Stefanakos, Elias (Inventor); Weller, Thomas (Inventor)
2006-01-01
In accordance with the present invention, an aperture rectenna is provided where the substrate is transparent and of sufficient mechanical strength to support the fabricated structure above it. An aperture antenna is deposited on the transparent substrate and a metal-insulator-metal (MIM) diode is constructed on top of the aperture antenna. There is an insulating layer between the aperture antenna metal and the metal ground plane optimized to maximize the collection of incident radiation. The top of the structure is capped with a metal ground plane layer, which also serves as the DC connection points for each rectenna element.
Multi-aperture digital coherent combining for free-space optical communication receivers.
Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A
2016-06-13
Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.
High-numerical-aperture-based virtual point detectors for photoacoustic tomography
NASA Astrophysics Data System (ADS)
Li, Changhui; Wang, Lihong V.
2008-07-01
The focal point of a high-numerical-aperture (NA) ultrasonic transducer can be used as a virtual point detector. This virtual point detector detects omnidirectionally over a wide acceptance angle. It also combines a large active transducer surface and a small effective virtual detector size. Thus the sensitivity is high compared with that of a real point detector, and the aperture effect is small compared with that of a finite size transducer. We present two kinds of high-NA-based virtual point detectors and their successful application in photoacoustic tomography. They can also be applied in other ultrasound-related fields.
A concept of a wide aperture klystron with RF absorbing drift tubes for a linear collider
NASA Astrophysics Data System (ADS)
Dolbilov, G. V.; Azorsky, N. I.; Fateev, A. A.; Lebedev, N. I.; Petrov, V. A.; Shvetsov, V. S.; Yurkov, M. V.; Balakin, V. E.; Avrakhov, P. V.; Kazakov, S. Yu.; Solyak, N. A.; Teryaev, V. E.; Vogel, V. F.
1996-02-01
This paper is devoted to a problem of the optimal design of the electrodynamic structure of the X-band klystron for a linear collider. It is shown that the optimal design should provide a large aperture and a high power gain, about 80 dB. The most severe problem arising here is that of parasitic self-excitation of the klystron, which becomes more complicated at increasing aperture and power gain. Our investigations have shown that traditional methods for suppressing the self-excitation become ineffective at the desired technical parameters of the klystron. In this paper we present a novel concept of a wide aperture klystron with distributed suppression of parasitic oscillations. Results of an experimental study of the wide-aperture relativistic klystron for VLEPP are presented. Investigations have been performed using the driving beam of the JINR LIA-3000 induction accelerator ( E = 1 MeV, I = 250 A, τ = 250 ns). To suppress self-excitation parasitic modes we have used the technique of RF absorbing drift tubes. As a result, we have obtained design output parameters of the klystron and achieved a level of 100 MW output power.
Aperture efficiency of integrated-circuit horn antennas
NASA Technical Reports Server (NTRS)
Guo, Yong; Lee, Karen; Stimson, Philip; Potter, Kent; Rutledge, David
1991-01-01
The aperture efficiency of silicon integrated-circuit horn antennas has been improved by optimizing the length of the dipole probes and by coating the entire horn walls with gold. To make these measurements, a new thin-film power-density meter was developed for measuring power density with accuracies better than 5 percent. The measured aperture efficiency improved from 44 percent to 72 percent at 93 GHz. This is sufficient for use in many applications which now use machined waveguide horns.
Throughput of diffraction-limited field optics systems for infrared and millimetric telescopes
NASA Technical Reports Server (NTRS)
Hildebrand, R. H.; Winston, R.
1982-01-01
Telescopes for submillimeter wavelengths have point spread functions some millimeters or centimeters in diameter, but the detectors may be only fractions of a millimeter in size. Thus a field aperture and collecting optics are needed. Optimizing the aperture by a calculation of the effects of diffraction on signal and resolution as a function of size of the collecting aperture is shown. Calculations are compared to experimental results from observations of Mars at submillimeter wavelengths.
Simultaneous optimization of photons and electrons for mixed beam radiotherapy
NASA Astrophysics Data System (ADS)
Mueller, S.; Fix, M. K.; Joosten, A.; Henzen, D.; Frei, D.; Volken, W.; Kueng, R.; Aebersold, D. M.; Stampanoni, M. F. M.; Manser, P.
2017-07-01
The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.
Simultaneous optimization of photons and electrons for mixed beam radiotherapy.
Mueller, S; Fix, M K; Joosten, A; Henzen, D; Frei, D; Volken, W; Kueng, R; Aebersold, D M; Stampanoni, M F M; Manser, P
2017-06-26
The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X; Belcher, AH; Grelewicz, Z
Purpose: Real-time kV fluoroscopic tumor tracking has the benefit of direct tumor position monitoring. However, there is clinical concern over the excess kV imaging dose cost to the patient when imaging in continuous fluoroscopic mode. This work addresses this specific issue by proposing a combined MV+kV direct-aperture optimization (DAO) approach to integrate the kV imaging beam into a treatment planning such that the kV radiation is considered as a contributor to the overall dose delivery. Methods: The combined MV+kV DAO approach includes three algorithms. First, a projected Quasi-Newton algorithm (L-BFGS) is used to find optimized fluence with MV+kV dose formore » the best possible dose distribution. Then, Engel’s algorithm is applied to optimize the total number of monitor units and heuristically optimize the number of apertures. Finally, an aperture shape optimization (ASO) algorithm is applied to locally optimize the leaf positions of MLC. Results: Compared to conventional DAO MV plans with continuous kV fluoroscopic tracking, combined MV+kV DAO plan leads to a reduction in the total number of MV monitor units due to inclusion of kV dose as part of the PTV, and was also found to reduce the mean and maximum doses on the organs at risk (OAR). Compared to conventional DAO MV plan without kV tracking, the OAR dose in the combined MV+kV DAO plan was only slightly higher. DVH curves show that combined MV+kV DAO plan provided about the same PTV coverage as that in the conventional DAO plans without kV imaging. Conclusion: We report a combined MV+kV DAO approach that allows real time kV imager tumor tracking with only a trivial increasing on the OAR doses while providing the same coverage to PTV. The approach is suitable for clinic implementation.« less
Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E
2010-11-01
Based on an assumption of movement control optimality in reach-to-grasp movements, we have recently developed a mathematical model of transport-aperture coordination (TAC), according to which the hand-target distance is a function of hand velocity and acceleration, aperture magnitude, and aperture velocity and acceleration (Rand et al. in Exp Brain Res 188:263-274, 2008). Reach-to-grasp movements were performed by young adults under four different reaching speeds and two different transport distances. The residual error magnitude of fitting the above model to data across different trials and subjects was minimal for the aperture-closure phase, but relatively much greater for the aperture-opening phase, indicating considerable difference in TAC variability between those phases. This study's goal is to identify the main reasons for that difference and obtain insights into the control strategy of reach-to-grasp movements. TAC variability within the aperture-opening phase of a single trial was found minimal, indicating that TAC variability between trials was not due to execution noise, but rather a result of inter-trial and inter-subject variability of motor plan. At the same time, the dependence of the extent of trial-to-trial variability of TAC in that phase on the speed of hand transport was sharply inconsistent with the concept of speed-accuracy trade-off: the lower the speed, the larger the variability. Conversely, the dependence of the extent of TAC variability in the aperture-closure phase on hand transport speed was consistent with that concept. Taking into account recent evidence that the cost of neural information processing is substantial for movement planning, the dependence of TAC variability in the aperture-opening phase on task performance conditions suggests that it is not the movement time that the CNS saves in that phase, but the cost of neuro-computational resources and metabolic energy required for TAC regulation in that phase. Thus, the CNS performs a trade-off between that cost and TAC regulation accuracy. It is further discussed that such trade-off is possible because, due to a special control law that governs optimal switching from aperture opening to aperture closure, the inter-trial variability of the end of aperture opening does not affect the high accuracy of TAC regulation in the subsequent aperture-closure phase.
Aperture averaging in strong oceanic turbulence
NASA Astrophysics Data System (ADS)
Gökçe, Muhsin Caner; Baykal, Yahya
2018-04-01
Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.
Spacecraft Leak Location Using Structure-Borne Noise
NASA Astrophysics Data System (ADS)
Reusser, R. S.; Chimenti, D. E.; Holland, S. D.; Roberts, R. A.
2010-02-01
Guided ultrasonic waves, generated by air escaping through a small hole, have been measured with an 8×8 piezoelectric phased-array detector. Rapid location of air leaks in a spacecraft skin, caused by high-speed collisions with small objects, is essential for astronaut survival. Cross correlation of all 64 elements, one pair at a time, on a diced PZT disc combined with synthetic aperture analysis determines the dominant direction of wave propagation. The leak location is triangulated by combining data from two or more detector. To optimize the frequency band selection for the most robust direction finding, noise-field measurements of a plate with integral stiffeners have been performed using laser Doppler velocimetry. We compare optical and acoustic measurements to analyze the influence of the PZT array detector and its mechanical coupling to the plate.
2002-09-01
1-4 II. Satellite Formation Dynamics . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1 Clohessy - Wiltshire ...8-3 8.3 Recommendations for Future Research . . . . . . . . . . . . . 8-5 Appendix A. The Clohessy - Wiltshire ...7-18 A.1. The Clohessy - Wiltshire Reference Frame . . . . . . . . . . . . . . . A-1 B.1. Definitions of Hills’ Parameters
Optimization of rotational arc station parameter optimized radiation therapy.
Dong, P; Ungun, B; Boyd, S; Xing, L
2016-09-01
To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future.
Optimization of rotational arc station parameter optimized radiation therapy
Dong, P.; Ungun, B.; Boyd, S.; Xing, L.
2016-01-01
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. Conclusions: The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future. PMID:27587028
Optimization of rotational arc station parameter optimized radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, P.; Ungun, B.
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trappedmore » in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. Conclusions: The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future.« less
Improvements on Fresnel arrays for high contrast imaging
NASA Astrophysics Data System (ADS)
Wilhem, Roux; Laurent, Koechlin
2018-03-01
The Fresnel Diffractive Array Imager (FDAI) is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France. For the visible and near-infrared it has already proven its performances in resolution and dynamic range. We propose it now for astrophysical applications in the ultraviolet with apertures from 6 to 30 meters, aimed at imaging in UV faint astrophysical sources close to bright ones, as well as other applications requiring high dynamic range. Of course the project needs first a probatory mission at small aperture to validate the concept in space. In collaboration with institutes in Spain and Russia, we will propose to board a small prototype of Fresnel imager on the International Space Station (ISS), with a program combining technical tests and astrophysical targets. The spectral domain should contain the Lyman- α line ( λ = 121 nm). As part of its preparation, we improve the Fresnel array design for a better Point Spread Function in UV, presently on a small laboratory prototype working at 260 nm. Moreover, we plan to validate a new optical design and chromatic correction adapted to UV. In this article we present the results of numerical propagations showing the improvement in dynamic range obtained by combining and adapting three methods : central obturation, optimization of the bars mesh holding the Fresnel rings, and orthogonal apodization. We briefly present the proposed astrophysical program of a probatory mission with such UV optics.
Small aperture seismic arrays for studying planetary interiors and seismicity
NASA Astrophysics Data System (ADS)
Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.
2017-12-01
Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure (layering, scattering bodies, density and velocity variations) in the vicinity of the array, as well as the ability to improve the signal to noise ratio of distant body waves by additive methods such as stacking and velocity-slowness analysis. These results will inform future missions on the surfaces of objects throughout the Solar System.
Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang
2015-10-01
Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.
Simultaneous beam sampling and aperture shape optimization for SPORT.
Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei
2015-02-01
Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.
Simultaneous beam sampling and aperture shape optimization for SPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu
Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decisionmore » variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. Conclusions: The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.« less
Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H
2012-10-01
Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.
Fluorescence particle detection using microfluidics and planar optoelectronic elements
NASA Astrophysics Data System (ADS)
Kettlitz, Siegfried W.; Moosmann, Carola; Valouch, Sebastian; Lemmer, Uli
2014-05-01
Detection of fluorescent particles is an integral part of flow cytometry for analysis of selectively stained cells. Established flow cytometer designs achieve great sensitivity and throughput but require bulky and expensive components which prohibit mass production of small single-use point-of-care devices. The use of a combination of innovative technologies such as roll-to-roll printed microuidics with integrated optoelectronic components such as printed organic light emitting diodes and printed organic photodiodes enables tremendous opportunities in cost reduction, miniaturization and new application areas. In order to harvest these benefits, the optical setup requires a redesign to eliminate the need for lenses, dichroic mirrors and lasers. We investigate the influence of geometric parameters on the performance of a thin planar design which uses a high power LED as planar light source and a PIN-photodiode as planar detector. Due to the lack of focusing optics and inferior optical filters, the device sensitivity is not yet on par with commercial state of the art flow cytometer setups. From noise measurements, electronic and optical considerations we deduce possible pathways of improving the device performance. We identify that the sensitivity is either limited by dark noise for very short apertures or by noise from background light for long apertures. We calculate the corresponding crossover length. For the device design we conclude that a low device thickness, low particle velocity and short aperture length are necessary to obtain optimal sensitivity.
Aperture Shield Materials Characterized and Selected for Solar Dynamic Space Power System
NASA Technical Reports Server (NTRS)
1995-01-01
The aperture shield in a solar dynamic space power system is necessary to prevent thermal damage to the heat receiver should the concentrated solar radiation be accidentally or intentionally focused outside of the heat receiver aperture opening and onto the aperture shield itself. Characterization of the optical and thermal properties of candidate aperture shield materials was needed to support the joint U.S./Russian solar dynamic space power effort for Mir. The specific objective of testing performed at the NASA Lewis Research Center was to identify a high-temperature material with a low specular reflectance, a low solar absorptance, and a high spectral emittance so that during an off-pointing event, the amount of solar energy reflecting off the aperture shield would be small, the ratio of solar absorptance to spectral emittance would provide the lowest possible equilibrium temperature, and the integrity of the aperture shield would remain intact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dan; Ruan, Dan; O’Connor, Daniel
Purpose: To deliver high quality intensity modulated radiotherapy (IMRT) using a novel generalized sparse orthogonal collimators (SOCs), the authors introduce a novel direct aperture optimization (DAO) approach based on discrete rectangular representation. Methods: A total of seven patients—two glioblastoma multiforme, three head & neck (including one with three prescription doses), and two lung—were included. 20 noncoplanar beams were selected using a column generation and pricing optimization method. The SOC is a generalized conventional orthogonal collimators with N leaves in each collimator bank, where N = 1, 2, or 4. SOC degenerates to conventional jaws when N = 1. For SOC-basedmore » IMRT, rectangular aperture optimization (RAO) was performed to optimize the fluence maps using rectangular representation, producing fluence maps that can be directly converted into a set of deliverable rectangular apertures. In order to optimize the dose distribution and minimize the number of apertures used, the overall objective was formulated to incorporate an L2 penalty reflecting the difference between the prescription and the projected doses, and an L1 sparsity regularization term to encourage a low number of nonzero rectangular basis coefficients. The optimization problem was solved using the Chambolle–Pock algorithm, a first-order primal–dual algorithm. Performance of RAO was compared to conventional two-step IMRT optimization including fluence map optimization and direct stratification for multileaf collimator (MLC) segmentation (DMS) using the same number of segments. For the RAO plans, segment travel time for SOC delivery was evaluated for the N = 1, N = 2, and N = 4 SOC designs to characterize the improvement in delivery efficiency as a function of N. Results: Comparable PTV dose homogeneity and coverage were observed between the RAO and the DMS plans. The RAO plans were slightly superior to the DMS plans in sparing critical structures. On average, the maximum and mean critical organ doses were reduced by 1.94% and 1.44% of the prescription dose. The average number of delivery segments was 12.68 segments per beam for both the RAO and DMS plans. The N = 2 and N = 4 SOC designs were, on average, 1.56 and 1.80 times more efficient than the N = 1 SOC design to deliver. The mean aperture size produced by the RAO plans was 3.9 times larger than that of the DMS plans. Conclusions: The DAO and dose domain optimization approach enabled high quality IMRT plans using a low-complexity collimator setup. The dosimetric quality is comparable or slightly superior to conventional MLC-based IMRT plans using the same number of delivery segments. The SOC IMRT delivery efficiency can be significantly improved by increasing the leaf numbers, but the number is still significantly lower than the number of leaves in a typical MLC.« less
Nguyen, Dan; Ruan, Dan; O'Connor, Daniel; Woods, Kaley; Low, Daniel A; Boucher, Salime; Sheng, Ke
2016-02-01
To deliver high quality intensity modulated radiotherapy (IMRT) using a novel generalized sparse orthogonal collimators (SOCs), the authors introduce a novel direct aperture optimization (DAO) approach based on discrete rectangular representation. A total of seven patients-two glioblastoma multiforme, three head & neck (including one with three prescription doses), and two lung-were included. 20 noncoplanar beams were selected using a column generation and pricing optimization method. The SOC is a generalized conventional orthogonal collimators with N leaves in each collimator bank, where N = 1, 2, or 4. SOC degenerates to conventional jaws when N = 1. For SOC-based IMRT, rectangular aperture optimization (RAO) was performed to optimize the fluence maps using rectangular representation, producing fluence maps that can be directly converted into a set of deliverable rectangular apertures. In order to optimize the dose distribution and minimize the number of apertures used, the overall objective was formulated to incorporate an L2 penalty reflecting the difference between the prescription and the projected doses, and an L1 sparsity regularization term to encourage a low number of nonzero rectangular basis coefficients. The optimization problem was solved using the Chambolle-Pock algorithm, a first-order primal-dual algorithm. Performance of RAO was compared to conventional two-step IMRT optimization including fluence map optimization and direct stratification for multileaf collimator (MLC) segmentation (DMS) using the same number of segments. For the RAO plans, segment travel time for SOC delivery was evaluated for the N = 1, N = 2, and N = 4 SOC designs to characterize the improvement in delivery efficiency as a function of N. Comparable PTV dose homogeneity and coverage were observed between the RAO and the DMS plans. The RAO plans were slightly superior to the DMS plans in sparing critical structures. On average, the maximum and mean critical organ doses were reduced by 1.94% and 1.44% of the prescription dose. The average number of delivery segments was 12.68 segments per beam for both the RAO and DMS plans. The N = 2 and N = 4 SOC designs were, on average, 1.56 and 1.80 times more efficient than the N = 1 SOC design to deliver. The mean aperture size produced by the RAO plans was 3.9 times larger than that of the DMS plans. The DAO and dose domain optimization approach enabled high quality IMRT plans using a low-complexity collimator setup. The dosimetric quality is comparable or slightly superior to conventional MLC-based IMRT plans using the same number of delivery segments. The SOC IMRT delivery efficiency can be significantly improved by increasing the leaf numbers, but the number is still significantly lower than the number of leaves in a typical MLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moteabbed, Maryam, E-mail: mmoteabbed@partners.org; Yock, Torunn I.; Depauw, Nicolas
Purpose: This study aimed to assess the clinical impact of spot size and the addition of apertures and range compensators on the treatment quality of pencil beam scanning (PBS) proton therapy and to define when PBS could improve on passive scattering proton therapy (PSPT). Methods and Materials: The patient cohort included 14 pediatric patients treated with PSPT. Six PBS plans were created and optimized for each patient using 3 spot sizes (∼12-, 5.4-, and 2.5-mm median sigma at isocenter for 90- to 230-MeV range) and adding apertures and compensators to plans with the 2 larger spots. Conformity and homogeneity indices,more » dose-volume histogram parameters, equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and integral dose were quantified and compared with the respective PSPT plans. Results: The results clearly indicated that PBS with the largest spots does not necessarily offer a dosimetric or clinical advantage over PSPT. With comparable target coverage, the mean dose (D{sub mean}) to healthy organs was on average 6.3% larger than PSPT when using this spot size. However, adding apertures to plans with large spots improved the treatment quality by decreasing the average D{sub mean} and EUD by up to 8.6% and 3.2% of the prescribed dose, respectively. Decreasing the spot size further improved all plans, lowering the average D{sub mean} and EUD by up to 11.6% and 10.9% compared with PSPT, respectively, and eliminated the need for beam-shaping devices. The NTCP decreased with spot size and addition of apertures, with maximum reduction of 5.4% relative to PSPT. Conclusions: The added benefit of using PBS strongly depends on the delivery configurations. Facilities limited to large spot sizes (>∼8 mm median sigma at isocenter) are recommended to use apertures to reduce treatment-related toxicities, at least for complex and/or small tumors.« less
Sweatt, W.C.
1998-09-08
A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D{sub source} {approx_equal} 0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors. 11 figs.
TRACKING SIMULATIONS NEAR HALF-INTEGER RESONANCE AT PEP-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosochkov, Yuri
2003-05-13
Beam-beam simulations predict that PEP-II luminosity can be increased by operating the horizontal betatron tune near and above a half-integer resonance. However, effects of the resonance and its synchrotron sidebands significantly enhance betatron and chromatic perturbations which tend to reduce dynamic aperture. In the study, chromatic variation of horizontal tune near the resonance was minimized by optimizing local sextupoles in the Interaction Region. Dynamic aperture was calculated using tracking simulations in LEGO code. Dependence of dynamic aperture on the residual orbit, dispersion and {beta} distortion after correction was investigated.
NASA Astrophysics Data System (ADS)
Cauble, Galen D.; Wayne, David T.
2017-09-01
The growth of optical communication has created a need to correctly characterize the atmospheric channel. Atmospheric turbulence along a given channel can drastically affect optical communication signal quality. One means of characterizing atmospheric turbulence is through measurement of the refractive index structure parameter, Cn2. When calculating Cn2 from the scintillation index, σΙ2,the point aperture scintillation index is required. Direct measurement of the point aperture scintillation index is difficult at long ranges due to the light collecting abilities of small apertures. When aperture size is increased past the atmospheric correlation width, aperture averaging decreases the scintillation index below that of the point aperture scintillation index. While the aperture averaging factor can be calculated from theory, it does not often agree with experimental results. Direct measurement of the aperture averaging factor via the pupil plane irradiance covariance function allows conversion from the aperture averaged scintillation index to the point aperture scintillation index. Using a finite aperture, camera, and detector, the aperture averaged scintillation index and aperture averaging factor are measured in parallel and the point aperture scintillation index is calculated. A new instrument built by SSC Pacific was used to collect scintillation data at the Townes Institute Science and Technology Experimentation Facility (TISTEF). This new instrument's data was then compared to BLS900 data. The results show that direct measurement of the aperture averaging factor is achievable using a camera and matches well with groundtruth instrumentation.
Transport of Particle Swarms Through Fractures
NASA Astrophysics Data System (ADS)
Boomsma, E.; Pyrak-Nolte, L. J.
2011-12-01
The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which slows the swarm, and a cohesive force that prevents swarm expansion and the corresponding decrease in particle density. For apertures >15mm, though the drag force is small, the loss of swarm cohesion dominates. In small apertures (<5mm), the drag from the wall dominates causing a loss in speed even though there is strong confinement. From a force-based particle interaction approach, the initial simulation did not capture the observed experimental behavior, i.e., the distinct peak in swarm velocities was not observed. For the funnel shaped aperture, the swarm was observed to bifurcate immediately upon reaching the intersection between the converging aperture and the uniform aperture portions of the fracture. Furthermore, converging apertures resulted in the deceleration of a swarm. Thus, the rate of transport of particle swarms is strongly affected by fracture aperture. Acknowledgment: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022).
A novel beamformer design method for medical ultrasound. Part I: Theory.
Ranganathan, Karthik; Walker, William F
2003-01-01
The design of transmit and receive aperture weightings is a critical step in the development of ultrasound imaging systems. Current design methods are generally iterative, and consequently time consuming and inexact. We describe a new and general ultrasound beamformer design method, the minimum sum squared error (MSSE) technique. The MSSE technique enables aperture design for arbitrary beam patterns (within fundamental limitations imposed by diffraction). It uses a linear algebra formulation to describe the system point spread function (psf) as a function of the aperture weightings. The sum squared error (SSE) between the system psf and the desired or goal psf is minimized, yielding the optimal aperture weightings. We present detailed analysis for continuous wave (CW) and broadband systems. We also discuss several possible applications of the technique, such as the design of aperture weightings that improve the system depth of field, generate limited diffraction transmit beams, and improve the correlation depth of field in translated aperture system geometries. Simulation results are presented in an accompanying paper.
Optimization of coronagraph design for segmented aperture telescopes
NASA Astrophysics Data System (ADS)
Jewell, Jeffrey; Ruane, Garreth; Shaklan, Stuart; Mawet, Dimitri; Redding, Dave
2017-09-01
The goal of directly imaging Earth-like planets in the habitable zone of other stars has motivated the design of coronagraphs for use with large segmented aperture space telescopes. In order to achieve an optimal trade-off between planet light throughput and diffracted starlight suppression, we consider coronagraphs comprised of a stage of phase control implemented with deformable mirrors (or other optical elements), pupil plane apodization masks (gray scale or complex valued), and focal plane masks (either amplitude only or complex-valued, including phase only such as the vector vortex coronagraph). The optimization of these optical elements, with the goal of achieving 10 or more orders of magnitude in the suppression of on-axis (starlight) diffracted light, represents a challenging non-convex optimization problem with a nonlinear dependence on control degrees of freedom. We develop a new algorithmic approach to the design optimization problem, which we call the "Auxiliary Field Optimization" (AFO) algorithm. The central idea of the algorithm is to embed the original optimization problem, for either phase or amplitude (apodization) in various planes of the coronagraph, into a problem containing additional degrees of freedom, specifically fictitious "auxiliary" electric fields which serve as targets to inform the variation of our phase or amplitude parameters leading to good feasible designs. We present the algorithm, discuss details of its numerical implementation, and prove convergence to local minima of the objective function (here taken to be the intensity of the on-axis source in a "dark hole" region in the science focal plane). Finally, we present results showing application of the algorithm to both unobscured off-axis and obscured on-axis segmented telescope aperture designs. The application of the AFO algorithm to the coronagraph design problem has produced solutions which are capable of directly imaging planets in the habitable zone, provided end-to-end telescope system stability requirements can be met. Ongoing work includes advances of the AFO algorithm reported here to design in additional robustness to a resolved star, and other phase or amplitude aberrations to be encountered in a real segmented aperture space telescope.
2016-08-24
global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...synthetic, global sensor field of views (FOVs), mimicking biological systems such as an insect fly eye , but allowing multiple aperture configurations. Due to...such as an insect fly eye , but allowing multiple aperture configurations. Due to the desired nature of distributed networked aerial vehicles (for the
A difference-matrix metaheuristic for intensity map segmentation in step-and-shoot IMRT delivery.
Gunawardena, Athula D A; D'Souza, Warren D; Goadrich, Laura D; Meyer, Robert R; Sorensen, Kelly J; Naqvi, Shahid A; Shi, Leyuan
2006-05-21
At an intermediate stage of radiation treatment planning for IMRT, most commercial treatment planning systems for IMRT generate intensity maps that describe the grid of beamlet intensities for each beam angle. Intensity map segmentation of the matrix of individual beamlet intensities into a set of MLC apertures and corresponding intensities is then required in order to produce an actual radiation delivery plan for clinical use. Mathematically, this is a very difficult combinatorial optimization problem, especially when mechanical limitations of the MLC lead to many constraints on aperture shape, and setup times for apertures make the number of apertures an important factor in overall treatment time. We have developed, implemented and tested on clinical cases a metaheuristic (that is, a method that provides a framework to guide the repeated application of another heuristic) that efficiently generates very high-quality (low aperture number) segmentations. Our computational results demonstrate that the number of beam apertures and monitor units in the treatment plans resulting from our approach is significantly smaller than the corresponding values for treatment plans generated by the heuristics embedded in a widely use commercial system. We also contrast the excellent results of our fast and robust metaheuristic with results from an 'exact' method, branch-and-cut, which attempts to construct optimal solutions, but, within clinically acceptable time limits, generally fails to produce good solutions, especially for intensity maps with more than five intensity levels. Finally, we show that in no instance is there a clinically significant change of quality associated with our more efficient plans.
Aperture shape dependencies in extended depth of focus for imaging camera by wavefront coding
NASA Astrophysics Data System (ADS)
Sakita, Koichi; Ohta, Mitsuhiko; Shimano, Takeshi; Sakemoto, Akito
2015-02-01
Optical transfer functions (OTFs) on various directional spatial frequency axes for cubic phase mask (CPM) with circular and square apertures are investigated. Although OTF has no zero points, it has a very close value to zero for a circular aperture at low frequencies on diagonal axis, which results in degradation of restored images. The reason for close-to-zero value in OTF is also analyzed in connection with point spread function profiles using Fourier slice theorem. To avoid close-to-zero condition, square aperture with CPM is indispensable in WFC. We optimized cubic coefficient α of CPM and coefficients of digital filter, and succeeded to get excellent de-blurred images at large depth of field.
Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution.
Pavone, S C; Ettorre, M; Casaletti, M; Albani, M
2016-05-16
In this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized. The proposed launcher performance agrees with the theoretical model and exhibits an excellent polarization purity.
A Comparative Study of Automated Infrasound Detectors - PMCC and AFD with Analyst Review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Junghyun; Hayward, Chris; Zeiler, Cleat
Automated detections calculated by the progressive multi-channel correlation (PMCC) method (Cansi, 1995) and the adaptive F detector (AFD) (Arrowsmith et al., 2009) are compared to the signals identified by five independent analysts. Each detector was applied to a four-hour time sequence recorded by the Korean infrasound array CHNAR. This array was used because it is composed of both small (<100 m) and large (~1000 m) aperture element spacing. The four hour time sequence contained a number of easily identified signals under noise conditions that have average RMS amplitudes varied from 1.2 to 4.5 mPa (1 to 5 Hz), estimated withmore » running five-minute window. The effectiveness of the detectors was estimated for the small aperture, large aperture, small aperture combined with the large aperture, and full array. The full and combined arrays performed the best for AFD under all noise conditions while the large aperture array had the poorest performance for both detectors. PMCC produced similar results as AFD under the lower noise conditions, but did not produce as dramatic an increase in detections using the full and combined arrays. Both automated detectors and the analysts produced a decrease in detections under the higher noise conditions. Comparing the detection probabilities with Estimated Receiver Operating Characteristic (EROC) curves we found that the smaller value of consistency for PMCC and the larger p-value for AFD had the highest detection probability. These parameters produced greater changes in detection probability than estimates of the false alarm rate. The detection probability was impacted the most by noise level, with low noise (average RMS amplitude of 1.7 mPa) having an average detection probability of ~40% and high noise (average RMS amplitude of 2.9 mPa) average detection probability of ~23%.« less
Progress in the Phase 0 Model Development of a STAR Concept for Dynamics and Control Testing
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Armand, Sasan C.
2003-01-01
The paper describes progress in the development of a lightweight, deployable passive Synthetic Thinned Aperture Radiometer (STAR). The spacecraft concept presented will enable the realization of 10 km resolution global soil moisture and ocean salinity measurements at 1.41 GHz. The focus of this work was on definition of an approximately 1/3-scaled, 5-meter Phase 0 test article for concept demonstration and dynamics and control testing. Design requirements, parameters and a multi-parameter, hybrid scaling approach for the dynamically scaled test model were established. The El Scaling Approach that was established allows designers freedom to define the cross section of scaled, lightweight structural components that is most convenient for manufacturing when the mass of the component is small compared to the overall system mass. Static and dynamic response analysis was conducted on analytical models to evaluate system level performance and to optimize panel geometry for optimal tension load distribution.
A pump driving liquid cooling circuit method for the aperture of an infrared cold optical system
NASA Astrophysics Data System (ADS)
Xie, RongJian
2017-06-01
To enhance the optical recognition and wavelength filtering of an infrared cold optical system, some lens need to be maintained within a certain temperature range, which requires specific thermal management of the aperture. A 250K liquid cooling circuit designed for this purpose is introduced, and the experimental results established and operated in a vacuum environmental simulation chamber is carried out and analyzed. A practical cooling power source of radiation cooling equipment is adopted and the sun exposure heat load is imitated by array of planar membrane heaters attached on the specific designed structure of the aperture. Controlling the aperture temperature and improving the optical system performance are proved effective. Numerical optimization of the cooling circuit and simulation of the aperture are performed , and the factors affect the optical system performance in the mean time are also investigated.
Poster — Thur Eve — 61: A new framework for MPERT plan optimization using MC-DAO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M; Lloyd, S AM; Townson, R
2014-08-15
This work combines the inverse planning technique known as Direct Aperture Optimization (DAO) with Intensity Modulated Radiation Therapy (IMRT) and combined electron and photon therapy plans. In particular, determining conditions under which Modulated Photon/Electron Radiation Therapy (MPERT) produces better dose conformality and sparing of organs at risk than traditional IMRT plans is central to the project. Presented here are the materials and methods used to generate and manipulate the DAO procedure. Included is the introduction of a powerful Java-based toolkit, the Aperture-based Monte Carlo (MC) MPERT Optimizer (AMMO), that serves as a framework for optimization and provides streamlined access tomore » underlying particle transport packages. Comparison of the toolkit's dose calculations to those produced by the Eclipse TPS and the demonstration of a preliminary optimization are presented as first benchmarks. Excellent agreement is illustrated between the Eclipse TPS and AMMO for a 6MV photon field. The results of a simple optimization shows the functioning of the optimization framework, while significant research remains to characterize appropriate constraints.« less
Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.
Eyyuboğlu, Halil T; Voelz, David; Xiao, Xifeng
2013-11-20
Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.
Luce, J.S.; Martin, J.A.
1960-02-23
Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.
NASA Technical Reports Server (NTRS)
Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)
2005-01-01
We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.
Sweatt, William C.
1998-01-01
A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.
Selecting Pixels for Kepler Downlink
NASA Technical Reports Server (NTRS)
Bryson, Stephen T.; Jenkins, Jon M.; Klaus, Todd C.; Cote, Miles T.; Quintana, Elisa V.; Hall, Jennifer R.; Ibrahim, Khadeejah; Chandrasekaran, Hema; Caldwell, Douglas A.; Van Cleve, Jeffrey E.;
2010-01-01
The Kepler mission monitors > 100,000 stellar targets using 42 2200 1024 pixel CCDs. Bandwidth constraints prevent the downlink of all 96 million pixels per 30-minute cadence, so the Kepler spacecraft downlinks a specified collection of pixels for each target. These pixels are selected by considering the object brightness, background and the signal-to-noise of each pixel, and are optimized to maximize the signal-to-noise ratio of the target. This paper describes pixel selection, creation of spacecraft apertures that efficiently capture selected pixels, and aperture assignment to a target. Diagnostic apertures, short-cadence targets and custom specified shapes are discussed.
Holman, Benjamin W B; Ponnampalam, Eric N; van de Ven, Remy J; Kerr, Matthew G; Hopkins, David L
2015-02-01
The effect of aperture size on the assessment of lamb meat colour values (L*, a*, b* and R630/580)was investigated. Two experiments using 2 HunterLab MiniScan colorimeters (large [25 mm] and small [5 mm] apertures) were conducted: 1) coloured tiles were measured and 2) unaged lamb (n = 65) m. longissimus lumborum (LL) and m. semimembranosus (SM) muscles were measured over 2.5 d under simulated retail display. For Experiment three, 2 different colorimeters were used on lamb (n = 36) LL aged for 6 weeks before measurement over 4 don simulated retail display. Coloured tile a* and b* values were unaffected by aperture size, but L* values and the R630/580 ratio were influenced by aperture size. The effect of aperture size on lamb meat colour measurements varied with display time and muscle type. The large aperture size generally provided the highest colorimetric values, and is recommended for measuring lamb meat colour.
Self characterization of a coded aperture array for neutron source imaging
NASA Astrophysics Data System (ADS)
Volegov, P. L.; Danly, C. R.; Fittinghoff, D. N.; Guler, N.; Merrill, F. E.; Wilde, C. H.
2014-12-01
The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (˜100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.
Influence of pressure change during hydraulic tests on fracture aperture.
Ji, Sung-Hoon; Koh, Yong-Kwon; Kuhlman, Kristopher L; Lee, Moo Yul; Choi, Jong Won
2013-03-01
In a series of field experiments, we evaluate the influence of a small water pressure change on fracture aperture during a hydraulic test. An experimental borehole is instrumented at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The target fracture for testing was found from the analyses of borehole logging and hydraulic tests. A double packer system was developed and installed in the test borehole to directly observe the aperture change due to water pressure change. Using this packer system, both aperture and flow rate are directly observed under various water pressures. Results indicate a slight change in fracture hydraulic head leads to an observable change in aperture. This suggests that aperture change should be considered when analyzing hydraulic test data from a sparsely fractured rock aquifer. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
Self-Referencing Hartmann Test for Large-Aperture Telescopes
NASA Technical Reports Server (NTRS)
Korechoff, Robert P.; Oseas, Jeffrey M.
2010-01-01
A method is proposed for end-to-end, full aperture testing of large-aperture telescopes using an innovative variation of a Hartmann mask. This technique is practical for telescopes with primary mirrors tens of meters in diameter and of any design. Furthermore, it is applicable to the entire optical band (near IR, visible, ultraviolet), relatively insensitive to environmental perturbations, and is suitable for ambient laboratory as well as thermal-vacuum environments. The only restriction is that the telescope optical axis must be parallel to the local gravity vector during testing. The standard Hartmann test utilizes an array of pencil beams that are cut out of a well-corrected wavefront using a mask. The pencil beam array is expanded to fill the full aperture of the telescope. The detector plane of the telescope is translated back and forth along the optical axis in the vicinity of the nominal focal plane, and the centroid of each pencil beam image is recorded. Standard analytical techniques are then used to reconstruct the telescope wavefront from the centroid data. The expansion of the array of pencil beams is usually accomplished by double passing the beams through the telescope under test. However, this requires a well-corrected, autocollimation flat, the diameter or which is approximately equal to that of the telescope aperture. Thus, the standard Hartmann method does not scale well because of the difficulty and expense of building and mounting a well-corrected, large aperture flat. The innovation in the testing method proposed here is to replace the large aperture, well-corrected, monolithic autocollimation flat with an array of small-aperture mirrors. In addition to eliminating the need for a large optic, the surface figure requirement for the small mirrors is relaxed compared to that required of the large autocollimation flat. The key point that allows this method to work is that the small mirrors need to operate as a monolithic flat only with regard to tip/tilt and not piston because in collimated space piston has no effect on the image centroids. The problem of aligning the small mirrors in tip/tilt requires a two-part solution. First, each mirror is suspended from a two-axis gimbal. The orientation of the gimbal is maintained by gravity. Second, the mirror is aligned such that the mirror normal is parallel to gravity vector. This is accomplished interferometrically in a test fixture. Of course, the test fixture itself needs to be calibrated with respect to gravity.
New adaptive method to optimize the secondary reflector of linear Fresnel collectors
Zhu, Guangdong
2017-01-16
Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less
New adaptive method to optimize the secondary reflector of linear Fresnel collectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong
Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less
Side information in coded aperture compressive spectral imaging
NASA Astrophysics Data System (ADS)
Galvis, Laura; Arguello, Henry; Lau, Daniel; Arce, Gonzalo R.
2017-02-01
Coded aperture compressive spectral imagers sense a three-dimensional cube by using two-dimensional projections of the coded and spectrally dispersed source. These imagers systems often rely on FPA detectors, SLMs, micromirror devices (DMDs), and dispersive elements. The use of the DMDs to implement the coded apertures facilitates the capture of multiple projections, each admitting a different coded aperture pattern. The DMD allows not only to collect the sufficient number of measurements for spectrally rich scenes or very detailed spatial scenes but to design the spatial structure of the coded apertures to maximize the information content on the compressive measurements. Although sparsity is the only signal characteristic usually assumed for reconstruction in compressing sensing, other forms of prior information such as side information have been included as a way to improve the quality of the reconstructions. This paper presents the coded aperture design in a compressive spectral imager with side information in the form of RGB images of the scene. The use of RGB images as side information of the compressive sensing architecture has two main advantages: the RGB is not only used to improve the reconstruction quality but to optimally design the coded apertures for the sensing process. The coded aperture design is based on the RGB scene and thus the coded aperture structure exploits key features such as scene edges. Real reconstructions of noisy compressed measurements demonstrate the benefit of the designed coded apertures in addition to the improvement in the reconstruction quality obtained by the use of side information.
Beam aperture modifier design with acoustic metasurfaces
NASA Astrophysics Data System (ADS)
Tang, Weipeng; Ren, Chunyu
2017-10-01
In this paper, we present a design concept of acoustic beam aperture modifier using two metasurface-based planar lenses. By appropriately designing the phase gradient profile along the metasurface, we obtain a class of acoustic convex lenses and concave lenses, which can focus the incoming plane waves and collimate the converging waves, respectively. On the basis of the high converging and diverging capability of these lenses, two kinds of lens combination scheme, including the convex-concave type and convex-convex type, are proposed to tune up the incoming beam aperture as needed. To be specific, the aperture of the acoustic beam can be shrunk or expanded through adjusting the phase gradient of the pair of lenses and the spacing between them. These lenses and the corresponding aperture modifiers are constructed by the stacking ultrathin labyrinthine structures, which are obtained by the geometry optimization procedure and exhibit high transmission coefficient and a full range of phase shift. The simulation results demonstrate the effectiveness of our proposed beam aperture modifiers. Due to the flexibility in aperture controlling and the simplicity in fabrication, the proposed modifiers have promising potential in applications, such as acoustic imaging, nondestructive evaluation, and communication.
Tapered holey fibers for spot-size and numerical-aperture conversion.
Town, G E; Lizier, J T
2001-07-15
Adiabatically tapered holey fibers are shown to be potentially useful for guided-wave spot-size and numerical-aperture conversion. Conditions for adiabaticity and design guidelines are provided in terms of the effective-index model. We also present finite-difference time-domain calculations of downtapered holey fiber, showing that large spot-size conversion factors are obtainable with minimal loss by use of short, optimally shaped tapers.
Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrove, Cameron
For synthetic aperture radars radio frequency interference from sources external to the radar system and techniques to mitigate the interference can degrade the quality of the image products. Usually the radar system designer will try to balance the amount of mitigation for an acceptable amount of interference to optimize the image quality. This dissertation examines the effect of interference mitigation upon coherent data products of fine resolution, high frequency synthetic aperture radars using stretch processing. Novel interference mitigation techniques are introduced that operate on single or multiple apertures of data that increase average coherence compared to existing techniques. New metricsmore » are applied to evaluate multiple mitigation techniques for image quality and average coherence. The underlying mechanism for interference mitigation techniques that affect coherence is revealed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satyanarayana, N.; Basu, Shibaji; Rajawat, R.K., E-mail: satya_3026@yahoo.com
2014-07-01
This paper highlights the development of Rod Pinch (RP) diode for flash X-ray generation as intense radiographic source at BARC, Vizag. The typical RP diode employed used a small diameter (1-2 mm) anode rod extended through a cathode circular aperture (5-6 mm inner diameter). The diode chamber is maintained at 10{sup -5} Torr vacuum by a rotary backed diffusion pump. Experiments performed on a modified Kali 1000 Pulsed Power System (300 kV, 30 kA, 100 ns) were aimed at optimizing the source by maximizing the figure of merit (dose @ 1m in rad/spot diameter{sup 2} in mm{sup 2}) with minimizingmore » of the diode impedance. The typical electron beam parameters used in the experiments are 240-270 kV, 20-25 kA, 100 ns, with a few hundreds of kA/cm{sup 2} current density. The optimization resulted in a configuration with tungsten anode rod having dimensions of a 1.6 mm diameter, tapering extension length 5-25 mm beyond the graphite cathode aperture (Cathode disk ID = 5 mm, thickness = 3mm) to produce a radiation dose of 150-200 milli rad at 1 m distance having an estimated spot-size of 1-2 mm. The radiation emitted from a rod-pinch diode is measured using Thermoluminescence dosimeters (TLDs) at an angular interval of 15° on either side of the rod in horizontal and vertical plane. (author)« less
Near-Field Scanning Optical Microscopy and Raman Microscopy.
NASA Astrophysics Data System (ADS)
Harootunian, Alec Tate
1987-09-01
Both a one dimensional near-field scanning optical microscope and Raman microprobe were constructed. In near -field scanning optical microscopy (NSOM) a subwavelength aperture is scanned in the near-field of the object. Radiation transmitted through the aperture is collected to form an image as the aperture scans over the object. The resolution of an NSOM system is essentially wavelength independent and is limited by the diameter of the aperture used to scan the object. NSOM was developed in an effort to provide a nondestructive in situ high spatial resolution probe while still utilizing photons at optical wavelengths. The Raman microprobe constructed provided vibrational Raman information with spatial resolution equivalent that of a conventional diffraction limited microscope. Both transmission studies and near-field diffration studies of subwavelength apertures were performed. Diffraction theories for a small aperture in an infinitely thin conducting screen, a slit in a thick conducting screen, and an aperture in a black screen were examined. All three theories indicate collimation of radiation to the size to the size of the subwavelength aperture or slit in the near-field. Theoretical calculations and experimental results indicate that light transmitted through subwavelength apertures is readily detectable. Light of wavelength 4579 (ANGSTROM) was transmitted through apertures with diameters as small as 300 (ANGSTROM). These studies indicate the feasibility of constructing an NSOM system. One dimensional transmission and fluorescence NSOM systems were constructed. Apertures in the tips of metallized glass pipettes width inner diameters of less than 1000 (ANGSTROM) were used as a light source in the NSOM system. A tunneling current was used to maintain the aperture position in the near-field. Fluorescence NSOM was demonstrated for the first time. Microspectroscopic and Raman microscopic studies of turtle cone oil droplets were performed. Both the Raman vibrational frequencies and the Raman excitation data indicate that the carotenoids are unaggregated. The carotenoid astaxanthin was identified in the orange and red droplets by Raman microscopy. Future applications for both Raman microscopy and near-field microscopy were proposed. Four methods of near-field distance regulation were also examined. Finally, theoretical exposure curves for near-field lithography were calculated. Both the near-field lithographic results and the near field diffraction studies indicate essentially wavelength independent resolution. (Abstract shortened with permission of author.).
NASA Astrophysics Data System (ADS)
Schöttl, Peter; Bern, Gregor; van Rooyen, De Wet; Heimsath, Anna; Fluri, Thomas; Nitz, Peter
2017-06-01
A transient simulation methodology for cavity receivers for Solar Tower Central Receiver Systems with molten salt as heat transfer fluid is described. Absorbed solar radiation is modeled with ray tracing and a sky discretization approach to reduce computational effort. Solar radiation re-distribution in the cavity as well as thermal radiation exchange are modeled based on view factors, which are also calculated with ray tracing. An analytical approach is used to represent convective heat transfer in the cavity. Heat transfer fluid flow is simulated with a discrete tube model, where the boundary conditions at the outer tube surface mainly depend on inputs from the previously mentioned modeling aspects. A specific focus is put on the integration of optical and thermo-hydraulic models. Furthermore, aiming point and control strategies are described, which are used during the transient performance assessment. Eventually, the developed simulation methodology is used for the optimization of the aperture opening size of a PS10-like reference scenario with cavity receiver and heliostat field. The objective function is based on the cumulative gain of one representative day. Results include optimized aperture opening size, transient receiver characteristics and benefits of the implemented aiming point strategy compared to a single aiming point approach. Future work will include annual simulations, cost assessment and optimization of a larger range of receiver parameters.
The optimization of the inverted occulter of the solar orbiter/METIS coronagraph/spectrometer
NASA Astrophysics Data System (ADS)
Landini, F.; Vives, S.; Romoli, M.; Guillon, C.; Pancrazzi, M.; Escolle, C.; Focardi, M.; Fineschi, S.; Antonucci, E.; Nicolini, G.; Naletto, G.; Nicolosi, P.; Spadaro, D.
2017-11-01
The coronagraph/spectrometer METIS (Multi Element Telescope for Imaging and Spectroscopy), selected to fly aboard the Solar Orbiter ESA/NASA mission, is conceived to perform imaging (in visible, UV and EUV) and spectroscopy (in EUV) of the solar corona. It is an integrated instrument suite located on a single optical bench and sharing a unique aperture on the satellite heat shield. As every coronagraph, METIS is highly demanding in terms of stray light suppression. In order to meet the strict thermal requirements of Solar Orbiter, METIS optical design has been optimized by moving the entrance pupil at the level of the external occulter on the S/C thermal shield, thus reducing the size of the external aperture. The scheme is based on an inverted external-occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield. A spherical mirror rejects back the disk-light through the IEO. The experience built on all the previous space coronagraphs forces designers to dedicate a particular attention to the occulter optimization. Two breadboards were manufactured to perform occulter optimization measurements: BOA (Breadboard of the Occulting Assembly) and ANACONDA (AN Alternative COnfiguration for the Occulting Native Design Assembly). A preliminary measurement campaign has been carried on at the Laboratoire d'Astrophysique de Marseille. In this paper we describe BOA and ANACONDA designs, the laboratory set-up and the preliminary results.
SU-E-T-614: Plan Averaging for Multi-Criteria Navigation of Step-And-Shoot IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, M; Gao, H; Craft, D
2015-06-15
Purpose: Step-and-shoot IMRT is fundamentally discrete in nature, while multi-criteria optimization (MCO) is fundamentally continuous: the MCO planning consists of continuous sliding across the Pareto surface (the set of plans which represent the tradeoffs between organ-at-risk doses and target doses). In order to achieve close to real-time dose display during this sliding, it is desired that averaged plans share many of the same apertures as the pre-computed plans, since dose computation for apertures generated on-the-fly would be expensive. We propose a method to ensure that neighboring plans on a Pareto surface share many apertures. Methods: Our baseline step-and-shoot sequencing methodmore » is that of K. Engel (a method which minimizes the number of segments while guaranteeing the minimum number of monitor units), which we customize to sequence a set of Pareto optimal plans simultaneously. We also add an error tolerance to study the relationship between the number of shared apertures, the total number of apertures needed, and the quality of the fluence map re-creation. Results: We run tests for a 2D Pareto surface trading off rectum and bladder dose versus target coverage for a clinical prostate case. We find that if we enforce exact fluence map recreation, we are not able to achieve much sharing of apertures across plans. The total number of apertures for all seven beams and 4 plans without sharing is 217. With sharing and a 2% error tolerance, this number is reduced to 158 (73%). Conclusion: With the proposed method, total number of apertures can be decreased by 42% (averaging) with no increment of total MU, when an error tolerance of 5% is allowed. With this large amount of sharing, dose computations for averaged plans which occur during Pareto navigation will be much faster, leading to a real-time what-you-see-is-what-you-get Pareto navigation experience. Minghao Guo and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
Optimal sampling and quantization of synthetic aperture radar signals
NASA Technical Reports Server (NTRS)
Wu, C.
1978-01-01
Some theoretical and experimental results on optimal sampling and quantization of synthetic aperture radar (SAR) signals are presented. It includes a description of a derived theoretical relationship between the pixel signal to noise ratio of processed SAR images and the number of quantization bits per sampled signal, assuming homogeneous extended targets. With this relationship known, a solution may be realized for the problem of optimal allocation of a fixed data bit-volume (for specified surface area and resolution criterion) between the number of samples and the number of bits per sample. The results indicate that to achieve the best possible image quality for a fixed bit rate and a given resolution criterion, one should quantize individual samples coarsely and thereby maximize the number of multiple looks. The theoretical results are then compared with simulation results obtained by processing aircraft SAR data.
High-performance etching of multilevel phase-type Fresnel zone plates with large apertures
NASA Astrophysics Data System (ADS)
Guo, Chengli; Zhang, Zhiyu; Xue, Donglin; Li, Longxiang; Wang, Ruoqiu; Zhou, Xiaoguang; Zhang, Feng; Zhang, Xuejun
2018-01-01
To ensure the etching depth uniformity of large-aperture Fresnel zone plates (FZPs) with controllable depths, a combination of a point source ion beam with a dwell-time algorithm has been proposed. According to the obtained distribution of the removal function, the latter can be used to optimize the etching time matrix by minimizing the root-mean-square error between the simulation results and the design value. Owing to the convolution operation in the utilized algorithm, the etching depth error is insensitive to the etching rate fluctuations of the ion beam, thereby reducing the requirement for the etching stability of the ion system. As a result, a 4-level FZP with a circular aperture of 300 mm was fabricated. The obtained results showed that the etching depth uniformity of the full aperture could be reduced to below 1%, which was sufficiently accurate for meeting the use requirements of FZPs. The proposed etching method may serve as an alternative way of etching high-precision diffractive optical elements with large apertures.
Sparse synthetic aperture with Fresnel elements (S-SAFE) using digital incoherent holograms
Kashter, Yuval; Rivenson, Yair; Stern, Adrian; Rosen, Joseph
2015-01-01
Creating a large-scale synthetic aperture makes it possible to break the resolution boundaries dictated by the wave nature of light of common optical systems. However, their implementation is challenging, since the generation of a large size continuous mosaic synthetic aperture composed of many patterns is complicated in terms of both phase matching and time-multiplexing duration. In this study we present an advanced configuration for an incoherent holographic imaging system with super resolution qualities that creates a partial synthetic aperture. The new system, termed sparse synthetic aperture with Fresnel elements (S-SAFE), enables significantly decreasing the number of the recorded elements, and it is free from positional constrains on their location. Additionally, in order to obtain the best image quality we propose an optimal mosaicking structure derived on the basis of physical and numerical considerations, and introduce three reconstruction approaches which are compared and discussed. The super-resolution capabilities of the proposed scheme and its limitations are analyzed, numerically simulated and experimentally demonstrated. PMID:26367947
Development of large-aperture electro-optical switch for high power laser at CAEP
NASA Astrophysics Data System (ADS)
Zhang, Xiongjun; Wu, Dengsheng; Zhang, Jun; Lin, Donghui; Zheng, Jiangang; Zheng, Kuixing
2015-02-01
Large-aperture electro-optical switch based on plasma Pockels cell (PPC) is one of important components for inertial confinement fusion (ICF) laser facility. We have demonstrated a single-pulse driven 4×1 PPC with 400mm×400mm aperture for SGIII laser facility. And four 2×1 PPCs modules with 350mm×350mm aperture have been operated in SGII update laser facility. It is different to the PPC of NIF and LMJ for its simple operation to perform Pockels effect. With optimized operation parameters, the PPCs meet the SGII-U laser requirement of four-pass amplification control. Only driven by one high voltage pulser, the simplified PPC system would be provided with less associated diagnostics, and higher reliability. To farther reduce the insert loss of the PPC, research on the large-aperture PPC based on DKDP crystal driven by one pulse is developed. And several single-pulse driven PPCs with 80mm×80mm DKDP crystal have been manufactured and operated in laser facilities.
Class of near-perfect coded apertures
NASA Technical Reports Server (NTRS)
Cannon, T. M.; Fenimore, E. E.
1977-01-01
Coded aperture imaging of gamma ray sources has long promised an improvement in the sensitivity of various detector systems. The promise has remained largely unfulfilled, however, for either one of two reasons. First, the encoding/decoding method produces artifacts, which even in the absence of quantum noise, restrict the quality of the reconstructed image. This is true of most correlation-type methods. Second, if the decoding procedure is of the deconvolution variety, small terms in the transfer function of the aperture can lead to excessive noise in the reconstructed image. It is proposed to circumvent both of these problems by use of a uniformly redundant array (URA) as the coded aperture in conjunction with a special correlation decoding method.
Self characterization of a coded aperture array for neutron source imaging
Volegov, P. L.; Danly, C. R.; Fittinghoff, D. N.; ...
2014-12-15
The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning DT plasma during the stagnation stage of ICF implosions. Since the neutron source is small (~100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be preciselymore » aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.« less
Theory and design of interferometric synthetic aperture radars
NASA Technical Reports Server (NTRS)
Rodriguez, E.; Martin, J. M.
1992-01-01
A derivation of the signal statistics, an optimal estimator of the interferometric phase, and the expression necessary to calculate the height-error budget are presented. These expressions are used to derive methods of optimizing the parameters of the interferometric synthetic aperture radar system (InSAR), and are then employed in a specific design example for a system to perform high-resolution global topographic mapping with a one-year mission lifetime, subject to current technological constraints. A Monte Carlo simulation of this InSAR system is performed to evaluate its performance for realistic topography. The results indicate that this system has the potential to satisfy the stringent accuracy and resolution requirements for geophysical use of global topographic data.
Sample mounts for microcrystal crystallography
NASA Technical Reports Server (NTRS)
Thorne, Robert E. (Inventor); Kmetko, Jan (Inventor); Stum, Zachary (Inventor); O'Neill, Kevin (Inventor)
2007-01-01
Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tapered tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.
Sample mounts for microcrystal crystallography
NASA Technical Reports Server (NTRS)
O'Neill, Kevin (Inventor); Kmetko, Jan (Inventor); Thorne, Robert E. (Inventor); Stum, Zachary (Inventor)
2009-01-01
Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.
Design of wavefront coding optical system with annular aperture
NASA Astrophysics Data System (ADS)
Chen, Xinhua; Zhou, Jiankang; Shen, Weimin
2016-10-01
Wavefront coding can extend the depth of field of traditional optical system by inserting a phase mask into the pupil plane. In this paper, the point spread function (PSF) of wavefront coding system with annular aperture are analyzed. Stationary phase method and fast Fourier transform (FFT) method are used to compute the diffraction integral respectively. The OTF invariance is analyzed for the annular aperture with cubic phase mask under different obscuration ratio. With these analysis results, a wavefront coding system using Maksutov-Cassegrain configuration is designed finally. It is an F/8.21 catadioptric system with annular aperture, and its focal length is 821mm. The strength of the cubic phase mask is optimized with user-defined operand in Zemax. The Wiener filtering algorithm is used to restore the images and the numerical simulation proves the validity of the design.
Electrostatically actuatable light modulating device
Koehler, Dale R.
1991-01-01
The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.
Tcherniavski, Iouri; Kahrizi, Mojtaba
2008-11-20
Using a gradient optimization method with objective functions formulated in terms of a signal-to-noise ratio (SNR) calculated at given values of the prescribed spatial ground resolution, optimization problems of geometrical parameters of a distributed optical system and a charge-coupled device of a space-based optical-electronic system are solved for samples of the optical systems consisting of two and three annular subapertures. The modulation transfer function (MTF) of the distributed aperture is expressed in terms of an average MTF taking residual image alignment (IA) and optical path difference (OPD) errors into account. The results show optimal solutions of the optimization problems depending on diverse variable parameters. The information on the magnitudes of the SNR can be used to determine the number of the subapertures and their sizes, while the information on the SNR decrease depending on the IA and OPD errors can be useful in design of a beam combination control system to produce the necessary requirements to its accuracy on the basis of the permissible deterioration in the image quality.
Weld monitor and failure detector for nuclear reactor system
Sutton, Jr., Harry G.
1987-01-01
Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.
NASA Astrophysics Data System (ADS)
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B.
2009-08-01
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B
2009-08-21
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M; Batke, Sven P; Lawson, Tracy; McElwain, Jennifer C
2016-01-01
One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency.
Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M.; Batke, Sven P.; Lawson, Tracy; McElwain, Jennifer C.
2016-01-01
One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency. PMID:27605929
Ultra Small Aperture Terminal: System Design and Test Results
NASA Technical Reports Server (NTRS)
Sohn, Philip Y.; Reinhart, Richard C.
1996-01-01
The Ultra Small Aperture Terminal (USAT) has been developed to test and demonstrate remote and broadcast satcom applications via the Advanced Communications Technology Satellite (ACTS). The design of these ground stations emphasize small size, low power consumption, portable and rugged terminals. Each ground station includes several custom design parts such as 35 cm diameter antenna, 1/4 Watt transmitter with built-in upconverter, and 4.0 dB Noise Figure (NF) receiver with built-in downconverter. In addition, state-of-the-art commercial parts such as highly stable ovenized crystal oscillators and dielectric resonator oscillators are used in the ground station design. Presented in this paper are system level design description, performance, and sample applications.
VMAT optimization with dynamic collimator rotation.
Lyu, Qihui; O'Connor, Daniel; Ruan, Dan; Yu, Victoria; Nguyen, Dan; Sheng, Ke
2018-04-16
Although collimator rotation is an optimization variable that can be exploited for dosimetric advantages, existing Volumetric Modulated Arc Therapy (VMAT) optimization uses a fixed collimator angle in each arc and only rotates the collimator between arcs. In this study, we develop a novel integrated optimization method for VMAT, accounting for dynamic collimator angles during the arc motion. Direct Aperture Optimization (DAO) for Dynamic Collimator in VMAT (DC-VMAT) was achieved by adding to the existing dose fidelity objective an anisotropic total variation term for regulating the fluence smoothness, a binary variable for forming simple apertures, and a group sparsity term for controlling collimator rotation. The optimal collimator angle for each beam angle was selected using the Dijkstra's algorithm, where the node costs depend on the estimated fluence map at the current iteration and the edge costs account for the mechanical constraints of multi-leaf collimator (MLC). An alternating optimization strategy was implemented to solve the DAO and collimator angle selection (CAS). Feasibility of DC-VMAT using one full-arc with dynamic collimator rotation was tested on a phantom with two small spherical targets, a brain, a lung and a prostate cancer patient. The plan was compared against a static collimator VMAT (SC-VMAT) plan using three full arcs with 60 degrees of collimator angle separation in patient studies. With the same target coverage, DC-VMAT achieved 20.3% reduction of R50 in the phantom study, and reduced the average max and mean OAR dose by 4.49% and 2.53% of the prescription dose in patient studies, as compared with SC-VMAT. The collimator rotation co-ordinated with the gantry rotation in DC-VMAT plans for deliverability. There were 13 beam angles in the single-arc DC-VMAT plan in patient studies that requires slower gantry rotation to accommodate multiple collimator angles. The novel DC-VMAT approach utilizes the dynamic collimator rotation during arc delivery. In doing so, DC-VMAT affords more sophisticated intensity modulation, alleviating the limitation previously imposed by the square beamlet from the MLC leaf thickness and achieves higher effective modulation resolution. Consequently, DC-VMAT with a single arc manages to achieve superior dosimetry than SC-VMAT with three full arcs. © 2018 American Association of Physicists in Medicine.
Design and Fabrication of Double-Focused Ultrasound Transducers to Achieve Tight Focusing.
Jang, Jihun; Chang, Jin Ho
2016-08-06
Beauty treatment for skin requires a high-intensity focused ultrasound (HIFU) transducer to generate coagulative necrosis in a small focal volume (e.g., 1 mm³) placed at a shallow depth (3-4.5 mm from the skin surface). For this, it is desirable to make the F-number as small as possible under the largest possible aperture in order to generate ultrasound energy high enough to induce tissue coagulation in such a small focal volume. However, satisfying both conditions at the same time is demanding. To meet the requirements, this paper, therefore, proposes a double-focusing technique, in which the aperture of an ultrasound transducer is spherically shaped for initial focusing and an acoustic lens is used to finally focus ultrasound on a target depth of treatment; it is possible to achieve the F-number of unity or less while keeping the aperture of a transducer as large as possible. In accordance with the proposed method, we designed and fabricated a 7-MHz double-focused ultrasound transducer. The experimental results demonstrated that the fabricated double-focused transducer had a focal length of 10.2 mm reduced from an initial focal length of 15.2 mm and, thus, the F-number changed from 1.52 to 1.02. Based on the results, we concluded that the proposed double-focusing method is suitable to decrease F-number while maintaining a large aperture size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Kyle; Marleau, Peter; Brubaker, Erik
In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed imagemore » quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.« less
Optimization of 100-meter Green Bank Telescope
NASA Technical Reports Server (NTRS)
Strain, Douglas
1994-01-01
Candidate designs for NRAO's 100-m clear-aperture radio telescope were evaluated and optimized by JPL using JPL-developed structural optimization and analysis software. The weight of a non-optimum design was reduced from 9.4 million pounds to 9.2 million pounds. The half-pathlength error due to gravity deformations was reduced from 0.041-inch rms to 0.034-inch rms.
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongjun; Cheng, Weixing; Yu, Li Hua
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
NASA Astrophysics Data System (ADS)
Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert
2018-05-01
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.
Genetic algorithm enhanced by machine learning in dynamic aperture optimization
Li, Yongjun; Cheng, Weixing; Yu, Li Hua; ...
2018-05-29
With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less
NASA Astrophysics Data System (ADS)
Jones, T.; Detwiler, R. L.
2016-12-01
Long-term subsurface energy production and contaminant storage strategies often rely on induced-mineralization to control the transport of dissolved ions. In low-permeability rocks, precipitation is most likely to occur in fractures that act as leakage pathways for fluids that are in chemical disequilibrium with the formation minerals. These fractures are commonly idealized as parallel-plate channels with uniform surface mineralogy, and as a result, our predictions often suggest that precipitation leads to fast permeability reduction. However, natural fractures contain both heterogeneous mineralogy and three-dimensional surface roughness, and our understanding of how precipitation affects local permeability in these environments is limited. To examine the impacts of local heterogeneity on the feedback between mineral precipitation and permeability, we performed two long-term experiments in transparent analog fractures: (i) uniform-aperture and (ii) variable-aperture. We controlled the initial heterogeneous surface mineralogy in both experiments by seeding the bottom borosilicate fracture surfaces with randomly distributed clusters of CaCO3 crystals. Continuous flow ISCO pumps injected a well-mixed CaCl2-NaHCO3 solution, log(ΩCaCO3) = 1.44, into the fracture at 0.5 ml/min and transmitted-light techniques provided high-resolution (83 x 83 µm), direct measurements of aperture and fluid transport across the fracture. In experiment (i), precipitation decreased local aperture at discrete CaCO3 reaction sites near the fracture inlet, but transport variations across the fracture remained relatively small due to the initial lack of aperture heterogeneity. In contrast, the feedback between precipitation and aperture in experiment (ii) focused flow into large-aperture, preferential flow paths that contained significantly less CaCO3 area than the fracture scale average. Precipitation-induced aperture reduction in (ii) reduced dissolved ion transport into small-aperture regions of the fracture that were abundant with CaCO3 and led to a 72% decrease in measured precipitation rate. These results suggest that incorporating the effects of local heterogeneity may dramatically improve our ability to predict precipitation-induced permeability alterations in fractured rocks.
Astronomical Instrumentation Systems Quality Management Planning: AISQMP
NASA Astrophysics Data System (ADS)
Goldbaum, Jesse
2017-06-01
The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.
Astronomical Instrumentation Systems Quality Management Planning: AISQMP (Abstract)
NASA Astrophysics Data System (ADS)
Goldbaum, J.
2017-12-01
(Abstract only) The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.
Fraass, Benedick A.; Steers, Jennifer M.; Matuszak, Martha M.; McShan, Daniel L.
2012-01-01
Purpose: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1–2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). Methods: The IO-3D dose calculation and optimization functionality is integrated in the in-house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO-3D, and an improved, reimplemented edge/octree calculation algorithm. The IO-3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various user-controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO-3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO-3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans. Results: IO-3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO-3D plans have many fewer degrees of freedom for the optimization, this work finds that IO-3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO-3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO-3D plans were 22%–68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%–84% than the 0.5 cm × 0.5 cm beamlet IMRT plans. Conclusions: The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients. PMID:22755717
Characteristic investigation of Golay9 multiple mirror telescope with a spherical primary mirror
NASA Astrophysics Data System (ADS)
Wu, Feng; Wu, Quanying; Zhu, Xifang; Xiang, Ruxi; Qian, Lin
2017-10-01
The sparse aperture provides a novel solution to the manufacturing difficulties of modern super large telescopes. Golay configurations are optimal in the sparse aperture family. Characteristics of the Golay9 multiple mirror telescope having a spherical primary mirror are investigated. The arrangement of the nine sub-mirrors is discussed after the planar Golay9 configuration is analyzed. The characteristics of the entrance pupil are derived by analyzing the sub-aperture shapes with different relative apertures and sub-mirror sizes. Formulas about the fill factor and the overlay factor are deduced. Their maximal values are presented based on the derived tangency condition. Formulas for the point spread function (PSF) and the modulation transfer function (MTF) of the Golay9 MMT are also deduced. Two Golay9 MMT have been developed by Zemax simulation. Their PSF, MTF, fill factors, and overlay factors prove that our theoretical results are consistent with the practical simulation ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosini, M; GALAL, M; Emam, I
2014-06-01
Purpose: To investigate the planning and dosimetric advantages of direct aperture optimization (DAO) over beam-let optimization in IMRT treatment of head and neck (H/N) and prostate cancers. Methods: Five Head and Neck as well as five prostate patients were planned using the beamlet optimizer in Elekta-Xio ver 4.6 IMRT treatment planning system. Based on our experience in beamlet IMRT optimization, PTVs in H/N plans were prescribed to 70 Gy delivered by 7 fields. While prostate PTVs were prescribed to 76 Gy with 9 fields. In all plans, fields were set to be equally spaced. All cases were re-planed using Directmore » Aperture optimizer in Prowess Panther ver 5.01 IMRT planning system at same configurations and dose constraints. Plans were evaluated according to ICRU criteria, number of segments, number of monitor units and planning time. Results: For H/N plans, the near maximum dose (D2) and the dose that covers 95% D95 of PTV has improved by 4% in DAO. For organs at risk (OAR), DAO reduced the volume covered by 30% (V30) in spinal cord, right parotid, and left parotid by 60%, 54%, and 53% respectively. This considerable dosimetric quality improvement achieved using 25% less planning time and lower number of segments and monitor units by 46% and 51% respectively. In DAO prostate plans, Both D2 and D95 for the PTV were improved by only 2%. The V30 of the right femur, left femur and bladder were improved by 35%, 15% and 3% respectively. On the contrary, the rectum V30 got even worse by 9%. However, number of monitor units, and number of segments decreased by 20% and 25% respectively. Moreover the planning time reduced significantly too. Conclusion: DAO introduces considerable advantages over the beamlet optimization in regards to organs at risk sparing. However, no significant improvement occurred in most studied PTVs.« less
Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas.
Boyarsky, Michael; Sleasman, Timothy; Pulido-Mancera, Laura; Diebold, Aaron V; Imani, Mohammadreza F; Smith, David R
2018-05-20
Through aperture synthesis, an electrically small antenna can be used to form a high-resolution imaging system capable of reconstructing three-dimensional (3D) scenes. However, the large spectral bandwidth typically required in synthetic aperture radar systems to resolve objects in range often requires costly and complex RF components. We present here an alternative approach based on a hybrid imaging system that combines a dynamically reconfigurable aperture with synthetic aperture techniques, demonstrating the capability to resolve objects in three dimensions (3D), with measurements taken at a single frequency. At the core of our imaging system are two metasurface apertures, both of which consist of a linear array of metamaterial irises that couple to a common waveguide feed. Each metamaterial iris has integrated within it a diode that can be biased so as to switch the element on (radiating) or off (non-radiating), such that the metasurface antenna can produce distinct radiation profiles corresponding to different on/off patterns of the metamaterial element array. The electrically large size of the metasurface apertures enables resolution in range and one cross-range dimension, while aperture synthesis provides resolution in the other cross-range dimension. The demonstrated imaging capabilities of this system represent a step forward in the development of low-cost, high-performance 3D microwave imaging systems.
Kalsi, Sumit; Powl, Andrew M.; Wallace, B.A.; Morgan, Hywel; de Planque, Maurits R.R.
2014-01-01
Planar lipid bilayers suspended in apertures provide a controlled environment for ion channel studies. However, short lifetimes and poor mechanical stability of suspended bilayers limit the experimental throughput of bilayer electrophysiology experiments. Although bilayers are more stable in smaller apertures, ion channel incorporation through vesicle fusion with the suspended bilayer becomes increasingly difficult. In an alternative bilayer stabilization approach, we have developed shaped apertures in SU8 photoresist that have tapered sidewalls and a minimum diameter between 60 and 100 μm. Bilayers formed at the thin tip of these shaped apertures, either with the painting or the folding method, display drastically increased lifetimes, typically >20 h, and mechanical stability, being able to withstand extensive perturbation of the buffer solution. Single-channel electrical recordings of the peptide alamethicin and of the proteoliposome-delivered potassium channel KcsA demonstrate channel conductance with low noise, made possible by the small capacitance of the 50 μm thick SU8 septum, which is only thinned around the aperture, and unimpeded proteoliposome fusion, enabled by the large aperture diameter. We anticipate that these shaped apertures with micrometer edge thickness can substantially enhance the throughput of channel characterization by bilayer lipid membrane electrophysiology, especially in combination with automated parallel bilayer platforms. PMID:24739164
System optimization on coded aperture spectrometer
NASA Astrophysics Data System (ADS)
Liu, Hua; Ding, Quanxin; Wang, Helong; Chen, Hongliang; Guo, Chunjie; Zhou, Liwei
2017-10-01
For aim to find a simple multiple configuration solution and achieve higher refractive efficiency, and based on to reduce the situation disturbed by FOV change, especially in a two-dimensional spatial expansion. Coded aperture system is designed by these special structure, which includes an objective a coded component a prism reflex system components, a compensatory plate and an imaging lens Correlative algorithms and perfect imaging methods are available to ensure this system can be corrected and optimized adequately. Simulation results show that the system can meet the application requirements in MTF, REA, RMS and other related criteria. Compared with the conventional design, the system has reduced in volume and weight significantly. Therefore, the determining factors are the prototype selection and the system configuration.
A cellular glass substrate solar concentrator
NASA Technical Reports Server (NTRS)
Bedard, R.; Bell, D.
1980-01-01
The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.
Ping Gong; Pengfei Song; Shigao Chen
2017-06-01
The development of ultrafast ultrasound imaging offers great opportunities to improve imaging technologies, such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, there are tradeoffs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Various approaches have been proposed to solve this tradeoff, such as multiplane wave imaging or the attempts of implementing synthetic transmit aperture imaging. In this paper, we propose an ultrafast synthetic transmit aperture (USTA) imaging technique using Hadamard-encoded virtual sources with overlapping sub-apertures to enhance both image SNR and resolution without sacrificing frame rate. This method includes three steps: 1) create virtual sources using sub-apertures; 2) encode virtual sources using Hadamard matrix; and 3) add short time intervals (a few microseconds) between transmissions of different virtual sources to allow overlapping sub-apertures. The USTA was tested experimentally with a point target, a B-mode phantom, and in vivo human kidney micro-vessel imaging. Compared with standard coherent diverging wave compounding with the same frame rate, improvements on image SNR, lateral resolution (+33%, with B-mode phantom imaging), and contrast ratio (+3.8 dB, with in vivo human kidney micro-vessel imaging) have been achieved. The f-number of virtual sources, the number of virtual sources used, and the number of elements used in each sub-aperture can be flexibly adjusted to enhance resolution and SNR. This allows very flexible optimization of USTA for different applications.
Miniature rotating transmissive optical drum scanner
NASA Technical Reports Server (NTRS)
Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)
2013-01-01
A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.
Multidisciplinary Analysis and Optimal Design: As Easy as it Sounds?
NASA Technical Reports Server (NTRS)
Moore, Greg; Chainyk, Mike; Schiermeier, John
2004-01-01
The viewgraph presentation examines optimal design for precision, large aperture structures. Discussion focuses on aspects of design optimization, code architecture and current capabilities, and planned activities and collaborative area suggestions. The discussion of design optimization examines design sensitivity analysis; practical considerations; and new analytical environments including finite element-based capability for high-fidelity multidisciplinary analysis, design sensitivity, and optimization. The discussion of code architecture and current capabilities includes basic thermal and structural elements, nonlinear heat transfer solutions and process, and optical modes generation.
Numerical analysis of fundamental mode selection of a He-Ne laser by a circular aperture
NASA Astrophysics Data System (ADS)
He, Xin; Zhang, Bin
2011-11-01
In the He-Ne laser with an integrated cavity made of zerodur, the inner face performance of the gain tube is limited by the machining techniques, which tends to influence the beam propagation and transverse mode distribution. In order to improve the beam quality and select out the fundamental mode, an aperture is usually introduced in the cavity. In the process of laser design, the Fresnel-Kirchhoff diffraction integral equation is adopted to calculate the optical field distributions on each interface. The transit matrix is obtained based on self-reproducing principle and finite element method. Thus, optical field distribution on any interface and field loss of each transverse mode could be acquired by solving the eigenvalue and eigenvector of the transit matrix. For different-sized apertures in different positions, we could get different matrices and corresponding calculation results. By comparing these results, the optimal size and position of the aperture could be obtained. As a result, the feasibility of selecting fundamental mode in a zerodur He-Ne laser by a circular aperture has been verified theoretically.
Quantitative model of transport-aperture coordination during reach-to-grasp movements.
Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E
2008-06-01
It has been found in our previous studies that the initiation of aperture closure during reach-to-grasp movements occurs when the hand distance to target crosses a threshold that is a function of peak aperture amplitude, hand velocity, and hand acceleration. Thus, a stable relationship between those four movement parameters is observed at the moment of aperture closure initiation. Based on the concept of optimal control of movements (Naslin 1969) and its application for reach-to-grasp movement regulation (Hoff and Arbib 1993), it was hypothesized that the mathematical equation expressing that relationship can be generalized to describe coordination between hand transport and finger aperture during the entire reach-to-grasp movement by adding aperture velocity and acceleration to the above four movement parameters. The present study examines whether this hypothesis is supported by the data obtained in experiments in which young adults performed reach-to-grasp movements in eight combinations of two reach-amplitude conditions and four movement-speed conditions. It was found that linear approximation of the mathematical model described the relationship among the six movement parameters for the entire aperture-closure phase with very high precision for each condition, thus supporting the hypothesis for that phase. Testing whether one mathematical model could approximate the data across all the experimental conditions revealed that it was possible to achieve the same high level of data-fitting precision only by including in the model two additional, condition-encoding parameters and using a nonlinear, artificial neural network-based approximator with two hidden layers comprising three and two neurons, respectively. This result indicates that transport-aperture coordination, as a specific relationship between the parameters of hand transport and finger aperture, significantly depends on the condition-encoding variables. The data from the aperture-opening phase also fit a linear model, whose coefficients were substantially different from those identified for the aperture-closure phase. This result supports the above hypothesis for the aperture-opening phase, and consequently, for the entire reach-to-grasp movement. However, the fitting precision was considerably lower than that for the aperture-closure phase, indicating significant trial-to-trial variability of transport-aperture coordination during the aperture-opening phase. Implications for understanding the neural mechanisms employed by the CNS for controlling reach-to-grasp movements and utilization of the mathematical model of transport-aperture coordination for data analysis are discussed.
VizieR Online Data Catalog: EBLM J0555-57 photometry and RV (von Boetticher+, 2017)
NASA Astrophysics Data System (ADS)
von Boetticher, A.; Triaud, A. H. M. J.; Queloz, D.; Gill, S.; Lendl, M.; Delrez, L.; Anderson, D. R.; Collier, Cameron A.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hebb, L.; Hellier, C.; Jehin, E.; Maxted, P. F. L.; Martin, D. V.; Pepe, F.; Pollacco, D.; Segransan, D.; Smalley, B.; Udry, S.; West, R.
2017-06-01
The data is composed of one TRAPPIST photometric timeseries, two EULER photometric timeseries (one large-aperture observation of A and B components combined, one small-aperture observation of A component) and one set of CORALIE radial velocities. They provide evidence of a low mass star eclipsing EBLM J0555-57A. (5 data files).
Autofocus algorithm for synthetic aperture radar imaging with large curvilinear apertures
NASA Astrophysics Data System (ADS)
Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.
2013-05-01
An approach to autofocusing for large curved synthetic aperture radar (SAR) apertures is presented. Its essential feature is that phase corrections are being extracted not directly from SAR images, but rather from reconstructed SAR phase-history data representing windowed patches of the scene, of sizes sufficiently small to allow the linearization of the forward- and back-projection formulae. The algorithm processes data associated with each patch independently and in two steps. The first step employs a phase-gradient-type method in which phase correction compensating (possibly rapid) trajectory perturbations are estimated from the reconstructed phase history for the dominant scattering point on the patch. The second step uses phase-gradient-corrected data and extracts the absolute phase value, removing in this way phase ambiguities and reducing possible imperfections of the first stage, and providing the distances between the sensor and the scattering point with accuracy comparable to the wavelength. The features of the proposed autofocusing method are illustrated in its applications to intentionally corrupted small-scene 2006 Gotcha data. The examples include the extraction of absolute phases (ranges) for selected prominent point targets. They are then used to focus the scene and determine relative target-target distances.
Brown, David M; Juarez, Juan C; Brown, Andrea M
2013-12-01
A laser differential image-motion monitor (DIMM) system was designed and constructed as part of a turbulence characterization suite during the DARPA free-space optical experimental network experiment (FOENEX) program. The developed link measurement system measures the atmospheric coherence length (r0), atmospheric scintillation, and power in the bucket for the 1550 nm band. DIMM measurements are made with two separate apertures coupled to a single InGaAs camera. The angle of arrival (AoA) for the wavefront at each aperture can be calculated based on focal spot movements imaged by the camera. By utilizing a single camera for the simultaneous measurement of the focal spots, the correlation of the variance in the AoA allows a straightforward computation of r0 as in traditional DIMM systems. Standard measurements of scintillation and power in the bucket are made with the same apertures by redirecting a percentage of the incoming signals to InGaAs detectors integrated with logarithmic amplifiers for high sensitivity and high dynamic range. By leveraging two, small apertures, the instrument forms a small size and weight configuration for mounting to actively tracking laser communication terminals for characterizing link performance.
Focal shift and the axial optical coordinate for high-aperture systems of finite Fresnel number.
Sheppard, Colin J R; Török, Peter
2003-11-01
Analytic expressions are given for the on-axis intensity predicted by the Rayleigh-Sommerfeld and Kirchhoff diffraction integrals for a scalar optical system of high numerical aperture and finite value of Fresnel number. A definition of the axial optical coordinate is introduced that is valid for finite values of Fresnel number, for high-aperture systems, and for observation points distant from the focus. The focal shift effect is reexamined. For the case when the focal shift is small, explicit expressions are given for the focal shift and the axial peak in intensity.
Diffraction Analysis of Antennas With Mesh Surfaces
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya
1987-01-01
Strip-aperture model replaces wire-grid model. Far-field radiation pattern of antenna with mesh reflector calculated more accurately with new strip-aperture model than with wire-grid model of reflector surface. More adaptable than wire-grid model to variety of practical configurations and decidedly superior for reflectors in which mesh-cell width exceeds mesh thickness. Satisfies reciprocity theorem. Applied where mesh cells are no larger than tenth of wavelength. Small cell size permits use of simplifying approximation that reflector-surface current induced by electromagnetic field is present even in apertures. Approximation useful in calculating far field.
Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT
NASA Astrophysics Data System (ADS)
Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David
2010-11-01
Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, S; Vedantham, S; Karellas, A
Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square pixels provides high-resolution imaging suitable for fluoroscopy.« less
First Results from a Microfocus X-Ray System for Macromolecular Crystallography
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall
1999-01-01
The design and performance of a 40 Watt laboratory crystallography system optimized for the structure determination of small protein crystals are described. This system combines a microfocus x-ray generator (40 microns FWHM spot size at a power level of 40 Watts) and a short focal length (F = 2.6 mm) polycapillary collimating optic, and produces a small diameter quasi-parallel x-ray beam. Measurements of x-ray flux, divergence and spectral purity of the resulting x-ray beam are presented. The x-ray flux in a 250 microns diameter aperture produced by the microfocus system is 14.7 times higher .than that from a 3.15 kW rotating anode generator equipped with graphite monochromator. Crystallography data taken with the microfocus system are presented, and indicate that the divergence and spectral purity of the x-ray are sufficient to refine the diffraction data using a standard crystallographic software. Significant additional improvements in flux and beam divergence are possible, and plans for achieving these coals are discussed.
Barnett, Patrick D; Lamsal, Nirmal; Angel, S Michael
2017-04-01
A spatial heterodyne spectrometer (SHS) is described for standoff laser-induced breakdown spectroscopy (LIBS) measurements. The spatial heterodyne LIBS spectrometer (SHLS) is a diffraction grating based interferometer with no moving parts that offers a very large field of view, high light throughput, and high spectral resolution in a small package. The field of view of the SHLS spectrometer is shown to be ∼1° in standoff LIBS measurements. In the SHLS system described here, the collection aperture was defined by the 10 mm diffraction gratings in the SHS and standoff LIBS measurements were made up to 20 m with no additional collection optics, corresponding to a collection solid angle of 0.2 μsr, or f/2000, and also using a small telescope to increase the collection efficiency. The use of a microphone was demonstrated to rapidly optimize laser focus for 20 m standoff LIBS measurements.
Inverse 4D conformal planning for lung SBRT using particle swarm optimization
NASA Astrophysics Data System (ADS)
Modiri, A.; Gu, X.; Hagan, A.; Bland, R.; Iyengar, P.; Timmerman, R.; Sawant, A.
2016-08-01
A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for D max heart, 10%-41% for D max esophagus, 31%-68% for D max spinal cord and 7%-32% for V 13 lung.
Inverse 4D conformal planning for lung SBRT using particle swarm optimization
Modiri, A; Gu, X; Hagan, A; Bland, R; Iyengar, P; Timmerman, R; Sawant, A
2016-01-01
A critical aspect of highly potent regimens such as lung stereotactic body radiation therapy (SBRT) is to avoid collateral toxicity while achieving planning target volume (PTV) coverage. In this work, we describe four dimensional conformal radiotherapy (4D CRT) using a highly parallelizable swarm intelligence-based stochastic optimization technique. Conventional lung CRT-SBRT uses a 4DCT to create an internal target volume (ITV) and then, using forward-planning, generates a 3D conformal plan. In contrast, we investigate an inverse-planning strategy that uses 4DCT data to create a 4D conformal plan, which is optimized across the three spatial dimensions (3D) as well as time, as represented by the respiratory phase. The key idea is to use respiratory motion as an additional degree of freedom. We iteratively adjust fluence weights for all beam apertures across all respiratory phases considering OAR sparing, PTV coverage and delivery efficiency. To demonstrate proof-of-concept, five non-small-cell lung cancer SBRT patients were retrospectively studied. The 4D optimized plans achieved PTV coverage comparable to the corresponding clinically delivered plans while showing significantly superior OAR sparing ranging from 26% to 83% for Dmax heart, 10% to 41% for Dmax esophagus, 31% to 68% for Dmax spinal cord and 7% to 32% for V13 lung. PMID:27476472
Hu, Rui; Liu, Shutian; Li, Quhao
2017-05-20
For the development of a large-aperture space telescope, one of the key techniques is the method for designing the flexures for mounting the primary mirror, as the flexures are the key components. In this paper, a topology-optimization-based method for designing flexures is presented. The structural performances of the mirror system under multiple load conditions, including static gravity and thermal loads, as well as the dynamic vibration, are considered. The mirror surface shape error caused by gravity and the thermal effect is treated as the objective function, and the first-order natural frequency of the mirror structural system is taken as the constraint. The pattern repetition constraint is added, which can ensure symmetrical material distribution. The topology optimization model for flexure design is established. The substructuring method is also used to condense the degrees of freedom (DOF) of all the nodes of the mirror system, except for the nodes that are linked to the mounting flexures, to reduce the computation effort during the optimization iteration process. A potential optimized configuration is achieved by solving the optimization model and post-processing. A detailed shape optimization is subsequently conducted to optimize its dimension parameters. Our optimization method deduces new mounting structures that significantly enhance the optical performance of the mirror system compared to the traditional methods, which only focus on the parameters of existing structures. Design results demonstrate the effectiveness of the proposed optimization method.
A Novel Multi-Aperture Based Sun Sensor Based on a Fast Multi-Point MEANSHIFT (FMMS) Algorithm
You, Zheng; Sun, Jian; Xing, Fei; Zhang, Gao-Fei
2011-01-01
With the current increased widespread interest in the development and applications of micro/nanosatellites, it was found that we needed to design a small high accuracy satellite attitude determination system, because the star trackers widely used in large satellites are large and heavy, and therefore not suitable for installation on micro/nanosatellites. A Sun sensor + magnetometer is proven to be a better alternative, but the conventional sun sensor has low accuracy, and cannot meet the requirements of the attitude determination systems of micro/nanosatellites, so the development of a small high accuracy sun sensor with high reliability is very significant. This paper presents a multi-aperture based sun sensor, which is composed of a micro-electro-mechanical system (MEMS) mask with 36 apertures and an active pixels sensor (APS) CMOS placed below the mask at a certain distance. A novel fast multi-point MEANSHIFT (FMMS) algorithm is proposed to improve the accuracy and reliability, the two key performance features, of an APS sun sensor. When the sunlight illuminates the sensor, a sun spot array image is formed on the APS detector. Then the sun angles can be derived by analyzing the aperture image location on the detector via the FMMS algorithm. With this system, the centroid accuracy of the sun image can reach 0.01 pixels, without increasing the weight and power consumption, even when some missing apertures and bad pixels appear on the detector due to aging of the devices and operation in a harsh space environment, while the pointing accuracy of the single-aperture sun sensor using the conventional correlation algorithm is only 0.05 pixels. PMID:22163770
Direct aperture optimization using an inverse form of back-projection.
Zhu, Xiaofeng; Cullip, Timothy; Tracton, Gregg; Tang, Xiaoli; Lian, Jun; Dooley, John; Chang, Sha X
2014-03-06
Direct aperture optimization (DAO) has been used to produce high dosimetric quality intensity-modulated radiotherapy (IMRT) treatment plans with fast treatment delivery by directly modeling the multileaf collimator segment shapes and weights. To improve plan quality and reduce treatment time for our in-house treatment planning system, we implemented a new DAO approach without using a global objective function (GFO). An index concept is introduced as an inverse form of back-projection used in the CT multiplicative algebraic reconstruction technique (MART). The index, introduced for IMRT optimization in this work, is analogous to the multiplicand in MART. The index is defined as the ratio of the optima over the current. It is assigned to each voxel and beamlet to optimize the fluence map. The indices for beamlets and segments are used to optimize multileaf collimator (MLC) segment shapes and segment weights, respectively. Preliminary data show that without sacrificing dosimetric quality, the implementation of the DAO reduced average IMRT treatment time from 13 min to 8 min for the prostate, and from 15 min to 9 min for the head and neck using our in-house treatment planning system PlanUNC. The DAO approach has also shown promise in optimizing rotational IMRT with burst mode in a head and neck test case.
Large-aperture space optical system testing based on the scanning Hartmann.
Wei, Haisong; Yan, Feng; Chen, Xindong; Zhang, Hao; Cheng, Qiang; Xue, Donglin; Zeng, Xuefeng; Zhang, Xuejun
2017-03-10
Based on the Hartmann testing principle, this paper proposes a novel image quality testing technology which applies to a large-aperture space optical system. Compared with the traditional testing method through a large-aperture collimator, the scanning Hartmann testing technology has great advantages due to its simple structure, low cost, and ability to perform wavefront measurement of an optical system. The basic testing principle of the scanning Hartmann testing technology, data processing method, and simulation process are presented in this paper. Certain simulation results are also given to verify the feasibility of this technology. Furthermore, a measuring system is developed to conduct a wavefront measurement experiment for a 200 mm aperture optical system. The small deviation (6.3%) of root mean square (RMS) between experimental results and interferometric results indicates that the testing system can measure low-order aberration correctly, which means that the scanning Hartmann testing technology has the ability to test the imaging quality of a large-aperture space optical system.
NASA Astrophysics Data System (ADS)
Kajiyama, Yoshitaka; Joseph, Kevin; Kajiyama, Koichi; Kudo, Shuji; Aziz, Hany
2014-02-01
A shadow mask technique capable of realizing high resolution (>330 pixel-per-inch) and ˜100% aperture ratio Organic Light-Emitting Diode (OLED) full color displays is demonstrated. The technique utilizes polyimide contact shadow masks, patterned by laser ablation. Red, green, and blue OLEDs with very small feature sizes (<25 μm) are fabricated side by side on one substrate. OLEDs fabricated via this technique have the same performance as those made by established technology. This technique has a strong potential to achieve high resolution OLED displays via standard vacuum deposition processes even on flexible substrates.
Mid-frequency MTF compensation of optical sparse aperture system.
Zhou, Chenghao; Wang, Zhile
2018-03-19
Optical sparse aperture (OSA) can greatly improve the spatial resolution of optical system. However, because of its aperture dispersion and sparse, its mid-frequency modulation transfer function (MTF) are significantly lower than that of a single aperture system. The main focus of this paper is on the mid-frequency MTF compensation of the optical sparse aperture system. Firstly, the principle of the mid-frequency MTF decreasing and missing of optical sparse aperture are analyzed. This paper takes the filling factor as a clue. The method of processing the mid-frequency MTF decreasing with large filling factor and method of compensation mid-frequency MTF with small filling factor are given respectively. For the MTF mid-frequency decreasing, the image spatial-variant restoration method is proposed to restore the mid-frequency information in the image; for the mid-frequency MTF missing, two images obtained by two system respectively are fused to compensate the mid-frequency information in optical sparse aperture image. The feasibility of the two method are analyzed in this paper. The numerical simulation of the system and algorithm of the two cases are presented using Zemax and Matlab. The results demonstrate that by these two methods the mid-frequency MTF of OSA system can be compensated effectively.
Effects of Vertical Direction and Aperture Size on the Perception of Visual Acceleration.
Mueller, Alexandra S; González, Esther G; McNorgan, Chris; Steinbach, Martin J; Timney, Brian
2016-02-06
It is not well understood whether the distance over which moving stimuli are visible affects our sensitivity to the presence of acceleration or our ability to track such stimuli. It is also uncertain whether our experience with gravity creates anisotropies in how we detect vertical acceleration and deceleration. To address these questions, we varied the vertical extent of the aperture through which we presented vertically accelerating and decelerating random dot arrays. We hypothesized that observers would better detect and pursue accelerating and decelerating stimuli that extend over larger than smaller distances. In Experiment 1, we tested the effects of vertical direction and aperture size on acceleration and deceleration detection accuracy. Results indicated that detection is better for downward motion and for large apertures, but there is no difference between vertical acceleration and deceleration detection. A control experiment revealed that our manipulation of vertical aperture size affects the ability to track vertical motion. Smooth pursuit is better (i.e., with higher peak velocities) for large apertures than for small apertures. Our findings suggest that the ability to detect vertical acceleration and deceleration varies as a function of the direction and vertical extent over which an observer can track the moving stimulus. © The Author(s) 2016.
Beam collimation and focusing and error analysis of LD and fiber coupling system based on ZEMAX
NASA Astrophysics Data System (ADS)
Qiao, Lvlin; Zhou, Dejian; Xiao, Lei
2017-10-01
Laser diodde has many advantages, such as high efficiency, small volume, low cost and easy integration, so it is widely used. Because of its poor beam quality, the application of semiconductor laser has also been seriously hampered. In view of the poor beam quality, the ZEMAX optical design software is used to simulate the far field characteristics of the semiconductor laser beam, and the coupling module of the semiconductor laser and the optical fiber is designed and optimized. And the beam is coupled into the fiber core diameter d=200µm, the numerical aperture NA=0.22 optical fiber, the output power can reach 95%. Finally, the influence of the three docking errors on the coupling efficiency during the installation process is analyzed.
Measurement of seeing and the atmospheric time constant by differential scintillations.
Tokovinin, Andrei
2002-02-20
A simple differential analysis of stellar scintillations measured simultaneously with two apertures opens the possibility to estimate seeing. Moreover, some information on the vertical turbulence distribution can be obtained. A general expression for the differential scintillation index for apertures of arbitrary shape and for finite exposure time is derived, and its applications are studied. Correction for exposure time bias by use of the ratio of scintillation indices with and without time binning is studied. A bandpass-filtered scintillation in a small aperture (computed as the differential-exposure index) provides a reasonably good estimate of the atmospheric time constant for adaptive optics.
Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali
2013-02-01
Joint beam width and spatial coherence length optimization is proposed to maximize the average capacity in partially coherent free-space optical links, under the combined effects of atmospheric turbulence and pointing errors. An optimization metric is introduced to enable feasible translation of the joint optimal transmitter beam parameters into an analogous level of divergence of the received optical beam. Results show that near-ideal average capacity is best achieved through the introduction of a larger receiver aperture and the joint optimization technique.
Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali; Liaw, Shien-Kuei
2016-01-01
Joint effects of aperture averaging and beam width on the performance of free-space optical communication links, under the impairments of atmospheric loss, turbulence, and pointing errors (PEs), are investigated from an information theory perspective. The propagation of a spatially partially coherent Gaussian-beam wave through a random turbulent medium is characterized, taking into account the diverging and focusing properties of the optical beam as well as the scintillation and beam wander effects. Results show that a noticeable improvement in the average channel capacity can be achieved with an enlarged receiver aperture in the moderate-to-strong turbulence regime, even without knowledge of the channel state information. In particular, it is observed that the optimum beam width can be reduced to improve the channel capacity, albeit the presence of scintillation and PEs, given that either one or both of these adverse effects are least dominant. We show that, under strong turbulence conditions, the beam width increases linearly with the Rytov variance for a relatively smaller PE loss but changes exponentially with steeper increments for higher PE losses. Our findings conclude that the optimal beam width is dependent on the combined effects of turbulence and PEs, and this parameter should be adjusted according to the varying atmospheric channel conditions. Therefore, we demonstrate that the maximum channel capacity is best achieved through the introduction of a larger receiver aperture and a beam-width optimization technique.
In vivo imaging of retinal pigment epithelium cells in age related macular degeneration
Rossi, Ethan A.; Rangel-Fonseca, Piero; Parkins, Keith; Fischer, William; Latchney, Lisa R.; Folwell, Margaret A.; Williams, David R.; Dubra, Alfredo; Chung, Mina M.
2013-01-01
Morgan and colleagues demonstrated that the RPE cell mosaic can be resolved in the living human eye non-invasively by imaging the short-wavelength autofluorescence using an adaptive optics (AO) ophthalmoscope. This method, based on the assumption that all subjects have the same longitudinal chromatic aberration (LCA) correction, has proved difficult to use in diseased eyes, and in particular those affected by age-related macular degeneration (AMD). In this work, we improve Morgan’s method by accounting for chromatic aberration variations by optimizing the confocal aperture axial and transverse placement through an automated iterative maximization of image intensity. The increase in image intensity after algorithmic aperture placement varied depending upon patient and aperture position prior to optimization but increases as large as a factor of 10 were observed. When using a confocal aperture of 3.4 Airy disks in diameter, images were obtained using retinal radiant exposures of less than 2.44 J/cm2, which is ~22 times below the current ANSI maximum permissible exposure. RPE cell morphologies that were strikingly similar to those seen in postmortem histological studies were observed in AMD eyes, even in areas where the pattern of fluorescence appeared normal in commercial fundus autofluorescence (FAF) images. This new method can be used to study RPE morphology in AMD and other diseases, providing a powerful tool for understanding disease pathogenesis and progression, and offering a new means to assess the efficacy of treatments designed to restore RPE health. PMID:24298413
Recommended CENWAVE Settings for NUV COS ACQ/PEAKXD Procedure
NASA Astrophysics Data System (ADS)
Indriolo, Nick; Plesha, Rachel; Penton, Steven V.
2017-05-01
Spectroscopic target acquisitions with COS begin with the ACQ/PEAKXD procedure, which centers the external target in the science aperture in the cross-dispersion direction. During this procedure the external target is observed through the Primary Science Aperture (PSA) or Bright Object Aperture (BOA) and the Pt-Ne hollow cathode lamp is flashed on to produce an emission line spectrum in the Wavelength Calibration Aperture(WCA). The separation between the centroids of the WCA and PSA (or BOA) spectra is measured and compared to the known separation between the WCA and the center of the PSA (or BOA). In this way, the slew required to move the target to the center of the PSA (BOA) in the cross-dispersion direction is determined. This procedure requires an accurate measurement of the center of the WCA spectrum in the cross-dispersion direction. Each CENWAVE setting has a different distribution of emission lines from the Pt-Ne lamp on the NUV detector. Due to effects such as lamp aging and optics select mechanism (OSM) drift, the flux in the WCA spectrum for a given CENWAVE can change with time, and it is possible that some settings do not provide enough flux to reliably measure the center of the WCA spectrum. In this ISR we use all available NUV WCA data from 2010 Jan 01 through 2016 Oct 07 to determine which CENWAVE settings are optimal for the ACQ/PEAKXD procedure. These optimal settings are recommended in the Cycle 25 COS Instrument Handbook.
The AdaptiSPECT Imaging Aperture
Chaix, Cécile; Moore, Jared W.; Van Holen, Roel; Barrett, Harrison H.; Furenlid, Lars R.
2015-01-01
In this paper, we present the imaging aperture of an adaptive SPECT imaging system being developed at the Center for Gamma Ray Imaging (AdaptiSPECT). AdaptiSPECT is designed to automatically change its configuration in response to preliminary data, in order to improve image quality for a particular task. In a traditional pinhole SPECT imaging system, the characteristics (magnification, resolution, field of view) are set by the geometry of the system, and any modification can be accomplished only by manually changing the collimator and the distance of the detector to the center of the field of view. Optimization of the imaging system for a specific task on a specific individual is therefore difficult. In an adaptive SPECT imaging system, on the other hand, the configuration can be conveniently changed under computer control. A key component of an adaptive SPECT system is its aperture. In this paper, we present the design, specifications, and fabrication of the adaptive pinhole aperture that will be used for AdaptiSPECT, as well as the controls that enable autonomous adaptation. PMID:27019577
Lower Limits on Aperture Size for an ExoEarth Detecting Coronagraphic Mission
NASA Technical Reports Server (NTRS)
Stark, Christopher C.; Roberge, Aki; Mandell, Avi; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Stapelfeldt, Karl R.
2015-01-01
The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multiwavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically motivated sample of exoEarths.
NASA Astrophysics Data System (ADS)
Arnold, William R.
2015-09-01
NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars.
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.
2015-01-01
NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars.
NASA Astrophysics Data System (ADS)
Zhao, Chaoying; Zhang, Qin; He, Yang; Peng, Jianbing; Yang, Chengsheng; Kang, Ya
2016-04-01
Small baseline subsets interferometric synthetic aperture radar technique is analyzed to detect and monitor the loess landslide in the southern bank of the Jinghe River, Shaanxi province, China. Aiming to achieve the accurate preslide time-series deformation results over small spatial scale and abrupt temporal deformation loess landslide, digital elevation model error, coherence threshold for phase unwrapping, and quality of unwrapping interferograms must be carefully checked in advance. In this experience, land subsidence accompanying a landslide with the distance <1 km is obtained, which gives a sound precursor for small-scale loess landslide detection. Moreover, the longer and continuous land subsidence has been monitored while deformation starting point for the landslide is successfully inverted, which is key to monitoring the similar loess landslide. In addition, the accelerated landslide deformation from one to two months before the landslide can provide a critical clue to early warning of this kind of landslide.
NASA Astrophysics Data System (ADS)
Gibbons, Steven J.; Näsholm, S. P.; Ruigrok, E.; Kværna, T.
2018-04-01
Seismic arrays enhance signal detection and parameter estimation by exploiting the time-delays between arriving signals on sensors at nearby locations. Parameter estimates can suffer due to both signal incoherence, with diminished waveform similarity between sensors, and aberration, with time-delays between coherent waveforms poorly represented by the wave-front model. Sensor-to-sensor correlation approaches to parameter estimation have an advantage over direct beamforming approaches in that individual sensor-pairs can be omitted without necessarily omitting entirely the data from each of the sensors involved. Specifically, we can omit correlations between sensors for which signal coherence in an optimal frequency band is anticipated to be poor or for which anomalous time-delays are anticipated. In practice, this usually means omitting correlations between more distant sensors. We present examples from International Monitoring System seismic arrays with poor parameter estimates resulting when classical f-k analysis is performed over the full array aperture. We demonstrate improved estimates and slowness grid displays using correlation beamforming restricted to correlations between sufficiently closely spaced sensors. This limited sensor-pair correlation (LSPC) approach has lower slowness resolution than would ideally be obtained by considering all sensor-pairs. However, this ideal estimate may be unattainable due to incoherence and/or aberration and the LSPC estimate can often exploit all channels, with the associated noise-suppression, while mitigating the complications arising from correlations between very distant sensors. The greatest need for the method is for short-period signals on large aperture arrays although we also demonstrate significant improvement for secondary regional phases on a small aperture array. LSPC can also provide a robust and flexible approach to parameter estimation on three-component seismic arrays.
Design of an integrated aerial image sensor
NASA Astrophysics Data System (ADS)
Xue, Jing; Spanos, Costas J.
2005-05-01
The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.
Domínguez-Vicent, Alberto; Esteve-Taboada, Jose Juan; Recchioni, Alberto; Brautaset, Rune
2018-05-01
To assess the power profile and in vitro optical quality of scleral contact lenses with different powers as a function of the optical aperture. The mini and semiscleral contact lenses (Procornea) were measured for five powers per design. The NIMO TR-1504 (Lambda-X) was used to assess the power profile and Zernike coefficients of each contact lens. Ten measurements per lens were taken at 3- and 6-mm apertures. Furthermore, the optical quality of each lens was described in Zernike coefficients, modulation transfer function, and point spread function (PSF). A convolution of each lens PSF with an eye-chart image was also computed. The optical power fluctuated less than 0.5 diopters (D) along the optical zone of each lens. However, the optical power obtained for some lenses did not match with its corresponding nominal one, the maximum difference being 0.5 D. In optical quality, small differences were obtained among all lenses within the same design. Although significant differences were obtained among lenses (P<0.05), these showed small impact in the image quality of each convolution. Insignificant power fluctuations were obtained along the optical zone measured for each scleral lens. Additionally, the optical quality of both lenses has showed to be independent of the lens power within the same aperture.
NASA Technical Reports Server (NTRS)
Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.
2005-01-01
The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.
NASA Astrophysics Data System (ADS)
Vogler, D.; Amann, F.; Bayer, P.
2014-12-01
Anthropogenic perturbations in a rock mass at great depth cause a complex thermal-hydro-mechanical (THM) response. This is of particular relevance when dealing with enhanced geothermal systems (EGS) and unconventional oil and gas recovery utilizing hydraulic fracturing. Studying the key THM coupled processes associated with specific reservoir characteristics in an EGS are of foremost relevance to establish a heat exchanger able to achieve the target production rate.Many reservoirs are naturally low permeable, and the target permeability can only be achieved through the creation of new fractures or inelastic and dilatant shearing of pre-existing discontinuities. The latter process, which is considered to irreversibly increase the apertures of pre-existing discontinuities, has been shown to be especially important for EGS. Common constitutive equations linking the change in hydraulic aperture and the change in mechanical aperture are based on the basic formulation of the cubic law, which linearly relates the flow rate in a fracture to the pressure gradient. However, HM-coupled laboratory investigations demonstrate, that the relation between the mechanical and the hydraulic aperture as assumed in the cubic law, is not valid when dealing with very small initial apertures, which are likely to occur at great depth. In a current study, we investigate the relevance of this discrepancy for the early stage of permeability creation in an EGS, where massive fluid injections trigger largely irreversible in-elastic shearing of critically stressed discontinuities. Understanding small-scale effects in fractures in EGS during fluid injection is crucial to predict reservoir fluid production rates and seismic events.Our study aims to implement an empirical constitutive law in an existing discrete fracture code, and calibrate this against experimental data showing the irreversible shearing induced permeability changes. This empirical relation will later be used to quantify the relevance of uncertainties in reservoir characterisation such as discrete fracture networks (DFN) and in-situ state of stress.
Beam Combination for Stellar Imager and its Application to Full-Aperture Imaging
NASA Technical Reports Server (NTRS)
Mozurkewich, D.; Carpenter, K. G.; Lyon, R. G.
2007-01-01
Stellar Imager (SI) will be a Space-Based telescope consisting of 20 to 30 separated apertures. It is designed for UV/Optical imaging of stellar surfaces and asteroseismology. This report describes details of an alternative optical design for the beam combiner, dubbed the Spatial Frequency Remapper (SFR). It sacrifices the large field of view of the Fizeau combiner. In return, spectral resolution is obtained with a diffraction grating rather than an array of energy-resolving detectors. The SFR design works in principle and has been implemented with MIRC at CHARA for a small number of apertures. Here, we show the number of optical surfaces can be reduced and the concept scales gracefully to the large number of apertures needed for Stellar Imager. We also describe a potential application of this spatial frequency remapping to improved imaging with filled aperture systems. For filled-aperture imaging, the SFR becomes the core of an improved aperture masking system. To date, aperture-masking has produced the best images with ground-based telescopes but at the expense of low sensitivity due to short exposures and discarding most of the light collected by the telescope. This design eliminates the light-loss problem previously claimed to be inherent in all aperture-masking designs. We also argue that at least in principle, the short-integration time limit can also be overcome. With these improvements, it becomes an ideal camera for TPF-C; since it can form speckle-free images in the presence of wavefront errors, it should significantly relax the stability requirements of the current designs.
Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.
2014-12-01
We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.
NASA Astrophysics Data System (ADS)
Pinales, J. C.; Graber, H. C.; Hargrove, J. T.; Caruso, M. J.
2016-02-01
Previous studies have demonstrated the ability to detect and classify marine hydrocarbon films with spaceborne synthetic aperture radar (SAR) imagery. The dampening effects of hydrocarbon discharges on small surface capillary-gravity waves renders the ocean surface "radar dark" compared with the standard wind-borne ocean surfaces. Given the scope and impact of events like the Deepwater Horizon oil spill, the need for improved, automated and expedient monitoring of hydrocarbon-related marine anomalies has become a pressing and complex issue for governments and the extraction industry. The research presented here describes the development, training, and utilization of an algorithm that detects marine oil spills in an automated, semi-supervised manner, utilizing X-, C-, or L-band SAR data as the primary input. Ancillary datasets include related radar-borne variables (incidence angle, etc.), environmental data (wind speed, etc.) and textural descriptors. Shapefiles produced by an experienced human-analyst served as targets (validation) during the training portion of the investigation. Training and testing datasets were chosen for development and assessment of algorithm effectiveness as well as optimal conditions for oil detection in SAR data. The algorithm detects oil spills by following a 3-step methodology: object detection, feature extraction, and classification. Previous oil spill detection and classification methodologies such as machine learning algorithms, artificial neural networks (ANN), and multivariate classification methods like partial least squares-discriminant analysis (PLS-DA) are evaluated and compared. Statistical, transform, and model-based image texture techniques, commonly used for object mapping directly or as inputs for more complex methodologies, are explored to determine optimal textures for an oil spill detection system. The influence of the ancillary variables is explored, with a particular focus on the role of strong vs. weak wind forcing.
Improved control of medical x-ray film exposure
NASA Technical Reports Server (NTRS)
Berdahl, C. M.
1978-01-01
Exposure sensing system for light-intensified motion-picture X-ray system uses aperture or adjustable diaphragm to sample light from image region of interest. Approach, along with approximate optics, can optimize exposure sensitivity.
NASA Astrophysics Data System (ADS)
Ma, Qian; Shi, Chuan Bo; Chen, Tian Yi; Qing Qi, Mei; Li, Yun Bo; Cui, Tie Jun
2018-04-01
A new method is proposed to design gradient refractive-index metamaterial lens antennas by optimizing both the refractive-index distribution of the lens and the feed directivity. Comparing to the conventional design methods, source optimization provides a new degree of freedom to control aperture fields effectively. To demonstrate this method, two lenses with special properties based on this method are designed, to emit high-efficiency plane waves and fan-shaped beams, respectively. Both lenses have good performance and wide frequency band from 12 to 18 GHz, verifying the validity of the proposed method. The plane-wave emitting lens realized a high aperture efficiency of 75%, and the fan-beam lens achieved a high gain of 15 dB over board bandwidth. The experimental results have good agreement with the design targets and full-wave simulations.
Modeling of direct detection Doppler wind lidar. I. The edge technique.
McKay, J A
1998-09-20
Analytic models, based on a convolution of a Fabry-Perot etalon transfer function with a Gaussian spectral source, are developed for the shot-noise-limited measurement precision of Doppler wind lidars based on the edge filter technique by use of either molecular or aerosol atmospheric backscatter. The Rayleigh backscatter formulation yields a map of theoretical sensitivity versus etalon parameters, permitting design optimization and showing that the optimal system will have a Doppler measurement uncertainty no better than approximately 2.4 times that of a perfect, lossless receiver. An extension of the models to include the effect of limited etalon aperture leads to a condition for the minimum aperture required to match light collection optics. It is shown that, depending on the choice of operating point, the etalon aperture finesse must be 4-15 to avoid degradation of measurement precision. A convenient, closed-form expression for the measurement precision is obtained for spectrally narrow backscatter and is shown to be useful for backscatter that is spectrally broad as well. The models are extended to include extrinsic noise, such as solar background or the Rayleigh background on an aerosol Doppler lidar. A comparison of the model predictions with experiment has not yet been possible, but a comparison with detailed instrument modeling by McGill and Spinhirne shows satisfactory agreement. The models derived here will be more conveniently implemented than McGill and Spinhirne's and more readily permit physical insights to the optimization and limitations of the double-edge technique.
Optimization of the occulter for the Solar Orbiter/METIS coronagraph
NASA Astrophysics Data System (ADS)
Landini, Federico; Vivès, Sébastien; Romoli, Marco; Guillon, Christophe; Pancrazzi, Maurizio; Escolle, Clement; Focardi, Mauro; Antonucci, Ester; Fineschi, Silvano; Naletto, Giampiero; Nicolini, Gianalfredo; Nicolosi, Piergiorgio; Spadaro, Daniele
2012-09-01
METIS (Multi Element Telescope for Imaging and Spectroscopy investigation), selected to fly aboard the Solar Orbiter ESA/NASA mission, is conceived to perform imaging (in visible, UV and EUV) and spectroscopy (in EUV) of the solar corona, by means of an integrated instrument suite located on a single optical bench and sharing the same aperture on the satellite heat shield. As every coronagraph, METIS is highly demanding in terms of stray light suppression. Coronagraphs history teaches that a particular attention must be dedicated to the occulter optimization. The METIS occulting system is of particular interest due to its innovative concept. In order to meet the strict thermal requirements of Solar Orbiter, METIS optical design has been optimized by moving the entrance pupil at the level of the external occulter on the S/C thermal shield, thus reducing the size of the external aperture. The scheme is based on an inverted external-occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield. A spherical mirror rejects back the disk-light through the IEO. A breadboard of the occulting assembly (BOA) has been manufactured in order to perform stray light tests in front of two solar simulators (in Marseille, France and in Torino, Italy). A first measurement campaign has been carried on at the Laboratoire d'Astrophysique de Marseille. In this paper we describe the BOA design, the laboratory set-up and the preliminary results.
Wallhead, Ian; Jiménez, Teresa Molina; Ortiz, Jose Vicente García; Toledo, Ignacio Gonzalez; Toledo, Cristóbal Gonzalez
2012-11-05
A novel of Fresnel-type lens for use as a solar collector has been designed which utilizes double total internal reflection (D-TIR) to optimize collection efficiency for high numerical aperture lenses (in the region of 0.3 to 0.6 NA). Results show that, depending on the numerical aperture and the size of the receiver, a collection efficiency theoretical improvement on the order of 20% can be expected with this new design compared with that of a conventional Fresnel lens.
YSAR: a compact low-cost synthetic aperture radar
NASA Astrophysics Data System (ADS)
Thompson, Douglas G.; Arnold, David V.; Long, David G.; Miner, Gayle F.; Karlinsey, Thomas W.; Robertson, Adam E.
1997-09-01
The Brigham Young University Synthetic Aperture Radar (YSAR) is a compact, inexpensive SAR system which can be flown on a small aircraft. The system has exhibited a resolution of approximately 0.8 m by 0.8 m in test flights in calm conditions. YSAR has been used to collect data over archeological sites in Israel. Using a relatively low frequency (2.1 GHz), we hope to be able to identify walls or other archeological features to assist in excavation. A large data set of radar and photographic data have been collected over sites at Tel Safi, Qumran, Tel Micnah, and the Zippori National Forest in Israel. We show sample images from the archeological data. We are currently working on improved autofocus algorithms for this data and are developing a small, low-cost interferometric SAR system (YINSAR) for operation from a small aircraft.
PIC Modeling of Argon Plasma Flow in MNX
NASA Astrophysics Data System (ADS)
Cohen, Samuel; Sefkow, Adam
2007-11-01
A linear helicon-heated plasma device - the Magnetic Nozzle Experiment (MNX) at the Princeton Plasma Physics Laboratory - is used for studies of the formation of strong electrostatic double layers near mechanical and magnetic apertures and the acceleration of plasma ions into supersonic directed beams. In order to characterize the role of the aperture and its involvement with ion acceleration, detailed particle-in-cell simulations are employed to study the effects of the surrounding boundary geometry on the plasma dynamics near the aperture region, within which the transition from a collisional to collisionless regime occurs. The presence of a small superthermal electron population is examined, and the model includes a background neutral population which can be ionized by energetic electrons. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the formation mechanism of the double layer is investigated.
Update on the KELT Transit Survey: Hot Planets around Hot Stars
NASA Astrophysics Data System (ADS)
Gaudi, B. Scott; Stassun, Keivan G.; Pepper, Joshua; KELT Collaboration
2018-01-01
The KELT Transit Survey consists of a pair of small-aperture, wide-angle automated telescopes located at Winer Observatory in Sonoita, Arizona and the South African Astronomical Observatory (SAAO) in Sutherland, South Africa. Together, they are surveying roughly 70% of the sky for transiting planets. By virtue of their small apertures (42 mm) and large fields-of-view (26 degrees x 26 degrees), KELT is most sensitive to hot Jupiters transiting relatively bright (V~8-11), and thus relatively hot stars. I will provide an update on the planets discovered by KELT, focusing in detail on our recent discoveries of very hot planets transiting several bright A and early F stars.
Configurable Aperture Space Telescope
NASA Technical Reports Server (NTRS)
Ennico, Kimberly; Vassigh, Kenny; Bendek, Selman; Young, Zion W; Lynch, Dana H.
2015-01-01
In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide strawman mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible andor UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST.
Configurable Aperture Space Telescope
NASA Technical Reports Server (NTRS)
Ennico, Kimberly; Bendek, Eduardo
2015-01-01
In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide straw man mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible and/or UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST
NASA Astrophysics Data System (ADS)
Tugchin, B. N.; Janunts, N.; Steinert, M.; Dietrich, K.; Kley, E. B.; Tünnermann, A.; Pertsch, T.
2017-06-01
In this study, we investigate analytically and experimentally the roles of quasi-linearly polarized (LP), hybrid, plasmonic and photonic modes in optical detection and excitation with aperture tips in scanning near-field optical microscopy. Aperture tips are tapered and metal-coated optical fibers where small circular apertures are made at the apex. In aperture tips, there exist plasmonic modes that are bound at the interface of the metal cladding to the inner dielectric fiber and photonic modes that are guided in the area of the increased index in the dielectric fiber core. The fundamental photonic mode, although excited by the free-space Gaussian beam, experiences cutoff and turns into an evanescent mode. The photonic mode also becomes lossier than the plasmonic mode toward the tip aperture, and its power decay due to absorption and reflection is expected to be at least 10-9. In contrast, the fundamental plasmonic mode has no cutoff and thus reaches all the way to the tip aperture. Due to the non-adiabaticity of both modes’ propagations through the taper below a core radius of 600 nm, there occurs coupling between the modes. The transmission efficiency of the plasmonic mode, including the coupling efficiency and the propagation loss, is expected to be about 10-6 that is at least 3 orders of magnitude larger than that of the photonic mode. Toward the tip aperture, the longitudinal field of the photonic mode becomes stronger than the transverse ones while the transverse fields always dominate for the plasmonic mode. Experimentally, we obtain polarization resolved images of the near-field at the tip aperture and compare with the x- and y-components of the fundamental quasi-LP plasmonic and photonic modes. The results show that not only the pattern but also the intensity ratios of the x- and y-components of the aperture near-field match with that of the fundamental plasmonic mode. Consequently, we conclude that only the plasmonic mode reaches the tip aperture and thus governs the near-field interaction outside the tip aperture. Our conclusion remains valid for all aperture tips regardless of the cladding metal type that mainly influences the total transmission efficiency of the aperture tip.
NASA Astrophysics Data System (ADS)
Rooms, F.; Camet, S.; Curis, J. F.
2010-02-01
A new technology of deformable mirror will be presented. Based on magnetic actuators, these deformable mirrors feature record strokes (more than +/- 45μm of astigmatism and focus correction) with an optimized temporal behavior. Furthermore, the development has been made in order to have a large density of actuators within a small clear aperture (typically 52 actuators within a diameter of 9.0mm). We will present the key benefits of this technology for vision science: simultaneous correction of low and high order aberrations, AO-SLO image without artifacts due to the membrane vibration, optimized control, etc. Using recent papers published by Doble, Thibos and Miller, we show the performances that can be achieved by various configurations using statistical approach. The typical distribution of wavefront aberrations (both the low order aberration (LOA) and high order aberration (HOA)) have been computed and the correction applied by the mirror. We compare two configurations of deformable mirrors (52 and 97 actuators) and highlight the influence of the number of actuators on the fitting error, the photon noise error and the effective bandwidth of correction.
Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
Witteveen, Heidi J B; Rietman, Hans S; Veltink, Peter H
2015-06-01
User feedback about grasping force and hand aperture is very important in object handling with myoelectric forearm prostheses but is lacking in current prostheses. Vibrotactile feedback increases the performance of healthy subjects in virtual grasping tasks, but no extensive validation on potential users has been performed. Investigate the performance of upper-limb loss subjects in grasping tasks with vibrotactile stimulation, providing hand aperture, and grasping force feedback. Cross-over trial. A total of 10 subjects with upper-limb loss performed virtual grasping tasks while perceiving vibrotactile feedback. Hand aperture feedback was provided through an array of coin motors and grasping force feedback through a single miniature stimulator or an array of coin motors. Objects with varying sizes and weights had to be grasped by a virtual hand. Percentages correctly applied hand apertures and correct grasping force levels were all higher for the vibrotactile feedback condition compared to the no-feedback condition. With visual feedback, the results were always better compared to the vibrotactile feedback condition. Task durations were comparable for all feedback conditions. Vibrotactile grasping force and hand aperture feedback improves grasping performance of subjects with upper-limb loss. However, it should be investigated whether this is of additional value in daily-life tasks. This study is a first step toward the implementation of sensory vibrotactile feedback for users of myoelectric forearm prostheses. Grasping force feedback is crucial for optimal object handling, and hand aperture feedback is essential for reduction of required visual attention. Grasping performance with feedback is evaluated for the potential users. © The International Society for Prosthetics and Orthotics 2014.
Heat transfer analysis of a lab scale solar receiver using the discrete ordinates model
NASA Astrophysics Data System (ADS)
Dordevich, Milorad C. W.
This thesis documents the development, implementation and simulation outcomes of the Discrete Ordinates Radiation Model in ANSYS FLUENT simulating the radiative heat transfer occurring in the San Diego State University lab-scale Small Particle Heat Exchange Receiver. In tandem, it also serves to document how well the Discrete Ordinates Radiation Model results compared with those from the in-house developed Monte Carlo Ray Trace Method in a number of simplified geometries. The secondary goal of this study was the inclusion of new physics, specifically buoyancy. Implementation of an additional Monte Carlo Ray Trace Method software package known as VEGAS, which was specifically developed to model lab scale solar simulators and provide directional, flux and beam spread information for the aperture boundary condition, was also a goal of this study. Upon establishment of the model, test cases were run to understand the predictive capabilities of the model. It was shown that agreement within 15% was obtained against laboratory measurements made in the San Diego State University Combustion and Solar Energy Laboratory with the metrics of comparison being the thermal efficiency and outlet, wall and aperture quartz temperatures. Parametric testing additionally showed that the thermal efficiency of the system was very dependent on the mass flow rate and particle loading. It was also shown that the orientation of the small particle heat exchange receiver was important in attaining optimal efficiency due to the fact that buoyancy induced effects could not be neglected. The analyses presented in this work were all performed on the lab-scale small particle heat exchange receiver. The lab-scale small particle heat exchange receiver is 0.38 m in diameter by 0.51 m tall and operated with an input irradiation flux of 3 kWth and a nominal mass flow rate of 2 g/s with a suspended particle mass loading of 2 g/m3. Finally, based on acumen gained during the implementation and development of the model, a new and improved design was simulated to predict how the efficiency within the small particle heat exchange receiver could be improved through a few simple internal geometry design modifications. It was shown that the theoretical calculated efficiency of the small particle heat exchange receiver could be improved from 64% to 87% with adjustments to the internal geometry, mass flow rate, and mass loading.
Blind deconvolution with principal components analysis for wide-field and small-aperture telescopes
NASA Astrophysics Data System (ADS)
Jia, Peng; Sun, Rongyu; Wang, Weinan; Cai, Dongmei; Liu, Huigen
2017-09-01
Telescopes with a wide field of view (greater than 1°) and small apertures (less than 2 m) are workhorses for observations such as sky surveys and fast-moving object detection, and play an important role in time-domain astronomy. However, images captured by these telescopes are contaminated by optical system aberrations, atmospheric turbulence, tracking errors and wind shear. To increase the quality of images and maximize their scientific output, we propose a new blind deconvolution algorithm based on statistical properties of the point spread functions (PSFs) of these telescopes. In this new algorithm, we first construct the PSF feature space through principal component analysis, and then classify PSFs from a different position and time using a self-organizing map. According to the classification results, we divide images of the same PSF types and select these PSFs to construct a prior PSF. The prior PSF is then used to restore these images. To investigate the improvement that this algorithm provides for data reduction, we process images of space debris captured by our small-aperture wide-field telescopes. Comparing the reduced results of the original images and the images processed with the standard Richardson-Lucy method, our method shows a promising improvement in astrometry accuracy.
Application of phase matching autofocus in airborne long-range oblique photography camera
NASA Astrophysics Data System (ADS)
Petrushevsky, Vladimir; Guberman, Asaf
2014-06-01
The Condor2 long-range oblique photography (LOROP) camera is mounted in an aerodynamically shaped pod carried by a fast jet aircraft. Large aperture, dual-band (EO/MWIR) camera is equipped with TDI focal plane arrays and provides high-resolution imagery of extended areas at long stand-off ranges, at day and night. Front Ritchey-Chretien optics is made of highly stable materials. However, the camera temperature varies considerably in flight conditions. Moreover, a composite-material structure of the reflective objective undergoes gradual dehumidification in dry nitrogen atmosphere inside the pod, causing some small decrease of the structure length. The temperature and humidity effects change a distance between the mirrors by just a few microns. The distance change is small but nevertheless it alters the camera's infinity focus setpoint significantly, especially in the EO band. To realize the optics' resolution potential, the optimal focus shall be constantly maintained. In-flight best focus calibration and temperature-based open-loop focus control give mostly satisfactory performance. To get even better focusing precision, a closed-loop phase-matching autofocus method was developed for the camera. The method makes use of an existing beamsharer prism FPA arrangement where aperture partition exists inherently in an area of overlap between the adjacent detectors. The defocus is proportional to an image phase shift in the area of overlap. Low-pass filtering of raw defocus estimate reduces random errors related to variable scene content. Closed-loop control converges robustly to precise focus position. The algorithm uses the temperature- and range-based focus prediction as an initial guess for the closed-loop phase-matching control. The autofocus algorithm achieves excellent results and works robustly in various conditions of scene illumination and contrast.
Design of a bullet beam pattern of a micro ultrasound transducer (Conference Presentation)
NASA Astrophysics Data System (ADS)
Roh, Yongrae; Lee, Seongmin
2016-04-01
Ultrasonic imaging transducer is often required to compose a beam pattern of a low sidelobe level and a small beam width over a long focal region to achieve good image resolution. Normal ultrasound transducers have many channels along its azimuth, which allows easy formation of the sound beam into a desired shape. However, micro-array transducers have no control of the beam pattern along their elevation. In this work, a new method is proposed to manipulate the beam pattern by using an acoustic multifocal lens and a shaded electrode on top of the piezoelectric layer. The shading technique split an initial uniform electrode into several segments and combined those segments to compose a desired beam pattern. For a given elevation width and frequency, the optimal pattern of the split electrodes was determined by means of the OptQuest-Nonlinear Program (OQ-NLP) algorithm to achieve the lowest sidelobe level. The requirement to achieve a small beam width with a long focal region was satisfied by employing an acoustic lens of three multiple focuses. Optimal geometry of the multifocal lens such as the radius of curvature and aperture diameter for each focal point was also determined by the OQ-NLP algorithm. For the optimization, a new index was devised to evaluate the on-axis response: focal region ratio = focal region / minimum beam width. The larger was the focal region ratio, the better was the beam pattern. Validity of the design has been verified through fabricating and characterizing an experimental prototype of the transducer.
NASA Astrophysics Data System (ADS)
Laher, Russ
2012-08-01
Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.
Research on the magnetorheological finishing (MRF) technology with dual polishing heads
NASA Astrophysics Data System (ADS)
Huang, Wen; Zhang, Yunfei; He, Jianguo; Zheng, Yongcheng; Luo, Qing; Hou, Jing; Yuan, Zhigang
2014-08-01
Magnetorheological finishing (MRF) is a key polishing technique capable of rapidly converging to the required surface figure. Due to the deficiency of general one-polishing-head MRF technology, a dual polishing heads MRF technology was studied and a dual polishing heads MRF machine with 8 axes was developed. The machine has the ability to manufacture large aperture optics with high figure accuracy. The large polishing head is suitable for polishing large aperture optics, controlling large spatial length's wave structures, correcting low-medium frequency errors with high removal rates. While the small polishing head has more advantages in manufacturing small aperture optics, controlling small spatial wavelength's wave structures, correcting mid-high frequency and removing nanoscale materials. Material removal characteristic and figure correction ability for each of large and small polishing head was studied. Each of two polishing heads respectively acquired stable and valid polishing removal function and ultra-precision flat sample. After a single polishing iteration using small polishing head, the figure error in 45mm diameter of a 50 mm diameter plano optics was significantly improved from 0.21λ to 0.08λ by PV (RMS 0.053λ to 0.015λ). After three polishing iterations using large polishing head , the figure error in 410mm×410mm of a 430mm×430mm large plano optics was significantly improved from 0.40λ to 0.10λ by PV (RMS 0.068λ to 0.013λ) .This results show that the dual polishing heads MRF machine not only have good material removal stability, but also excellent figure correction capability.
Optimal beamforming in ultrasound using the ideal observer.
Abbey, Craig K; Nguyen, Nghia Q; Insana, Michael F
2010-08-01
Beamforming of received pulse-echo data generally involves the compression of signals from multiple channels within an aperture. This compression is irreversible, and therefore allows the possibility that information relevant for performing a diagnostic task is irretrievably lost. The purpose of this study was to evaluate information transfer in beamforming using a previously developed ideal observer model to quantify diagnostic information relevant to performing a task. We describe an elaborated statistical model of image formation for fixed-focus transmission and single-channel reception within a moving aperture, and we use this model on a panel of tasks related to breast sonography to evaluate receive-beamforming approaches that optimize the transfer of information. Under the assumption that acquisition noise is well described as an additive wide-band Gaussian white-noise process, we show that signal compression across receive-aperture channels after a 2-D matched-filtering operation results in no loss of diagnostic information. Across tasks, the matched-filter beamformer results in more information than standard delay-and-sum beamforming in the subsequent radio-frequency signal by a factor of two. We also show that for this matched filter, 68% of the information gain can be attributed to the phase of the matched-filter and 21% can be attributed to the amplitude. A 1-D matched filtering along axial lines shows no advantage over delay-andsum, suggesting an important role for incorporating correlations across different aperture windows in beamforming. We also show that a post-compression processing before the computation of an envelope is necessary to pass the diagnostic information in the beamformed radio-frequency signal to the final envelope image.
APPHi: Automated Photometry Pipeline for High Cadence Large Volume Data
NASA Astrophysics Data System (ADS)
Sánchez, E.; Castro, J.; Silva, J.; Hernández, J.; Reyes, M.; Hernández, B.; Alvarez, F.; García T.
2018-04-01
APPHi (Automated Photometry Pipeline) carries out aperture and differential photometry of TAOS-II project data. It is computationally efficient and can be used also with other astronomical wide-field image data. APPHi works with large volumes of data and handles both FITS and HDF5 formats. Due the large number of stars that the software has to handle in an enormous number of frames, it is optimized to automatically find the best value for parameters to carry out the photometry, such as mask size for aperture, size of window for extraction of a single star, and the number of counts for the threshold for detecting a faint star. Although intended to work with TAOS-II data, APPHi can analyze any set of astronomical images and is a robust and versatile tool to performing stellar aperture and differential photometry.
Locating trace plutonium in contaminated soil using micro-XRF imaging
Worley, Christopher G.; Spencer, Khalil J.; Boukhalfa, Hakim; ...
2014-06-01
Micro-X-ray fluorescence (MXRF) was used to locate minute quantities of plutonium in contaminated soil. Because the specimen had previously been prepared for analysis by scanning electron microscopy, it was coated with gold to eliminate electron beam charging. However, this significantly hindered efforts to detect plutonium by MXRF. The gold L peak series present in all spectra increased background counts. Plutonium signal attenuation by the gold coating and severe peak overlap from potassium in the soil prevented detection of trace plutonium using the Pu Mα peak. However, the 14.3 keV Pu Lα peak sensitivity was not optimal due to poor transmissionmore » efficiency through the source polycapillary optic, and the instrument silicon drift detector sensitivity quickly declines for peaks with energies above ~10 keV. Instrumental parameters were optimized (eg. using appropriate source filters) in order to detect plutonium. An X-ray beam aperture was initially used to image a majority of the specimen with low spatial resolution. A small region that appeared to contain plutonium was then imaged at high spatial resolution using a polycapillary optic. Small areas containing plutonium were observed on a soil particle, and iron was co-located with the plutonium. Zinc and titanium also appeared to be correlated with the plutonium, and these elemental correlations provided useful plutonium chemical state information that helped to better understand its environmental transport properties.« less
Molecular imaging with radionuclides, a powerful technique for studying biological processes in vivo
NASA Astrophysics Data System (ADS)
Cisbani, E.; Cusanno, F.; Garibaldi, F.; Magliozzi, M. L.; Majewski, S.; Torrioli, S.; Tsui, B. M. W.
2007-02-01
Our team is carrying on a systematic study devoted to the design of a SPECT detector with submillimeter resolution and adequate sensitivity (1 cps/kBq). Such system will be used for functional imaging of biological processes at molecular level in small animal. The system requirements have been defined by two relevant applications: study of atherosclerotic plaques characterization and stem cells diffusion and homing. In order to minimize costs and implementation time, the gamma detector will be based—as much as possible—on conventional components: scintillator crystal and position sensitive PhotoMultipliers read by individual channel electronics. A coded aperture collimator should be adapted to maximize the efficiency. The optimal selection of the detector components is investigated by systematic use of Monte-Carlo simulations (and laboratory validation tests); and finally preliminary results are presented and discussed here.
Characteristics of a future aeronautical satellite communications system
NASA Technical Reports Server (NTRS)
Sohn, Philip Y.; Stern, Alan; Schmidt, Fred
1991-01-01
A possible operational system scenario for providing satellite communications services to the future aviation community was analyzed. The system concept relies on a Ka-band (20/30 GHz) satellite that utilizes Multibeam Antenna (MBA) technology. The aircraft terminal uses an extremely small aperture antenna as a result of using this higher spectrum at Ka-band. The satellite functions as a relay between the aircraft and the ground stations. The ground stations function as interfaces to the existing terrestrial networks such as the Public Service Telephone Network (PSTN). Various system tradeoffs are first examined to ensure optimized system parameters. High level performance specifications and design approaches are generated for the space, ground, and aeronautical elements in the system. Both technical and economical issues affecting the feasibility of the studied concept are addressed with the 1995 timeframe in mind.
Characteristics of a future aeronautical satellite communications system
NASA Technical Reports Server (NTRS)
Sohn, Philip Y.; Stern, Alan; Schmidt, Fred
1991-01-01
A possible operational system scenario for providing satellite communications services to the future aviation community was analyzed. The system concept relies on a Ka-band (20/30 GHz) satellite that utilizes multibeam antenna (MBA) technology. The aircraft terminal uses an extremely small aperture antenna as a result of using this higher spectrum at Ka-band. The satellite functions as a relay between the aircraft and the ground stations. The ground stations function as interfaces to the existing terrestrial networks such as the Public Service Telephone Network (PSTN). Various system tradeoffs are first examined to ensure optimized system parameters. High level performance specifications and design approaches are generated for the space, ground, and aeronautical elements in the system. Both technical and economical issues affecting the feasibility of the studied concept are addressed with the 1995 timeframe in mind.
Phase-Scrambler Plate Spreads Point Image
NASA Technical Reports Server (NTRS)
Edwards, Oliver J.; Arild, Tor
1992-01-01
Array of small prisms retrofit to imaging lens. Phase-scrambler plate essentially planar array of small prisms partitioning aperture of lens into many subapertures, and prism at each subaperture designed to divert relatively large diffraction spot formed by that subaperture to different, specific point on focal plane.
2009-06-01
Border Initiative SUAV Small Unmanned Aerial Vehicle SAR Synthetic Aperture Radar TTPs Tactics, Techniques, And Procedures TRVS Trailer Remote...2008). 4 3. Overview of Illegal Activities According to the CBP, 178,770 pounds of cocaine, 2,178 pounds of heroin, 2,471,931 pounds of marijuana ...Raytheon Company Web Site) Another component of Predator B is the high- resolution Lynx Synthetic Aperture Radar (SAR). In their study, Tsunoda, et
Seed and blanket fuel arrangement for dual-phase nuclear reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, S.P.; Fawcett, R.M.
1992-09-22
This patent describes a fuel management method for a dual-phase nuclear reactor, it comprises: installing a fuel bundle at a first core location accessed by coolant through a relatively small aperture, each of the bundles having a predetermined group of fuel elements; operating the reactor a first time; shutting down the reactor; reinstalling the fuel bundle at a second core location accessed by coolant through a relatively large aperture; and operating the reactor a second time.
Circuit breaker lock out assembly
Gordy, W.T.
1983-05-18
A lock out assembly for a circuit breaker which consists of a generally step-shaped unitary base with an aperture in the small portion of the step-shaped base and a roughly S shaped retaining pin which loops through the large portion of the step-shaped base. The lock out assembly is adapted to fit over a circuit breaker with the handle switch projecting through the aperture, and the retaining pin projecting into an opening of the handle switch, preventing removal.
Circuit breaker lock out assembly
Gordy, Wade T.
1984-01-01
A lock out assembly for a circuit breaker which consists of a generally step-shaped unitary base with an aperture in the small portion of the step-shaped base and a roughly "S" shaped retaining pin which loops through the large portion of the step-shaped base. The lock out assembly is adapted to fit over a circuit breaker with the handle switch projecting through the aperture, and the retaining pin projecting into an opening of the handle switch, preventing removal.
Chen, Chunyi; Yang, Huamin; Zhou, Zhou; Zhang, Weizhi; Kavehrad, Mohsen; Tong, Shoufeng; Wang, Tianshu
2013-12-02
The temporal covariance function of irradiance-flux fluctua-tions for Gaussian Schell-model (GSM) beams propagating in atmospheric turbulence is theoretically formulated by making use of the method of effective beam parameters. Based on this formulation, new expressions for the root-mean-square (RMS) bandwidth of the irradiance-flux temporal spectrum due to GSM beams passing through atmospheric turbulence are derived. With the help of these expressions, the temporal fade statistics of the irradiance flux in free-space optical (FSO) communication systems, using spatially partially coherent sources, impaired by atmospheric turbulence are further calculated. Results show that with a given receiver aperture size, the use of a spatially partially coherent source can reduce both the fractional fade time and average fade duration of the received light signal; however, when atmospheric turbulence grows strong, the reduction in the fractional fade time becomes insignificant for both large and small receiver apertures and in the average fade duration turns inconsiderable for small receiver apertures. It is also illustrated that if the receiver aperture size is fixed, changing the transverse correlation length of the source from a larger value to a smaller one can reduce the average fade frequency of the received light signal only when a threshold parameter in decibels greater than the critical threshold level is specified.
NASA Astrophysics Data System (ADS)
Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin
2017-07-01
In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.
RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy
NASA Astrophysics Data System (ADS)
Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.
2016-02-01
We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.
Initial experiments with a versatile multi-aperture negative-ion source and related improvements
NASA Astrophysics Data System (ADS)
Cavenago, M.
2016-03-01
A relatively compact ion source, named NIO1 (Negative-Ion Optimization 1), with 9 beam apertures for H- extraction is under commissioning, in collaboration between Consorzio RFX and INFN, to provide a test bench for source optimizations, for innovations, and for simulation code validations in support of Neutral Beam Injectors (NBI) optimization. NIO1 installation includes a 60kV high-voltage deck, power supplies for a 130mA ion nominal current, an X-ray shield, and beam diagnostics. Plasma is heated with a tunable 2MHz radiofrequency (rf) generator. Physical aspects of source operation and rf-plasma coupling are discussed. NIO1 tuning procedures and plasma experiments both with air and with hydrogen as filling gas are described, up to a 1.7kW rf power. Transitions to inductively coupled plasma are reported in the case of air (for a rf power of about 0.5kW and a gas pressure below 2Pa), discussing their robust signature in optical emission, and briefly summarized for hydrogen, where more than 1kW rf power is needed.
Aperture-based antihydrogen gravity experiment: Parallel plate geometry
NASA Astrophysics Data System (ADS)
Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A.
2013-10-01
An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a "shadow" region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.
Optimal apodization design for medical ultrasound using constrained least squares part I: theory.
Guenther, Drake A; Walker, William F
2007-02-01
Aperture weighting functions are critical design parameters in the development of ultrasound systems because beam characteristics affect the contrast and point resolution of the final output image. In previous work by our group, we developed a metric that quantifies a broadband imaging system's contrast resolution performance. We now use this metric to formulate a novel general ultrasound beamformer design method. In our algorithm, we use constrained least squares (CLS) techniques and a linear algebra formulation to describe the system point spread function (PSF) as a function of the aperture weightings. In one approach, we minimize the energy of the PSF outside a certain boundary and impose a linear constraint on the aperture weights. In a second approach, we minimize the energy of the PSF outside a certain boundary while imposing a quadratic constraint on the energy of the PSF inside the boundary. We present detailed analysis for an arbitrary ultrasound imaging system and discuss several possible applications of the CLS techniques, such as designing aperture weightings to maximize contrast resolution and improve the system depth of field.
Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M
2018-03-01
Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.
Zeng, Xiaozheng; McGough, Robert J.
2009-01-01
The angular spectrum approach is evaluated for the simulation of focused ultrasound fields produced by large thermal therapy arrays. For an input pressure or normal particle velocity distribution in a plane, the angular spectrum approach rapidly computes the output pressure field in a three dimensional volume. To determine the optimal combination of simulation parameters for angular spectrum calculations, the effect of the size, location, and the numerical accuracy of the input plane on the computed output pressure is evaluated. Simulation results demonstrate that angular spectrum calculations performed with an input pressure plane are more accurate than calculations with an input velocity plane. Results also indicate that when the input pressure plane is slightly larger than the array aperture and is located approximately one wavelength from the array, angular spectrum simulations have very small numerical errors for two dimensional planar arrays. Furthermore, the root mean squared error from angular spectrum simulations asymptotically approaches a nonzero lower limit as the error in the input plane decreases. Overall, the angular spectrum approach is an accurate and robust method for thermal therapy simulations of large ultrasound phased arrays when the input pressure plane is computed with the fast nearfield method and an optimal combination of input parameters. PMID:19425640
Gao, Weilu; Shu, Jie; Reichel, Kimberly; Nickel, Daniel V; He, Xiaowei; Shi, Gang; Vajtai, Robert; Ajayan, Pulickel M; Kono, Junichiro; Mittleman, Daniel M; Xu, Qianfan
2014-03-12
Gate-controllable transmission of terahertz (THz) radiation makes graphene a promising material for making high-speed THz wave modulators. However, to date, graphene-based THz modulators have exhibited only small on/off ratios due to small THz absorption in single-layer graphene. Here we demonstrate a ∼50% amplitude modulation of THz waves with gated single-layer graphene by the use of extraordinary transmission through metallic ring apertures placed right above the graphene layer. The extraordinary transmission induced ∼7 times near-filed enhancement of THz absorption in graphene. These results promise complementary metal-oxide-semiconductor compatible THz modulators with tailored operation frequencies, large on/off ratios, and high speeds, ideal for applications in THz communications, imaging, and sensing.
Forward multiple scattering corrections as function of detector field of view
NASA Astrophysics Data System (ADS)
Zardecki, A.; Deepak, A.
1983-06-01
The theoretical formulations are given for an approximate method based on the solution of the radiative transfer equation in the small angle approximation. The method is approximate in the sense that an approximation is made in addition to the small angle approximation. Numerical results were obtained for multiple scattering effects as functions of the detector field of view, as well as the size of the detector's aperture for three different values of the optical depth tau (=1.0, 4.0 and 10.0). Three cases of aperture size were considered--namely, equal to or smaller or larger than the laser beam diameter. The contrast between the on-axis intensity and the received power for the last three cases is clearly evident.
Xu, Yang; Liu, Yuan-Zhi; Boppart, Stephen A; Carney, P Scott
2016-03-10
In this paper, we introduce an algorithm framework for the automation of interferometric synthetic aperture microscopy (ISAM). Under this framework, common processing steps such as dispersion correction, Fourier domain resampling, and computational adaptive optics aberration correction are carried out as metrics-assisted parameter search problems. We further present the results of this algorithm applied to phantom and biological tissue samples and compare with manually adjusted results. With the automated algorithm, near-optimal ISAM reconstruction can be achieved without manual adjustment. At the same time, the technical barrier for the nonexpert using ISAM imaging is also significantly lowered.
Jurling, Alden S; Fienup, James R
2014-03-01
Extending previous work by Thurman on wavefront sensing for segmented-aperture systems, we developed an algorithm for estimating segment tips and tilts from multiple point spread functions in different defocused planes. We also developed methods for overcoming two common modes for stagnation in nonlinear optimization-based phase retrieval algorithms for segmented systems. We showed that when used together, these methods largely solve the capture range problem in focus-diverse phase retrieval for segmented systems with large tips and tilts. Monte Carlo simulations produced a rate of success better than 98% for the combined approach.
Comparison of three different detectors applied to synthetic aperture radar data
NASA Astrophysics Data System (ADS)
Ranney, Kenneth I.; Khatri, Hiralal; Nguyen, Lam H.
2002-08-01
The U.S. Army Research Laboratory has investigated the relative performance of three different target detection paradigms applied to foliage penetration (FOPEN) synthetic aperture radar (SAR) data. The three detectors - a quadratic polynomial discriminator (QPD), Bayesian neural network (BNN) and a support vector machine (SVM) - utilize a common collection of statistics (feature values) calculated from the fully polarimetric FOPEN data. We describe the parametric variations required as part of the algorithm optimizations, and we present the relative performance of the detectors in terms of probability of false alarm (Pfa) and probability of detection (Pd).
An improved image alignment procedure for high-resolution transmission electron microscopy.
Lin, Fang; Liu, Yan; Zhong, Xiaoyan; Chen, Jianghua
2010-06-01
Image alignment is essential for image processing methods such as through-focus exit-wavefunction reconstruction and image averaging in high-resolution transmission electron microscopy. Relative image displacements exist in any experimentally recorded image series due to the specimen drifts and image shifts, hence image alignment for correcting the image displacements has to be done prior to any further image processing. The image displacement between two successive images is determined by the correlation function of the two relatively shifted images. Here it is shown that more accurate image alignment can be achieved by using an appropriate aperture to filter the high-frequency components of the images being aligned, especially for a crystalline specimen with little non-periodic information. For the image series of crystalline specimens with little amorphous, the radius of the filter aperture should be as small as possible, so long as it covers the innermost lattice reflections. Testing with an experimental through-focus series of Si[110] images, the accuracies of image alignment with different correlation functions are compared with respect to the error functions in through-focus exit-wavefunction reconstruction based on the maximum-likelihood method. Testing with image averaging over noisy experimental images from graphene and carbon-nanotube samples, clear and sharp crystal lattice fringes are recovered after applying optimal image alignment. Copyright 2010 Elsevier Ltd. All rights reserved.
Storage Ring Technology for Free Electron Lasers.
1984-04-01
aperture of the iris is controlled from outsideplac d in a vacuutm chamber. The pressure inside this the vacuum chamber. The rotational motion needed... motions (two translations and The mechanical assembly of these various parts is one rotational for the iris aperture) are severe in this shown in Fig. 3...expression -4- for the small signal gain spectrum, including the phase shift of the slowly varying wave z V y(9) It is clear from (8) and (9) that care must
NASA Astrophysics Data System (ADS)
Arkhangelskaja, Irene
2016-07-01
GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to energy deposition analysis and is the same as in the main aperture. Gamma-quanta, electrons/positrons and light nuclei with energy E>10 GeV also are registered in the lateral aperture. This aperture allows detecting of low-energy gammas in the ranges of 0.2 - 10 MeV and high energy ones from 10 MeV to several TeV with energy resolution 8% - 2% and 2% correspondingly.
Method of improving the performance of lenses for use in thermal infrared
NASA Astrophysics Data System (ADS)
McDowell, M. W.; Klee, H. W.
1980-10-01
A method is described whereby the field performance of an all-germanium triplet, as used for imaging radiation in the 8 to 13 micron waveband, can be improved. The principle of the method, which could also be used to improve the performance of achromatic triplets or aspherized doublets, involves the use of a field flattener lens which replaces the germanium window of the detector. The curvature of this lens can be optimized to minimize field curvature, which together with chromatic aberration is one of the most serious residuals of thermal imaging systems with relative apertures of around f/0.7. It is also shown that for such relative apertures, and for typical fields of less than 15 degrees, at 100 mm focal length, the location of the aperture stop is not a significant design parameter. This arises as a result of the intrinsic optical properties of germanium.
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon
2016-01-01
Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.
Infrared Space Astrometry missions: JASMINE
NASA Astrophysics Data System (ADS)
Gouda, Naoteru
2015-08-01
JASMINE is an abbreviation for Japan Astrometry Satellite Mission for INfrared Exploration. We are now focusing on the development of two projects, those are Nano-JASMINE and Small-JASMINE. The Nano-JASMINE micro-satellite project, with a primary mirror aperture of 5-cm class, is currently underway to test part of the technologies used for Small-JASMINE and to produce scientific results based on the astrometric information of bright objects in the neighboring space. Despite its small aperture, the satellite is capable of a level of observational precision comparable to the Hipparcos satellite, and the combination of the observational data from Nano-JASMINE and the Hipparcos Catalogue is expected to produce more precise data on proper motions and annual parallaxes. The satellite is scheduled for launch in the near future. An additional plan is underway to launch a small-scale JASMINE satellite (Small-JASMINE), with a primary mirror aperture of 30-cm class, in around FY 2021. This satellite will engage in observations of only a limited area around the bulge and certain specific astronomical objects.. The main scientific objective of Small-JASMINE is to clarify the dynamical structure of the Galactic nuclear bulge and search for observational relics of a sequential merger of multiple black holes to form the supermassive black hole at the Galactic center. In particular, our main goal is that Small-JASMINE will provide an understanding of the past evolution processes of the supermassive black hole and a prediction of the future activities of our Galactic center through knowledge of the gravitational potential in the Galactic nuclear bulge, and that this understanding can contribute to a better understanding of the co-evolution of the supermassive black holes and bulges in external galaxies. Next to this primary goal, Small-JASMINE will have many other scientific targets. Small-JASMINE can measure the same target every 100 minutes, so it is useful to resolve phenomena with short periods such as X-ray binaries, extrasolar planetary systems and gravitational lens effects. For example, the orbital elements of the star accompanying Cygnus X-1 can be resolved by Small-JASMINE.
A Large Aperture Fabry-Perot Tunable Filter Based On Micro Opto Electromechanical Systems Technology
NASA Technical Reports Server (NTRS)
Greenhouse, Matt; Mott, Brent; Powell, Dan; Barclay, Rich; Hsieh, Wen-Ting
2002-01-01
A research and development effort sponsored by the NASA Goddard Spaceflight Center (GSFC) is focused on applying Micro Opto Electromechanical Systems (MOEMS) technology to create a miniature Fabry-Perot tunable etalon for space and ground-based near infrared imaging spectrometer applications. Unlike previous devices developed for small-aperture telecommunications systems, the GSFC research is directed toward a novel 12 - 40 mm aperture for astrophysical studies, including emission line imaging of galaxies and nebulae, and multi-spectral redshift surveys in the 1.1 - 2.3 micron wavelength region. The MOEMS design features integrated electrostatic scanning of the 11-micron optical gap, and capacitance micrometry for closed loop control of parallelism within a 10-nm tolerance. The low thermal mass and inertia inherent in MOEMS devices allows for rapid cooling to the proposed 30 K operating temperature, and high frequency response. Achieving the proposed 6-nm aperture flatness (with an effective finesse of 50) represents the primary technical challenge in the current 12-mm prototype.
Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian
2016-06-17
Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays.
Balaur, Eugeniu; Sadatnajafi, Catherine; Kou, Shan Shan; Lin, Jiao; Abbey, Brian
2016-01-01
Colour filters based on nano-apertures in thin metallic films have been widely studied due to their extraordinary optical transmission and small size. These properties make them prime candidates for use in high-resolution colour displays and high accuracy bio-sensors. The inclusion of polarization sensitive plasmonic features in such devices allow additional control over the electromagnetic field distribution, critical for investigations of polarization induced phenomena. Here we demonstrate that cross-shaped nano-apertures can be used for polarization controlled color tuning in the visible range and apply fundamental theoretical models to interpret key features of the transmitted spectrum. Full color transmission was achieved by fine-tuning the periodicity of the apertures, whilst keeping the geometry of individual apertures constant. We demonstrate this effect for both transverse electric and magnetic fields. Furthermore we have been able to demonstrate the same polarization sensitivity even for nano-size, sub-wavelength sets of arrays, which is paramount for ultra-high resolution compact colour displays. PMID:27312072
Kern, Maximilian M.; Guzy, Jacquelyn C.; Lovich, Jeffrey E.; Gibbons, J. Whitfield; Dorcas, Michael E.
2016-01-01
Because resources are finite, female animals face trade-offs between the size and number of offspring they are able to produce during a single reproductive event. Optimal egg size (OES) theory predicts that any increase in resources allocated to reproduction should increase clutch size with minimal effects on egg size. Variations of OES predict that egg size should be optimized, although not necessarily constant across a population, because optimality is contingent on maternal phenotypes, such as body size and morphology, and recent environmental conditions. We examined the relationships among body size variables (pelvic aperture width, caudal gap height, and plastron length), clutch size, and egg width of diamondback terrapins from separate but proximate populations at Kiawah Island and Edisto Island, South Carolina. We found that terrapins do not meet some of the predictions of OES theory. Both populations exhibited greater variation in egg size among clutches than within, suggesting an absence of optimization except as it may relate to phenotype/habitat matching. We found that egg size appeared to be constrained by more than just pelvic aperture width in Kiawah terrapins but not in the Edisto population. Terrapins at Edisto appeared to exhibit osteokinesis in the caudal region of their shells, which may aid in the oviposition of large eggs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Schuemann, J
Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalentmore » was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)« less
NASA Astrophysics Data System (ADS)
Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.
2011-07-01
The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.
Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa
2009-01-01
Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769
DOE Office of Scientific and Technical Information (OSTI.GOV)
Götstedt, Julia; Karlsson Hauer, Anna; Bäck, Anna, E-mail: anna.back@vgregion.se
Purpose: Complexity metrics have been suggested as a complement to measurement-based quality assurance for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). However, these metrics have not yet been sufficiently validated. This study develops and evaluates new aperture-based complexity metrics in the context of static multileaf collimator (MLC) openings and compares them to previously published metrics. Methods: This study develops the converted aperture metric and the edge area metric. The converted aperture metric is based on small and irregular parts within the MLC opening that are quantified as measured distances between MLC leaves. The edge area metricmore » is based on the relative size of the region around the edges defined by the MLC. Another metric suggested in this study is the circumference/area ratio. Earlier defined aperture-based complexity metrics—the modulation complexity score, the edge metric, the ratio monitor units (MU)/Gy, the aperture area, and the aperture irregularity—are compared to the newly proposed metrics. A set of small and irregular static MLC openings are created which simulate individual IMRT/VMAT control points of various complexities. These are measured with both an amorphous silicon electronic portal imaging device and EBT3 film. The differences between calculated and measured dose distributions are evaluated using a pixel-by-pixel comparison with two global dose difference criteria of 3% and 5%. The extent of the dose differences, expressed in terms of pass rate, is used as a measure of the complexity of the MLC openings and used for the evaluation of the metrics compared in this study. The different complexity scores are calculated for each created static MLC opening. The correlation between the calculated complexity scores and the extent of the dose differences (pass rate) are analyzed in scatter plots and using Pearson’s r-values. Results: The complexity scores calculated by the edge area metric, converted aperture metric, circumference/area ratio, edge metric, and MU/Gy ratio show good linear correlation to the complexity of the MLC openings, expressed as the 5% dose difference pass rate, with Pearson’s r-values of −0.94, −0.88, −0.84, −0.89, and −0.82, respectively. The overall trends for the 3% and 5% dose difference evaluations are similar. Conclusions: New complexity metrics are developed. The calculated scores correlate to the complexity of the created static MLC openings. The complexity of the MLC opening is dependent on the penumbra region relative to the area of the opening. The aperture-based complexity metrics that combined either the distances between the MLC leaves or the MLC opening circumference with the aperture area show the best correlation with the complexity of the static MLC openings.« less
Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Douglas, E-mail: douglas.moore@utsouthwestern.edu; Sawant, Amit; Ruan, Dan
2016-01-15
Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for themore » trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al. approach, while performing comparably to Ruan and Keall. Conclusions: This work improves upon the quality of the Sawant et al. approach, but does so without sacrificing run-time performance. In addition, using this framework allows for complex leaf-fitting strategies that can be used to account for PTV/OAR trade-off during real-time MLC tracking.« less
Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers
NASA Astrophysics Data System (ADS)
Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami
2015-02-01
VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.
Three dimensional fracture aperture and porosity distribution using computerized tomography
NASA Astrophysics Data System (ADS)
Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.
2017-12-01
A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the presence of strong heterogeneities in fracture aperture at the mm-scale. These results exemplify the use of non-destructive imaging to determine fracture aperture maps, which can be used to address flow channelization and heat transfer that cannot be obtained from core-flooding experiments alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim
When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector canmore » be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6–20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.« less
NASA Astrophysics Data System (ADS)
Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio
2017-04-01
Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau rheological equation is well approximated by the more tractable truncated power-law model. Results for flow of such fluids between parallel walls are already available. This study extends the adoption of the truncated power-law model to variable aperture fractures, with the aim of understanding the joint influence of rheology and aperture spatial variability. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and perpendicular to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results are then compared with those obtained for pure power-law fluids for different combinations of model parameters. It is seen that the adoption of the pure power law model leads to significant overestimation of the flowrate with respect to the truncated model, more so for large external pressure gradient and/or aperture variability.
Behar, Vera; Adam, Dan
2005-12-01
An effective aperture approach is used for optimization of a sparse synthetic transmit aperture (STA) imaging system with coded excitation and frequency division. A new two-stage algorithm is proposed for optimization of both the positions of the transmit elements and the weights of the receive elements. In order to increase the signal-to-noise ratio in a synthetic aperture system, temporal encoding of the excitation signals is employed. When comparing the excitation by linear frequency modulation (LFM) signals and phase shift key modulation (PSKM) signals, the analysis shows that chirps are better for excitation, since at the output of a compression filter the sidelobes generated are much smaller than those produced by the binary PSKM signals. Here, an implementation of a fast STA imaging is studied by spatial encoding with frequency division of the LFM signals. The proposed system employs a 64-element array with only four active elements used during transmit. The two-dimensional point spread function (PSF) produced by such a sparse STA system is compared to the PSF produced by an equivalent phased array system, using the Field II simulation program. The analysis demonstrates the superiority of the new sparse STA imaging system while using coded excitation and frequency division. Compared to a conventional phased array imaging system, this system acquires images of equivalent quality 60 times faster, when the transmit elements are fired in pairs consecutively and the power level used during transmit is very low. The fastest acquisition time is achieved when all transmit elements are fired simultaneously, which improves detectability, but at the cost of a slight degradation of the axial resolution. In real-time implementation, however, it must be borne in mind that the frame rate of a STA imaging system depends not only on the acquisition time of the data but also on the processing time needed for image reconstruction. Comparing to phased array imaging, a significant increase in the frame rate of a STA imaging system is possible if and only if an equivalent time efficient algorithm is used for image reconstruction.
NASA Astrophysics Data System (ADS)
Cady, Eric; Mejia Prada, Camilo; An, Xin; Balasubramanian, Kunjithapatham; Diaz, Rosemary; Kasdin, N. Jeremy; Kern, Brian; Kuhnert, Andreas; Nemati, Bijan; Patterson, Keith; Poberezhskiy, Ilya; Riggs, A. J. Eldorado; Ryan, Daniel; Zhou, Hanying; Zimmer, Robert; Zimmerman, Neil T.
2015-09-01
One of the two primary architectures being tested for the WFIRST-AFTA coronagraph instrument is the shaped pupil coronagraph, which uses a binary aperture in a pupil plane to create localized regions of high contrast in a subsequent focal plane. The aperture shapes are determined by optimization, and can be designed to work in the presence of secondary obscurations and spiders - an important consideration for coronagraphy with WFIRST-AFTA. We present the current performance of the shaped pupil testbed, including the results of AFTA Milestone 2, in which ≍ 6 × 10-9 contrast was achieved in three independent runs starting from a neutral setting.
NASA Technical Reports Server (NTRS)
Cady, Eric; Mejia Prada, Camilo; An, Xin; Balasubramanian, Kunjithapatha; Diaz, Rosemary; Kasdin, N. Jeremy; Kern, Brian; Kuhnert, Andreas; Nemati, Bijan; Patterson, Keith;
2015-01-01
One of the two primary architectures being tested for the WFIRST-AFTA coronagraph instrument is the shaped pupil coronagraph, which uses a binary aperture in a pupil plane to create localized regions of high contrast in a subsequent focal plane. The aperture shapes are determined by optimization, and can be designed to work in the presence of secondary obscurations and spiders-an important consideration for coronagraphy with WFIRSTAFTA. We present the current performance of the shaped pupil testbed, including the results of AFTA Milestone 2, in which approximately 6 × 10(exp -9) contrast was achieved in three independent runs starting from a neutral setting.
High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication
NASA Astrophysics Data System (ADS)
Westbergh, Petter; Safaisini, Rashid; Haglund, Erik; Gustavsson, Johan S.; Larsson, Anders; Joel, Andrew
2013-03-01
We present results from our new generation of high performance 850 nm oxide confined vertical cavity surface-emitting lasers (VCSELs). With devices optimized for high-speed operation under direct modulation, we achieve record high 3dB modulation bandwidths of 28 GHz for ~4 μm oxide aperture diameter VCSELs, and 27 GHz for devices with a ~7 μm oxide aperture diameter. Combined with a high-speed photoreceiver, the ~7 μm VCSEL enables error-free transmission at data rates up to 47 Gbit/s at room temperature, and up to 40 Gbit/s at 85°C.
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon
2016-01-01
Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.
Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction
NASA Astrophysics Data System (ADS)
Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.
2017-12-01
We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.
Difference Image Analysis of Defocused Observations With CSTAR
NASA Astrophysics Data System (ADS)
Oelkers, Ryan J.; Macri, Lucas M.; Wang, Lifan; Ashley, Michael C. B.; Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Lawrence, Jon S.; Qiang, Liu; Luong-Van, Daniel; Pennypacker, Carl R.; Yang, Huigen; Yuan, Xiangyan; York, Donald G.; Zhou, Xu; Zhu, Zhenxi
2015-02-01
The Chinese Small Telescope ARray carried out high-cadence time-series observations of 27 square degrees centered on the South Celestial Pole during the Antarctic winter seasons of 2008-2010. Aperture photometry of the 2008 and 2010 i-band images resulted in the discovery of over 200 variable stars. Yearly servicing left the array defocused for the 2009 winter season, during which the system also suffered from intermittent frosting and power failures. Despite these technical issues, nearly 800,000 useful images were obtained using g, r, and clear filters. We developed a combination of difference imaging and aperture photometry to compensate for the highly crowded, blended, and defocused frames. We present details of this approach, which may be useful for the analysis of time-series data from other small-aperture telescopes regardless of their image quality. Using this approach, we were able to recover 68 previously known variables and detected variability in 37 additional objects. We also have determined the observing statistics for Dome A during the 2009 winter season; we find the extinction due to clouds to be less than 0.1 and 0.4 mag for 40% and 63% of the dark time, respectively.
NASA Technical Reports Server (NTRS)
Krizmanic, John F.; Mitchell, John W.; Streitmatter, Robert E.
2013-01-01
OWL [1] uses the Earth's atmosphere as a vast calorimeter to fully enable the emerging field of charged-particle astronomy with high-statistics measurements of ultra-high-energy cosmic rays (UHECR) and a search for sources of UHE neutrinos and photons. Confirmation of the Greisen-Zatsepin-Kuzmin (GZK) suppression above approx. 4 x 10(exp 19) eV suggests that most UHECR originate in astrophysical objects. Higher energy particles must come from sources within about 100 Mpc and are deflected by approx. 1 degree by predicted intergalactic/galactic magnetic fields. The Pierre Auger Array, Telescope Array and the future JEM-EUSO ISS mission will open charged-particle astronomy, but much greater exposure will be required to fully identify and measure the spectra of individual sources. OWL uses two large telescopes with 3 m optical apertures and 45 degree FOV in near-equatorial orbits. Simulations of a five-year OWL mission indicate approx. 10(exp 6) sq km/ sr/ yr of exposure with full aperture at approx. 6 x 10(exp 19) eV. Observations at different altitudes and spacecraft separations optimize sensitivity to UHECRs and neutrinos. OWL's stereo event reconstruction is nearly independent of track inclination and very tolerant of atmospheric conditions. An optional monocular mode gives increased reliability and can increase the instantaneous aperture. OWL can fully reconstruct horizontal and upward-moving showers and so has high sensitivity to UHE neutrinos. New capabilities in inflatable structures optics and silicon photomultipliers can greatly increase photon sensitivity, reducing the energy threshold for n detection or increasing viewed area using a higher orbit. Design trades between the original and optimized OWL missions and the enhanced science capabilities are described.
Starship Sails Propelled by Cost-Optimized Directed Energy
NASA Astrophysics Data System (ADS)
Benford, J.
Microwave and laser-propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (`beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, beryllium, graphene, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at today's costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic. Cost of interstellar sailships is very high, driven by current costs for radiation source, antennas and especially electrical power. The high speeds necessary for fast interstellar missions make the operating cost exceed the capital cost. Such sailcraft will not be flown until the cost of electrical power in space is reduced orders of magnitude below current levels.
Application of identifying transmission spheres for spherical surface testing
NASA Astrophysics Data System (ADS)
Han, Christopher B.; Ye, Xin; Li, Xueyuan; Wang, Quanzhao; Tang, Shouhong; Han, Sen
2017-06-01
We developed a new application on Microsoft Foundation Classes (MFC) to identify correct transmission spheres (TS) for Spherical Surface Testing (SST). Spherical surfaces are important optical surfaces, and the wide application and high production rate of spherical surfaces necessitates an accurate and highly reliable measuring device. A Fizeau Interferometer is an appropriate tool for SST due to its subnanometer accuracy. It measures the contour of a spherical surface using a common path, which is insensitive to the surrounding circumstances. The Fizeau Interferometer transmits a wide laser beam, creating interference fringes from re-converging light from the transmission sphere and the test surface. To make a successful measurement, the application calculates and determines the appropriate transmission sphere for the test surface. There are 3 main inputs from the test surfaces that are utilized to determine the optimal sizes and F-numbers of the transmission spheres: (1) the curvatures (concave or convex), (2) the Radii of Curvature (ROC), and (3) the aperture sizes. The application will firstly calculate the F-numbers (i.e. ROC divided by aperture) of the test surface, secondly determine the correct aperture size of a convex surface, thirdly verify that the ROC of the test surface must be shorter than the reference surface's ROC of the transmission sphere, and lastly calculate the percentage of area that the test surface will be measured. However, the amount of interferometers and transmission spheres should be optimized when measuring large spherical surfaces to avoid requiring a large amount of interferometers and transmission spheres for each test surface. Current measuring practices involve tedious and potentially inaccurate calculations. This smart application eliminates human calculation errors, optimizes the selection of transmission spheres (including the least number required) and interferometer sizes, and increases efficiency.
Azuma, Takashi; Ogihara, Makoto; Kubota, Jun; Sasaki, Akira; Umemura, Shin-ichiro; Furuhata, Hiroshi
2010-05-01
A new ultrasound array transducer with two different optimal frequencies designed for diagnosis and therapy integration in Doppler imaging-based transcranial sonothrombolysis is described. Previous studies have shown that respective frequencies around 0.5 and 2 MHz are suitable for sonothrombolysis and Doppler imaging. Because of the small acoustic window available for transcranial ultrasound exposure, it is highly desirable that both therapeutic and diagnostic ultrasounds pass through the same aperture with high efficiency. To achieve such a dual-frequency array transducer, we propose a bilaminar array, having an array for imaging and another for therapy, with a frequency selective isolation layer between the two arrays. The function of this layer is to isolate the imaging array from the therapy array at 2 MHz without disturbing the 0.5-MHz ultrasound transmission. In this study, we first used a 1-D model including two lead zirconate titanate (PZT) layers separated by an isolation layer for intuitive understanding of the phenomena. After that, we optimized the acoustic impedance and thickness of the isolation layer by analyzing pulse propagation in a 2-D model by conducting a numerical simulation with commercially available software. The optimal acoustic impedance and thickness are 3 to 4 MRayI and lambda/10, respectively. On the basis of the optimization, a prototype array transducer was fabricated, and the spatial resolutions of the Doppler images it obtained were found to be practically the same as those obtained through conventional imaging array transducers.
A Novel, Real-Time, In Vivo Mouse Retinal Imaging System.
Butler, Mark C; Sullivan, Jack M
2015-11-01
To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies.
Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.
2010-07-13
An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.
Single-mode VCSEL operation via photocurrent feedback
NASA Astrophysics Data System (ADS)
Riyopoulos, Spilios
1999-04-01
On-axis channeling through the use of photoactive layers in VCSEL cavities is proposed to counteract hole burning and mode switching. The photoactive layers act as variable resistivity screens whose radial `aperture' is controlled by the light itself. It is numerically demonstrated that absorption of a small fraction of the light intensity suffices for significant on axis current peaking and single mode operation at currents many times threshold, with minimum efficiency loss and optical mode distortion. Fabrication is implemented during the molecular beam epitaxy phase without wafer post processing, as for oxide apertures.
Smoothing-Based Relative Navigation and Coded Aperture Imaging
NASA Technical Reports Server (NTRS)
Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher
2017-01-01
This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.
Erdoğan, Murat Faik; Demir, Özgür; Ersoy, Reyhan Ünlü; Gül, Kamile; Aydoğan, Berna İmge; Üç, Ziynet Alphan; Mete, Türkan; Ertek, Sibel; Ünlütürk, Uğur; Çakır, Bekir; Aral, Yalçın; Güler, Serdar; Güllü, Sevim; Çorapçıoğlu, Demet; Dağdelen, Selçuk; Erdoğan, Gürbüz
2016-01-01
Background The optimal therapeutic choice for Graves' hyperthyroidism in the presence of moderate-severe Graves' orbitopathy (GO) remains controversial. Objectives We aimed to compare GO course in patients with moderate-severe GO treated with early total thyroidectomy (TTx) versus antithyroid drug (ATD) regimens, in a prospective, randomized manner. Methods Forty-two patients with moderate-severe GO were enrolled. A total of 4.5 g of pulse corticosteroids were given intravenously to all patients before randomization. Patients in the first group were given TTx, whereas patients in the second group were treated with ATDs. TSH was kept between 0.4 and 1 mIU/l. The clinical course of GO was evaluated with proptosis, lid aperture, clinical activity score (CAS), and diplopia. Results Eighteen and 24 patients were randomized to the TTx and ATD groups, respectively. Thyroid autoantibodies decreased significantly, and there were significant improvements in proptosis, lid aperture, and CAS in the TTx group. While in the ATD group the decrement in thyroid autoantibodies was not significant, there were significant improvements in proptosis and CAS. When the TTx group was compared with the ATD group, anti-TPO, anti-Tg, and TSH-receptor antibodies were significantly decreased in the TTx group (p < 0.01), but there was no significant difference with respect to proptosis, lid aperture, CAS, and diplopia between the two groups during a median (min.-max.) follow-up period of 60 months (36-72). Conclusion Although no definitive conclusions could be drawn from the study, mainly due to limited power, early TTx and the ATD treatment regimens, followed by intravenous pulse corticosteroid therapy, seemed to be equally effective on the course of GO in this relatively small group of patients with moderate-severe GO during a median (min.-max.) follow-up period of 60 months (36-72). PMID:27493884
Erdoğan, Murat Faik; Demir, Özgür; Ersoy, Reyhan Ünlü; Gül, Kamile; Aydoğan, Berna İmge; Üç, Ziynet Alphan; Mete, Türkan; Ertek, Sibel; Ünlütürk, Uğur; Çakır, Bekir; Aral, Yalçın; Güler, Serdar; Güllü, Sevim; Çorapçıoğlu, Demet; Dağdelen, Selçuk; Erdoğan, Gürbüz
2016-07-01
The optimal therapeutic choice for Graves' hyperthyroidism in the presence of moderate-severe Graves' orbitopathy (GO) remains controversial. We aimed to compare GO course in patients with moderate-severe GO treated with early total thyroidectomy (TTx) versus antithyroid drug (ATD) regimens, in a prospective, randomized manner. Forty-two patients with moderate-severe GO were enrolled. A total of 4.5 g of pulse corticosteroids were given intravenously to all patients before randomization. Patients in the first group were given TTx, whereas patients in the second group were treated with ATDs. TSH was kept between 0.4 and 1 mIU/l. The clinical course of GO was evaluated with proptosis, lid aperture, clinical activity score (CAS), and diplopia. Eighteen and 24 patients were randomized to the TTx and ATD groups, respectively. Thyroid autoantibodies decreased significantly, and there were significant improvements in proptosis, lid aperture, and CAS in the TTx group. While in the ATD group the decrement in thyroid autoantibodies was not significant, there were significant improvements in proptosis and CAS. When the TTx group was compared with the ATD group, anti-TPO, anti-Tg, and TSH-receptor antibodies were significantly decreased in the TTx group (p < 0.01), but there was no significant difference with respect to proptosis, lid aperture, CAS, and diplopia between the two groups during a median (min.-max.) follow-up period of 60 months (36-72). Although no definitive conclusions could be drawn from the study, mainly due to limited power, early TTx and the ATD treatment regimens, followed by intravenous pulse corticosteroid therapy, seemed to be equally effective on the course of GO in this relatively small group of patients with moderate-severe GO during a median (min.-max.) follow-up period of 60 months (36-72).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xiaobiao; Safranek, James
2014-09-01
Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.
Lidar signal-to-noise ratio improvements: Considerations and techniques
NASA Astrophysics Data System (ADS)
Hassebo, Yasser Y.
The primary objective of this study is to improve lidar signal-to-noise ratio (SNR) and hence extend attainable lidar ranges through reduction of the sky background noise (BGP), which dominates other sources of noise in daytime operations. This is particularly important for Raman lidar techniques where the Raman backscattered signal of interest is relatively weak compared with the elastic backscatter lidars. Two approaches for reduction of sky background noise are considered: (1) Improvements in lidar SNR by optimization of the design of the lidar receiver were examined by a series of simulations. This part of the research concentrated on biaxial lidar systems, where overlap between laser beam and receiver field of view (FOV) is an important aspect of noise considerations. The first optimized design evolved is a wedge shaped aperture. While this design has the virtue of greatly reducing background light, it is difficult to implement practically, requiring both changes in area and position with lidar range. A second more practical approach, which preserves some of the advantages of the wedge design, was also evolved. This uses a smaller area circular aperture optimally located in the image plane for desired ranges. Simulated numerical results for a biaxial lidar have shown that the best receiver parameters selection is one using a small circular aperture (field stop) with a small telescope focal length f, to ensure the minimum FOV that accepts all return signals over the entire lidar range while at the same time minimizing detected BGP and hence maximizing lidar SNR and attainable lidar ranges. The improvement in lidar SNR was up to 18%. (2) A polarization selection technique was implemented to reduce sky background signal for linearly polarized monostatic elastic backscatter lidar measurements. The technique takes advantage of naturally occurring polarization properties in scattered sky light, and then ensures that both the lidar transmitter and receiver track and minimize detected sky background noise while maintaining maximum lidar signal throughput. Measurements, carried at 532 nm, show as much as a factor of 10 improvement in SNR and the attainable lidar range up to 34% over conventional un-polarized schemes. For vertically pointing lidars, the largest improvements are limited to the early morning and late afternoon hours, while for lidars scanning azimuthally and in elevation at angles other than vertical, significant improvements are achievable over more extended time periods. Observed changes in SNR improvements were also related to relative humidity and modification of underlying aerosol microphysics. A second, distinct objective of this research was to utilize multiwavelength lidar techniques to separate plume and cloud particles. Choice of the study location and time for this work was driven mainly by the availability of satellite data collected by NASA INTEX-NA and NOAA NEAQS experiment over New York City on July 21, 2004 in support of MODIS imagery. The lidar results identify smoke plumes over New York City and validate the plume source origin location using NOAA-HYSPLIT back trajectory analysis. Surface measurements, at the time, from in-situ particle counters are presented and show no enhanced PM2.5 loading. This result is supported by lidar measurements, which confirm that nearly all of the aerosol plumes are located above the normal aerosol boundary layer showing that satellite measurements are often incomplete and are not sufficient for assessing surface air quality.
Ureba, A; Salguero, F J; Barbeiro, A R; Jimenez-Ortega, E; Baeza, J A; Miras, H; Linares, R; Perucha, M; Leal, A
2014-08-01
The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called "biophysical" map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast irradiation case (Case II) solved with photon and electron modulated beams (IMRT + MERT); and a prostatic bed case (Case III) with a pronounced concave-shaped PTV by using volumetric modulated arc therapy. In the three cases, the required target prescription doses and constraints on organs at risk were fulfilled in a short enough time to allow routine clinical implementation. The quality assurance protocol followed to check CARMEN system showed a high agreement with the experimental measurements. A Monte Carlo treatment planning model exclusively based on maps performed from patient imaging data has been presented. The sequencing of these maps allows obtaining deliverable apertures which are weighted for modulation under a linear programming formulation. The model is able to solve complex radiotherapy treatments with high accuracy in an efficient computation time.
Aperture effects in squid jet propulsion.
Staaf, Danna J; Gilly, William F; Denny, Mark W
2014-05-01
Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.
Collimator of multiple plates with axially aligned identical random arrays of apertures
NASA Technical Reports Server (NTRS)
Hoover, R. B.; Underwood, J. H. (Inventor)
1973-01-01
A collimator is disclosed for examining the spatial location of distant sources of radiation and for imaging by projection, small, near sources of radiation. The collimator consists of a plurality of plates, all of which are pierced with an identical random array of apertures. The plates are mounted perpendicular to a common axis, with like apertures on consecutive plates axially aligned so as to form radiation channels parallel to the common axis. For near sources, the collimator is interposed between the source and a radiation detector and is translated perpendicular to the common axis so as to project radiation traveling parallel to the common axis incident to the detector. For far sources the collimator is scanned by rotating it in elevation and azimuth with a detector to determine the angular distribution of the radiation from the source.
NASA Astrophysics Data System (ADS)
Langford, Z. L.; Kumar, J.; Hoffman, F. M.
2015-12-01
Observations indicate that over the past several decades, landscape processes in the Arctic have been changing or intensifying. A dynamic Arctic landscape has the potential to alter ecosystems across a broad range of scales. Accurate characterization is useful to understand the properties and organization of the landscape, optimal sampling network design, measurement and process upscaling and to establish a landscape-based framework for multi-scale modeling of ecosystem processes. This study seeks to delineate the landscape at Seward Peninsula of Alaska into ecoregions using large volumes (terabytes) of high spatial resolution satellite remote-sensing data. Defining high-resolution ecoregion boundaries is difficult because many ecosystem processes in Arctic ecosystems occur at small local to regional scales, which are often resolved in by coarse resolution satellites (e.g., MODIS). We seek to use data-fusion techniques and data analytics algorithms applied to Phased Array type L-band Synthetic Aperture Radar (PALSAR), Interferometric Synthetic Aperture Radar (IFSAR), Satellite for Observation of Earth (SPOT), WorldView-2, WorldView-3, and QuickBird-2 to develop high-resolution (˜5m) ecoregion maps for multiple time periods. Traditional analysis methods and algorithms are insufficient for analyzing and synthesizing such large geospatial data sets, and those algorithms rarely scale out onto large distributed- memory parallel computer systems. We seek to develop computationally efficient algorithms and techniques using high-performance computing for characterization of Arctic landscapes. We will apply a variety of data analytics algorithms, such as cluster analysis, complex object-based image analysis (COBIA), and neural networks. We also propose to use representativeness analysis within the Seward Peninsula domain to determine optimal sampling locations for fine-scale measurements. This methodology should provide an initial framework for analyzing dynamic landscape trends in Arctic ecosystems, such as shrubification and disturbances, and integration of ecoregions into multi-scale models.
Grimaldi, Francesco Maria (1618-63)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Italian astronomer and optician, born in Bologna, became a Jesuit. Prepared a map of the Moon that Riccioli used to assign the currently used names to its principal features. Discovered diffraction of light at small apertures....
Vehicle Counting and Moving Direction Identification Based on Small-Aperture Microphone Array.
Zu, Xingshui; Zhang, Shaojie; Guo, Feng; Zhao, Qin; Zhang, Xin; You, Xing; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing
2017-05-10
The varying trend of a moving vehicle's angles provides much important intelligence for an unattended ground sensor (UGS) monitoring system. The present study investigates the capabilities of a small-aperture microphone array (SAMA) based system to identify the number and moving direction of vehicles travelling on a previously established route. In this paper, a SAMA-based acoustic monitoring system, including the system hardware architecture and algorithm mechanism, is designed as a single node sensor for the application of UGS. The algorithm is built on the varying trend of a vehicle's bearing angles around the closest point of approach (CPA). We demonstrate the effectiveness of our proposed method with our designed SAMA-based monitoring system in various experimental sites. The experimental results in harsh conditions validate the usefulness of our proposed UGS monitoring system.
Design of an Acoustic Target Intrusion Detection System Based on Small-Aperture Microphone Array.
Zu, Xingshui; Guo, Feng; Huang, Jingchang; Zhao, Qin; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing
2017-03-04
Automated surveillance of remote locations in a wireless sensor network is dominated by the detection algorithm because actual intrusions in such locations are a rare event. Therefore, a detection method with low power consumption is crucial for persistent surveillance to ensure longevity of the sensor networks. A simple and effective two-stage algorithm composed of energy detector (ED) and delay detector (DD) with all its operations in time-domain using small-aperture microphone array (SAMA) is proposed. The algorithm analyzes the quite different velocities between wind noise and sound waves to improve the detection capability of ED in the surveillance area. Experiments in four different fields with three types of vehicles show that the algorithm is robust to wind noise and the probability of detection and false alarm are 96.67% and 2.857%, respectively.
NASA Astrophysics Data System (ADS)
Scott, R.
On-Orbit-Servicing (OOS) in Geostationary Equatorial Orbit (GEO) is likely to become a space mission reality provoking new problems for the optical space surveillance community. OOS’ close-proximity flight of servicer and client satellites with separations less than 1 kilometer in GEO challenge the metric measurement capabilities of medium and small aperture space surveillance instruments. This paper describes an OOS monitoring technique based on Cross-Spectrum speckle interferometry to compensate for atmospheric turbulence and measure the OOS satellites’ differential relative position. Cross-Spectrum speckle interferometry, an astronomical technique developed to measure the astrometric positions of binary stars, was adapted to the geostationary OOS problem and was tested using Sloan i’ observations of co-located geostationary satellites. Medium (1.6m) and small (0.35m) aperture telescopes were used to observe these satellites undergoing optical conjunctions where their apparent line-of-sight separation narrowed within 5 arcseconds. During the initial development of the Cross-Spectrum approach some weaknesses were identified where particle strikes, faint background stars, anomalous fringe orientation angles and high relative angular rates corrupt the relative position measurement process. In this paper, newly adjusted compensation techniques to remedy these issues are described and the data is reprocessed. The Cross-Spectrum’s performance is shown to work well on closely-spaced GEO satellites with separations less than 3 arcseconds and evidence is shown suggesting the technique can measure satellite separations within 1.8 arcseconds.
NASA Astrophysics Data System (ADS)
Chaput, J.; Campillo, M.; Aster, R. C.; Roux, P.; Kyle, P. R.; Knox, H.; Czoski, P.
2015-02-01
We examine seismic coda from an unusually dense deployment of over 100 short-period and broadband seismographs in the summit region of Mount Erebus volcano on a network with an aperture of approximately 5 km. We investigate the energy-partitioning properties of the seismic wavefield generated by thousands of small icequake sources originating on the upper volcano and use them to estimate Green's functions via coda cross correlation. Emergent coda seismograms suggest that this locale should be particularly amenable to such methods. Using a small aperture subarray, we find that modal energy partition between S and P wave energy between ˜1 and 4 Hz occurs in just a few seconds after event onset and persists for tens of seconds. Spatially averaged correlograms display clear body and surface waves that span the full aperture of the array. We test for stable bidirectional Green's function recovery and note that good symmetry can be achieved at this site even with a geographically skewed distribution of sources. We estimate scattering and absorption mean free path lengths and find a power law decrease in mean free path between 1.5 and 3.3 Hz that suggests a quasi-Rayleigh or Rayleigh-Gans scattering situation. Finally, we demonstrate the existence of coherent backscattering (weak localization) for this coda wavefield. The remarkable properties of scattered seismic wavefields in the vicinity of active volcanoes suggests that the abundant small icequake sources may be used for illumination where temporal monitoring of such dynamic structures is concerned.
Du, Hang; Song, Ci; Li, Shengyi; Xu, Mingjin; Peng, Xiaoqiang
2017-05-20
In the process of computer controlled optical surfacing (CCOS), the uncontrollable rolled edge restricts further improvements of the machining accuracy and efficiency. Two reasons are responsible for the rolled edge problem during small tool polishing. One is that the edge areas cannot be processed because of the orbit movement. The other is that changing the tool influence function (TIF) is difficult to compensate for in algorithms, since pressure step appears in the local pressure distribution at the surface edge. In this paper, an acentric tool influence function (A-TIF) is designed to remove the rolled edge after CCOS polishing. The model of A-TIF is analyzed theoretically, and a control point translation dwell time algorithm is used to verify that the full aperture of the workpiece can be covered by the peak removal point of the tool influence functions. Thus, surface residual error in the full aperture can be effectively corrected. Finally, the experiments are carried out. Two fused silica glass samples of 100 mm×100 mm are polished by traditional CCOS and the A-TIF method, respectively. The rolled edge was clearly produced in the sample polished by the traditional CCOS, while residual errors do not show this problem the sample polished by the A-TIF method. Therefore, the rolled edge caused by the traditional CCOS process is successfully suppressed during the A-TIF process. The ability to suppress the rolled edge of the designed A-TIF has been confirmed.
Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Imaging.
Lee, Junsu; Jang, Jihun; Chang, Jin Ho
2017-03-01
In intravascular ultrasound (IVUS) imaging, a transducer is inserted into a blood vessel and rotated to obtain image data. For this purpose, the transducer aperture is typically less than 0.5 mm in diameter, which causes natural focusing to occur in the imaging depth ranging from 1 to 5 mm. Due to the small aperture, however, it is not viable to conduct geometric focusing in order to enhance the spatial resolution of IVUS images. Furthermore, this hampers narrowing the slice thickness of a cross-sectional scan plane in the imaging depth, which leads to lowering spatial and contrast resolutions of IVUS images. To solve this problem, we propose an oblong-shaped-focused transducer for IVUS imaging. Unlike the conventional IVUS transducers with either a circular or a square flat aperture, the proposed transducer has an oblong aperture of which long side is positioned along a blood vessel. This unique configuration makes it possible to conduct geometric focusing at a desired depth in the elevation direction. In this study, furthermore, it is demonstrated that a spherically shaped aperture in both lateral and elevation directions also improves lateral resolution, compared to the conventional flat aperture. To ascertain this, the conventional and the proposed IVUS transducers were designed and fabricated to evaluate and to compare their imaging performances through wire phantom and tissue-mimicking phantom experiments. For the proposed 50-MHz IVUS transducer, a PZT piece of 0.5 × 1.0 mm 2 was spherically shaped for elevation focus at 3 mm by using the conventional press-focusing technique whereas the conventional one has a flat aperture of 0.5 × 0.5 mm 2 . The experimental results demonstrated that the proposed IVUS transducer is capable of improving spatial and contrast resolutions of IVUS images.
Catalog of Window Taper Functions for Sidelobe Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.
Window taper functions of finite apertures are well-known to control undesirable sidelobes, albeit with performance trades. A plethora of various taper functions have been developed over the years to achieve various optimizations. We herein catalog a number of window functions, and com pare principal characteristics.
Smith, Blake; Gelover, Edgar; Moignier, Alexandra; Wang, Dongxu; Flynn, Ryan T.; Lin, Liyong; Kirk, Maura; Solberg, Tim; Hyer, Daniel E.
2016-01-01
Purpose: To quantitatively assess the advantages of energy-layer specific dynamic collimation system (DCS) versus a per-field fixed aperture for spot scanning proton therapy (SSPT). Methods: Five brain cancer patients previously planned and treated with SSPT were replanned using an in-house treatment planning system capable of modeling collimated and uncollimated proton beamlets. The uncollimated plans, which served as a baseline for comparison, reproduced the target coverage and organ-at-risk sparing of the clinically delivered plans. The collimator opening for the fixed aperture-based plans was determined from the combined cross sections of the target in the beam’s eye view over all energy layers which included an additional margin equivalent to the maximum beamlet displacement for the respective energy of that energy layer. The DCS-based plans were created by selecting appropriate collimator positions for each row of beam spots during a Raster-style scanning pattern which were optimized to maximize the dose contributions to the target and limited the dose delivered to adjacent normal tissue. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring surrounding the target, averaged 13.65% (range: 11.8%–16.9%) and 5.18% (2.9%–7.1%) for the DCS and fixed aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 21.35% (19.4%–22.6%) and 8.38% (4.7%–12.0%) for the DCS and fixed aperture plans, respectively. Conclusions: The ability of the DCS to provide collimation to each energy layer yielded better conformity in comparison to fixed aperture plans. PMID:27487886
Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.
Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan
2016-12-01
The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.
Eye Size and Set in Small-Bodied Fossil Primates: A Three-Dimensional Method.
Rosenberger, Alfred L; Smith, Tim D; DeLeon, Valerie B; Burrows, Anne M; Schenck, Robert; Halenar, Lauren B
2016-12-01
We introduce a new method to geometrically reconstruct eye volume and placement in small-bodied primates based on the three-dimensional contour of the intraorbital surface. We validate it using seven species of living primates, with dry skulls and wet dissections, and test its application on seven species of Paleogene fossils of interest. The method performs well even when the orbit is damaged and incomplete, lacking the postorbital bar and represented only by the orbital floor. Eye volume is an important quantity for anatomic and metabolic reasons, which due to differences in eye set, or position within (or outside) the bony orbit, can be underestimated in living and fossil forms when calculated from aperture diameter. Our Ectopic Index quantifies how much the globe's volume protrudes anteriorly from the aperture. Lemur, Notharctus and Rooneyia resemble anthropoids, with deeply recessed eyes protruding 11%-13%. Galago and Tarsius are the other extreme, at 47%-56%. We argue that a laterally oriented aperture has little to do with line-of-sight in euprimates, as large ectopic eyes can position the cornea to enable a directly forward viewing axis, and soft tissue positions the eyes facing forward in megachiropteran bats, which have unenclosed, open eye sockets. The size and set of virtual eyes reconstructed from 3D cranial models confirm that eyes were large to hypertrophic in Hemiacodon, Necrolemur, Microchoerus, Pseudoloris and Shoshonius, but eye size in Rooneyia may have been underestimated by measuring the aperture, as in Aotus. Anat Rec, 299:1671-1689, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moteabbed, M; Depauw, N; Kooy, H
Purpose: To investigate the dosimetric benefits of pencil beam scanning (PBS) compared with passive scattered (PS) proton therapy for treatment of pediatric head&neck patients as a function of the PBS spot size and explore the advantages of using apertures in PBS. Methods: Ten pediatric patients with head&neck cancers treated by PS proton therapy at our institution were retrospectively selected. The histologies included rhabdomyosarcoma, ependymoma, astrocytoma, craniopharyngioma and germinoma. The prescribed dose ranged from 36 to 54 Gy(RBE). Five PBS plans were created for each patient using variable spot size (average sigma at isocenter) and choice of beam specific apertures: (1)more » 10mm spots, (2) 10mm spots with apertures, (3) 6mm spots, (4) 6mm spots with apertures, and (5) 3mm spots. The plans were optimized for intensity modulated proton therapy (IMPT) with no single beam uniformity constraints. Dose volume indices as well as equivalent uniform dose (EUD) were compared between PS and PBS plans. Results: Although target coverage was clinically adequate for all cases, the plans with largest (10mm) spots provide inferior quality compared with PS in terms of dose to organs-at-risk (OAR). However, adding apertures to these plans ensured lower OAR dose than PS. The average EUD difference between PBS and PS plans over all patients and organs at risk were (1) 2.5%, (2) −5.1%, (3) -5%, (4) −7.8%, and (5) −9.5%. As the spot size decreased, more conformal plans were achieved that offered similar target coverage but lower dose to the neighboring healthy organs, while alleviating the need for using apertures. Conclusion: The application of PBS does not always translate to better plan qualities compared to PS depending on the available beam spot size. We recommend that institutions with spot size larger than ∼6mm at isocenter consider using apertures to guarantee clinically comparable or superior dosimetric efficacy to PS treatments.« less
Multiscale modeling for SiO2 atomic layer deposition for high-aspect-ratio hole patterns
NASA Astrophysics Data System (ADS)
Miyano, Yumiko; Narasaki, Ryota; Ichikawa, Takashi; Fukumoto, Atsushi; Aiso, Fumiki; Tamaoki, Naoki
2018-06-01
A multiscale simulation model is developed for optimizing the parameters of SiO2 plasma-enhanced atomic layer deposition of high-aspect-ratio hole patterns in three-dimensional (3D) stacked memory. This model takes into account the diffusion of a precursor in a reactor, that in holes, and the adsorption onto the wafer. It is found that the change in the aperture ratio of the holes on the wafer affects the concentration of the precursor near the top of the wafer surface, hence the deposition profile in the hole. The simulation results reproduced well the experimental results of the deposition thickness for the various hole aperture ratios. By this multiscale simulation, we can predict the deposition profile in a high-aspect-ratio hole pattern in 3D stacked memory. The atomic layer deposition parameters for conformal deposition such as precursor feeding time and partial pressure of precursor for wafers with various hole aperture ratios can be estimated.
Numerical simulations of imaging satellites with optical interferometry
NASA Astrophysics Data System (ADS)
Ding, Yuanyuan; Wang, Chaoyan; Chen, Zhendong
2015-08-01
Optical interferometry imaging system, which is composed of multiple sub-apertures, is a type of sensor that can break through the aperture limit and realize the high resolution imaging. This technique can be utilized to precisely measure the shapes, sizes and position of astronomical objects and satellites, it also can realize to space exploration and space debris, satellite monitoring and survey. Fizeau-Type optical aperture synthesis telescope has the advantage of short baselines, common mount and multiple sub-apertures, so it is feasible for instantaneous direct imaging through focal plane combination.Since 2002, the researchers of Shanghai Astronomical Observatory have developed the study of optical interferometry technique. For array configurations, there are two optimal array configurations proposed instead of the symmetrical circular distribution: the asymmetrical circular distribution and the Y-type distribution. On this basis, two kinds of structure were proposed based on Fizeau interferometric telescope. One is Y-type independent sub-aperture telescope, the other one is segmented mirrors telescope with common secondary mirror.In this paper, we will give the description of interferometric telescope and image acquisition. Then we will mainly concerned the simulations of image restoration based on Y-type telescope and segmented mirrors telescope. The Richardson-Lucy (RL) method, Winner method and the Ordered Subsets Expectation Maximization (OS-EM) method are studied in this paper. We will analyze the influence of different stop rules too. At the last of the paper, we will present the reconstruction results of images of some satellites.
A surgical confocal microlaparoscope for real-time optical biopsies
NASA Astrophysics Data System (ADS)
Tanbakuchi, Anthony Amir
The first real-time fluorescence confocal microlaparoscope has been developed that provides instant in vivo cellular images, comparable to those provided by histology, through a nondestructive procedure. The device includes an integrated contrast agent delivery mechanism and a computerized depth scan system. The instrument uses a fiber bundle to relay the image plane of a slit-scan confocal microlaparoscope into tissue. The confocal laparoscope was used to image the ovaries of twenty-one patients in vivo using fluorescein sodium and acridine orange as the fluorescent contrast agents. The results indicate that the device is safe and functions as designed. A Monte Carlo model was developed to characterize the system performance in a scattering media representative of human tissues. The results indicate that a slit aperture has limited ability to image below the surface of tissue. In contrast, the results show that multi-pinhole apertures such as a Nipkow disk or a linear pinhole array can achieve nearly the same depth performance as a single pinhole aperture. The model was used to determine the optimal aperture spacing for the multi-pinhole apertures. The confocal microlaparoscope represents a new type of in vivo imaging device. With its ability to image cellular details in real time, it has the potential to aid in the early diagnosis of cancer. Initially, the device may be used to locate unusual regions for guided biopsies. In the long term, the device may be able to supplant traditional biopsies and allow the surgeon to identify early stage cancer in vivo.
Holographic metasurface systems for beam-forming and imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Smith, David R.
2016-09-01
Metamaterials offer an alternative perspective for the design of new materials and devices. The advantage of the metamaterial description is that certain device solutions can more easily be recognized. Here, we discuss broadly the impact of the metamaterial design philosophy on quasi-optical apertures based on patterned holographic metasurfaces. In a guided wave format, in which radiating complementary metamaterial irises are patterned on the upper plate of a microstrip or parallel plate waveguide, the reference wave is equivalent to the guided wave and the entire structure becomes a compact, efficient holographic, aperture antenna. We have developed a millimeter-wave imaging system that makes use of a set of complementary metamaterial waveguide panels to form a frequency-diverse aperture. In this context, the metamaterial aperture produces a complex radiation pattern that varies spatially as a function of the driving frequency; a frequency sweep over a selected bandwidth thus illuminates a region of space with a set of distinct radiation patterns. Collecting the returned signal reflected by illuminated objects within the scene, a set of measurements can be made from which an image of the scene can be reconstructed. This imaging application provides a useful example of the introduction, integration and optimization of a metamaterial aperture into a complete system, where all other aspects of the system—including algorithms, calibration, software and electronics—must be tailored for the particulars of the metamaterial component. As metamaterials transition from science to technology, these aspects may prove just as challenging and interesting as the underlying metamaterial components.
Wideband RELAX and wideband CLEAN for aeroacoustic imaging
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Li, Jian; Stoica, Petre; Sheplak, Mark; Nishida, Toshikazu
2004-02-01
Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.
Wideband RELAX and wideband CLEAN for aeroacoustic imaging.
Wang, Yanwei; Li, Jian; Stoica, Petre; Sheplak, Mark; Nishida, Toshikazu
2004-02-01
Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.
NASA Astrophysics Data System (ADS)
Do, Mai Trang; Li, Qinggele; Ledoux-Rak, Isabelle; Lai, Ngoc D.
2013-05-01
We demonstrate a novel and very simple method allowing very easy flexible fabrication of 2D and 3D submicrometric structures. By using a photosensitive polymer (SU8) possessing an ultralow one-photon absorption (LOPA) coefficient at the excition laser wavelength (532 nm) and a high numerical aperture (NA = 1.3, oil immersion) objective lens, various submicrometric structures with feature size as small as 150 nm have been successfully fabricated. We have further investigated the energy accumulation effect in LOPA direct laser writing when the structure lattice constant approaches the diffraction limit. In this case, a proximity correction, i.e., a compensation of the doses between different voxels, was applied, allowing to create uniform and submicrometric structures with a lattice constant as small as 400 nm. As compared to commonly used two-photon absorption microscopy, the LOPA method allows to simplify the experimental setup and also to minimize the photo-damaging or bleaching effect. The idea of using LOPA also opens a new and inexpensive way to optically address 3D structures, namely 3D fluorescence imaging and 3D data storage.
Use of the focusing multi-slit ion optical system at RUssian Diagnostic Injector (RUDI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Listopad, A.; Davydenko, V.; Ivanov, A.
2012-02-15
The upgrade of the diagnostic neutral beam injector RUDI in 2010 was performed to increase the beam density at the focal plane in accordance with the requirements of charge-exchange recombination spectroscopy diagnostics. A new focusing ion-optical system (IOS) with slit beamlets and an enlarged aperture was optimized for 50% higher nominal beam current and reduced angular divergence with respect to the previous multi-aperture IOS version. The upgraded injector provides the beam current up to 3 A, the measured beam divergence in the direction along the slits is 0.35 deg. Additionally, the plasma generator was modified to extend the beam pulsemore » to 8 s.« less
Multifocal interferometric synthetic aperture microscopy
Xu, Yang; Chng, Xiong Kai Benjamin; Adie, Steven G.; Boppart, Stephen A.; Scott Carney, P.
2014-01-01
There is an inherent trade-off between transverse resolution and depth of field (DOF) in optical coherence tomography (OCT) which becomes a limiting factor for certain applications. Multifocal OCT and interferometric synthetic aperture microscopy (ISAM) each provide a distinct solution to the trade-off through modification to the experiment or via post-processing, respectively. In this paper, we have solved the inverse problem of multifocal OCT and present a general algorithm for combining multiple ISAM datasets. Multifocal ISAM (MISAM) uses a regularized combination of the resampled datasets to bring advantages of both multifocal OCT and ISAM to achieve optimal transverse resolution, extended effective DOF and improved signal-to-noise ratio. We present theory, simulation and experimental results. PMID:24977909
using five different instruments, extending from day -11 to day +58 (in this archive all phases are expressed with respect to B-band maximum). In most cases, the spectra were acquired using different . The supernova spectrum was extracted using the variance weighted optimal aperture extraction method
Aperture-free star formation rate of SDSS star-forming galaxies
NASA Astrophysics Data System (ADS)
Duarte Puertas, S.; Vilchez, J. M.; Iglesias-Páramo, J.; Kehrig, C.; Pérez-Montero, E.; Rosales-Ortega, F. F.
2017-03-01
Large area surveys with a high number of galaxies observed have undoubtedly marked a milestone in the understanding of several properties of galaxies, such as star-formation history, morphology, and metallicity. However, in many cases, these surveys provide fluxes from fixed small apertures (e.g. fibre), which cover a scant fraction of the galaxy, compelling us to use aperture corrections to study the global properties of galaxies. In this work, we derive the current total star formation rate (SFR) of Sloan Digital Sky Survey (SDSS) star-forming galaxies, using an empirically based aperture correction of the measured Hα flux for the first time, thus minimising the uncertainties associated with reduced apertures. All the Hα fluxes have been extinction-corrected using the Hα/ Hβ ratio free from aperture effects. The total SFR for 210 000 SDSS star-forming galaxies has been derived applying pure empirical Hα and Hα/ Hβ aperture corrections based on the Calar Alto Legacy Integral Field Area (CALIFA) survey. We find that, on average, the aperture-corrected SFR is 0.65 dex higher than the SDSS fibre-based SFR. The relation between the SFR and stellar mass for SDSS star-forming galaxies (SFR-M⋆) has been obtained, together with its dependence on extinction and Hα equivalent width. We compare our results with those obtained in previous works and examine the behaviour of the derived SFR in six redshift bins, over the redshift range 0.005 ≤ z ≤ 0.22. The SFR-M⋆ sequence derived here is in agreement with selected observational studies based on integral field spectroscopy of individual galaxies as well as with the predictions of recent theoretical models of disc galaxies. A table of the aperture-corrected fluxes and SFR for 210 000 SDSS star-forming galaxies and related relevant data is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A71 Warning, no authors found for 2017A&A...599A..51.
NASA Astrophysics Data System (ADS)
Laher, Russ R.; Gorjian, Varoujan; Rebull, Luisa M.; Masci, Frank J.; Fowler, John W.; Helou, George; Kulkarni, Shrinivas R.; Law, Nicholas M.
2012-07-01
Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It is a graphical user interface (GUI) designed to allow the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. The finely tuned layout of the GUI, along with judicious use of color-coding and alerting, is intended to give maximal user utility and convenience. Simply mouse-clicking on a source in the displayed image will instantly draw a circular or elliptical aperture and sky annulus around the source and will compute the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs with just the push of a button, including image histogram, x and y aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has many functions for customizing the calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, which is accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.
System implications of aperture-shade design for the SIRTF Observatory
NASA Technical Reports Server (NTRS)
Lee, J. H.; Brooks, W. F.; Maa, S.
1987-01-01
The 1-m-aperture Space Infrared Telescope Facility (SIRTF) will operate with a sensitivity limited only by the zodiacal background. This sensitivity requirement places severe restrictions on the amount of stray light which can reach the focal plane from off-axis sources such as the sun or earth limb. In addition, radiation from these sources can degrade the lifetime of the telescope and instrument cryogenic system which is now planned for two years before the first servicing. Since the aperture of the telescope represents a break in the telescope insulation system and is effectively the first element in the optical train, the aperture shade is a key system component. The mass, length, and temperature of the shade should be minimized to reduce system cost while maximizing the telescope lifetime and stray light performance. The independent geometric parameters that characterize an asymmetrical shade for a 600 km, 28 deg orbit were identified, and the system sensitivity to the three most important shade parameters were explored. Despite the higher heat loads compared to previously studied polar orbit missions, the analysis determined that passive radiators of a reasonable size are sufficient to meet the system requirements. An optimized design for the SIRTF mission, based on the sensitivity analysis, is proposed.
Compact electrostatic beam optics for multi-element focused ion beams: simulation and experiments.
Mathew, Jose V; Bhattacharjee, Sudeep
2011-01-01
Electrostatic beam optics for a multi-element focused ion beam (MEFIB) system comprising of a microwave multicusp plasma (ion) source is designed with the help of two widely known and commercially available beam simulation codes: AXCEL-INP and SIMION. The input parameters to the simulations are obtained from experiments carried out in the system. A single and a double Einzel lens system (ELS) with and without beam limiting apertures (S) have been investigated. For a 1 mm beam at the plasma electrode aperture, the rms emittance of the focused ion beam is found to reduce from ∼0.9 mm mrad for single ELS to ∼0.5 mm mrad for a double ELS, when S of 0.5 mm aperture size is employed. The emittance can be further improved to ∼0.1 mm mrad by maintaining S at ground potential, leading to reduction in beam spot size (∼10 μm). The double ELS design is optimized for different electrode geometrical parameters with tolerances of ±1 mm in electrode thickness, electrode aperture, inter electrode distance, and ±1° in electrode angle, providing a robust design. Experimental results obtained with the double ELS for the focused beam current and spot size, agree reasonably well with the simulations.
Missey, M; Dominic, V; Powers, P; Schepler, K L
2000-02-15
We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.
Copernicus observations of a number of galactic X-ray sources
NASA Technical Reports Server (NTRS)
Culhane, J. L.; Mason, K. O.; Sanford, P. W.; White, N. E.
1976-01-01
The Copernicus satellite was launched on 21 August 1972. The main experiment on board is the University of Princeton UV telescope. In addition a cosmic X-ray package of somewhat modest aperture was provided by the Mullard Space Science Laboratory (MSSL) of University College London. Following a brief description of the instrument, a list of galactic sources observed during the year is presented. Although the X-ray detection aperture is small, the ability to point the satellite for long periods of time with high accuracy makes Copernicus an ideal vehicle for the study of variable sources.
Polarizing aperture stereoscopic cinema camera
NASA Astrophysics Data System (ADS)
Lipton, Lenny
2012-03-01
The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor (the size of the standard 35mm frame) with the means to select left and right image information. Even with the added stereoscopic capability the appearance of existing camera bodies will be unaltered.
Polarizing aperture stereoscopic cinema camera
NASA Astrophysics Data System (ADS)
Lipton, Lenny
2012-07-01
The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor, the size of the standard 35 mm frame, with the means to select left and right image information. Even with the added stereoscopic capability, the appearance of existing camera bodies will be unaltered.
Optical manifold for light-emitting diodes
Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver
2008-06-03
An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.
Zhang, Yue; Zou, Huanxin; Luo, Tiancheng; Qin, Xianxiang; Zhou, Shilin; Ji, Kefeng
2016-01-01
The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods. PMID:27754385
Ultra Small Aperture Terminal for Ka-Band SATCOM
NASA Technical Reports Server (NTRS)
Acosta, Roberto; Reinhart, Richard; Lee, Richard; Simons, Rainee
1997-01-01
An ultra small aperture terminal (USAT) at Ka-band frequency has been developed by Lewis Research Center (LeRC) for data rates up to 1.5 Mbps in the transmit mode and 40 Mbps in receive mode. The terminal consists of a 35 cm diameter offset-fed parabolic antenna which is attached to a solid state power amplifier and low noise amplifier. A single down converter is used to convert the Ka-band frequency to 70 MHz intermediate frequency (IF). A variable rate (9.6 Kbps to 10 Mbps) commercial modem with a standard RS-449/RS-232 interface is used to provide point-to-point digital services. The terminal has been demonstrated numerous times using the Advanced Communications Technology Satellite (ACTS) and the 4.5 in Link Evaluation Terminal (LET) in Cleveland. A conceptual design for an advanced terminal has also been developed. This advanced USAT utilizes Microwave Monolithic Integrated Circuit (MMIC) and flat plate array technologies. This terminal will be self contained in a single package which will include a 1 watt solid state amplifier (SSPA), low noise amplifier (LNA) and a modem card located behind the aperture of the array. The advanced USAT will be light weight, transportable, low cost and easy to point to the satellite. This paper will introduce designs for the reflector based and array based USAT's.
Hexagonal Uniformly Redundant Arrays (HURAs) for scintillator based coded aperture neutron imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamage, K.A.A.; Zhou, Q.
2015-07-01
A series of Monte Carlo simulations have been conducted, making use of the EJ-426 neutron scintillator detector, to investigate the potential of using hexagonal uniformly redundant arrays (HURAs) for scintillator based coded aperture neutron imaging. This type of scintillator material has a low sensitivity to gamma rays, therefore, is of particular use in a system with a source that emits both neutrons and gamma rays. The simulations used an AmBe source, neutron images have been produced using different coded-aperture materials (boron- 10, cadmium-113 and gadolinium-157) and location error has also been estimated. In each case the neutron image clearly showsmore » the location of the source with a relatively small location error. Neutron images with high resolution can be easily used to identify and locate nuclear materials precisely in nuclear security and nuclear decommissioning applications. (authors)« less
Medicine, material science and security: the versatility of the coded-aperture approach.
Munro, P R T; Endrizzi, M; Diemoz, P C; Hagen, C K; Szafraniec, M B; Millard, T P; Zapata, C E; Speller, R D; Olivo, A
2014-03-06
The principal limitation to the widespread deployment of X-ray phase imaging in a variety of applications is probably versatility. A versatile X-ray phase imaging system must be able to work with polychromatic and non-microfocus sources (for example, those currently used in medical and industrial applications), have physical dimensions sufficiently large to accommodate samples of interest, be insensitive to environmental disturbances (such as vibrations and temperature variations), require only simple system set-up and maintenance, and be able to perform quantitative imaging. The coded-aperture technique, based upon the edge illumination principle, satisfies each of these criteria. To date, we have applied the technique to mammography, materials science, small-animal imaging, non-destructive testing and security. In this paper, we outline the theory of coded-aperture phase imaging and show an example of how the technique may be applied to imaging samples with a practically important scale.
Design and analysis of a fast, two-mirror soft-x-ray microscope
NASA Technical Reports Server (NTRS)
Shealy, D. L.; Wang, C.; Jiang, W.; Jin, L.; Hoover, R. B.
1992-01-01
During the past several years, a number of investigators have addressed the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft-x-ray applications using multilayer coatings. Some of these systems have demonstrated diffraction limited resolution for small numerical apertures. Rigorously aplanatic, two-aspherical mirror Head microscopes can provide near diffraction limited resolution for very large numerical apertures. The relationships between the numerical aperture, mirror radii and diameters, magnifications, and total system length for Schwarzschild microscope configurations are summarized. Also, an analysis of the characteristics of the Head-Schwarzschild surfaces will be reported. The numerical surface data predicted by the Head equations were fit by a variety of functions and analyzed by conventional optical design codes. Efforts have been made to determine whether current optical substrate and multilayer coating technologies will permit construction of a very fast Head microscope which can provide resolution approaching that of the wavelength of the incident radiation.
From MAD to SAD: The Italian experience for the low-frequency aperture array of SKA1-LOW
NASA Astrophysics Data System (ADS)
Bolli, P.; Pupillo, G.; Virone, G.; Farooqui, M. Z.; Lingua, A.; Mattana, A.; Monari, J.; Murgia, M.; Naldi, G.; Paonessa, F.; Perini, F.; Pluchino, S.; Rusticelli, S.; Schiaffino, M.; Schillirò, F.; Tartarini, G.; Tibaldi, A.
2016-03-01
This paper describes two small aperture array demonstrators called Medicina and Sardinia Array Demonstrators (MAD and SAD, respectively). The objectives of these instruments are to acquire experience and test new technologies for a possible application to the low-frequency aperture array of the low-frequency telescope of the Square Kilometer Array phase 1 (SKA1-LOW). The MAD experience was concluded in 2014, and it turned out to be an important test bench for implementing calibration techniques based on an artificial source mounted in an aerial vehicle. SAD is based on 128 dual-polarized Vivaldi antennas and is 1 order of magnitude larger than MAD. The architecture and the station size of SAD, which is along the construction phase, are more similar to those under evaluation for SKA1-LOW, and therefore, SAD is expected to provide useful hints for SKA1-LOW.
Resonant coupling through a slot to a loaded cylindrical cavity: Experimental results
NASA Astrophysics Data System (ADS)
Norgard, John D.; Sega, Ronald M.
1990-03-01
The effect of cavity geometry on the energy coupled through a slot aperture is investigated through the use of planar mappings of the internal cavity field. A copper cylinder, closed at both ends, is constructed with copper mesh sections incorporated at the ends of the cylinder and in the cylinder wall opposite a thin slot aperture placed in the wall. The frequencies used for testing are 2 to 4 GHz. Internal field mapping is accomplished by placing thin carbon-loaded sheets in the plane of interest and recording the digitized temperature distribution using an infrared scanning system. The sheets are calibrated such that the temperature data is transformed to current densities or electric field strengths. Using several positions for the detection material, a three-dimensional field profile is obtained. The onset of the internal cavity resonance is studied as it is related to the energy coupled through small apertures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbabi, Amir; Horie, Yu; Ball, Alexander J.
2015-05-07
Flat optical devices thinner than a wavelength promise to replace conventional free-space components for wavefront and polarization control. Transmissive flat lenses are particularly interesting for applications in imaging and on-chip optoelectronic integration. Several designs based on plasmonic metasurfaces, high-contrast transmitarrays and gratings have been recently implemented but have not provided a performance comparable to conventional curved lenses. Here we report polarization-insensitive, micron-thick, high-contrast transmitarray micro-lenses with focal spots as small as 0.57 λ. The measured focusing efficiency is up to 82%. A rigorous method for ultrathin lens design, and the trade-off between high efficiency and small spot size (or largemore » numerical aperture) are discussed. The micro-lenses, composed of silicon nano-posts on glass, are fabricated in one lithographic step that could be performed with high-throughput photo or nanoimprint lithography, thus enabling widespread adoption.« less
Design criteria for small coded aperture masks in gamma-ray astronomy
NASA Technical Reports Server (NTRS)
Sembay, S.; Gehrels, Neil
1990-01-01
Most theoretical work on coded aperture masks in X-ray and low-energy gamma-ray astronomy has concentrated on masks with large numbers of elements. For gamma-ray spectrometers in the MeV range, the detector plane usually has only a few discrete elements, so that masks with small numbers of elements are called for. For this case it is feasible to analyze by computer all the possible mask patterns of given dimension to find the ones that best satisfy the desired performance criteria. A particular set of performance criteria for comparing the flux sensitivities, source positioning accuracies and transparencies of different mask patterns is developed. The results of such a computer analysis for masks up to dimension 5 x 5 unit cell are presented and it is concluded that there is a great deal of flexibility in the choice of mask pattern for each dimension.
Update on the KELT Transit Survey: Hot Planets around Hot, Bright Stars
NASA Astrophysics Data System (ADS)
Gaudi, B. Scott; KELT Collaboration
2017-01-01
The KELT Transit Survey consists of a pair of small-aperture, wide-angle automated telescope located at Winer Observatory in Sonoita, Arizona and the South African Astronomical Observatory (SAAO) in Sutherland, South Africa. Together, they are surveying roughly 60% of the sky for transiting planets. By virtue of their small apertures (42 mm) and large fields-of-view (26 degrees x 26 degrees), KELT is most sensitive to hot Jupiters transiting relatively bright (V~8-11), and thus relatively hot stars. Roughly half of the dwarf stars targeted by KELT are hotter than 6250K; such stars pose novel challenges, but also provide unique opportunities. I will provide an update on the most recent companions discovered by KELT, focusing in detail on a few particularly interesting systems. KELT is a joint collaboration between the Ohio State University, Vanderbilt University, and Lehigh University. This work was partially supported by NSF CAREER grant AST-1056524.
Development Of Nonimaging Optics
NASA Astrophysics Data System (ADS)
Winston, Roland
1984-01-01
This paper is concerned with the new field of nonimaging optics. Roughly this may be defined as the collection and redirection of light (or, more generally, electromagnetic radiation) by means of optical systems which do not make use of image formation concepts in their design. A non-trivial example is the compound parabolic concentrator (CPC) invented in 1965 for collecting Cerenkov radiation from large volumes of gas and concentrating it onto the relatively small area of a photomultiplier cathode. This task would, according to conventional optical practice, be performed by a lens or mirror image-forming system of high numerical aperture, but much greater concentration was achieved by a comparatively simple de-vice, the CPC. The key was to abandon the principle of imaging with high numerical aperture and instead to get the collected rays into as small an area as possible without attempting to produce an image.
Revealing small-scale diffracting discontinuities by an optimization inversion algorithm
NASA Astrophysics Data System (ADS)
Yu, Caixia; Zhao, Jingtao; Wang, Yanfei
2017-02-01
Small-scale diffracting geologic discontinuities play a significant role in studying carbonate reservoirs. The seismic responses of them are coded in diffracted/scattered waves. However, compared with reflections, the energy of these valuable diffractions is generally one or even two orders of magnitude weaker. This means that the information of diffractions is strongly masked by reflections in the seismic images. Detecting the small-scale cavities and tiny faults from the deep carbonate reservoirs, mainly over 6 km, poses an even bigger challenge to seismic diffractions, as the signals of seismic surveyed data are weak and have a low signal-to-noise ratio (SNR). After analyzing the mechanism of the Kirchhoff migration method, the residual of prestack diffractions located in the neighborhood of the first Fresnel aperture is found to remain in the image space. Therefore, a strategy for extracting diffractions in the image space is proposed and a regularized L 2-norm model with a smooth constraint to the local slopes is suggested for predicting reflections. According to the focusing conditions of residual diffractions in the image space, two approaches are provided for extracting diffractions. Diffraction extraction can be directly accomplished by subtracting the predicted reflections from seismic imaging data if the residual diffractions are focused. Otherwise, a diffraction velocity analysis will be performed for refocusing residual diffractions. Two synthetic examples and one field application demonstrate the feasibility and efficiency of the two proposed methods in detecting the small-scale geologic scatterers, tiny faults and cavities.
Lupini, A.R.; de Jonge, N.
2012-01-01
Aberration-correction reduces the depth of field in scanning transmission electron microscopy (STEM) and thus allows three-dimensional imaging by depth-sectioning. This imaging mode offers the potential for sub-Ångstrom lateral resolution and nanometer-scale depth sensitivity. For biological samples, which may be many microns across and where high lateral resolution may not always be needed, optimizing the depth resolution even at the expense of lateral resolution may be desired, aiming to image through thick specimens. Although there has been extensive work examining and optimizing the probe formation in two-dimensions, there is less known about the probe shape along the optical axis. Here the probe shape is examined in three-dimensions in an attempt to better understand the depth-resolution in this mode. Examples are presented of how aberrations change the probe shape in three-dimensions, and it is found that off-axial aberrations may need to be considered for focal series of large areas. It is shown that oversized or annular apertures theoretically improve the vertical resolution for 3D imaging of nanoparticles. When imaging nanoparticles of several nanometer size, regular STEM can thereby be optimized such that the vertical full width at half maximum approaches that of the aberration corrected STEM with a standard aperture. PMID:21878149
Murtaza, Ghulam; Mehmood, Shahid; Rasul, Shahid; Murtaza, Imran; Khan, Ehsan Ullah
2018-01-01
The aim of study was to evaluate the dosimetric effect of collimator-rotation on VMAT plan quality, when using limited aperture multileaf collimator of Elekta Beam Modulator™ providing a maximum aperture of 21 cm × 16 cm. The increased use of VMAT technique to deliver IMRT from conventional to very specialized treatments present a challenge in plan optimization. In this study VMAT plans were optimized for prostate and head and neck cancers using Elekta Beam-Modulator TM , whereas previous studies were reported for conventional Linac aperture. VMAT plans for nine of each prostate and head-and-neck cancer patients were produced using the 6 MV photon beam for Elekta-SynergyS ® Linac using Pinnacle 3 treatment planning system. Single arc, dual arc and two combined independent-single arcs were optimized for collimator angles (C) 0°, 90° and 0°-90° (0°-90°; i.e. the first-arc was assigned C0° and second-arc was assigned C90°). A treatment plan comparison was performed among C0°, C90° and C(0°-90°) for single-arc dual-arc and two independent-single-arcs VMAT techniques to evaluate the influence of extreme collimator rotations (C0° and 90°) on VMAT plan quality. Plan evaluation criteria included the target coverage, conformity index, homogeneity index and doses to organs at risk. A 'two-sided student t -test' ( p ≤ 0.05) was used to determine if there was a significant difference in dose volume indices of plans. For both prostate and head-and-neck, plan quality at collimator angles C0° and C(0°-90°) was clinically acceptable for all VMAT-techniques, except SA for head-and-neck. Poorer target coverage, higher normal tissue doses and significant p -values were observed for collimator angle 90° when compared with C0° and C(0°-90°). A collimator rotation of 0° provided significantly better target coverage and sparing of organs-at-risk than a collimator rotation of 90° for all VMAT techniques.
Be Star Monitoring Using a Small Aperture Telescope and Fiber-fed Spectrograph
NASA Astrophysics Data System (ADS)
Austin, S. J.
2003-12-01
Initial results are reported from a Be star monitoring project developed for undergraduate student research involvement at a small undergraduate university using a small aperture telescope and a custom-built fiber-fed spectrograph. Beginning in 2003 June, 0.8 Angstrom/pixel resolution spectra of the H-alpha line for over forty Be stars (Omi Aqr, 4 Aql, V923 Aql, V1294 Aql, Nu 2 Boo, 24 CVn, Gamma Cas, 4 CrB, Beta Cyg, 11 Cyg, 28 Cyg, 55 Cyg, 59 Cyg, 66 Cyg, V2136 Cyg, 1 Del, CX Dra, Omi Her, Sigma Her, 4 Her, 11 Her, 88 Her, 48 Lib, Chi Oph, Zeta Oph, 51 Oph, 66 Oph, Eta PsA, V4024 Sgr, 64 Ser, Delta Sco, QR Vul, 12 Vul, 20 Vul, 25 Vul, HD142184, HD165174, HD169033, HD170235, HD174179, HD181615, HD184279, HD195554, HD201733) have been obtained. H-alpha line profile velocities and evolution are shown. Funding has been provided by the UCA University Research Council and the Arkansas Space Grant Consortium.
AAVSO Solar Observers Worldwide
NASA Astrophysics Data System (ADS)
Howe, R.
2013-06-01
(Abstract only) For visual solar observers there has been no biological change in the "detector" (human eye) - at century scales (eye + visual cortex) does not change much over time. Our capacity to "integrate" seeing distortions is not just simple averaging! The visual cortex plays an essential role, and until recently only the SDO-HMI (Solar Dynamics Observatory, Helioseismic and Magnetic Imager) has had the capacity to detect the smallest sunspots, called pores. Prior to this the eye was superior to photography and CCD. Imaged data are not directly comparable or substitutable to counts by eye, as the effects of sensor/optical resolution and seeing will have a different influence on the resulting sunspot counts for images when compared to the human eye. Also contributing to the complex task of counting sunspots is differentiating between a sunspot (which is usually defined as having a darker center (umbra) and lighter outer ring (penumbra)) and a pore, made even more complex by the conflicting definitions of the word "pore" in the solar context: "pore" can mean a small spot without penumbra or "pore" can mean a random intergranular blemish that is not a true sunspot. The overall agreement is that the smallest spot size is near 2,000 km or ~3 arc sec, (Loughhead, R. E. and Bray, R. J. 1961, Australian J. Phys., 14, 347). Sunspot size is dictated by granulation dynamics rather than spot size (cancellation of convective motion), and by the lifetime of the pore, which averages from 10 to 30 minutes. There is no specific aperture required for AAVSO observers contributing sunspot observations. However, the detection of the smallest spots is influenced by the resolution of the telescope. Two factors to consider are the theoretical optical resolution (unobstructed aperture), Rayleigh criterion: theta = 138 / D(mm), and Dawes criterion: theta = 116 / D(mm) (http://www.telescope-optics.net/telescope_resolution.htm). However, seeing is variable with time; daytime range will be similar for all low-altitude sites, within the range of 1.5 to 3 arc sec, (typically = 2 arc sec equivalent diameter D = 45-90 mm, the typical solar scope = 70 mm aperture). Where large apertures are more affected by size of turbulent eddies ~8-12 cm, small-aperture telescopes reduce these differences, i.e. large aperture is not always beneficial.
NASA Astrophysics Data System (ADS)
Brokešová, Johana; Málek, Jiří
2018-07-01
A new method for representing seismograms by using zero-crossing points is described. This method is based on decomposing a seismogram into a set of quasi-harmonic components and, subsequently, on determining the precise zero-crossing times of these components. An analogous approach can be applied to determine extreme points that represent the zero-crossings of the first time derivative of the quasi-harmonics. Such zero-crossing and/or extreme point seismogram representation can be used successfully to reconstruct single-station seismograms, but the main application is to small-aperture array data analysis to which standard methods cannot be applied. The precise times of the zero-crossing and/or extreme points make it possible to determine precise time differences across the array used to retrieve the parameters of a plane wave propagating across the array, namely, its backazimuth and apparent phase velocity along the Earth's surface. The applicability of this method is demonstrated using two synthetic examples. In the real-data example from the Příbram-Háje array in central Bohemia (Czech Republic) for the Mw 6.4 Crete earthquake of October 12, 2013, this method is used to determine the phase velocity dispersion of both Rayleigh and Love waves. The resulting phase velocities are compared with those obtained by employing the seismic plane-wave rotation-to-translation relations. In this approach, the phase velocity is calculated by obtaining the amplitude ratios between the rotation and translation components. Seismic rotations are derived from the array data, for which the small aperture is not only an advantage but also an applicability condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao Daliang; Earl, Matthew A.; Luan, Shuang
2006-04-15
A new leaf-sequencing approach has been developed that is designed to reduce the number of required beam segments for step-and-shoot intensity modulated radiation therapy (IMRT). This approach to leaf sequencing is called continuous-intensity-map-optimization (CIMO). Using a simulated annealing algorithm, CIMO seeks to minimize differences between the optimized and sequenced intensity maps. Two distinguishing features of the CIMO algorithm are (1) CIMO does not require that each optimized intensity map be clustered into discrete levels and (2) CIMO is not rule-based but rather simultaneously optimizes both the aperture shapes and weights. To test the CIMO algorithm, ten IMRT patient cases weremore » selected (four head-and-neck, two pancreas, two prostate, one brain, and one pelvis). For each case, the optimized intensity maps were extracted from the Pinnacle{sup 3} treatment planning system. The CIMO algorithm was applied, and the optimized aperture shapes and weights were loaded back into Pinnacle. A final dose calculation was performed using Pinnacle's convolution/superposition based dose calculation. On average, the CIMO algorithm provided a 54% reduction in the number of beam segments as compared with Pinnacle's leaf sequencer. The plans sequenced using the CIMO algorithm also provided improved target dose uniformity and a reduced discrepancy between the optimized and sequenced intensity maps. For ten clinical intensity maps, comparisons were performed between the CIMO algorithm and the power-of-two reduction algorithm of Xia and Verhey [Med. Phys. 25(8), 1424-1434 (1998)]. When the constraints of a Varian Millennium multileaf collimator were applied, the CIMO algorithm resulted in a 26% reduction in the number of segments. For an Elekta multileaf collimator, the CIMO algorithm resulted in a 67% reduction in the number of segments. An average leaf sequencing time of less than one minute per beam was observed.« less
CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (IBM PC VERSION)
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1994-01-01
Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.
CWG - MUTUAL COUPLING PROGRAM FOR CIRCULAR WAVEGUIDE-FED APERTURE ARRAY (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1994-01-01
Mutual Coupling Program for Circular Waveguide-fed Aperture Array (CWG) was developed to calculate the electromagnetic interaction between elements of an antenna array of circular apertures with specified aperture field distributions. The field distributions were assumed to be a superposition of the modes which could exist in a circular waveguide. Various external media were included to provide flexibility of use, for example, the flexibility to determine the effects of dielectric covers (i.e., thermal protection system tiles) upon the impedance of aperture type antennas. The impedance and radiation characteristics of planar array antennas depend upon the mutual interaction between all the elements of the array. These interactions are influenced by several parameters (e.g., the array grid geometry, the geometry and excitation of each array element, the medium outside the array, and the internal network feeding the array.) For the class of array antenna whose radiating elements consist of small holes in a flat conducting plate, the electromagnetic problem can be divided into two parts, the internal and the external. In solving the external problem for an array of circular apertures, CWG will compute the mutual interaction between various combinations of circular modal distributions and apertures. CWG computes the mutual coupling between various modes assumed to exist in circular apertures that are located in a flat conducting plane of infinite dimensions. The apertures can radiate into free space, a homogeneous medium, a multilayered region or a reflecting surface. These apertures are assumed to be excited by one or more modes corresponding to the modal distributions in circular waveguides of the same cross sections as the apertures. The apertures may be of different sizes and also of different polarizations. However, the program assumes that each aperture field contains the same modal distributions, and calculates the complex scattering matrix between all mode and aperture combinations. The scattering matrix can then be used to determine the complex modal field amplitudes for each aperture with a specified array excitation. CWG is written in VAX FORTRAN for DEC VAX series computers running VMS (LAR-15236) and IBM PC series and compatible computers running MS-DOS (LAR-15226). It requires 360K of RAM for execution. To compile the source code for the PC version, the NDP Fortran compiler and linker will be required; however, the distribution medium for the PC version of CWG includes a sample MS-DOS executable which was created using NDP Fortran with the -vms compiler option. The standard distribution medium for the PC version of CWG is a 3.5 inch 1.44Mb MS-DOS format diskette. The standard distribution medium for the VAX version of CWG is a 1600 BPI 9track magnetic tape in DEC VAX BACKUP format. The VAX version is also available on a TK50 tape cartridge in DEC VAX BACKUP format. Both machine versions of CWG include an electronic version of the documentation in Microsoft Word for Windows format. CWG was developed in 1993 and is a copyrighted work with all copyright vested in NASA.
A Novel, Real-Time, In Vivo Mouse Retinal Imaging System
Butler, Mark C.; Sullivan, Jack M.
2015-01-01
Purpose To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. Methods Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. Results The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. Conclusions A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies. PMID:26551329
Synthetic aperture imaging in ultrasound calibration
NASA Astrophysics Data System (ADS)
Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.
2014-03-01
Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.
Superior Volumetric Modulated Arc Therapy Planning Solution for Prostate Patients
2013-04-01
co-workers from the University of Chicago for provid- ing them with the reconstruction from their data using their implementation of their ASD-POCS...1245 (2000). 8D. M. Shepard , M. A. Earl, X. A. Li, S. Naqvi, and C. Yu, “Direct aperture optimization: A turnkey solution for step-and-shoot IMRT
Constrained multi-objective optimization of storage ring lattices
NASA Astrophysics Data System (ADS)
Husain, Riyasat; Ghodke, A. D.
2018-03-01
The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.
Bokeh mirror alignment for Cherenkov telescopes
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.
2016-09-01
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alig nment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment on segmented reflectors and demonstrate it on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on La Palma, Spain.
Nonprincipal plane scattering of flat plates and pattern control of horn antennas
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.; Liu, Kefeng
1989-01-01
Using the geometrical theory of diffraction, the traditional method of high frequency scattering analysis, the prediction of the radar cross section of a perfectly conducting, flat, rectangular plate is limited to principal planes. Part A of this report predicts the radar cross section in nonprincipal planes using the method of equivalent currents. This technique is based on an asymptotic end-point reduction of the surface radiation integrals for an infinite wedge and enables nonprincipal plane prediction. The predicted radar cross sections for both horizontal and vertical polarizations are compared to moment method results and experimental data from Arizona State University's anechoic chamber. In part B, a variational calculus approach to the pattern control of the horn antenna is outlined. The approach starts with the optimization of the aperture field distribution so that the control of the radiation pattern in a range of directions can be realized. A control functional is thus formulated. Next, a spectral analysis method is introduced to solve for the eigenfunctions from the extremal condition of the formulated functional. Solutions to the optimized aperture field distribution are then obtained.
Automated aberration correction of arbitrary laser modes in high numerical aperture systems.
Hering, Julian; Waller, Erik H; Von Freymann, Georg
2016-12-12
Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture system. Using circularly polarized light for the measurement and first-guess initial conditions for amplitude and phase of the pupil function our scalar approach outperforms recent algorithms with vectorial corrections. Besides laser lithography also applications like optical tweezers and microscopy might benefit from the method presented.
Optimizing sensor cover energy for directional sensors
NASA Astrophysics Data System (ADS)
Astorino, Annabella; Gaudioso, Manlio; Miglionico, Giovanna
2016-10-01
The Directional Sensors Continuous Coverage Problem (DSCCP) aims at covering a given set of targets in a plane by means of a set of directional sensors. The location of these sensors is known in advance and they are characterized by a discrete set of possible radii and aperture angles. Decisions to be made are about orientation (which in our approach can vary continuously), radius and aperture angle of each sensor. The objective is to get a minimum cost coverage of all targets, if any. We introduce a MINLP formulation of the problem and define a Lagrangian heuristics based on a dual ascent procedure operating on one multiplier at a time. Finally we report the results of the implementation of the method on a set of test problems.
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.
2015-01-01
NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow-on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4-meter and 8-meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars. The paper uses numerous trade studies created during the software development phase of the Arnold Mirror Modeler to illustrate the influences of system specifications on the design space. The future telescopes will require better performance, stability and documented feasibility to meet the hurdles of today's budget and schedules realities. AMTD is developing the tools, but the basic system planning mentality also has to adopt to the requirements of these very large and complex physical structures.
Characteristics of a 30-cm thruster operated with small hole accelerator grid ion optics
NASA Technical Reports Server (NTRS)
Vahrenkamp, R. P.
1976-01-01
Small hole accelerator grid ion optical systems have been tested as a possible means of improving 30-cm ion thruster performance. The effects of small hole grids on the critical aspects of thruster operation including discharge chamber performance, doubly-charged ion concentration, effluent beam characteristics, and plasma properties have been evaluated. In general, small hole accelerator grids are beneficial in improving thruster performance while maintaining low double ion ratios. However, extremely small accelerator aperture diameters tend to degrade beam divergence characteristics. A quantitative discussion of these advantages and disadvantages of small hole accelerator grids, as well as resulting variations in thruster operation characteristics, is presented.
Comparative study of active plasma lenses in high-quality electron accelerator transport lines
NASA Astrophysics Data System (ADS)
van Tilborg, J.; Barber, S. K.; Benedetti, C.; Schroeder, C. B.; Isono, F.; Tsai, H.-E.; Geddes, C. G. R.; Leemans, W. P.
2018-05-01
Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this manuscript, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam. An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.
Comparative study of active plasma lenses in high-quality electron accelerator transport lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Tilborg, J.; Barber, S. K.; Benedetti, C.
Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less
Comparative study of active plasma lenses in high-quality electron accelerator transport lines
van Tilborg, J.; Barber, S. K.; Benedetti, C.; ...
2018-03-13
Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less
Performance of an electron gun for a high-brightness X-ray generator.
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-05-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.
Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent
2016-06-01
When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.
Law, Phillip C F; Miller, Steven M; Ngo, Trung T
2017-11-01
Binocular rivalry (BR) occurs when conflicting images concurrently presented to corresponding retinal locations of each eye stochastically alternate in perception. Anomalies of BR rate have been examined in a range of clinical psychiatric conditions. In particular, slow BR rate has been proposed as an endophenotype for bipolar disorder (BD) to improve power in large-scale genome-wide association studies. Examining the validity of BR rate as a BD endophenotype however requires large-scale datasets (n=1000s to 10,000s), a standardized testing protocol, and optimization of stimulus parameters to maximize separation between BD and healthy groups. Such requirements are indeed relevant to all clinical psychiatric BR studies. Here we address the issue of stimulus optimization by examining the effect of stimulus parameter variation on BR rate and mixed-percept duration (MPD) in healthy individuals. We aimed to identify the stimulus parameters that induced the fastest BR rates with the least MPD. Employing a repeated-measures within-subjects design, 40 healthy adults completed four BR tasks using orthogonally drifting grating stimuli that varied in drift speed and aperture size. Pairwise comparisons were performed to determine modulation of BR rate and MPD by these stimulus parameters, and individual variation of such modulation was also assessed. From amongst the stimulus parameters examined, we found that 8cycles/s drift speed in a 1.5° aperture induced the fastest BR rate without increasing MPD, but that BR rate with this stimulus configuration was not substantially different to BR rate with stimulus parameters we have used in previous studies (i.e., 4cycles/s drift speed in a 1.5° aperture). In addition to contributing to stimulus optimization issues, the findings have implications for Levelt's Proposition IV of binocular rivalry dynamics and individual differences in such dynamics. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Pengpeng; Happersett, Laura; Ravindranath, Bosky; Zelefsky, Michael; Mageras, Gig; Hunt, Margie
2016-01-01
Purpose: Robust detection of implanted fiducials is essential for monitoring intrafractional motion during hypofractionated treatment. The authors developed a plan optimization strategy to ensure clear visibility of implanted fiducials and facilitate 3D localization during volumetric modulated arc therapy (VMAT). Methods: Periodic kilovoltage (kV) images were acquired at 20° gantry intervals and paired with simultaneously acquired 4.4° short arc megavoltage digital tomosynthesis (MV-DTS) to localize three fiducials during VMAT delivery for hypofractionated prostate cancer treatment. Beginning with the original optimized plan, control point segments where fiducials were consistently blocked by multileaf collimator (MLC) within each 4.4° MV-DTS interval were first identified. For each segment, MLC apertures were edited to expose the fiducial that led to the least increase in the cost function. Subsequently, MLC apertures of all control points not involved with fiducial visualization were reoptimized to compensate for plan quality losses and match the original dose–volume histogram. MV dose for each MV-DTS was also kept above 0.4 MU to ensure acceptable image quality. Different imaging (gantry) intervals and visibility margins around fiducials were also evaluated. Results: Fiducials were consistently blocked by the MLC for, on average, 36% of the imaging control points for five hypofractionated prostate VMAT plans but properly exposed after reoptimization. Reoptimization resulted in negligible dosimetric differences compared with original plans and outperformed simple aperture editing: on average, PTV D98 recovered from 87% to 94% of prescription, and PTV dose homogeneity improved from 9% to 7%. Without violating plan objectives and compromising delivery efficiency, the highest imaging frequency and largest margin that can be achieved are a 10° gantry interval, and 15 mm, respectively. Conclusions: VMAT plans can be made to accommodate MV-kV imaging of fiducials. Fiducial visualization rate and workflow efficiency are significantly improved with an automatic modification and reoptimization approach. PMID:27147314
A microbeam slit system for high beam currents
NASA Astrophysics Data System (ADS)
Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.
2015-04-01
A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negres, Raluca A.; Carr, Christopher W.; Laurence, Ted A.
2016-08-01
Here, we describe a damage testing system and its use in investigating laser-induced optical damage initiated by both intrinsic and extrinsic precursors on multilayer dielectric coatings suitable for use in high-energy, large-aperture petawatt-class lasers. We employ small-area damage test methodologies to evaluate the intrinsic damage resistance of various coatings as a function of deposition methods and coating materials under simulated use conditions. In addition, we demonstrate that damage initiation by raster scanning at lower fluences and growth threshold testing are required to probe the density of extrinsic defects, which will limit large-aperture optics performance.
A VLSI implementation for synthetic aperture radar image processing
NASA Technical Reports Server (NTRS)
Premkumar, A.; Purviance, J.
1990-01-01
A simple physical model for the Synthetic Aperture Radar (SAR) is presented. This model explains the one dimensional and two dimensional nature of the received SAR signal in the range and azimuth directions. A time domain correlator, its algorithm, and features are explained. The correlator is ideally suited for VLSI implementation. A real time SAR architecture using these correlators is proposed. In the proposed architecture, the received SAR data is processed using one dimensional correlators for determining the range while two dimensional correlators are used to determine the azimuth of a target. The architecture uses only three different types of custom VLSI chips and a small amount of memory.
NASA Technical Reports Server (NTRS)
Gezari, D.; Lyon, R.; Woodruff, R.; Labeyrie, A.; Oegerle, William (Technical Monitor)
2002-01-01
A concept is presented for a large (10 - 30 meter) sparse aperture hyper telescope to image extrasolar earth-like planets from the ground in the presence of atmospheric seeing. The telescope achieves high dynamic range very close to bright stellar sources with good image quality using pupil densification techniques. Active correction of the perturbed wavefront is simplified by using 36 small flat mirrors arranged in a parabolic steerable array structure, eliminating the need for large delat lines and operating at near-infrared (1 - 3 Micron) wavelengths with flats comparable in size to the seeing cells.
Minerva: A Dedicated Observatory for the Detection of Small Planets in the Solar Neighborhood
NASA Astrophysics Data System (ADS)
Hogstrom, Kristina; Johnson, J. A.; Wright, J.; McCrady, N.; Swift, J.; Muirhead, P.; Bottom, M.; Plavchan, P.; Zhao, M.; Riddle, R. L.
2013-01-01
Minerva is an array of 0.7m aperture robotic telescopes to be built atop Palomar Mountain outfitted for both photometry and high-resolution spectroscopy. It will be the first U.S. observatory dedicated to exoplanetary science capable of both precise radial velocimetry and transit studies. The multi-telescope concept will be implemented to either observe separate targets or a single target with a larger effective aperture. The flexibility of the observatory will maximize scientific potential and also provide ample opportunities for education and public outreach. The design and implementation of Minerva will be carried out by postdoctoral and student researchers at Caltech.
Characterization of tapered slot antenna feeds and feed arrays
NASA Technical Reports Server (NTRS)
Kim, Young-Sik; Yngvesson, K. Sigfrid
1990-01-01
A class of feed antennas and feed antenna arrays used in the focal plane of paraboloid reflectors and exhibiting higher than normal levels of cross-polarized radiation in the diagonal planes is addressed. A model which allows prediction of element gain and aperture efficiency of the feed/reflector system is presented. The predictions are in good agreement with experimental results. Tapered slot antenna (TSA) elements are used an example of an element of this type. It is shown that TSA arrays used in multibeam systems with small beam spacings are competitive in terms of aperture efficiency with other, more standard types of arrays incorporating waveguide type elements.
NASA Astrophysics Data System (ADS)
Aarthi, G.; Ramachandra Reddy, G.
2018-03-01
In our paper, the impact of adaptive transmission schemes: (i) optimal rate adaptation (ORA) and (ii) channel inversion with fixed rate (CIFR) on the average spectral efficiency (ASE) are explored for free-space optical (FSO) communications with On-Off Keying (OOK), Polarization shift keying (POLSK), and Coherent optical wireless communication (Coherent OWC) systems under different turbulence regimes. Further to enhance the ASE we have incorporated aperture averaging effects along with the above adaptive schemes. The results indicate that ORA adaptation scheme has the advantage of improving the ASE performance compared with CIFR under moderate and strong turbulence regime. The coherent OWC system with ORA excels the other modulation schemes and could achieve ASE performance of 49.8 bits/s/Hz at the average transmitted optical power of 6 dBm under strong turbulence. By adding aperture averaging effect we could achieve an ASE of 50.5 bits/s/Hz under the same conditions. This makes ORA with Coherent OWC modulation as a favorable candidate for improving the ASE of the FSO communication system.
Jain, Deepak; Jung, Yongmin; Barua, Pranabesh; Alam, Shaiful; Sahu, Jayanta K
2015-03-23
In this paper, we report the mode area scaling of a rare-earth doped step index fiber by using low numerical aperture. Numerical simulations show the possibility of achieving an effective area of ~700 um² (including bend induced effective area reduction) at a bend diameter of 32 cm from a 35 μm core fiber with a numerical aperture of 0.038. An effective single mode operation is ensured following the criterion of the fundamental mode loss to be lower than 0.1 dB/m while ensuring the higher order modes loss to be higher than 10 dB/m at a wavelength of 1060 nm. Our optimized modified chemical vapor deposition process in conjunction with solution doping process allows fabrication of an Yb-doped step index fiber having an ultra-low numerical aperture of ~0.038. Experimental results confirm a Gaussian output beam from a 35 μm core fiber validating our simulation results. Fiber shows an excellent laser efficiency of ~81%and aM² less than 1.1.
Basu, Santasri; Voelz, David
2008-07-01
Establishing a link between a ground station and a geosynchronous orbiting satellite can be aided greatly with the use of a beacon on the satellite. A tracker, or even an adaptive optics system, can use the beacon during communication or tracking activities to correct beam pointing for atmospheric turbulence and mount jitter effects. However, the pointing lead-ahead required to illuminate the moving object and an aperture mismatch between the tracking and the pointing apertures can limit the effectiveness of the correction, as the sensed tilt will not be the same as the tilt required for optimal transmission to the satellite. We have developed an analytical model that addresses the combined impact of these tracking issues in a ground-to-satellite optical link. We present these results for different tracker/pointer configurations. By setting the low-pass cutoff frequency of the tracking servo properly, the tracking errors can be minimized. The analysis considers geosynchronous Earth orbit satellites as well as low Earth orbit satellites.
Thermal design trades for SAFIR architecture concepts
NASA Technical Reports Server (NTRS)
Yorke, Harold W.; Paine, Christopher; Bradford, Matt; Dragovan, Mark; Nash, Al; Dooley, Jennifer; Lawrence, Charles
2004-01-01
SAFIR is a IO-meter, 4 K space telescope optimized for wavelengths between 20 microns and 1 mm. The combination of aperture diameter and telescope temperature will provide a raw sensitivity improvement of more than a factor of 1000 over presently-planned missions. The sensitivity will be comparable to that of the JWST and ALMA, but at the critical far-IR wavelengths where much of the universe's radiative energy has emerged since the origin of stars and galaxies. We examine several of the critical technologies for SAFIR which enable the large cold aperture, and present results of studies examining the telescope optics and the spacecraft thermal architecture. Both the method by which the aperture is filled, and the overall optical design for the telescope can impact the potential scientific return of SAFIR. Thermal architecture that goes far beyond the sunshades developed for the James Webb Space Telescope will be necessary to achieve the desired sensitivity of SAFIR. By combining active and passive cooling at critical points within the observatory, a significant reduction of the required level of active cooling can be obtained.
Assessing and optimizing infrasound network performance: application to remote volcano monitoring
NASA Astrophysics Data System (ADS)
Tailpied, D.; LE Pichon, A.; Marchetti, E.; Kallel, M.; Ceranna, L.
2014-12-01
Infrasound is an efficient monitoring technique to remotely detect and characterize explosive sources such as volcanoes. Simulation methods incorporating realistic source and propagation effects have been developed to quantify the detection capability of any network. These methods can also be used to optimize the network configuration (number of stations, geographical location) in order to reduce the detection thresholds taking into account seasonal effects in infrasound propagation. Recent studies have shown that remote infrasound observations can provide useful information about the eruption chronology and the released acoustic energy. Comparisons with near-field recordings allow evaluating the potential of these observations to better constrain source parameters when other monitoring techniques (satellite, seismic, gas) are not available or cannot be made. Because of its regular activity, the well-instrumented Mount Etna is in Europe a unique natural repetitive source to test and optimize detection and simulation methods. The closest infrasound station part of the International Monitoring System is located in Tunisia (IS48). In summer, during the downwind season, it allows an unambiguous identification of signals associated with Etna eruptions. Under the European ARISE project (Atmospheric dynamics InfraStructure in Europe, FP7/2007-2013), experimental arrays have been installed in order to characterize infrasound propagation in different ranges of distance and direction. In addition, a small-aperture array, set up on the flank by the University of Firenze, has been operating since 2007. Such an experimental setting offers an opportunity to address the societal benefits that can be achieved through routine infrasound monitoring.
How Weight Affects the Perceived Spacing between the Thumb and Fingers during Grasping
Butler, Annie A.; Héroux, Martin E.; Gandevia, Simon C.
2015-01-01
We know much about mechanisms determining the perceived size and weight of lifted objects, but little about how these properties of size and weight affect the body representation (e.g. grasp aperture of the hand). Without vision, subjects (n = 16) estimated spacing between fingers and thumb (perceived grasp aperture) while lifting canisters of the same width (6.6cm) but varied weights (300, 600, 900, and 1200 g). Lifts were performed by movement of either the wrist, elbow or shoulder to examine whether lifting with different muscle groups affects the judgement of grasp aperture. Results for perceived grasp aperture were compared with changes in perceived weight of objects of different sizes (5.2, 6.6, and 10 cm) but the same weight (600 g). When canisters of the same width but different weights were lifted, perceived grasp aperture decreased 4.8% [2.2 ‒ 7.4] (mean [95% CI]; P < 0.001) from the lightest to the heaviest canister, no matter how they were lifted. For objects of the same weight but different widths, perceived weight decreased 42.3% [38.2 ‒ 46.4] from narrowest to widest (P < 0.001), as expected from the size-weight illusion. Thus, despite a highly distorted perception of the weight of objects based on their size, we conclude that proprioceptive afferents maintain a reasonably stable perception of the aperture of the grasping hand over a wide range of object weights. Given the small magnitude of this ‘weight-grasp aperture’ illusion, we propose the brain has access to a relatively stable ‘perceptual ruler’ to aid the manipulation of different objects. PMID:25996760
Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients.
Rand, M K; Shimansky, Y; Stelmach, G E; Bracha, V; Bloedel, J R
2000-11-01
Reach-to-grasp movements of patients with pathology restricted to the cerebellum were compared with those of normal controls. Two types of paradigms with different accuracy constraints were used to examine whether cerebellar impairment disrupts the stereotypic relationship between arm transport and grip aperture and whether the variability of this relationship is altered when greater accuracy is required. The movements were made to either a vertical dowel or to a cross bar of a small cross. All subjects were asked to reach for either target at a fast but comfortable speed, grasp the object between the index finger and thumb, and lift it a short distance off the table. In terms of the relationship between arm transport and grip aperture, the control subjects showed a high consistency in grip aperture and wrist velocity profiles from trial to trial for movements to both the dowel and the cross. The relationship between the maximum velocity of the wrist and the time at which grip aperture was maximal during the reach was highly consistent throughout the experiment. In contrast, the time of maximum grip aperture and maximum wrist velocity of the cerebellar patients was quite variable from trial to trial, and the relationship of these measurements also varied considerably. These abnormalities were present regardless of the accuracy requirement. In addition, the cerebellar patients required a significantly longer time to grasp and lift the objects than the control subjects. Furthermore, the patients exhibited a greater grip aperture during reach than the controls. These data indicate that the cerebellum contributes substantially to the coordination of movements required to perform reach-to-grasp movements. Specifically, the cerebellum is critical for executing this behavior with a consistent, well-timed relationship between the transport and grasp components. This contribution is apparent even when accuracy demands are minimal.
MEGARA Optics: Sub-aperture Stitching Interferometry for Large Surfaces
NASA Astrophysics Data System (ADS)
Aguirre-Aguirre, Daniel; Carrasco, Esperanza; Izazaga-Pérez, Rafael; Páez, Gonzalo; Granados-Agustín, Fermín; Percino-Zacarías, Elizabeth; Gil de Paz, Armando; Gallego, Jesús; Iglesias-Páramo, Jorge; Villalobos-Mendoza, Brenda
2018-04-01
In this work, we present a detailed analysis of sub-aperture interferogram stitching software to test circular and elliptical clear apertures with diameters and long axes up to 272 and 180 mm, respectively, from the Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía (MEGARA). MEGARA is a new spectrograph for the Gran Telescopio Canarias (GTC). It offers a resolution between 6000 and 20000 via the use of volume phase holographic gratings. It has an integral field unit and a set of robots for multi-object spectroscopy at the telescope focal plane. The output end of the fibers forms the spectrograph pseudo-slit. The fixed geometry of the collimator and camera configuration requires prisms in addition to the flat windows of the volume phase holographic gratings. There are 73 optical elements of large aperture and high precision manufactured in Mexico at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the Centro de Investigaciones en Óptica (CIO). The principle of stitching interferometry is to divide the surface being tested into overlapping small sections, which allows an easier analysis (Kim & Wyant 1981). This capability is ideal for non-contact tests for unique and large optics as required by astronomical instruments. We show that the results obtained with our sub-aperture stitching algorithm were consistent with other methods that analyze the entire aperture. We used this method to analyze the 24 MEGARA prisms that could not be tested otherwise. The instrument has been successfully commissioned at GTC in all the spectral configurations. The fulfillment of the irregularity specifications was one of the necessary conditions to comply with the spectral requirements.
Future Prospects for Very High Angular Resolution Imaging in the UV/Optical
NASA Astrophysics Data System (ADS)
Allen, R. J.
2004-05-01
Achieving the most demanding science goals outlined by the previous speakers will ultimately require the development of coherent space-based arrays of UV/Optical light collectors spread over distances of hundreds of meters. It is possible to envisage ``in situ" assembly of large segmented filled-aperture telescopes in space using components ferried up with conventional launchers. However, the cost will grow roughly as the mass of material required, and this will ultimately limit the sizes of the apertures we can afford. Furthermore, since the collecting area and the angular resolution are coupled for diffraction-limited filled apertures, the sensitivity may be much higher than is actually required to do the science. Constellations of collectors deployed over large areas as interferometer arrays or sparse apertures offer the possibility of independently tailoring the angular resolution and the sensitivity in order to optimally match the science requirements. Several concept designs have been proposed to provide imaging data for different classes of targets such as protoplanetary disks, the nuclear regions of the nearest active galaxies, and the surfaces of stars of different types. Constellations of identical collectors may be built and launched at lower cost through mass production, but new challenges arise when they have to be deployed. The ``aperture" synthesized is only as good as the accuracy with which the individual collectors can be placed and held to the required figure. This ``station-keeping" problem is one of the most important engineering problems to be solved before the promise of virtually unlimited angular resolution in the UV/Optical can be realized. Among the attractive features of an array of free-flying collectors configured for imaging is the fact that the figure errors of the ``aperture" so produced may be much more random than is the case for monolithic or segmented telescopes. This can result in a significant improvement in the dynamic range and permit imaging of faint objects near much brighter extraneous nearby sources, a task presently reserved for specially-designed coronagraphs on filled apertures.
NASA Astrophysics Data System (ADS)
Elliott, Stephen J.; Cheer, Jordan; Bhan, Lam; Shi, Chuang; Gan, Woon-Seng
2018-04-01
The active control of an incident sound field with an array of secondary sources is a fundamental problem in active control. In this paper the optimal performance of an infinite array of secondary sources in controlling a plane incident sound wave is first considered in free space. An analytic solution for normal incidence plane waves is presented, indicating a clear cut-off frequency for good performance, when the separation distance between the uniformly-spaced sources is equal to a wavelength. The extent of the near field pressure close to the source array is also quantified, since this determines the positions of the error microphones in a practical arrangement. The theory is also extended to oblique incident waves. This result is then compared with numerical simulations of controlling the sound power radiated through an open aperture in a rigid wall, subject to an incident plane wave, using an array of secondary sources in the aperture. In this case the diffraction through the aperture becomes important when its size is compatible with the acoustic wavelength, in which case only a few sources are necessary for good control. When the size of the aperture is large compared to the wavelength, and diffraction is less important but more secondary sources need to be used for good control, the results then become similar to those for the free field problem with an infinite source array.
The Mechanical Design Optimization of a High Field HTS Solenoid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalitha, SL; Gupta, RC
2015-06-01
This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Blake, E-mail: bsmith34@wisc.edu; Gelover,
Purpose: To quantitatively assess the advantages of energy-layer specific dynamic collimation system (DCS) versus a per-field fixed aperture for spot scanning proton therapy (SSPT). Methods: Five brain cancer patients previously planned and treated with SSPT were replanned using an in-house treatment planning system capable of modeling collimated and uncollimated proton beamlets. The uncollimated plans, which served as a baseline for comparison, reproduced the target coverage and organ-at-risk sparing of the clinically delivered plans. The collimator opening for the fixed aperture-based plans was determined from the combined cross sections of the target in the beam’s eye view over all energy layersmore » which included an additional margin equivalent to the maximum beamlet displacement for the respective energy of that energy layer. The DCS-based plans were created by selecting appropriate collimator positions for each row of beam spots during a Raster-style scanning pattern which were optimized to maximize the dose contributions to the target and limited the dose delivered to adjacent normal tissue. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring surrounding the target, averaged 13.65% (range: 11.8%–16.9%) and 5.18% (2.9%–7.1%) for the DCS and fixed aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 21.35% (19.4%–22.6%) and 8.38% (4.7%–12.0%) for the DCS and fixed aperture plans, respectively. Conclusions: The ability of the DCS to provide collimation to each energy layer yielded better conformity in comparison to fixed aperture plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, B; Gelover, E; Wang, D
2015-06-15
Purpose: Low-energy treatments during spot scanning proton therapy (SSPT) suffer from poor conformity due to increased spot size. Collimation devices can reduce the lateral penumbra of a proton therapy dose distribution and improve the overall plan quality. The purpose of this work was to study the advantages of individual energy-layer collimation, which is unique to a recently proposed Dynamic Collimation System (DCS), in comparison to a standard, fixed aperture that allows only a single shape for all energy layers. Methods: Three brain patients previously planned and treated with SSPT were re-planned using an in-house treatment planning system capable of modelingmore » collimated and un-collimated proton beamlets. The un-collimated plans, which served as a baseline for comparison, reproduced the target coverage of the clinically delivered plans. The collimator opening for the aperture based plans included a 0.6 cm expansion of the largest cross section of the target in the Beam’s Eye View, while the DCS based plans were created by optimizing the collimator position for beam spots near the periphery of the target in each energy layer. Results: The reduction of mean dose to normal tissue adjacent to the target, as defined by a 10 mm ring, averaged 9.13% and 3.48% for the DCS and aperture plans, respectively. The conformity index, as defined by the ratio of the volume of the 50% isodose line to the target volume, yielded an average improvement of 16.42% and 8.16% for the DCS and aperture plans, respectively. Conclusion: Collimation reduces the dose to normal tissue adjacent to the target and increases dose conformity to the target region for low-energy SSPT. The ability of the DCS to provide collimation to each energy layer yields better conformity in comparison to fixed aperture plans. This work was partially funded by IBA (Ion Beam Applications S.A.)« less
Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope
NASA Astrophysics Data System (ADS)
Miyamura, Norihide
2017-09-01
For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momeni Hasan Abadi, Seyed Mohamad Amin, E-mail: momenihasana@wisc.edu; Booske, John H., E-mail: jhbooske@wisc.edu; Behdad, Nader, E-mail: behdad@wisc.edu
2016-08-07
We present a new approach to perform beam steering in reflecting type apertures such as reflectarray antennas. The proposed technique exploits macro-scale mechanical movements of parts of the structure to achieve two-dimensional microwave beam steering without using any solid-state devices or phase shifters integrated within the aperture of the antenna. The principles of operation of this microwave beam steering technique are demonstrated in an aperture occupied by ground-plane-backed, sub-wavelength capacitive patches with identical dimensions. We demonstrate that by tilting the ground plane underneath the entire patch array layer, a phase shift gradient can be created over the aperture of themore » reflectarray that determines the direction of the radiated beam. Changing the direction and slope of this phase shift gradient on the aperture allows for performing beam steering in two dimensions using only one control parameter (i.e., tilt vector of the ground plane). A proof-of-concept prototype of the structure operating at X-band is designed, fabricated, and experimentally characterized. Experiments demonstrate that small mechanical movements of the ground plane (in the order of 0.05λ{sub 0}) can be used to steer the beam direction in the ±10° in two dimensions. It is also demonstrated that this beam scanning range can be greatly enhanced to ±30° by applying this concept to the same structure when its ground plane is segmented.« less
Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring
NASA Astrophysics Data System (ADS)
Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin
2015-08-01
In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.
Impact of nonzero boresight pointing error on ergodic capacity of MIMO FSO communication systems.
Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen
2016-02-22
A thorough investigation of the impact of nonzero boresight pointing errors on the ergodic capacity of multiple-input/multiple-output (MIMO) free-space optical (FSO) systems with equal gain combining (EGC) reception under different turbulence models, which are modeled as statistically independent, but not necessarily identically distributed (i.n.i.d.) is addressed in this paper. Novel closed-form asymptotic expressions at high signal-to-noise ratio (SNR) for the ergodic capacity of MIMO FSO systems are derived when different geometric arrangements of the receive apertures at the receiver are considered in order to reduce the effect of nonzero inherent boresight displacement, which is inevitably present when more than one receive aperture is considered. As a result, the asymptotic ergodic capacity of MIMO FSO systems is evaluated over log-normal (LN), gamma-gamma (GG) and exponentiated Weibull (EW) atmospheric turbulence in order to study different turbulence conditions, different sizes of receive apertures as well as different aperture averaging conditions. It is concluded that the use of single-input/multiple-output (SIMO) and MIMO techniques can significantly increase the ergodic capacity respect to the direct path link when the inherent boresight displacement takes small values, i.e. when the spacing among receive apertures is not too big. The effect of nonzero additional boresight errors, which is due to the thermal expansion of the building, is evaluated in multiple-input/single-output (MISO) and single-input/single-output (SISO) FSO systems. Simulation results are further included to confirm the analytical results.
NASA Technical Reports Server (NTRS)
Hong, Jaesub; Allen, Branden; Grindlay, Jonathan; Barthelmy, Scott D.
2016-01-01
Wide-field (greater than or approximately equal to 100 degrees squared) hard X-ray coded-aperture telescopes with high angular resolution (greater than or approximately equal to 2 minutes) will enable a wide range of time domain astrophysics. For instance, transient sources such as gamma-ray bursts can be precisely localized without the assistance of secondary focusing X-ray telescopes to enable rapid followup studies. On the other hand, high angular resolution in coded-aperture imaging introduces a new challenge in handling the systematic uncertainty: the average photon count per pixel is often too small to establish a proper background pattern or model the systematic uncertainty in a timescale where the model remains invariant. We introduce two new techniques to improve detection sensitivity, which are designed for, but not limited to, a high-resolution coded-aperture system: a self-background modeling scheme which utilizes continuous scan or dithering operations, and a Poisson-statistics based probabilistic approach to evaluate the significance of source detection without subtraction in handling the background. We illustrate these new imaging analysis techniques in high resolution coded-aperture telescope using the data acquired by the wide-field hard X-ray telescope ProtoEXIST2 during a high-altitude balloon flight in fall 2012. We review the imaging sensitivity of ProtoEXIST2 during the flight, and demonstrate the performance of the new techniques using our balloon flight data in comparison with a simulated ideal Poisson background.
Effect of the Thruster Configurations on a Laser Ignition Microthruster
NASA Astrophysics Data System (ADS)
Koizumi, Hiroyuki; Hamasaki, Kyoichi; Kondo, Ryo; Okada, Keisuke; Nakano, Masakatsu; Arakawa, Yoshihiro
Research and development of small spacecraft have advanced extensively throughout the world and propulsion devices suitable for the small spacecraft, microthruster, is eagerly anticipated. The authors proposed a microthruster using 1—10-mm-size solid propellant. Small pellets of solid propellant are installed in small combustion chambers and ignited by the irradiation of diode laser beam. This thruster is referred as to a laser ignition microthruster. Solid propellant enables large thrust capability and compact propulsion system. To date theories of a solid-propellant rocket have been well established. However, those theories are for a large-size solid propellant and there are a few theories and experiments for a micro-solid rocket of 1—10mm class. This causes the difficulty of the optimum design of a micro-solid rocket. In this study, we have experimentally investigated the effect of thruster configurations on a laser ignition microthruster. The examined parameters are aperture ratio of the nozzle, length of the combustion chamber, area of the nozzle throat, and divergence angle of the nozzle. Specific impulse dependences on those parameters were evaluated. It was found that large fraction of the uncombusted propellant was the main cause of the degrading performance. Decreasing the orifice diameter in the nozzle with a constant open aperture ratio was an effective method to improve this degradation.
ACTS Propagation Measurements in Maryland and Virginia
NASA Technical Reports Server (NTRS)
Dissanayake, Asoka; Lin, Kuan-Ting
1996-01-01
Rapid growth in new satellite services incorporating very small aperture terminals (VSAT) and ultra small aperture terminals (USAT) is expected in the coming years. Small size terminals allow for widespread use of satellite services in small business and domestic applications. Due to congestion of lower frequency bands such as C and Ku, most of these services will use Ka-band (2/20 GHz) frequencies. Propagation impairments produced by the troposphere is a limiting factor for the effective use of the 20/30 GHz band and the use of smaller Earth terminals makes it difficult to provide sufficient link margins for propagation related outages. In this context, reliable prediction of propagation impairments for low margin systems becomes important. Due to the complexity of propagation phenomena propagation modeling is mainly attempted on an empirical basis. As such, the availability of reliable measured data that extend to probability levels well in excess of the traditional limit of 1 percent is of great importance in the development, validation, and refinement of propagation models. The beacon payload on the Advanced Communications Technology Satellite (ACTS) together with the propagation measurement terminals developed under the NASA ACTS propagation program provide an excellent opportunity to collect such data on a long-term basis. This paper presents the results of ACTS propagation measurements conducted in the Washington, DC metropolitan area by COMSAT Laboratories.
Atmospheric boundary layer evening transitions over West Texas
USDA-ARS?s Scientific Manuscript database
A systemic analysis of the atmospheric boundary layer behavior during some evening transitions over West Texas was done using the data from an extensive array of instruments which included small and large aperture scintillometers, net radiometers, and meteorological stations. The analysis also comp...
NASA Astrophysics Data System (ADS)
Hiemer, Stefan; Roessler, Dirk; Scherbaum, Frank
2012-04-01
The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes ( M L < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of - 1.2 ≤ M L ≤ 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M c = - 0.4, when compared to the regional networks operating in West Bohemia ( M c > 0.0). In the course of this work, the main temporal features (frequency-magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg-Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.
The effect of aperture averaging upon tropospheric delay fluctuations seen with a DSN antenna
NASA Technical Reports Server (NTRS)
Linfield, R.
1996-01-01
The spectrum of tropospheric delay fluctuations expected for a DSN antenna at time scales less than 100 s has been calculated. A new feature included in these calculations is the effect of aperture averaging, which causes a reduction in delay fluctuations on time scales less than the antenna wind speed crossing time, approximately equal to 5-10 s. On time scales less than a few seconds, the Allan deviation sigma(sub y)(Delta(t)) varies as (Delta(t))(sup +1), rather than sigma(sub y)(Delta(t)) varies as (Delta(t))(exp -1/6) without aperture averaging. Due to thermal radiometer noise, calibration of tropospheric delay fluctuations with water vapor radiometers will not be possible on time scales less than approximately 10 s. However, the tropospheric fluctuation level will be small enough that radio science measurements with a spacecraft on time scales less than a few seconds will be limited by the stability of frequency standards and/or other nontropospheric effects.
High-contrast imaging with an arbitrary aperture: active correction of aperture discontinuities
NASA Astrophysics Data System (ADS)
Pueyo, Laurent; Norman, Colin; Soummer, Rémi; Perrin, Marshall; N'Diaye, Mamadou; Choquet, Elodie
2013-09-01
We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential Deformable Mirrors to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of Deformable Mirror Surfaces that yield high contrast Point Spread Functions is not linear, and non-linear methods are needed to find the true minimum in the optimization topology. We solve the highly non-linear Monge-Ampere equation that is the fundamental equation describing the physics of phase induced amplitude modulation. We determine the optimum configuration for our two sequential Deformable Mirror system and show that high-throughput and high contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to JWST, ACAD can attain at least 10-7 in contrast and an order of magnitude higher for future Extremely Large Telescopes, even when the pupil features a missing segment" . We show that the converging non-linear mappings resulting from our Deformable Mirror shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and strut's while not amplifying the diffraction at the aperture edges beyond the Fresnel regime and illustrate the broadband properties of ACAD in the case of the pupil configuration corresponding to the Astrophysics Focused Telescope Assets. Since details about these telescopes are not yet available to the broader astronomical community, our test case is based on a geometry mimicking the actual one, to the best of our knowledge.
Low-Order Aberrations in Band-limited Lyot Coronagraphs
NASA Astrophysics Data System (ADS)
Sivaramakrishnan, Anand; Soummer, Rémi; Sivaramakrishnan, Allic V.; Lloyd, James P.; Oppenheimer, Ben R.; Makidon, Russell B.
2005-12-01
We study the way Lyot coronagraphs with unapodized entrance pupils respond to small, low-order phase aberrations. This study is applicable to ground-based adaptive optics coronagraphs operating at 90% and higher Strehl ratios, as well as to some space-based coronagraphs with intrinsically higher Strehl ratio imaging. We utilize a second-order expansion of the monochromatic point-spread function (written as a power spectrum of a power series in the phase aberration over clear aperture) to derive analytical expressions for the response of a ``band-limited'' Lyot coronagraph (BLC) to small, low-order, phase aberrations. The BLC possesses a focal plane mask with an occulting spot whose opacity profile is a spatially band-limited function rather than a hard-edged, opaque disk. The BLC is, to first order, insensitive to tilt and astigmatism. Undersizing the stop in the reimaged pupil plane (the Lyot plane) following the focal plane mask can alleviate second-order effects of astigmatism, at the expense of system throughput and angular resolution. The optimal degree of such undersizing depends on individual instrument designs and goals. Our analytical work engenders physical insight and complements existing numerical work on this subject. Our methods can be extended to treat the passage of higher order aberrations through band-limited Lyot coronagraphs by using our polynomial decomposition or an analogous Fourier approach.
NASA Astrophysics Data System (ADS)
Seely, J. F.; McMullin, D. R.; Vest, R.; Sakdinawat, A.; Chang, C.; Jones, A. R.; Bremer, J.
2015-12-01
A zone plate was designed to record the He II 30.4 nm solar irradiance, was fabricated using electron beam lithography, and was absolutely calibrated using the NIST SURF synchrotron. The zone plate has an open support grid identical to those used to successfully launch transmission gratings in previous solar radiometers and is otherwise free-standing with no support membrane that would absorb EUV radiation. The measured efficiency of 3.0 ± 0.1% at 30.4 nm is consistent with detailed modeling of the efficiency and accounting for the geometrical transmittance of the support grid. The binary nature of the zone plate, consisting of opaque gold bars and open spaces with no support membrane, results in excellent long-term stability in space against contamination, radiation damage, and other effects that could alter the efficiency and instrument throughput. The zone plate's focusing property enables the rejection of out-of-band radiation by small apertures and high signal to background values that are superior to previous radiometers. The 4 mm outer diameter of the zone plate and the 25 mm focal length for 30.4 nm radiation enable a compact instrument that is attractive for small CubeSats and other space flight missions where resources are extremely limited.
Micro-scanning mirrors for high-power laser applications in laser surgery
NASA Astrophysics Data System (ADS)
Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald
2014-03-01
We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.
Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrove, Cameron
2014-05-01
For synthetic aperture radar image products interference can degrade the quality of the images while techniques to mitigate the interference also reduce the image quality. Usually the radar system designer will try to balance the amount of mitigation for the amount of interference to optimize the image quality. This may work well for many situations, but coherent data products derived from the image products are more sensitive than the human eye to distortions caused by interference and mitigation of interference. This dissertation examines the e ect that interference and mitigation of interference has upon coherent data products. An improvement tomore » the standard notch mitigation is introduced, called the equalization notch. Other methods are suggested to mitigation interference while improving the quality of coherent data products over existing methods.« less
Optimization experiments with a double Gauss lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brixner, B.; Klein, M.M.
1988-05-01
This paper describes how a lens can be generated by starting from plane surfaces. Three different experiments, using the Los Alamos National Laboratory optimization procedure, all converged on the same stable prescriptions in the optimum minimum region. The starts were made first from an already optimized lens appearing in the literature, then from a powerless plane-surfaces configuration, and finally from a crude Super Angulon configuration. In each case the result was a double Gauss lens, which suggests that this type of lens may be the best compact six-glass solution for one imaging problem: an f/2 aperture and a moderate fieldmore » of view. The procedures and results are discussed in detail.« less
Optimization Experiments With A Double Gauss Lens
NASA Astrophysics Data System (ADS)
Brixner, Berlyn; Klein, Morris M.
1988-05-01
This paper describes how a lens can be generated by starting from plane surfaces. Three different experiments, using the Los Alamos National Laboratory optimization procedure, all converged on the same stable prescriptions in the optimum minimum region. The starts were made first from an already optimized lens appearing in the literature, then from a powerless plane-surfaces configuration, and finally from a crude Super Angulon configuration. In each case the result was a double Gauss lens, which suggests that this type of lens may be the best compact six-glass solution for one imaging problem: an f/2 aperture and a moderate field of view. The procedures and results are discussed in detail.
Starting geometry creation and design method for freeform optics.
Bauer, Aaron; Schiesser, Eric M; Rolland, Jannick P
2018-05-01
We describe a method for designing freeform optics based on the aberration theory of freeform surfaces that guides the development of a taxonomy of starting-point geometries with an emphasis on manufacturability. An unconventional approach to the optimization of these starting designs wherein the rotationally invariant 3rd-order aberrations are left uncorrected prior to unobscuring the system is shown to be effective. The optimal starting-point geometry is created for an F/3, 200 mm aperture-class three-mirror imager and is fully optimized using a novel step-by-step method over a 4 × 4 degree field-of-view to exemplify the design method. We then optimize an alternative starting-point geometry that is common in the literature but was quantified here as a sub-optimal candidate for optimization with freeform surfaces. A comparison of the optimized geometries shows the performance of the optimal geometry is at least 16× better, which underscores the importance of the geometry when designing freeform optics.
Darcy Flow in a Wavy Channel Filled with a Porous Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Donald D; Ogretim, Egemen; Bromhal, Grant S
2013-05-17
Flow in channels bounded by wavy or corrugated walls is of interest in both technological and geological contexts. This paper presents an analytical solution for the steady Darcy flow of an incompressible fluid through a homogeneous, isotropic porous medium filling a channel bounded by symmetric wavy walls. This packed channel may represent an idealized packed fracture, a situation which is of interest as a potential pathway for the leakage of carbon dioxide from a geological sequestration site. The channel walls change from parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal waves as certain parameters are increased. Themore » direction of gravity is arbitrary. A plot of piezometric head against distance in the direction of mean flow changes from a straight line for parallel planes to a series of steeply sloping sections in the reaches of small aperture alternating with nearly constant sections in the large aperture bulges. Expressions are given for the stream function, specific discharge, piezometric head, and pressure.« less
UHF Microstrip Antenna Array for Synthetic- Aperture Radar
NASA Technical Reports Server (NTRS)
Thomas, Robert F.; Huang, John
2003-01-01
An ultra-high-frequency microstrippatch antenna has been built for use in airborne synthetic-aperture radar (SAR). The antenna design satisfies requirements specific to the GeoSAR program, which is dedicated to the development of a terrain-mapping SAR system that can provide information on geology, seismicity, vegetation, and other terrain-related topics. One of the requirements is for ultra-wide-band performance: the antenna must be capable of operating with dual linear polarization in the frequency range of 350 plus or minus 80 MHz, with a peak gain of 10 dB at the middle frequency of 350 MHz and a gain of at least 8 dB at the upper and lower ends (270 and 430 MHz) of the band. Another requirement is compactness: the antenna must fit in the wingtip pod of a Gulfstream II airplane. The antenna includes a linear array of microstrip-patch radiating elements supported over square cavities. Each patch is square (except for small corner cuts) and has a small square hole at its center.
Shape accuracy requirements on starshades for large and small apertures
NASA Astrophysics Data System (ADS)
Shaklan, Stuart B.; Marchen, Luis; Cady, Eric
2017-09-01
Starshades have been designed to work with large and small telescopes alike. With smaller telescopes, the targets tend to be brighter and closer to the Solar System, and their putative planetary systems span angles that require starshades with radii of 10-30 m at distances of 10s of Mm. With larger apertures, the light-collecting power enables studies of more numerous, fainter systems, requiring larger, more distant starshades with radii >50 m at distances of 100s of Mm. Characterization using infrared wavelengths requires even larger starshades. A mitigating approach is to observe planets between the petals, where one can observe regions closer to the star but with reduced throughput and increased instrument scatter. We compare the starshade shape requirements, including petal shape, petal positioning, and other key terms, for the WFIRST 26m starshade and the HABEX 72 m starshade concepts, over a range of working angles and telescope sizes. We also compare starshades having rippled and smooth edges and show that their performance is nearly identical.
Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Brooks, Thomas F.; Hunter, William W., Jr.; Meadows, Kristine R.
1998-01-01
An overview of the development of two microphone directional arrays for aeroacoustic testing is presented. These arrays were specifically developed to measure airframe noise in the NASA Langley Quiet Flow Facility. A large aperture directional array using 35 flush-mounted microphones was constructed to obtain high resolution noise localization maps around airframe models. This array possesses a maximum diagonal aperture size of 34 inches. A unique logarithmic spiral layout design was chosen for the targeted frequency range of 2-30 kHz. Complementing the large array is a small aperture directional array, constructed to obtain spectra and directivity information from regions on the model. This array, possessing 33 microphones with a maximum diagonal aperture size of 7.76 inches, is easily moved about the model in elevation and azimuth. Custom microphone shading algorithms have been developed to provide a frequency- and position-invariant sensing area from 10-40 kHz with an overall targeted frequency range for the array of 5-60 kHz. Both arrays are employed in acoustic measurements of a 6 percent of full scale airframe model consisting of a main element NACA 632-215 wing section with a 30 percent chord half-span flap. Representative data obtained from these measurements is presented, along with details of the array calibration and data post-processing procedures.
NASA Astrophysics Data System (ADS)
Schnitzler, H.; Zimmer, Klaus-Peter
2008-09-01
Similar to human's binocular vision, stereomicroscopes are comprised of two optical paths under a convergence angle providing a full perspective insight into the world's microstructure. The numerical aperture of stereomicroscopes has continuously increased over the years, reaching the point where the lenses of left and right perspective paths touched each other. This constraint appeared as an upper limit for the resolution of stereomicroscopes, as the resolution of a stereomicroscope was deduced from the numerical apertures of the two equally sized perspective channels. We present the optical design and advances in resolution of the world's first asymmetrical stereomicroscope, which is a technological breakthrough in many aspects of stereomicroscopes. This unique approach uses a large numerical aperture and thus an, so far, unachievable high lateral resolution in the one path, and a small aperture in the other path, which provides a high depth of field ("Fusion Optics"). This new concept is a technical challenge for the optical design of the zoom system as well as for the common main objectives. Furthermore, the new concept makes use of the particular way in which perspective information by binocular vision is formed in the human's brain. In conjunction with a research project at the University of Zurich, Leica Microsystems consolidated the functionality of this concept in to a new generation of stereomicroscopes.
InGaAsP/InP-air-aperture microcavities for single-photon sources at 1.55-μm telecommunication band
NASA Astrophysics Data System (ADS)
Guo, Sijie; Zheng, Yanzhen; Weng, Zhuo; Yao, Haicheng; Ju, Yuhao; Zhang, Lei; Ren, Zhilei; Gao, Ruoyao; Wang, Zhiming M.; Song, Hai-Zhi
2016-11-01
InGaAsP/InP-air-aperture micropillar cavities are proposed to serve as 1.55-μm single photon sources, which are indispensable in silica-fiber based quantum information processing. Owing to air-apertures introduced to InP layers, and adiabatically tapered distributed Bragg-reflector structures used in the central cavity layers, the pillar diameters can be less than 1 μm, achieving mode volume as small as (λ/n)3, and the quality factors are more than 104 - 105, sufficient to increase the quantum dot emission rate for 100 times and create strong coupling between the optical mode and the 1.55- μm InAs/InP quantum dot emitter. The mode wavelengths and quality factors are found weakly changing with the cavity size and the deviation from the ideal shape, indicating the robustness against the imperfection of the fabrication technique. The fabrication, simply epitaxial growth, dry and chemical etching, is a damage-free and monolithic process, which is advantageous over previous hybrid cavities. The above properties satisfy the requirements of efficient, photonindistinguishable and coherent 1.55-μm quantum dot single photon sources, so the proposed InGaAsP/InP-air-aperture micropillar cavities are prospective candidates for quantum information devices at telecommunication band.
Van Stappen, Jeroen F; Meftah, Redouane; Boone, Marijn A; Bultreys, Tom; De Kock, Tim; Blykers, Benjamin K; Senger, Kim; Olaussen, Snorre; Cnudde, Veerle
2018-04-17
On Svalbard, Arctic Norway, an unconventional siliciclastic reservoir, relying on (micro)fractures for enhanced fluid flow in a low-permeable system, is investigated as a potential CO 2 sequestration site. The fractures' properties at depth are, however, poorly understood. High resolution X-ray computed tomography (micro-CT) imaging allows one to visualize such geomaterials at reservoir conditions. We investigated reservoir samples from the De Geerdalen Formation on Svalbard to understand the influence of fracture closure on the reservoir fluid flow behavior. Small rock plugs were brought to reservoir conditions, while permeability was measured through them during micro-CT imaging. Local fracture apertures were quantified down to a few micrometers wide. The permeability measurements were complemented with fracture permeability simulations based on the obtained micro-CT images. The relationship between fracture permeability and the imposed confining pressure was determined and linked to the fracture apertures. The investigated fractures closed due to the increased confining pressure, with apertures reducing to approximately 40% of their original size as the confining pressure increased from 1 to 10 MPa. This coincides with a permeability drop of more than 90%. Despite their closure, fluid flow is still controlled by the fractures at pressure conditions similar to those at the proposed storage depth of 800-1000 m.
A Metalens with a Near-Unity Numerical Aperture.
Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A; Kuznetsov, Arseniy I
2018-03-14
The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high-NA lenses in an ultraflat fashion. However, so far, these have been limited to numerical apertures on the same order of magnitude as traditional optical components, with experimentally reported NA values of <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction-limited flat lens with a near-unity numerical aperture (NA > 0.99) and subwavelength thickness (∼λ/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in subdiffractive diamond nanocrystals. This work, based on diffractive elements that can efficiently bend light at angles as large as 82°, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated with the standard, phase mapping approach.
A Metalens with a Near-Unity Numerical Aperture
NASA Astrophysics Data System (ADS)
Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M.; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A.; Kuznetsov, Arseniy I.
2018-03-01
The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high NA lenses in an ultra-flat fashion. However, so far, these have been limited to numerical apertures on the same order of traditional optical components, with experimentally reported values of NA <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction limited flat lens with a near-unity numerical aperture (NA>0.99) and sub-wavelength thickness (~{\\lambda}/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in sub-diffractive diamond nanocrystals. This work, based on diffractive elements able to efficiently bend light at angles as large as 82{\\deg}, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated to the standard, phase mapping approach.
NASA Astrophysics Data System (ADS)
Esmaeili, Mostafa; Motagh, Mahdi
2016-07-01
Time-series analysis of Synthetic Aperture Radar (SAR) data using the two techniques of Small BAseline Subset (SBAS) and Persistent Scatterer Interferometric SAR (PSInSAR) extends the capability of conventional interferometry technique for deformation monitoring and mitigating many of its limitations. Using dual/quad polarized data provides us with an additional source of information to improve further the capability of InSAR time-series analysis. In this paper we use dual-polarized data and combine the Amplitude Dispersion Index (ADI) optimization of pixels with phase stability criterion for PSInSAR analysis. ADI optimization is performed by using Simulated Annealing algorithm to increase the number of Persistent Scatterer Candidate (PSC). The phase stability of PSCs is then measured using their temporal coherence to select the final sets of pixels for deformation analysis. We evaluate the method for a dataset comprising of 17 dual polarization SAR data (HH/VV) acquired by TerraSAR-X data from July 2013 to January 2014 over a subsidence area in Iran and compare the effectiveness of the method for both agricultural and urban regions. The results reveal that using optimum scattering mechanism decreases the ADI values in urban and non-urban regions. As compared to single-pol data the use of optimized polarization increases initially the number of PSCs by about three times and improves the final PS density by about 50%, in particular in regions with high rate of deformation which suffer from losing phase stability over the time. The classification of PS pixels based on their optimum scattering mechanism revealed that the dominant scattering mechanism of the PS pixels in the urban area is double-bounce while for the non-urban regions (ground surfaces and farmlands) it is mostly single-bounce mechanism.
Studying the Sky/Planets Can Drown You in Images: Machine Learning Solutions at JPL/Caltech
NASA Technical Reports Server (NTRS)
Fayyad, U. M.
1995-01-01
JPL is working to develop a domain-independent system capable of small-scale object recognition in large image databases for science analysis. Two applications discussed are the cataloging of three billion sky objects in the Sky Image Cataloging and Analysis Tool (SKICAT) and the detection of possibly one million small volcanoes visible in the Magellan synthetic aperture radar images of Venus (JPL Adaptive Recognition Tool, JARTool).
Ramos, T.J.
1982-09-30
A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece.
Ramos, Terry J.
1984-01-01
A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece. BACKGROUND OF THE INVENTION
Advanced communications payload for mobile applications
NASA Technical Reports Server (NTRS)
Ames, S. A.; Kwan, R. K.
1990-01-01
An advanced satellite payload is proposed for single hop linking of mobile terminals of all classes as well as Very Small Aperture Terminal's (VSAT's). It relies on an intensive use of communications on-board processing and beam hopping for efficient link design to maximize capacity and a large satellite antenna aperture and high satellite transmitter power to minimize the cost of the ground terminals. Intersatellite links are used to improve the link quality and for high capacity relay. Power budgets are presented for links between the satellite and mobile, VSAT, and hub terminals. Defeating the effects of shadowing and fading requires the use of differentially coherent demodulation, concatenated forward error correction coding, and interleaving, all on a single link basis.
Optical assessment of nonimaging concentrators.
Timinger, A; Kribus, A; Ries, H; Smith, T; Walther, M
2000-11-01
An optical measurement method for nonimaging radiation concentrators is proposed. A Lambertian light source is placed in the exit aperture of the concentrator. Looking into the concentrator's entrance aperture from a remote position, one can photograph the transmission patterns. The patterns show the transmission of radiation through the concentrator with the full resolution of the four-dimensional phase space of geometric optics. By matching ray-tracing simulations to the measurement, one can achieve detailed and accurate information about the geometry of the concentrator. This is a remote, noncontact measurement and can be performed in situ for installed concentrators. Additional information regarding small-scale reflector waviness and surface reflectivity can also be obtained from the same measurement with additional analysis.
A high-gain, compact, nonimaging concentrator: RXI.
Miñano, J C; Gonźlez, J C; Benítez, P
1995-12-01
The design procedure of a new nonimaging concentrator (called an RXI) is explained. Rays that impinge on the concentrator aperture, within the acceptance angle, are directed to the receiver by means of one refraction, one reflection, and one total internal reflection. The concentrator can be made as a single dielectric piece (in which the receiver is immersed) whose aspect ratio (thickness/aperture diameter) is close to 1/3. Ray-tracing analysis of a rotational symmetric RXI shows total transmissions of greater than 94.5% (no absorption or reflection losses are considered) when the acceptance angle of the incoming rays is small (<3°) and when the receiver area is the smallest possible (maximal concentration.).
Three Specialized Innovations for FAST Wideband Receiver
NASA Astrophysics Data System (ADS)
Zhang, Xia; Yu, Xinying; Duan, Ran; Hao, Jie; Li, Di
2015-08-01
The National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) will soon finish the largest antenna in the world. Known as FAST, the Five-hundred-meter Aperture Spherical Radio Telescope will be the most sensitive single-dish radio telescope in the low frequency radio bands between 70 MHz and 3 GHz.To take advantage of its giant aperture, all relevant cutting-edge technology should be applied to FAST to ensure that it achieves the best possible overall performance. The wideband receiver that is currently under development can not only be directly applied to FAST, but also used for other Chinese radio telescopes, such as the Shanghai 65-meter telescope and the Xinjiang 110-meter telescope, to ensure that these telescopes are among the best in the world. Recently, rapid development related to this wideband receiver has been underway. In this paper, we will introduce three key aspects of the FAST wideband receiver project. First is the use of a high-performance analog-to-digital converter (ADC). With the cooperation of Hao Jie’s team from the Institute of Automation of the Chinese Academy of Sciences(CASIA), we have developed 3-Gsps,12-bit ADCs, which have not been used previously in astronomy, and we expect to realize the 3-GHz bandwidth in a single step by covering the entire bandwidth via interleaving or a complex fast Fourier transform (FFT).Second is the front-end analog signal integrated circuit board. We wish to achieve a series of amplification, attenuation, and mixing filtering operations on a single small board, thereby achieving digital control of the bandpass behavior both flexibly and highly-efficiently. This design will not only greatly reduce the required cost and power but will also make the best use of the digital-system’s flexibility. Third is optimization of the FFT: the existing FFT is not very efficient; therefore, we will optimize the FFT for large-scale operation. For this purpose, we intend to cascade two FFTs. Another possibility is to combine digital down conversion (DDC) with the FFT to achieve a flexible FFT.
New Millenium Inflatable Structures Technology
NASA Technical Reports Server (NTRS)
Mollerick, Ralph
1997-01-01
Specific applications where inflatable technology can enable or enhance future space missions are tabulated. The applicability of the inflatable technology to large aperture infra-red astronomy missions is discussed. Space flight validation and risk reduction are emphasized along with the importance of analytical tools in deriving structurally sound concepts and performing optimizations using compatible codes. Deployment dynamics control, fabrication techniques, and system testing are addressed.
Penning discharge ion source with self-cleaning aperture
Gavin, B.F.; MacGill, R.A.; Thatcher, R.K.
1980-11-10
An ion source of the Penning discharge type having a self-cleaning aperture is provided by a second dynode with an exit aperture in a position opposite a first dynode, from which the ions are sputtered, two opposing cathodes, each with an anode for accelerating electrons emitted from the cathodes into a cylindrical space defined by the first and second dynode. A support gas maintained in this space is ionized by the electrons. While the cathodes are supplied with a negative pulse to emit electrons, the first dynode is supplied with a negative pulse (e.g., -300 V) to attract atoms of the ionized gas (plasma). At the same time, the second dynode may also be supplied with a small voltage that is negative with respect to the plasma (e.g., -5 V) for tuning the position of the plasma miniscus for optimum extraction geometry. When the negative pulse to the first dynode is terminated, the second dynode is driven strongly negative (e.g., -600 V) thereby allowing heavy sputtering to take place for a short period to remove virtually all of the atoms deposited on the second dynode from material sputtered off the first dynode. An extractor immediately outside the exit aperture of the second dynode is maintained at ground potential while the anode, dynode, and cathode reference voltage is driven strongly positive (about +20 kV to +30 kV) so that ions accelerated through the aperture will be at ground potential. Material from the first dynode deposited on the second dynode will be sputtered, in time, to add to the ion beam.
Weak lensing shear and aperture mass from linear to non-linear scales
NASA Astrophysics Data System (ADS)
Munshi, Dipak; Valageas, Patrick; Barber, Andrew J.
2004-05-01
We describe the predictions for the smoothed weak lensing shear, γs, and aperture mass,Map, of two simple analytical models of the density field: the minimal tree model and the stellar model. Both models give identical results for the statistics of the three-dimensional density contrast smoothed over spherical cells and only differ by the detailed angular dependence of the many-body density correlations. We have shown in previous work that they also yield almost identical results for the probability distribution function (PDF) of the smoothed convergence, κs. We find that the two models give rather close results for both the shear and the positive tail of the aperture mass. However, we note that at small angular scales (θs<~ 2 arcmin) the tail of the PDF, , for negative Map shows a strong variation between the two models, and the stellar model actually breaks down for θs<~ 0.4 arcmin and Map < 0. This shows that the statistics of the aperture mass provides a very precise probe of the detailed structure of the density field, as it is sensitive to both the amplitude and the detailed angular behaviour of the many-body correlations. On the other hand, the minimal tree model shows good agreement with numerical simulations over all the scales and redshifts of interest, while both models provide a good description of the PDF, , of the smoothed shear components. Therefore, the shear and the aperture mass provide robust and complementary tools to measure the cosmological parameters as well as the detailed statistical properties of the density field.
NASA Astrophysics Data System (ADS)
Shedlock, Daniel
Compton backscatter imaging (CBI) is a single-sided imaging technique that uses the penetrating power of radiation and unique interaction properties of radiation with matter to image subsurface features. CBI has a variety of applications that include non-destructive interrogation, medical imaging, security and military applications. Radiography by selective detection (RSD), lateral migration radiography (LMR) and shadow aperture backscatter radiography (SABR) are different CBI techniques that are being optimized and developed. Radiography by selective detection (RSD) is a pencil beam Compton backscatter imaging technique that falls between highly collimated and uncollimated techniques. Radiography by selective detection uses a combination of single- and multiple-scatter photons from a projected area below a collimation plane to generate an image. As a result, the image has a combination of first- and multiple-scatter components. RSD techniques offer greater subsurface resolution than uncollimated techniques, at speeds at least an order of magnitude faster than highly collimated techniques. RSD scanning systems have evolved from a prototype into near market-ready scanning devices for use in a variety of single-sided imaging applications. The design has changed to incorporate state-of-the-art detectors and electronics optimized for backscatter imaging with an emphasis on versatility, efficiency and speed. The RSD system has become more stable, about 4 times faster, and 60% lighter while maintaining or improving image quality and contrast over the past 3 years. A new snapshot backscatter radiography (SBR) CBI technique, shadow aperture backscatter radiography (SABR), has been developed from concept and proof-of-principle to a functional laboratory prototype. SABR radiography uses digital detection media and shaded aperture configurations to generate near-surface Compton backscatter images without scanning, similar to how transmission radiographs are taken. Finally, a more inclusive theory of the factors affecting CBI contrast generation has tied together the past work of LMR with the more recent research in RSD. A variety of factors that induce changes in the backscatter photon field intensity (resulting in contrast changes in images) include: changes in the electron density field, attenuation changes along the entrance and exit paths, changes in the relative geometric positioning of the target, feature, illumination beam, and detectors. Understanding the interplay of how changes in each of these factors affects image contrast becomes essential to utilizing and optimizing RSD for different applications.
Autofocus algorithm for curvilinear SAR imaging
NASA Astrophysics Data System (ADS)
Bleszynski, E.; Bleszynski, M.; Jaroszewicz, T.
2012-05-01
We describe an approach to autofocusing for large apertures on curved SAR trajectories. It is a phase-gradient type method in which phase corrections compensating trajectory perturbations are estimated not directly from the image itself, but rather on the basis of partial" SAR data { functions of the slow and fast times { recon- structed (by an appropriate forward-projection procedure) from windowed scene patches, of sizes comparable to distances between distinct targets or localized features of the scene. The resulting partial data" can be shown to contain the same information on the phase perturbations as that in the original data, provided the frequencies of the perturbations do not exceed a quantity proportional to the patch size. The algorithm uses as input a sequence of conventional scene images based on moderate-size subapertures constituting the full aperture for which the phase corrections are to be determined. The subaperture images are formed with pixel sizes comparable to the range resolution which, for the optimal subaperture size, should be also approximately equal the cross-range resolution. The method does not restrict the size or shape of the synthetic aperture and can be incorporated in the data collection process in persistent sensing scenarios. The algorithm has been tested on the publicly available set of GOTCHA data, intentionally corrupted by random-walk-type trajectory uctuations (a possible model of errors caused by imprecise inertial navigation system readings) of maximum frequencies compatible with the selected patch size. It was able to eciently remove image corruption for apertures of sizes up to 360 degrees.
Analysis and design of wedge projection display system based on ray retracing method.
Lee, Chang-Kun; Lee, Taewon; Sung, Hyunsik; Min, Sung-Wook
2013-06-10
A design method for the wedge projection display system based on the ray retracing method is proposed. To analyze the principle of image formation on the inclined surface of the wedge-shaped waveguide, the bundle of rays is retraced from an imaging point on the inclined surface to the aperture of the waveguide. In consequence of ray retracing, we obtain the incident conditions of the ray, such as the position and the angle at the aperture, which provide clues for image formation. To illuminate the image formation, the concept of the equivalent imaging point is proposed, which is the intersection where the incident rays are extended over the space regardless of the refraction and reflection in the waveguide. Since the initial value of the rays arriving at the equivalent imaging point corresponds to that of the rays converging into the imaging point on the inclined surface, the image formation can be visualized by calculating the equivalent imaging point over the entire inclined surface. Then, we can find image characteristics, such as their size and position, and their degree of blur--by analyzing the distribution of the equivalent imaging point--and design the optimized wedge projection system by attaching the prism structure at the aperture. The simulation results show the feasibility of the ray retracing analysis and characterize the numerical relation between the waveguide parameters and the aperture structure for on-axis configuration. The experimental results verify the designed system based on the proposed method.
An innovative, highly sensitive receiver system for the Square Kilometre Array Mid Radio Telescope
NASA Astrophysics Data System (ADS)
Tan, Gie Han; Lehmensiek, Robert; Billade, Bhushan; Caputa, Krzysztof; Gauffre, Stéphane; Theron, Isak P.; Pantaleev, Miroslav; Ljusic, Zoran; Quertier, Benjamin; Peens-Hough, Adriaan
2016-07-01
The Square Kilometre Array (SKA) Project is a global science and engineering project realizing the next-generation radio telescopes operating in the metre and centimetre wavelengths regions. This paper addresses design concepts of the broadband, exceptionally sensitive receivers and reflector antennas deployed in the SKA1-Mid radio telescope to be located in South Africa. SKA1-Mid (350 MHz - 13.8 GHz with an option for an upper limit of 24 GHz) will consist of 133 reflector antennas using an unblocked aperture, offset Gregorian configuration with an effective diameter of 15 m. Details on the unblocked aperture Gregorian antennas, low noise front ends and advanced direct digitization receivers, are provided from a system design perspective. The unblocked aperture results in increased aperture efficiency and lower side-lobe levels compared to a traditional on-axis configuration. The low side-lobe level reduces the noise contribution due to ground pick-up but also makes the antenna less susceptible to ground-based RFI sources. The addition of extra shielding on the sub-reflector provides a further reduction of ground pick-up. The optical design of the SKA1-Mid reflector antenna has been tweaked using advanced EM simulation tools in combination with sophisticated models for sky, atmospheric and ground noise contributions. This optimal antenna design in combination with very low noise, partially cryogenic, receivers and wide instantaneous bandwidth provide excellent receiving sensitivity in combination with instrumental flexibility to accommodate a wide range of astronomical observation modes.
Lakshmanan, Manu N.; Greenberg, Joel A.; Samei, Ehsan; Kapadia, Anuj J.
2017-01-01
Abstract. Although transmission-based x-ray imaging is the most commonly used imaging approach for breast cancer detection, it exhibits false negative rates higher than 15%. To improve cancer detection accuracy, x-ray coherent scatter computed tomography (CSCT) has been explored to potentially detect cancer with greater consistency. However, the 10-min scan duration of CSCT limits its possible clinical applications. The coded aperture coherent scatter spectral imaging (CACSSI) technique has been shown to reduce scan time through enabling single-angle imaging while providing high detection accuracy. Here, we use Monte Carlo simulations to test analytical optimization studies of the CACSSI technique, specifically for detecting cancer in ex vivo breast samples. An anthropomorphic breast tissue phantom was modeled, a CACSSI imaging system was virtually simulated to image the phantom, a diagnostic voxel classification algorithm was applied to all reconstructed voxels in the phantom, and receiver-operator characteristics analysis of the voxel classification was used to evaluate and characterize the imaging system for a range of parameters that have been optimized in a prior analytical study. The results indicate that CACSSI is able to identify the distribution of cancerous and healthy tissues (i.e., fibroglandular, adipose, or a mix of the two) in tissue samples with a cancerous voxel identification area-under-the-curve of 0.94 through a scan lasting less than 10 s per slice. These results show that coded aperture scatter imaging has the potential to provide scatter images that automatically differentiate cancerous and healthy tissue within ex vivo samples. Furthermore, the results indicate potential CACSSI imaging system configurations for implementation in subsequent imaging development studies. PMID:28331884
Experimental optimization during SERS application
NASA Astrophysics Data System (ADS)
Laha, Ranjit; Das, Gour Mohan; Ranjan, Pranay; Dantham, Venkata Ramanaiah
2018-05-01
The well known surface enhanced Raman scattering (SERS) needs a lot of experimental optimization for its proper implementation. In this report, we demonstrate the efficient SERS using gold nanoparticles (AuNPs) on quartz plate. The AuNPs were prepared by depositing direct current sputtered Au thin film followed by suitable annealing. The parameters varied for getting best SERS effect were 1) Numerical Aperture of Raman objective lens and 2) Sputtering duration of Au film. It was found that AuNPs formed from the Au layer deposited for 40s and Raman objective lens of magnification 50X are the best combination for obtaining efficient SERS effect.
A Modal Approach to Compact MIMO Antenna Design
NASA Astrophysics Data System (ADS)
Yang, Binbin
MIMO (Multiple-Input Multiple-Output) technology offers new possibilities for wireless communication through transmission over multiple spatial channels, and enables linear increases in spectral efficiency as the number of the transmitting and receiving antennas increases. However, the physical implementation of such systems in compact devices encounters many physical constraints mainly from the design of multi-antennas. First, an antenna's bandwidth decreases dramatically as its electrical size reduces, a fact known as antenna Q limit; secondly, multiple antennas closely spaced tend to couple with each other, undermining MIMO performance. Though different MIMO antenna designs have been proposed in the literature, there is still a lack of a systematic design methodology and knowledge of performance limits. In this dissertation, we employ characteristic mode theory (CMT) as a powerful tool for MIMO antenna analysis and design. CMT allows us to examine each physical mode of the antenna aperture, and to access its many physical parameters without even exciting the antenna. For the first time, we propose efficient circuit models for MIMO antennas of arbitrary geometry using this modal decomposition technique. Those circuit models demonstrate the powerful physical insight of CMT for MIMO antenna modeling, and simplify MIMO antenna design problem to just the design of specific antenna structural modes and a modal feed network, making possible the separate design of antenna aperture and feeds. We therefore develop a feed-independent shape synthesis technique for optimization of broadband multi-mode apertures. Combining the shape synthesis and circuit modeling techniques for MIMO antennas, we propose a shape-first feed-next design methodology for MIMO antennas, and designed and fabricated two planar MIMO antennas, each occupying an aperture much smaller than the regular size of lambda/2 x lambda/2. Facilitated by the newly developed source formulation for antenna stored energy and recently reported work on antenna Q factor minimization, we extend the minimum Q limit to antennas of arbitrary geometry, and show that given an antenna aperture, any antenna design based on its substructure will result into minimum Q factors larger than or equal to that of the complete structure. This limit is much tighter than Chu's limit based on spherical modes, and applies to antennas of arbitrary geometry. Finally, considering the almost inevitable presence of mutual coupling effects within compact multiport antennas, we develop new decoupling networks (DN) and decoupling network synthesis techniques. An information-theoretic metric, information mismatch loss (Gammainfo), is defined for DN characterization. Based on this metric, the optimization of decoupling networks for broadband system performance is conducted, which demonstrates the limitation of the single-frequency decoupling techniques and room for improvement.
NASA Astrophysics Data System (ADS)
Labeyrie, A.; Coroller, H. L.; Residori, S.; Bortolozzo, U.; Huignard, J.; Riaud, P.
2010-10-01
Formation-flying arrays of many apertures in space, in the form of a “hypertelescope" imaging interferometer, can produce direct images of habitable planets. Designs proposed (Labeyrie et al. 2009) to NASA and ESA, however, require several actuators and sensors per spaceship to accurately control the formation flight, as is the case for other proposed interferometer flotillas. The ensuing complexity and cost has led these agencies to postpone the development of all such flotillas, in spite of their breakthrough resolution capability. The theory of hypertelescope imaging shows that more sub-apertures of smaller size produce more science for a given collecting area and array size. This suggests sub-apertures as small as 3 to 10 cm, in the form of laser-trapped mirrors. The mirrors are trapped axially in interference standing waves formed by a pair of counter-propagating laser beams, and have a deviating prismatic edge for transverse trapping. The flotilla of miniature satellites is fully passive, yet controlled with sub-wavelength accuracy, and can be deployed from a small delivery package. Following numerical simulations of the dynamic behaviour, some of us (SR & UB) began a laboratory experiment with a mirror suspended in a vacuum. Further testing aboard the International Space Station is considered in a second step before designing a full system with a kilometric size. Much larger sizes are possible in theory, toward a 100-1000 km Exo-Earth Imager capable of resolving colored patches of photosynthetic activity on habitable planets.
Beam shaping by using small-aperture SLM and DM in a high power laser
NASA Astrophysics Data System (ADS)
Li, Sensen; Lu, Zhiwei; Du, Pengyuan; Wang, Yulei; Ding, Lei; Yan, Xiusheng
2018-03-01
High-power laser plays an important role in many fields, such as directed energy weapon, optoelectronic contermeasures, inertial confinement fusion, industrial processing and scientific research. The uniform nearfield and wavefront are the important part of the beam quality for high power lasers, which is conducive to maintaining the high spatial beam quality in propagation. We demonstrate experimentally that the spatial intensity and wavefront distribution at the output is well compensated in the complex high-power solid-state laser system by using the small-aperture spatial light modulator (SLM) and deformable mirror (DM) in the front stage. The experimental setup is a hundred-Joule-level Nd:glass laser system operating at three wavelengths at 1053 nm (1ω), 527 nm (2ω) and 351 nm (3ω) with 3 ns pulse duration with the final output beam aperture of 60 mm. While the clear arperture of the electrically addressable SLM is less than 20 mm and the effective diameter of the 52-actuators DM is about 15 mm. In the beam shaping system, the key point is that the two front-stage beam shaping devices needs to precompensate the gain nonuniform and wavefront distortion of the laser system. The details of the iterative algorithm for improving the beam quality are presented. Experimental results show that output nearfield and wavefont are both nearly flat-topped with the nearfield modulation of 1.26:1 and wavefront peak-to-valley value of 0.29 λ at 1053nm after beam shaping.
NASA Astrophysics Data System (ADS)
Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit
2016-04-01
The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA-b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from both Sierra Madre and the Bowen Basin span similar ranges, indicating that the factor of increase in frequency (F) for a doubling of aperture size (A) shows similar relationships and variability from both sites. Despite their limitations, we conclude that fracture aperture-frequency power-law relationships are valid and, when interpreted carefully, provide a useful basis for comparing rock fracture distributions across different sites.
NASA Astrophysics Data System (ADS)
Chaudhuri, A.; Rajaram, H.; Viswanathan, H. S.; Zyvoloski, G.
2011-12-01
Hypogene karst systems are believed to develop when water flowing upward against the geothermal gradient dissolves limestone as it cools. We present a comprehensive THC model incorporating time-evolving fluid flow, heat transfer, buoyancy effects, multi-component reactive transport and aperture/permeability change to investigate the origin of hypogene karst systems. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. It also allows for rigorous representation of temperature-dependent fluid density and its influence on buoyancy forces at various stages of karstification. The model is applied to investigate karstification over geological time scales in a prototype mountain hydrologic system. In this system, a high water table maintained by mountain recharge, drives flow downward through the country rock and upward via a high-permeability fault/fracture. The pressure boundary conditions are maintained constant in time. The fluid flux through the fracture remains nearly constant even though the fracture aperture and permeability increase by dissolution, largely because the permeability of the country rock is not altered significantly due to slower dissolution rates. However, karstification by fracture dissolution is not impeded even though the fluid flux stays nearly constant. Forced and buoyant convection effects arise due to the increased permeability of the evolving fracture system. Since in reality the aperture varies significantly within the fracture plane, the initial fracture aperture is modeled as a heterogeneous random field. In such a heterogeneous aperture field, the water initially flows at a significant rate mainly through preferential flow paths connecting the relatively large aperture zones. Dissolution is more prominent at early time along these flow paths, and the aperture grows faster within these paths. With time, the aperture within small sub-regions of these preferential flow paths grows to a point where the permeability is large enough for the onset of buoyant convection. As a result, a multitude of buoyant convection cells form that take on a two-dimensional (2D) maze-like appearance, which could represent a 2D analog of the three-dimensional (3D) mazework pattern widely thought to be characteristic of hypogene cave systems. Although computational limitations limited us to 2D, we suggest that similar process interactions in a 3D network of fractures and faults could produce a 3D mazework.
Bogart, Justin A.; Cole, Bren E.; Boreen, Michael A.; Lippincott, Connor A.; Manor, Brian C.; Carroll, Patrick J.; Schelter, Eric J.
2016-01-01
Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNOx3–, featured a size-sensitive aperture formed of its three η2-(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)]2 species. Differences in the equilibrium constants Kdimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La–Sm and RE2 = Gd–Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early–late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation. PMID:27956636
Bogart, Justin A; Cole, Bren E; Boreen, Michael A; Lippincott, Connor A; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J
2016-12-27
Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNOx 3- , featured a size-sensitive aperture formed of its three η 2 -(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)] 2 species. Differences in the equilibrium constants K dimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La-Sm and RE2 = Gd-Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early-late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation.
Seismo-acoustic Signals Recorded at KSIAR, the Infrasound Array Installed at PS31
NASA Astrophysics Data System (ADS)
Kim, T. S.; Che, I. Y.; Jeon, J. S.; Chi, H. C.; Kang, I. B.
2014-12-01
One of International Monitoring System (IMS)'s primary seismic stations, PS31, called Korea Seismic Research Station (KSRS), was installed around Wonju, Korea in 1970s. It has been operated by US Air Force Technical Applications Center (AFTAC) for more than 40 years. KSRS is composed of 26 seismic sensors including 19 short period, 6 long period and 1 broad band seismometers. The 19 short period sensors were used to build an array with a 10-km aperture while the 6 long period sensors were used for a relatively long period array with a 40-km aperture. After KSRS was certified as an IMS station in 2006 by Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), Korea Institute of Geoscience and Mineral Resources (KIGAM) which is the Korea National Data Center started to take over responsibilities on the operation and maintenance of KSRS from AFTAC. In April of 2014, KIGAM installed an infrasound array, KSIAR, on the existing four short period seismic stations of KSRS, the sites KS05, KS06, KS07 and KS16. The collocated KSIAR changed KSRS from a seismic array into a seismo-acoustic array. The aperture of KSIAR is 3.3 km. KSIAR also has a 100-m small aperture infrasound array at KS07. The infrasound data from KSIAR except that from the site KS06 is being transmitted in real time to KIGAM with VPN and internet line. An initial analysis on seismo-acoustic signals originated from local and regional distance ranges has been performed since May 2014. The analysis with the utilization of an array process called Progressive Multi-Channel Correlation (PMCC) detected seismo-acoustic signals caused by various sources including small explosions in relation to constructing local tunnels and roads. Some of them were not found in the list of automatic bulletin of KIGAM. The seismo-acoustic signals recorded by KSIAR are supplying a useful information for discriminating local and regional man-made events from natural events.
Implications from Meteoric and Volcanic Infrasound Measured in the Netherlands
NASA Astrophysics Data System (ADS)
Evers, L.
2003-12-01
Infrasound observations started in the Netherlands in 1986. Since then, several array configurations and instruments have been developed, tested and made operational. Currently, three infrasound arrays are continuously measuring infrasound with in-house developed microbarometers. The array apertures vary from 30 to 1500 meters and the number of instruments from 6 to 16 microbarometers. The inter-array distance ranges from 50 up to 150 km. This dense network of infrasound arrays is used to distinguish between earthquakes and sources in the atmosphere. Sonic booms, for example, can be experienced in the same manner as small (gas induced) earthquakes. Furthermore, Comprehensive Nuclear-Test-Ban Treaty (CTBT) related research is done. Meteors are one of the few natural impulsive sources generating energy in kT TNT equivalent range. Therefore, the study of meteors is essential to the CTBT where infrasound is applied as monitoring technique. Studies of meteors in the Netherlands have shown the capability of infrasound to trace a meteor through the stratosphere. The propagation of infrasound is in first order dependent on the wind and temperature structure of the atmosphere. The meteor's path could be reconstructed by using ECMWF atmospheric models for wind and temperature. The results were compared to visual observations, confirming the location, direction and reported origin time. The accuracy of the localization mainly depends on the applied atmospheric model and array resolution. Successfully applying infrasound depends on the array configuration that should be based on the -frequency depend- spatial coherence of the signals of interest. The array aperture and inter-element distance will play a decisive role in detecting low signal-to-noise ratios. This is shown by results from studies on volcanic infrasound from Mt. Etna (Italy) detected in the Netherlands. Sub-array processing on the 16 element array revealed an increased detectability of infrasound for small aperture, 800 m, arrays, compared to large aperture, 1500 m, arrays.
Wavefield properties of a shallow long-period event and tremor at Kilauea Volcano, Hawaii
Saccorotti, G.; Chouet, B.; Dawson, P.
2001-01-01
The wavefields of tremor and a long-period (LP) event associated with the ongoing eruptive activity at Kilauea Volcano, Hawaii, are investigated using a combination of dense small-aperture (300 m) and sparse large-aperture (5 km) arrays deployed in the vicinity of the summit caldera. Measurements of azimuth and slowness for tremor recorded on the small-aperture array indicate a bimodal nature of the observed wavefield. At frequencies below 2 Hz, the wavefield is dominated by body waves impinging the array with steep incidence. These arrivals are attributed to the oceanic microseismic noise. In the 2-6 Hz band, the wavefield is dominated by waves propagating from sources located at shallow depths (<1 km) beneath the eastern edge of the Halemaumau pit crater. The hypocenter of the LP event, determined from frequency-slowness analyses combined with phase picks, appears to be located close to the source of tremor but at a shallower depth (<0.1 km). The wavefields of tremor and LP event are characterized by a complex composition of body and surface waves, whose propagation and polarization properties are strongly affected by topographic and structural features in the summit caldera region. Analyses of the directional properties of the wavefield in the 2-6 Hz band point to the directions of main scattering sources, which are consistent with pronounced velocity contrasts imaged in a high-resolution three-dimensional velocity model of the caldera region. The frequency and Q of the dominant peak observed in the spectra of the LP event may be explained as the dominant oscillation mode of a crack with scale length 20-100 m and aperture of a few centimeters filled with bubbly water. The mechanism driving the shallow tremor appears to be consistent with a sustained excitation originating in the oscillations of a bubbly cloud resulting from vesiculation and degassing in the magma. ?? 2001 Elsevier Science B.V. All rights reserved.
Small Unmanned Aerial Vehicles; DHS’s Answer to Border Surveillance Requirements
2013-03-01
5 of more than 4000 illegal aliens, including the seizure of more than 15,000 pounds of marijuana .13 In addition to the Predator UAVs being...payload includes two color video cameras, an infrared camera that offers night vision capability and synthetic aperture radar that provides high
Emerging Array Antenna Technologies at JPL
NASA Technical Reports Server (NTRS)
Huang, J.
1998-01-01
JPL/NASA's Earth remote sensing and deep-space exploration programs have been placing emphasis on their spacecraft's high-gain and large-aperture antennas. At the same time, however, low mass and small storage volume are demanded in order to reduce payload weight and reduce shroud size and thus reduce launch cost.
Multichannel error correction code decoder
NASA Technical Reports Server (NTRS)
Wagner, Paul K.; Ivancic, William D.
1993-01-01
A brief overview of a processing satellite for a mesh very-small-aperture (VSAT) communications network is provided. The multichannel error correction code (ECC) decoder system, the uplink signal generation and link simulation equipment, and the time-shared decoder are described. The testing is discussed. Applications of the time-shared decoder are recommended.
2016-01-22
applications. For space applications, attitude control systems can provide good angular control of the antenna aperture with small residual angular...Bilyeu, and G.R. Veal, Development of Flight Hardware for a Large Inflatable- Deployable Antenna Experiment , Acta Astronautica, Vol. 38, Nos. 4-8
A coupler for parasitic mode diagnosis in an X-band triaxial klystron amplifier
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ju, Jin-chuan; Zhang, Jun; Qi, Zu-min; Zhong, Hui-huang
2017-10-01
The traditional methods of parasitic mode excitation diagnosis in an X-band triaxial klystron amplifier (TKA) meet two difficulties: limited installation space and vacuum sealing. In order to solve these issues, a simple and compact coupler with good sealing performance, which can prevent air flow between the main and the auxiliary waveguides, is proposed and investigated experimentally. The coupler is designed with the aperture diffraction theory and the finite-different time-domain (FDTD) method. The designed coupler consists of a main coaxial waveguide (for microwave transmission) and a rectangular auxiliary waveguide (for parasitic mode diagnosis). The entire coupler structure has been fabricated by macromolecule polymer which is transparent to microwave signal in frequency range of X-band. The metal coating of about 200 microns has been performed through electroplating technique to ensure that the device operates well at high power. A small aperture is made in the metal coating. Hence, microwave can couple through the hole and the wave-transparent medium, whereas air flow is blocked by the wave-transparent medium. The coupling coefficient is analyzed and simulated with CST software. The coupler model is also included in particle-in-cell (PIC) simulation with CHIPIC software and the associated parasitic mode excitation is studied. A frequency component of 11.46 GHz is observed in the FFT of the electric field of the drift tube and its corresponding competition mode appears as TE61 mode according to the electric field distribution. Besides, a frequency component of 10.8 GHz is also observed in the FFT of the electric field. After optimization of TE61 mode suppression, an experiment of the TKA with the designed coupler is carried out and the parasitic mode excitation at 10.8 GHz is observed through the designed coupler.
NASA Astrophysics Data System (ADS)
McGraw, J.; Ackermann, M.
Recent years have seen significant interest in optical-infrared (OIR) space surveillance capabilities to complement and supplement radar-based sensors. To address this legitimate need for OIR sensors, the Air Force Research Laboratory has been working on several projects intended to meet SSA requirements in practical, fieldable and affordable packages. In particular, while the PanStarrs system is primarily an astronomy project, their well-designed telescope(s) will have substantial SSA capability, but the system, based on four 1.8m apertures on the same mount, will be a fixed location asset. For world-wide deployment, we are studying a smaller "PanStarrs derived" system which would be replicable and inexpensive. A fixed set of telescope arrays would provide substantial SSA search and monitor capability. These telescopes are also designed to be deployed in pairs in a standard cargo container package for theater SSA. With a 1.2m aperture and a 4.5deg FOV, each telescope would have the same etendue as its big brother PanStarrs telescope, but with image quality optimized for space surveillance rather than astronomy. The telescope is even scaled to use production PanStarrs focal plane arrays. A single 1.2m system has almost the same search rate for dim targets as any other system in development. Two such telescopes working together will exceed the performance of any SSA asset either in production or on the drawing boards. Because they are small they can be designed to be replicable and inexpensive and thus could be abandoned in place should the political climate at their deployment sites change for the worse.
NASA Astrophysics Data System (ADS)
Amalu, E. H.; Lui, Y. T.; Ekere, N. N.; Bhatti, R. S.; Takyi, G.
2011-01-01
The electronics manufacturing industry was quick to adopt and use the Surface Mount Technology (SMT) assembly technique on realization of its huge potentials in achieving smaller, lighter and low cost product implementations. Increasing global customer demand for miniaturized electronic products is a key driver in the design, development and wide application of high-density area array package format. Electronic components and their associated solder joints have reduced in size as the miniaturization trend in packaging continues to be challenged by printing through very small stencil apertures required for fine pitch flip-chip applications. At very narrow aperture sizes, solder paste rheology becomes crucial for consistent paste withdrawal. The deposition of consistent volume of solder from pad-to-pad is fundamental to minimizing surface mount assembly defects. This study investigates the relationship between volume of solder paste deposit (VSPD) and the volume of solder bump formed (VSBF) after reflow, and the effect of reflow profile parameters on lead-free solder bump formation and the associated solder joint integrity. The study uses a fractional factorial design (FFD) of 24-1 Ramp-Soak-Spike reflow profile, with all main effects and two-way interactions estimable to determine the optimal factorial combination. The results from the study show that the percentage change in the VSPD depends on the combination of the process parameters and reliability issues could become critical as the size of solder joints soldered on the same board assembly vary greatly. Mathematical models describe the relationships among VSPD, VSBF and theoretical volume of solder paste. Some factors have main effects across the volumes and a number of interactions exist among them. These results would be useful for R&D personnel in designing and implementing newer applications with finer-pitch interconnect.
NASA Astrophysics Data System (ADS)
Lin, Alexander; Johnson, Lindsay C.; Shokouhi, Sepideh; Peterson, Todd E.; Kupinski, Matthew A.
2015-03-01
In synthetic-collimator SPECT imaging, two detectors are placed at different distances behind a multi-pinhole aperture. This configuration allows for image detection at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. Image multiplexing the undesired overlapping between images due to photon origin uncertainty may occur in both detector planes and is often present in the second detector plane due to greater magnification. However, artifact-free image reconstruction is possible by combining data from both the front detector (little to no multiplexing) and the back detector (noticeable multiplexing). When the two detectors are used in tandem, spatial resolution is increased, allowing for a higher sensitivity-to-detector-area ratio. Due to variability in detector distances and pinhole spacings found in synthetic-collimator SPECT systems, a large parameter space must be examined to determine optimal imaging configurations. We chose to assess image quality based on the task of estimating activity in various regions of a mouse brain. Phantom objects were simulated using mouse brain data from the Magnetic Resonance Microimaging Neurological Atlas (MRM NeAt) and projected at different angles through models of a synthetic-collimator SPECT system, which was developed by collaborators at Vanderbilt University. Uptake in the different brain regions was modeled as being normally distributed about predetermined means and variances. We computed the performance of the Wiener estimator for the task of estimating activity in different regions of the mouse brain. Our results demonstrate the utility of the method for optimizing synthetic-collimator system design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Y; Colvill, E; O’Brien, R
2015-06-15
Purpose Large intrafraction relative motion of multiple targets is common in advanced head and neck, lung, abdominal, gynaecological and urological cancer, jeopardizing the treatment outcomes. The objective of this study is to develop a real-time adaptation strategy, for the first time, to accurately correct for the relative motion of multiple targets by reshaping the treatment field using the multi-leaf collimator (MLC). Methods The principle of tracking the simultaneously treated but differentially moving tumor targets is to determine the new aperture shape that conforms to the shifted targets. Three dimensional volumes representing the individual targets are projected to the beam’s eyemore » view. The leaf openings falling inside each 2D projection will be shifted according to the measured motion of each target to form the new aperture shape. Based on the updated beam shape, new leaf positions will be determined with optimized trade-off between the target underdose and healthy tissue overdose, and considerations of the physical constraints of the MLC. Taking a prostate cancer patient with pelvic lymph node involvement as an example, a preliminary dosimetric study was conducted to demonstrate the potential treatment improvement compared to the state-of- art adaptation technique which shifts the whole beam to track only one target. Results The world-first intrafraction adaptation system capable of reshaping the beam to correct for the relative motion of multiple targets has been developed. The dose in the static nodes and small bowel are closer to the planned distribution and the V45 of small bowel is decreased from 110cc to 75cc, corresponding to a 30% reduction by this technique compared to the state-of-art adaptation technique. Conclusion The developed adaptation system to correct for intrafraction relative motion of multiple targets will guarantee the tumour coverage and thus enable PTV margin reduction to minimize the high target dose to the adjacent organs-at-risk. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship and NHMRC Project Grant No. APP1042375.« less
Ultra-compact imaging system based on multi-aperture architecture
NASA Astrophysics Data System (ADS)
Meyer, Julia; Brückner, Andreas; Leitel, Robert; Dannberg, Peter; Bräuer, Andreas; Tünnermann, Andreas
2011-03-01
As a matter of course, cameras are integrated in the field of information and communication technology. It can be observed, that there is a trend that those cameras get smaller and at the same time cheaper. Because single aperture have a limit of miniaturization, while simultaneously keeping the same space-bandwidth-product and transmitting a wide field of view, there is a need of new ideas like the multi aperture optical systems. In the proposed camera system the image is formed with many different channels each consisting of four microlenses which are arranged one after another in different microlens arrays. A partial image which fits together with the neighbouring one is formed in every single channel, so that a real erect image is generated and a conventional image sensor can be used. The microoptical fabrication process and the assembly are well established and can be carried out on wafer-level. Laser writing is used for the fabrication of the masks. UV-lithography, a reflow process and UV-molding is needed for the fabrication of the apertures and the lenses. The developed system is very small in terms of both length and lateral dimensions and has a VGA resolution and a diagonal field of view of 65 degrees. This microoptical vision system is appropriate for being implemented in electronic devices such as webcams integrated in notebookdisplays.
An integral sunshade for optical reception antennas
NASA Technical Reports Server (NTRS)
Kerr, E. L.
1988-01-01
Optical reception antennas (telescopes) must be capable of receiving communications even when the deep-space laser source is located within a small angle of the Sun. Direst sunlight must not be allowed to shine on the primary reflector of an optical reception antenna, because too much light would be scattered into the signal detectors. A conventional sunshade that does not obstruct the antenna aperture would have to be about five times longer than its diameter in order to receive optical communications at a solar elongation of 12 degrees without interference. Such a long sunshade could not be accommodated within the dome of any existing large-aperture astronomical facility, and providing a new dome large enough would be prohibitively expensive. It is also desirable to reduce the amount of energy a space-based large-aperture optical reception facility would expend orienting a structure with such a sizable moment of inertia. Since a large aperture optical reception antenna will probably have a hexagonally segmented primary reflector, a sunshade consisting of hexagonal tubes can be mounted in alignment with the segmentation without producing any additional geometric obstruction. An analysis of the duration and recurrence of solar-conjunction communications outages (caused when a deep-space probe near an outer planet appears to be closer to the Sun than a given minimum solar elongation), and the design equations for the integral sunshade are appended.
Embedded electronics for a video-rate distributed aperture passive millimeter-wave imager
NASA Astrophysics Data System (ADS)
Curt, Petersen F.; Bonnett, James; Schuetz, Christopher A.; Martin, Richard D.
2013-05-01
Optical upconversion for a distributed aperture millimeter wave imaging system is highly beneficial due to its superior bandwidth and limited susceptibility to EMI. These features mean the same technology can be used to collect information across a wide spectrum, as well as in harsh environments. Some practical uses of this technology include safety of flight in degraded visual environments (DVE), imaging through smoke and fog, and even electronic warfare. Using fiber-optics in the distributed aperture poses a particularly challenging problem with respect to maintaining coherence of the information between channels. In order to capture an image, the antenna aperture must be electronically steered and focused to a particular distance. Further, the state of the phased array must be maintained, even as environmental factors such as vibration, temperature and humidity adversely affect the propagation of the signals through the optical fibers. This phenomenon cannot be avoided or mitigated, but rather must be compensated for using a closed-loop control system. In this paper, we present an implementation of embedded electronics designed specifically for this purpose. This novel architecture is efficiently small, scalable to many simultaneously operating channels and sufficiently robust. We present our results, which include integration into a 220 channel imager and phase stability measurements as the system is stressed according to MIL-STD-810F vibration profiles of an H-53E heavy-lift helicopter.
Kremer, Y; Léger, J-F; Lapole, R; Honnorat, N; Candela, Y; Dieudonné, S; Bourdieu, L
2008-07-07
Acousto-optic deflectors (AOD) are promising ultrafast scanners for non-linear microscopy. Their use has been limited until now by their small scanning range and by the spatial and temporal dispersions of the laser beam going through the deflectors. We show that the use of AOD of large aperture (13mm) compared to standard deflectors allows accessing much larger field of view while minimizing spatio-temporal distortions. An acousto-optic modulator (AOM) placed at distance of the AOD is used to compensate spatial and temporal dispersions. Fine tuning of the AOM-AOD setup using a frequency-resolved optical gating (GRENOUILLE) allows elimination of pulse front tilt whereas spatial chirp is minimized thanks to the large aperture AOD.
Detection of low-contrast images in film-grain noise.
Naderi, F; Sawchuk, A A
1978-09-15
When low contrast photographic images are digitized by a very small aperture, extreme film-grain noise almost completely obliterates the image information. Using a large aperture to average out the noise destroys the fine details of the image. In these situations conventional statistical restoration techniques have little effect, and well chosen heuristic algorithms have yielded better results. In this paper we analyze the noisecheating algorithm of Zweig et al. [J. Opt. Soc. Am. 65, 1347 (1975)] and show that it can be justified by classical maximum-likelihood detection theory. A more general algorithm applicable to a broader class of images is then developed by considering the signal-dependent nature of film-grain noise. Finally, a Bayesian detection algorithm with improved performance is presented.
Spool piece aperture: warm to cold temperature position changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInturff, A.D.
1982-12-01
In an effort to determine the position of the correction coil system contained in the spool piece in operation, a series of experiments were done in Lab 2 during the cryogenic testing of the spools. A special turn-around box was constructed which had a window through which a sighting could be made of the aperture of the coil packages. A set of four survey monuments were constructed with three point suspension, which were back-lighted by placing a small bulb behind each target which could be turned on individually external to the spool string while under vacuum and at any temperature.more » The targets were located at the ends of each correction coil package in their beam tube.« less
He, Chengbing; Xi, Rui; Wang, Han; Jing, Lianyou; Shi, Wentao; Zhang, Qunfei
2017-01-01
Phase-coherent underwater acoustic (UWA) communication systems typically employ multiple hydrophones in the receiver to achieve spatial diversity gain. However, small underwater platforms can only carry a single transducer which can not provide spatial diversity gain. In this paper, we propose single-carrier with frequency domain equalization (SC-FDE) for phase-coherent synthetic aperture acoustic communications in which a virtual array is generated by the relative motion between the transmitter and the receiver. This paper presents synthetic aperture acoustic communication results using SC-FDE through data collected during a lake experiment in January 2016. The performance of two receiver algorithms is analyzed and compared, including the frequency domain equalizer (FDE) and the hybrid time frequency domain equalizer (HTFDE). The distances between the transmitter and the receiver in the experiment were about 5 km. The bit error rate (BER) and output signal-to-noise ratio (SNR) performances with different receiver elements and transmission numbers were presented. After combining multiple transmissions, error-free reception using a convolution code with a data rate of 8 kbps was demonstrated. PMID:28684683
Guarded capacitance probes for measuring particle concentration and flow
Louge, M.Y.
1996-08-13
Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.
Guarded capacitance probes for measuring particle concentration and flow
Louge, M.Y.
1995-10-17
Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.
Guarded capacitance probes for measuring particle concentration and flow
Louge, Michel Y.
1995-01-01
Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.
Guarded capacitance probes for measuring particle concentration and flow
Louge, Michel Y.
1996-01-01
Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.
Detection of Explosive Devices using X-ray Backscatter Radiation
NASA Astrophysics Data System (ADS)
Faust, Anthony A.
2002-09-01
It is our goal to develop a coded aperture based X-ray backscatter imaging detector that will provide sufficient speed, contrast and spatial resolution to detect Antipersonnel Landmines and Improvised Explosive Devices (IED). While our final objective is to field a hand-held detector, we have currently constrained ourselves to a design that can be fielded on a small robotic platform. Coded aperture imaging has been used by the observational gamma astronomy community for a number of years. However, it has been the recent advances in the field of medical nuclear imaging which has allowed for the application of the technique to a backscatter scenario. In addition, driven by requirements in medical applications, advances in X-ray detection are continually being made, and detectors are now being produced that are faster, cheaper and lighter than those only a decade ago. With these advances, a coded aperture hand-held imaging system has only recently become a possibility. This paper will begin with an introduction to the technique, identify recent advances which have made this approach possible, present a simulated example case, and conclude with a discussion on future work.
Optimization of Dish Solar Collectors with and without Secondary Concentrators
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1982-01-01
Methods for optimizing parabolic dish solar collectors and the consequent effects of various optical, thermal, mechanical, and cost variables are examined. The most important performance optimization is adjusting the receiver aperture to maximize collector efficiency. Other parameters that can be adjusted to optimize efficiency include focal length, and, if a heat engine is used, the receiver temperature. The efficiency maxima associated with focal length and receiver temperature are relatively broad; it may, accordingly, be desirable to design somewhat away from the maxima. Performance optimization is sensitive to the slope and specularity errors of the concentrator. Other optical and thermal variables affecting optimization are the reflectance and blocking factor of the concentrator, the absorptance and losses of the receiver, and, if a heat engine is used, the shape of the engine efficiency versus temperature curve. Performance may sometimes be improved by use of an additional optical element (a secondary concentrator) or a receiver window if the errors of the primary concentrator are large or the receiver temperature is high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGarry, Conor K., E-mail: conor.mcgarry@belfasttrust.hscni.net; Bokrantz, Rasmus; RaySearch Laboratories, Stockholm
2014-10-01
Efficacy of inverse planning is becoming increasingly important for advanced radiotherapy techniques. This study’s aims were to validate multicriteria optimization (MCO) in RayStation (v2.4, RaySearch Laboratories, Sweden) against standard intensity-modulated radiation therapy (IMRT) optimization in Oncentra (v4.1, Nucletron BV, the Netherlands) and characterize dose differences due to conversion of navigated MCO plans into deliverable multileaf collimator apertures. Step-and-shoot IMRT plans were created for 10 patients with localized prostate cancer using both standard optimization and MCO. Acceptable standard IMRT plans with minimal average rectal dose were chosen for comparison with deliverable MCO plans. The trade-off was, for the MCO plans, managedmore » through a user interface that permits continuous navigation between fluence-based plans. Navigated MCO plans were made deliverable at incremental steps along a trajectory between maximal target homogeneity and maximal rectal sparing. Dosimetric differences between navigated and deliverable MCO plans were also quantified. MCO plans, chosen as acceptable under navigated and deliverable conditions resulted in similar rectal sparing compared with standard optimization (33.7 ± 1.8 Gy vs 35.5 ± 4.2 Gy, p = 0.117). The dose differences between navigated and deliverable MCO plans increased as higher priority was placed on rectal avoidance. If the best possible deliverable MCO was chosen, a significant reduction in rectal dose was observed in comparison with standard optimization (30.6 ± 1.4 Gy vs 35.5 ± 4.2 Gy, p = 0.047). Improvements were, however, to some extent, at the expense of less conformal dose distributions, which resulted in significantly higher doses to the bladder for 2 of the 3 tolerance levels. In conclusion, similar IMRT plans can be created for patients with prostate cancer using MCO compared with standard optimization. Limitations exist within MCO regarding conversion of navigated plans to deliverable apertures, particularly for plans that emphasize avoidance of critical structures. Minimizing these differences would result in better quality treatments for patients with prostate cancer who were treated with radiotherapy using MCO plans.« less
Rost, S.; Earle, P.S.
2010-01-01
We detect seismic scattering from the core-mantle boundary related to the phase PKKP (PK. KP) in data from small aperture seismic arrays in India and Canada. The detection of these scattered waves in data from small aperture arrays is new and allows a better characterization of the fine-scale structure of the deep Earth especially in the southern hemisphere. Their slowness vector is determined from array processing allowing location of the heterogeneities at the core-mantle boundary using back-projection techniques through 1D Earth models. We identify strong scattering at the core-mantle boundary (CMB) beneath the Caribbean, Patagonia and the Antarctic Peninsula as well as beneath southern Africa. An analysis of the scattering regions relative to sources and receivers indicates that these regions represent areas of increased scattering likely due to increased heterogeneities close to the CMB. The 1. Hz array data used in this study is most sensitive to heterogeneity with scale lengths of about 10. km. Given the small size of the scatterers, a chemical origin of the heterogeneities is likely. By comparing the location of the fine-scale heterogeneity to geodynamical models and tomographic images, we identify different scattering mechanisms in regions related to subduction (Caribbean and Patagonia) and dense thermo chemical piles (Southern Africa). ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Chu, Hongjun; Qi, Jiaran; Xiao, Shanshan; Qiu, Jinghui
2018-04-01
In this paper, we present a flat transmission-type focusing metasurface for the near-field passive millimeter-wave (PMMW) imaging systems. Considering the non-uniform wavefront of the actual feeding horn, the metasurface is configured by unit cells consisting of coaxial annular apertures and is optimized to achieve broadband, high spatial resolution, and polarization insensitive properties important for PMMW imaging applications in the frequency range from 33 GHz to 37 GHz, with the focal spot as small as 0.43λ0 (@35 GHz). A prototype of the proposed metasurface is fabricated, and the measurement results fairly agree with the simulation ones. Furthermore, an experimental single-sensor PMMW imaging system is constructed based on the metasurface and a Ka-band direct detection radiometer. The experimental results show that the azimuth resolution of the system can reach approximately 4 mm (≈0.47λ0). It is shown that the proposed metasurface can potentially replace the bulky dielectric-lens or reflector antenna to achieve possibly more compact PMMW imaging systems with high spatial resolution approaching the diffraction-limit.
Kim, Jungsuk; Maitra, Raj D; Pedrotti, Ken; Dunbar, William B
2013-02-01
In this paper, we demonstrate the application of a novel current-measuring sensor (CMS) customized for nanopore applications. The low-noise CMS is fabricated in a 0.35μm CMOS process and is implemented in experiments involving DNA captured in an α-hemolysin (α-HL) nanopore. Specifically, the CMS is used to build a current amplitude map as a function of varying positions of a single-abasic residue within a homopolymer cytosine single-stranded DNA (ssDNA) that is captured and held in the pore. Each ssDNA is immobilized using a biotin-streptavidin linkage. Five different DNA templates are measured and compared: one all-cytosine ssDNA, and four with a single-abasic residue substitution that resides in or near the ~1.5nm aperture of the α-HL channel when the strand is immobilized. The CMOS CMS is shown to resolves the ~5Å displacements of the abasic residue within the varying templates. The demonstration represents an advance in application-specific circuitry that is optimized for small-footprint nanopore applications, including genomic sequencing.
Performance of an electron gun for a high-brightness X-ray generator
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-01-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm−2. The beam sizes at the rotating anticathode must therefore be within 1.0 mm × 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm × 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm × 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached ∼60 mA with some thermal problems. PMID:18421153
Brown, Andrea M; Hahn, Daniel V; Brown, David M; Rolander, Nathan W; Bair, Chun-Huei; Sluz, Joseph E
2012-06-20
A gimbal-free wide field-of-regard (FOR) optical receiver has been built in a laboratory setting for proof-of-concept testing. Multiple datasets are presented that examine the overall FOR of the system and the receiver's ability to track and collect a signal from a moving source. The design is not intended to compete with traditional free space optical communication systems, but rather offer an alternative design that minimizes the number and complexity of mechanical components required at the surface of a small mobile platform. The receiver is composed of a micro-lens array and hexagonal bundles of large core optical fibers that route the optical signal to remote detectors and electronics. Each fiber in the bundle collects power from a distinct solid angle of space and a piezo-electric transducer is used to translate the micro-lens array and optimize coupling into a given fiber core in the bundle. The micro-lens to fiber bundle design is scalable, modular, and can be replicated in an array to increase aperture size.
Information theory analysis of sensor-array imaging systems for computer vision
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.; Self, M. O.
1983-01-01
Information theory is used to assess the performance of sensor-array imaging systems, with emphasis on the performance obtained with image-plane signal processing. By electronically controlling the spatial response of the imaging system, as suggested by the mechanism of human vision, it is possible to trade-off edge enhancement for sensitivity, increase dynamic range, and reduce data transmission. Computational results show that: signal information density varies little with large variations in the statistical properties of random radiance fields; most information (generally about 85 to 95 percent) is contained in the signal intensity transitions rather than levels; and performance is optimized when the OTF of the imaging system is nearly limited to the sampling passband to minimize aliasing at the cost of blurring, and the SNR is very high to permit the retrieval of small spatial detail from the extensively blurred signal. Shading the lens aperture transmittance to increase depth of field and using a regular hexagonal sensor-array instead of square lattice to decrease sensitivity to edge orientation also improves the signal information density up to about 30 percent at high SNRs.
Ion source and beam guiding studies for an API neutron generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sy, A.; Ji, Q.; Persaud, A.
2013-04-19
Recently developed neutron imaging methods require high neutron yields for fast imaging times and small beam widths for good imaging resolution. For ion sources with low current density to be viable for these types of imaging methods, large extraction apertures and beam focusing must be used. We present recent work on the optimization of a Penning-type ion source for neutron generator applications. Two multi-cusp magnet configurations have been tested and are shown to increase the extracted ion current density over operation without multi-cusp magnetic fields. The use of multi-cusp magnetic confinement and gold electrode surfaces have resulted in increased ionmore » current density, up to 2.2 mA/cm{sup 2}. Passive beam focusing using tapered dielectric capillaries has been explored due to its potential for beam compression without the cost and complexity issues associated with active focusing elements. Initial results from first experiments indicate the possibility of beam compression. Further work is required to evaluate the viability of such focusing methods for associated particle imaging (API) systems.« less
Large Aperture "Photon Bucket" Optical Receiver Performance in High Background Environments
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor A.; Hoppe, D.
2011-01-01
The potential development of large aperture groundbased "photon bucket" optical receivers for deep space communications, with acceptable performance even when pointing close to the sun, is receiving considerable attention. Sunlight scattered by the atmosphere becomes significant at micron wavelengths when pointing to a few degrees from the sun, even with the narrowest bandwidth optical filters. In addition, high quality optical apertures in the 10-30 meter range are costly and difficult to build with accurate surfaces to ensure narrow fields-of-view (FOV). One approach currently under consideration is to polish the aluminum reflector panels of large 34-meter microwave antennas to high reflectance, and accept the relatively large FOV generated by state-of-the-art polished aluminum panels with rms surface accuracies on the order of a few microns, corresponding to several-hundred micro-radian FOV, hence generating centimeter-diameter focused spots at the Cassegrain focus of 34-meter antennas. Assuming pulse-position modulation (PPM) and Poisson-distributed photon-counting detection, a "polished panel" photon-bucket receiver with large FOV will collect hundreds of background photons per PPM slot, along with comparable signal photons due to its large aperture. It is demonstrated that communications performance in terms of PPM symbol-error probability in high-background high-signal environments depends more strongly on signal than on background photons, implying that large increases in background energy can be compensated by a disproportionally small increase in signal energy. This surprising result suggests that large optical apertures with relatively poor surface quality may nevertheless provide acceptable performance for deep-space optical communications, potentially enabling the construction of cost-effective hybrid RF/optical receivers in the future.
Teaching Fraunhofer diffraction via experimental and simulated images in the laboratory
NASA Astrophysics Data System (ADS)
Peinado, Alba; Vidal, Josep; Escalera, Juan Carlos; Lizana, Angel; Campos, Juan; Yzuel, Maria
2012-10-01
Diffraction is an important phenomenon introduced to Physics university students in a subject of Fundamentals of Optics. In addition, in the Physics Degree syllabus of the Universitat Autònoma de Barcelona, there is an elective subject in Applied Optics. In this subject, diverse diffraction concepts are discussed in-depth from different points of view: theory, experiments in the laboratory and computing exercises. In this work, we have focused on the process of teaching Fraunhofer diffraction through laboratory training. Our approach involves students working in small groups. They visualize and acquire some important diffraction patterns with a CCD camera, such as those produced by a slit, a circular aperture or a grating. First, each group calibrates the CCD camera, that is to say, they obtain the relation between the distances in the diffraction plane in millimeters and in the computer screen in pixels. Afterwards, they measure the significant distances in the diffraction patterns and using the appropriate diffraction formalism, they calculate the size of the analyzed apertures. Concomitantly, students grasp the convolution theorem in the Fourier domain by analyzing the diffraction of 2-D gratings of elemental apertures. Finally, the learners use a specific software to simulate diffraction patterns of different apertures. They can control several parameters: shape, size and number of apertures, 1-D or 2-D gratings, wavelength, focal lens or pixel size.Therefore, the program allows them to reproduce the images obtained experimentally, and generate others by changingcertain parameters. This software has been created in our research group, and it is freely distributed to the students in order to help their learning of diffraction. We have observed that these hands on experiments help students to consolidate their theoretical knowledge of diffraction in a pedagogical and stimulating learning process.
Integrated electrochromic aperture diaphragm
NASA Astrophysics Data System (ADS)
Deutschmann, T.; Oesterschulze, E.
2014-05-01
In the last years, the triumphal march of handheld electronics with integrated cameras has opened amazing fields for small high performing optical systems. For this purpose miniaturized iris apertures are of practical importance because they are essential to control both the dynamic range of the imaging system and the depth of focus. Therefore, we invented a micro optical iris based on an electrochromic (EC) material. This material changes its absorption in response to an applied voltage. A coaxial arrangement of annular rings of the EC material is used to establish an iris aperture without need of any mechanical moving parts. The advantages of this device do not only arise from the space-saving design with a thickness of the device layer of 50μm. But it also benefits from low power consumption. In fact, its transmission state is stable in an open circuit, phrased memory effect. Only changes of the absorption require a voltage of up to 2 V. In contrast to mechanical iris apertures the absorption may be controlled on an analog scale offering the opportunity for apodization. These properties make our device the ideal candidate for battery powered and space-saving systems. We present optical measurements concerning control of the transmitted intensity and depth of focus, and studies dealing with switching times, light scattering, and stability. While the EC polymer used in this study still has limitations concerning color and contrast, the presented device features all functions of an iris aperture. In contrast to conventional devices it offers some special features. Owing to the variable chemistry of the EC material, its spectral response may be adjusted to certain applications like color filtering in different spectral regimes (UV, optical range, infrared). Furthermore, all segments may be switched individually to establish functions like spatial Fourier filtering or lateral tunable intensity filters.
Stitching interferometry for ellipsoidal x-ray mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi
2016-05-15
Ellipsoidal mirrors, which can efficiently produce a two-dimensional focusing beam with a single mirror, are superior x-ray focusing optics, especially when compared to elliptical-cylinder mirrors in the Kirkpatrick–Baez geometry. However, nano-focusing ellipsoidal mirrors are not commonly used for x-ray optics because achieving the accuracy required for the surface metrology of nano-focusing ellipsoidal mirrors is difficult due to their small radius of curvature along the short ellipsoidal axis. Here, we developed a surface metrology system for nano-focusing ellipsoidal mirrors using stitching interferometric techniques. The developed system simultaneously measures sub-aperture shapes with a microscopic interferometer and the tilt angles of the sub-aperturemore » shapes with a large Fizeau interferometer. After correcting the systematic errors included in the sub-aperture shapes, the entire mirror shape is calculated by stitching the sub-aperture shapes based on the obtained relative angles between partially overlapped sub-apertures. In this study, we developed correction methods for systematic errors in sub-aperture shapes that originated from off-axis aberrations produced in the optics of the microscopic interferometer. The systematic errors on an ellipsoidal mirror were estimated by measuring a series of tilted plane substrates and the ellipsoidal substrate. From measurements of an ellipsoidal mirror with a 3.6-mm radius of curvature at the mirror center, we obtained a measurement repeatability of 0.51 nm (root-mean-square) in an assessment area of 0.5 mm × 99.18 mm. This value satisfies the requirements for surface metrology of nano-focusing x-ray mirrors. Thus, the developed metrology system should be applicable for fabricating nano-focusing ellipsoidal mirrors.« less
Sediment traps for measuring onslope surface sediment movement
Wade G. Wells; Peter M. Wohlgemuth
1987-01-01
Two types of small (30-cm aperture) sheet metal sediment traps were developed to monitor onslope surface sediment transport. Traditionally, sediment traps and erosion pins have been used to measure the onslope movement of surficial soil material. While pins may be appropriate for documenting landscape denudation, traps are more suitable for monitoring downslope...
Hubless satellite communications networks
NASA Technical Reports Server (NTRS)
Robinson, Peter Alan
1994-01-01
Frequency Comb Multiple Access (FCMA) is a new combined modulation and multiple access method which will allow cheap hubless Very Small Aperture Terminal (VSAT) networks to be constructed. Theoretical results show bandwidth efficiency and power efficiency improvements over other modulation and multiple access methods. Costs of the VSAT network are reduced dramatically since a hub station is not required.
CCD Astrometric Measurements of WDS 00420-5547 MLO 1
NASA Astrophysics Data System (ADS)
Kith, Camerin; Wilson, Jake; Agro, Sam; Toms, Sarah; Andreski, Bella; Torrance, Emily; Tock, Kalée.
2018-01-01
The position angle and separation of WDS 00420-5547 MLO 1 has been measured and noted in 20 publications since Robert Lewis Elleryâs initial observation in 1877. This system was observed using the R-COP robotic telescope in Australia, which is part of the Skynet Robotic Telescope Network. Their small separation made it difficult to resolve the two stars, except for the lowest-exposure-time images (5 seconds and 10 seconds) using a small measuring aperture (3-4 pixel aperture radius). AstroImageJ software was used to reduce the data and contribute a new measurement: position angle 165° ± 0.63 (1± SEM) and separation ?= 6.0 arc sec ± 0.12 (1 ± SEM) on 2017.093 (Besselian date). The observation was plotted along with the past observations using the Desmos plotting tool, which allows the date to be displayed next to each position of the secondary. Despite the fact that these stars are a Common Proper Motion pair, the data and plot do not currently support classification of this system as one that is gravitationally bound.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Gao, Feng; Dong, Junyu; Qi, Qiang
2018-04-01
Synthetic aperture radar (SAR) image is independent on atmospheric conditions, and it is the ideal image source for change detection. Existing methods directly analysis all the regions in the speckle noise contaminated difference image. The performance of these methods is easily affected by small noisy regions. In this paper, we proposed a novel change detection framework for saliency-guided change detection based on pattern and intensity distinctiveness analysis. The saliency analysis step can remove small noisy regions, and therefore makes the proposed method more robust to the speckle noise. In the proposed method, the log-ratio operator is first utilized to obtain a difference image (DI). Then, the saliency detection method based on pattern and intensity distinctiveness analysis is utilized to obtain the changed region candidates. Finally, principal component analysis and k-means clustering are employed to analysis pixels in the changed region candidates. Thus, the final change map can be obtained by classifying these pixels into changed or unchanged class. The experiment results on two real SAR images datasets have demonstrated the effectiveness of the proposed method.
Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.
Rumyantsev, Valery D
2010-04-26
High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.
EDSN Development Lessons Learned
NASA Technical Reports Server (NTRS)
Chartres, James; Sanchez, Hugo S.; Hanson, John
2014-01-01
The Edison Demonstration of Smallsat Networks (EDSN) is a technology demonstration mission that provides a proof of concept for a constellation or swarm of satellites performing coordinated activities. Networked swarms of small spacecraft will open new horizons in astronomy, Earth observations and solar physics. Their range of applications include the formation of synthetic aperture radars for Earth sensing systems, large aperture observatories for next generation telescopes and the collection of spatially distributed measurements of time varying systems, probing the Earths magnetosphere, Earth-Sun interactions and the Earths geopotential. EDSN is a swarm of eight 1.5U Cubesats with crosslink, downlink and science collection capabilities developed by the NASA Ames Research Center under the Small Spacecraft Technology Program (SSTP) within the NASA Space Technology Mission Directorate (STMD). This paper describes the concept of operations of the mission and planned scientific measurements. The development of the 8 satellites for EDSN necessitated the fabrication of prototypes, Flatsats and a total of 16 satellites to support the concurrent engineering and rapid development. This paper has a specific focus on the development, integration and testing of a large number of units including the lessons learned throughout the project development.
Kolb, Gregory J [Albuquerque, NM
2012-02-07
A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.
NASA Astrophysics Data System (ADS)
Zhang, Yunfei; Huang, Wen; Zheng, Yongcheng; Ji, Fang; Xu, Min; Duan, Zhixin; Luo, Qing; Liu, Qian; Xiao, Hong
2016-03-01
Zinc sulfide is a kind of typical infrared optical material, commonly produced using single point diamond turning (SPDT). SPDT can efficiently produce zinc sulfide aspheric surfaces with micro-roughness and acceptable figure error. However the tool marks left by the diamond turning process cause high micro-roughness that degrades the optical performance when used in the visible region of the spectrum. Magnetorheological finishing (MRF) is a deterministic, sub-aperture polishing technology that is very helpful in improving both surface micro-roughness and surface figure.This paper mainly investigates the MRF technology of large aperture off-axis aspheric optical surfaces for zinc sulfide. The topological structure and coordinate transformation of a MRF machine tool PKC1200Q2 are analyzed and its kinematics is calculated, then the post-processing algorithm model of MRF for an optical lens is established. By taking the post-processing of off-axis aspheric surfacefor example, a post-processing algorithm that can be used for a raster tool path is deduced and the errors produced by the approximate treatment are analyzed. A polishing algorithm of trajectory planning and dwell time based on matrix equation and optimization theory is presented in this paper. Adopting this algorithm an experiment is performed to machining a large-aperture off-axis aspheric surface on the MRF machine developed by ourselves. After several times' polishing, the figure accuracy PV is proved from 3.3λ to 2.0λ and RMS from 0.451λ to 0.327λ. This algorithm is used to polish the other shapes including spheres, aspheres and prisms.
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Tian, Menjiya; Quan, Xusong; Pei, Guoqing; Wang, Hui; Liu, Tianye; Long, Kai; Xiong, Zhao; Rong, Yiming
2017-11-01
Surface control and phase matching of large laser conversion optics are urgent requirements and huge challenges in high-power solid-state laser facilities. A self-adaptive, nanocompensating mounting configuration of a large aperture potassium dihydrogen phosphate (KDP) frequency doubler is proposed based on a lever-type surface correction mechanism. A mechanical, numerical, and optical model is developed and employed to evaluate comprehensive performance of this mounting method. The results validate the method's advantages of surface adjustment and phase matching improvement. In addition, the optimal value of the modulation force is figured out through a series of simulations and calculations.
NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Basinger, Scott; Arumugam, Darmindra; Swartzlander, Grover
2017-01-01
Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exo-planet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Furthermore, future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities. Our objective in Phase II was to experimentally and numerically investigate how to optically manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an adaptable ultra-lightweight surface. Our solution is based on the aperture being an engineered granular medium, instead of a conventional monolithic aperture. This allows building of apertures at a reduced cost, enables extremely fault-tolerant apertures that cannot otherwise be made, and directly enables classes of missions for exoplanet detection based on Fourier spectroscopy with tight angular resolution and innovative radar systems for remote sensing. In this task, we have examined the advanced feasibility of a crosscutting concept that contributes new technological approaches for space imaging systems, autonomous systems, and space applications of optical manipulation. The proposed investigation has matured the concept that we started in Phase I to TRL 3, identifying technology gaps and candidate system architectures for the space-borne cloud as an aperture.
Essaidi, N; Chen, Y; Kottler, V; Cambril, E; Mayeux, C; Ronarch, N; Vieu, C
1998-02-01
The current scanning near-field optical microscopy has been developed with optical-fiber probes obtained by use of either laser-heated pulling or chemical etching. For high-resolution near-field imaging, the detected signal is rapidly attenuated as the aperture size of the probe decreases. It is thus important to fabricate probes optimized for both spot size and optical transmission. We present a two-step fabrication that allowed us to achieve an improved performance of the optical-fiber probes. Initially, a CO(2) laser-heated pulling was used to produce a parabolic transitional taper ending with a top thin filament. Then, a rapid chemical etching with 50% buffered hydrofluoric acid was used to remove the thin filament and to result in a final conical tip on the top of the parabolic transitional taper. Systematically, we obtained optical-fiber nanoprobes with the apex size as small as 10 nm and the final cone angle varying from 15 degrees to 80 degrees . It was found that the optical transmission efficiency increases rapidly as the taper angle increases from 15 degrees to 50 degrees , but a further increase in the taper angle gives rise to important broadening of the spot size. Finally, the fabricated nanoprobes were used in photon-scanning tunneling microscopy, which allowed observation of etched double lines and grating structures with periods as small as 200 nm.
Fabrication of a novel quartz micromachined gyroscope
NASA Astrophysics Data System (ADS)
Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong
2015-04-01
A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.
Near-Field Phase-Change Optical Recording of 1.36 Numerical Aperture
NASA Astrophysics Data System (ADS)
Ichimura, Isao; Kishima, Koichiro; Osato, Kiyoshi; Yamamoto, Kenji; Kuroda, Yuji; Saito, Kimihiro
2000-02-01
A bit density of 125 nm was demonstrated through near-field phase-change (PC) optical recording at the wavelength of 657 nm by using a supersphere solid immersion lens (SIL). The lens unit consists of a standard objective and a φ2.5 mm SIL@. Since this lens size still prevents the unit from being mounted on an air-bearing slider, we developed a one-axis positioning actuator and an active capacitance servo for precise gap control to thoroughly investigate near-field recording. An electrode was fabricated on the bottom of the SIL, and a capacitor was formed facing a disk material. This setup realized a stable air gap below 50 nm, and a new method of simulating modulation transfer function (MTF) optimized the PC disk structure at this gap height. Obtained jitter of 8.8% and a clear eye-pattern prove that our system successfully attained the designed numerical-aperture (\\mathit{NA}) of 1.36.
ATF neutral beam injection: optimization of beam alignment and aperturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R.N.; Fowler, R.H.; Rome, J.A.
1985-12-01
The application of the existing Impurity Study Experiment (ISX-B) neutral beam injectors for the Advanced Toroidal Facility (ATF) is studied. It is determined that with the practical considerations of beam aperturing, ATF vacuum vessel complexity, and realistic beam modeling, the power absorbed by the plasma will be approximately 57% of the extracted neutral beam power, which corresponds to an injected power of about 1.5 MW. By reducing the beam divergence to a 1/sup 0/ Gaussian distribution, the absorbed power could be increased to 93%. The power delivered to the plasma is found to be a strong function of the beammore » divergence but only a weak function of the beam focal length. Shinethrough can be a serious problem if very low density startups are necessary. Preliminary calculations indicate that there will be no excessive fast-ion losses. 12 refs., 17 figs., 1 tab.« less
Zapata, Luis E.
2004-12-21
The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.
NASA Astrophysics Data System (ADS)
Woodruff, Robert A.; Hull, Tony; Heap, Sara R.; Danchi, William; Kendrick, Stephen E.; Purves, Lloyd
2017-09-01
We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R 40,000 echelle modes and R 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.
NASA Astrophysics Data System (ADS)
Woodruff, Robert; Robert Woodruff, Goddard Space Flight Center, Kendrick Optical Consulting
2018-01-01
We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R~ 40,000 echelle modes and R~ 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.
Synthetic Aperture Radar (SAR) data processing
NASA Technical Reports Server (NTRS)
Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.
1978-01-01
The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.
NASA Technical Reports Server (NTRS)
Oneill, Mark J.; Mcdanal, A. J.; Spears, Don H.
1989-01-01
The primary project objective was to generate a conceptual design for a nominal 5 kW solar dynamic space power system, which uses a unique, patented, transmittance-optimized, dome-shaped, point-focus Fresnel lens as the optical concentrator. Compared to reflective concentrators, the dome lens allows 200 times larger slope errors for the same image displacement. Additionally, the dome lens allows the energy receiver, the power conversion unit (PCU), and the heat rejection radiator to be independently optimized in configuration and orientation, since none of these elements causes any aperture blockage. Based on optical and thermal trade studies, a 6.6 m diameter lens with a focal length of 7.2 m was selected. This lens should provide 87 percent net optical efficienty at 800X geometric concentration ratio. The large lens is comprised of 24 gores, which compactly stow together during launch, and automatically deploy on orbit. The total mass of the microglass lens panels, the graphite/epoxy support structure, and miscellaneous hardware is about 1.2 kg per square meter of aperture. The key problem for the dome lens approach relates to the selection of a space-durable lens material. For the first time, all-glass Fresnel lens samples were successfully made by a sol-gel casting process.
Optimization of the procedure for counting the eggs of Fasciola gigantica in bovine faeces.
Suhardono; Roberts, J A; Copeman, D B
2006-07-01
This paper describes a method for counting eggs of F. gigantica in bovine faeces that optimizes the proportion of eggs recovered and the repeatability of estimates. The method uses 3 g of faeces suspended in 0.05% Tween 20. The suspension is passed through three 6 cm diameter sieves in tandem to remove fibrous debris, with respective apertures of 1 mm, 450 microm, and either 266 or 200 microm. The filtrate is allowed to sediment for 3 min in a conical flask; the sediment is recovered, then resuspended in 200 ml of 0.05% Tween 20 and allowed to sediment. After 3 min the sediment is washed in a sieve with an aperture of 53 microm, which retains the eggs. Eggs suspended in 15 ml of 1% methylene blue are counted using a dissecting microscope. Use of Tween 20 instead of water as the suspending agent for faeces gave a significant threefold increased the proportion of eggs recovered and reduced variability between repeated counts. This method is able to detect about one-third of the eggs present. It was concluded that the high proportion of F. gigantica eggs lost may be due to the presence of hydrophobic and covalent bonds on the eggs that bind them to debris, with which they are discarded.
Randomized algorithms for high quality treatment planning in volumetric modulated arc therapy
NASA Astrophysics Data System (ADS)
Yang, Yu; Dong, Bin; Wen, Zaiwen
2017-02-01
In recent years, volumetric modulated arc therapy (VMAT) has been becoming a more and more important radiation technique widely used in clinical application for cancer treatment. One of the key problems in VMAT is treatment plan optimization, which is complicated due to the constraints imposed by the involved equipments. In this paper, we consider a model with four major constraints: the bound on the beam intensity, an upper bound on the rate of the change of the beam intensity, the moving speed of leaves of the multi-leaf collimator (MLC) and its directional-convexity. We solve the model by a two-stage algorithm: performing minimization with respect to the shapes of the aperture and the beam intensities alternatively. Specifically, the shapes of the aperture are obtained by a greedy algorithm whose performance is enhanced by random sampling in the leaf pairs with a decremental rate. The beam intensity is optimized using a gradient projection method with non-monotonic line search. We further improve the proposed algorithm by an incremental random importance sampling of the voxels to reduce the computational cost of the energy functional. Numerical simulations on two clinical cancer date sets demonstrate that our method is highly competitive to the state-of-the-art algorithms in terms of both computational time and quality of treatment planning.
Large-Aperture Wide-Bandwidth Anti-Reflection-Coated Silicon Lenses for Millimeter Wavelengths
NASA Technical Reports Server (NTRS)
Datta, R.; Munson, C. D.; Niemack, M. D.; McMahon, J. J.; Britton, J.; Wollack, E. J.; Beall, J.; Devlin, M. J.; Fowler, J.; Gallardo, P.;
2013-01-01
The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coffecient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 deg. with low cross-polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to sub-millimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.