Sample records for optimized spatial management

  1. Marine protected areas and the value of spatially optimized fishery management

    PubMed Central

    Rassweiler, Andrew; Costello, Christopher; Siegel, David A.

    2012-01-01

    There is a growing focus around the world on marine spatial planning, including spatial fisheries management. Some spatial management approaches are quite blunt, as when marine protected areas (MPAs) are established to restrict fishing in specific locations. Other management tools, such as zoning or spatial user rights, will affect the distribution of fishing effort in a more nuanced manner. Considerable research has focused on the ability of MPAs to increase fishery returns, but the potential for the broader class of spatial management approaches to outperform MPAs has received far less attention. We use bioeconomic models of seven nearshore fisheries in Southern California to explore the value of optimized spatial management in which the distribution of fishing is chosen to maximize profits. We show that fully optimized spatial management can substantially increase fishery profits relative to optimal nonspatial management but that the magnitude of this increase depends on characteristics of the fishing fleet and target species. Strategically placed MPAs can also increase profits substantially compared with nonspatial management, particularly if fishing costs are low, although profit increases available through optimal MPA-based management are roughly half those from fully optimized spatial management. However, if the same total area is protected by randomly placing MPAs, starkly contrasting results emerge: most random MPA designs reduce expected profits. The high value of spatial management estimated here supports continued interest in spatially explicit fisheries regulations but emphasizes that predicted increases in profits can only be achieved if the fishery is well understood and the regulations are strategically designed. PMID:22753469

  2. Marine protected areas and the value of spatially optimized fishery management.

    PubMed

    Rassweiler, Andrew; Costello, Christopher; Siegel, David A

    2012-07-17

    There is a growing focus around the world on marine spatial planning, including spatial fisheries management. Some spatial management approaches are quite blunt, as when marine protected areas (MPAs) are established to restrict fishing in specific locations. Other management tools, such as zoning or spatial user rights, will affect the distribution of fishing effort in a more nuanced manner. Considerable research has focused on the ability of MPAs to increase fishery returns, but the potential for the broader class of spatial management approaches to outperform MPAs has received far less attention. We use bioeconomic models of seven nearshore fisheries in Southern California to explore the value of optimized spatial management in which the distribution of fishing is chosen to maximize profits. We show that fully optimized spatial management can substantially increase fishery profits relative to optimal nonspatial management but that the magnitude of this increase depends on characteristics of the fishing fleet and target species. Strategically placed MPAs can also increase profits substantially compared with nonspatial management, particularly if fishing costs are low, although profit increases available through optimal MPA-based management are roughly half those from fully optimized spatial management. However, if the same total area is protected by randomly placing MPAs, starkly contrasting results emerge: most random MPA designs reduce expected profits. The high value of spatial management estimated here supports continued interest in spatially explicit fisheries regulations but emphasizes that predicted increases in profits can only be achieved if the fishery is well understood and the regulations are strategically designed.

  3. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.

  4. Optimal Groundwater Extraction under Uncertainty and a Spatial Stock Externality

    EPA Science Inventory

    We introduce a model that incorporates two important elements to estimating welfare gains from groundwater management: stochasticity and a spatial stock externality. We estimate welfare gains resulting from optimal management under uncertainty as well as a gradual stock externali...

  5. Evaluation of potential water conservation using site-specific irrigation

    USDA-ARS?s Scientific Manuscript database

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  6. Spatial optimization of prairie dog colonies for black-footed ferret recovery

    Treesearch

    Michael Bevers; John G. Hof; Daniel W. Uresk; Gregory L. Schenbeck

    1997-01-01

    A discrete-time reaction-diffusion model for black-footed ferret release, population growth, and dispersal is combined with ferret carrying capacity constraints based on prairie dog population management decisions to form a spatial optimization model. Spatial arrangement of active prairie dog colonies within a ferret reintroduction area is optimized over time for...

  7. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework

    EPA Science Inventory

    Best management practices (BMPs) are perceived as being effective in reducing nutrient loads transported from non-point sources (NPS) to receiving water bodies. The objective of this study was to develop a modeling-optimization framework that can be used by watershed management p...

  8. Watershed Management Optimization Support Tool (WMOST) v1: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a screening model that is spatially lumped with options for a daily or monthly time step. It is specifically focused on modeling the effect of management decisions on the watershed. The model considers water flows and ...

  9. An Optimization Model for Scheduling Problems with Two-Dimensional Spatial Resource Constraint

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher; Rabadi, Ghaith

    2010-01-01

    Traditional scheduling problems involve determining temporal assignments for a set of jobs in order to optimize some objective. Some scheduling problems also require the use of limited resources, which adds another dimension of complexity. In this paper we introduce a spatial resource-constrained scheduling problem that can arise in assembly, warehousing, cross-docking, inventory management, and other areas of logistics and supply chain management. This scheduling problem involves a twodimensional rectangular area as a limited resource. Each job, in addition to having temporal requirements, has a width and a height and utilizes a certain amount of space inside the area. We propose an optimization model for scheduling the jobs while respecting all temporal and spatial constraints.

  10. A spatial stochastic programming model for timber and core area management under risk of fires

    Treesearch

    Yu Wei; Michael Bevers; Dung Nguyen; Erin Belval

    2014-01-01

    Previous stochastic models in harvest scheduling seldom address explicit spatial management concerns under the influence of natural disturbances. We employ multistage stochastic programming models to explore the challenges and advantages of building spatial optimization models that account for the influences of random stand-replacing fires. Our exploratory test models...

  11. Proactive or reactive? Optimal management of an invasive forest pest in a spatial framework

    Treesearch

    Craig A. Bond; Patricia Champ; James Meldrum; Anna Schoettle

    2010-01-01

    This paper offers a preliminary investigation into the conditions under which it might be optimal to engage in proactive management of a non-timber forest resource in the presence of an invasive species whose spread is unaffected by management action. Proactive management is defined as treating an uninfected area in order to encourage healthy ecosystem...

  12. Spatial optimization of the pattern of fuel management activities and subsequent effects on simulated wildfires

    Treesearch

    Young-Hwan Kim; Pete Bettinger; Mark Finney

    2009-01-01

    Methods for scheduling forest management activities in a spatial pattern (dispersed, clumped, random, and regular) are presented, with the intent to examine the effects of placement of activities on resulting simulated wildfire behavior. Both operational and fuel reduction management prescriptions are examined, and a heuristic was employed to schedule the activities....

  13. Linking Temporal-Optimization and Spatial-Simulation Models for Forest Planning

    Treesearch

    Larry A. Leefers; Eric J. Gustafson; Phillip Freeman

    2003-01-01

    Increasingly, resource management agencies and researchers have turned their analysis and modeling efforts towards spatial and temporal information. This is driven by the need to address wildlife concerns, landscape issues, and social/economic questions. Historically, the USDA Forest Service has used optimization models (i.e., FORPLAN and Spectrum) for timber harvest...

  14. PLAN or get SLAM'ed: Optimal management of invasive species in the presence of indirect health externalities.

    PubMed

    Jones, Benjamin A; McDermott, Shana M; Chermak, Janie M

    2016-09-15

    This paper examines invasive species management when invasive species impact health outcomes indirectly through changes to environmental quality. For example, the emerald ash borer (EAB) has destroyed millions of ash trees throughout North America and has the potential to impact rates of cardiorespiratory mortality and morbidity through ash trees' ability to capture airborne pollutants. Optimal management inclusive of indirect health externalities may be different than status quo plans because the links between nature and health are complex, dynamic, and spatially heterogeneous. We produce a novel dynamic bioeconomic-health model to determine optimal EAB management in the face of such health effects. Our results show that including health increases net benefits of management substantially and that a "one size fits all" management approach is suboptimal given forest cover and demographic spatial heterogeneity. Net benefits to society are 873% higher and air pollution related mortality incidence is 82% lower when health externalities are included in management profiles using insecticide treatments and non-ash tree preemptive plantings without removal. Additionally, constrained managers optimally substitute toward preemptive tree plantings and away from insecticide use in the presence of indirect health externalities as a way to minimize disruptions to air quality. This paper has policy implications for the optimal management of environmental amenities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Exploring the effect of the spatial scale of fishery management.

    PubMed

    Takashina, Nao; Baskett, Marissa L

    2016-02-07

    For any spatially explicit management, determining the appropriate spatial scale of management decisions is critical to success at achieving a given management goal. Specifically, managers must decide how much to subdivide a given managed region: from implementing a uniform approach across the region to considering a unique approach in each of one hundred patches and everything in between. Spatially explicit approaches, such as the implementation of marine spatial planning and marine reserves, are increasingly used in fishery management. Using a spatially explicit bioeconomic model, we quantify how the management scale affects optimal fishery profit, biomass, fishery effort, and the fraction of habitat in marine reserves. We find that, if habitats are randomly distributed, the fishery profit increases almost linearly with the number of segments. However, if habitats are positively autocorrelated, then the fishery profit increases with diminishing returns. Therefore, the true optimum in management scale given cost to subdivision depends on the habitat distribution pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Using a spatially explicit analysis model to evaluate spatial variation of corn yield

    USDA-ARS?s Scientific Manuscript database

    Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...

  17. Spatial Optimization of Future Urban Development with Regards to Climate Risk and Sustainability Objectives.

    PubMed

    Caparros-Midwood, Daniel; Barr, Stuart; Dawson, Richard

    2017-11-01

    Future development in cities needs to manage increasing populations, climate-related risks, and sustainable development objectives such as reducing greenhouse gas emissions. Planners therefore face a challenge of multidimensional, spatial optimization in order to balance potential tradeoffs and maximize synergies between risks and other objectives. To address this, a spatial optimization framework has been developed. This uses a spatially implemented genetic algorithm to generate a set of Pareto-optimal results that provide planners with the best set of trade-off spatial plans for six risk and sustainability objectives: (i) minimize heat risks, (ii) minimize flooding risks, (iii) minimize transport travel costs to minimize associated emissions, (iv) maximize brownfield development, (v) minimize urban sprawl, and (vi) prevent development of greenspace. The framework is applied to Greater London (U.K.) and shown to generate spatial development strategies that are optimal for specific objectives and differ significantly from the existing development strategies. In addition, the analysis reveals tradeoffs between different risks as well as between risk and sustainability objectives. While increases in heat or flood risk can be avoided, there are no strategies that do not increase at least one of these. Tradeoffs between risk and other sustainability objectives can be more severe, for example, minimizing heat risk is only possible if future development is allowed to sprawl significantly. The results highlight the importance of spatial structure in modulating risks and other sustainability objectives. However, not all planning objectives are suited to quantified optimization and so the results should form part of an evidence base to improve the delivery of risk and sustainability management in future urban development. © 2017 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  18. The need for spatially explicit quantification of benefits in invasive-species management.

    PubMed

    Januchowski-Hartley, Stephanie R; Adams, Vanessa M; Hermoso, Virgilio

    2018-04-01

    Worldwide, invasive species are a leading driver of environmental change across terrestrial, marine, and freshwater environments and cost billions of dollars annually in ecological damages and economic losses. Resources limit invasive-species control, and planning processes are needed to identify cost-effective solutions. Thus, studies are increasingly considering spatially variable natural and socioeconomic assets (e.g., species persistence, recreational fishing) when planning the allocation of actions for invasive-species management. There is a need to improve understanding of how such assets are considered in invasive-species management. We reviewed over 1600 studies focused on management of invasive species, including flora and fauna. Eighty-four of these studies were included in our final analysis because they focused on the prioritization of actions for invasive species management. Forty-five percent (n = 38) of these studies were based on spatial optimization methods, and 35% (n = 13) accounted for spatially variable assets. Across all 84 optimization studies considered, 27% (n = 23) explicitly accounted for spatially variable assets. Based on our findings, we further explored the potential costs and benefits to invasive species management when spatially variable assets are explicitly considered or not. To include spatially variable assets in decision-making processes that guide invasive-species management there is a need to quantify environmental responses to invasive species and to enhance understanding of potential impacts of invasive species on different natural or socioeconomic assets. We suggest these gaps could be filled by systematic reviews, quantifying invasive species impacts on native species at different periods, and broadening sources and enhancing sharing of knowledge. © 2017 Society for Conservation Biology.

  19. Impact of Spatial Pumping Patterns on Groundwater Management

    NASA Astrophysics Data System (ADS)

    Yin, J.; Tsai, F. T. C.

    2017-12-01

    Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.

  20. Evaluating spatially explicit burn probabilities for strategic fire management planning

    Treesearch

    C. Miller; M.-A. Parisien; A. A. Ager; M. A. Finney

    2008-01-01

    Spatially explicit information on the probability of burning is necessary for virtually all strategic fire and fuels management planning activities, including conducting wildland fire risk assessments, optimizing fuel treatments, and prevention planning. Predictive models providing a reliable estimate of the annual likelihood of fire at each point on the landscape have...

  1. Coupled economic-coastline modeling with suckers and free riders

    NASA Astrophysics Data System (ADS)

    Williams, Zachary C.; McNamara, Dylan E.; Smith, Martin D.; Murray, A. Brad.; Gopalakrishnan, Sathya

    2013-06-01

    erosion is a natural trend along most sandy coastlines. Humans often respond to shoreline erosion with beach nourishment to maintain coastal property values. Locally extending the shoreline through nourishment alters alongshore sediment transport and changes shoreline dynamics in adjacent coastal regions. If left unmanaged, sandy coastlines can have spatially complex or simple patterns of erosion due to the relationship of large-scale morphology and the local wave climate. Using a numerical model that simulates spatially decentralized and locally optimal nourishment decisions characteristic of much of U.S. East Coast beach management, we find that human erosion intervention does not simply reflect the alongshore erosion pattern. Spatial interactions generate feedbacks in economic and physical variables that lead to widespread emergence of "free riders" and "suckers" with subsequent inequality in the alongshore distribution of property value. Along cuspate coastlines, such as those found along the U.S. Southeast Coast, these long-term property value differences span an order of magnitude. Results imply that spatially decentralized management of nourishment can lead to property values that are divorced from spatial erosion signals; this management approach is unlikely to be optimal.

  2. Effect of spatial variability of storm on the optimal placement of best management practices (BMPs).

    PubMed

    Chang, C L; Chiueh, P T; Lo, S L

    2007-12-01

    It is significant to design best management practices (BMPs) and determine the proper BMPs placement for the purpose that can not only satisfy the water quantity and water quality standard, but also lower the total cost of BMPs. The spatial rainfall variability can have much effect on its relative runoff and non-point source pollution (NPSP). Meantime, the optimal design and placement of BMPs would be different as well. The objective of this study was to discuss the relationship between the spatial variability of rainfall and the optimal BMPs placements. Three synthetic rainfall storms with varied spatial distributions, including uniform rainfall, downstream rainfall and upstream rainfall, were designed. WinVAST model was applied to predict runoff and NPSP. Additionally, detention pond and swale were selected for being structural BMPs. Scatter search was applied to find the optimal BMPs placement. The results show that mostly the total cost of BMPs is higher in downstream rainfall than in upstream rainfall or uniform rainfall. Moreover, the cost of detention pond is much higher than swale. Thus, even though detention pond has larger efficiency for lowering peak flow and pollutant exports, it is not always the determined set in each subbasin.

  3. Optimal timber harvest scheduling with spatially defined sediment objectives

    Treesearch

    Jon Hof; Michael Bevers

    2000-01-01

    This note presents a simple model formulation that focuses on the spatial relationships over time between timber harvesting and sediment levels in water runoff courses throughout the watershed being managed. A hypothetical example is developed to demonstrate the formulation and show how sediment objectives can be spatially defined anywhere in the watershed. Spatial...

  4. Assessing spatial variation of corn response to irrigation using a bayesian semiparametric model

    USDA-ARS?s Scientific Manuscript database

    Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...

  5. Real Estate Site Selection: An Application of Artificial Intelligence for Military Retail Facilities

    DTIC Science & Technology

    2006-09-01

    Information and Spatial Analysis (SCGISA), University of Sheffield. Kotler , P. (1984). Marketing Management: Analysis, Planning, and Control...Spatial Distribution of Retail Sales. Journal of Real Estate Finance and Economics, Vol. 31 Iss. 1, 53. Lilien, G., & Kotler , P. (1983). Marketing ...commissaries). The current business model for military retail facilities may not be optimized based upon current trends market data. Optimizing

  6. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework.

    PubMed

    Yang, Guoxiang; Best, Elly P H

    2015-09-15

    Best management practices (BMPs) can be used effectively to reduce nutrient loads transported from non-point sources to receiving water bodies. However, methodologies of BMP selection and placement in a cost-effective way are needed to assist watershed management planners and stakeholders. We developed a novel modeling-optimization framework that can be used to find cost-effective solutions of BMP placement to attain nutrient load reduction targets. This was accomplished by integrating a GIS-based BMP siting method, a WQM-TMDL-N modeling approach to estimate total nitrogen (TN) loading, and a multi-objective optimization algorithm. Wetland restoration and buffer strip implementation were the two BMP categories used to explore the performance of this framework, both differing greatly in complexity of spatial analysis for site identification. Minimizing TN load and BMP cost were the two objective functions for the optimization process. The performance of this framework was demonstrated in the Tippecanoe River watershed, Indiana, USA. Optimized scenario-based load reduction indicated that the wetland subset selected by the minimum scenario had the greatest N removal efficiency. Buffer strips were more effective for load removal than wetlands. The optimized solutions provided a range of trade-offs between the two objective functions for both BMPs. This framework can be expanded conveniently to a regional scale because the NHDPlus catchment serves as its spatial computational unit. The present study demonstrated the potential of this framework to find cost-effective solutions to meet a water quality target, such as a 20% TN load reduction, under different conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Assessment of economically optimal water management and geospatial potential for large-scale water storage

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Harshi; Schneider, Uwe A.

    2010-05-01

    Assessment of economically optimal water management and geospatial potential for large-scale water storage Weerasinghe, Harshi; Schneider, Uwe A Water is an essential but limited and vulnerable resource for all socio-economic development and for maintaining healthy ecosystems. Water scarcity accelerated due to population expansion, improved living standards, and rapid growth in economic activities, has profound environmental and social implications. These include severe environmental degradation, declining groundwater levels, and increasing problems of water conflicts. Water scarcity is predicted to be one of the key factors limiting development in the 21st century. Climate scientists have projected spatial and temporal changes in precipitation and changes in the probability of intense floods and droughts in the future. As scarcity of accessible and usable water increases, demand for efficient water management and adaptation strategies increases as well. Addressing water scarcity requires an intersectoral and multidisciplinary approach in managing water resources. This would in return safeguard the social welfare and the economical benefit to be at their optimal balance without compromising the sustainability of ecosystems. This paper presents a geographically explicit method to assess the potential for water storage with reservoirs and a dynamic model that identifies the dimensions and material requirements under an economically optimal water management plan. The methodology is applied to the Elbe and Nile river basins. Input data for geospatial analysis at watershed level are taken from global data repositories and include data on elevation, rainfall, soil texture, soil depth, drainage, land use and land cover; which are then downscaled to 1km spatial resolution. Runoff potential for different combinations of land use and hydraulic soil groups and for mean annual precipitation levels are derived by the SCS-CN method. Using the overlay and decision tree algorithms in GIS, potential water storage sites are identified for constructing regional reservoirs. Subsequently, sites are prioritized based on runoff generation potential (m3 per unit area), and geographical suitability for constructing storage structures. The results from the spatial analysis are used as input for the optimization model. Allocation of resources and appropriate dimension for dams and associated structures are identified using the optimization model. The model evaluates the capability of alternative reservoirs for cost-efficient water management. The Geographic Information System is used to store, analyze, and integrate spatially explicit and non-spatial attribute information whereas the algebraic modeling platform is used to develop the dynamic optimization model. The results of this methodology are validated over space against satellite remote sensing data and existing data on reservoir capacities and runoff. The method is suitable for application of on-farm water storage structures, water distribution networks, and moisture conservation structures in a global context.

  8. Biocapacity optimization in regional planning

    PubMed Central

    Guo, Jianjun; Yue, Dongxia; Li, Kai; Hui, Cang

    2017-01-01

    Ecological overshoot has been accelerating across the globe. Optimizing biocapacity has become a key to resolve the overshoot of ecological demand in regional sustainable development. However, most literature has focused on reducing ecological footprint but ignores the potential of spatial optimization of biocapacity through regional planning of land use. Here we develop a spatial probability model and present four scenarios for optimizing biocapacity of a river basin in Northwest China. The potential of enhanced biocapacity and its effects on ecological overshoot and water consumption in the region were explored. Two scenarios with no restrictions on croplands and water use reduced the overshoot by 29 to 53%, and another two scenarios which do not allow croplands and water use to increase worsened the overshoot by 11 to 15%. More spatially flexible transition rules of land use led to higher magnitude of change after optimization. However, biocapacity optimization required a large amount of additional water resources, casting considerable pressure on the already water-scarce socio-ecological system. Our results highlight the potential for policy makers to manage/optimize regional land use which addresses ecological overshoot. Investigation on the feasibility of such spatial optimization complies with the forward-looking policies for sustainable development and deserves further attention. PMID:28112224

  9. Wildlife tradeoffs based on landscape models of habitat preference

    USGS Publications Warehouse

    Loehle, C.; Mitchell, M.S.; White, M.

    2000-01-01

    Wildlife tradeoffs based on landscape models of habitat preference were presented. Multiscale logistic regression models were used and based on these models a spatial optimization technique was utilized to generate optimal maps. The tradeoffs were analyzed by gradually increasing the weighting on a single species in the objective function over a series of simulations. Results indicated that efficiency of habitat management for species diversity could be maximized for small landscapes by incorporating spatial context.

  10. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  11. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands

    Treesearch

    Jian Yang; Hong S. He; Stephen R. Shifley

    2008-01-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of...

  12. Optimization of Landscape Services under Uncoordinated Management by Multiple Landowners

    PubMed Central

    Porto, Miguel; Correia, Otília; Beja, Pedro

    2014-01-01

    Landscapes are often patchworks of private properties, where composition and configuration patterns result from cumulative effects of the actions of multiple landowners. Securing the delivery of services in such multi-ownership landscapes is challenging, because it is difficult to assure tight compliance to spatially explicit management rules at the level of individual properties, which may hinder the conservation of critical landscape features. To deal with these constraints, a multi-objective simulation-optimization procedure was developed to select non-spatial management regimes that best meet landscape-level objectives, while accounting for uncoordinated and uncertain response of individual landowners to management rules. Optimization approximates the non-dominated Pareto frontier, combining a multi-objective genetic algorithm and a simulator that forecasts trends in landscape pattern as a function of management rules implemented annually by individual landowners. The procedure was demonstrated with a case study for the optimum scheduling of fuel treatments in cork oak forest landscapes, involving six objectives related to reducing management costs (1), reducing fire risk (3), and protecting biodiversity associated with mid- and late-successional understories (2). There was a trade-off between cost, fire risk and biodiversity objectives, that could be minimized by selecting management regimes involving ca. 60% of landowners clearing the understory at short intervals (around 5 years), and the remaining managing at long intervals (ca. 75 years) or not managing. The optimal management regimes produces a mosaic landscape dominated by stands with herbaceous and low shrub understories, but also with a satisfactory representation of old understories, that was favorable in terms of both fire risk and biodiversity. The simulation-optimization procedure presented can be extended to incorporate a wide range of landscape dynamic processes, management rules and quantifiable objectives. It may thus be adapted to other socio-ecological systems, particularly where specific patterns of landscape heterogeneity are to be maintained despite imperfect management by multiple landowners. PMID:24465833

  13. GMDPtoolbox: A Matlab library for designing spatial management policies. Application to the long-term collective management of an airborne disease

    PubMed Central

    Aubertot, Jean-Noël; Peyrard, Nathalie; Sabbadin, Régis

    2017-01-01

    Designing management policies in ecology and agroecology is complex. Several components must be managed together while they strongly interact spatially. Decision choices must be made under uncertainty on the results of the actions and on the system dynamics. Furthermore, the objectives pursued when managing ecological systems or agroecosystems are usually long term objectives, such as biodiversity conservation or sustainable crop production. The framework of Graph-Based Markov Decision Processes (GMDP) is well adapted to the qualitative modeling of such problems of sequential decision under uncertainty. Spatial interactions are easily modeled and integrated control policies (combining several action levers) can be designed through optimization. The provided policies are adaptive, meaning that management actions are decided at each time step (for instance yearly) and the chosen actions depend on the current system state. This framework has already been successfully applied to forest management and invasive species management. However, up to now, no “easy-to-use” implementation of this framework was available. We present GMDPtoolbox, a Matlab toolbox which can be used both for the design of new management policies and for comparing policies by simulation. We provide an illustration of the use of the toolbox on a realistic crop disease management problem: the design of long term management policy of blackleg of canola using an optimal combination of three possible cultural levers. This example shows how GMDPtoolbox can be used as a tool to support expert thinking. PMID:28982151

  14. GMDPtoolbox: A Matlab library for designing spatial management policies. Application to the long-term collective management of an airborne disease.

    PubMed

    Cros, Marie-Josée; Aubertot, Jean-Noël; Peyrard, Nathalie; Sabbadin, Régis

    2017-01-01

    Designing management policies in ecology and agroecology is complex. Several components must be managed together while they strongly interact spatially. Decision choices must be made under uncertainty on the results of the actions and on the system dynamics. Furthermore, the objectives pursued when managing ecological systems or agroecosystems are usually long term objectives, such as biodiversity conservation or sustainable crop production. The framework of Graph-Based Markov Decision Processes (GMDP) is well adapted to the qualitative modeling of such problems of sequential decision under uncertainty. Spatial interactions are easily modeled and integrated control policies (combining several action levers) can be designed through optimization. The provided policies are adaptive, meaning that management actions are decided at each time step (for instance yearly) and the chosen actions depend on the current system state. This framework has already been successfully applied to forest management and invasive species management. However, up to now, no "easy-to-use" implementation of this framework was available. We present GMDPtoolbox, a Matlab toolbox which can be used both for the design of new management policies and for comparing policies by simulation. We provide an illustration of the use of the toolbox on a realistic crop disease management problem: the design of long term management policy of blackleg of canola using an optimal combination of three possible cultural levers. This example shows how GMDPtoolbox can be used as a tool to support expert thinking.

  15. Advanced Interactive Display Formats for Terminal Area Traffic Control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Shaviv, G. E.

    1999-01-01

    This research project deals with an on-line dynamic method for automated viewing parameter management in perspective displays. Perspective images are optimized such that a human observer will perceive relevant spatial geometrical features with minimal errors. In order to compute the errors at which observers reconstruct spatial features from perspective images, a visual spatial-perception model was formulated. The model was employed as the basis of an optimization scheme aimed at seeking the optimal projection parameter setting. These ideas are implemented in the context of an air traffic control (ATC) application. A concept, referred to as an active display system, was developed. This system uses heuristic rules to identify relevant geometrical features of the three-dimensional air traffic situation. Agile, on-line optimization was achieved by a specially developed and custom-tailored genetic algorithm (GA), which was to deal with the multi-modal characteristics of the objective function and exploit its time-evolving nature.

  16. GIS-based spatial decision support system for grain logistics management

    NASA Astrophysics Data System (ADS)

    Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi

    2010-07-01

    Grain logistics is the important component of the social logistics, which can be attributed to frequent circulation and the great quantity. At present time, there is no modern grain logistics distribution management system, and the logistics cost is the high. Geographic Information Systems (GIS) have been widely used for spatial data manipulation and model operations and provide effective decision support through its spatial database management capabilities and cartographic visualization. In the present paper, a spatial decision support system (SDSS) is proposed to support policy makers and to reduce the cost of grain logistics. The system is composed of two major components: grain logistics goods tracking model and vehicle routing problem optimization model and also allows incorporation of data coming from external sources. The proposed system is an effective tool to manage grain logistics in order to increase the speed of grain logistics and reduce the grain circulation cost.

  17. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    PubMed

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  18. Definition of management zones for enhancing cultivated land conservation using combined spatial data.

    PubMed

    Li, Yan; Shi, Zhou; Wu, Hao-Xiang; Li, Feng; Li, Hong-Yi

    2013-10-01

    The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation, stabilize agricultural production, promote sustainable use of cultivated land and guarantee food security.

  19. Scale Invariance in Lateral Head Scans During Spatial Exploration.

    PubMed

    Yadav, Chetan K; Doreswamy, Yoganarasimha

    2017-04-14

    Universality connects various natural phenomena through physical principles governing their dynamics, and has provided broadly accepted answers to many complex questions, including information processing in neuronal systems. However, its significance in behavioral systems is still elusive. Lateral head scanning (LHS) behavior in rodents might contribute to spatial navigation by actively managing (optimizing) the available sensory information. Our findings of scale invariant distributions in LHS lifetimes, interevent intervals and event magnitudes, provide evidence for the first time that the optimization takes place at a critical point in LHS dynamics. We propose that the LHS behavior is responsible for preprocessing of the spatial information content, critical for subsequent foolproof encoding by the respective downstream neural networks.

  20. Scale Invariance in Lateral Head Scans During Spatial Exploration

    NASA Astrophysics Data System (ADS)

    Yadav, Chetan K.; Doreswamy, Yoganarasimha

    2017-04-01

    Universality connects various natural phenomena through physical principles governing their dynamics, and has provided broadly accepted answers to many complex questions, including information processing in neuronal systems. However, its significance in behavioral systems is still elusive. Lateral head scanning (LHS) behavior in rodents might contribute to spatial navigation by actively managing (optimizing) the available sensory information. Our findings of scale invariant distributions in LHS lifetimes, interevent intervals and event magnitudes, provide evidence for the first time that the optimization takes place at a critical point in LHS dynamics. We propose that the LHS behavior is responsible for preprocessing of the spatial information content, critical for subsequent foolproof encoding by the respective downstream neural networks.

  1. Implementation of marine spatial planning in shellfish aquaculture management: modeling studies in a Norwegian fjord.

    PubMed

    Filgueira, Ramon; Grant, Jon; Strand, Øivind

    2014-06-01

    Shellfish carrying capacity is determined by the interaction of a cultured species with its ecosystem, which is strongly influenced by hydrodynamics. Water circulation controls the exchange of matter between farms and the adjacent areas, which in turn establishes the nutrient supply that supports phytoplankton populations. The complexity of water circulation makes necessary the use of hydrodynamic models with detailed spatial resolution in carrying capacity estimations. This detailed spatial resolution also allows for the study of processes that depend on specific spatial arrangements, e.g., the most suitable location to place farms, which is crucial for marine spatial planning, and consequently for decision support systems. In the present study, a fully spatial physical-biogeochemical model has been combined with scenario building and optimization techniques as a proof of concept of the use of ecosystem modeling as an objective tool to inform marine spatial planning. The object of this exercise was to generate objective knowledge based on an ecosystem approach to establish new mussel aquaculture areas in a Norwegian fjord. Scenario building was used to determine the best location of a pump that can be used to bring nutrient-rich deep waters to the euphotic layer, increasing primary production, and consequently, carrying capacity for mussel cultivation. In addition, an optimization tool, parameter estimation (PEST), was applied to the optimal location and mussel standing stock biomass that maximize production, according to a preestablished carrying capacity criterion. Optimization tools allow us to make rational and transparent decisions to solve a well-defined question, decisions that are essential for policy makers. The outcomes of combining ecosystem models with scenario building and optimization facilitate planning based on an ecosystem approach, highlighting the capabilities of ecosystem modeling as a tool for marine spatial planning.

  2. Distribution and interaction of white-tailed deer and cattle in a semi-arid grazing system

    Treesearch

    Susan M. Cooper; Humberto L. Perotto-Baldivieso; M. Keith Owens; Michael G. Meek; Manuel Figueroa-Pagan

    2008-01-01

    In order to optimize production, range managers need to understand and manage the spatial distribution of free-ranging herbivores, although this task becomes increasingly difficult as ranching operations diversify to include management of wildlife for recreational hunting. White-tailed deer are sympatric with cattle throughout much of their range and are a valuable...

  3. Using Water Depth Sensors and High-resolution Topographic Mapping to Inform Wetland Management at a Globally Important Stopover Site for Migratory Shorebirds

    NASA Astrophysics Data System (ADS)

    Schaffer-Smith, D.; Swenson, J. J.; Reiter, M. E.; Isola, J. E.

    2017-12-01

    Over 50% of western hemisphere shorebird species are in decline due to ongoing habitat loss and habitat degradation. Wetland dependent shorebirds prefer shallowly flooded habitats (water depth <5cm), yet most wetlands are not managed to optimize shallow areas. In-situ water depth measurements and microtopography data coupled with satellite image analysis can assist in understanding habitat suitability patterns at broad spatial scales. We generated detailed bathymetry, and estimated spatial daily water depths, the proportion of wetland area providing flooded habitat within the optimal depth range, and the volume of water present in 23 managed wetlands in the Sacramento Valley of California, a globally important shorebird stopover site. Using 30 years of satellite imagery, we estimated suitable habitat extent across the landscape under a range of climate conditions. While spring shorebird abundance has historically peaked in early April, we found that maximum optimal habitat extent occurred after mid-April. More than 50% of monitored wetlands provided limited optimal habitat (<5% of total wetland extent) during the peak of migration between mid-March and mid-April. Furthermore, the duration of suitable habitat presence was fleeting; only 4 wetlands provided at least 10 consecutive days with >5% optimal habitat during the peak of migration. Wetlands with a higher percent clay content and lower topographic variability were more likely to provide a greater extent and duration of suitable habitat. We estimated that even in a relatively wet El-Nino year as little as 0.01%, to 10.72% of managed herbaceous wetlands in the Sacramento Valley provided optimal habitat for shorebirds at the peak of migration in early April. In an extreme drought year, optimal habitat decreased by 80% compared to a wet year Changes in the timing of wetland irrigation and drawdown schedules and the design of future wetland restoration projects could increase the extent and duration of optimal flooded habitat for migratory shorebirds, without significant increases in overall water use requirements.

  4. Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks.

    PubMed

    Vieira, Joana; Matos, Paula; Mexia, Teresa; Silva, Patrícia; Lopes, Nuno; Freitas, Catarina; Correia, Otília; Santos-Reis, Margarida; Branquinho, Cristina; Pinho, Pedro

    2018-01-01

    The growing human population concentrated in urban areas lead to the increase of road traffic and artificial areas, consequently enhancing air pollution and urban heat island effects, among others. These environmental changes affect citizen's health, causing a high number of premature deaths, with considerable social and economic costs. Nature-based solutions are essential to ameliorate those impacts in urban areas. While the mere presence of urban green spaces is pointed as an overarching solution, the relative importance of specific vegetation structure, composition and management to improve the ecosystem services of air purification and climate regulation are overlooked. This avoids the establishment of optimized planning and management procedures for urban green spaces with high spatial resolution and detail. Our aim was to understand the relative contribution of vegetation structure, composition and management for the provision of ecosystem services of air purification and climate regulation in urban green spaces, in particular the case of urban parks. This work was done in a large urban park with different types of vegetation surrounded by urban areas. As indicators of microclimatic effects and of air pollution levels we selected different metrics: lichen diversity and pollutants accumulation in lichens. Among lichen diversity, functional traits related to nutrient and water requirements were used as surrogates of the capacity of vegetation to filter air pollution and to regulate climate, and provide air purification and climate regulation ecosystem services, respectively. This was also obtained with very high spatial resolution which allows detailed spatial planning for optimization of ecosystem services. We found that vegetation type characterized by a more complex structure (trees, shrubs and herbaceous layers) and by the absence of management (pruning, irrigation and fertilization) had a higher capacity to provide the ecosystems services of air purification and climate regulation. By contrast, lawns, which have a less complex structure and are highly managed, were associated to a lower capacity to provide these services. Tree plantations showed an intermediate effect between the other two types of vegetation. Thus, vegetation structure, composition and management are important to optimize green spaces capacity to purify air and regulate climate. Taking this into account green spaces can be managed at high spatial resolutions to optimize these ecosystem services in urban areas and contribute to improve human well-being. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Joint optimization of regional water-power systems

    NASA Astrophysics Data System (ADS)

    Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter

    2016-06-01

    Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.

  6. Optimal Spatial Design of Capacity and Quantity of Rainwater Catchment Systems for Urban Flood Mitigation

    NASA Astrophysics Data System (ADS)

    Huang, C.; Hsu, N.

    2013-12-01

    This study imports Low-Impact Development (LID) technology of rainwater catchment systems into a Storm-Water runoff Management Model (SWMM) to design the spatial capacity and quantity of rain barrel for urban flood mitigation. This study proposes a simulation-optimization model for effectively searching the optimal design. In simulation method, we design a series of regular spatial distributions of capacity and quantity of rainwater catchment facilities, and thus the reduced flooding circumstances using a variety of design forms could be simulated by SWMM. Moreover, we further calculate the net benefit that is equal to subtract facility cost from decreasing inundation loss and the best solution of simulation method would be the initial searching solution of the optimization model. In optimizing method, first we apply the outcome of simulation method and Back-Propagation Neural Network (BPNN) for developing a water level simulation model of urban drainage system in order to replace SWMM which the operating is based on a graphical user interface and is hard to combine with optimization model and method. After that we embed the BPNN-based simulation model into the developed optimization model which the objective function is minimizing the negative net benefit. Finally, we establish a tabu search-based algorithm to optimize the planning solution. This study applies the developed method in Zhonghe Dist., Taiwan. Results showed that application of tabu search and BPNN-based simulation model into the optimization model not only can find better solutions than simulation method in 12.75%, but also can resolve the limitations of previous studies. Furthermore, the optimized spatial rain barrel design can reduce 72% of inundation loss according to historical flood events.

  7. A systematic conservation planning approach to fire risk management in Natura 2000 sites.

    PubMed

    Foresta, Massimiliano; Carranza, Maria Laura; Garfì, Vittorio; Di Febbraro, Mirko; Marchetti, Marco; Loy, Anna

    2016-10-01

    A primary challenge in conservation biology is to preserve the most representative biodiversity while simultaneously optimizing the efforts associated with conservation. In Europe, the implementation of the Natura 2000 network requires protocols to recognize and map threats to biodiversity and to identify specific mitigation actions. We propose a systematic conservation planning approach to optimize management actions against specific threats based on two fundamental parameters: biodiversity values and threat pressure. We used the conservation planning software Marxan to optimize a fire management plan in a Natura 2000 coastal network in southern Italy. We address three primary questions: i) Which areas are at high fire risk? ii) Which areas are the most valuable for threatened biodiversity? iii) Which areas should receive priority risk-mitigation actions for the optimal effect?, iv) which fire-prevention actions are feasible in the management areas?. The biodiversity values for the Natura 2000 spatial units were derived from the distribution maps of 18 habitats and 89 vertebrate species of concern in Europe (Habitat Directive 92/43/EEC). The threat pressure map, defined as fire probability, was obtained from digital layers of fire risk and of fire frequency. Marxan settings were defined as follows: a) planning units of 40 × 40 m, b) conservation features defined as all habitats and vertebrate species of European concern occurring in the study area, c) conservation targets defined according with fire sensitivity and extinction risk of conservation features, and d) costs determined as the complement of fire probabilities. We identified 23 management areas in which to concentrate efforts for the optimal reduction of fire-induced effects. Because traditional fire prevention is not feasible for most of policy habitats included in the management areas, alternative prevention practices were identified that allows the conservation of the vegetation structure. The proposed approach has potential applications for multiple landscapes, threats and spatial scales and could be extended to other valuable natural areas, including protected areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Study on Adaptive Parameter Determination of Cluster Analysis in Urban Management Cases

    NASA Astrophysics Data System (ADS)

    Fu, J. Y.; Jing, C. F.; Du, M. Y.; Fu, Y. L.; Dai, P. P.

    2017-09-01

    The fine management for cities is the important way to realize the smart city. The data mining which uses spatial clustering analysis for urban management cases can be used in the evaluation of urban public facilities deployment, and support the policy decisions, and also provides technical support for the fine management of the city. Aiming at the problem that DBSCAN algorithm which is based on the density-clustering can not realize parameter adaptive determination, this paper proposed the optimizing method of parameter adaptive determination based on the spatial analysis. Firstly, making analysis of the function Ripley's K for the data set to realize adaptive determination of global parameter MinPts, which means setting the maximum aggregation scale as the range of data clustering. Calculating every point object's highest frequency K value in the range of Eps which uses K-D tree and setting it as the value of clustering density to realize the adaptive determination of global parameter MinPts. Then, the R language was used to optimize the above process to accomplish the precise clustering of typical urban management cases. The experimental results based on the typical case of urban management in XiCheng district of Beijing shows that: The new DBSCAN clustering algorithm this paper presents takes full account of the data's spatial and statistical characteristic which has obvious clustering feature, and has a better applicability and high quality. The results of the study are not only helpful for the formulation of urban management policies and the allocation of urban management supervisors in XiCheng District of Beijing, but also to other cities and related fields.

  9. Wildlife tradeoffs based on landscape models of habitat

    USGS Publications Warehouse

    Loehle, C.; Mitchell, M.S.

    2000-01-01

    It is becoming increasingly clear that the spatial structure of landscapes affects the habitat choices and abundance of wildlife. In contrast to wildlife management based on preservation of critical habitat features such as nest sites on a beach or mast trees, it has not been obvious how to incorporate spatial structure into management plans. We present techniques to accomplish this goal. We used multiscale logistic regression models developed previously for neotropical migrant bird species habitat use in South Carolina (USA) as a basis for these techniques. Based on these models we used a spatial optimization technique to generate optimal maps (probability of occurrence, P = 1.0) for each of seven species. To emulate management of a forest for maximum species diversity, we defined the objective function of the algorithm as the sum of probabilities over the seven species, resulting in a complex map that allowed all seven species to coexist. The map that allowed for coexistence is not obvious, must be computed algorithmically, and would be difficult to realize using rules of thumb for habitat management. To assess how management of a forest for a single species of interest might affect other species, we analyzed tradeoffs by gradually increasing the weighting on a single species in the objective function over a series of simulations. We found that as habitat was increasingly modified to favor that species, the probability of presence for two of the other species was driven to zero. This shows that whereas it is not possible to simultaneously maximize the likelihood of presence for multiple species with divergent habitat preferences, compromise solutions are possible at less than maximal likelihood in many cases. Our approach suggests that efficiency of habitat management for species diversity can by maximized for even small landscapes by incorporating spatial context. The methods we present are suitable for wildlife management, endangered species conservation, and nature reserve design.

  10. An operational ensemble prediction system for catchment rainfall over eastern Africa spanning multiple temporal and spatial scales

    NASA Astrophysics Data System (ADS)

    Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.

    2017-12-01

    While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.

  11. Automated watershed subdivision for simulations using multi-objective optimization

    USDA-ARS?s Scientific Manuscript database

    The development of watershed management plans to evaluate placement of conservation practices typically involves application of watershed models. Incorporating spatially variable watershed characteristics into a model often requires subdividing the watershed into small areas to accurately account f...

  12. Spatial service delivery system for smart licensing & enforcement management

    NASA Astrophysics Data System (ADS)

    Wahap, N. A.; Ismail, N. M.; Nor, N. M.; Ahmad, N.; Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Noordin, N. M.; Mansor, S.

    2016-06-01

    Spatial information has introduced a new sense of urgency for a better understanding of the public needs in term of what, when and where they need services and through which devices, platform or physical locations they need them. The objective of this project is to value- add existing license management process for business premises which comes under the responsibility of Local Authority (PBT). Manipulation of geospatial and tracing technology via mobile platform allows enforcement officers to work in real-time, use a standardized system, improve service delivery, and optimize operation management. This paper will augment the scope and capabilities of proposed concept namely, Smart Licensing/Enforcement Management (SLEm). It will review the current licensing and enforcement practice of selected PBT in comparison to the enhanced method. As a result, the new enhanced system is expected to offer a total solution for licensing/enforcement management whilst increasing efficiency and transparency for smart city management and governance.

  13. A model for managing edge effects in harvest scheduling using spatial optimization

    Treesearch

    Kai L. Ross; Sándor F. Tóth

    2016-01-01

    Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...

  14. Urban gray vs. urban green vs. soil protection — Development of a systemic solution to soil sealing management on the example of Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artmann, Martina, E-mail: m.artmann@ioer.de

    Managing urban soil sealing is a difficult venture due to its spatial heterogeneity and embedding in a socio-ecological system. A systemic solution is needed to tackle its spatial, ecological and social sub-systems. This study develops a guideline for urban actors to find a systemic solution to soil sealing management based on two case studies in Germany: Munich and Leipzig. Legal-planning, informal-planning, economic-fiscal, co-operative and informational responses were evaluated by indicators to proof which strategy considers the spatial complexity of urban soil sealing (systemic spatial efficiency) and, while considering spatial complexity, to assess what the key management areas for action aremore » to reduce the ecological impacts by urban soil sealing (ecological impact efficiency) and to support an efficient implementation by urban actors (social implementation efficiency). Results suggest framing the systemic solution to soil sealing management through a cross-scale, legal-planning development strategy embedded in higher European policies. Within the socio-ecological system, the key management area for action should focus on the protection of green infrastructure being of high value for actors from the European to local scales. Further efforts are necessary to establish a systemic monitoring concept to optimize socio-ecological benefits and avoid trade-offs such as between urban infill development and urban green protection. This place-based study can be regarded as a stepping stone on how to develop systemic strategies by considering different spatial sub-targets and socio-ecological systems. - Highlights: • Urban soil sealing management is spatially complex. • The legal-planning strategy supports a systemic sealing management. • Urban green infrastructure protection should be in the management focus. • Soil protection requires policies from higher levels of government. • A systemic urban soil sealing monitoring concept is needed.« less

  15. Seventh symposium on systems analysis in forest resources; 1997 May 28-31; Traverse City, MI.

    Treesearch

    J. Michael Vasievich; Jeremy S. Fried; Larry A. Leefers

    2000-01-01

    This international symposium included presentations by representatives from government, academic, and private institutions. Topics covered management objectives; information systems: modeling, optimization, simulation and decision support techniques; spatial methods; timber supply; and economic and operational analyses.

  16. A proposal of optimal sampling design using a modularity strategy

    NASA Astrophysics Data System (ADS)

    Simone, A.; Giustolisi, O.; Laucelli, D. B.

    2016-08-01

    In real water distribution networks (WDNs) are present thousands nodes and optimal placement of pressure and flow observations is a relevant issue for different management tasks. The planning of pressure observations in terms of spatial distribution and number is named sampling design and it was faced considering model calibration. Nowadays, the design of system monitoring is a relevant issue for water utilities e.g., in order to manage background leakages, to detect anomalies and bursts, to guarantee service quality, etc. In recent years, the optimal location of flow observations related to design of optimal district metering areas (DMAs) and leakage management purposes has been faced considering optimal network segmentation and the modularity index using a multiobjective strategy. Optimal network segmentation is the basis to identify network modules by means of optimal conceptual cuts, which are the candidate locations of closed gates or flow meters creating the DMAs. Starting from the WDN-oriented modularity index, as a metric for WDN segmentation, this paper proposes a new way to perform the sampling design, i.e., the optimal location of pressure meters, using newly developed sampling-oriented modularity index. The strategy optimizes the pressure monitoring system mainly based on network topology and weights assigned to pipes according to the specific technical tasks. A multiobjective optimization minimizes the cost of pressure meters while maximizing the sampling-oriented modularity index. The methodology is presented and discussed using the Apulian and Exnet networks.

  17. A Comparative Study of Spatial Aggregation Methodologies under the BioEarth Framework

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, B.; Rajagopalan, K.; Malek, K.; Stockle, C. O.; Adam, J. C.; Brady, M.

    2014-12-01

    The increasing probability of water resource scarcity due to climate change has highlighted the need for adopting an economic focus in modelling water resource uses. Hydro-economic models, developed by integrating economic optimization with biophysical crop models, are driven by the economic value of water, revealing it's most efficient uses and helping policymakers evaluate different water management strategies. One of the challenges in integrating biophysical models with economic models is the difference in the spatial scales in which they operate. Biophysical models that provide crop production functions typically run at smaller scale than economic models, and substantial spatial aggregation is required. However, any aggregation introduces a bias, i.e., a discrepancy between the functional value at the higher spatial scale and the value at the spatial scale of the aggregated units. The objective of this work is to study the sensitivity of net economic benefits in the Yakima River basin (YRB) to different spatial aggregation methods for crop production functions. The spatial aggregation methodologies that we compare involve agro-ecological zones (AEZs) and aggregation levels that reflect water management regimes (e.g. irrigation districts). Aggregation bias can distort the underlying data and result in extreme solutions. In order to avoid this we use an economic optimization model that incorporates the synthetic and historical crop mixes approach (Onal & Chen, 2012). This restricts the solutions between the weighted averages of historical and simulated feasible planting decisions, with the weights associated with crop mixes being treated as endogenous variables. This study is focused on 5 major irrigation districts of the YRB in the Pacific Northwest US. The biophysical modeling framework we use, BioEarth, includes the coupled hydrology and crop growth model, VIC-Cropsyst and an economic optimization model. Preliminary findings indicate that the standard approach of developing AEZs does not perform well when overlaid with irrigation districts. Moreover, net economic benefits were significantly different between the two aggregation methodologies. Therefore, while developing hydro-economic models, significant consideration should be placed on the aggregation methodology.

  18. Spatial and temporal movements in Pyrenean bearded vultures (Gypaetus barbatus): Integrating movement ecology into conservation practice

    NASA Astrophysics Data System (ADS)

    Margalida, Antoni; Pérez-García, Juan Manuel; Afonso, Ivan; Moreno-Opo, Rubén

    2016-10-01

    Understanding the movement of threatened species is important if we are to optimize management and conservation actions. Here, we describe the age and sex specific spatial and temporal ranging patterns of 19 bearded vultures Gypaetus barbatus tracked with GPS technology. Our findings suggest that spatial asymmetries are a consequence of breeding status and age-classes. Territorial individuals exploited home ranges of about 50 km2, while non-territorial birds used areas of around 10 000 km2 (with no seasonal differences). Mean daily movements differed between territorial (23.8 km) and non-territorial birds (46.1 km), and differences were also found between sexes in non-territorial birds. Daily maximum distances travelled per day also differed between territorial (8.2 km) and non-territorial individuals (26.5 km). Territorial females moved greater distances (12 km) than males (6.6 km). Taking into account high-use core areas (K20), Supplementary Feeding Sites (SFS) do not seem to play an important role in the use of space by bearded vultures. For non-territorial and territorial individuals, 54% and 46% of their home ranges (K90), respectively, were outside protected areas. Our findings will help develop guidelines for establishing priority areas based on spatial use, and also optimize management and conservation actions for this threatened species.

  19. Optimal health and disease management using spatial uncertainty: a geographic characterization of emergent artemisinin-resistant Plasmodium falciparum distributions in Southeast Asia.

    PubMed

    Grist, Eric P M; Flegg, Jennifer A; Humphreys, Georgina; Mas, Ignacio Suay; Anderson, Tim J C; Ashley, Elizabeth A; Day, Nicholas P J; Dhorda, Mehul; Dondorp, Arjen M; Faiz, M Abul; Gething, Peter W; Hien, Tran T; Hlaing, Tin M; Imwong, Mallika; Kindermans, Jean-Marie; Maude, Richard J; Mayxay, Mayfong; McDew-White, Marina; Menard, Didier; Nair, Shalini; Nosten, Francois; Newton, Paul N; Price, Ric N; Pukrittayakamee, Sasithon; Takala-Harrison, Shannon; Smithuis, Frank; Nguyen, Nhien T; Tun, Kyaw M; White, Nicholas J; Witkowski, Benoit; Woodrow, Charles J; Fairhurst, Rick M; Sibley, Carol Hopkins; Guerin, Philippe J

    2016-10-24

    Artemisinin-resistant Plasmodium falciparum malaria parasites are now present across much of mainland Southeast Asia, where ongoing surveys are measuring and mapping their spatial distribution. These efforts require substantial resources. Here we propose a generic 'smart surveillance' methodology to identify optimal candidate sites for future sampling and thus map the distribution of artemisinin resistance most efficiently. The approach uses the 'uncertainty' map generated iteratively by a geostatistical model to determine optimal locations for subsequent sampling. The methodology is illustrated using recent data on the prevalence of the K13-propeller polymorphism (a genetic marker of artemisinin resistance) in the Greater Mekong Subregion. This methodology, which has broader application to geostatistical mapping in general, could improve the quality and efficiency of drug resistance mapping and thereby guide practical operations to eliminate malaria in affected areas.

  20. Sensor Location Problem Optimization for Traffic Network with Different Spatial Distributions of Traffic Information.

    PubMed

    Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian

    2016-10-27

    To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads.

  1. Sensor Location Problem Optimization for Traffic Network with Different Spatial Distributions of Traffic Information

    PubMed Central

    Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian

    2016-01-01

    To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads. PMID:27801794

  2. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    PubMed

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a multiobjective evolutionary algorithm SPEA2(26), and user-specified set of conservation practices and their costs to search for the complete tradeoff frontiers between costs of conservation practices and user-specified water quality objectives. The frontiers quantify the tradeoffs faced by the watershed managers by presenting the full range of costs associated with various water quality improvement goals. The program allows for a selection of watershed configurations achieving specified water quality improvement goals and a production of maps of optimized placement of conservation practices.

  3. Optimal dynamic control of invasions: applying a systematic conservation approach.

    PubMed

    Adams, Vanessa M; Setterfield, Samantha A

    2015-06-01

    The social, economic, and environmental impacts of invasive plants are well recognized. However, these variable impacts are rarely accounted for in the spatial prioritization of funding for weed management. We examine how current spatially explicit prioritization methods can be extended to identify optimal budget allocations to both eradication and control measures of invasive species to minimize the costs and likelihood of invasion. Our framework extends recent approaches to systematic prioritization of weed management to account for multiple values that are threatened by weed invasions with a multi-year dynamic prioritization approach. We apply our method to the northern portion of the Daly catchment in the Northern Territory, which has significant conservation values that are threatened by gamba grass (Andropogon gayanus), a highly invasive species recognized by the Australian government as a Weed of National Significance (WONS). We interface Marxan, a widely applied conservation planning tool, with a dynamic biophysical model of gamba grass to optimally allocate funds to eradication and control programs under two budget scenarios comparing maximizing gain (MaxGain) and minimizing loss (MinLoss) optimization approaches. The prioritizations support previous findings that a MinLoss approach is a better strategy when threats are more spatially variable than conservation values. Over a 10-year simulation period, we find that a MinLoss approach reduces future infestations by ~8% compared to MaxGain in the constrained budget scenarios and ~12% in the unlimited budget scenarios. We find that due to the extensive current invasion and rapid rate of spread, allocating the annual budget to control efforts is more efficient than funding eradication efforts when there is a constrained budget. Under a constrained budget, applying the most efficient optimization scenario (control, minloss) reduces spread by ~27% compared to no control. Conversely, if the budget is unlimited it is more efficient to fund eradication efforts and reduces spread by ~65% compared to no control.

  4. Estimating Field Scale Crop Evapotranspiration using Landsat and MODIS Satellite Observations

    NASA Astrophysics Data System (ADS)

    Wong, A.; Jin, Y.; Snyder, R. L.; Daniele, Z.; Gao, F.

    2016-12-01

    Irrigation accounts for 80% of human freshwater consumption, and most of it return to the atmosphere through Evapotranspiration (ET). Given the challenges of already-stressed water resources and ground water regulation in California, a cost-effective, timely, and consistent spatial estimate of crop ET, from the farm to watershed level, is becoming increasingly important. The Priestley-Taylor (PT) approach, calibrated with field data and driven by satellite observations, shows great promise for accurate ET estimates across diverse ecosystems. We here aim to improve the robustness of the PT approach in agricultural lands, to enable growers and farm managers to tailor irrigation management based on in-field spatial variability and in-season variation. We optimized the PT coefficients for each crop type with available ET measurements from eddy covariance towers and/or surface renewal stations at six crop fields (Alfalfa, Almond, Citrus, Corn, Pistachio and Rice) in California. Good agreement was found between satellite-based estimates and field measurements of net radiation, with a RMSE of less than 36 W m-2. The crop type specific optimization performed well, with a RMSE of 30 W m-2 and a correlation of 0.81 for predicted daily latent heat flux. The calibrated algorithm was used to estimate ET at 30 m resolution over the Sacramento-San Joaquin Delta region for 2015 water year. It captures well the seasonal dynamics and spatial distribution of ET in Sacramento-San Joaquin Delta. A continuous monitoring of the dynamics and spatial heterogeneity of canopy and consumptive water use at a field scale, will help the growers to be well prepared and informed to adaptively manage water, canopy, and grove density to maximize the yield with the least amount of water.

  5. Spatially explicit control of invasive species using a reaction-diffusion model

    USGS Publications Warehouse

    Bonneau, Mathieu; Johnson, Fred A.; Romagosa, Christina M.

    2016-01-01

    Invasive species, which can be responsible for severe economic and environmental damages, must often be managed over a wide area with limited resources, and the optimal allocation of effort in space and time can be challenging. If the spatial range of the invasive species is large, control actions might be applied only on some parcels of land, for example because of property type, accessibility, or limited human resources. Selecting the locations for control is critical and can significantly impact management efficiency. To help make decisions concerning the spatial allocation of control actions, we propose a simulation based approach, where the spatial distribution of the invader is approximated by a reaction–diffusion model. We extend the classic Fisher equation to incorporate the effect of control both in the diffusion and local growth of the invader. The modified reaction–diffusion model that we propose accounts for the effect of control, not only on the controlled locations, but on neighboring locations, which are based on the theoretical speed of the invasion front. Based on simulated examples, we show the superiority of our model compared to the state-of-the-art approach. We illustrate the use of this model for the management of Burmese pythons in the Everglades (Florida, USA). Thanks to the generality of the modified reaction–diffusion model, this framework is potentially suitable for a wide class of management problems and provides a tool for managers to predict the effects of different management strategies.

  6. Spatial Differentiation of Arable Land and Permanent Grasslands to Improve a Regional Land Management Model for Nutrient Balancing

    NASA Astrophysics Data System (ADS)

    Gómez Giménez, M.; Della Peruta, R.; de Jong, R.; Keller, A.; Schaepman, M. E.

    2015-12-01

    Agroecosystems play an important role providing economic and ecosystem services, which directly impact society. Inappropriate land use and unsustainable agricultural management with associated nutrient cycles can jeopardize important soil functions such as food production, livestock feeding and conservation of biodiversity. The objective of this study was to integrate remotely sensed land cover information into a regional Land Management Model (LMM) to improve the assessment of spatial explicit nutrient balances for agroecosystems. Remotely sensed data as well as an optimized parameter set contributed to feed the LMM providing a better spatial allocation of agricultural data aggregated at farm level. The integration of land use information in the land allocation process relied predominantly on three factors: i) spatial resolution, ii) classification accuracy and iii) parcels definition. The best-input parameter combination resulted in two different land cover classifications with overall accuracies of 98%, improving the LMM performance by 16% as compared to using non-spatially explicit input. Firstly, the use of spatial explicit information improved the spatial allocation output resulting in a pattern that better followed parcel boundaries (Figure 1). Second, the high classification accuracies ensured consistency between the datasets used. Third, the use of a suitable spatial unit to define the parcels boundaries influenced the model in terms of computational time and the amount of farmland allocated. We conclude that the combined use of remote sensing (RS) data with the LMM has the potential to provide highly accurate information of spatial explicit nutrient balances that are crucial for policy options concerning sustainable management of agricultural soils. Figure 1. Details of the spatial pattern obtained: a) Using only the farm census data, b) using also land use information. Framed in black in the left image (a), examples of artifacts that disappeared when using land use information (right image, b). Colors represent different ownership.

  7. Applications of spatial statistical network models to stream data

    USGS Publications Warehouse

    Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.

  8. Land Use Zoning at the County Level Based on a Multi-Objective Particle Swarm Optimization Algorithm: A Case Study from Yicheng, China

    PubMed Central

    Liu, Yaolin; Wang, Hua; Ji, Yingli; Liu, Zhongqiu; Zhao, Xiang

    2012-01-01

    Comprehensive land-use planning (CLUP) at the county level in China must include land-use zoning. This is specifically stipulated by the China Land Management Law and aims to achieve strict control on the usages of land. The land-use zoning problem is treated as a multi-objective optimization problem (MOOP) in this article, which is different from the traditional treatment. A particle swarm optimization (PSO) based model is applied to the problem and is developed to maximize the attribute differences between land-use zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of the land-use zones. This is subject to some constraints such as: the quantity limitations for varying land-use zones, regulations assigning land units to a certain land-use zone, and the stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The results obtained for Yicheng, a county in central China, using different objective weighting schemes, are compared and suggest that: (1) the fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern of land-use zones is remarkably optimized when a weight is given to the sub-objectives of spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of attribute difference between land-use zones; (3) when a weight is given to the sub-objective of ecological benefits of the land-use zones, the ecological benefits get a slight increase also at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit of spatial harmony or spatial compactness may have a negative effect on each other; (5) an increase in the ecological benefits may improve the spatial compactness and spatial harmony of the land-use zones; (6) adjusting the weights assigned to each sub-objective can generate a corresponding optimal solution, with a different quantity structure and spatial pattern to satisfy the preference of the different decision makers; (7) the model proposed in this paper is capable of handling the land-use zoning problem, and the crossover and mutation operator can improve the performance of the model, but, nevertheless, leads to increased time consumption. PMID:23066398

  9. Spatial decision supporting for winter wheat irrigation and fertilizer optimizing in North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Xiaodong; Yang, Hao; Dong, Yansheng; Yu, Haiyang

    2014-11-01

    Production management of winter wheat is more complicated than other crops since its growth period is covered all four seasons and growth environment is very complex with frozen injury, drought, insect or disease injury and others. In traditional irrigation and fertilizer management, agricultural technicians or farmers mainly make decision based on phenology, planting experience to carry out artificial fertilizer and irrigation management. For example, wheat needs more nitrogen fertilizer in jointing and booting stage by experience, then when the wheat grow to the two growth periods, the farmer will fertilize to the wheat whether it needs or not. We developed a spatial decision support system for optimizing irrigation and fertilizer measures based on WebGIS, which monitoring winter wheat growth and soil moisture content by combining a crop model, remote sensing data and wireless sensors data, then reasoning professional management schedule from expert knowledge warehouse. This system is developed by ArcIMS, IDL in server-side and JQuery, Google Maps API, ASP.NET in client-side. All computing tasks are run on server-side, such as computing 11 normal vegetable indexes (NDVI/ NDWI/ NDWI2/ NRI/ NSI/ WI/ G_SWIR/ G_SWIR2/ SPSI/ TVDI/ VSWI) and custom VI of remote sensing image by IDL; while real-time building map configuration file and generating thematic map by ArcIMS.

  10. Optimal joint management of a coastal aquifer and a substitute resource

    NASA Astrophysics Data System (ADS)

    Moreaux, M.; Reynaud, A.

    2004-06-01

    This article characterizes the optimal joint management of a coastal aquifer and a costly water substitute. For this purpose we use a mathematical representation of the aquifer that incorporates the displacement of the interface between the seawater and the freshwater of the aquifer. We identify the spatial cost externalities created by users on each other and we show that the optimal water supply depends on the location of users. Users located in the coastal zone exclusively use the costly substitute. Those located in the more upstream area are supplied from the aquifer. At the optimum their withdrawal must take into account the cost externalities they generate on users located downstream. Last, users located in a median zone use the aquifer with a surface transportation cost. We show that the optimum can be implemented in a decentralized economy through a very simple Pigouvian tax. Finally, the optimal and decentralized extraction policies are simulated on a very simple example.

  11. The Regulation of a Spatially Heterogeneous Externality: Tradable Groundwater Permits to Protect Streams

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Brozovic, N.

    2012-12-01

    Groundwater pumping from aquifers can reduce the flow of surface water in nearby streams through a process known as stream depletion. In the United States, recent awareness of this externality has led to intra- and inter-state conflict and rapidly-changing water management policies and institutions. A factor that complicates the design of groundwater management policies to protect streams is the spatial heterogeneity of the stream depletion externality; the marginal damage of groundwater use on stream flows depends crucially on the location of pumping relative to streams. Under these circumstances, economic theory predicts that spatially differentiated policies can achieve an aggregate reduction in stream depletion cost effectively. However, whether spatially differentiated policies offer significant abatement cost savings and environmental improvements over simpler, alternative policies is an empirical question. In this paper, we analyze whether adopting a spatially differentiated groundwater permit system can lead to significant savings in compliance costs while meeting targets on stream protection. Using a population data set of active groundwater wells in the Nebraska portion of the Republican River Basin, we implement an optimization model of each well owner's crop choice, land use, and irrigation decisions to determine the distribution of regulatory costs. We model the externality of pumping on streams by employing an analytical solution from the hydrology literature that determines reductions in stream flow caused by groundwater pumping over space and time. The economic and hydrologic model components are then combined into one optimization framework, which allows us to measure farmer abatement costs and stream flow benefits under a constrained optimal market that features spatially differentiated, tradable groundwater permits. We compare this outcome to the efficiency of alternative second-best policies, including spatially uniform permit markets and pumping restrictions based on geographic zones. Our analysis considers static policies for which abatement is fixed over time, as well as dynamic policies that allow abatement to vary over time and future compliance costs to be subject to a discount rate. We find that if current levels of stream flow in the Republican River Basin are held fixed, regulators can generate most of the potential abatement cost savings by establishing a one-to-one tradable permit system that does not account for spatial heterogeneity. We obtain this surprising result because the agronomic and climatic parameters in our data set that determine farmer abatement costs are spatially correlated with hydrologic parameters that determine the marginal damage of groundwater use on streams. However, we also find that if future legal or ecological circumstances require regulators to increase significantly the protection of streams from current levels, spatially differentiated policies will generate sizable cost savings compared to policies that ignore spatial heterogeneity.

  12. Power Consumption Optimization in Tooth Gears Processing

    NASA Astrophysics Data System (ADS)

    Kanatnikov, N.; Harlamov, G.; Kanatnikova, P.; Pashmentova, A.

    2018-01-01

    The paper reviews the issue of optimization of technological process of tooth gears production of the power consumption criteria. The authors dwell on the indices used for cutting process estimation by the consumed energy criteria and their applicability in the analysis of the toothed wheel production process. The inventors proposed a method for optimization of power consumptions based on the spatial modeling of cutting pattern. The article is aimed at solving the problem of effective source management in order to achieve economical and ecological effect during the mechanical processing of toothed gears. The research was supported by Russian Science Foundation (project No. 17-79-10316).

  13. The benefits of GIS to land use planning

    NASA Astrophysics Data System (ADS)

    Strielko, Irina; Pereira, Paulo

    2014-05-01

    The development of information technologies has significantly changed the approach to land use and spatial planning, management of natural resources. GIS considerably simplifies territorial planning operating analyzing necessary data concerning their spatial relationship that allows carrying out complex assessment of the situation and creates a basis for adoption of more exact and scientifically reasonable decisions in the course of land use. To assess the current land use situation and the possibility of modeling possible future changes associated with complex of adopted measures GIS allows the integration of diverse spatial data, for example, data about soils, climate, vegetation, and other and also to visualize available information in the form of maps, graphs or charts, 3D models. For the purposes of land use GIS allow using data of remote sensing, which allows to make monitoring of anthropogenic influence in a particular area and estimate scales and rates of degradation of green cover, flora and fauna. Assessment of land use can be made in complex or componentwise, indicating the test sites depending on the goals. GIS make it easy to model spatial distribution of various types of pollution of stationary and mobile sources in soil, atmosphere and the hydrological network. Based on results of the analysis made by GIS choose the optimal solutions of land use that provide the minimum impact on environment, make optimal decisions of conflict associated with land use and control of their using. One of the major advantages of using GIS is possibility of the complex analysis in concrete existential aspect. Analytical opportunities of GIS define conditionality of spatial distribution of objects and interrelation communication between them. For a variety of land management objectives analysis method is chosen based on the parameters of the problem and parameters of use of its results.

  14. Global biomass production potentials exceed expected future demand without the need for cropland expansion

    PubMed Central

    Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro

    2015-01-01

    Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification. PMID:26558436

  15. Global biomass production potentials exceed expected future demand without the need for cropland expansion.

    PubMed

    Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro

    2015-11-12

    Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.

  16. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part I: System identification and methodology development.

    PubMed

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Xiujuan; Chen, Jiapei

    2017-03-01

    Due to the existence of complexities of heterogeneities, hierarchy, discreteness, and interactions in municipal solid waste management (MSWM) systems such as Beijing, China, a series of socio-economic and eco-environmental problems may emerge or worsen and result in irredeemable damages in the following decades. Meanwhile, existing studies, especially ones focusing on MSWM in Beijing, could hardly reflect these complexities in system simulations and provide reliable decision support for management practices. Thus, a framework of distributed mixed-integer fuzzy hierarchical programming (DMIFHP) is developed in this study for MSWM under these complexities. Beijing is selected as a representative case. The Beijing MSWM system is comprehensively analyzed in many aspects such as socio-economic conditions, natural conditions, spatial heterogeneities, treatment facilities, and system complexities, building a solid foundation for system simulation and optimization. Correspondingly, the MSWM system in Beijing is discretized as 235 grids to reflect spatial heterogeneity. A DMIFHP model which is a nonlinear programming problem is constructed to parameterize the Beijing MSWM system. To enable scientific solving of it, a solution algorithm is proposed based on coupling of fuzzy programming and mixed-integer linear programming. Innovations and advantages of the DMIFHP framework are discussed. The optimal MSWM schemes and mechanism revelations will be discussed in another companion paper due to length limitation.

  17. Using economic instruments to develop effective management of invasive species: insights from a bioeconomic model.

    PubMed

    McDermott, Shana M; Irwin, Rebecca E; Taylor, Brad W

    2013-07-01

    Economic growth is recognized as an important factor associated with species invasions. Consequently, there is increasing need to develop solutions that combine economics and ecology to inform invasive species management. We developed a model combining economic, ecological, and sociological factors to assess the degree to which economic policies can be used to control invasive plants. Because invasive plants often spread across numerous properties, we explored whether property owners should manage invaders cooperatively as a group by incorporating the negative effects of invader spread in management decisions (collective management) or independently, whereby the negative effects of invasive plant spread are ignored (independent management). Our modeling approach used a dynamic optimization framework, and we applied the model to invader spread using Linaria vulgaris. Model simulations allowed us to determine the optimal management strategy based on net benefits for a range of invader densities. We found that optimal management strategies varied as a function of initial plant densities. At low densities, net benefits were high for both collective and independent management to eradicate the invader, suggesting the importance of early detection and eradication. At moderate densities, collective management led to faster and more frequent invader eradication compared to independent management. When we used a financial penalty to ensure that independent properties were managed collectively, we found that the penalty would be most feasible when levied on a property's perimeter boundary to control spread among properties. At the highest densities, the optimal management strategy was "do nothing" because the economic costs of removal were too high relative to the benefits of removal. Spatial variation in L. vulgaris densities resulted in different optimal management strategies for neighboring properties, making a formal economic policy to encourage invasive species removal critical. To accomplish the management and enforcement of these economic policies, we discuss modification of existing agencies and infrastructure. Finally, a sensitivity analysis revealed that lowering the economic cost of invader removal would strongly increase the probability of invader eradication. Taken together, our results provide quantitative insight into management decisions and economic policy instruments that can encourage invasive species removal across a social landscape.

  18. Open space preservation, property value, and optimal spatial configuration

    Treesearch

    Yong Jiang; Stephen K. Swallow

    2007-01-01

    The public has increasingly demonstrated a strong support for open space preservation. How to finance the socially efficient level of open space with the optimal spatial structure is of high policy relevance to local governments. In this study, we developed a spatially explicit open space model to help identify the socially optimal amount and optimal spatial...

  19. A combined geostatistical-optimization model for the optimal design of a groundwater quality monitoring network

    NASA Astrophysics Data System (ADS)

    Kolosionis, Konstantinos; Papadopoulou, Maria P.

    2017-04-01

    Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.

  20. Using a water-food-energy nexus approach for optimal irrigation management during drought events in Nebraska

    NASA Astrophysics Data System (ADS)

    Campana, P. E.; Zhang, J.; Yao, T.; Melton, F. S.; Yan, J.

    2017-12-01

    Climate change and drought have severe impacts on the agricultural sector affecting crop yields, water availability, and energy consumption for irrigation. Monitoring, assessing and mitigating the effects of climate change and drought on the agricultural and energy sectors are fundamental challenges that require investigation for water, food, and energy security issues. Using an integrated water-food-energy nexus approach, this study is developing a comprehensive drought management system through integration of real-time drought monitoring with real-time irrigation management. The spatially explicit model developed, GIS-OptiCE, can be used for simulation, multi-criteria optimization and generation of forecasts to support irrigation management. To demonstrate the value of the approach, the model has been applied to one major corn region in Nebraska to study the effects of the 2012 drought on crop yield and irrigation water/energy requirements as compared to a wet year such as 2009. The water-food-energy interrelationships evaluated show that significant water volumes and energy are required to halt the negative effects of drought on the crop yield. The multi-criteria optimization problem applied in this study indicates that the optimal solutions of irrigation do not necessarily correspond to those that would produce the maximum crop yields, depending on both water and economic constraints. In particular, crop pricing forecasts are extremely important to define the optimal irrigation management strategy. The model developed shows great potential in precision agriculture by providing near real-time data products including information on evapotranspiration, irrigation volumes, energy requirements, predicted crop growth, and nutrient requirements.

  1. Effect of land tenure and stakeholders attitudes on optimization of conservation practices in agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Piemonti, A. D.; Babbar-Sebens, M.; Luzar, E. J.

    2012-12-01

    Modeled watershed management plans have become valuable tools for evaluating the effectiveness and impacts of conservation practices on hydrologic processes in watersheds. In multi-objective optimization approaches, several studies have focused on maximizing physical, ecological, or economic benefits of practices in a specific location, without considering the relationship between social systems and social attitudes on the overall optimality of the practice at that location. For example, objectives that have been commonly used in spatial optimization of practices are economic costs, sediment loads, nutrient loads and pesticide loads. Though the benefits derived from these objectives are generally oriented towards community preferences, they do not represent attitudes of landowners who might operate their land differently than their neighbors (e.g. farm their own land or rent the land to someone else) and might have different social/personal drivers that motivate them to adopt the practices. In addition, a distribution of such landowners could exist in the watershed, leading to spatially varying preferences to practices. In this study we evaluated the effect of three different land tenure types on the spatial-optimization of conservation practices. To perform the optimization, we used a uniform distribution of land tenure type and a spatially varying distribution of land tenure type. Our results show that for a typical Midwestern agricultural watershed, the most optimal solutions (i.e. highest benefits for minimum economic costs) found were for a uniform distribution of landowners who operate their own land. When a different land-tenure was used for the watershed, the optimized alternatives did not change significantly for nitrates reduction benefits and sediment reduction benefits, but were attained at economic costs much higher than the costs of the landowner who farms her/his own land. For example, landowners who rent to cash-renters would have to spend ~120% higher costs than landowners who operate their own land, to attain the same benefits. We also tested the effect of different social attitudes on the final preferences of the optimized alternatives and its consequences over the total effectiveness of the standard optimization approaches. The results suggest that, for example, when practices were removed from the system due to landowners' attitudes driven by economic profits, then the modified alternatives experienced a decrease in nitrates reduction by 2-50%, and decrease in peak flow reductions by 11-98 %, and decrease in sediments reduction by 20-77%.

  2. Mission Adaptive Uas Capabilities for Earth Science and Resource Assessment

    NASA Astrophysics Data System (ADS)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.; Young, Z.

    2015-04-01

    Unmanned aircraft systems (UAS) are important assets for accessing high risk airspace and incorporate technologies for sensor coordination, onboard processing, tele-communication, unconventional flight control, and ground based monitoring and optimization. These capabilities permit adaptive mission management in the face of complex requirements and chaotic external influences. NASA Ames Research Center has led a number of Earth science remote sensing missions directed at the assessment of natural resources and here we describe two resource mapping problems having mission characteristics requiring a mission adaptive capability extensible to other resource assessment challenges. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This constraint exists when collecting imaging spectroscopy data over vegetation for time series analysis or for the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the signal. Furthermore, the primary flight control imperative to minimize tracking error should compromise with the requirement to minimize aircraft motion artifacts in the spatial measurement distribution. A second example involves mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in recent Earth Science missions including the OCEANIA mission directed at improving the capability for spectral and radiometric reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magnetometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub-surface mapping, including the near-time optimization of these sometimes competing requirements.

  3. Spatially-Distributed Cost–Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution

    PubMed Central

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N.; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program–FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ‘‘best approach” depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds. PMID:26313561

  4. Spatially-Distributed Cost-Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution.

    PubMed

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program-FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ''best approach" depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds.

  5. Optimal routing for efficient municipal solid waste transportation by using ArcGIS application in Chennai, India.

    PubMed

    Sanjeevi, V; Shahabudeen, P

    2016-01-01

    Worldwide, about US$410 billion is spent every year to manage four billion tonnes of municipal solid wastes (MSW). Transport cost alone constitutes more than 50% of the total expenditure on solid waste management (SWM) in major cities of the developed world and the collection and transport cost is about 85% in the developing world. There is a need to improve the ability of the city administrators to manage the municipal solid wastes with least cost. Since 2000, new technologies such as geographical information system (GIS) and related optimization software have been used to optimize the haul route distances. The city limits of Chennai were extended from 175 to 426 km(2) in 2011, leading to sub-optimum levels in solid waste transportation of 4840 tonnes per day. After developing a spatial database for the whole of Chennai with 200 wards, the route optimization procedures have been run for the transport of solid wastes from 13 wards (generating nodes) to one transfer station (intermediary before landfill), using ArcGIS. The optimization process reduced the distances travelled by 9.93%. The annual total cost incurred for this segment alone is Indian Rupees (INR) 226.1 million. Savings in terms of time taken for both the current and shortest paths have also been computed, considering traffic conditions. The overall savings are thus very meaningful and call for optimization of the haul routes for the entire Chennai. © The Author(s) 2015.

  6. Low altitude remote sensing technologies for crop stress monitoring: a case study on spatial and temporal monitoring of irrigated pinto bean

    USDA-ARS?s Scientific Manuscript database

    Site-specific crop management is a promising approach to maximize crop yield with optimal use of rapidly depleting natural resources. Availability of high resolution crop data at critical growth stages is a key for real-time data-driven decisions during the production season. The goal of this study ...

  7. Optimizing spatial and temporal treatments to maintain effective fire and non-fire fuels treatments at landscape scales

    Treesearch

    J. Greg Jones; Woodam Chung; Carl Seielstad; Janet Sullivan; Kurt Krueger

    2010-01-01

    There is a recognized need to apply and maintain fuel treatments to reduce catastrophic wildland fires. A number of models and decision support systems have been developed for addressing different aspects of fuel treatments while considering other important resource management issues and constraints. Although these models address diverse aspects of the fuel treatment-...

  8. Spatio-temporal optimization of agricultural practices to achieve a sustainable development at basin level; framework of a case study in Colombia

    NASA Astrophysics Data System (ADS)

    Uribe, Natalia; corzo, Gerald; Solomatine, Dimitri

    2016-04-01

    The flood events present during the last years in different basins of the Colombian territory have raised questions on the sensitivity of the regions and if this regions have common features. From previous studies it seems important features in the sensitivity of the flood process were: land cover change, precipitation anomalies and these related to impacts of agriculture management and water management deficiencies, among others. A significant government investment in the outreach activities for adopting and promoting the Colombia National Action Plan on Climate Change (NAPCC) is being carried out in different sectors and regions, having as a priority the agriculture sector. However, more information is still needed in the local environment in order to assess were the regions have this sensitivity. Also the continuous change in one region with seasonal agricultural practices have been pointed out as a critical information for optimal sustainable development. This combined spatio-temporal dynamics of crops cycle in relation to climate change (or variations) has an important impact on flooding events at basin areas. This research will develop on the assessment and optimization of the aggregated impact of flood events due to determinate the spatio-temporal dynamic of changes in agricultural management practices. A number of common best agricultural practices have been identified to explore their effect in a spatial hydrological model that will evaluate overall changes. The optimization process consists on the evaluation of best performance in the agricultural production, without having to change crops activities or move to other regions. To achieve this objectives a deep analysis of different models combined with current and future climate scenarios have been planned. An algorithm have been formulated to cover the parametric updates such that the optimal temporal identification will be evaluated in different region on the case study area. Different hydroinformatics techniques for optimization and uncertainty analysis are included in a framework that will solve partially the computational load found in the pre-runs of the case study. The work will focus on the region Fuquene basin in Colombia but this will not limit the scope of this study to have general methodological applications to other areas. Key words Modelling, WFlow_sbm, agriculture practices, climate change, optimization, flooding, spatial and temporal analysis

  9. Research on the decision-making model of land-use spatial optimization

    NASA Astrophysics Data System (ADS)

    He, Jianhua; Yu, Yan; Liu, Yanfang; Liang, Fei; Cai, Yuqiu

    2009-10-01

    Using the optimization result of landscape pattern and land use structure optimization as constraints of CA simulation results, a decision-making model of land use spatial optimization is established coupled the landscape pattern model with cellular automata to realize the land use quantitative and spatial optimization simultaneously. And Huangpi district is taken as a case study to verify the rationality of the model.

  10. Spatial layout optimization design of multi-type LEDs lighting source based on photoelectrothermal coupling theory

    NASA Astrophysics Data System (ADS)

    Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.

  11. A spatial data handling system for retrieval of images by unrestricted regions of user interest

    NASA Technical Reports Server (NTRS)

    Dorfman, Erik; Cromp, Robert F.

    1992-01-01

    The Intelligent Data Management (IDM) project at NASA/Goddard Space Flight Center has prototyped an Intelligent Information Fusion System (IIFS), which automatically ingests metadata from remote sensor observations into a large catalog which is directly queryable by end-users. The greatest challenge in the implementation of this catalog was supporting spatially-driven searches, where the user has a possible complex region of interest and wishes to recover those images that overlap all or simply a part of that region. A spatial data management system is described, which is capable of storing and retrieving records of image data regardless of their source. This system was designed and implemented as part of the IIFS catalog. A new data structure, called a hypercylinder, is central to the design. The hypercylinder is specifically tailored for data distributed over the surface of a sphere, such as satellite observations of the Earth or space. Operations on the hypercylinder are regulated by two expert systems. The first governs the ingest of new metadata records, and maintains the efficiency of the data structure as it grows. The second translates, plans, and executes users' spatial queries, performing incremental optimization as partial query results are returned.

  12. MODOPTIM: A general optimization program for ground-water flow model calibration and ground-water management with MODFLOW

    USGS Publications Warehouse

    Halford, Keith J.

    2006-01-01

    MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.

  13. Integrated management of waterbirds: Beyond the conventional

    USGS Publications Warehouse

    Erwin, R.M.

    2002-01-01

    Integrated waterbird management over the past few decades has implicitly referred to methods for managing wetlands that usually attempt to enhance habitat for taxonomic groups such as shorebirds and wading birds, in addition to waterfowl, the traditional focus group. Here I describe five elements of integration in management: taxonomic, spatial, temporal, population and habitat, and multiple-use management objectives. Spatial integration simply expands the scale of management concern. Rather than emphasizing management on a very limited number of impoundments or wetlands in small refuges or wildlife management areas, the vision is beginning to shift to connectivity within larger landscapes on the order of many square kilometers as telemetry data on daily and seasonal movements for many species become available. Temporal integration refers to the potential for either simultaneous management for waterbirds and commercial "crops" (e.g., crayfish and rice) or for temporally-staggered management such as row crop production in spring-summer growing seasons and waterbird management on fallow fields in the non-growing (winter) season. Integrating population dynamics with habitats has become a major research focus over the past decade. Identifying which wetlands are "sources" or "sinks" for specific populations provides managers with critical information about effective management. Further, the applications of spatially explicit population models place heavy demands on researchers to identify use patterns for breeding and dispersing individuals by age, sex, and reproductive class. Population viability analysis models require much the same information. Finally, multiple-use management integration refers to trying to optimize the uses of wetlands, when only one (perhaps secondary) use may include waterbird management. Depending upon the ownership and primary land use of a particular parcel of land containing wetlands and/or water bodies, managing for waterbirds may be an "easy sell" (e.g., public natural resource lands) or a very contentious one, where wetlands are created for industrial, aquaculture or urban uses. In the latter case, careful planning and implementation require broad stakeholder participation and education.

  14. Integrated management of waterbirds: Beyond the conventional

    USGS Publications Warehouse

    Erwin, R.M.; Parsons, Katharine C.; Brown, Stephen C.; Erwin, R. Michael; Czech, Helen A.; Coulson, John C.

    2002-01-01

    Integrated waterbird management over the past few decades has implicitly referred to methods for managing wetlands that usually attempt to enhance habitat for taxonomic groups such as shorebirds and wading birds, in addition to waterfowl, the traditional focus group. Here I describe five elements of integration in management: taxonomic, spatial, temporal, population and habitat, and multiple-use management objectives. Spatial integration simply expands the scale of management concern. Rather than emphasizing management on a very limited number of impoundments or wetlands in small refuges or wildlife management areas, the vision is beginning to shift to connectivity within larger landscapes on the order of many square kilometers as telemetry data on daily and seasonal movements for many species become available. Temporal integration refers to the potential for either simultaneous management for waterbirds and commercial 'crops' (e.g., crayfish and rice) or for temporally-staggered management such as row crop production in spring-summer growing seasons and waterbird management on fallow fields in the non-growing (winter) season. Integrating population dynamics with habitats has become a major research focus over the past decade. Identifying which wetlands are ?sources? or ?sinks? for specific populations provides managers with critical information about effective management. Further, the applications of spatially explicit population models place heavy demands on researchers to identify use patterns for breeding and dispersing individuals by age, sex, and reproductive class. Population viability analysis models require much the same information. Finally, multiple-use management integration refers to trying to optimize the uses of wetlands, when only one (perhaps secondary) use may include waterbird management. Depending upon the ownership and primary land use of a particular parcel of land containing wetlands and/or water bodies, managing for waterbirds may be an ?easy sell? (e.g., public natural resource lands) or a very contentious one, where wetlands are created for industrial, aquaculture or urban uses. In the latter case, careful planning and implementation require broad stakeholder participation and education.

  15. Determination of the Spatial Distribution in Hydraulic Conductivity Using Genetic Algorithm Optimization

    NASA Astrophysics Data System (ADS)

    Aksoy, A.; Lee, J. H.; Kitanidis, P. K.

    2016-12-01

    Heterogeneity in hydraulic conductivity (K) impacts the transport and fate of contaminants in subsurface as well as design and operation of managed aquifer recharge (MAR) systems. Recently, improvements in computational resources and availability of big data through electrical resistivity tomography (ERT) and remote sensing have provided opportunities to better characterize the subsurface. Yet, there is need to improve prediction and evaluation methods in order to obtain information from field measurements for better field characterization. In this study, genetic algorithm optimization, which has been widely used in optimal aquifer remediation designs, was used to determine the spatial distribution of K. A hypothetical 2 km by 2 km aquifer was considered. A genetic algorithm library, PGAPack, was linked with a fast Fourier transform based random field generator as well as a groundwater flow and contaminant transport simulation model (BIO2D-KE). The objective of the optimization model was to minimize the total squared error between measured and predicted field values. It was assumed measured K values were available through ERT. Performance of genetic algorithm in predicting the distribution of K was tested for different cases. In the first one, it was assumed that observed K values were evaluated using the random field generator only as the forward model. In the second case, as well as K-values obtained through ERT, measured head values were incorporated into evaluation in which BIO2D-KE and random field generator were used as the forward models. Lastly, tracer concentrations were used as additional information in the optimization model. Initial results indicated enhanced performance when random field generator and BIO2D-KE are used in combination in predicting the spatial distribution in K.

  16. Determining the barriers and facilitators to adopting best practices in the management of poststroke unilateral spatial neglect: results of a qualitative study.

    PubMed

    Petzold, Anita; Korner-Bitensky, Nicol; Salbach, Nancy M; Ahmed, Sara; Menon, Anita; Ogourtsova, Tatiana

    2014-01-01

    A gap exists between best and actual management of poststroke unilateral spatial neglect (USN). Given the negative impact of USN on poststroke recovery, knowledge translation efforts are needed to optimize USN management. To date, no study has investigated the specific barriers and facilitators affecting USN management during the acute care process. To identify the facilitators and barriers that affect evidence-based practice use by occupational therapists (the primary discipline managing USN) when treating individuals with acute poststroke USN. Focus group methodology elicited information from 9 acute care occupational therapists. Key barriers identified included lack of basic evidence-based practice skills specific to USN treatment and personal motivation to change current practices and engrained habits. Key facilitators included the presence of a multidisciplinary stroke team, recent graduation, and an environment with access to learning time and resources. Synthesized Web-based learning was also seen as important to uptake of best practices. It is estimated that upwards of 40% of patients experience poststroke USN in the acute phase, and we have evidence of poor early management. This study identified several modifiable factors that prepare the ground for the creation and testing of a multimodal knowledge translation intervention aimed at improving clinicians' best practice management of poststroke USN.

  17. Accounting for enforcement costs in the spatial allocation of marine zones.

    PubMed

    Davis, Katrina; Kragt, Marit; Gelcich, Stefan; Schilizzi, Steven; Pannell, David

    2015-02-01

    Marine fish stocks are in many cases extracted above sustainable levels, but they may be protected through restricted-use zoning systems. The effectiveness of these systems typically depends on support from coastal fishing communities. High management costs including those of enforcement may, however, deter fishers from supporting marine management. We incorporated enforcement costs into a spatial optimization model that identified how conservation targets can be met while maximizing fishers' revenue. Our model identified the optimal allocation of the study area among different zones: no-take, territorial user rights for fisheries (TURFs), or open access. The analysis demonstrated that enforcing no-take and TURF zones incurs a cost, but results in higher species abundance by preventing poaching and overfishing. We analyzed how different enforcement scenarios affected fishers' revenue. Fisher revenue was approximately 50% higher when territorial user rights were enforced than when they were not. The model preferentially allocated area to the enforced-TURF zone over other zones, demonstrating that the financial benefits of enforcement (derived from higher species abundance) exceeded the costs. These findings were robust to increases in enforcement costs but sensitive to changes in species' market price. We also found that revenue under the existing zoning regime in the study area was 13-30% lower than under an optimal solution. Our results highlight the importance of accounting for both the benefits and costs of enforcement in marine conservation, particularly when incurred by fishers. © 2014 Society for Conservation Biology.

  18. Solving multi-objective optimization problems in conservation with the reference point method

    PubMed Central

    Dujardin, Yann; Chadès, Iadine

    2018-01-01

    Managing the biodiversity extinction crisis requires wise decision-making processes able to account for the limited resources available. In most decision problems in conservation biology, several conflicting objectives have to be taken into account. Most methods used in conservation either provide suboptimal solutions or use strong assumptions about the decision-maker’s preferences. Our paper reviews some of the existing approaches to solve multi-objective decision problems and presents new multi-objective linear programming formulations of two multi-objective optimization problems in conservation, allowing the use of a reference point approach. Reference point approaches solve multi-objective optimization problems by interactively representing the preferences of the decision-maker with a point in the criteria (objectives) space, called the reference point. We modelled and solved the following two problems in conservation: a dynamic multi-species management problem under uncertainty and a spatial allocation resource management problem. Results show that the reference point method outperforms classic methods while illustrating the use of an interactive methodology for solving combinatorial problems with multiple objectives. The method is general and can be adapted to a wide range of ecological combinatorial problems. PMID:29293650

  19. Development of management information system for land in mine area based on MapInfo

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Dong; Liu, Chuang-Hua; Wang, Xin-Chuang; Pan, Yan-Yu

    2008-10-01

    MapInfo is current a popular GIS software. This paper introduces characters of MapInfo and GIS second development methods offered by MapInfo, which include three ones based on MapBasic, OLE automation, and MapX control usage respectively. Taking development of land management information system in mine area for example, in the paper, the method of developing GIS applications based on MapX has been discussed, as well as development of land management information system in mine area has been introduced in detail, including development environment, overall design, design and realization of every function module, and simple application of system, etc. The system uses MapX 5.0 and Visual Basic 6.0 as development platform, takes SQL Server 2005 as back-end database, and adopts Matlab 6.5 to calculate number in back-end. On the basis of integrated design, the system develops eight modules including start-up, layer control, spatial query, spatial analysis, data editing, application model, document management, results output. The system can be used in mine area for cadastral management, land use structure optimization, land reclamation, land evaluation, analysis and forecasting for land in mine area and environmental disruption, thematic mapping, and so on.

  20. Scaling issues in local productivity hotspots in marine ecosystems using remote sensing data: A case study in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Ribera, M.; Gopal, S.

    2014-12-01

    Productivity hotspots are traditionally defined as concentrations of relatively high biomass compared to global reference values. These hotspots often signal atypical processes occurring in a location, and identifying them is a great first step at understanding the complexity inherent in the system. However, identifying local hotspots can be difficult when an overarching global pattern (i.e. spatial autocorrelation) already exists. This problem is particularly apparent in marine ecosystems because values of productivity in near-shore areas are consistently higher than those of the open ocean due to oceanographic processes such as upwelling. In such cases, if the global reference layer used to detect hotspots is too wide, hotspots may be only identified near the coast while missing known concentrations of organisms in offshore waters. On the other hand, if the global reference layer is too small, every single location may be considered a hotspot. We applied spatial and traditional statistics to remote sensing data to determine the optimal reference global spatial scale for identifying marine productivity hotspots in the Gulf of Maine. Our iterative process measured Getis and Ord's local G* statistic at different global scales until the variance of each hotspot was maximized. We tested this process with different full resolution MERIS chlorophyll layers (300m spatial resolution) for the whole Gulf of Maine. We concluded that the optimal global scale depends on the time of the year the remote sensing data was collected, particularly when coinciding with known seasonal phytoplankton blooms. The hotspots found through this process were also spatially heterogeneous in size, with bigger hotspots in areas offshore than in locations inshore. These results may be instructive for both managers and fisheries researchers as they adapt their fisheries management policies and methods to an ecosystem based approach (EBM).

  1. Optimizing best management practices to control anthropogenic sources of atmospheric phosphorus deposition to inland lakes.

    PubMed

    Weiss, Lee; Thé, Jesse; Winter, Jennifer; Gharabaghi, Bahram

    2018-04-18

    Excessive phosphorus loading to inland freshwater lakes around the globe has resulted in nuisance plant growth along the waterfronts, degraded habitat for cold water fisheries, and impaired beaches, marinas and waterfront property. The direct atmospheric deposition of phosphorus can be a significant contributing source to inland lakes. The atmospheric deposition monitoring program for Lake Simcoe, Ontario indicates roughly 20% of the annual total phosphorus load (2010-2014 period) is due to direct atmospheric deposition (both wet and dry deposition) on the lake. This novel study presents a first-time application of the Genetic Algorithm (GA) methodology to optimize the application of best management practices (BMPs) related to agriculture and mobile sources to achieve atmospheric phosphorus reduction targets and restore the ecological health of the lake. The novel methodology takes into account the spatial distribution of the emission sources in the airshed, the complex atmospheric long-range transport and deposition processes, cost and efficiency of the popular management practices and social constraints related to the adoption of BMPs. The optimization scenarios suggest that the optimal overall capital investment of approximately $2M, $4M, and $10M annually can achieve roughly 3, 4 and 5 tonnes reduction in atmospheric P load to the lake, respectively. The exponential trend indicates diminishing returns for the investment beyond roughly $3M per year and that focussing much of this investment in the upwind, nearshore area will significantly impact deposition to the lake. The optimization is based on a combination of the lowest-cost, most-beneficial and socially-acceptable management practices that develops a science-informed promotion of implementation/BMP adoption strategy. The geospatial aspect to the optimization (i.e. proximity and location with respect to the lake) will help land managers to encourage the use of these targeted best practices in areas that will most benefit from the phosphorus reduction approach.

  2. CNMM: a Catchment Environmental Model for Managing Water Quality and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2015-12-01

    Mitigating agricultural diffuse pollution and greenhouse gas emissions is a complicated task due to tempo-spatial lags between the field practices and the watershed responses. Spatially-distributed modeling is essential to the implementation of cost-effective and best management practices (BMPs) to optimize land uses and nutrient applications as well as to project the impact of climate change on the watershed service functions. CNMM (the Catchment Nutrients Management Model) is a 3D spatially-distributed, grid-based and process-oriented biophysical model comprehensively developed to simulate energy balance, hydrology, plant/crop growth, biogeochemistry of life elements (e.g., C, N and P), waste treatment, waterway vegetation/purification, stream water quality and land management in agricultural watersheds as affected by land utilization strategies such as BMPs and by climate change. The CNMM is driven by a number of spatially-distributed data such as weather, topography (including DEM and shading), stream network, stream water, soil, vegetation and land management (including waste treatments), and runs at an hourly time step. It represents a catchment as a matrix of square uniformly-sized cells, where each cell is defined as a homogeneous hydrological response unit with all the hydrologically-significant parameters the same but varied at soil depths in fine intervals. Therefore, spatial variability is represented by allowing parameters to vary horizontally and vertically in space. A four-direction flux routing algorithm is applied to route water and nutrients across soils of cells governed by the gradients of either water head or elevation. A linear channel reservoir scheme is deployed to route water and nutrients in stream networks. The model is capable of computing CO2, CH4, NH3, NO, N2O and N2 emissions from soils and stream waters. The CNMM can serve as an idea modelling tool to investigate the overwhelming critical zone research at various catchment scales.

  3. Characterizing Vineyard Water Status Variability in a Premium Winegrape Vineyard

    NASA Astrophysics Data System (ADS)

    Smart, David; Carvahlo, Angela

    2017-04-01

    One of the biggest challenges in viticulture and winemaking is managing and optimizing yield and quality across vineyard blocks that show high spatial variability. Studies have shown that zonal management of vine water status can contribute significantly to improving overall fruit quality and improving uniformity. Vine water status is a major parameter for vine management because it affects both wine quality and yield. In order to optimize vineyard management and harvesting practices, it is necessary to characterize vineyard variability in terms of water status. Establishing a targeted irrigation program first requires spatially characterizing the variability in vine water status of a vineyard. In California, due to the low or no rainfall during the active growing season, the majority of vineyards implement some type of irrigation management program. As water supplies continue to decrease as a consequence of persistent drought, establishing efficient and targeted water use programs is of growing importance in California. The aim of this work was to characterize the spatial variability of plant-water relations across a non-uniform 4 ha block in Napa Valley with the primary objective of establishing vineyard irrigation management zones. The study plot was divided into three sections, designated the North, Middle and South sections, each at about 1.3 hectares. Stem (Ψstem) and midday (Ψl) leaf water potential and predawn (ΨPD) water potential were measured at 36 locations within the block at 14 (Ψl), 10 (ΨPD) and 2 (Ψstem) points in time throughout the growing season. Of the three techniques utilized to evaluate water status, ΨPD and Ψstem were the most sensitive indicators of water stress conditions. An integrated overview of water use efficiency over the growing season was assessed by measuring the leaf carbon isotope ratio of δ13C. Fully mature leaves were sampled from 280 vines and results show, similarly to ΨPD and Ψstem, that the North section (-28.05%) was significantly different than the South (at -28.31) and Middle (at -28.33) sections. Interblock variability can be reduced by managing water supply to the North section independently of the South and Middle sections. For Napa due to foggy mornings and overcast skies, Ψl provided the least discriminatory water status measurements.

  4. Optimal estimation and scheduling in aquifer management using the rapid feedback control method

    NASA Astrophysics Data System (ADS)

    Ghorbanidehno, Hojat; Kokkinaki, Amalia; Kitanidis, Peter K.; Darve, Eric

    2017-12-01

    Management of water resources systems often involves a large number of parameters, as in the case of large, spatially heterogeneous aquifers, and a large number of "noisy" observations, as in the case of pressure observation in wells. Optimizing the operation of such systems requires both searching among many possible solutions and utilizing new information as it becomes available. However, the computational cost of this task increases rapidly with the size of the problem to the extent that textbook optimization methods are practically impossible to apply. In this paper, we present a new computationally efficient technique as a practical alternative for optimally operating large-scale dynamical systems. The proposed method, which we term Rapid Feedback Controller (RFC), provides a practical approach for combined monitoring, parameter estimation, uncertainty quantification, and optimal control for linear and nonlinear systems with a quadratic cost function. For illustration, we consider the case of a weakly nonlinear uncertain dynamical system with a quadratic objective function, specifically a two-dimensional heterogeneous aquifer management problem. To validate our method, we compare our results with the linear quadratic Gaussian (LQG) method, which is the basic approach for feedback control. We show that the computational cost of the RFC scales only linearly with the number of unknowns, a great improvement compared to the basic LQG control with a computational cost that scales quadratically. We demonstrate that the RFC method can obtain the optimal control values at a greatly reduced computational cost compared to the conventional LQG algorithm with small and controllable losses in the accuracy of the state and parameter estimation.

  5. Electrical resistivity tomography to delineate greenhouse soil variability

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Amato, M.; Bitella, G.; Bochicchio, R.

    2013-03-01

    Appropriate management of soil spatial variability is an important tool for optimizing farming inputs, with the result of yield increase and reduction of the environmental impact in field crops. Under greenhouses, several factors such as non-uniform irrigation and localized soil compaction can severely affect yield and quality. Additionally, if soil spatial variability is not taken into account, yield deficiencies are often compensated by extra-volumes of crop inputs; as a result, over-irrigation and overfertilization in some parts of the field may occur. Technology for spatially sound management of greenhouse crops is therefore needed to increase yield and quality and to address sustainability. In this experiment, 2D-electrical resistivity tomography was used as an exploratory tool to characterize greenhouse soil variability and its relations to wild rocket yield. Soil resistivity well matched biomass variation (R2=0.70), and was linked to differences in soil bulk density (R2=0.90), and clay content (R2=0.77). Electrical resistivity tomography shows a great potential in horticulture where there is a growing demand of sustainability coupled with the necessity of stabilizing yield and product quality.

  6. Spatially dynamic forest management to sustain biodiversity and economic returns.

    PubMed

    Mönkkönen, Mikko; Juutinen, Artti; Mazziotta, Adriano; Miettinen, Kaisa; Podkopaev, Dmitry; Reunanen, Pasi; Salminen, Hannu; Tikkanen, Olli-Pekka

    2014-02-15

    Production of marketed commodities and protection of biodiversity in natural systems often conflict and thus the continuously expanding human needs for more goods and benefits from global ecosystems urgently calls for strategies to resolve this conflict. In this paper, we addressed what is the potential of a forest landscape to simultaneously produce habitats for species and economic returns, and how the conflict between habitat availability and timber production varies among taxa. Secondly, we aimed at revealing an optimal combination of management regimes that maximizes habitat availability for given levels of economic returns. We used multi-objective optimization tools to analyze data from a boreal forest landscape consisting of about 30,000 forest stands simulated 50 years into future. We included seven alternative management regimes, spanning from the recommended intensive forest management regime to complete set-aside of stands (protection), and ten different taxa representing a wide variety of habitat associations and social values. Our results demonstrate it is possible to achieve large improvements in habitat availability with little loss in economic returns. In general, providing dead-wood associated species with more habitats tended to be more expensive than providing requirements for other species. No management regime alone maximized habitat availability for the species, and systematic use of any single management regime resulted in considerable reductions in economic returns. Compared with an optimal combination of management regimes, a consistent application of the recommended management regime would result in 5% reduction in economic returns and up to 270% reduction in habitat availability. Thus, for all taxa a combination of management regimes was required to achieve the optimum. Refraining from silvicultural thinnings on a proportion of stands should be considered as a cost-effective management in commercial forests to reconcile the conflict between economic returns and habitat required by species associated with dead-wood. In general, a viable strategy to maintain biodiversity in production landscapes would be to diversify management regimes. Our results emphasize the importance of careful landscape level forest management planning because optimal combinations of management regimes were taxon-specific. For cost-efficiency, the results call for balanced and correctly targeted strategies among habitat types. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Integrating GIS, cellular automata, and genetic algorithm in urban spatial optimization: a case study of Lanzhou

    NASA Astrophysics Data System (ADS)

    Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian

    2006-10-01

    This paper presents a model integrating GIS, cellular automata (CA) and genetic algorithm (GA) in urban spatial optimization. The model involves three objectives of the maximization of land-use efficiency, the maximization of urban spatial harmony and appropriate proportion of each land-use type. CA submodel is designed with standard Moore neighbor and three transition rules to maximize the land-use efficiency and urban spatial harmony, according to the land-use suitability and spatial harmony index. GA submodel is designed with four constraints and seven steps for the maximization of urban spatial harmony and appropriate proportion of each land-use type, including encoding, initializing, calculating fitness, selection, crossover, mutation and elitism. GIS is used to prepare for the input data sets for the model and perform spatial analysis on the results, while CA and GA are integrated to optimize urban spatial structure, programmed with Matlab 7 and coupled with GIS loosely. Lanzhou, a typical valley-basin city with fast urban development, is chosen as the case study. At the end, a detail analysis and evaluation of the spatial optimization with the model are made, and it proves to be a powerful tool in optimizing urban spatial structure and make supplement for urban planning and policy-makers.

  8. Structured decision making as a framework for large-scale wildlife harvest management decisions

    USGS Publications Warehouse

    Robinson, Kelly F.; Fuller, Angela K.; Hurst, Jeremy E.; Swift, Bryan L.; Kirsch, Arthur; Farquhar, James F.; Decker, Daniel J.; Siemer, William F.

    2016-01-01

    Fish and wildlife harvest management at large spatial scales often involves making complex decisions with multiple objectives and difficult tradeoffs, population demographics that vary spatially, competing stakeholder values, and uncertainties that might affect management decisions. Structured decision making (SDM) provides a formal decision analytic framework for evaluating difficult decisions by breaking decisions into component parts and separating the values of stakeholders from the scientific evaluation of management actions and uncertainty. The result is a rigorous, transparent, and values-driven process. This decision-aiding process provides the decision maker with a more complete understanding of the problem and the effects of potential management actions on stakeholder values, as well as how key uncertainties can affect the decision. We use a case study to illustrate how SDM can be used as a decision-aiding tool for management decision making at large scales. We evaluated alternative white-tailed deer (Odocoileus virginianus) buck-harvest regulations in New York designed to reduce harvest of yearling bucks, taking into consideration the values of the state wildlife agency responsible for managing deer, as well as deer hunters. We incorporated tradeoffs about social, ecological, and economic management concerns throughout the state. Based on the outcomes of predictive models, expert elicitation, and hunter surveys, the SDM process identified management alternatives that optimized competing objectives. The SDM process provided biologists and managers insight about aspects of the buck-harvest decision that helped them adopt a management strategy most compatible with diverse hunter values and management concerns.

  9. Optimizing and controlling earthmoving operations using spatial technologies

    NASA Astrophysics Data System (ADS)

    Alshibani, Adel

    This thesis presents a model designed for optimizing, tracking, and controlling earthmoving operations. The proposed model utilizes, Genetic Algorithm (GA), Linear Programming (LP), and spatial technologies including Global Positioning Systems (GPS) and Geographic Information Systems (GIS) to support the management functions of the developed model. The model assists engineers and contractors in selecting near optimum crew formations in planning phase and during construction, using GA and LP supported by the Pathfinder Algorithm developed in a GIS environment. GA is used in conjunction with a set of rules developed to accelerate the optimization process and to avoid generating and evaluating hypothetical and unrealistic crew formations. LP is used to determine quantities of earth to be moved from different borrow pits and to be placed at different landfill sites to meet project constraints and to minimize the cost of these earthmoving operations. On the one hand, GPS is used for onsite data collection and for tracking construction equipment in near real-time. On the other hand, GIS is employed to automate data acquisition and to analyze the collected spatial data. The model is also capable of reconfiguring crew formations dynamically during the construction phase while site operations are in progress. The optimization of the crew formation considers: (1) construction time, (2) construction direct cost, or (3) construction total cost. The model is also capable of generating crew formations to meet, as close as possible, specified time and/or cost constraints. In addition, the model supports tracking and reporting of project progress utilizing the earned-value concept and the project ratio method with modifications that allow for more accurate forecasting of project time and cost at set future dates and at completion. The model is capable of generating graphical and tabular reports. The developed model has been implemented in prototype software, using Object-Oriented Programming, Microsoft Foundation Classes (MFC), and has been coded using visual C++ V.6. Microsoft Access is employed as database management system. The developed software operates in Microsoft windows' environment. Three example applications were analyzed to validate the development made and to illustrate the essential features of the developed model.

  10. Impact of Capital and Current Costs Changes of the Incineration Process of the Medical Waste on System Management Cost

    NASA Astrophysics Data System (ADS)

    Jolanta Walery, Maria

    2017-12-01

    The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.

  11. Optimizing prescribed fire allocation for managing fire risk in central Catalonia.

    PubMed

    Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina

    2018-04-15

    We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Optimization of Decision-Making for Spatial Sampling in the North China Plain, Based on Remote-Sensing a Priori Knowledge

    NASA Astrophysics Data System (ADS)

    Feng, J.; Bai, L.; Liu, S.; Su, X.; Hu, H.

    2012-07-01

    In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scalefitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys.

  13. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  14. Visualization tool for human-machine interface designers

    NASA Astrophysics Data System (ADS)

    Prevost, Michael P.; Banda, Carolyn P.

    1991-06-01

    As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.

  15. Science, the public, and social elites: how the general public, scientists, top politicians and managers perceive science.

    PubMed

    Prpić, Katarina

    2011-11-01

    This paper finds that the Croatian public's and the social elites' perceptions of science are a mixture of scientific and technological optimism, of the tendency to absolve science of social responsibility, of skepticism about the social effects of science, and of cognitive optimism and skepticism. However, perceptions differ significantly according to the different social roles and the wider value system of the observed groups. The survey data show some key similarities, as well as certain specificities in the configuration of the types of views of the four groups--the public, scientists, politicians and managers. The results suggest that the well-known typology of the four cultures reveals some of the ideologies of the key actors of scientific and technological policy. The greatest social, primarily educational and socio-spatial, differentiation of the perceptions of science was found in the general public.

  16. Merging spatially variant physical process models under an optimized systems dynamics framework.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cain, William O.; Lowry, Thomas Stephen; Pierce, Suzanne A.

    The complexity of water resource issues, its interconnectedness to other systems, and the involvement of competing stakeholders often overwhelm decision-makers and inhibit the creation of clear management strategies. While a range of modeling tools and procedures exist to address these problems, they tend to be case specific and generally emphasize either a quantitative and overly analytic approach or present a qualitative dialogue-based approach lacking the ability to fully explore consequences of different policy decisions. The integration of these two approaches is needed to drive toward final decisions and engender effective outcomes. Given these limitations, the Computer Assisted Dispute Resolution systemmore » (CADRe) was developed to aid in stakeholder inclusive resource planning. This modeling and negotiation system uniquely addresses resource concerns by developing a spatially varying system dynamics model as well as innovative global optimization search techniques to maximize outcomes from participatory dialogues. Ultimately, the core system architecture of CADRe also serves as the cornerstone upon which key scientific innovation and challenges can be addressed.« less

  17. Identification of phosphorus emission hotspots in agricultural catchments

    PubMed Central

    Kovacs, Adam; Honti, Mark; Zessner, Matthias; Eder, Alexander; Clement, Adrienne; Blöschl, Günter

    2012-01-01

    An enhanced transport-based management approach is presented, which is able to support cost-effective water quality management with respect to diffuse phosphorus pollution. Suspended solids and particulate phosphorus emissions and their transport were modeled in two hilly agricultural watersheds (Wulka River in Austria and Zala River in Hungary) with an improved version of the catchment-scale PhosFate model. Source and transmission areas were ranked by an optimization method in order to provide a priority list of the areas of economically efficient (optimal) management alternatives. The model was calibrated and validated at different gauges and for various years. The spatial distribution of the emissions shows that approximately one third of the catchment area is responsible for the majority of the emissions. However, only a few percent of the source areas can transport fluxes to the catchment outlet. These effective source areas, together with the main transmission areas are potential candidates for improved management practices. In accordance with the critical area concept, it was shown that intervention with better management practices on a properly selected small proportion of the total area (1–3%) is sufficient to reach a remarkable improvement in water quality. If soil nutrient management is also considered in addition to water quality, intervention on 4–12% of the catchment areas can fulfill both aspects. PMID:22771465

  18. Western Juniper Management: Assessing Strategies for Improving Greater Sage-grouse Habitat and Rangeland Productivity

    NASA Astrophysics Data System (ADS)

    Farzan, Shahla; Young, Derek J. N.; Dedrick, Allison G.; Hamilton, Matthew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel

    2015-09-01

    Western juniper ( Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse ( Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.

  19. Western juniper management: assessing strategies for improving greater sage-grouse habitat and rangeland productivity

    USGS Publications Warehouse

    Farzan, Shahla; Young, Derek J.N.; Dedrick, Allison G.; Hamilton, Mattew; Porse, Erik C.; Coates, Peter S.; Sampson, Gabriel

    2015-01-01

    Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.

  20. Western Juniper Management: Assessing Strategies for Improving Greater Sage-grouse Habitat and Rangeland Productivity.

    PubMed

    Farzan, Shahla; Young, Derek J N; Dedrick, Allison G; Hamilton, Matthew; Porse, Erik C; Coates, Peter S; Sampson, Gabriel

    2015-09-01

    Western juniper (Juniperus occidentalis subsp. occidentalis) range expansion into sagebrush steppe ecosystems has affected both native wildlife and economic livelihoods across western North America. The potential listing of the greater sage-grouse (Centrocercus urophasianus) under the U.S. Endangered Species Act has spurred a decade of juniper removal efforts, yet limited research has evaluated program effectiveness. We used a multi-objective spatially explicit model to identify optimal juniper removal sites in Northeastern California across weighted goals for ecological (sage-grouse habitat) and economic (cattle forage production) benefits. We also extended the analysis through alternative case scenarios that tested the effects of coordination among federal agencies, budgetary constraints, and the use of fire as a juniper treatment method. We found that sage-grouse conservation and forage production goals are somewhat complementary, but the extent of complementary benefits strongly depends on spatial factors and management approaches. Certain management actions substantially increase achievable benefits, including agency coordination and the use of prescribed burns to remove juniper. Critically, our results indicate that juniper management strategies designed to increase cattle forage do not necessarily achieve measurable sage-grouse benefits, underscoring the need for program evaluation and monitoring.

  1. The effect of inflation rate on the cost of medical waste management system

    NASA Astrophysics Data System (ADS)

    Jolanta Walery, Maria

    2017-11-01

    This paper describes the optimization study aimed to analyse the impact of the parameter describing the inflation rate on the cost of the system and its structure. The study was conducted on the example of the analysis of medical waste management system in north-eastern Poland, in the Podlaskie Province. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. the inflation rate on the economic efficiency index (E) and the spatial structure of the system was determined. With the assumed inflation rate in the range of 1.00 to 1.12, the highest cost of the system was achieved at the level of PLN 2022.20/t (increase of economic efficiency index E by ca. 27% in comparison with run 1, with inflation rate = 1.12).

  2. Multiobjective design of aquifer monitoring networks for optimal spatial prediction and geostatistical parameter estimation

    NASA Astrophysics Data System (ADS)

    Alzraiee, Ayman H.; Bau, Domenico A.; Garcia, Luis A.

    2013-06-01

    Effective sampling of hydrogeological systems is essential in guiding groundwater management practices. Optimal sampling of groundwater systems has previously been formulated based on the assumption that heterogeneous subsurface properties can be modeled using a geostatistical approach. Therefore, the monitoring schemes have been developed to concurrently minimize the uncertainty in the spatial distribution of systems' states and parameters, such as the hydraulic conductivity K and the hydraulic head H, and the uncertainty in the geostatistical model of system parameters using a single objective function that aggregates all objectives. However, it has been shown that the aggregation of possibly conflicting objective functions is sensitive to the adopted aggregation scheme and may lead to distorted results. In addition, the uncertainties in geostatistical parameters affect the uncertainty in the spatial prediction of K and H according to a complex nonlinear relationship, which has often been ineffectively evaluated using a first-order approximation. In this study, we propose a multiobjective optimization framework to assist the design of monitoring networks of K and H with the goal of optimizing their spatial predictions and estimating the geostatistical parameters of the K field. The framework stems from the combination of a data assimilation (DA) algorithm and a multiobjective evolutionary algorithm (MOEA). The DA algorithm is based on the ensemble Kalman filter, a Monte-Carlo-based Bayesian update scheme for nonlinear systems, which is employed to approximate the posterior uncertainty in K, H, and the geostatistical parameters of K obtained by collecting new measurements. Multiple MOEA experiments are used to investigate the trade-off among design objectives and identify the corresponding monitoring schemes. The methodology is applied to design a sampling network for a shallow unconfined groundwater system located in Rocky Ford, Colorado. Results indicate that the effect of uncertainties associated with the geostatistical parameters on the spatial prediction might be significantly alleviated (by up to 80% of the prior uncertainty in K and by 90% of the prior uncertainty in H) by sampling evenly distributed measurements with a spatial measurement density of more than 1 observation per 60 m × 60 m grid block. In addition, exploration of the interaction of objective functions indicates that the ability of head measurements to reduce the uncertainty associated with the correlation scale is comparable to the effect of hydraulic conductivity measurements.

  3. The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China.

    PubMed

    Di, Hui; Liu, Xingpeng; Zhang, Jiquan; Tong, Zhijun; Ji, Meichen

    2018-03-15

    Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks.

  4. Environmental offsets, resilience and cost-effective conservation

    PubMed Central

    Little, L. R.; Grafton, R. Q.

    2015-01-01

    Conservation management agencies are faced with acute trade-offs when dealing with disturbance from human activities. We show how agencies can respond to permanent ecosystem disruption by managing for Pimm resilience within a conservation budget using a model calibrated to a metapopulation of a coral reef fish species at Ningaloo Reef, Western Australia. The application is of general interest because it provides a method to manage species susceptible to negative environmental disturbances by optimizing between the number and quality of migration connections in a spatially distributed metapopulation. Given ecological equivalency between the number and quality of migration connections in terms of time to recover from disturbance, our approach allows conservation managers to promote ecological function, under budgetary constraints, by offsetting permanent damage to one ecological function with investment in another. PMID:26587260

  5. Real-time SHVC software decoding with multi-threaded parallel processing

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; He, Yuwen; Ye, Yan; He, Yong; Ryu, Eun-Seok; Dong, Jie; Xiu, Xiaoyu

    2014-09-01

    This paper proposes a parallel decoding framework for scalable HEVC (SHVC). Various optimization technologies are implemented on the basis of SHVC reference software SHM-2.0 to achieve real-time decoding speed for the two layer spatial scalability configuration. SHVC decoder complexity is analyzed with profiling information. The decoding process at each layer and the up-sampling process are designed in parallel and scheduled by a high level application task manager. Within each layer, multi-threaded decoding is applied to accelerate the layer decoding speed. Entropy decoding, reconstruction, and in-loop processing are pipeline designed with multiple threads based on groups of coding tree units (CTU). A group of CTUs is treated as a processing unit in each pipeline stage to achieve a better trade-off between parallelism and synchronization. Motion compensation, inverse quantization, and inverse transform modules are further optimized with SSE4 SIMD instructions. Simulations on a desktop with an Intel i7 processor 2600 running at 3.4 GHz show that the parallel SHVC software decoder is able to decode 1080p spatial 2x at up to 60 fps (frames per second) and 1080p spatial 1.5x at up to 50 fps for those bitstreams generated with SHVC common test conditions in the JCT-VC standardization group. The decoding performance at various bitrates with different optimization technologies and different numbers of threads are compared in terms of decoding speed and resource usage, including processor and memory.

  6. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part II: scheme analysis and mechanism revelation.

    PubMed

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Jiapei; Chen, Xiujuan; Li, Kailong

    2017-03-01

    As presented in the first companion paper, distributed mixed-integer fuzzy hierarchical programming (DMIFHP) was developed for municipal solid waste management (MSWM) under complexities of heterogeneities, hierarchy, discreteness, and interactions. Beijing was selected as a representative case. This paper focuses on presenting the obtained schemes and the revealed mechanisms of the Beijing MSWM system. The optimal MSWM schemes for Beijing under various solid waste treatment policies and their differences are deliberated. The impacts of facility expansion, hierarchy, and spatial heterogeneities and potential extensions of DMIFHP are also discussed. A few of findings are revealed from the results and a series of comparisons and analyses. For instance, DMIFHP is capable of robustly reflecting these complexities in MSWM systems, especially for Beijing. The optimal MSWM schemes are of fragmented patterns due to the dominant role of the proximity principle in allocating solid waste treatment resources, and they are closely related to regulated ratios of landfilling, incineration, and composting. Communities without significant differences among distances to different types of treatment facilities are more sensitive to these ratios than others. The complexities of hierarchy and heterogeneities pose significant impacts on MSWM practices. Spatial dislocation of MSW generation rates and facility capacities caused by unreasonable planning in the past may result in insufficient utilization of treatment capacities under substantial influences of transportation costs. The problems of unreasonable MSWM planning, e.g., severe imbalance among different technologies and complete vacancy of ten facilities, should be gained deliberation of the public and the municipal or local governments in Beijing. These findings are helpful for gaining insights into MSWM systems under these complexities, mitigating key challenges in the planning of these systems, improving the related management practices, and eliminating potential socio-economic and eco-environmental issues resulting from unreasonable management.

  7. Design and implementation of intelligent electronic warfare decision making algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Hsin-Hsien; Chen, Chang-Kuo; Hsueh, Chi-Shun

    2017-05-01

    Electromagnetic signals and the requirements of timely response have been a rapid growth in modern electronic warfare. Although jammers are limited resources, it is possible to achieve the best electronic warfare efficiency by tactical decisions. This paper proposes the intelligent electronic warfare decision support system. In this work, we develop a novel hybrid algorithm, Digital Pheromone Particle Swarm Optimization, based on Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Shuffled Frog Leaping Algorithm (SFLA). We use PSO to solve the problem and combine the concept of pheromones in ACO to accumulate more useful information in spatial solving process and speed up finding the optimal solution. The proposed algorithm finds the optimal solution in reasonable computation time by using the method of matrix conversion in SFLA. The results indicated that jammer allocation was more effective. The system based on the hybrid algorithm provides electronic warfare commanders with critical information to assist commanders in effectively managing the complex electromagnetic battlefield.

  8. Arsenic and radionuclide occurrence and relation to geochemistry in groundwater of the Gulf Coast Aquifer System in Houston, Texas, 2007–11

    USGS Publications Warehouse

    Oden, Jeannette H.; Szabo, Zoltan

    2016-03-21

    Associated geochemical conditions conducive for mobility of arsenic and radionuclides and their spatial and vertical extent in the Gulf Coast aquifer system in Houston are important aspects to the areal management of the municipal groundwater supplies in Houston. Ongoing research is seeking to define chemical or geological factors that are the optimal indicators for elevated concentrations of these naturally occurring constituents.

  9. Modified Optimization Water Index (mowi) for LANDSAT-8 Oli/tirs

    NASA Astrophysics Data System (ADS)

    Moradi, M.; Sahebi, M.; Shokri, M.

    2017-09-01

    Water is one of the most important resources that essential need for human life. Due to population growth and increasing need of human to water, proper management of water resources will be one of the serious challenges of next decades. Remote sensing data is the best way to the management of water resources due time and cost effectiveness over a greater range of temporal and spatial scales. Between many kinds of satellite data, from SAR to optic or from high resolution to low resolution, Landsat imagery is more interesting data for water detection and management of earth surface water. Landsat8 OLI/TIRS is the newest version of Landsat satellite series. In this paper, we investigated the full spectral potential of Landsat8 for water detection. It is developed many kinds of methods for this purpose that index based methods have some advantages than other methods. Pervious indices just use a limited number of spectral band. In this paper, Modified Optimization Water Index (MOWI) defined by consideration of a linear combination of bands that each coefficient of bands calculated by particle swarm algorithm. The result shows that modified optimization water index (MOWI) has a proper performance on different condition like cloud, cloud shadow and mountain shadow.

  10. An integrated GIS-based interval-probabilistic programming model for land-use planning management under uncertainty--a case study at Suzhou, China.

    PubMed

    Lu, Shasha; Zhou, Min; Guan, Xingliang; Tao, Lizao

    2015-03-01

    A large number of mathematical models have been developed for supporting optimization of land-use allocation; however, few of them simultaneously consider land suitability (e.g., physical features and spatial information) and various uncertainties existing in many factors (e.g., land availabilities, land demands, land-use patterns, and ecological requirements). This paper incorporates geographic information system (GIS) technology into interval-probabilistic programming (IPP) for land-use planning management (IPP-LUPM). GIS is utilized to assemble data for the aggregated land-use alternatives, and IPP is developed for tackling uncertainties presented as discrete intervals and probability distribution. Based on GIS, the suitability maps of different land users are provided by the outcomes of land suitability assessment and spatial analysis. The maximum area of every type of land use obtained from the suitability maps, as well as various objectives/constraints (i.e., land supply, land demand of socioeconomic development, future development strategies, and environmental capacity), is used as input data for the optimization of land-use areas with IPP-LUPM model. The proposed model not only considers the outcomes of land suitability evaluation (i.e., topography, ground conditions, hydrology, and spatial location) but also involves economic factors, food security, and eco-environmental constraints, which can effectively reflect various interrelations among different aspects in a land-use planning management system. The case study results at Suzhou, China, demonstrate that the model can help to examine the reliability of satisfying (or risk of violating) system constraints under uncertainty. Moreover, it may identify the quantitative relationship between land suitability and system benefits. Willingness to arrange the land areas based on the condition of highly suitable land will not only reduce the potential conflicts on the environmental system but also lead to a lower economic benefit. However, a strong desire to develop lower suitable land areas will bring not only a higher economic benefit but also higher risks of violating environmental and ecological constraints. The land manager should make decisions through trade-offs between economic objectives and environmental/ecological objectives.

  11. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2013-11-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  12. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  13. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    PubMed Central

    Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management. PMID:25538868

  14. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    USGS Publications Warehouse

    Kreitler, Jason R.; Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.

  15. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks

    PubMed Central

    Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute new seed bank sources for species that are affected by the distance to natural lands and roads. PMID:29360857

  16. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    PubMed

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute new seed bank sources for species that are affected by the distance to natural lands and roads.

  17. Effects of spatial configuration of imperviousness and green infrastructure networks on hydrologic response in a residential sewershed

    NASA Astrophysics Data System (ADS)

    Lim, Theodore C.; Welty, Claire

    2017-09-01

    Green infrastructure (GI) is an approach to stormwater management that promotes natural processes of infiltration and evapotranspiration, reducing surface runoff to conventional stormwater drainage infrastructure. As more urban areas incorporate GI into their stormwater management plans, greater understanding is needed on the effects of spatial configuration of GI networks on hydrological performance, especially in the context of potential subsurface and lateral interactions between distributed facilities. In this research, we apply a three-dimensional, coupled surface-subsurface, land-atmosphere model, ParFlow.CLM, to a residential urban sewershed in Washington DC that was retrofitted with a network of GI installations between 2009 and 2015. The model was used to test nine additional GI and imperviousness spatial network configurations for the site and was compared with monitored pipe-flow data. Results from the simulations show that GI located in higher flow-accumulation areas of the site intercepted more surface runoff, even during wetter and multiday events. However, a comparison of the differences between scenarios and levels of variation and noise in monitored data suggests that the differences would only be detectable between the most and least optimal GI/imperviousness configurations.

  18. Study on nitrogen load reduction efficiency of agricultural conservation management in a small agricultural watershed.

    PubMed

    Liu, Xiaoli; Chen, Qiuwen; Zeng, Zhaoxia

    2014-01-01

    Different crops can generate different non-point source (NPS) loads because of their spatial topography heterogeneity and variable fertilization application rates. The objective of this study was to assess nitrogen NPS load reduction efficiency by spatially adjusting crop plantings as an agricultural conservation management (ACM) measure in a typical small agricultural watershed in the black soil region in northeast China. The assessment was undertaken using the Soil and Water Assessment Tool (SWAT). Results showed that lowland crops produce higher nitrogen NPS loads than those in highlands. It was also found that corn gave a comparatively larger NPS load than soybeans due to its larger fertilization demand. The ACM assessed was the conversion of lowland corn crops into soybean crops and highland soybean crops into corn crops. The verified SWAT model was used to evaluate the impact of the ACM action on nitrogen loads. The results revealed that the ACM could reduce NO3-N and total nitrogen loads by 9.5 and 10.7%, respectively, without changing the area of crops. Spatially optimized regulation of crop planting according to fertilizer demand and geological landscapes can effectively decrease NPS nitrogen exports from agricultural watersheds.

  19. The Potential Importance of Conservation, Restoration and Altered Management Practices for Water Quality in the Wabash River Watershed

    NASA Astrophysics Data System (ADS)

    Yang, G.; Best, E. P.; Goodwin, S.

    2013-12-01

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants to receiving water bodies and enhance local and regional ecosystem services. Barriers for the implementation of CRAM include uncertainties related to the extent to which nutrients are removed by CRAM at various spatial and temporal scales, longevity, optimal placement of CRAM within the landscape, and implementation / operation / maintenance costs. We conducted a study aimed at the identification of optimal placement of CRAM in watersheds that reduces N loading to an environmentally sustainable level, at an acceptable, known, cost. For this study, we used a recently developed screening-level modeling approach, WQM-TMDL-N, running in the ArcGIS environment, to estimate nitrogen loading under current land use conditions (NLCD 2006). This model was equipped with a new option to explore the performances of placement of various CRAM types and areas to reduce nitrogen loading to a State-accepted Total Maximum Daily Load (TMDL) standard, with related annual average TN concentration, and a multi-objective algorithm optimizing load and cost. CRAM practices explored for implementation in rural area included buffer strips, nutrient management practices, and wetland restoration. We initially applied this modeling approach to the Tippecanoe River (TR) watershed (8-digit HUC), a headwater of the Wabash River (WR) watershed, where CRAM implementation in rural and urban areas is being planned and implemented at various spatial scales. Consequences of future land use are explored using a 2050 land use/land cover map forecasted by the Land Transformation Model. The WR watershed, IN, drains two-thirds of the state's 92 counties and supports predominantly agricultural land use. Because the WR accounts for over 40% of the nutrient loads of the Ohio River and significantly contributes to the anoxic zone in the Gulf of Mexico (GOM), reduction in TN loading of the WR are expected to directly benefit downstream ecosystem services, including fisheries in the GOM. This modeling approach can be used in support of sustainable integrated watershed management planning.

  20. Risk management for optimal land use planning integrating ecosystem services values: A case study in Changsha, Middle China.

    PubMed

    Liang, Jie; Zhong, Minzhou; Zeng, Guangming; Chen, Gaojie; Hua, Shanshan; Li, Xiaodong; Yuan, Yujie; Wu, Haipeng; Gao, Xiang

    2017-02-01

    Land-use change has direct impact on ecosystem services and alters ecosystem services values (ESVs). Ecosystem services analysis is beneficial for land management and decisions. However, the application of ESVs for decision-making in land use decisions is scarce. In this paper, a method, integrating ESVs to balance future ecosystem-service benefit and risk, is developed to optimize investment in land for ecological conservation in land use planning. Using ecological conservation in land use planning in Changsha as an example, ESVs is regarded as the expected ecosystem-service benefit. And uncertainty of land use change is regarded as risk. This method can optimize allocation of investment in land to improve ecological benefit. The result shows that investment should be partial to Liuyang City to get higher benefit. The investment should also be shifted from Liuyang City to other regions to reduce risk. In practice, lower limit and upper limit for weight distribution, which affects optimal outcome and selection of investment allocation, should be set in investment. This method can reveal the optimal spatial allocation of investment to maximize the expected ecosystem-service benefit at a given level of risk or minimize risk at a given level of expected ecosystem-service benefit. Our results of optimal analyses highlight tradeoffs between future ecosystem-service benefit and uncertainty of land use change in land use decisions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Optimal attributes for the object based detection of giant reed in riparian habitats: A comparative study between Airborne High Spatial Resolution and WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2014-10-01

    Giant reed is an aggressive invasive plant of riparian ecosystems in many sub-tropical and warm-temperate regions, including Mediterranean Europe. In this study we tested a set of geometric, spectral and textural attributes in an object based image analysis (OBIA) approach to map giant reed invasions in riparian habitats. Bagging Classification and Regression Tree were used to select the optimal attributes and to build the classification rules sets. Mapping accuracy was performed using landscape metrics and the Kappa coefficient to compare the topographical and geometric similarity between the giant reed patches obtained with the OBIA map and with a validation map derived from on-screen digitizing. The methodology was applied in two high spatial resolution images: an airborne multispectral imagery and the newly WorldView-2 imagery. A temporal coverage of the airborne multispectral images was radiometrically calibrated with the IR-Mad transformation and used to assess the influence of the phenological variability of the invader. We found that optimal attributes for giant reed OBIA detection are a combination of spectral, geometric and textural information, with different scoring selection depending on the spectral and spatial characteristics of the imagery. WorldView-2 showed higher mapping accuracy (Kappa coefficient of 77%) and spectral attributes, including the newly yellow band, were preferentially selected, although a tendency to overestimate the total invaded area, due to the low spatial resolution (2 m of pixel size vs. 50 cm) was observed. When airborne images were used, geometric attributes were primarily selected and a higher spatial detail of the invasive patches was obtained, due to the higher spatial resolution. However, in highly heterogeneous landscapes, the low spectral resolution of the airborne images (4 bands instead of the 8 of WorldView-2) reduces the capability to detect giant reed patches. Giant reed displays peculiar spectral and geometric traits, at leaf, canopy and stand level, which makes the OBIA approach a very suitable technique for management purposes.

  2. Effects of urban form on the urban heat island effect based on spatial regression model.

    PubMed

    Yin, Chaohui; Yuan, Man; Lu, Youpeng; Huang, Yaping; Liu, Yanfang

    2018-09-01

    The urban heat island (UHI) effect is becoming more of a concern with the accelerated process of urbanization. However, few studies have examined the effect of urban form on land surface temperature (LST) especially from an urban planning perspective. This paper used spatial regression model to investigate the effects of both land use composition and urban form on LST in Wuhan City, China, based on the regulatory planning management unit. Landsat ETM+ image data was used to estimate LST. Land use composition was calculated by impervious surface area proportion, vegetated area proportion, and water proportion, while urban form indicators included sky view factor (SVF), building density, and floor area ratio (FAR). We first tested for spatial autocorrelation of urban LST, which confirmed that a traditional regression method would be invalid. A spatial error model (SEM) was chosen because its parameters were better than a spatial lag model (SLM). The results showed that urban form metrics should be the focus for mitigation efforts of UHI effects. In addition, analysis of the relationship between urban form and UHI effect based on the regulatory planning management unit was helpful for promoting corresponding UHI effect mitigation rules in practice. Finally, the spatial regression model was recommended to be an appropriate method for dealing with problems related to the urban thermal environment. Results suggested that the impact of urbanization on the UHI effect can be mitigated not only by balancing various land use types, but also by optimizing urban form, which is even more effective. This research expands the scientific understanding of effects of urban form on UHI by explicitly analyzing indicators closely related to urban detailed planning at the level of regulatory planning management unit. In addition, it may provide important insights and effective regulation measures for urban planners to mitigate future UHI effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.

    PubMed

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang

    2017-02-15

    Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Environmental concern-based site screening of carbon dioxide geological storage in China.

    PubMed

    Cai, Bofeng; Li, Qi; Liu, Guizhen; Liu, Lancui; Jin, Taotao; Shi, Hui

    2017-08-08

    Environmental impacts and risks related to carbon dioxide (CO 2 ) capture and storage (CCS) projects may have direct effects on the decision-making process during CCS site selection. This paper proposes a novel method of environmental optimization for CCS site selection using China's ecological red line approach. Moreover, this paper established a GIS based spatial analysis model of environmental optimization during CCS site selection by a large database. The comprehensive data coverage of environmental elements and fine 1 km spatial resolution were used in the database. The quartile method was used for value assignment for specific indicators including the prohibited index and restricted index. The screening results show that areas classified as having high environmental suitability (classes III and IV) in China account for 620,800 km 2 and 156,600 km 2 , respectively, and are mainly distributed in Inner Mongolia, Qinghai and Xinjiang. The environmental suitability class IV areas of Bayingol Mongolian Autonomous Prefecture, Hotan Prefecture, Aksu Prefecture, Hulunbuir, Xilingol League and other prefecture-level regions not only cover large land areas, but also form a continuous area in the three provincial-level administrative units. This study may benefit the national macro-strategic deployment and implementation of CCS spatial layout and environmental management in China.

  5. Optimal synchronization in space

    NASA Astrophysics Data System (ADS)

    Brede, Markus

    2010-02-01

    In this Rapid Communication we investigate spatially constrained networks that realize optimal synchronization properties. After arguing that spatial constraints can be imposed by limiting the amount of “wire” available to connect nodes distributed in space, we use numerical optimization methods to construct networks that realize different trade offs between optimal synchronization and spatial constraints. Over a large range of parameters such optimal networks are found to have a link length distribution characterized by power-law tails P(l)∝l-α , with exponents α increasing as the networks become more constrained in space. It is also shown that the optimal networks, which constitute a particular type of small world network, are characterized by the presence of nodes of distinctly larger than average degree around which long-distance links are centered.

  6. Low-dose cone-beam CT via raw counts domain low-signal correction schemes: Performance assessment and task-based parameter optimization (Part II. Task-based parameter optimization).

    PubMed

    Gomez-Cardona, Daniel; Hayes, John W; Zhang, Ran; Li, Ke; Cruz-Bastida, Juan Pablo; Chen, Guang-Hong

    2018-05-01

    Different low-signal correction (LSC) methods have been shown to efficiently reduce noise streaks and noise level in CT to provide acceptable images at low-radiation dose levels. These methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and noise, which makes the parameter optimization process highly nontrivial. The purpose of this work was to develop a local task-based parameter optimization framework for LSC methods. Two well-known LSC methods, the adaptive trimmed mean (ATM) filter and the anisotropic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework to optimize filter parameter selection. Two parameters, denoted by the set P, for each LSC method were included in the optimization problem. For the ATM filter, these parameters are the low- and high-signal threshold levels p l and p h ; for the AD filter, the parameters are the exponents δ and γ in the brightness gradient function. The detectability index d' under the non-prewhitening (NPW) mathematical observer model was selected as the metric for parameter optimization. The optimization problem was formulated as an unconstrained optimization problem that consisted of maximizing an objective function d'(P), where i and j correspond to the i-th imaging task and j-th spatial location, respectively. Since there is no explicit mathematical function to describe the dependence of d' on the set of parameters P for each LSC method, the optimization problem was solved via an experimentally measured d' map over a densely sampled parameter space. In this work, three high-contrast-high-frequency discrimination imaging tasks were defined to explore the parameter space of each of the LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest (ROI) located within the noise streaks region and an anterior ROI, located further from the noise streaks region. Optimal results derived from the task-based detectability index metric were compared to other operating points in the parameter space with different noise and spatial resolution trade-offs. The optimal operating points determined through the d' metric depended on the interplay between the major spatial frequency components of each imaging task and the highly shift-variant and anisotropic noise and spatial resolution properties associated with each operating point in the LSC parameter space. This interplay influenced imaging performance the most when the major spatial frequency component of a given imaging task coincided with the direction of spatial resolution loss or with the dominant noise spatial frequency component; this was the case of imaging task II. The performance of imaging tasks I and III was influenced by this interplay in a smaller scale than imaging task II, since the major frequency component of task I was perpendicular to imaging task II, and because imaging task III did not have strong directional dependence. For both LSC methods, there was a strong dependence of the overall d' magnitude and shape of the contours on the spatial location within the phantom, particularly for imaging tasks II and III. The d' value obtained at the optimal operating point for each spatial location and imaging task was similar when comparing the LSC methods studied in this work. A local task-based detectability framework to optimize the selection of parameters for LSC methods was developed. The framework takes into account the potential shift-variant and anisotropic spatial resolution and noise properties to maximize the imaging performance of the CT system. Optimal parameters for a given LSC method depend strongly on the spatial location within the image object. © 2018 American Association of Physicists in Medicine.

  7. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    NASA Astrophysics Data System (ADS)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased potentially toxic, blue-green algae blooms. The presentation will summarize recent results (Behrendt et al. 2009, Schernewski et al. 2009, Schernewski et al. in press, Schernewski et al. submitted) and give an overview how Climate Change and socio-economic transformation processes in the river basin will effect coastal water quality during the next decades. The opportunities and threats of a changing lagoon ecosystem for tourism and fisheries, the major economic activities, will be shown.

  8. Water Quality Assessment in the Vouga Catchment (Portugal) through the Integration of Hydrologic Modeling, Economic Valuation, and Optimization Methods

    NASA Astrophysics Data System (ADS)

    Hawtree, Daniel; Julich, Stefan; Rocha, João; Roebeling, Peter; Feger, Karl-Heinz

    2016-04-01

    Hydrologic model assessments of the impacts of land-cover / use change (LCLUC) are fundamental for the development of catchment management plans, which are increasingly needed for meeting water quality standards (i.e. Water Framework Directive). These assessments can be difficult to conduct at the spatial scale required for such plans, due to data limitations and the challenge of up-scaling from field / small scale studies to larger regions. Furthermore, such hydrologic assessments are of limited practical use if the financial impacts of any potential land-cover / management changes on local stakeholders are adequately quantified and taken into planning consideration. To address these challenges, this study presents an approach that integrates hydrologic modeling, economic valuation, and landscape optimization methods. This approach is applied to the Vouga catchment, a large (2,298 km^2) mixed land-use catchment in north-central Portugal. The Vouga has high nutrient (nitrogen and phosphorus) impacts in a number of reaches, which have negative impacts on downstream wetlands and groundwater supplies. To examine potential improvements to water quality, the Soil and Water Assessment Tool (SWAT) was calibrated over a five period (2002 - 2007) to establish the baseline hydrologic and nutrient fluxes. This calibration relies upon the up-scaling of findings from previous field studies (on vegetation and soils), hydrologic assessments, and modeling studies. The agricultural income for local stakeholders was estimated from existing land-cover and management approaches is made, to establish the baseline financial conditions. An optimization algorithm is then applied to the baseline scenario using both the biophysical and financial information, which seeks to determine various (most) optimal states. The preliminary results from this work are presented, and the advantages and challenges of using such an approach for scenario analysis for catchment management are discussed

  9. Assessing Concentrations and Health Impacts of Air Quality Management Strategies: Framework for Rapid Emissions Scenario and Health impact ESTimation (FRESH-EST)

    PubMed Central

    Milando, Chad W.; Martenies, Sheena E.; Batterman, Stuart A.

    2017-01-01

    In air quality management, reducing emissions from pollutant sources often forms the primary response to attaining air quality standards and guidelines. Despite the broad success of air quality management in the US, challenges remain. As examples: allocating emissions reductions among multiple sources is complex and can require many rounds of negotiation; health impacts associated with emissions, the ultimate driver for the standards, are not explicitly assessed; and long dispersion model run-times, which result from the increasing size and complexity of model inputs, limit the number of scenarios that can be evaluated, thus increasing the likelihood of missing an optimal strategy. A new modeling framework, called the "Framework for Rapid Emissions Scenario and Health impact ESTimation" (FRESH-EST), is presented to respond to these challenges. FRESH-EST estimates concentrations and health impacts of alternative emissions scenarios at the urban scale, providing efficient computations from emissions to health impacts at the Census block or other desired spatial scale. In addition, FRESH-EST can optimize emission reductions to meet specified environmental and health constraints, and a convenient user interface and graphical displays are provided to facilitate scenario evaluation. The new framework is demonstrated in an SO2 non-attainment area in southeast Michigan with two optimization strategies: the first minimizes emission reductions needed to achieve a target concentration; the second minimizes concentrations while holding constant the cumulative emissions across local sources (e.g., an emissions floor). The optimized strategies match outcomes in the proposed SO2 State Implementation Plan without the proposed stack parameter modifications or shutdowns. In addition, the lower health impacts estimated for these strategies suggest the potential for FRESH-EST to identify pollution control alternatives for air quality management planning. PMID:27318620

  10. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  11. The Irma-sponge Program: Methodologies For Sustainable Flood Risk Management Along The Rhine and Meuse Rivers

    NASA Astrophysics Data System (ADS)

    Hooijer, A.; van Os, A. G.

    Recent flood events and socio-economic developments have increased the awareness of the need for improved flood risk management along the Rhine and Meuse Rivers. In response to this, the IRMA-SPONGE program incorporated 13 research projects in which over 30 organisations from all 6 River Basin Countries co-operated. The pro- gram is financed partly by the European INTERREG Rhine-Meuse Activities (IRMA). The main aim of IRMA-SPONGE is defined as: "The development of methodologies and tools to assess the impact of flood risk reduction measures and of land-use and climate change scenarios. This to support the spatial planning process in establish- ing alternative strategies for an optimal realisation of the hydraulic, economical and ecological functions of the Rhine and Meuse River Basins." Further important objec- tives are to promote transboundary co-operation in flood risk management by both scientific and management organisations, and to promote public participation in flood management issues. The projects in the program are grouped in three clusters, looking at measures from different scientific angles. The results of the projects in each cluster have been evaluated to define recommendations for flood risk management; some of these outcomes call for a change to current practices, e.g.: 1. (Flood Risk and Hydrol- ogy cluster): hydrological changes due to climate change exceed those due to further land use change, and are significant enough to necessitate a change in flood risk man- agement strategies if the currently claimed protection levels are to be sustained. 2. (Flood Protection and Ecology cluster): to not only provide flood protection but also enhance the ecological quality of rivers and floodplains, new flood risk management concepts ought to integrate ecological knowledge from start to finish, with a clear perspective on the type of nature desired and the spatial and time scales considered. 3. (Flood Risk Management and Spatial Planning cluster): extreme floods can not be prevented by taking mainly upstream measures; significant and space-consuming lo- cal measures will therefore be needed in the lower Rhine and Meuse deltas. However, there is also a need for improved flood risk management upstream, which calls for better spatial planning procedures. More detailed information on the IRMA-SPONGE program can be found on our website: www.irma-sponge.org.

  12. Spatial optimal disturbances in swept-wing boundary layers

    NASA Astrophysics Data System (ADS)

    Chen, Cheng

    2018-04-01

    With the use of the adjoint-based optimization method proposed by Tempelmann et al. (J. Fluid Mech., vol. 704, 2012, pp. 251-279), in which the parabolized stability equation (PSE) and so-called adjoint parabolized stability equation (APSE) are solved iteratively, we obtain the spatial optimal disturbance shape and investigate its dependence on the parameters of disturbance wave and wall condition, such as radial frequency ω and wall temperature Twall, in a swept-wing boundary layer flow. Further, the non-modal growth mechanism of this optimal disturbance has been also discussed, regarding its spatial evolution way in the streamwise direction. The results imply that the spanwise wavenumber, disturbance frequency and wall cooling do not change the physical mechanism of perturbation growth, just with a substantial effect on the magnitude of perturbation growth. Further, wall cooling may have enhancing or suppressing effect on spatial optimal disturbance growth, depending on the streamwise location.

  13. [Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example.

    PubMed

    Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying

    2018-01-01

    The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.

  14. Mapping the optimal forest road network based on the multicriteria evaluation technique: the case study of Mediterranean Island of Thassos in Greece.

    PubMed

    Tampekis, Stergios; Sakellariou, Stavros; Samara, Fani; Sfougaris, Athanassios; Jaeger, Dirk; Christopoulou, Olga

    2015-11-01

    The sustainable management of forest resources can only be achieved through a well-organized road network designed with the optimal spatial planning and the minimum environmental impacts. This paper describes the spatial layout mapping for the optimal forest road network and the environmental impacts evaluation that are caused to the natural environment based on the multicriteria evaluation (MCE) technique at the Mediterranean island of Thassos in Greece. Data analysis and its presentation are achieved through a spatial decision support system using the MCE method with the contribution of geographic information systems (GIS). With the use of the MCE technique, we evaluated the human impact intensity to the forest ecosystem as well as the ecosystem's absorption from the impacts that are caused from the forest roads' construction. For the human impact intensity evaluation, the criteria that were used are as follows: the forest's protection percentage, the forest road density, the applied skidding means (with either the use of tractors or the cable logging systems in timber skidding), the timber skidding direction, the visitors' number and truck load, the distance between forest roads and streams, the distance between forest roads and the forest boundaries, and the probability that the forest roads are located on sights with unstable soils. In addition, for the ecosystem's absorption evaluation, we used forestry, topographical, and social criteria. The recommended MCE technique which is described in this study provides a powerful, useful, and easy-to-use implement in order to combine the sustainable utilization of natural resources and the environmental protection in Mediterranean ecosystems.

  15. Addressing Hydro-economic Modeling Limitations - A Limited Foresight Sacramento Valley Model and an Open-source Modeling Platform

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Hansen, K. M.

    2008-12-01

    Increased scarcity of world water resources is inevitable given the limited supply and increased human pressures. The idea that "some scarcity is optimal" must be accepted for rational resource use and infrastructure management decisions to be made. Hydro-economic systems models are unique at representing the overlap of economic drivers, socio-political forces and distributed water resource systems. They demonstrate the tangible benefits of cooperation and integrated flexible system management. Further improvement of models, quality control practices and software will be needed for these academic policy tools to become accepted into mainstream water resource practice. Promising features include: calibration methods, limited foresight optimization formulations, linked simulation-optimization approaches (e.g. embedding pre-existing calibrated simulation models), spatial groundwater models, stream-aquifer interactions and stream routing, etc.. Conventional user-friendly decision support systems helped spread simulation models on a massive scale. Hydro-economic models must also find a means to facilitate construction, distribution and use. Some of these issues and model features are illustrated with a hydro-economic optimization model of the Sacramento Valley. Carry-over storage value functions are used to limit hydrologic foresight of the multi- period optimization model. Pumping costs are included in the formulation by tracking regional piezometric head of groundwater sub-basins. To help build and maintain this type of network model, an open-source water management modeling software platform is described and initial project work is discussed. The objective is to generically facilitate the connection of models, such as those developed in a modeling environment (GAMS, MatLab, Octave, "), to a geographic user interface (drag and drop node-link network) and a database (topology, parameters and time series). These features aim to incrementally move hydro- economic models in the direction of more practical implementation.

  16. Optimization of forest wildlife objectives

    Treesearch

    John Hof; Robert Haight

    2007-01-01

    This chapter presents an overview of methods for optimizing wildlife-related objectives. These objectives hinge on landscape pattern, so we refer to these methods as "spatial optimization." It is currently possible to directly capture deterministic characterizations of the most basic spatial relationships: proximity relationships (including those that lead to...

  17. Accounting for connectivity and spatial correlation in the optimal placement of wildlife habitat

    Treesearch

    John Hof; Curtis H. Flather

    1996-01-01

    This paper investigates optimization approaches to simultaneously modelling habitat fragmentation and spatial correlation between patch populations. The problem is formulated with habitat connectivity affecting population means and variances, with spatial correlations accounted for in covariance calculations. Population with a pre-specifled confidence level is then...

  18. Process-driven and biological characterisation and mapping of seabed habitats sensitive to trawling.

    PubMed

    Foveau, Aurélie; Vaz, Sandrine; Desroy, Nicolas; Kostylev, Vladimir E

    2017-01-01

    The increase of anthropogenic pressures on the marine environment together with the necessity of a sustainable management of marine living resources have underlined the need to map and model coastal environments, particularly for the purposes of spatial planning and for the implementation of integrated ecosystem-based management approach. The present study compares outputs of a process-driven benthic habitat sensitivity (PDS) model to the structure, composition and distribution of benthic invertebrates in the Eastern English Channel and southern part of the North Sea. Trawl disturbance indicators (TDI) computed from species biological traits and benthic community composition were produced from samples collected with a bottom trawl. The TDI was found to be highly correlated to the PDS further validating the latter's purpose to identify natural process-driven pattern of sensitivity. PDS was found to reflect an environmental potential that may no longer be fully observable in the field and difference with in situ biological observations could be partially explained by the spatial distribution of fishery pressure on the seafloor. The management implication of these findings are discussed and we suggest that, used in conjunction with TDI approaches, PDS may help monitor management effort by evaluating the difference between the current state and the presumed optimal environmental status of marine benthic habitats.

  19. Process-driven and biological characterisation and mapping of seabed habitats sensitive to trawling

    PubMed Central

    Desroy, Nicolas; Kostylev, Vladimir E.

    2017-01-01

    The increase of anthropogenic pressures on the marine environment together with the necessity of a sustainable management of marine living resources have underlined the need to map and model coastal environments, particularly for the purposes of spatial planning and for the implementation of integrated ecosystem-based management approach. The present study compares outputs of a process-driven benthic habitat sensitivity (PDS) model to the structure, composition and distribution of benthic invertebrates in the Eastern English Channel and southern part of the North Sea. Trawl disturbance indicators (TDI) computed from species biological traits and benthic community composition were produced from samples collected with a bottom trawl. The TDI was found to be highly correlated to the PDS further validating the latter’s purpose to identify natural process-driven pattern of sensitivity. PDS was found to reflect an environmental potential that may no longer be fully observable in the field and difference with in situ biological observations could be partially explained by the spatial distribution of fishery pressure on the seafloor. The management implication of these findings are discussed and we suggest that, used in conjunction with TDI approaches, PDS may help monitor management effort by evaluating the difference between the current state and the presumed optimal environmental status of marine benthic habitats. PMID:28981504

  20. Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA

    USGS Publications Warehouse

    Groff, Shannon C.; Loftin, Cynthia S.; Drummond, Frank; Bushmann, Sara; McGill, Brian J.

    2016-01-01

    Non-native honeybees historically have been managed for crop pollination, however, recent population declines draw attention to pollination services provided by native bees. We applied the InVEST Crop Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild blueberry crop landscape. We evaluated model performance with parameters informed by four approaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization; and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis informed optimization improved model performance by 54%. This suggests that expert opinion may not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest within 2000 m of a blueberry field also reliably predicted native bee abundance in blueberry fields, however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field perimeter.

  1. Life-cycle cost as basis to optimize waste collection in space and time: A methodology for obtaining a detailed cost breakdown structure.

    PubMed

    Sousa, Vitor; Dias-Ferreira, Celia; Vaz, João M; Meireles, Inês

    2018-05-01

    Extensive research has been carried out on waste collection costs mainly to differentiate costs of distinct waste streams and spatial optimization of waste collection services (e.g. routes, number, and location of waste facilities). However, waste collection managers also face the challenge of optimizing assets in time, for instance deciding when to replace and how to maintain, or which technological solution to adopt. These issues require a more detailed knowledge about the waste collection services' cost breakdown structure. The present research adjusts the methodology for buildings' life-cycle cost (LCC) analysis, detailed in the ISO 15686-5:2008, to the waste collection assets. The proposed methodology is then applied to the waste collection assets owned and operated by a real municipality in Portugal (Cascais Ambiente - EMAC). The goal is to highlight the potential of the LCC tool in providing a baseline for time optimization of the waste collection service and assets, namely assisting on decisions regarding equipment operation and replacement.

  2. Management of invading pathogens should be informed by epidemiology rather than administrative boundaries.

    PubMed

    Thompson, Robin N; Cobb, Richard C; Gilligan, Christopher A; Cunniffe, Nik J

    2016-03-24

    Plant and animal disease outbreaks have significant ecological and economic impacts. The spatial extent of control is often informed solely by administrative geography - for example, quarantine of an entire county or state once an invading disease is detected - with little regard for pathogen epidemiology. We present a stochastic model for the spread of a plant pathogen that couples spread in the natural environment and transmission via the nursery trade, and use it to illustrate that control deployed according to administrative boundaries is almost always sub-optimal. We use sudden oak death (caused by Phytophthora ramorum ) in mixed forests in California as motivation for our study, since the decision as to whether or not to deploy plant trade quarantine is currently undertaken on a county-by-county basis for that system. However, our key conclusion is applicable more generally: basing management of any disease entirely upon administrative borders does not balance the cost of control with the possible economic and ecological costs of further spread in the optimal fashion.

  3. The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China

    PubMed Central

    Di, Hui; Liu, Xingpeng; Tong, Zhijun; Ji, Meichen

    2018-01-01

    Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks. PMID:29543706

  4. Geometric Reasoning for Automated Planning

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel

    2012-01-01

    An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.

  5. Bayesian Integration of Spatial Information

    ERIC Educational Resources Information Center

    Cheng, Ken; Shettleworth, Sara J.; Huttenlocher, Janellen; Rieser, John J.

    2007-01-01

    Spatial judgments and actions are often based on multiple cues. The authors review a multitude of phenomena on the integration of spatial cues in diverse species to consider how nearly optimally animals combine the cues. Under the banner of Bayesian perception, cues are sometimes combined and weighted in a near optimal fashion. In other instances…

  6. Assessments of habitat preferences and quality depend on spatial scale and metrics of fitness

    USGS Publications Warehouse

    Chalfoun, A.D.; Martin, T.E.

    2007-01-01

    1. Identifying the habitat features that influence habitat selection and enhance fitness is critical for effective management. Ecological theory predicts that habitat choices should be adaptive, such that fitness is enhanced in preferred habitats. However, studies often report mismatches between habitat preferences and fitness consequences across a wide variety of taxa based on a single spatial scale and/or a single fitness component. 2. We examined whether habitat preferences of a declining shrub steppe songbird, the Brewer's sparrow Spizella breweri, were adaptive when multiple reproductive fitness components and spatial scales (landscape, territory and nest patch) were considered. 3. We found that birds settled earlier and in higher densities, together suggesting preference, in landscapes with greater shrub cover and height. Yet nest success was not higher in these landscapes; nest success was primarily determined by nest predation rates. Thus landscape preferences did not match nest predation risk. Instead, nestling mass and the number of nesting attempts per pair increased in preferred landscapes, raising the possibility that landscapes were chosen on the basis of food availability rather than safe nest sites. 4. At smaller spatial scales (territory and nest patch), birds preferred different habitat features (i.e. density of potential nest shrubs) that reduced nest predation risk and allowed greater season-long reproductive success. 5. Synthesis and applications. Habitat preferences reflect the integration of multiple environmental factors across multiple spatial scales, and individuals may have more than one option for optimizing fitness via habitat selection strategies. Assessments of habitat quality for management prescriptions should ideally include analysis of diverse fitness consequences across multiple ecologically relevant spatial scales. ?? 2007 The Authors.

  7. Identification of watershed priority management areas under water quality constraints: A simulation-optimization approach with ideal load reduction

    NASA Astrophysics Data System (ADS)

    Dong, Feifei; Liu, Yong; Wu, Zhen; Chen, Yihui; Guo, Huaicheng

    2018-07-01

    Targeting nonpoint source (NPS) pollution hot spots is of vital importance for placement of best management practices (BMPs). Although physically-based watershed models have been widely used to estimate nutrient emissions, connections between nutrient abatement and compliance of water quality standards have been rarely considered in NPS hotspot ranking, which may lead to ineffective decision-making. It's critical to develop a strategy to identify priority management areas (PMAs) based on water quality response to nutrient load mitigation. A water quality constrained PMA identification framework was thereby proposed in this study, based on the simulation-optimization approach with ideal load reduction (ILR-SO). It integrates the physically-based Soil and Water Assessment Tool (SWAT) model and an optimization model under constraints of site-specific water quality standards. To our knowledge, it was the first effort to identify PMAs with simulation-based optimization. The SWAT model was established to simulate temporal and spatial nutrient loading and evaluate effectiveness of pollution mitigation. A metamodel was trained to establish a quantitative relationship between sources and water quality. Ranking of priority areas is based on required nutrient load reduction in each sub-watershed targeting to satisfy water quality standards in waterbodies, which was calculated with genetic algorithm (GA). The proposed approach was used for identification of PMAs on the basis of diffuse total phosphorus (TP) in Lake Dianchi Watershed, one of the three most eutrophic large lakes in China. The modeling results demonstrated that 85% of diffuse TP came from 30% of the watershed area. Compared with the two conventional targeting strategies based on overland nutrient loss and instream nutrient loading, the ILR-SO model identified distinct PMAs and narrowed down the coverage of management areas. This study addressed the urgent need to incorporate water quality response into PMA identification and showed that the ILR-SO approach is effective to guide watershed management for aquatic ecosystem restoration.

  8. Research on the optimization of air quality monitoring station layout based on spatial grid statistical analysis method.

    PubMed

    Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An

    2018-05-01

    In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.

  9. An Integrated Hydrologic-Economic Modeling Tool for Evaluating Water Management Responses to Climate Change in the Boise River Basin

    NASA Astrophysics Data System (ADS)

    Schmidt, R. D.; Taylor, R. G.; Stodick, L. D.; Contor, B. A.

    2009-12-01

    A recent federal interagency report on climate change and water management (Brekke et. al., 2009) describes several possible management responses to the impacts of climate change on water supply and demand. Management alternatives include changes to water supply infrastructure, reservoir system operations, and water demand policies. Water users in the Bureau of Reclamation’s Boise Project (located in the Lower Boise River basin in southwestern Idaho) would be among those impacted both hydrologically and economically by climate change. Climate change and management responses to climate change are expected to cause shifts in water supply and demand. Supply shifts would result from changes in basin precipitation patterns, and demand shifts would result from higher evapotranspiration rates and a longer growing season. The impacts would also extend to non-Project water users in the basin, since most non-Project groundwater pumpers and drain water diverters rely on hydrologic externalities created by seepage losses from Boise Project water deliveries. An integrated hydrologic-economic model was developed for the Boise basin to aid Reclamation in evaluating the hydrologic and economic impacts of various management responses to climate change. A spatial, partial-equilibrium, economic optimization model calculates spatially-distinct equilibrium water prices and quantities, and maximizes a social welfare function (the sum of consumer and producers surpluses) for all agricultural and municipal water suppliers and demanders (both Project and non-Project) in the basin. Supply-price functions and demand-price functions are exogenous inputs to the economic optimization model. On the supply side, groundwater and river/reservoir models are used to generate hydrologic responses to various management alternatives. The response data is then used to develop water supply-price functions for Project and non-Project water users. On the demand side, crop production functions incorporating crop distribution, evapotranspiration rates, irrigation efficiencies, and crop prices are used to develop water demand-price functions for agricultural water users. Demand functions for municipal and industrial water users are also developed. Recent applications of the integrated model have focused on the hydrologic and economic impacts of demand management alternatives, including large-scale canal lining conservation measures, and market-based water trading between canal diverters and groundwater pumpers. A supply management alternative being investigated involves revising reservoir rule curves to compensate for climate change impacts on timing of reservoir filling.

  10. Field Scale Optimization for Long-Term Sustainability of Best Management Practices in Watersheds

    NASA Astrophysics Data System (ADS)

    Samuels, A.; Babbar-Sebens, M.

    2012-12-01

    Agricultural and urban land use changes have led to disruption of natural hydrologic processes and impairment of streams and rivers. Multiple previous studies have evaluated Best Management Practices (BMPs) as means for restoring existing hydrologic conditions and reducing impairment of water resources. However, planning of these practices have relied on watershed scale hydrologic models for identifying locations and types of practices at scales much coarser than the actual field scale, where landowners have to plan, design and implement the practices. Field scale hydrologic modeling provides means for identifying relationships between BMP type, spatial location, and the interaction between BMPs at a finer farm/field scale that is usually more relevant to the decision maker (i.e. the landowner). This study focuses on development of a simulation-optimization approach for field-scale planning of BMPs in the School Branch stream system of Eagle Creek Watershed, Indiana, USA. The Agricultural Policy Environmental Extender (APEX) tool is used as the field scale hydrologic model, and a multi-objective optimization algorithm is used to search for optimal alternatives. Multiple climate scenarios downscaled to the watershed-scale are used to test the long term performance of these alternatives and under extreme weather conditions. The effectiveness of these BMPs under multiple weather conditions are included within the simulation-optimization approach as a criteria/goal to assist landowners in identifying sustainable design of practices. The results from these scenarios will further enable efficient BMP planning for current and future usage.

  11. Toward optimizing the delivery and use of climate science for natural resource management: lessons learned from recent adaptation efforts in the southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Enquist, C.

    2014-12-01

    Within the past decade, a wealth of federal, state, and NGO-driven initiatives has emerged across managed landscapes in the United States with the goal of facilitating a coordinated response to rapidly changing climate and environmental conditions. In addition to acquisition and translation of the latest climate science, climate vulnerability assessment and scenario planning at multiple spatial and temporal scales are typically major components of such broad adaptation efforts. Numerous approaches for conducting this work have emerged in recent years and have culminated in general guidance and trainings for resource professionals that are specifically designed to help practitioners face the challenges of climate change. In particular, early engagement of stakeholders across multiple jurisdictions is particularly critical to cultivate buy-in and other enabling conditions for moving the science to on-the-ground action. I report on a suite of adaptation efforts in the southwestern US and interior Rockies, highlighting processes used, actions taken, lessons learned, and recommended next steps to facilitate achieving desired management outcomes. This includes a discussion of current efforts to optimize funding for actionable climate science, formalize science-management collaborations, and facilitate new investments in approaches for strategic climate-informed monitoring and evaluation.

  12. Optimal Fisher Discriminant Ratio for an Arbitrary Spatial Light Modulator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1999-01-01

    Optimizing the Fisher ratio is well established in statistical pattern recognition as a means of discriminating between classes. I show how to optimize that ratio for optical correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I include the case of additive noise of known power spectral density.

  13. Assimilation of Remotely Sensed Evaporative Fraction for Improved Agricultural Irrigation Water Management

    NASA Astrophysics Data System (ADS)

    Lei, F.; Crow, W. T.; Kustas, W. P.; Yang, Y.; Anderson, M. C.

    2017-12-01

    Improving the water usage efficiency and maintaining water use sustainability is challenging under rapidly changed natural environments. For decades, extensive field investigations and conceptual/physical numerical modeling have been developed to quantify and track surface water and energy fluxes at different spatial and temporal scales. Meanwhile, with the development of satellite-based sensors, land surface eco-hydrological parameters can be retrieved remotely to supplement ground-based observations. However, both models and remote sensing retrievals contain various sources of errors and an accurate and spatio-temporally continuous simulation and forecasting system at the field-scale is crucial for the efficient water management in agriculture. Specifically, data assimilation technique can optimally integrate measurements acquired from various sources (including in-situ and remotely-sensed data) with numerical models through consideration of different types of uncertainties. In this presentation, we will focus on improving the estimation of water and energy fluxes over a vineyard in California, U.S. A high-resolution remotely-sensed Evaporative Fraction (EF) product from the Atmosphere-Land Exchange Inverse (ALEXI) model will be incorporated into a Soil Vegetation Atmosphere Transfer (SVAT) model via a 2-D data assimilation method. The results will show that both the accuracy and spatial variability of soil water content and evapotranspiration in SVAT model can be enhanced through the assimilation of EF data. Furthermore, we will demonstrate that by taking the optimized soil water flux as initial condition and combining it with weather forecasts, future field water status can be predicted under different irrigation scenarios. Finally, we will discuss the practical potential of these advances by leveraging our numerical experiment for the design of new irrigation strategies and water management techniques.

  14. AITSO: A Tool for Spatial Optimization Based on Artificial Immune Systems

    PubMed Central

    Zhao, Xiang; Liu, Yaolin; Liu, Dianfeng; Ma, Xiaoya

    2015-01-01

    A great challenge facing geocomputation and spatial analysis is spatial optimization, given that it involves various high-dimensional, nonlinear, and complicated relationships. Many efforts have been made with regard to this specific issue, and the strong ability of artificial immune system algorithms has been proven in previous studies. However, user-friendly professional software is still unavailable, which is a great impediment to the popularity of artificial immune systems. This paper describes a free, universal tool, named AITSO, which is capable of solving various optimization problems. It provides a series of standard application programming interfaces (APIs) which can (1) assist researchers in the development of their own problem-specific application plugins to solve practical problems and (2) allow the implementation of some advanced immune operators into the platform to improve the performance of an algorithm. As an integrated, flexible, and convenient tool, AITSO contributes to knowledge sharing and practical problem solving. It is therefore believed that it will advance the development and popularity of spatial optimization in geocomputation and spatial analysis. PMID:25678911

  15. Climate Change Simulations Predict Altered Biotic Response in a Thermally Heterogeneous Stream System

    PubMed Central

    Westhoff, Jacob T.; Paukert, Craig P.

    2014-01-01

    Climate change is predicted to increase water temperatures in many lotic systems, but little is known about how changes in air temperature affect lotic systems heavily influenced by groundwater. Our objectives were to document spatial variation in temperature for spring-fed Ozark streams in Southern Missouri USA, create a spatially explicit model of mean daily water temperature, and use downscaled climate models to predict the number of days meeting suitable stream temperature for three aquatic species of concern to conservation and management. Longitudinal temperature transects and stationary temperature loggers were used in the Current and Jacks Fork Rivers during 2012 to determine spatial and temporal variability of water temperature. Groundwater spring influence affected river water temperatures in both winter and summer, but springs that contributed less than 5% of the main stem discharge did not affect river temperatures beyond a few hundred meters downstream. A multiple regression model using variables related to season, mean daily air temperature, and a spatial influence factor (metric to account for groundwater influence) was a strong predictor of mean daily water temperature (r2 = 0.98; RMSE = 0.82). Data from two downscaled climate simulations under the A2 emissions scenario were used to predict daily water temperatures for time steps of 1995, 2040, 2060, and 2080. By 2080, peak numbers of optimal growth temperature days for smallmouth bass are expected to shift to areas with more spring influence, largemouth bass are expected to experience more optimal growth days (21 – 317% increase) regardless of spring influence, and Ozark hellbenders may experience a reduction in the number of optimal growth days in areas with the highest spring influence. Our results provide a framework for assessing fine-scale (10 s m) thermal heterogeneity and predict shifts in thermal conditions at the watershed and reach scale. PMID:25356982

  16. Development of a shared vision for groundwater management to protect and sustain baseflows of the Upper San Pedro River, Arizona, USA

    USGS Publications Warehouse

    Richter, Holly E.; Gungle, Bruce; Lacher, Laurel J.; Turner, Dale S.; Bushman, Brooke M.

    2014-01-01

    Groundwater pumping along portions of the binational San Pedro River has depleted aquifer storage that supports baseflow in the San Pedro River. A consortium of 23 agencies, business interests, and non-governmental organizations pooled their collective resources to develop the scientific understanding and technical tools required to optimize the management of this complex, interconnected groundwater-surface water system. A paradigm shift occurred as stakeholders first collaboratively developed, and then later applied, several key hydrologic simulation and monitoring tools. Water resources planning and management transitioned from a traditional water budget-based approach to a more strategic and spatially-explicit optimization process. After groundwater modeling results suggested that strategic near-stream recharge could reasonably sustain baseflows at or above 2003 levels until the year 2100, even in the presence of continued groundwater development, a group of collaborators worked for four years to acquire 2250 hectares of land in key locations along 34 kilometers of the river specifically for this purpose. These actions reflect an evolved common vision that considers the multiple water demands of both humans and the riparian ecosystem associated with the San Pedro River.

  17. Risk assessment of groundwater level variability using variable Kriging methods

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2015-04-01

    Assessment of the water table level spatial variability in aquifers provides useful information regarding optimal groundwater management. This information becomes more important in basins where the water table level has fallen significantly. The spatial variability of the water table level in this work is estimated based on hydraulic head measured during the wet period of the hydrological year 2007-2008, in a sparsely monitored basin in Crete, Greece, which is of high socioeconomic and agricultural interest. Three Kriging-based methodologies are elaborated in Matlab environment to estimate the spatial variability of the water table level in the basin. The first methodology is based on the Ordinary Kriging approach, the second involves auxiliary information from a Digital Elevation Model in terms of Residual Kriging and the third methodology calculates the probability of the groundwater level to fall below a predefined minimum value that could cause significant problems in groundwater resources availability, by means of Indicator Kriging. The Box-Cox methodology is applied to normalize both the data and the residuals for improved prediction results. In addition, various classical variogram models are applied to determine the spatial dependence of the measurements. The Matérn model proves to be the optimal, which in combination with Kriging methodologies provides the most accurate cross validation estimations. Groundwater level and probability maps are constructed to examine the spatial variability of the groundwater level in the basin and the associated risk that certain locations exhibit regarding a predefined minimum value that has been set for the sustainability of the basin's groundwater resources. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). Varouchakis, E. A. and D. T. Hristopulos (2013). "Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables." Advances in Water Resources 52: 34-49. Kitanidis, P. K. (1997). Introduction to geostatistics, Cambridge: University Press.

  18. Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces.

    PubMed

    Dai, Shengfa; Wei, Qingguo

    2017-01-01

    Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.

  19. Watershed Dynamics, with focus on connectivity index and management of water related impacts on road infrastructure

    NASA Astrophysics Data System (ADS)

    Kalantari, Z.

    2015-12-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. This study was built on a conceptual framework for looking at SedInConnect model, topography, land use, soil data and other PCDs and climate change in an integrated way to pave the way for more integrated policy making. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. This framework can provide a region with an effective tool to inform a broad range of watershed planning activities within a region. Regional planners, decision-makers, etc. can utilize this tool to identify the most vulnerable points in a watershed and along roads to plan for interventions and actions to alter impacts of high flows and other extreme weather events on roads construction. The application of the model over a large scale can give a realistic spatial characterization of sediment connectivity for the optimal management of debris flow to road structures. The ability of the model to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  20. Applications of New Surrogate Global Optimization Algorithms including Efficient Synchronous and Asynchronous Parallelism for Calibration of Expensive Nonlinear Geophysical Simulation Models.

    NASA Astrophysics Data System (ADS)

    Shoemaker, C. A.; Pang, M.; Akhtar, T.; Bindel, D.

    2016-12-01

    New parallel surrogate global optimization algorithms are developed and applied to objective functions that are expensive simulations (possibly with multiple local minima). The algorithms can be applied to most geophysical simulations, including those with nonlinear partial differential equations. The optimization does not require simulations be parallelized. Asynchronous (and synchronous) parallel execution is available in the optimization toolbox "pySOT". The parallel algorithms are modified from serial to eliminate fine grained parallelism. The optimization is computed with open source software pySOT, a Surrogate Global Optimization Toolbox that allows user to pick the type of surrogate (or ensembles), the search procedure on surrogate, and the type of parallelism (synchronous or asynchronous). pySOT also allows the user to develop new algorithms by modifying parts of the code. In the applications here, the objective function takes up to 30 minutes for one simulation, and serial optimization can take over 200 hours. Results from Yellowstone (NSF) and NCSS (Singapore) supercomputers are given for groundwater contaminant hydrology simulations with applications to model parameter estimation and decontamination management. All results are compared with alternatives. The first results are for optimization of pumping at many wells to reduce cost for decontamination of groundwater at a superfund site. The optimization runs with up to 128 processors. Superlinear speed up is obtained for up to 16 processors, and efficiency with 64 processors is over 80%. Each evaluation of the objective function requires the solution of nonlinear partial differential equations to describe the impact of spatially distributed pumping and model parameters on model predictions for the spatial and temporal distribution of groundwater contaminants. The second application uses an asynchronous parallel global optimization for groundwater quality model calibration. The time for a single objective function evaluation varies unpredictably, so efficiency is improved with asynchronous parallel calculations to improve load balancing. The third application (done at NCSS) incorporates new global surrogate multi-objective parallel search algorithms into pySOT and applies it to a large watershed calibration problem.

  1. Commercial Applications Multispectral Sensor System

    NASA Technical Reports Server (NTRS)

    Birk, Ronald J.; Spiering, Bruce

    1993-01-01

    NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information. The ATLAS system will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal infrared wavelengths, variable spatial resolution from 2-25 meters; high geometric and geo-location accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight. ATLAS is scheduled to be available in 3rd quarter 1992 for acquisition of data for applications such as environmental monitoring, facilities management, geographic information systems data base development, and mineral exploration.

  2. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area

    NASA Astrophysics Data System (ADS)

    Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei

    2018-03-01

    Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.

  3. Effects of spatial disturbance on common loon nest site selection and territory success

    USGS Publications Warehouse

    McCarthy, K.P.; DeStefano, S.

    2011-01-01

    The common loon (Gavia immer) breeds during the summer on northern lakes and water bodies that are also often desirable areas for aquatic recreation and human habitation. In northern New England, we assessed how the spatial nature of disturbance affects common loon nest site selection and territory success. We found through classification and regression analysis that distance to and density of disturbance factors can be used to classify observed nest site locations versus random points, suggesting that these factors affect loon nest site selection (model 1: Correct classification = 75%, null = 50%, K = 0.507, P < 0.001; model 2: Correct classification = 78%, null = 50%, K = 0.551, P < 0.001). However, in an exploratory analysis, we were unable to show a relation between spatial disturbance variables and breeding success (P = 0.595, R 2 = 0.436), possibly because breeding success was so low during the breeding seasons of 2007-2008. We suggest that by selecting nest site locations that avoid disturbance factors, loons thereby limit the effect that disturbance will have on their breeding success. Still, disturbance may force loons to use sub-optimal nesting habitat, limiting the available number of territories, and overall productivity. We advise that management efforts focus on limiting disturbance factors to allow breeding pairs access to the best nesting territories, relieving disturbance pressures that may force sub-optimal nest placement. ?? 2011 The Wildlife Society.

  4. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling

    PubMed Central

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2016-01-01

    In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species’ habitat, using black grouse Tetrao tetrix (L.) in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1) identified and located the six predominant treeline vegetation types; 2) modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3) simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2) and (3) to 4) locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix), Rhododendron-dominated, Juniperus-dominated and mixed heathland) were predicted with high accuracy (AUC >0.9). Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29%) would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2%) and Alnus viridis (4.8%). The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the spatial allocation of management resources in geographic regions where shrub encroachment represents a major biodiversity conservation issue. PMID:27727325

  5. Catchment Area Treatment (CAT) Plan and Crop Area Optimization for Integrated Management in a Water Resource Project

    NASA Astrophysics Data System (ADS)

    Jaiswal, R. K.; Thomas, T.; Galkate, R. V.; Ghosh, N. C.; Singh, S.

    2013-09-01

    A scientifically developed catchment area treatment (CAT) plan and optimized pattern of crop areas may be the key for sustainable development of water resource, profitability in agriculture and improvement of overall economy in drought affected Bundelkhand region of Madhya Pradesh (India). In this study, an attempt has been made to develop a CAT plan using spatial variation of geology, geomorphology, soil, drainage, land use in geographical information system for selection of soil and water conservation measures and crop area optimization using linear programming for maximization of return considering water availability, area affinity, fertilizers, social and market constraints in Benisagar reservoir project of Chhatarpur district (M.P.). The scientifically developed CAT plan based on overlaying of spatial information consists of 58 mechanical measure (49 boulder bunds, 1 check dam, 7 cully plug and 1 percolation tank), 2.60 km2 land for agro forestry, 2.08 km2 land for afforestation in Benisagar dam and 67 mechanical measures (45 boulder bunds and 22 gully plugs), 7.79 km2 land for agro forestry, 5.24 km2 land for afforestation in Beniganj weir catchment with various agronomic measures for agriculture areas. The linear programming has been used for optimization of crop areas in Benisagar command for sustainable development considering various scenarios of water availability, efficiencies, affinity and fertilizers availability in the command. Considering present supply condition of water, fertilizers, area affinity and making command self sufficient in most of crops, the net benefit can be increase to Rs. 1.93 crores from 41.70 km2 irrigable area in Benisagar command by optimizing cropping pattern and reducing losses during conveyance and application of water.

  6. Optimization of a hydrometric network extension using specific flow, kriging and simulated annealing

    NASA Astrophysics Data System (ADS)

    Chebbi, Afef; Kebaili Bargaoui, Zoubeida; Abid, Nesrine; da Conceição Cunha, Maria

    2017-12-01

    In hydrometric stations, water levels are continuously observed and discharge rating curves are constantly updated to achieve accurate river levels and discharge observations. An adequate spatial distribution of hydrological gauging stations presents a lot of interest in linkage with the river regime characterization, water infrastructures design, water resources management and ecological survey. Due to the increase of riverside population and the associated flood risk, hydrological networks constantly need to be developed. This paper suggests taking advantage of kriging approaches to improve the design of a hydrometric network. The context deals with the application of an optimization approach using ordinary kriging and simulated annealing (SA) in order to identify the best locations to install new hydrometric gauges. The task at hand is to extend an existing hydrometric network in order to estimate, at ungauged sites, the average specific annual discharge which is a key basin descriptor. This methodology is developed for the hydrometric network of the transboundary Medjerda River in the North of Tunisia. A Geographic Information System (GIS) is adopted to delineate basin limits and centroids. The latter are adopted to assign the location of basins in kriging development. Scenarios where the size of an existing 12 stations network is alternatively increased by 1, 2, 3, 4 and 5 new station(s) are investigated using geo-regression and minimization of the variance of kriging errors. The analysis of the optimized locations from a scenario to another shows a perfect conformity with respect to the location of the new sites. The new locations insure a better spatial coverage of the study area as seen with the increase of both the average and the maximum of inter-station distances after optimization. The optimization procedure selects the basins that insure the shifting of the mean drainage area towards higher specific discharges.

  7. Development of a Method for Selecting Optimum Sites for the Automatic Mountain Meteorology Observation Station (AMOS) to Improve Predictability of Forest Fires in Inaccessible Area

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Won, M.; Jang, K.; Lim, J.

    2016-12-01

    As there has been a recent increase in the case of forest fires in North Korea descending southward through the De-Militarized Zone (DMZ), ensuring proper response to such events has been a challenge. Therefore, in order to respond and manage these forest fires appropriately, an improvement in the forest fire predictability through integration of mountain weather information observed at the most optimal site is necessary. This study is a proactive case in which a spatial analysis and an on-site assessment method were developed for selecting an optimum site for a mountain weather observation in national forest. For spatial analysis, the class 1 and 2 forest fire danger areas for the past 10 years, accessibility maximum 100m, Automatic Weather Station (AWS) redundancy within 2.5km, and mountain terrains higher than 200m were analyzed. A final overlay analysis was performed to select the candidates for the field assessment. The sites selected through spatial analysis were quantitatively evaluated based on the optimal meteorological environment, forest and hiking trail accessibility, AWS redundancy, and supply of wireless communication and solar powered electricity. The sites with total score of 70 and higher were accepted as adequate. At the final selected sites, an AMOS was established, and integration of mountain and Korea Meteorological Administration (KMA) weather data improved the forest fire predictability in South Korea by 10%. Given these study results, we expect that establishing an automatic mountain meteorology observation station at the optimal sites in inaccessible area and integrating mountain weather data will improve the predictability of forest fires.

  8. Optimization techniques for integrating spatial data

    USGS Publications Warehouse

    Herzfeld, U.C.; Merriam, D.F.

    1995-01-01

    Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.

  9. Modeling movement and fidelity of American black ducks

    USGS Publications Warehouse

    Zimpfer, N.L.; Conroy, M.J.

    2006-01-01

    Spatial relationships among stocks of breeding waterfowl can be an important component of harvest management. Prediction and optimal harvest management under adaptive harvest management (AHM) requires information on the spatial relationships among breeding populations (fidelity and inter-year exchange), as well as rates of movements from breeding to harvest regions. We used band-recovery data to develop a model to estimate probabilities of movement for American black ducks (Anas rubripes) among 3 Canadian breeding strata and 6 harvest regions (3 in Canada, and 3 in the United States) over the period 1965-1998. Model selection criteria suggested that models containing area-, year-, and age-specific recovery rates with area- and sex-specific movement rates were the best for modeling movement. Movement by males to southern harvest areas was variable depending on the originating area. Males from the western breeding area predominantly moved to the Mississippi Flyway or southern Atlantic Flyway (??ij = 0.353, SE = 0.0187 and ??ij = 0.473, SE = 0.037, respectively), whereas males that originated in the eastern and central breeding strata moved to the northern Atlantic flyway (??ij = 0.842, SE = 0.010 and ??ij = 0.578, SE = 0.0222, respectively). We used combined recoveries and recaptures in Program MARK to estimate fidelity to the 3 Canadian breeding strata. Information criteria identified a model containing sex- and age-specific fidelity for black ducks. Estimates of fidelity were 0.9695 (SE = 0.0249) and 0.9554 (SE = 0.0434) for adult males and females, respectively. Estimates of fidelity for juveniles were slightly lower at 0.9210 (SE = 0.0931) and 0.8870 (SE = 0.0475) for males and females, respectively. These models have application to the development of spatially stratified black duck harvest management models for use in AHM.

  10. A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.

    PubMed

    Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng

    To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.

  11. Spatial pattern characteristics of water footprint for maize production in Northeast China.

    PubMed

    Duan, Peili; Qin, Lijie; Wang, Yeqiao; He, Hongshi

    2016-01-30

    Water footprint (WF) methodology is essential for quantifying total water consumption of crop production and making efficient water management policies. This study calculated the green, blue, grey and total WFs of maize production in Northeast China from 1998 to 2012 and compared the values of the provinces. This study also analyzed the spatial variation and structure characteristics of the WFs at the prefecture level. The annual average WF of maize production was 1029 m(3) per ton, which was 51% green, 21% blue and 28% grey. The WF of maize production was highest in Liaoning Province, moderate in Heilongjiang Province and lowest in Jilin Province. The spatial differences of the WFs calculated for the 36 major maize production prefectures were significant in Northeast China. There was a moderate positive spatial autocorrelation among prefectures that had similar WFs. Local indicator of spatial autocorrelation index (LISA) analysis identified prefectures with higher WFs in the southeast region of Liaoning Province and the southwest region of Heilongjiang Province and prefectures with lower WFs in the middle of Jilin Province. Spatial differences in the WF of maize production were caused mainly by variations in climate conditions, soil quality, irrigation facilities and maize yield. The spatial distribution of WFs can help provide a scientific basis for optimizing maize production distribution and then formulate strategies to reduce the WF of maize production. © 2015 Society of Chemical Industry.

  12. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests.

    PubMed

    Ager, Alan A; Day, Michelle A; Vogler, Kevin

    2016-07-01

    We used spatial optimization to analyze alternative restoration scenarios and quantify tradeoffs for a large, multifaceted restoration program to restore resiliency to forest landscapes in the western US. We specifically examined tradeoffs between provisional ecosystem services, fire protection, and the amelioration of key ecological stressors. The results revealed that attainment of multiple restoration objectives was constrained due to the joint spatial patterns of ecological conditions and socioeconomic values. We also found that current restoration projects are substantially suboptimal, perhaps the result of compromises in the collaborative planning process used by federal planners, or operational constraints on forest management activities. The juxtaposition of ecological settings with human values generated sharp tradeoffs, especially with respect to community wildfire protection versus generating revenue to support restoration and fire protection activities. The analysis and methods can be leveraged by ongoing restoration programs in many ways including: 1) integrated prioritization of restoration activities at multiple scales on public and adjoining private lands, 2) identification and mapping of conflicts between ecological restoration and socioeconomic objectives, 3) measuring the efficiency of ongoing restoration projects compared to the optimal production possibility frontier, 4) consideration of fire transmission among public and private land parcels as a prioritization metric, and 5) finding socially optimal regions along the production frontier as part of collaborative restoration planning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Adapting environmental management to uncertain but inevitable change.

    PubMed

    Nicol, Sam; Fuller, Richard A; Iwamura, Takuya; Chadès, Iadine

    2015-06-07

    Implementation of adaptation actions to protect biodiversity is limited by uncertainty about the future. One reason for this is the fear of making the wrong decisions caused by the myriad future scenarios presented to decision-makers. We propose an adaptive management (AM) method for optimally managing a population under uncertain and changing habitat conditions. Our approach incorporates multiple future scenarios and continually learns the best management strategy from observations, even as conditions change. We demonstrate the performance of our AM approach by applying it to the spatial management of migratory shorebird habitats on the East Asian-Australasian flyway, predicted to be severely impacted by future sea-level rise. By accounting for non-stationary dynamics, our solution protects 25,000 more birds per year than the current best stationary approach. Our approach can be applied to many ecological systems that require efficient adaptation strategies for an uncertain future. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Using a genetic algorithm to optimize a water-monitoring network for accuracy and cost effectiveness

    NASA Astrophysics Data System (ADS)

    Julich, R. J.

    2004-05-01

    The purpose of this project is to determine the optimal spatial distribution of water-monitoring wells to maximize important data collection and to minimize the cost of managing the network. We have employed a genetic algorithm (GA) towards this goal. The GA uses a simple fitness measure with two parts: the first part awards a maximal score to those combinations of hydraulic head observations whose net uncertainty is closest to the value representing all observations present, thereby maximizing accuracy; the second part applies a penalty function to minimize the number of observations, thereby minimizing the overall cost of the monitoring network. We used the linear statistical inference equation to calculate standard deviations on predictions from a numerical model generated for the 501-observation Death Valley Regional Flow System as the basis for our uncertainty calculations. We have organized the results to address the following three questions: 1) what is the optimal design strategy for a genetic algorithm to optimize this problem domain; 2) what is the consistency of solutions over several optimization runs; and 3) how do these results compare to what is known about the conceptual hydrogeology? Our results indicate the genetic algorithms are a more efficient and robust method for solving this class of optimization problems than have been traditional optimization approaches.

  15. Cost-effective river rehabilitation planning: optimizing for morphological benefits at large spatial scales.

    PubMed

    Langhans, Simone D; Hermoso, Virgilio; Linke, Simon; Bunn, Stuart E; Possingham, Hugh P

    2014-01-01

    River rehabilitation aims to protect biodiversity or restore key ecosystem services but the success rate is often low. This is seldom because of insufficient funding for rehabilitation works but because trade-offs between costs and ecological benefits of management actions are rarely incorporated in the planning, and because monitoring is often inadequate for managers to learn by doing. In this study, we demonstrate a new approach to plan cost-effective river rehabilitation at large scales. The framework is based on the use of cost functions (relationship between costs of rehabilitation and the expected ecological benefit) to optimize the spatial allocation of rehabilitation actions needed to achieve given rehabilitation goals (in our case established by the Swiss water act). To demonstrate the approach with a simple example, we link costs of the three types of management actions that are most commonly used in Switzerland (culvert removal, widening of one riverside buffer and widening of both riversides) to the improvement in riparian zone quality. We then use Marxan, a widely applied conservation planning software, to identify priority areas to implement these rehabilitation measures in two neighbouring Swiss cantons (Aargau, AG and Zürich, ZH). The best rehabilitation plans identified for the two cantons met all the targets (i.e. restoring different types of morphological deficits with different actions) rehabilitating 80,786 m (AG) and 106,036 m (ZH) of the river network at a total cost of 106.1 Million CHF (AG) and 129.3 Million CH (ZH). The best rehabilitation plan for the canton of AG consisted of more and better connected sub-catchments that were generally less expensive, compared to its neighbouring canton. The framework developed in this study can be used to inform river managers how and where best to spend their rehabilitation budget for a given set of actions, ensures the cost-effective achievement of desired rehabilitation outcomes, and helps towards estimating total costs of long-term rehabilitation activities. Rehabilitation plans ready to be implemented may be based on additional aspects to the ones considered here, e.g., specific cost functions for rural and urban areas and/or for large and small rivers, which can simply be added to our approach. Optimizing investments in this way will ultimately increase the likelihood of on-ground success of rehabilitation activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Anticipating on amplifying water stress: Optimal crop production supported by anticipatory water management

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Simons, Gijs

    2015-04-01

    Agricultural crop yields depend largely on the soil moisture conditions in the root zone. Drought but especially an excess of water in the root zone and herewith limited availability of soil oxygen reduces crop yield. With ongoing climate change, more prolonged dry periods alternate with more intensive rainfall events, which changes soil moisture dynamics. With unaltered water management practices, reduced crop yield due to both drought stress and waterlogging will increase. Therefore, both farmers and water management authorities need to be provided with opportunities to reduce risks of decreasing crop yields. In The Netherlands, agricultural production of crops represents a market exceeding 2 billion euros annually. Given the increased variability in meteorological conditions and the resulting larger variations in soil moisture contents, it is of large economic importance to provide farmers and water management authorities with tools to mitigate risks of reduced crop yield by anticipatory water management, both at field and at regional scale. We provide the development and the field application of a decision support system (DSS), which allows to optimize crop yield by timely anticipation on drought and waterlogging situations. By using this DSS, we will minimize plant water stress through automated drainage and irrigation management. In order to optimize soil moisture conditions for crop growth, the interacting processes in the soil-plant-atmosphere system need to be considered explicitly. Our study comprises both the set-up and application of the DSS on a pilot plot in The Netherlands, in order to evaluate its implementation into daily agricultural practice. The DSS focusses on anticipatory water management at the field scale, i.e. the unit scale of interest to a farmer. We combine parallel field measurements ('observe'), process-based model simulations ('predict'), and the novel Climate Adaptive Drainage (CAD) system ('adjust') to optimize soil moisture conditions. CAD is used both for controlled drainage practices and for sub-irrigation. The DSS has a core of the plot-scale SWAP model (soil-water-atmosphere-plant), extended with a process-based module for the simulation of oxygen stress for plant roots. This module involves macro-scale and micro-scale gas diffusion, as well as the plant physiological demand of oxygen, to simulate transpiration reduction due to limited oxygen availability. Continuous measurements of soil moisture content, groundwater level, and drainage level are used to calibrate the SWAP model each day. This leads to an optimal reproduction of the actual soil moisture conditions by data assimilation in the first step in the DSS process. During the next step, near-future (+10 days) soil moisture conditions and drought and oxygen stress are predicted using weather forecasts. Finally, optimal drainage levels to minimize stress are simulated, which can be established by CAD. Linkage to a grid-based hydrological simulation model (SPHY) facilitates studying the spatial dynamics of soil moisture and associated implications for management at the regional scale. Thus, by using local-scale measurements, process-based models and weather forecasts to anticipate on near-future conditions, not only field-scale water management but also regional surface water management can be optimized both in space and time.

  17. Active marks structure optimization for optical-electronic systems of spatial position control of industrial objects

    NASA Astrophysics Data System (ADS)

    Sycheva, Elena A.; Vasilev, Aleksandr S.; Lashmanov, Oleg U.; Korotaev, Valery V.

    2017-06-01

    The article is devoted to the optimization of optoelectronic systems of the spatial position of objects. Probabilistic characteristics of the detection of an active structured mark on a random noisy background are investigated. The developed computer model and the results of the study allow us to estimate the probabilistic characteristics of detection of a complex structured mark on a random gradient background, and estimate the error of spatial coordinates. The results of the study make it possible to improve the accuracy of measuring the coordinates of the object. Based on the research recommendations are given on the choice of parameters of the optimal mark structure for use in opticalelectronic systems for monitoring the spatial position of large-sized structures.

  18. Depletion mapping and constrained optimization to support managing groundwater extraction

    USGS Publications Warehouse

    Fienen, Michael N.; Bradbury, Kenneth R.; Kniffin, Maribeth; Barlow, Paul M.

    2018-01-01

    Groundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping—showing the model-calculated potential impacts that wells have on stream baseflow—can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow. Variables such as the maximum amount of reduction allowed in each well and various groupings of wells using, for example, K-means clustering considering spatial proximity and depletion potential are considered. These approaches provide a potential starting point and guidance for resource managers and stakeholders to make decisions about groundwater management in a basin, spreading responsibility in different ways. We illustrate these approaches in the Little Plover River basin in central Wisconsin, United States—home to a rich agricultural tradition, with farmland and urban areas both in close proximity to a groundwater-dependent trout stream. Groundwater withdrawals have reduced baseflow supplying the Little Plover River below a legally established minimum. The techniques in this work were developed in response to engaged stakeholders with various interests and goals for the basin. They sought to develop a collaborative management plan at a watershed scale that restores the flow rate in the river in a manner that incorporates principles of shared governance and results in effective and minimally disruptive changes in groundwater extraction practices.

  19. Depletion Mapping and Constrained Optimization to Support Managing Groundwater Extraction.

    PubMed

    Fienen, Michael N; Bradbury, Kenneth R; Kniffin, Maribeth; Barlow, Paul M

    2018-01-01

    Groundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping-showing the model-calculated potential impacts that wells have on stream baseflow-can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow. Variables such as the maximum amount of reduction allowed in each well and various groupings of wells using, for example, K-means clustering considering spatial proximity and depletion potential are considered. These approaches provide a potential starting point and guidance for resource managers and stakeholders to make decisions about groundwater management in a basin, spreading responsibility in different ways. We illustrate these approaches in the Little Plover River basin in central Wisconsin, United States-home to a rich agricultural tradition, with farmland and urban areas both in close proximity to a groundwater-dependent trout stream. Groundwater withdrawals have reduced baseflow supplying the Little Plover River below a legally established minimum. The techniques in this work were developed in response to engaged stakeholders with various interests and goals for the basin. They sought to develop a collaborative management plan at a watershed scale that restores the flow rate in the river in a manner that incorporates principles of shared governance and results in effective and minimally disruptive changes in groundwater extraction practices. © 2017, National Ground Water Association.

  20. Optimization of Apparatus Design and Behavioral Measures for the Assessment of Visuo-Spatial Learning and Memory of Mice on the Barnes Maze

    ERIC Educational Resources Information Center

    O'Leary, Timothy P.; Brown, Richard E.

    2013-01-01

    We have previously shown that apparatus design can affect visual-spatial cue use and memory performance of mice on the Barnes maze. The present experiment extends these findings by determining the optimal behavioral measures and test procedure for analyzing visuo-spatial learning and memory in three different Barnes maze designs. Male and female…

  1. On the functional optimization of a certain class of nonstationary spatial functions

    USGS Publications Warehouse

    Christakos, G.; Paraskevopoulos, P.N.

    1987-01-01

    Procedures are developed in order to obtain optimal estimates of linear functionals for a wide class of nonstationary spatial functions. These procedures rely on well-established constrained minimum-norm criteria, and are applicable to multidimensional phenomena which are characterized by the so-called hypothesis of inherentity. The latter requires elimination of the polynomial, trend-related components of the spatial function leading to stationary quantities, and also it generates some interesting mathematics within the context of modelling and optimization in several dimensions. The arguments are illustrated using various examples, and a case study computed in detail. ?? 1987 Plenum Publishing Corporation.

  2. GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa

    USGS Publications Warehouse

    Yang, X.; Jin, W.

    2010-01-01

    Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.

  3. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.

    2013-02-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.

  4. Disease and disaster: Optimal deployment of epidemic control facilities in a spatially heterogeneous population with changing behaviour.

    PubMed

    Gaythorpe, Katy; Adams, Ben

    2016-05-21

    Epidemics of water-borne infections often follow natural disasters and extreme weather events that disrupt water management processes. The impact of such epidemics may be reduced by deployment of transmission control facilities such as clinics or decontamination plants. Here we use a relatively simple mathematical model to examine how demographic and environmental heterogeneities, population behaviour, and behavioural change in response to the provision of facilities, combine to determine the optimal configurations of limited numbers of facilities to reduce epidemic size, and endemic prevalence. We show that, if the presence of control facilities does not affect behaviour, a good general rule for responsive deployment to minimise epidemic size is to place them in exactly the locations where they will directly benefit the most people. However, if infected people change their behaviour to seek out treatment then the deployment of facilities offering treatment can lead to complex effects that are difficult to foresee. So careful mathematical analysis is the only way to get a handle on the optimal deployment. Behavioural changes in response to control facilities can also lead to critical facility numbers at which there is a radical change in the optimal configuration. So sequential improvement of a control strategy by adding facilities to an existing optimal configuration does not always produce another optimal configuration. We also show that the pre-emptive deployment of control facilities has conflicting effects. The configurations that minimise endemic prevalence are very different to those that minimise epidemic size. So cost-benefit analysis of strategies to manage endemic prevalence must factor in the frequency of extreme weather events and natural disasters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Evaluating impacts of fire management strategies on native and invasive plants using an individual-based model

    NASA Astrophysics Data System (ADS)

    Gangur, Alexander N.; Fill, Jennifer M.; Northfield, Tobin D.; van de Wiel, Marco

    2017-04-01

    The capacity for species to coexist and potentially exclude one another can broadly be attributed to drivers that influence fitness differences (such as competitive ability) and niche differences (such as environmental change). These drivers, and thus the determinants of coexistence they influence, can interact and fluctuate both spatially and temporally. Understanding the spatiotemporal variation in niche and fitness differences in systems prone to fluctuating drivers, such as fire, can help to inform the management of invasive species. In the Cape floristic region of South Africa, invasive Pinus pinaster seedlings are strong competitors in the post-burn environment of the fire-driven Fynbos vegetation. In this, system native Protea spp. are especially vulnerable to unseasonal burns, but seasonal prescribed (Summer) burns are thought to present a high safety risk. Together, these issues have limited the appeal of prescribed burn management as an alternative to costly manual eradication of P. pinaster. Using a spatially-explicit field-of-neighbourhood individual-based model, we represent the drivers of spatiotemporal variation in niche differences (driven by fire regimes) and fitness differences (driven by competitive ability). In doing so, we evaluate optimal fire management strategies to a) control invasive P. pinaster in the Cape floristic region of South Africa, while b) minimizing deleterious effects of management on native Protea spp. The scarcity of appropriate data for model calibration has been problematic for models in invasion biology, but we use recent advances in Approximate Bayesian Computing techniques to overcome this limitation. We present early conclusions on the viability of prescribed burn management to control P. pinaster in South Africa.

  6. Spatial strategies for managing visitor impacts in National Parks

    USGS Publications Warehouse

    Leung, Y.-F.; Marion, J.L.

    1999-01-01

    Resource and social impacts caused by recreationists and tourists have become a management concern in national parks and equivalent protected areas. The need to contain visitor impacts within acceptable limits has prompted park and protected area managers to implement a wide variety of strategies and actions, many of which are spatial in nature. This paper classifies and illustrates the basic spatial strategies for managing visitor impacts in parks and protected areas. A typology of four spatial strategies was proposed based on the recreation and park management literature. Spatial segregation is a common strategy for shielding sensitive resources from visitor impacts or for separating potentially conflicting types of use. Two forms of spatial segregation are zoning and closure. A spatial containment strategy is intended to minimize the aggregate extent of visitor impacts by confining use to limited designated or established Iocations. In contrast, a spatial dispersal strategy seeks to spread visitor use, reducing the frequency of use to levels that avoid or minimize permanent resource impacts or visitor crowding and conflict. Finally, a spatial configuration strategy minimizes impacting visitor behavior though the judicious spatial arrangement of facilities. These four spatial strategics can be implemented separately or in combination at varying spatial scales within a single park. A survey of national park managers provides an empirical example of the diversity of implemented spatial strategies in managing visitor impacts. Spatial segregation is frequently applied in the form of camping restrictions or closures to protect sensitive natural or cultural resources and to separate incompatible visitor activities. Spatial containment is the most widely applied strategy for minimizing the areal extent of resource impacts. Spatial dispersal is commonly applied to reduce visitor crowding or conflicts in popular destination areas but is less frequently applied or effective in minimizing resource impacts. Spatial configuration was only minimally evaluated, as it was not included in the survey. The proposed typology of spatial strategies offers a useful means of organizing and understanding the wide variety of management strategies and actions applied in managing visitor impacts in parks and protected areas. Examples from U.S. national parks demonstrate the diversity of these basic strategies and their flexibility in implementation at various spatial scales. Documentation of these examples helps illustrate their application and inform managers of the multitude of options. Further analysis from the spatial perspective is needed Io extend the applicability of this typology to other recreational activities and management issues.

  7. Optimizing surveillance for livestock disease spreading through animal movements

    PubMed Central

    Bajardi, Paolo; Barrat, Alain; Savini, Lara; Colizza, Vittoria

    2012-01-01

    The spatial propagation of many livestock infectious diseases critically depends on the animal movements among premises; so the knowledge of movement data may help us to detect, manage and control an outbreak. The identification of robust spreading features of the system is however hampered by the temporal dimension characterizing population interactions through movements. Traditional centrality measures do not provide relevant information as results strongly fluctuate in time and outbreak properties heavily depend on geotemporal initial conditions. By focusing on the case study of cattle displacements in Italy, we aim at characterizing livestock epidemics in terms of robust features useful for planning and control, to deal with temporal fluctuations, sensitivity to initial conditions and missing information during an outbreak. Through spatial disease simulations, we detect spreading paths that are stable across different initial conditions, allowing the clustering of the seeds and reducing the epidemic variability. Paths also allow us to identify premises, called sentinels, having a large probability of being infected and providing critical information on the outbreak origin, as encoded in the clusters. This novel procedure provides a general framework that can be applied to specific diseases, for aiding risk assessment analysis and informing the design of optimal surveillance systems. PMID:22728387

  8. Demonstration and Validation of the Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long-Term Monitoring (LTM) of Groundwater at Military and Government Sites

    DTIC Science & Technology

    2010-08-01

    Long - Term Monitoring (LTM) of Groundwater at Military and...Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long - Term Monitoring (LTM) of Groundwater at Military and Government Sites 5a. CONTRACT NUMBER...Council LTM long - term monitoring LTMO long - term monitoring optimization LWQR locally weighted quadratic regression LZ Lower Zone MCL

  9. Using spatial principles to optimize distributed computing for enabling the physical science discoveries

    PubMed Central

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-01-01

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779

  10. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    PubMed

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  11. Assessing concentrations and health impacts of air quality management strategies: Framework for Rapid Emissions Scenario and Health impact ESTimation (FRESH-EST).

    PubMed

    Milando, Chad W; Martenies, Sheena E; Batterman, Stuart A

    2016-09-01

    In air quality management, reducing emissions from pollutant sources often forms the primary response to attaining air quality standards and guidelines. Despite the broad success of air quality management in the US, challenges remain. As examples: allocating emissions reductions among multiple sources is complex and can require many rounds of negotiation; health impacts associated with emissions, the ultimate driver for the standards, are not explicitly assessed; and long dispersion model run-times, which result from the increasing size and complexity of model inputs, limit the number of scenarios that can be evaluated, thus increasing the likelihood of missing an optimal strategy. A new modeling framework, called the "Framework for Rapid Emissions Scenario and Health impact ESTimation" (FRESH-EST), is presented to respond to these challenges. FRESH-EST estimates concentrations and health impacts of alternative emissions scenarios at the urban scale, providing efficient computations from emissions to health impacts at the Census block or other desired spatial scale. In addition, FRESH-EST can optimize emission reductions to meet specified environmental and health constraints, and a convenient user interface and graphical displays are provided to facilitate scenario evaluation. The new framework is demonstrated in an SO2 non-attainment area in southeast Michigan with two optimization strategies: the first minimizes emission reductions needed to achieve a target concentration; the second minimizes concentrations while holding constant the cumulative emissions across local sources (e.g., an emissions floor). The optimized strategies match outcomes in the proposed SO2 State Implementation Plan without the proposed stack parameter modifications or shutdowns. In addition, the lower health impacts estimated for these strategies suggest that FRESH-EST could be used to identify potentially more desirable pollution control alternatives in air quality management planning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Application of Hybrid Optimization-Expert System for Optimal Power Management on Board Space Power Station

    NASA Technical Reports Server (NTRS)

    Momoh, James; Chattopadhyay, Deb; Basheer, Omar Ali AL

    1996-01-01

    The space power system has two sources of energy: photo-voltaic blankets and batteries. The optimal power management problem on-board has two broad operations: off-line power scheduling to determine the load allocation schedule of the next several hours based on the forecast of load and solar power availability. The nature of this study puts less emphasis on speed requirement for computation and more importance on the optimality of the solution. The second category problem, on-line power rescheduling, is needed in the event of occurrence of a contingency to optimally reschedule the loads to minimize the 'unused' or 'wasted' energy while keeping the priority on certain type of load and minimum disturbance of the original optimal schedule determined in the first-stage off-line study. The computational performance of the on-line 'rescheduler' is an important criterion and plays a critical role in the selection of the appropriate tool. The Howard University Center for Energy Systems and Control has developed a hybrid optimization-expert systems based power management program. The pre-scheduler has been developed using a non-linear multi-objective optimization technique called the Outer Approximation method and implemented using the General Algebraic Modeling System (GAMS). The optimization model has the capability of dealing with multiple conflicting objectives viz. maximizing energy utilization, minimizing the variation of load over a day, etc. and incorporates several complex interaction between the loads in a space system. The rescheduling is performed using an expert system developed in PROLOG which utilizes a rule-base for reallocation of the loads in an emergency condition viz. shortage of power due to solar array failure, increase of base load, addition of new activity, repetition of old activity etc. Both the modules handle decision making on battery charging and discharging and allocation of loads over a time-horizon of a day divided into intervals of 10 minutes. The models have been extensively tested using a case study for the Space Station Freedom and the results for the case study will be presented. Several future enhancements of the pre-scheduler and the 'rescheduler' have been outlined which include graphic analyzer for the on-line module, incorporating probabilistic considerations, including spatial location of the loads and the connectivity using a direct current (DC) load flow model.

  13. Developing Gis-Based Demand-Responsive Transit System in Tehran City

    NASA Astrophysics Data System (ADS)

    Faroqi, H.; Sadeghi-Niaraki, A.

    2015-12-01

    Create, maintain and development of public transport network in metropolitan are important problems in the field of urban transport management. In public transport, maximize the efficient use of public fleet capacity has been considered. Concepts and technologies of GIS have provided suitable way for management and optimization of the public transports systems. In demand-responsive public transportation system, firstly fellow traveller groups have been established for applicants based on spatial concepts and tools of GIS, second for each group according to its' members and their paths, a public vehicle has been allocated to them then based on dynamic routing, the fellow passenger group has been gathered from their origins and has been moved to their destinations through optimal route. The suggested system has been implemented based on network data and commuting trips statistics of 1 to 6 districts in Tehran city. Evaluation performed on the results show the 34% increase using of Taxi capacity, 13% increase using of Van capacity and 10% increase using of Bus capacity in comparison between current public transport system and suggested public transportation system has been improved.

  14. Remote Sensing and Reflectance Profiling in Entomology.

    PubMed

    Nansen, Christian; Elliott, Norman

    2016-01-01

    Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.

  15. Managing Radiation Degradation of CCDs on the Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Blackwell, William C.; Minow, Joseph I.; Cameron, Robert A.; Morris, David C.; Virani, Shanil N.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The CCDs on the Chandra X ray Observatory are sensitive to radiation damage particularly from low-energy protons scattering off the telescope's mirrors onto the focal plane. In its highly elliptical orbit, Chandra passes through a spatially and temporally varying radiation environment, ranging from the radiation belts to the solar wind. Translating thc Advanced CCD Imaging Spectrometer (ACIS) out of the focal position during radiation-belt passages has prevented loss of scientific utility and eventually functionality. However, carefully managing the radiation damage during the remainder of the orbit, without unnecessarily sacrificing observing time, is essential to optimizing the scientific value of this exceptional observatory throughout its planned 10-year mission. In working toward this optimization, the Chandra team developed aid applied radiation-management strategies. These strategies include autonomous instrument safing triggered by the on-board radiation monitor, as well as monitoring, alerts, and intervention based upon real-time space-environment data from NOAA and NASA spacecraft. Furthermore, because Chandra often spends much of its orbit out of the solar wind (in the Earth's outer magnetosphere and magnetosheath), the team developed the Chandra Radiation Model to describe the complete low-energy-proton environment. Management of the radiation damage has thus far succeeded in limiting degradation of the charge-transfer inefficiency (CTI) to less than 4.4*10^-6 and 1.4*10^-6 per year for the front-illuminated and back-illuminated CCDs, respectively.

  16. Optimal expansion of a drinking water infrastructure system with respect to carbon footprint, cost-effectiveness and water demand.

    PubMed

    Chang, Ni-Bin; Qi, Cheng; Yang, Y Jeffrey

    2012-11-15

    Urban water infrastructure expansion requires careful long-term planning to reduce the risk from climate change during periods of both economic boom and recession. As part of the adaptation management strategies, capacity expansion in concert with other management alternatives responding to the population dynamics, ecological conservation, and water management policies should be systematically examined to balance the water supply and demand temporally and spatially with different scales. To mitigate the climate change impact, this practical implementation often requires a multiobjective decision analysis that introduces economic efficiencies and carbon-footprint matrices simultaneously. The optimal expansion strategies for a typical water infrastructure system in South Florida demonstrate the essence of the new philosophy. Within our case study, the multiobjective modeling framework uniquely features an integrated evaluation of transboundary surface and groundwater resources and quantitatively assesses the interdependencies among drinking water supply, wastewater reuse, and irrigation water permit transfer as the management options expand throughout varying dimensions. With the aid of a multistage planning methodology over the partitioned time horizon, such a systems analysis has resulted in a full-scale screening and sequencing of multiple competing objectives across a suite of management strategies. These strategies that prioritize 20 options provide a possible expansion schedule over the next 20 years that improve water infrastructure resilience and at low life-cycle costs. The proposed method is transformative to other applications of similar water infrastructure systems elsewhere in the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Analytical optimization of demand management strategies across all urban water use sectors

    NASA Astrophysics Data System (ADS)

    Friedman, Kenneth; Heaney, James P.; Morales, Miguel; Palenchar, John

    2014-07-01

    An effective urban water demand management program can greatly influence both peak and average demand and therefore long-term water supply and infrastructure planning. Although a theoretical framework for evaluating residential indoor demand management has been well established, little has been done to evaluate other water use sectors such as residential irrigation in a compatible manner for integrating these results into an overall solution. This paper presents a systematic procedure to evaluate the optimal blend of single family residential irrigation demand management strategies to achieve a specified goal based on performance functions derived from parcel level tax assessor's data linked to customer level monthly water billing data. This framework is then generalized to apply to any urban water sector, as exponential functions can be fit to all resulting cumulative water savings functions. Two alternative formulations are presented: maximize net benefits, or minimize total costs subject to satisfying a target water savings. Explicit analytical solutions are presented for both formulations based on appropriate exponential best fits of performance functions. A direct result of this solution is the dual variable which represents the marginal cost of water saved at a specified target water savings goal. A case study of 16,303 single family irrigators in Gainesville Regional Utilities utilizing high quality tax assessor and monthly billing data along with parcel level GIS data provide an illustrative example of these techniques. Spatial clustering of targeted homes can be easily performed in GIS to identify priority demand management areas.

  18. A method for landscape analysis of forestry guidelines using bird habitat models and the Habplan harvest scheduler

    USGS Publications Warehouse

    Loehle, C.; Van Deusen, P.; Wigley, T.B.; Mitchell, M.S.; Rutzmoser, S.H.; Aggett, J.; Beebe, J.A.; Smith, M.L.

    2006-01-01

    Wildlife-habitat relationship models have sometimes been linked with forest simulators to aid in evaluating outcomes of forest management alternatives. However, linking wildlife-habitat models with harvest scheduling software would provide a more direct method for assessing economic and ecological implications of alternative harvest schedules in commercial forest operations. We demonstrate an approach for frontier analyses of wildlife benefits using the Habplan harvest scheduler and spatially explicit wildlife response models in the context of operational forest planning. We used the Habplan harvest scheduler to plan commercial forest management over a 40-year horizon at a landscape scale under five scenarios: unmanaged, an unlimited block-size option both with and without riparian buffers, three cases with different block-size restrictions, and a set-asides scenario in which older stands were withheld from cutting. The potential benefit to wildlife was projected based on spatial models of bird guild richness and species probability of detection. Harvested wood volume provided a measure of scenario costs, which provides an indication of management feasibility. Of nine species and guilds, none appeared to benefit from 50 m riparian buffers, response to an unmanaged scenario was mixed and expensive, and block-size restrictions (maximum harvest unit size) provided no apparent benefit and in some cases were possibly detrimental to bird richness. A set-aside regime, however, appeared to provide significant benefits to all species and groups, probably through increased landscape heterogeneity and increased availability of older forest. Our approach shows promise for evaluating costs and benefits of forest management guidelines in commercial forest enterprises and improves upon the state of the art by utilizing an optimizing harvest scheduler as in commercial forest management, multiple measures of biodiversity (models for multiple species and guilds), and spatially explicit wildlife response models. ?? 2006 Elsevier B.V. All rights reserved.

  19. GRA prospectus: optimizing design and management of protected areas

    USGS Publications Warehouse

    Bernknopf, Richard; Halsing, David

    2001-01-01

    Protected areas comprise one major type of global conservation effort that has been in the form of parks, easements, or conservation concessions. Though protected areas are increasing in number and size throughout tropical ecosystems, there is no systematic method for optimally targeting specific local areas for protection, designing the protected area, and monitoring it, or for guiding follow-up actions to manage it or its surroundings over the long run. Without such a system, conservation projects often cost more than necessary and/or risk protecting ecosystems and biodiversity less efficiently than desired. Correcting these failures requires tools and strategies for improving the placement, design, and long-term management of protected areas. The objective of this project is to develop a set of spatially based analytical tools to improve the selection, design, and management of protected areas. In this project, several conservation concessions will be compared using an economic optimization technique. The forest land use portfolio model is an integrated assessment that measures investment in different land uses in a forest. The case studies of individual tropical ecosystems are developed as forest (land) use and preservation portfolios in a geographic information system (GIS). Conservation concessions involve a private organization purchasing development and resource access rights in a certain area and retiring them. Forests are put into conservation, and those people who would otherwise have benefited from extracting resources or selling the right to do so are compensated. Concessions are legal agreements wherein the exact amount and nature of the compensation result from a negotiated agreement between an agent of the conservation community and the local community. Funds are placed in a trust fund, and annual payments are made to local communities and regional/national governments. The payments are made pending third-party verification that the forest expanse and quality have been maintained.

  20. Producing regionally-relevant multiobjective tradeoffs to engage with Colorado water managers

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Basdekas, L.; Dilling, L.

    2016-12-01

    Disseminating results from water resources systems analysis research can be challenging when there are political or regulatory barriers associated with real-world models, or when a research model does not incorporate management context to which practitioners can relate. As part of a larger transdisciplinary study, we developed a broadly-applicable case study in collaboration with our partners at six diverse water utilities in the Front Range of Colorado, USA. Our model, called the "Eldorado Utility Planning Model", incorporates realistic water management decisions and objectives and achieves a pragmatic balance between system complexity and simplicity. Using the sophisticated modeling platform RiverWare, we modeled a spatially distributed regional network in which, under varying climate scenarios, the Eldorado Utility can meet growing demand from its variety of sources and by interacting with other users in the network. In accordance with complicated Front Range water laws, ownership, priority of use, and restricted uses of water are tracked through RiverWare's accounting functionality. To achieve good system performance, Eldorado can make decisions such as expand/build a reservoir, purchase rights from one or more actors, and enact conservation. This presentation introduces the model, and motivates how it can be used to aid researchers in developing multi-objective evolutionary algorithm (MOEA)-based optimization for similar multi-reservoir systems in Colorado and the Western US. Within the optimization, system performance is quantified by 5 objectives: minimizing time in restrictions; new storage capacity; newly developed supply; and uncaptured water; and maximizing year-end storage. Our results demonstrate critical tradeoffs between the objectives and show how these tradeoffs are affected by several realistic climate change scenarios. These results were used within an interactive workshop that helped demonstrate the application of MOEA-based optimization for water management in the western US.

  1. A spatial multi-objective optimization model for sustainable urban wastewater system layout planning.

    PubMed

    Dong, X; Zeng, S; Chen, J

    2012-01-01

    Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.

  2. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.

    PubMed

    Yang, Jian; He, Hong S; Shifley, Stephen R

    2008-07-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.

  3. Mission Adaptive UAS Platform for Earth Science Resource Assessment

    NASA Technical Reports Server (NTRS)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.

    2015-01-01

    NASA Ames Research Center has led a number of important Earth science remote sensing missions including several directed at the assessment of natural resources. A key asset for accessing high risk airspace has been the 180 kg class SIERRA UAS platform, providing mission durations of up to 8 hrs at altitudes up to 3 km. Recent improvements to this mission capability are embodied in the incipient SIERRA-B variant. Two resource mapping problems having unusual mission characteristics requiring a mission adaptive capability are explored here. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This challenges the management of resources in the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the ocean color signal. Furthermore, as for all scanning imager applications, the primary flight control priority to fly the UAS directly to the next waypoint should compromise with the requirement to minimize roll and crab effects in the imagery. A second example involves the mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in several recent Earth Science missions including the October 2013 OCEANIA mission directed at improving the capability for hyperspectral reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magentometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub-surface mapping, including the near-time optimization of these sometimes conflicting requirements. *

  4. Process-orientated simulation of tillage practices and land use change to optimize distributed flood control measures

    NASA Astrophysics Data System (ADS)

    Disse, M.; Rieger, W.

    2009-04-01

    Not only climate change affects hydrological systems but also land use change and agricultural tillage practises have an important impact on infiltration and runoff generation. In the last five to six decades monocropping, drainage and rectification of small rivers were carried out to optimize crop yields and economic benefits. However, in recent years more holistic and sustainable management concepts are required. The advantages of ecological management of land, soil and water resources are manifold: the biodiversity is higher, the buffer function of soils will be conserved and both low water and floods are positive affected. The target of the presented research project which is financed by the Bavarian environment agency, is to establish an optimal flood retention concept in a mesoscale catchment of 150 km² which emphasizes ecological flood measures like best tillage practices, small retention basins and renaturation of small rivers. To quantify the effects of these measures the water balance model WaSiM-ETH was used. The grid-based water flow and balance simulation model WaSiM-ETH is a well-established tool for investigating the spatial and temporal variability of hydrological processes in complex river basins. The model can be seen as a reasonable compromise between detailed physical basis and minimum data requirements (http://www.wasim.ch/en/index.html). WaSiM was coupled with a 2d-ground water model and an additional drainage tool. Different vegetation was parameterized with high spatial and temporal resolution. Additionally, future climate scenarios like the extension of vegetation periods were considered. The effectiveness of decentralized retention basins could be simulated by a new implemented see storage tool. The presentation will give quantitative results for different flood control measures. The pros and cons of physically based approaches in hydrological modelling will be discussed.

  5. An optimization framework for measuring spatial access over healthcare networks.

    PubMed

    Li, Zihao; Serban, Nicoleta; Swann, Julie L

    2015-07-17

    Measurement of healthcare spatial access over a network involves accounting for demand, supply, and network structure. Popular approaches are based on floating catchment areas; however the methods can overestimate demand over the network and fail to capture cascading effects across the system. Optimization is presented as a framework to measure spatial access. Questions related to when and why optimization should be used are addressed. The accuracy of the optimization models compared to the two-step floating catchment area method and its variations is analytically demonstrated, and a case study of specialty care for Cystic Fibrosis over the continental United States is used to compare these approaches. The optimization models capture a patient's experience rather than their opportunities and avoid overestimating patient demand. They can also capture system effects due to change based on congestion. Furthermore, the optimization models provide more elements of access than traditional catchment methods. Optimization models can incorporate user choice and other variations, and they can be useful towards targeting interventions to improve access. They can be easily adapted to measure access for different types of patients, over different provider types, or with capacity constraints in the network. Moreover, optimization models allow differences in access in rural and urban areas.

  6. Watershed-based point sources permitting strategy and dynamic permit-trading analysis.

    PubMed

    Ning, Shu-Kuang; Chang, Ni-Bin

    2007-09-01

    Permit-trading policy in a total maximum daily load (TMDL) program may provide an additional avenue to produce environmental benefit, which closely approximates what would be achieved through a command and control approach, with relatively lower costs. One of the important considerations that might affect the effective trading mechanism is to determine the dynamic transaction prices and trading ratios in response to seasonal changes of assimilative capacity in the river. Advanced studies associated with multi-temporal spatially varied trading ratios among point sources to manage water pollution hold considerable potential for industries and policy makers alike. This paper aims to present an integrated simulation and optimization analysis for generating spatially varied trading ratios and evaluating seasonal transaction prices accordingly. It is designed to configure a permit-trading structure basin-wide and provide decision makers with a wealth of cost-effective, technology-oriented, risk-informed, and community-based management strategies. The case study, seamlessly integrating a QUAL2E simulation model with an optimal waste load allocation (WLA) scheme in a designated TMDL study area, helps understand the complexity of varying environmental resources values over space and time. The pollutants of concern in this region, which are eligible for trading, mainly include both biochemical oxygen demand (BOD) and ammonia-nitrogen (NH3-N). The problem solution, as a consequence, suggests an array of waste load reduction targets in a well-defined WLA scheme and exhibits a dynamic permit-trading framework among different sub-watersheds in the study area. Research findings gained in this paper may extend to any transferable dynamic-discharge permit (TDDP) program worldwide.

  7. Effects of spatial disturbance on common loon nest site selection and territory success

    USGS Publications Warehouse

    McCarthy, Kyle P.; DeStefano, Stephen

    2011-01-01

    The common loon (Gavia immer) breeds during the summer on northern lakes and water bodies that are also often desirable areas for aquatic recreation and human habitation. In northern New England, we assessed how the spatial nature of disturbance affects common loon nest site selection and territory success. We found through classification and regression analysis that distance to and density of disturbance factors can be used to classify observed nest site locations versus random points, suggesting that these factors affect loon nest site selection (model 1: Correct classification = 75%, null = 50%, K = 0.507, P < 0.001; model 2: Correct classification = 78%, null = 50%, K = 0.551, P < 0.001). However, in an exploratory analysis, we were unable to show a relation between spatial disturbance variables and breeding success (P = 0.595, R2 = 0.436), possibly because breeding success was so low during the breeding seasons of 2007–2008. We suggest that by selecting nest site locations that avoid disturbance factors, loons thereby limit the effect that disturbance will have on their breeding success. Still, disturbance may force loons to use sub-optimal nesting habitat, limiting the available number of territories, and overall productivity. We advise that management efforts focus on limiting disturbance factors to allow breeding pairs access to the best nesting territories, relieving disturbance pressures that may force sub-optimal nest placement.

  8. Towards a hierarchical optimization framework for spatially targeting incentive policies to promote green infrastructure amidst multiple objectives and uncertainty

    EPA Science Inventory

    We introduce a hierarchical optimization framework for spatially targeting green infrastructure (GI) incentive policies in order to meet objectives related to cost and environmental effectiveness. The framework explicitly simulates the interaction between multiple levels of polic...

  9. Groundwater management under uncertainty using a stochastic multi-cell model

    NASA Astrophysics Data System (ADS)

    Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.

    2017-08-01

    The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.

  10. High value of ecological information for river connectivity restoration

    USGS Publications Warehouse

    Sethi, Suresh; O'Hanley, Jesse R.; Gerken, Jonathon; Ashline, Joshua; Bradley, Catherine

    2017-01-01

    ContextEfficient restoration of longitudinal river connectivity relies on barrier mitigation prioritization tools that incorporate stream network spatial structure to maximize ecological benefits given limited resources. Typically, ecological benefits of barrier mitigation are measured using proxies such as the amount of accessible riverine habitat.ObjectivesWe developed an optimization approach for barrier mitigation planning which directly incorporates the ecology of managed taxa, and applied it to an urbanizing salmon-bearing watershed in Alaska.MethodsA novel river connectivity metric that exploits information on the distribution and movement of managed taxon was embedded into a barrier prioritization framework to identify optimal mitigation actions given limited restoration budgets. The value of ecological information on managed taxa was estimated by comparing costs to achieve restoration targets across alternative barrier prioritization approaches.ResultsBarrier mitigation solutions informed by life history information outperformed those using only river connectivity proxies, demonstrating high value of ecological information for watershed restoration. In our study area, information on salmon ecology was typically valued at 0.8–1.2 M USD in costs savings to achieve a given benefit level relative to solutions derived only from stream network information, equating to 16–28% of the restoration budget.ConclusionsInvesting in ecological studies may achieve win–win outcomes of improved understanding of aquatic ecology and greater watershed restoration efficiency.

  11. The Impact of Varying Statutory Arrangements on Spatial Data Sharing and Access in Regional NRM Bodies

    NASA Astrophysics Data System (ADS)

    Paudyal, D. R.; McDougall, K.; Apan, A.

    2014-12-01

    Spatial information plays an important role in many social, environmental and economic decisions and increasingly acknowledged as a national resource essential for wider societal and environmental benefits. Natural Resource Management is one area where spatial information can be used for improved planning and decision making processes. In Australia, state government organisations are the custodians of spatial information necessary for natural resource management and regional NRM bodies are responsible to regional delivery of NRM activities. The access and sharing of spatial information between government agencies and regional NRM bodies is therefore as an important issue for improving natural resource management outcomes. The aim of this paper is to evaluate the current status of spatial information access, sharing and use with varying statutory arrangements and its impacts on spatial data infrastructure (SDI) development in catchment management sector in Australia. Further, it critically examined whether any trends and significant variations exist due to different institutional arrangements (statutory versus non-statutory) or not. A survey method was used to collect primary data from 56 regional natural resource management (NRM) bodies responsible for catchment management in Australia. Descriptive statistics method was used to show the similarities and differences between statutory and non-statutory arrangements. The key factors which influence sharing and access to spatial information are also explored. The results show the current statutory and administrative arrangements and regional focus for natural resource management is reasonable from a spatial information management perspective and provides an opportunity for building SDI at the catchment scale. However, effective institutional arrangements should align catchment SDI development activities with sub-national and national SDI development activities to address catchment management issues. We found minor differences in spatial information access, use and sharing due to varying institutional environment (statutory versus non-statutory). The non-statutory group appears to be more flexible and selfsufficient whilst statutory regional NRM bodies may lack flexibility in their spatial information management practices. We found spatial information access, use and sharing has significant impacts on spatial data infrastructure development in catchment management sector in Australia.

  12. Recommended satellite imagery capabilities for disaster management

    NASA Technical Reports Server (NTRS)

    Richards, P. B.; Robinove, C. J.; Wiesnet, D. R.; Salomonson, V. V.; Maxwell, M. S.

    1982-01-01

    This study explores the role that satellite imaging systems might play in obtaining information needed in the management of natural and manmade disasters. Information requirements which might conceivably be met by satellite were identified for over twenty disasters. These requirements covered pre-disaster mitigation and preparedness activities, disaster response activities, and post-disaster recovery activities. The essential imaging satellite characteristics needed to meet most of the information requirements are 30 meter (or finer) spatial resolution, frequency of observations of one week or less, data delivery times of one day or less, and stereo, synoptic all-weather coverage of large areas in the visible, near infrared, thermal infrared and microwave bands. Of the current and planned satellite systems investigated for possible application to disaster management, Landsat-D and SPOT appear to have the greatest potential during disaster mitigation and preparedness activities, but all satellites studied have serious deficiencies during response and recovery activities. Several strawman concepts are presented for a satellite system optimized to support all disaster management activities.

  13. Open Source GIS based integrated watershed management

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address challenging resource management issues in industry, government and nongovernmental agencies. Current research and analysis tools were developed to manage meteorological, climatological, and land and water resource data efficiently at high resolution in space and time. The deliverable for this work is a Whitebox-GENESYS open-source resource management capacity with routines for GIS based watershed management including water in agriculture and food production. We are adding urban water management routines through GENESYS in 2013-15 with an engineering PhD candidate. Both Whitebox-GAT and GENESYS are already well-established tools. The proposed research will combine these products to create an open-source geomatics based water resource management tool that is revolutionary in both capacity and availability to a wide array of Canadian and global users

  14. Potential for spatial management of hunted mammal populations in tropical forests

    Treesearch

    Miranda H. Mockrin; Kent H. Redford

    2011-01-01

    Unsustainable hunting in tropical forests threatens biodiversity and rural livelihoods, yet managing these harvests in remote forests with low scientific capacity and funding is challenging. In response, some conservationists propose managing harvests through spatial management, a system of establishing notake zones where hunting is not allowed. Spatial management was...

  15. An integrated photogrammetric and spatial database management system for producing fully structured data using aerial and remote sensing images.

    PubMed

    Ahmadi, Farshid Farnood; Ebadi, Hamid

    2009-01-01

    3D spatial data acquired from aerial and remote sensing images by photogrammetric techniques is one of the most accurate and economic data sources for GIS, map production, and spatial data updating. However, there are still many problems concerning storage, structuring and appropriate management of spatial data obtained using these techniques. According to the capabilities of spatial database management systems (SDBMSs); direct integration of photogrammetric and spatial database management systems can save time and cost of producing and updating digital maps. This integration is accomplished by replacing digital maps with a single spatial database. Applying spatial databases overcomes the problem of managing spatial and attributes data in a coupled approach. This management approach is one of the main problems in GISs for using map products of photogrammetric workstations. Also by the means of these integrated systems, providing structured spatial data, based on OGC (Open GIS Consortium) standards and topological relations between different feature classes, is possible at the time of feature digitizing process. In this paper, the integration of photogrammetric systems and SDBMSs is evaluated. Then, different levels of integration are described. Finally design, implementation and test of a software package called Integrated Photogrammetric and Oracle Spatial Systems (IPOSS) is presented.

  16. Receptivity to transformative change in the Dutch urban water management sector.

    PubMed

    de Graaf, R E; Dahm, R J; Icke, J; Goetgeluk, R W; Jansen, S J T; van de Ven, F H M

    2009-01-01

    Worldwide, the need for transformative change in urban water management is acknowledged by scientists and policy makers. The effects of climate change and developments such as urbanization, the European Water Framework Directive, and societal concerns about the sustainability of urban water system force the sector to adapt. In The Netherlands, a shift towards integration of spatial planning and water management can be observed. Despite major changes in water management policy and approach, changes in the physical urban water management infrastructure remain limited to incremental solutions and demonstration projects. Policy studies show that institutional factors and professional perceptions are important factors for application of innovations in urban water management. An online survey among Dutch urban water management professionals demonstrates that according to most respondents, optimization of the current system is sufficient to achieve both European and national objectives for sustainable urban water management. The respondents are most concerned with the effects of climate change on urban water systems. In contrast to current policy of the national government, priority factors that should be addressed to achieve a more sustainable urban water system are improving knowledge of local urban water systems, capacity building, developing trust between stakeholders, and improving involvement of elected officials and citizens.

  17. Optimization of landscape pattern [Chapter 8

    Treesearch

    John Hof; Curtis Flather

    2007-01-01

    A fundamental assumption in landscape ecology is that spatial patterns have significant influences on the flows of materials, energy, and information while processes create, modify, and maintain spatial patterns. Thus, it is of paramount importance in both theory and practice to address the questions of landscape pattern optimization ... For example, can landscape...

  18. spsann - optimization of sample patterns using spatial simulated annealing

    NASA Astrophysics Data System (ADS)

    Samuel-Rosa, Alessandro; Heuvelink, Gerard; Vasques, Gustavo; Anjos, Lúcia

    2015-04-01

    There are many algorithms and computer programs to optimize sample patterns, some private and others publicly available. A few have only been presented in scientific articles and text books. This dispersion and somewhat poor availability is holds back to their wider adoption and further development. We introduce spsann, a new R-package for the optimization of sample patterns using spatial simulated annealing. R is the most popular environment for data processing and analysis. Spatial simulated annealing is a well known method with widespread use to solve optimization problems in the soil and geo-sciences. This is mainly due to its robustness against local optima and easiness of implementation. spsann offers many optimizing criteria for sampling for variogram estimation (number of points or point-pairs per lag distance class - PPL), trend estimation (association/correlation and marginal distribution of the covariates - ACDC), and spatial interpolation (mean squared shortest distance - MSSD). spsann also includes the mean or maximum universal kriging variance (MUKV) as an optimizing criterion, which is used when the model of spatial variation is known. PPL, ACDC and MSSD were combined (PAN) for sampling when we are ignorant about the model of spatial variation. spsann solves this multi-objective optimization problem scaling the objective function values using their maximum absolute value or the mean value computed over 1000 random samples. Scaled values are aggregated using the weighted sum method. A graphical display allows to follow how the sample pattern is being perturbed during the optimization, as well as the evolution of its energy state. It is possible to start perturbing many points and exponentially reduce the number of perturbed points. The maximum perturbation distance reduces linearly with the number of iterations. The acceptance probability also reduces exponentially with the number of iterations. R is memory hungry and spatial simulated annealing is a computationally intensive method. As such, many strategies were used to reduce the computation time and memory usage: a) bottlenecks were implemented in C++, b) a finite set of candidate locations is used for perturbing the sample points, and c) data matrices are computed only once and then updated at each iteration instead of being recomputed. spsann is available at GitHub under a licence GLP Version 2.0 and will be further developed to: a) allow the use of a cost surface, b) implement other sensitive parts of the source code in C++, c) implement other optimizing criteria, d) allow to add or delete points to/from an existing point pattern.

  19. Protocol and practice in the adaptive management of waterfowl harvests

    USGS Publications Warehouse

    Johnson, F.; Williams, K.

    1999-01-01

    Waterfowl harvest management in North America, for all its success, historically has had several shortcomings, including a lack of well-defined objectives, a failure to account for uncertain management outcomes, and inefficient use of harvest regulations to understand the effects of management. To address these and other concerns, the U.S. Fish and Wildlife Service began implementation of adaptive harvest management in 1995. Harvest policies are now developed using a Markov decision process in which there is an explicit accounting for uncontrolled environmental variation, partial controllability of harvest, and structural uncertainty in waterfowl population dynamics. Current policies are passively adaptive, in the sense that any reduction in structural uncertainty is an unplanned by-product of the regulatory process. A generalization of the Markov decision process permits the calculation of optimal actively adaptive policies, but it is not yet clear how state-specific harvest actions differ between passive and active approaches. The Markov decision process also provides managers the ability to explore optimal levels of aggregation or "management scale" for regulating harvests in a system that exhibits high temporal, spatial, and organizational variability. Progress in institutionalizing adaptive harvest management has been remarkable, but some managers still perceive the process as a panacea, while failing to appreciate the challenges presented by this more explicit and methodical approach to harvest regulation. Technical hurdles include the need to develop better linkages between population processes and the dynamics of landscapes, and to model the dynamics of structural uncertainty in a more comprehensive fashion. From an institutional perspective, agreement on how to value and allocate harvests continues to be elusive, and there is some evidence that waterfowl managers have overestimated the importance of achievement-oriented factors in setting hunting regulations. Indeed, it is these unresolved value judgements, and the lack of an effective structure for organizing debate, that present the greatest threat to adaptive harvest management as a viable means for coping with management uncertainty. Copyright ?? 1999 by The Resilience Alliance.

  20. Optimization of freeform lightpipes for light-emitting-diode projectors.

    PubMed

    Fournier, Florian; Rolland, Jannick

    2008-03-01

    Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.

  1. Optimization of freeform lightpipes for light-emitting-diode projectors

    NASA Astrophysics Data System (ADS)

    Fournier, Florian; Rolland, Jannick

    2008-03-01

    Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.

  2. Systems and methods for knowledge discovery in spatial data

    DOEpatents

    Obradovic, Zoran; Fiez, Timothy E.; Vucetic, Slobodan; Lazarevic, Aleksandar; Pokrajac, Dragoljub; Hoskinson, Reed L.

    2005-03-08

    Systems and methods are provided for knowledge discovery in spatial data as well as to systems and methods for optimizing recipes used in spatial environments such as may be found in precision agriculture. A spatial data analysis and modeling module is provided which allows users to interactively and flexibly analyze and mine spatial data. The spatial data analysis and modeling module applies spatial data mining algorithms through a number of steps. The data loading and generation module obtains or generates spatial data and allows for basic partitioning. The inspection module provides basic statistical analysis. The preprocessing module smoothes and cleans the data and allows for basic manipulation of the data. The partitioning module provides for more advanced data partitioning. The prediction module applies regression and classification algorithms on the spatial data. The integration module enhances prediction methods by combining and integrating models. The recommendation module provides the user with site-specific recommendations as to how to optimize a recipe for a spatial environment such as a fertilizer recipe for an agricultural field.

  3. Precoded spatial multiplexing MIMO system with spatial component interleaver.

    PubMed

    Gao, Xiang; Wu, Zhanji

    In this paper, the performance of precoded bit-interleaved coded modulation (BICM) spatial multiplexing multiple-input multiple-output (MIMO) system with spatial component interleaver is investigated. For the ideal precoded spatial multiplexing MIMO system with spatial component interleaver based on singular value decomposition (SVD) of the MIMO channel, the average pairwise error probability (PEP) of coded bits is derived. Based on the PEP analysis, the optimum spatial Q-component interleaver design criterion is provided to achieve the minimum error probability. For the limited feedback precoded proposed scheme with linear zero forcing (ZF) receiver, in order to minimize a bound on the average probability of a symbol vector error, a novel effective signal-to-noise ratio (SNR)-based precoding matrix selection criterion and a simplified criterion are proposed. Based on the average mutual information (AMI)-maximization criterion, the optimal constellation rotation angles are investigated. Simulation results indicate that the optimized spatial multiplexing MIMO system with spatial component interleaver can achieve significant performance advantages compared to the conventional spatial multiplexing MIMO system.

  4. Intelligent automated surface grid generation

    NASA Technical Reports Server (NTRS)

    Yao, Ke-Thia; Gelsey, Andrew

    1995-01-01

    The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.

  5. Sampling design optimization for spatial functions

    USGS Publications Warehouse

    Olea, R.A.

    1984-01-01

    A new procedure is presented for minimizing the sampling requirements necessary to estimate a mappable spatial function at a specified level of accuracy. The technique is based on universal kriging, an estimation method within the theory of regionalized variables. Neither actual implementation of the sampling nor universal kriging estimations are necessary to make an optimal design. The average standard error and maximum standard error of estimation over the sampling domain are used as global indices of sampling efficiency. The procedure optimally selects those parameters controlling the magnitude of the indices, including the density and spatial pattern of the sample elements and the number of nearest sample elements used in the estimation. As an illustration, the network of observation wells used to monitor the water table in the Equus Beds of Kansas is analyzed and an improved sampling pattern suggested. This example demonstrates the practical utility of the procedure, which can be applied equally well to other spatial sampling problems, as the procedure is not limited by the nature of the spatial function. ?? 1984 Plenum Publishing Corporation.

  6. Diversity and distribution of white-tailed deer mtdna lineages in chronic wasting disease (cwd) outbreak areas in southern wisconsin, USA

    USGS Publications Warehouse

    Rogers, K.G.; Robinson, S.J.; Samuel, M.D.; Grear, D.A.

    2011-01-01

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy affecting North American cervids. Because it is uniformly fatal, the disease is a major concern in the management of white-tailed deer populations. Management programs to control CWD require improved knowledge of deer interaction, movement, and population connectivity that could influence disease transmission and spread. Genetic methods were employed to evaluate connectivity among populations in the CWD management zone of southern Wisconsin. A 576-base-pair region of the mitochondrial DNA of 359 white-tailed deer from 12 sample populations was analyzed. Fifty-eight variable sites were detected within the sequence, defining 43 haplotypes. While most sample populations displayed similar levels of haplotype diversity, individual haplotypes were clustered on the landscape. Spatial clusters of different haplotypes were apparent in distinct ecoregions surrounding CWD outbreak areas. The spatial distribution of mtDNA haplotypes suggests that clustering of the deer matrilineal groups and population connectivity are associated with broad-scale geographic landscape features. These landscape characteristics may also influence the contact rates between groups and therefore the potential spread of CWD; this may be especially true of local disease spread between female social groups. Our results suggest that optimal CWD management needs to be tailored to fit gender-specific dispersal behaviors and regional differences in deer population connectivity. This information will help wildlife managers design surveillance and monitoring efforts based on population interactions and potential deer movement among CWD-affected and unaffected areas. Copyright ?? Taylor & Francis Group, LLC.

  7. A Biophysical Modeling Framework for Assessing the Environmental Impact of Biofuel Production

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Izaurradle, C.; Manowitz, D.; West, T. O.; Post, W. M.; Thomson, A. M.; Nichols, J.; Bandaru, V.; Williams, J. R.

    2009-12-01

    Long-term sustainability of a biofuel economy necessitates environmentally friendly biofuel production systems. We describe a biophysical modeling framework developed to understand and quantify the environmental value and impact (e.g. water balance, nutrients balance, carbon balance, and soil quality) of different biomass cropping systems. This modeling framework consists of three major components: 1) a Geographic Information System (GIS) based data processing system, 2) a spatially-explicit biophysical modeling approach, and 3) a user friendly information distribution system. First, we developed a GIS to manage the large amount of geospatial data (e.g. climate, land use, soil, and hydrograhy) and extract input information for the biophysical model. Second, the Environmental Policy Integrated Climate (EPIC) biophysical model is used to predict the impact of various cropping systems and management intensities on productivity, water balance, and biogeochemical variables. Finally, a geo-database is developed to distribute the results of ecosystem service variables (e.g. net primary productivity, soil carbon balance, soil erosion, nitrogen and phosphorus losses, and N2O fluxes) simulated by EPIC for each spatial modeling unit online using PostgreSQL. We applied this framework in a Regional Intensive Management Area (RIMA) of 9 counties in Michigan. A total of 4,833 spatial units with relatively homogeneous biophysical properties were derived using SSURGO, Crop Data Layer, County, and 10-digit watershed boundaries. For each unit, EPIC was executed from 1980 to 2003 under 54 cropping scenarios (eg. corn, switchgrass, and hybrid poplar). The simulation results were compared with historical crop yields from USDA NASS. Spatial mapping of the results show high variability among different cropping scenarios in terms of the simulated ecosystem services variables. Overall, the framework developed in this study enables the incorporation of environmental factors into economic and life-cycle analysis in order to optimize biomass cropping production scenarios.

  8. Waiting can be an optimal conservation strategy, even in a crisis discipline

    PubMed Central

    Possingham, Hugh P.; Bode, Michael

    2017-01-01

    Biodiversity conservation projects confront immediate and escalating threats with limited funding. Conservation theory suggests that the best response to the species extinction crisis is to spend money as soon as it becomes available, and this is often an explicit constraint placed on funding. We use a general dynamic model of a conservation landscape to show that this decision to “front-load” project spending can be suboptimal if a delay allows managers to use resources more strategically. Our model demonstrates the existence of temporal efficiencies in conservation management, which parallel the spatial efficiencies identified by systematic conservation planning. The optimal timing of decisions balances the rate of biodiversity decline (e.g., the relaxation of extinction debts, or the progress of climate change) against the rate at which spending appreciates in value (e.g., through interest, learning, or capacity building). We contrast the benefits of acting and waiting in two ecosystems where restoration can mitigate forest bird extinction debts: South Australia’s Mount Lofty Ranges and Paraguay’s Atlantic Forest. In both cases, conservation outcomes cannot be maximized by front-loading spending, and the optimal solution recommends substantial delays before managers undertake conservation actions. Surprisingly, these delays allow superior conservation benefits to be achieved, in less time than front-loading. Our analyses provide an intuitive and mechanistic rationale for strategic delay, which contrasts with the orthodoxy of front-loaded spending for conservation actions. Our results illustrate the conservation efficiencies that could be achieved if decision makers choose when to spend their limited resources, as opposed to just where to spend them. PMID:28894004

  9. Waiting can be an optimal conservation strategy, even in a crisis discipline.

    PubMed

    Iacona, Gwenllian D; Possingham, Hugh P; Bode, Michael

    2017-09-26

    Biodiversity conservation projects confront immediate and escalating threats with limited funding. Conservation theory suggests that the best response to the species extinction crisis is to spend money as soon as it becomes available, and this is often an explicit constraint placed on funding. We use a general dynamic model of a conservation landscape to show that this decision to "front-load" project spending can be suboptimal if a delay allows managers to use resources more strategically. Our model demonstrates the existence of temporal efficiencies in conservation management, which parallel the spatial efficiencies identified by systematic conservation planning. The optimal timing of decisions balances the rate of biodiversity decline (e.g., the relaxation of extinction debts, or the progress of climate change) against the rate at which spending appreciates in value (e.g., through interest, learning, or capacity building). We contrast the benefits of acting and waiting in two ecosystems where restoration can mitigate forest bird extinction debts: South Australia's Mount Lofty Ranges and Paraguay's Atlantic Forest. In both cases, conservation outcomes cannot be maximized by front-loading spending, and the optimal solution recommends substantial delays before managers undertake conservation actions. Surprisingly, these delays allow superior conservation benefits to be achieved, in less time than front-loading. Our analyses provide an intuitive and mechanistic rationale for strategic delay, which contrasts with the orthodoxy of front-loaded spending for conservation actions. Our results illustrate the conservation efficiencies that could be achieved if decision makers choose when to spend their limited resources, as opposed to just where to spend them.

  10. Implications of the 2015 European drought on groundwater storage

    NASA Astrophysics Data System (ADS)

    Rangecroft, S.; Van Loon, A.; Kumar, R.; Mishra, V.

    2016-12-01

    In 2015 central and eastern Europe were affected by severe drought. Impacts of the drought were felt across many sectors, incl. agriculture, drinking water supply, electricity production, navigation, fisheries, and recreation. This drought event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater (GW) drought has been performed. This is not surprising because real-time GW level observations often are not available. In this study we use previously established spatially-explicit relationships between meteorological drought and GW drought to quantify the 2015 GW drought over two regions in southern Germany and eastern Netherlands. We use the monthly GW observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardized Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.250 gridded scale. The resulting optimal accumulation periods range between 1 and more than 24 months, indicating strong spatial differences in GW response time to meteorological input over the region. Based on these optimal accumulation periods, we found that in Germany a uniform severe GW drought persisted for several months (i.e. SGI below the drought threshold of 20th percentile for almost all grid cells in August, September and October 2015), whereas the Netherlands appeared to had relatively high GW levels (never below the drought threshold of 20th percentile). The differences between this event and the European 2003 benchmark drought are striking. The 2003 GW drought was less uniformly pronounced, both in the Netherlands and Germany, with the regional averaged SGI above the 50th percentile. This is because slowly responding wells still were above average from the wet year of 2002-2003, which experienced severe flooding in central Europe. Our study shows that the relationship between meteorological drought and GW drought can be used to quantify GW drought and that the 2015 GW drought in southern Germany was more severe than the 2003 drought, because of preconditions in slowly responding GW wells. For sustainable GW drought management strategies the use of GW level monitoring is needed to study the spatial variability of local GW drought, which mostly coincides with drought impacts.

  11. Digital mapping of soil properties in Zala County, Hungary for the support of county-level spatial planning and land management

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Laborczi, Annamária; Szatmári, Gábor; Fodor, Nándor; Bakacsi, Zsófia; Szabó, József; Illés, Gábor

    2014-05-01

    The main objective of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project is to significantly extend the potential, how demands on spatial soil related information could be satisfied in Hungary. Although a great amount of soil information is available due to former mappings and surveys, there are more and more frequently emerging discrepancies between the available and the expected data. The gaps are planned to be filled with optimized DSM products heavily based on legacy soil data, which still represent a valuable treasure of soil information at the present time. Impact assessment of the forecasted climate change and the analysis of the possibilities of the adaptation in the agriculture and forestry can be supported by scenario based land management modelling, whose results can be incorporated in spatial planning. This framework requires adequate, preferably timely and spatially detailed knowledge of the soil cover. For the satisfaction of these demands in Zala County (one of the nineteen counties of Hungary), the soil conditions of the agricultural areas were digitally mapped based on the most detailed, available recent and legacy soil data. The agri-environmental conditions were characterized according to the 1:10,000 scale genetic soil mapping methodology and the category system applied in the Hungarian soil-agricultural chemistry practice. The factors constraining the fertility of soils were featured according to the biophysical criteria system elaborated for the delimitation of naturally handicapped areas in the EU. Production related soil functions were regionalized incorporating agro-meteorological modelling. The appropriate derivatives of a 20m digital elevation model were used in the analysis. Multitemporal MODIS products were selected from the period of 2009-2011 representing different parts of the growing season and years with various climatic conditions. Additionally two climatic data layers, the 1:100.000 Geological Map of Hungary and the map of groundwater depth were used as auxiliary environmental covariables. Various soil related information were mapped in three distinct sets: (i) basic soil properties determining agri-environmental conditions (soil type according to the Hungarian genetic classification, rootable depth, sand and clay content for the 1st and 2nd soil layers, pH, OM and carbonate content for the plough layer); (ii) biophysical criteria of natural handicaps defined by common European system and (iii) agro-meteorologically modelled yield values for different crops, meteorological and management scenarios. The applied method(s) for the spatial inference of specific themes was/were suitably selected: regression and classification trees for categorical data, indicator kriging for probabilistic management of criterion information; and typically regression kriging for quantitative data. Our paper will present the mapping processes themselves, the resulted maps and some conclusions drawn from the experiences. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167) and by the European Union with the co-financing of the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0013.).

  12. The Modular Modeling System (MMS): A modeling framework for water- and environmental-resources management

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.

    2004-01-01

    The interdisciplinary nature and increasing complexity of water- and environmental-resource problems require the use of modeling approaches that can incorporate knowledge from a broad range of scientific disciplines. The large number of distributed hydrological and ecosystem models currently available are composed of a variety of different conceptualizations of the associated processes they simulate. Assessment of the capabilities of these distributed models requires evaluation of the conceptualizations of the individual processes, and the identification of which conceptualizations are most appropriate for various combinations of criteria, such as problem objectives, data constraints, and spatial and temporal scales of application. With this knowledge, "optimal" models for specific sets of criteria can be created and applied. The U.S. Geological Survey (USGS) Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide these model development and application capabilities. MMS supports the integration of models and tools at a variety of levels of modular design. These include individual process models, tightly coupled models, loosely coupled models, and fully-integrated decision support systems. A variety of visualization and statistical tools are also provided. MMS has been coupled with the Bureau of Reclamation (BOR) object-oriented reservoir and river-system modeling framework, RiverWare, under a joint USGS-BOR program called the Watershed and River System Management Program. MMS and RiverWare are linked using a shared relational database. The resulting database-centered decision support system provides tools for evaluating and applying optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. Management issues being addressed include efficiency of water-resources management, environmental concerns such as meeting flow needs for endangered species, and optimizing operations within the constraints of multiple objectives such as power generation, irrigation, and water conservation. This decision support system approach is being developed, tested, and implemented in the Gunni-son, Yakima, San Juan, Rio Grande, and Truckee River basins of the western United States. Copyright ASCE 2004.

  13. Creation of Artificial Landscapes Spatial Systems Optimizing Human Habitat on Southern Coasts of the Russian Far East

    NASA Astrophysics Data System (ADS)

    Golikov, S. Yu; Petukhov, V. I.; Maiorov, I. S.

    2017-11-01

    The features of artificial landscapes’ spatial systems created for the optimization of industry facilities and settlements (as well as forest and agricultural crops taking into account the optimality of the existing microclimate and the possibilities for its improvement) are discussed in the paper. They improve the population health (through the optimization of the environment of settlements), the health of farm animals, the state of crops (through optimization of the climate), watercourses and forests reducing catastrophes on the shores and slopes by the proper selection and placement of species for artificial planting. They are achieved by revegetation, greening, garden and landscape design. In general, their purpose is to optimize the human environment.

  14. Using spatial information about recurrence risk for robust optimization of dose-painting prescription functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Edward T.

    Purpose: To develop a robust method for deriving dose-painting prescription functions using spatial information about the risk for disease recurrence. Methods: Spatial distributions of radiobiological model parameters are derived from distributions of recurrence risk after uniform irradiation. These model parameters are then used to derive optimal dose-painting prescription functions given a constant mean biologically effective dose. Results: An estimate for the optimal dose distribution can be derived based on spatial information about recurrence risk. Dose painting based on imaging markers that are moderately or poorly correlated with recurrence risk are predicted to potentially result in inferior disease control when comparedmore » the same mean biologically effective dose delivered uniformly. A robust optimization approach may partially mitigate this issue. Conclusions: The methods described here can be used to derive an estimate for a robust, patient-specific prescription function for use in dose painting. Two approximate scaling relationships were observed: First, the optimal choice for the maximum dose differential when using either a linear or two-compartment prescription function is proportional to R, where R is the Pearson correlation coefficient between a given imaging marker and recurrence risk after uniform irradiation. Second, the predicted maximum possible gain in tumor control probability for any robust optimization technique is nearly proportional to the square of R.« less

  15. Development of water level regulation strategy for fish and wildlife, upper Mississippi River system

    USGS Publications Warehouse

    Lubinski, Kenneth S.; Carmody, G.; Wilcox, D.; Drazkowski, B.

    1991-01-01

    Water level regulation has been proposed as a tool for maintaining or enhancing fish and wildlife resources in navigation pools and associated flood plains of the Upper Mississippi River System. Research related to the development of water level management plans is being conducted under the Long Term Resource Monitoring Program. Research strategies include investigations of cause and effect relationships, spatial and temporal patterns of resource components, and alternative problem solutions. The principal hypothesis being tested states that water level fluctuations resulting from navigation dam operation create less than optimal conditions for the reproduction and growth of target aquatic macrophyte and fish species. Representative navigation pools have been selected to describe hydrologic, engineering, and legal constraints within which fish and wildlife objectives can be established. Spatial analyses are underway to predict the magnitude and location of habitat changes that will result from controlled changes in water elevation.

  16. An ERTS-1 investigation for Lake Ontario and its basin

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Falconer, A. (Principal Investigator); Wagner, T. W.; Rebel, D. L.

    1975-01-01

    The author has identified the following significant results. Methods of manual, semi-automatic, and automatic (computer) data processing were evaluated, as were the requirements for spatial physiographic and limnological information. The coupling of specially processed ERTS data with simulation models of the watershed precipitation/runoff process provides potential for water resources management. Optimal and full use of the data requires a mix of data processing and analysis techniques, including single band editing, two band ratios, and multiband combinations. A combination of maximum likelihood ratio and near-IR/red band ratio processing was found to be particularly useful.

  17. Optimal control of an invasive species using a reaction-diffusion model and linear programming

    USGS Publications Warehouse

    Bonneau, Mathieu; Johnson, Fred A.; Smith, Brian J.; Romagosa, Christina M.; Martin, Julien; Mazzotti, Frank J.

    2017-01-01

    Managing an invasive species is particularly challenging as little is generally known about the species’ biological characteristics in its new habitat. In practice, removal of individuals often starts before the species is studied to provide the information that will later improve control. Therefore, the locations and the amount of control have to be determined in the face of great uncertainty about the species characteristics and with a limited amount of resources. We propose framing spatial control as a linear programming optimization problem. This formulation, paired with a discrete reaction-diffusion model, permits calculation of an optimal control strategy that minimizes the remaining number of invaders for a fixed cost or that minimizes the control cost for containment or protecting specific areas from invasion. We propose computing the optimal strategy for a range of possible model parameters, representing current uncertainty on the possible invasion scenarios. Then, a best strategy can be identified depending on the risk attitude of the decision-maker. We use this framework to study the spatial control of the Argentine black and white tegus (Salvator merianae) in South Florida. There is uncertainty about tegu demography and we considered several combinations of model parameters, exhibiting various dynamics of invasion. For a fixed one-year budget, we show that the risk-averse strategy, which optimizes the worst-case scenario of tegus’ dynamics, and the risk-neutral strategy, which optimizes the expected scenario, both concentrated control close to the point of introduction. A risk-seeking strategy, which optimizes the best-case scenario, focuses more on models where eradication of the species in a cell is possible and consists of spreading control as much as possible. For the establishment of a containment area, assuming an exponential growth we show that with current control methods it might not be possible to implement such a strategy for some of the models that we considered. Including different possible models allows an examination of how the strategy is expected to perform in different scenarios. Then, a strategy that accounts for the risk attitude of the decision-maker can be designed.

  18. Attending Globally or Locally: Incidental Learning of Optimal Visual Attention Allocation

    ERIC Educational Resources Information Center

    Beck, Melissa R.; Goldstein, Rebecca R.; van Lamsweerde, Amanda E.; Ericson, Justin M.

    2018-01-01

    Attention allocation determines the information that is encoded into memory. Can participants learn to optimally allocate attention based on what types of information are most likely to change? The current study examined whether participants could incidentally learn that changes to either high spatial frequency (HSF) or low spatial frequency (LSF)…

  19. A novel spatial performance metric for robust pattern optimization of distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, C.; Koch, J.

    2017-12-01

    Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing platforms. We see great potential of spaef across environmental disciplines dealing with spatially distributed modelling.

  20. New ergonomic and functional design of digital conferencing rooms in a clinical environment

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Amato, Carlos L.; McGill, D. Ric; Liu, Brent J.; Balbona, Joseph A.; McCoy, J. Michael

    2003-05-01

    Clinical conferences and multidisciplinary medical rounds play a major role in patient management and decision-making relying on presentation of variety of documents: films, charts, videotapes, graphs etc. These conferences and clinical rounds are often carried out in conferencing rooms or department libraries that are usually not suitable for presentation of the data in electronic format. In most instances digital projection equipment is added to existing rooms without proper consideration to functional, ergonomic, acoustical, spatial and environmental requirements. Also, in large academic institutions, the conference rooms serve multiple purposes including as classrooms for teaching and education of students and for administrative meetings among managers and staff. In the migration toward a fully digital hospital we elected to analyze the functional requirements and optimize the ergonomic design of conferencing rooms that can accommodate clinical rounds, multidisciplinary reviews, seminars, formal lectures and department meetings. 3D computer simulation was used for better evaluation and analysis of spatial and ergonomic parameters and for gathering opinions and input from users on different design options. A critical component of the design is the understanding of the different workflow and requirements of different types of conferences and presentations that can be carried out in these conference rooms.

  1. A Unified Experimental Approach for Estimation of Irrigationwater and Nitrate Leaching in Tree Crops

    NASA Astrophysics Data System (ADS)

    Hopmans, J. W.; Kandelous, M. M.; Moradi, A. B.

    2014-12-01

    Groundwater quality is specifically vulnerable in irrigated agricultural lands in California and many other(semi-)arid regions of the world. The routine application of nitrogen fertilizers with irrigation water in California is likely responsible for the high nitrate concentrations in groundwater, underlying much of its main agricultural areas. To optimize irrigation/fertigation practices, it is essential that irrigation and fertilizers are applied at the optimal concentration, place, and time to ensure maximum root uptake and minimize leaching losses to the groundwater. The applied irrigation water and dissolved fertilizer, as well as root growth and associated nitrate and water uptake, interact with soil properties and fertilizer source(s) in a complex manner that cannot easily be resolved. It is therefore that coupled experimental-modeling studies are required to allow for unraveling of the relevant complexities that result from typical field-wide spatial variations of soil texture and layering across farmer-managed fields. We present experimental approaches across a network of tree crop orchards in the San Joaquin Valley, that provide the necessary soil data of soil moisture, water potential and nitrate concentration to evaluate and optimize irrigation water management practices. Specifically, deep tensiometers were used to monitor in-situ continuous soil water potential gradients, for the purpose to compute leaching fluxes of water and nitrate at both the individual tree and field scale.

  2. [Location selection for Shenyang urban parks based on GIS and multi-objective location allocation model].

    PubMed

    Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi

    2011-12-01

    Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.

  3. Adaptive Management and the Value of Information: Learning Via Intervention in Epidemiology

    PubMed Central

    Shea, Katriona; Tildesley, Michael J.; Runge, Michael C.; Fonnesbeck, Christopher J.; Ferrari, Matthew J.

    2014-01-01

    Optimal intervention for disease outbreaks is often impeded by severe scientific uncertainty. Adaptive management (AM), long-used in natural resource management, is a structured decision-making approach to solving dynamic problems that accounts for the value of resolving uncertainty via real-time evaluation of alternative models. We propose an AM approach to design and evaluate intervention strategies in epidemiology, using real-time surveillance to resolve model uncertainty as management proceeds, with foot-and-mouth disease (FMD) culling and measles vaccination as case studies. We use simulations of alternative intervention strategies under competing models to quantify the effect of model uncertainty on decision making, in terms of the value of information, and quantify the benefit of adaptive versus static intervention strategies. Culling decisions during the 2001 UK FMD outbreak were contentious due to uncertainty about the spatial scale of transmission. The expected benefit of resolving this uncertainty prior to a new outbreak on a UK-like landscape would be £45–£60 million relative to the strategy that minimizes livestock losses averaged over alternate transmission models. AM during the outbreak would be expected to recover up to £20.1 million of this expected benefit. AM would also recommend a more conservative initial approach (culling of infected premises and dangerous contact farms) than would a fixed strategy (which would additionally require culling of contiguous premises). For optimal targeting of measles vaccination, based on an outbreak in Malawi in 2010, AM allows better distribution of resources across the affected region; its utility depends on uncertainty about both the at-risk population and logistical capacity. When daily vaccination rates are highly constrained, the optimal initial strategy is to conduct a small, quick campaign; a reduction in expected burden of approximately 10,000 cases could result if campaign targets can be updated on the basis of the true susceptible population. Formal incorporation of a policy to update future management actions in response to information gained in the course of an outbreak can change the optimal initial response and result in significant cost savings. AM provides a framework for using multiple models to facilitate public-health decision making and an objective basis for updating management actions in response to improved scientific understanding. PMID:25333371

  4. Adaptive management and the value of information: learning via intervention in epidemiology

    USGS Publications Warehouse

    Shea, Katriona; Tildesley, Michael J.; Runge, Michael C.; Fonnesbeck, Christopher J.; Ferrari, Matthew J.

    2014-01-01

    Optimal intervention for disease outbreaks is often impeded by severe scientific uncertainty. Adaptive management (AM), long-used in natural resource management, is a structured decision-making approach to solving dynamic problems that accounts for the value of resolving uncertainty via real-time evaluation of alternative models. We propose an AM approach to design and evaluate intervention strategies in epidemiology, using real-time surveillance to resolve model uncertainty as management proceeds, with foot-and-mouth disease (FMD) culling and measles vaccination as case studies. We use simulations of alternative intervention strategies under competing models to quantify the effect of model uncertainty on decision making, in terms of the value of information, and quantify the benefit of adaptive versus static intervention strategies. Culling decisions during the 2001 UK FMD outbreak were contentious due to uncertainty about the spatial scale of transmission. The expected benefit of resolving this uncertainty prior to a new outbreak on a UK-like landscape would be £45–£60 million relative to the strategy that minimizes livestock losses averaged over alternate transmission models. AM during the outbreak would be expected to recover up to £20.1 million of this expected benefit. AM would also recommend a more conservative initial approach (culling of infected premises and dangerous contact farms) than would a fixed strategy (which would additionally require culling of contiguous premises). For optimal targeting of measles vaccination, based on an outbreak in Malawi in 2010, AM allows better distribution of resources across the affected region; its utility depends on uncertainty about both the at-risk population and logistical capacity. When daily vaccination rates are highly constrained, the optimal initial strategy is to conduct a small, quick campaign; a reduction in expected burden of approximately 10,000 cases could result if campaign targets can be updated on the basis of the true susceptible population. Formal incorporation of a policy to update future management actions in response to information gained in the course of an outbreak can change the optimal initial response and result in significant cost savings. AM provides a framework for using multiple models to facilitate public-health decision making and an objective basis for updating management actions in response to improved scientific understanding.

  5. Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk

    NASA Astrophysics Data System (ADS)

    Long, C. C.; Marsden, A. L.; Bazilevs, Y.

    2014-10-01

    In this paper we perform shape optimization of a pediatric pulsatile ventricular assist device (PVAD). The device simulation is carried out using fluid-structure interaction (FSI) modeling techniques within a computational framework that combines FEM for fluid mechanics and isogeometric analysis for structural mechanics modeling. The PVAD FSI simulations are performed under realistic conditions (i.e., flow speeds, pressure levels, boundary conditions, etc.), and account for the interaction of air, blood, and a thin structural membrane separating the two fluid subdomains. The shape optimization study is designed to reduce thrombotic risk, a major clinical problem in PVADs. Thrombotic risk is quantified in terms of particle residence time in the device blood chamber. Methods to compute particle residence time in the context of moving spatial domains are presented in a companion paper published in the same issue (Comput Mech, doi: 10.1007/s00466-013-0931-y, 2013). The surrogate management framework, a derivative-free pattern search optimization method that relies on surrogates for increased efficiency, is employed in this work. For the optimization study shown here, particle residence time is used to define a suitable cost or objective function, while four adjustable design optimization parameters are used to define the device geometry. The FSI-based optimization framework is implemented in a parallel computing environment, and deployed with minimal user intervention. Using five SEARCH/ POLL steps the optimization scheme identifies a PVAD design with significantly better throughput efficiency than the original device.

  6. Transient flow conditions in probabilistic wellhead protection: importance and ways to manage spatial and temporal uncertainty in capture zone delineation

    NASA Astrophysics Data System (ADS)

    Enzenhoefer, R.; Rodriguez-Pretelin, A.; Nowak, W.

    2012-12-01

    "From an engineering standpoint, the quantification of uncertainty is extremely important not only because it allows estimating risk but mostly because it allows taking optimal decisions in an uncertain framework" (Renard, 2007). The most common way to account for uncertainty in the field of subsurface hydrology and wellhead protection is to randomize spatial parameters, e.g. the log-hydraulic conductivity or porosity. This enables water managers to take robust decisions in delineating wellhead protection zones with rationally chosen safety margins in the spirit of probabilistic risk management. Probabilistic wellhead protection zones are commonly based on steady-state flow fields. However, several past studies showed that transient flow conditions may substantially influence the shape and extent of catchments. Therefore, we believe they should be accounted for in the probabilistic assessment and in the delineation process. The aim of our work is to show the significance of flow transients and to investigate the interplay between spatial uncertainty and flow transients in wellhead protection zone delineation. To this end, we advance our concept of probabilistic capture zone delineation (Enzenhoefer et al., 2012) that works with capture probabilities and other probabilistic criteria for delineation. The extended framework is able to evaluate the time fraction that any point on a map falls within a capture zone. In short, we separate capture probabilities into spatial/statistical and time-related frequencies. This will provide water managers additional information on how to manage a well catchment in the light of possible hazard conditions close to the capture boundary under uncertain and time-variable flow conditions. In order to save computational costs, we take advantage of super-positioned flow components with time-variable coefficients. We assume an instantaneous development of steady-state flow conditions after each temporal change in driving forces, following an idea by Festger and Walter, 2002. These quasi steady-state flow fields are cast into a geostatistical Monte Carlo framework to admit and evaluate the influence of parameter uncertainty on the delineation process. Furthermore, this framework enables conditioning on observed data with any conditioning scheme, such as rejection sampling, Ensemble Kalman Filters, etc. To further reduce the computational load, we use the reverse formulation of advective-dispersive transport. We simulate the reverse transport by particle tracking random walk in order to avoid numerical dispersion to account for well arrival times.

  7. Scheduling policies of intelligent sensors and sensor/actuators in flexible structures

    NASA Astrophysics Data System (ADS)

    Demetriou, Michael A.; Potami, Raffaele

    2006-03-01

    In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.

  8. Monte Carlo-based assessment of the trade-off between spatial resolution, field-of-view and scattered radiation in the variable resolution X-ray CT scanner.

    PubMed

    Arabi, Hossein; Kamali Asl, Ali Reza; Ay, Mohammad Reza; Zaidi, Habib

    2015-07-01

    The purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner. A realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle. Optimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°-12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles. It can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Automation method to identify the geological structure of seabed using spatial statistic analysis of echo sounding data

    NASA Astrophysics Data System (ADS)

    Kwon, O.; Kim, W.; Kim, J.

    2017-12-01

    Recently construction of subsea tunnel has been increased globally. For safe construction of subsea tunnel, identifying the geological structure including fault at design and construction stage is more than important. Then unlike the tunnel in land, it's very difficult to obtain the data on geological structure because of the limit in geological survey. This study is intended to challenge such difficulties in a way of developing the technology to identify the geological structure of seabed automatically by using echo sounding data. When investigation a potential site for a deep subsea tunnel, there is the technical and economical limit with borehole of geophysical investigation. On the contrary, echo sounding data is easily obtainable while information reliability is higher comparing to above approaches. This study is aimed at developing the algorithm that identifies the large scale of geological structure of seabed using geostatic approach. This study is based on theory of structural geology that topographic features indicate geological structure. Basic concept of algorithm is outlined as follows; (1) convert the seabed topography to the grid data using echo sounding data, (2) apply the moving window in optimal size to the grid data, (3) estimate the spatial statistics of the grid data in the window area, (4) set the percentile standard of spatial statistics, (5) display the values satisfying the standard on the map, (6) visualize the geological structure on the map. The important elements in this study include optimal size of moving window, kinds of optimal spatial statistics and determination of optimal percentile standard. To determine such optimal elements, a numerous simulations were implemented. Eventually, user program based on R was developed using optimal analysis algorithm. The user program was designed to identify the variations of various spatial statistics. It leads to easy analysis of geological structure depending on variation of spatial statistics by arranging to easily designate the type of spatial statistics and percentile standard. This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government. (Project Number: 13 Construction Research T01)

  10. a Real-Time GIS Platform for High Sour Gas Leakage Simulation, Evaluation and Visualization

    NASA Astrophysics Data System (ADS)

    Li, M.; Liu, H.; Yang, C.

    2015-07-01

    The development of high-sulfur gas fields, also known as sour gas field, is faced with a series of safety control and emergency management problems. The GIS-based emergency response system is placed high expectations under the consideration of high pressure, high content, complex terrain and highly density population in Sichuan Basin, southwest China. The most researches on high hydrogen sulphide gas dispersion simulation and evaluation are used for environmental impact assessment (EIA) or emergency preparedness planning. This paper introduces a real-time GIS platform for high-sulfur gas emergency response. Combining with real-time data from the leak detection systems and the meteorological monitoring stations, GIS platform provides the functions of simulating, evaluating and displaying of the different spatial-temporal toxic gas distribution patterns and evaluation results. This paper firstly proposes the architecture of Emergency Response/Management System, secondly explains EPA's Gaussian dispersion model CALPUFF simulation workflow under high complex terrain and real-time data, thirdly explains the emergency workflow and spatial analysis functions of computing the accident influencing areas, population and the optimal evacuation routes. Finally, a well blow scenarios is used for verify the system. The study shows that GIS platform which integrates the real-time data and CALPUFF models will be one of the essential operational platforms for high-sulfur gas fields emergency management.

  11. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    PubMed

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.

  12. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data

    PubMed Central

    Kim, Sehwi

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns. PMID:28753674

  13. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain.

  14. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain. PMID:26098548

  15. Parametric investigations of plasma characteristics in a remote inductively coupled plasma system

    NASA Astrophysics Data System (ADS)

    Shukla, Prasoon; Roy, Abhra; Jain, Kunal; Bhoj, Ananth

    2016-09-01

    Designing a remote plasma system involves source chamber sizing, selection of coils and/or electrodes to power the plasma, designing the downstream tubes, selection of materials used in the source and downstream regions, locations of inlets and outlets and finally optimizing the process parameter space of pressure, gas flow rates and power delivery. Simulations can aid in spatial and temporal plasma characterization in what are often inaccessible locations for experimental probes in the source chamber. In this paper, we report on simulations of a remote inductively coupled Argon plasma system using the modeling platform CFD-ACE +. The coupled multiphysics model description successfully address flow, chemistry, electromagnetics, heat transfer and plasma transport in the remote plasma system. The SimManager tool enables easy setup of parametric simulations to investigate the effect of varying the pressure, power, frequency, flow rates and downstream tube lengths. It can also enable the automatic solution of the varied parameters to optimize a user-defined objective function, which may be the integral ion and radical fluxes at the wafer. The fast run time coupled with the parametric and optimization capabilities can add significant insight and value in design and optimization.

  16. Spatial Patterns in Alternative States and Thresholds: A Missing Link for Management of Landscapes?

    USDA-ARS?s Scientific Manuscript database

    The detection of threshold dynamics (and other dynamics of interest) would benefit from explicit representations of spatial patterns of disturbance, spatial dependence in responses to disturbance, and the spatial structure of feedbacks in the design of monitoring and management strategies. Spatially...

  17. Coastal management strategy for small island: ecotourism potency development in Karimata Island, West Kalimantan

    NASA Astrophysics Data System (ADS)

    Rudiastuti, A. W.; Munawaroh; Setyawan, I. E.; Pramono, G. H.

    2018-04-01

    Sustainable coastal management is playing an important role in coastal resources conservation, particularly on small islands. Karimata archipelago has unique characteristics and great potential to be developed as a tourism object, one of which is Karimata Island as the largest island and also reserve area. The concept of ecotourism focuses on the ecology conservation, economic benefits, and social life. Ecotourism aims to build sustainable tourism that provides economically viable and social benefits to the community. This study aims to develop coastal management strategy based on ecotourism at Karimata Island. Spatial approaching through coastal type was done. Qualitative descriptive analysis and SWOT are used to develop sustainable management strategies for the coast of Karimata Island, where the opportunities and challenges to the development of coastal ecotourism Karimata Island also included. If this potential is optimally utilized, it can be relied as an economic opportunity for local communities. Structurally shaped coast, marine depositional coast and coast build by organism are several of coastal types found at Karimata Island. Coastal ecosystems inhabited Karimata Island are mangroves, coral reefs, and macro-algae. Karimata Island have not been optimally utilized for tourist destinations. The biggest obstacle encountered is the accessibility from Kalimantan or other island at Karimata islands. Several problems related to the utilization of coastal resources were found such as mangrove and coral reef damage, also regulation that less supportive. The results of this study are expected to provide an overview of solutions for the development of coastal tourism potentials in Karimata Island.

  18. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    NASA Astrophysics Data System (ADS)

    Johnston, Matt; Licker, R.; Foley, J.; Holloway, T.; Mueller, N. D.; Barford, C.; Kucharik, C.

    2011-07-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap—essentially improving global yields to median levels—the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike—helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  19. Spatial processes decouple management from objectives in a heterogeneous landscape: predator control as a case study.

    PubMed

    Mahoney, Peter J; Young, Julie K; Hersey, Kent R; Larsen, Randy T; McMillan, Brock R; Stoner, David C

    2018-04-01

    Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large-scale experimental framework where spatial context is likely an important driver of outcomes. © 2018 by the Ecological Society of America.

  20. Spatial Downscaling of Alien Species Presences using Machine Learning

    NASA Astrophysics Data System (ADS)

    Daliakopoulos, Ioannis N.; Katsanevakis, Stelios; Moustakas, Aristides

    2017-07-01

    Large scale, high-resolution data on alien species distributions are essential for spatially explicit assessments of their environmental and socio-economic impacts, and management interventions for mitigation. However, these data are often unavailable. This paper presents a method that relies on Random Forest (RF) models to distribute alien species presence counts at a finer resolution grid, thus achieving spatial downscaling. A sufficiently large number of RF models are trained using random subsets of the dataset as predictors, in a bootstrapping approach to account for the uncertainty introduced by the subset selection. The method is tested with an approximately 8×8 km2 grid containing floral alien species presence and several indices of climatic, habitat, land use covariates for the Mediterranean island of Crete, Greece. Alien species presence is aggregated at 16×16 km2 and used as a predictor of presence at the original resolution, thus simulating spatial downscaling. Potential explanatory variables included habitat types, land cover richness, endemic species richness, soil type, temperature, precipitation, and freshwater availability. Uncertainty assessment of the spatial downscaling of alien species’ occurrences was also performed and true/false presences and absences were quantified. The approach is promising for downscaling alien species datasets of larger spatial scale but coarse resolution, where the underlying environmental information is available at a finer resolution than the alien species data. Furthermore, the RF architecture allows for tuning towards operationally optimal sensitivity and specificity, thus providing a decision support tool for designing a resource efficient alien species census.

  1. The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA

    NASA Astrophysics Data System (ADS)

    Guan, Yujuan; Zhang, Liquan

    2006-10-01

    The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.

  2. Optimal exploitation of spatially distributed trophic resources and population stability

    USGS Publications Warehouse

    Basset, A.; Fedele, M.; DeAngelis, D.L.

    2002-01-01

    The relationships between optimal foraging of individuals and population stability are addressed by testing, with a spatially explicit model, the effect of patch departure behaviour on individual energetics and population stability. A factorial experimental design was used to analyse the relevance of the behavioural factor in relation to three factors that are known to affect individual energetics; i.e. resource growth rate (RGR), assimilation efficiency (AE), and body size of individuals. The factorial combination of these factors produced 432 cases, and 1000 replicate simulations were run for each case. Net energy intake rates of the modelled consumers increased with increasing RGR, consumer AE, and consumer body size, as expected. Moreover, through their patch departure behaviour, by selecting the resource level at which they departed from the patch, individuals managed to substantially increase their net energy intake rates. Population stability was also affected by the behavioural factors and by the other factors, but with highly non-linear responses. Whenever resources were limiting for the consumers because of low RGR, large individual body size or low AE, population density at the equilibrium was directly related to the patch departure behaviour; on the other hand, optimal patch departure behaviour, which maximised the net energy intake at the individual level, had a negative influence on population stability whenever resource availability was high for the consumers. The consumer growth rate (r) and numerical dynamics, as well as the spatial and temporal fluctuations of resource density, which were the proximate causes of population stability or instability, were affected by the behavioural factor as strongly or even more strongly than by the others factors considered here. Therefore, patch departure behaviour can act as a feedback control of individual energetics, allowing consumers to optimise a potential trade-off between short-term individual fitness and long-term population stability. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Spatially explicit modeling of blackbird abundance in the Prairie Pothole Region

    USGS Publications Warehouse

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.; Crimmins, Shawn M.

    2015-01-01

    Knowledge of factors influencing animal abundance is important to wildlife biologists developing management plans. This is especially true for economically important species such as blackbirds (Icteridae), which cause more than $100 million in crop damages annually in the United States. Using data from the North American Breeding Bird Survey, the National Land Cover Dataset, and the National Climatic Data Center, we modeled effects of regional environmental variables on relative abundance of 3 blackbird species (red-winged blackbird,Agelaius phoeniceus; yellow-headed blackbird, Xanthocephalus xanthocephalus; common grackle, Quiscalus quiscula) in the Prairie Pothole Region of the central United States. We evaluated landscape covariates at 3 logarithmically related spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and modeled weather variables at the 100,000-ha scale. We constructed models a priori using information from published habitat associations. We fit models with WinBUGS using Markov chain Monte Carlo techniques. Both landscape and weather variables contributed strongly to predicting blackbird relative abundance (95% credibility interval did not overlap 0). Variables with the strongest associations with blackbird relative abundance were the percentage of wetland area and precipitation amount from the year before bird surveys were conducted. The influence of spatial scale appeared small—models with the same variables expressed at different scales were often in the best model subset. This large-scale study elucidated regional effects of weather and landscape variables, suggesting that management strategies aimed at reducing damages caused by these species should consider the broader landscape, including weather effects, because such factors may outweigh the influence of localized conditions or site-specific management actions. The regional species distributional models we developed for blackbirds provide a tool for understanding these broader landscape effects and guiding wildlife management practices to areas that are optimally beneficial. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  4. Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases

    PubMed Central

    Le Cointe, Ronan; Simon, Thomas E.; Delarue, Patrick; Hervé, Maxime; Leclerc, Melen; Poggi, Sylvain

    2016-01-01

    Reducing our reliance on pesticides is an essential step towards the sustainability of agricultural production. One approach involves the rational use of pesticides combined with innovative crop management. Most control strategies currently focus on the temporal aspect of epidemics, e.g. determining the optimal date for spraying, regardless of the spatial mechanics and ecology of disease spread. Designing innovative pest management strategies incorporating the spatial aspect of epidemics involves thorough knowledge on how disease control affects the life-history traits of the pathogen. In this study, using Rhizoctonia solani/Raphanus sativus as an example of a soil-borne pathosystem, we investigated the effects of a chemical control currently used by growers, Monceren® L, on key epidemiological components (saprotrophic spread and infectivity). We tested the potential “shield effect” of Monceren® L on pathogenic spread in a site-specific application context, i.e. the efficiency of this chemical to contain the spread of the fungus from an infected host when application is spatially localized, in our case, a strip placed between the infected host and a recipient bait. Our results showed that Monceren® L mainly inhibits the saprotrophic spread of the fungus in soil and may prevent the fungus from reaching its host plant. However, perhaps surprisingly we did not detect any significant effect of the fungicide on the pathogen infectivity. Finally, highly localized application of the fungicide—a narrow strip of soil (12.5 mm wide) sprayed with Monceren® L—significantly decreased local transmission of the pathogen, suggesting lowered risk of occurrence of invasive epidemics. Our results highlight that detailed knowledge on epidemiological processes could contribute to the design of innovative management strategies based on precision agriculture tools to improve the efficacy of disease control and reduce pesticide use. PMID:27668731

  5. Remote-Sensing and Automated Water Resources Tracking: Near Real-Time Decision Support for Water Managers Facing Drought and Flood

    NASA Astrophysics Data System (ADS)

    Reiter, M. E.; Elliott, N.; Veloz, S.; Love, F.; Moody, D.; Hickey, C.; Fitzgibbon, M.; Reynolds, M.; Esralew, R.

    2016-12-01

    Innovative approaches for tracking the Earth's natural resources, especially water which is essential for all living things, are essential during a time of rapid environmental change. The Central Valley is a nexus for water resources in California, draining the Sacramento and San Joaquin River watersheds. The distribution of water throughout California and the Central Valley, while dynamic, is highly managed through an extensive regional network of canals, levees, and pumps. Water allocation and delivery is determined through a complex set of rules based on water contracts, historic priority, and other California water policies. Furthermore, urban centers, agriculture, and the environment throughout the state are already competing for water, particularly during drought. Competition for water is likely to intensify as California is projected to experience continued increases in demand due to population growth and more arid growing conditions, while also having reduced or modified water supply due to climate change. As a result, it is difficult to understand or predict how water will be used to fulfill wildlife and wetland conservation needs. A better understanding of the spatial distribution of water in near real-time can facilitate adaptation of water resource management to changing conditions on the landscape, both over the near- and long-term. The Landsat satellite mission delivers imagery every 16-days from nearly every place on the earth at a high spatial resolution. We have integrated remote sensing of satellite data, classification modeling, bioinformatics, optimization, and ecological analyses to develop an automated near real-time water resources tracking and decision-support system for the Central Valley of California. Our innovative system has applications for coordinated water management in the Central Valley to support people, places, and wildlife and is being used to understand the factors that drive variation in the distribution and abundance of water resources, particularly drought and flood, at multiple spatial and temporal scales.

  6. Optimal flow for brown trout: Habitat - prey optimization.

    PubMed

    Fornaroli, Riccardo; Cabrini, Riccardo; Sartori, Laura; Marazzi, Francesca; Canobbio, Sergio; Mezzanotte, Valeria

    2016-10-01

    The correct definition of ecosystem needs is essential in order to guide policy and management strategies to optimize the increasing use of freshwater by human activities. Commonly, the assessment of the optimal or minimum flow rates needed to preserve ecosystem functionality has been done by habitat-based models that define a relationship between in-stream flow and habitat availability for various species of fish. We propose a new approach for the identification of optimal flows using the limiting factor approach and the evaluation of basic ecological relationships, considering the appropriate spatial scale for different organisms. We developed density-environment relationships for three different life stages of brown trout that show the limiting effects of hydromorphological variables at habitat scale. In our analyses, we found that the factors limiting the densities of trout were water velocity, substrate characteristics and refugia availability. For all the life stages, the selected models considered simultaneously two variables and implied that higher velocities provided a less suitable habitat, regardless of other physical characteristics and with different patterns. We used these relationships within habitat based models in order to select a range of flows that preserve most of the physical habitat for all the life stages. We also estimated the effect of varying discharge flows on macroinvertebrate biomass and used the obtained results to identify an optimal flow maximizing habitat and prey availability. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Data-Centric Situational Awareness and Management in Intelligent Power Systems

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoxiao

    The rapid development of technology and society has made the current power system a much more complicated system than ever. The request for big data based situation awareness and management becomes urgent today. In this dissertation, to respond to the grand challenge, two data-centric power system situation awareness and management approaches are proposed to address the security problems in the transmission/distribution grids and social benefits augmentation problem at the distribution-customer lever, respectively. To address the security problem in the transmission/distribution grids utilizing big data, the first approach provides a fault analysis solution based on characterization and analytics of the synchrophasor measurements. Specically, the optimal synchrophasor measurement devices selection algorithm (OSMDSA) and matching pursuit decomposition (MPD) based spatial-temporal synchrophasor data characterization method was developed to reduce data volume while preserving comprehensive information for the big data analyses. And the weighted Granger causality (WGC) method was investigated to conduct fault impact causal analysis during system disturbance for fault localization. Numerical results and comparison with other methods demonstrate the effectiveness and robustness of this analytic approach. As more social effects are becoming important considerations in power system management, the goal of situation awareness should be expanded to also include achievements in social benefits. The second approach investigates the concept and application of social energy upon the University of Denver campus grid to provide management improvement solutions for optimizing social cost. Social element--human working productivity cost, and economic element--electricity consumption cost, are both considered in the evaluation of overall social cost. Moreover, power system simulation, numerical experiments for smart building modeling, distribution level real-time pricing and social response to the pricing signals are studied for implementing the interactive artificial-physical management scheme.

  8. Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells.

    PubMed

    Song, Zhaoning; Werner, Jérémie; Shrestha, Niraj; Sahli, Florent; De Wolf, Stefaan; Niesen, Björn; Watthage, Suneth C; Phillips, Adam B; Ballif, Christophe; Ellingson, Randy J; Heben, Michael J

    2016-12-15

    Perovskite/silicon tandem solar cells with high power conversion efficiencies have the potential to become a commercially viable photovoltaic option in the near future. However, device design and optimization is challenging because conventional characterization methods do not give clear feedback on the localized chemical and physical factors that limit performance within individual subcells, especially when stability and degradation is a concern. In this study, we use light beam induced current (LBIC) to probe photocurrent collection nonuniformities in the individual subcells of perovskite/silicon tandems. The choices of lasers and light biasing conditions allow efficiency-limiting effects relating to processing defects, optical interference within the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer structures will be important for future optimization of perovskite/silicon tandem solar cells.

  9. Optimized algorithm for the spatial nonuniformity correction of an imaging system based on a charge-coupled device color camera.

    PubMed

    de Lasarte, Marta; Pujol, Jaume; Arjona, Montserrat; Vilaseca, Meritxell

    2007-01-10

    We present an optimized linear algorithm for the spatial nonuniformity correction of a CCD color camera's imaging system and the experimental methodology developed for its implementation. We assess the influence of the algorithm's variables on the quality of the correction, that is, the dark image, the base correction image, and the reference level, and the range of application of the correction using a uniform radiance field provided by an integrator cube. The best spatial nonuniformity correction is achieved by having a nonzero dark image, by using an image with a mean digital level placed in the linear response range of the camera as the base correction image and taking the mean digital level of the image as the reference digital level. The response of the CCD color camera's imaging system to the uniform radiance field shows a high level of spatial uniformity after the optimized algorithm has been applied, which also allows us to achieve a high-quality spatial nonuniformity correction of captured images under different exposure conditions.

  10. Two-Step Optimization for Spatial Accessibility Improvement: A Case Study of Health Care Planning in Rural China

    PubMed Central

    Luo, Jing; Tian, Lingling; Luo, Lei; Yi, Hong

    2017-01-01

    A recent advancement in location-allocation modeling formulates a two-step approach to a new problem of minimizing disparity of spatial accessibility. Our field work in a health care planning project in a rural county in China indicated that residents valued distance or travel time from the nearest hospital foremost and then considered quality of care including less waiting time as a secondary desirability. Based on the case study, this paper further clarifies the sequential decision-making approach, termed “two-step optimization for spatial accessibility improvement (2SO4SAI).” The first step is to find the best locations to site new facilities by emphasizing accessibility as proximity to the nearest facilities with several alternative objectives under consideration. The second step adjusts the capacities of facilities for minimal inequality in accessibility, where the measure of accessibility accounts for the match ratio of supply and demand and complex spatial interaction between them. The case study illustrates how the two-step optimization method improves both aspects of spatial accessibility for health care access in rural China. PMID:28484707

  11. Two-Step Optimization for Spatial Accessibility Improvement: A Case Study of Health Care Planning in Rural China.

    PubMed

    Luo, Jing; Tian, Lingling; Luo, Lei; Yi, Hong; Wang, Fahui

    2017-01-01

    A recent advancement in location-allocation modeling formulates a two-step approach to a new problem of minimizing disparity of spatial accessibility. Our field work in a health care planning project in a rural county in China indicated that residents valued distance or travel time from the nearest hospital foremost and then considered quality of care including less waiting time as a secondary desirability. Based on the case study, this paper further clarifies the sequential decision-making approach, termed "two-step optimization for spatial accessibility improvement (2SO4SAI)." The first step is to find the best locations to site new facilities by emphasizing accessibility as proximity to the nearest facilities with several alternative objectives under consideration. The second step adjusts the capacities of facilities for minimal inequality in accessibility, where the measure of accessibility accounts for the match ratio of supply and demand and complex spatial interaction between them. The case study illustrates how the two-step optimization method improves both aspects of spatial accessibility for health care access in rural China.

  12. Testing the use of standardised indices and GRACE satellite data to estimate the European 2015 groundwater drought in near-real time

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne F.; Kumar, Rohini; Mishra, Vimal

    2017-04-01

    In 2015, central and eastern Europe were affected by a severe drought. This event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater situation has been performed. One of the reasons is that real-time groundwater level observations often are not available. In this study, we evaluate two alternative approaches to quantify the 2015 groundwater drought over two regions in southern Germany and eastern Netherlands. The first approach is based on spatially explicit relationships between meteorological conditions and historic groundwater level observations. The second approach uses the Gravity Recovery Climate Experiment (GRACE) terrestrial water storage (TWS) and groundwater anomalies derived from GRACE-TWS and (near-)surface storage simulations by the Global Land Data Assimilation System (GLDAS) models. We combined the monthly groundwater observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardised Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.25° gridded scale. The resulting optimal accumulation periods range between 1 and more than 24 months, indicating strong spatial differences in groundwater response time to meteorological input over the region. Based on the estimated optimal accumulation periods and available meteorological time series, we reconstructed the groundwater anomalies up to 2015 and found that in Germany a uniform severe groundwater drought persisted for several months during this year, whereas the Netherlands appeared to have relatively high groundwater levels. The differences between this event and the 2003 European benchmark drought are striking. The 2003 groundwater drought was less uniformly pronounced, both in the Netherlands and Germany. This is because slowly responding wells (the ones with optimal accumulation periods of more than 12 months) still were above average from the wet year of 2002, which experienced severe flooding in central Europe. GRACE-TWS and GRACE-based groundwater anomalies did not capture the spatial variability of the 2003 and 2015 drought events satisfactorily. GRACE-TWS did show that both 2003 and 2015 were relatively dry, but the differences between Germany and the Netherlands in 2015 and the spatially variable groundwater drought pattern in 2003 were not captured. This could be associated with the coarse spatial scale of GRACE. The simulated groundwater anomalies based on GRACE-TWS deviated considerably from the GRACE-TWS signal and from observed groundwater anomalies. The uncertainty in the GRACE-based groundwater anomalies mainly results from uncertainties in the simulation of soil moisture by the different GLDAS models. The GRACE-based groundwater anomalies are therefore not suitable for use in real-time groundwater drought monitoring in our case study regions. The alternative approach based on the spatially variable relationship between meteorological conditions and groundwater levels is more suitable to quantify groundwater drought in near real-time. Compared to the meteorological drought and streamflow drought (described in previous studies), the groundwater drought of 2015 had a more pronounced spatial variability in its response to meteorological conditions, with some areas primarily influenced by short-term meteorological deficits and others influenced by meteorological deficits accumulated over the preceding 2 years or more. In drought management, this information is very useful and our approach to quantify groundwater drought can be used until real-time groundwater observations become readily available.

  13. Real-time management of an urban groundwater well field threatened by pollution.

    PubMed

    Bauser, Gero; Franssen, Harrie-Jan Hendricks; Kaiser, Hans-Peter; Kuhlmann, Ulrich; Stauffer, Fritz; Kinzelbach, Wolfgang

    2010-09-01

    We present an optimal real-time control approach for the management of drinking water well fields. The methodology is applied to the Hardhof field in the city of Zurich, Switzerland, which is threatened by diffuse pollution. The risk of attracting pollutants is higher if the pumping rate is increased and can be reduced by increasing artificial recharge (AR) or by adaptive allocation of the AR. The method was first tested in offline simulations with a three-dimensional finite element variably saturated subsurface flow model for the period January 2004-August 2005. The simulations revealed that (1) optimal control results were more effective than the historical control results and (2) the spatial distribution of AR should be different from the historical one. Next, the methodology was extended to a real-time control method based on the Ensemble Kalman Filter method, using 87 online groundwater head measurements, and tested at the site. The real-time control of the well field resulted in a decrease of the electrical conductivity of the water at critical measurement points which indicates a reduced inflow of water originating from contaminated sites. It can be concluded that the simulation and the application confirm the feasibility of the real-time control concept.

  14. Service area size assessment for evaluating the spatial scale of solid waste recovery chains: A territorial perspective.

    PubMed

    Tanguy, Audrey; Villot, Jonathan; Glaus, Mathias; Laforest, Valérie; Hausler, Robert

    2017-06-01

    Waste recovery is an integrated part of municipal solid waste management systems but its strategic planning is still challenging. In particular, the service area size of facilities is a sensitive issue since its calculation depends on various factors related to treatment technologies (output products) and territorial features (sources waste production and location). This work presents a systemic approach for the estimation of a chain's service area size, based on a balance between costs and recovery profits. The model assigns a recovery performance value to each source, which can be positive, neutral or negative. If it is positive, the source should be included in the facility's service area. Applied to the case of Montreal for food waste recovery by anaerobic digestion, the approach showed that at most 23 out of the 30 districts should be included in the service area, depending on the indicator, which represents around 127,000 t of waste recovered/year. Due to the systemic approach, these districts were not necessarily the closest to the facility. Moreover, for the Montreal case, changing the facility's location did not have a great influence on the optimal service area size, showing that the distance to the facility was not a decisive factor at this scale. However, replacing anaerobic digestion by a composting plant reduced the break-even transport distances and, thus, the number of sources worth collecting (around 68,500 t/year). In this way, the methodology, applied to different management strategies, gave a sense of the spatial dynamics involved in the recovery chain's design. The map of optimal supply obtained could be used to further analyse the feasibility of multi-site and/or multi-technology systems for the territory considered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Use of strategic environmental assessment in the site selection process for a radioactive waste disposal facility in Slovenia.

    PubMed

    Dermol, Urška; Kontić, Branko

    2011-01-01

    The benefits of strategic environmental considerations in the process of siting a repository for low- and intermediate-level radioactive waste (LILW) are presented. The benefits have been explored by analyzing differences between the two site selection processes. One is a so-called official site selection process, which is implemented by the Agency for radwaste management (ARAO); the other is an optimization process suggested by experts working in the area of environmental impact assessment (EIA) and land-use (spatial) planning. The criteria on which the comparison of the results of the two site selection processes has been based are spatial organization, environmental impact, safety in terms of potential exposure of the population to radioactivity released from the repository, and feasibility of the repository from the technical, financial/economic and social point of view (the latter relates to consent by the local community for siting the repository). The site selection processes have been compared with the support of the decision expert system named DEX. The results of the comparison indicate that the sites selected by ARAO meet fewer suitability criteria than those identified by applying strategic environmental considerations in the framework of the optimization process. This result stands when taking into account spatial, environmental, safety and technical feasibility points of view. Acceptability of a site by a local community could not have been tested, since the formal site selection process has not yet been concluded; this remains as an uncertain and open point of the comparison. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration.

    PubMed

    de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R

    2013-08-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. An Evaluation of Database Solutions to Spatial Object Association

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V S; Kurc, T; Saltz, J

    2008-06-24

    Object association is a common problem encountered in many applications. Spatial object association, also referred to as crossmatch of spatial datasets, is the problem of identifying and comparing objects in two datasets based on their positions in a common spatial coordinate system--one of the datasets may correspond to a catalog of objects observed over time in a multi-dimensional domain; the other dataset may consist of objects observed in a snapshot of the domain at a time point. The use of database management systems to the solve the object association problem provides portability across different platforms and also greater flexibility. Increasingmore » dataset sizes in today's applications, however, have made object association a data/compute-intensive problem that requires targeted optimizations for efficient execution. In this work, we investigate how database-based crossmatch algorithms can be deployed on different database system architectures and evaluate the deployments to understand the impact of architectural choices on crossmatch performance and associated trade-offs. We investigate the execution of two crossmatch algorithms on (1) a parallel database system with active disk style processing capabilities, (2) a high-throughput network database (MySQL Cluster), and (3) shared-nothing databases with replication. We have conducted our study in the context of a large-scale astronomy application with real use-case scenarios.« less

  18. Roadmap to Long-Term Monitoring Optimization

    EPA Pesticide Factsheets

    This roadmap focuses on optimization of established long-term monitoring programs for groundwater. Tools and techniques discussed concentrate on methods for optimizing the monitoring frequency and spatial (three-dimensional) distribution of wells ...

  19. Optimal configurations of spatial scale for grid cell firing under noise and uncertainty

    PubMed Central

    Towse, Benjamin W.; Barry, Caswell; Bush, Daniel; Burgess, Neil

    2014-01-01

    We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple ‘modules’ of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues. PMID:24366144

  20. 4D modeling in high-rise construction

    NASA Astrophysics Data System (ADS)

    Balakina, Anastasiya; Simankina, Tatyana; Lukinov, Vitaly

    2018-03-01

    High-rise construction is a complex construction process, requiring the use of more perfected and sophisticated tools for design, planning and construction management. The use of BIM-technologies allows minimizing the risks associated with design errors and errors that occur during construction. This article discusses a visual planning method using the 4D model, which allows the project team to create an accurate and complete construction plan, which is much more difficult to achieve with the help of traditional planning methods. The use of the 4D model in the construction of a 70-story building allowed to detect spatial and temporal errors before the start of construction work. In addition to identifying design errors, 4D modeling has allowed to optimize the construction, as follows: to optimize the operation of cranes, the placement of building structures and materials at various stages of construction, to optimize the organization of work performance, as well as to monitor the activities related to the preparation of the construction site for compliance with labor protection and safety requirements, which resulted in saving money and time.

  1. Prioritizing forest fuels treatments based on the probability of high-severity fire restores adaptive capacity in Sierran forests.

    PubMed

    Krofcheck, Daniel J; Hurteau, Matthew D; Scheller, Robert M; Loudermilk, E Louise

    2018-02-01

    In frequent fire forests of the western United States, a legacy of fire suppression coupled with increases in fire weather severity have altered fire regimes and vegetation dynamics. When coupled with projected climate change, these conditions have the potential to lead to vegetation type change and altered carbon (C) dynamics. In the Sierra Nevada, fuels reduction approaches that include mechanical thinning followed by regular prescribed fire are one approach to restore the ability of the ecosystem to tolerate episodic fire and still sequester C. Yet, the spatial extent of the area requiring treatment makes widespread treatment implementation unlikely. We sought to determine if a priori knowledge of where uncharacteristic wildfire is most probable could be used to optimize the placement of fuels treatments in a Sierra Nevada watershed. We developed two treatment placement strategies: the naive strategy, based on treating all operationally available area and the optimized strategy, which only treated areas where crown-killing fires were most probable. We ran forecast simulations using projected climate data through 2,100 to determine how the treatments differed in terms of C sequestration, fire severity, and C emissions relative to a no-management scenario. We found that in both the short (20 years) and long (100 years) term, both management scenarios increased C stability, reduced burn severity, and consequently emitted less C as a result of wildfires than no-management. Across all metrics, both scenarios performed the same, but the optimized treatment required significantly less C removal (naive=0.42 Tg C, optimized=0.25 Tg C) to achieve the same treatment efficacy. Given the extent of western forests in need of fire restoration, efficiently allocating treatments is a critical task if we are going to restore adaptive capacity in frequent-fire forests. © 2017 John Wiley & Sons Ltd.

  2. Identification of the key ecological factors influencing vegetation degradation in semi-arid agro-pastoral ecotone considering spatial scales

    NASA Astrophysics Data System (ADS)

    Peng, Yu; Wang, Qinghui; Fan, Min

    2017-11-01

    When assessing re-vegetation project performance and optimizing land management, identification of the key ecological factors inducing vegetation degradation has crucial implications. Rainfall, temperature, elevation, slope, aspect, land use type, and human disturbance are ecological factors affecting the status of vegetation index. However, at different spatial scales, the key factors may vary. Using Helin County, Inner-Mongolia, China as the study site and combining remote sensing image interpretation, field surveying, and mathematical methods, this study assesses key ecological factors affecting vegetation degradation under different spatial scales in a semi-arid agro-pastoral ecotone. It indicates that the key factors are different at various spatial scales. Elevation, rainfall, and temperature are identified as crucial for all spatial extents. Elevation, rainfall and human disturbance are key factors for small-scale quadrats of 300 m × 300 m and 600 m × 600 m, temperature and land use type are key factors for a medium-scale quadrat of 1 km × 1 km, and rainfall, temperature, and land use are key factors for large-scale quadrats of 2 km × 2 km and 5 km × 5 km. For this region, human disturbance is not the key factor for vegetation degradation across spatial scales. It is necessary to consider spatial scale for the identification of key factors determining vegetation characteristics. The eco-restoration programs at various spatial scales should identify key influencing factors according their scales so as to take effective measurements. The new understanding obtained in this study may help to explore the forces which driving vegetation degradation in the degraded regions in the world.

  3. Optimal Integration of Departures and Arrivals in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Xue, Min; Zelinski, Shannon Jean

    2013-01-01

    Coordination of operations with spatially and temporally shared resources, such as route segments, fixes, and runways, improves the efficiency of terminal airspace management. Problems in this category are, in general, computationally difficult compared to conventional scheduling problems. This paper presents a fast time algorithm formulation using a non-dominated sorting genetic algorithm (NSGA). It was first applied to a test problem introduced in existing literature. An experiment with a test problem showed that new methods can solve the 20 aircraft problem in fast time with a 65% or 440 second delay reduction using shared departure fixes. In order to test its application in a more realistic and complicated problem, the NSGA algorithm was applied to a problem in LAX terminal airspace, where interactions between 28% of LAX arrivals and 10% of LAX departures are resolved by spatial separation in current operations, which may introduce unnecessary delays. In this work, three types of separations - spatial, temporal, and hybrid separations - were formulated using the new algorithm. The hybrid separation combines both temporal and spatial separations. Results showed that although temporal separation achieved less delay than spatial separation with a small uncertainty buffer, spatial separation outperformed temporal separation when the uncertainty buffer was increased. Hybrid separation introduced much less delay than both spatial and temporal approaches. For a total of 15 interacting departures and arrivals, when compared to spatial separation, the delay reduction of hybrid separation varied between 11% or 3.1 minutes and 64% or 10.7 minutes corresponding to an uncertainty buffer from 0 to 60 seconds. Furthermore, as a comparison with the NSGA algorithm, a First-Come-First-Serve based heuristic method was implemented for the hybrid separation. Experiments showed that the results from the NSGA algorithm have 9% to 42% less delay than the heuristic method with varied uncertainty buffer sizes.

  4. Image gathering and processing - Information and fidelity

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Halyo, N.; Samms, R. W.; Stacy, K.

    1985-01-01

    In this paper we formulate and use information and fidelity criteria to assess image gathering and processing, combining optical design with image-forming and edge-detection algorithms. The optical design of the image-gathering system revolves around the relationship among sampling passband, spatial response, and signal-to-noise ratio (SNR). Our formulations of information, fidelity, and optimal (Wiener) restoration account for the insufficient sampling (i.e., aliasing) common in image gathering as well as for the blurring and noise that conventional formulations account for. Performance analyses and simulations for ordinary optical-design constraints and random scences indicate that (1) different image-forming algorithms prefer different optical designs; (2) informationally optimized designs maximize the robustness of optimal image restorations and lead to the highest-spatial-frequency channel (relative to the sampling passband) for which edge detection is reliable (if the SNR is sufficiently high); and (3) combining the informationally optimized design with a 3 by 3 lateral-inhibitory image-plane-processing algorithm leads to a spatial-response shape that approximates the optimal edge-detection response of (Marr's model of) human vision and thus reduces the data preprocessing and transmission required for machine vision.

  5. Tuning Spatial Profiles of Selection Pressure to Modulate the Evolution of Drug Resistance

    NASA Astrophysics Data System (ADS)

    De Jong, Maxwell G.; Wood, Kevin B.

    2018-06-01

    Spatial heterogeneity plays an important role in the evolution of drug resistance. While recent studies have indicated that spatial gradients of selection pressure can accelerate resistance evolution, much less is known about evolution in more complex spatial profiles. Here we use a stochastic toy model of drug resistance to investigate how different spatial profiles of selection pressure impact the time to fixation of a resistant allele. Using mean first passage time calculations, we show that spatial heterogeneity accelerates resistance evolution when the rate of spatial migration is sufficiently large relative to mutation but slows fixation for small migration rates. Interestingly, there exists an intermediate regime—characterized by comparable rates of migration and mutation—in which the rate of fixation can be either accelerated or decelerated depending on the spatial profile, even when spatially averaged selection pressure remains constant. Finally, we demonstrate that optimal tuning of the spatial profile can dramatically slow the spread and fixation of resistant subpopulations, even in the absence of a fitness cost for resistance. Our results may lay the groundwork for optimized, spatially resolved drug dosing strategies for mitigating the effects of drug resistance.

  6. Using an ecosystem service decision support tool to support ridge to reef management: An example of sediment reduction in west Maui, Hawaii

    NASA Astrophysics Data System (ADS)

    Falinski, K. A.; Oleson, K.; Htun, H.; Kappel, C.; Lecky, J.; Rowe, C.; Selkoe, K.; White, C.

    2016-12-01

    Faced with anthropogenic stressors and declining coral reef states, managers concerned with restoration and resilience of coral reefs are increasingly recognizing the need to take a ridge-to-reef, ecosystem-based approach. An ecosystem services framing can help managers move towards these goals, helping to illustrate trade-offs and opportunities of management actions in terms of their impacts on society. We describe a research program building a spatial ecosystem services-based decision-support tool, and being applied to guide ridge-to-reef management in a NOAA priority site in West Maui. We use multiple modeling methods to link biophysical processes to ecosystem services and their spatial flows and social values in an integrating platform. Modeled services include water availability, sediment retention, nutrient retention and carbon sequestration on land. A coral reef ecosystem service model is under development to capture the linkages between terrestrial and coastal ecosystem services. Valuation studies are underway to quantify the implications for human well-being. The tool integrates techniques from decision science to facilitate decision making. We use the sediment retention model to illustrate the types of analyses the tool can support. The case study explores the tradeoffs between road rehabilitation costs and sediment export avoided. We couple the sediment and cost models with trade-off analysis to identify optimal distributed solutions that are most cost-effective in reducing erosion, and then use those models to estimate sediment exposure to coral reefs. We find that cooperation between land owners reveals opportunities for maximizing the benefits of fixing roads and minimizes costs. This research forms the building blocks of an ecosystem service decision support tool that we intend to continue to test and apply in other Pacific Island settings.

  7. KeyWare: an open wireless distributed computing environment

    NASA Astrophysics Data System (ADS)

    Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir

    1995-12-01

    Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.

  8. A two-step parameter optimization algorithm for improving estimation of optical properties using spatial frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Hu, Dong; Lu, Renfu; Ying, Yibin

    2018-03-01

    This research was aimed at optimizing the inverse algorithm for estimating the optical absorption (μa) and reduced scattering (μs‧) coefficients from spatial frequency domain diffuse reflectance. Studies were first conducted to determine the optimal frequency resolution and start and end frequencies in terms of the reciprocal of mean free path (1/mfp‧). The results showed that the optimal frequency resolution increased with μs‧ and remained stable when μs‧ was larger than 2 mm-1. The optimal end frequency decreased from 0.3/mfp‧ to 0.16/mfp‧ with μs‧ ranging from 0.4 mm-1 to 3 mm-1, while the optimal start frequency remained at 0 mm-1. A two-step parameter estimation method was proposed based on the optimized frequency parameters, which improved estimation accuracies by 37.5% and 9.8% for μa and μs‧, respectively, compared with the conventional one-step method. Experimental validations with seven liquid optical phantoms showed that the optimized algorithm resulted in the mean absolute errors of 15.4%, 7.6%, 5.0% for μa and 16.4%, 18.0%, 18.3% for μs‧ at the wavelengths of 675 nm, 700 nm, and 715 nm, respectively. Hence, implementation of the optimized parameter estimation method should be considered in order to improve the measurement of optical properties of biological materials when using spatial frequency domain imaging technique.

  9. Impacts of irrigation on groundwater depletion in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ge, Yuqi; Lei, Huimin

    2017-04-01

    Groundwater resources is an essential water supply for agriculture in the North China Plain (NCP) which is one of the most important food production areas in China. In the past decades, excessive groundwater-fed irrigation in this area has caused sharp decline in groundwater table. However, accurate monitoring on the net groundwater exploitation is still difficult, mainly due to a lack of complete groundwater exploitation monitoring network. This hinders an accurate evaluation of the effects of agricultural managements on shallow groundwater table. In this study, we use an existing method to estimate the net irrigation amount at the county level, and evaluate the effects of current agricultural management on groundwater depletion. We apply this method in five typical counties in the NCP to estimate annual net irrigation amount from 2002 to 2015, based on meteorological data (2002-2015) and remote sensing ET data (2002-2015) . First, an agro-hydrological model (Soil-Water-Atmosphere-Plant, SWAP) is calibrated and validated at field scale based on the measured data from flux towers. Second, the model is established at reginal scale by spatial discretization. Third, we use an optimization tool (Parameter ESTimation, PEST) to optimize the irrigation parameter in SWAP so as the simulated evapotranspiration (ET) by SWAP is closest to the remote sensing ET. We expect that the simulated irrigation amount from the optimized parameter is the estimated net irrigation amount. Finally, the contribution of agricultural management to the observed groundwater depletion is assessed by calculating the groundwater balance which considers the estimated net irrigation amount, observed lateral groundwater, rainfall recharge, deep seepage, evaporation from phreatic water and domestic water use. The study is expected to give a scientific basis for alleviating the over-exploitation of groundwater resources in the area.

  10. Detecting ecosystem performance anomalies for land management in the upper colorado river basin using satellite observations, climate data, and ecosystem models

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, B.K.

    2010-01-01

    This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005-2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using "percentage of bare soil" ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005-2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions. ?? 2010 by the authors.

  11. Detecting Ecosystem Performance Anomalies for Land Management in the Upper Colorado River Basin Using Satellite Observations, Climate Data, and Ecosystem Models

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2010-01-01

    This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005–2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using “percentage of bare soil” ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005–2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions.

  12. a Study on Variations of Shoreline Changes and Temporal-Spatial Potentiality for Cloud Seeding at Urumia Lake

    NASA Astrophysics Data System (ADS)

    Agha Taher, R.; Jafari, M.; Fallah, M.; Alavi, A.

    2015-12-01

    Protecting the living environment has become one of the greatest human concerns; sudden increase of population, industry and technology development, unrestrained over consumption of the citizens and climate changes, have all caused many problems for mankind. Shores are special zones that are in contact with three Atmosphere, Hydrosphere and Lithosphere environments of earth. Shore lines are of the most important linear features of the earth's surface which have an animated and alive nature. In this regard, optimized management of the shores and environmental protection for stable development require observing the shorelines and their variations. Protection of shorelines within appropriate time periods is of high importance for the purpose of optimized management of the shores. The twenty first century has been called the era of information explosion. A time that, through benefits of new technologies, information experts attempt to generate more and up to date information in various fields and to provide them for managers and decision makers in order to be considered for future planning and also to assist the planners to arrange and set a comprehensive plan. Aerial images and remote sensing technology are economic methods to acquire the required data. Such methods are free from common time and place limitations in survey based methods. Among remote sensing data, the ones acquired from optical images have several benefits which include low cost, interpretation simplicity and ease of access. That is why most of the researches concerning extraction of shorelines are practiced using optical images. On the other hand, wide range coverage of satellite images along with rapid access to them caused these images to be used extensively for extracting the shorelines. The attempt in this research is to use satellite images and their application in order to study variations of the shorelines. Thus, for this purpose, Landsat satellite images from TM and ETM+ sensors in the 35 time period has been used. In order to reach better results, images from MODIS satellite has been used as auxiliary data for the images that are with an error margin. Initial classification on the images was conducted to distinguish water and non water applications. Neural network classification was applied with specific scales on the images and the two major applications were thereby extracted. Then, in order to authenticate the proceedings, Error matrix and Kappa coefficient has been applied on the classified images. Base pixel method of neural network was used for the purpose of information extraction while authenticity of that was evaluated too. The outcomes display the trend of Urmia shoreline has been approximately constant between the years of 1976 to 1995 and has experienced very low variations. In 1998 the lake experienced increase of water and therefore advancement of the shoreline of the lake due to increase of precipitation and the volume of inflowing water to the basin. During 2000 to 20125, however, the lake's shoreline has experienced a downward trend, which was intensified in 2007 and reached to its most critical level ever since, that is decreasing to about one third. Further, temporal and spatial potentiality evaluation of clouds seeding in Urmia lake zone has been studied as a solution for improvement and recovery of the current status of the lake, and an algorithm was proposed for optimized temporal- spatial study on could seeding. Ecological, meteorological and synoptic data were used for timing study of the cloud's seeding plan, which upon study; it is easy to evaluate precipitation potential and quality of the system. At the next step, the rate of humidity and also stability of the precipitating system can be analyzed using radar acquired data. Whereas extracted date from MODIS images are expressing the spatial position, therefore in order to study the location of the cloud's seeding, MODIS images of the selected time intervals along with applying MCM algorithm were used to conclude thick clouds. Also, with interpolation of the TRMM data, it is possible to deduce maximum precipitation in the form of spatial arena. One of the data categories that is used both for temporal and spatial analysis is radar images which in addition to time, displays the existing humidity range, movement direction, and positions of accumulated precipitation cores. Therefore, using this algorithm, it is possible to conclude the most optimized spatial position in order to execute the seeding plan.

  13. Multi-objective optimization in spatial planning: Improving the effectiveness of multi-objective evolutionary algorithms (non-dominated sorting genetic algorithm II)

    NASA Astrophysics Data System (ADS)

    Karakostas, Spiros

    2015-05-01

    The multi-objective nature of most spatial planning initiatives and the numerous constraints that are introduced in the planning process by decision makers, stakeholders, etc., synthesize a complex spatial planning context in which the concept of solid and meaningful optimization is a unique challenge. This article investigates new approaches to enhance the effectiveness of multi-objective evolutionary algorithms (MOEAs) via the adoption of a well-known metaheuristic: the non-dominated sorting genetic algorithm II (NSGA-II). In particular, the contribution of a sophisticated crossover operator coupled with an enhanced initialization heuristic is evaluated against a series of metrics measuring the effectiveness of MOEAs. Encouraging results emerge for both the convergence rate of the evolutionary optimization process and the occupation of valuable regions of the objective space by non-dominated solutions, facilitating the work of spatial planners and decision makers. Based on the promising behaviour of both heuristics, topics for further research are proposed to improve their effectiveness.

  14. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    NASA Astrophysics Data System (ADS)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  15. Spatial Optimization of Cropping Pattern in an Agricultural Watershed for Food and Biofuel Production with Minimum Downstream Pollution

    NASA Astrophysics Data System (ADS)

    Pv, F.; Sudheer, K.; Chaubey, I.; RAJ, C.; Her, Y.

    2013-05-01

    Biofuel is considered to be a viable alternative to meet the increasing fuel demand, and therefore many countries are promoting agricultural activities that help increase production of raw material for biofuel production. Mostly, the biofuel is produced from grain based crops such as Corn, and it apparently create a shortage in food grains. Consequently, there have been regulations to limit the ethanol production from grains, and to use cellulosic crops as raw material for biofuel production. However, cultivation of such cellulosic crops may have different effects on water quality in the watershed. Corn stover, one of the potential cellulosic materials, when removed from the agricultural field for biofuel production, causes a decrease in the organic nutrients in the field. This results in increased use of pesticides and fertilizers which in turn affect the downstream water quality due to leaching of the chemicals. On the contrary, planting less fertilizer-intensive cellulosic crops, like Switch Grass and Miscanthus, is expected to reduce the pollutant loadings from the watershed. Therefore, an ecologically viable land use scenario would be a mixed cropping of grain crops and cellulosic crops, that meet the demand for food and biofuel without compromising on the downstream water quality. Such cropping pattern can be arrived through a simulation-optimization framework. Mathematical models can be employed to evaluate various management scenarios related to crop production and to assess its impact on water quality. Soil and Water Assessment Tool (SWAT) model is one of the most widely used models in this context. SWAT can simulate the water and nutrient cycles, and also quantify the long-term impacts of land management practices, in a watershed. This model can therefore help take decisions regarding the type of cropping and management practices to be adopted in the watershed such that the water quality in the rivers is maintained at acceptable level. In this study, it is proposed to link SWAT model with an optimization algorithm, whose objective is to identify the optimal cropping pattern that results in maximum biomass production for biofuel generation as well as a minimum guaranteed amount of grain production. The optimal allocation ensures that the downstream water quality in the river is within a desirable limit. The study employed probabilistic information in order to address the uncertainty in model simulations. The residual variance of the model is used to transform the deterministic simulations in to probabilistic information. The proposed framework is illustrated using data pertaining to an agricultural watershed in the USA. The preliminary results of the study are encouraging and suggest that an appropriate combination of Corn, Soyabean, Miscanthus, Switch Grass and Pasture land can be arrived at through the developed framework. The placement of Miscanthus and Switch Grass in the watershed help improve the downstream water quality, while Corn and Soyabean makes it deteriorated. The spatial allocation of these crops therefore certainly plays a major role in the downstream water quality.

  16. FORAGES AND PASTURES SYMPOSIUM: Improving soil health and productivity on grasslands using managed grazing of livestock.

    PubMed

    Russell, J R; Bisinger, J J

    2015-06-01

    Beyond grazing, managed grasslands provide ecological services that may offer economic incentives for multifunctional use. Increasing biodiversity of plant communities may maximize net primary production by optimizing utilization of available light, water, and nutrient resources; enhance production stability in response to climatic stress; reduce invasion of exotic species; increase soil OM; reduce nutrient leaching or loading in surface runoff; and provide wildlife habitat. Strategically managed grazing may increase biodiversity of cool-season pastures by creating disturbance in plant communities through herbivory, treading, nutrient cycling, and plant seed dispersal. Soil OM will increase carbon and nutrient sequestration and water-holding capacity of soils and is greater in grazed pastures than nongrazed grasslands or land used for row crop or hay production. However, results of studies evaluating the effects of different grazing management systems on soil OM are limited and inconsistent. Although roots and organic residues of pasture forages create soil macropores that reduce soil compaction, grazing has increased soil bulk density or penetration resistance regardless of stocking rates or systems. But the effects of the duration of grazing and rest periods on soil compaction need further evaluation. Because vegetative cover dissipates the energy of falling raindrops and plant stems and tillers reduce the rate of surface water flow, managing grazing to maintain adequate vegetative cover will minimize the effects of treading on water infiltration in both upland and riparian locations. Through increased diversity of the plant community with alterations of habitat structure, grazing systems can be developed that enhance habitat for wildlife and insect pollinators. Although grazing management may enhance the ecological services provided by grasslands, environmental responses are controlled by variations in climate, soil, landscape position, and plant community resulting in considerable spatial and temporal variation in the responses. Furthermore, a single grazing management system may not maximize livestock productivity and each of the potential ecological services provided by grasslands. Therefore, production and ecological goals must be integrated to identify the optimal grazing management system.

  17. Examining heterogeneity and wildfire management expenditures using spatially and temporally descriptive data

    Treesearch

    Michael S. Hand; Matthew P. Thompson; Dave Calkin

    2016-01-01

    Increasing costs of wildfire management have highlighted the need to better understand suppression expenditures and potential tradeoffs of land management activities that may affect fire risks. Spatially and temporally descriptive data is used to develop a model of wildfire suppression expenditures, providing new insights into the role of spatial and temporal...

  18. Simulating the Effects of Alternative Forest Management Strategies on Landscape Structure

    Treesearch

    Eric J. Gustafson; Thomas Crow

    1996-01-01

    Quantitative, spatial tools are needed to assess the long-term spatial consequences of alternative management strategies for land use planning and resource management. We constructed a timber harvest allocation model (HARVEST) that provides a visual and quantitative means to predict the spatial pattern of forest openings produced by alternative harvest strategies....

  19. Optimization of Land Use Suitability for Agriculture Using Integrated Geospatial Model and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Mansor, S. B.; Pormanafi, S.; Mahmud, A. R. B.; Pirasteh, S.

    2012-08-01

    In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.

  20. Active control of the spatial MRI phase distribution with optimal control theory

    NASA Astrophysics Data System (ADS)

    Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin

    2017-08-01

    This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.

  1. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian D.

    2009-01-01

    This paper establishes a relationship between the polishing process parameters and the generation of mid spatial-frequency error. The consideration of the polishing lap design to optimize the process in order to keep residual errors to a minimum and optimization of the process (speeds, stroke, etc.) and to keep the residual mid spatial-frequency error to a minimum, is also presented.

  2. Optimization of two-photon wave function in parametric down conversion by adaptive optics control of the pump radiation.

    PubMed

    Minozzi, M; Bonora, S; Sergienko, A V; Vallone, G; Villoresi, P

    2013-02-15

    We present an efficient method for optimizing the spatial profile of entangled-photon wave function produced in a spontaneous parametric down conversion process. A deformable mirror that modifies a wavefront of a 404 nm CW diode laser pump interacting with a nonlinear β-barium borate type-I crystal effectively controls the profile of the joint biphoton function. The use of a feedback signal extracted from the biphoton coincidence rate is used to achieve the optimal wavefront shape. The optimization of the two-photon coupling into two, single spatial modes for correlated detection is used for a practical demonstration of this physical principle.

  3. Influences of historical and projected changes in climate and land management practices on nutrient fluxes in the Mississippi River Basin, 1948-2100

    NASA Astrophysics Data System (ADS)

    Spak, S.; Ward, A. S.; Li, Y.; Dalrymple, K. E.

    2016-12-01

    Nitrogen fertilization is central to contemporary row crop production in the U.S., but resultant nitrate transport leads to eutrophication, hypoxia, and algal blooms throughout the Mississippi River Basin and in coastal waters of the Gulf of Mexico. Effective basin-scale nutrient management requires a comprehensive understanding of the dynamics of nitrate transport in this large river catchment and the roles of individual management practices, that must then be operationalized to optimize management for both local geophysical and agricultural conditions and in response to decadal and inter-annual variations in local and regional climate. Here, we apply ensemble simulations with Agro-IBIS and THMB using spatially and temporally specific land cover, soil, agricultural, topographic, and climate data to simulate the individual and combined effects of land management and climate on historical (1948-2007) nitrate concentrations and transport in the Mississippi River Basin. We further identify sensitivities of in-stream nitrate dynamics to local and regional applications of Best Management Practices. The ensemble resolves the effects of techniques recommended in the Iowa Nutrient Reduction Strategy, including crop rotations, fertilizer management, tillage and residue management, and cover crops. Analysis of the nitrate transport response surfaces identifies non-linear effects of combined nutrient management tactics, and quantifies the stationarity of the relative and absolute influences of land management and climate during the 60-year study period.

  4. Latent spatial models and sampling design for landscape genetics

    Treesearch

    Ephraim M. Hanks; Melvin B. Hooten; Steven T. Knick; Sara J. Oyler-McCance; Jennifer A. Fike; Todd B. Cross; Michael K. Schwartz

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial...

  5. Exploring the Application of Volunteered Geographic Information to Catchment Management: a Survey Approach

    NASA Astrophysics Data System (ADS)

    Paudyal, D. R.; McDougall, K.; Apan, A.

    2012-07-01

    The participation and engagement of grass-root level community groups and citizens for natural resource management has a long history. With recent developments in ICT tools and spatial technology, these groups are seeking a new opportunity to manage natural resource data. There are lot of spatial information collected/generated by landcare groups, land holders and other community groups at the grass-root level through their volunteer initiatives. State government organisations are also interested in gaining access to this spatial data/information and engaging these groups to collect spatial information under their mapping programs. The aim of this paper is to explore the possible utilisation of volunteered geographic information (VGI) for catchment management activities. This research paper discusses the importance of spatial information and spatial data infrastructure (SDI) for catchment management and the emergence of VGI. A conceptual framework has been developed to illustrate how these emerging spatial information applications and various community volunteer activities can contribute to a more inclusive spatial data infrastructure (SDI) development at local level. A survey of 56 regional NRM bodies in Australia was utilised to explore the current community-driven volunteer initiatives for NRM activities and the potential of utilisation of VGI initiatives for NRM decision making process. This research paper concludes that VGI activities have great potential to contribute to SDI development at the community level to achieve better natural resource management (NRM) outcomes.

  6. Automatic Calibration of a Semi-Distributed Hydrologic Model Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Bekele, E. G.; Nicklow, J. W.

    2005-12-01

    Hydrologic simulation models need to be calibrated and validated before using them for operational predictions. Spatially-distributed hydrologic models generally have a large number of parameters to capture the various physical characteristics of a hydrologic system. Manual calibration of such models is a very tedious and daunting task, and its success depends on the subjective assessment of a particular modeler, which includes knowledge of the basic approaches and interactions in the model. In order to alleviate these shortcomings, an automatic calibration model, which employs an evolutionary optimization technique known as Particle Swarm Optimizer (PSO) for parameter estimation, is developed. PSO is a heuristic search algorithm that is inspired by social behavior of bird flocking or fish schooling. The newly-developed calibration model is integrated to the U.S. Department of Agriculture's Soil and Water Assessment Tool (SWAT). SWAT is a physically-based, semi-distributed hydrologic model that was developed to predict the long term impacts of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use, and management conditions. SWAT was calibrated for streamflow and sediment concentration. The calibration process involves parameter specification, whereby sensitive model parameters are identified, and parameter estimation. In order to reduce the number of parameters to be calibrated, parameterization was performed. The methodology is applied to a demonstration watershed known as Big Creek, which is located in southern Illinois. Application results show the effectiveness of the approach and model predictions are significantly improved.

  7. Adaptive Flood Risk Management Under Climate Change Uncertainty Using Real Options and Optimization.

    PubMed

    Woodward, Michelle; Kapelan, Zoran; Gouldby, Ben

    2014-01-01

    It is well recognized that adaptive and flexible flood risk strategies are required to account for future uncertainties. Development of such strategies is, however, a challenge. Climate change alone is a significant complication, but, in addition, complexities exist trying to identify the most appropriate set of mitigation measures, or interventions. There are a range of economic and environmental performance measures that require consideration, and the spatial and temporal aspects of evaluating the performance of these is complex. All these elements pose severe difficulties to decisionmakers. This article describes a decision support methodology that has the capability to assess the most appropriate set of interventions to make in a flood system and the opportune time to make these interventions, given the future uncertainties. The flood risk strategies have been explicitly designed to allow for flexible adaptive measures by capturing the concepts of real options and multiobjective optimization to evaluate potential flood risk management opportunities. A state-of-the-art flood risk analysis tool is employed to evaluate the risk associated to each strategy over future points in time and a multiobjective genetic algorithm is utilized to search for the optimal adaptive strategies. The modeling system has been applied to a reach on the Thames Estuary (London, England), and initial results show the inclusion of flexibility is advantageous, while the outputs provide decisionmakers with supplementary knowledge that previously has not been considered. © 2013 HR Wallingford Ltd.

  8. Overcoming Spatial and Temporal Barriers to Public Access Defibrillators Via Optimization

    PubMed Central

    Sun, Christopher L. F.; Demirtas, Derya; Brooks, Steven C.; Morrison, Laurie J.; Chan, Timothy C.Y.

    2016-01-01

    BACKGROUND Immediate access to an automated external defibrillator (AED) increases the chance of survival from out-of-hospital cardiac arrest (OHCA). Current deployment usually considers spatial AED access, assuming AEDs are available 24 h a day. OBJECTIVES We sought to develop an optimization model for AED deployment, accounting for spatial and temporal accessibility, to evaluate if OHCA coverage would improve compared to deployment based on spatial accessibility alone. METHODS This was a retrospective population-based cohort study using data from the Toronto Regional RescuNET cardiac arrest database. We identified all nontraumatic public-location OHCAs in Toronto, Canada (January 2006 through August 2014) and obtained a list of registered AEDs (March 2015) from Toronto emergency medical services. We quantified coverage loss due to limited temporal access by comparing the number of OHCAs that occurred within 100 meters of a registered AED (assumed 24/7 coverage) with the number that occurred both within 100 meters of a registered AED and when the AED was available (actual coverage). We then developed a spatiotemporal optimization model that determined AED locations to maximize OHCA actual coverage and overcome the reported coverage loss. We computed the coverage gain between the spatiotemporal model and a spatial-only model using 10-fold cross-validation. RESULTS We identified 2,440 atraumatic public OHCAs and 737 registered AED locations. A total of 451 OHCAs were covered by registered AEDs under assumed 24/7 coverage, and 354 OHCAs under actual coverage, representing a coverage loss of 21.5% (p < 0.001). Using the spatiotemporal model to optimize AED deployment, a 25.3% relative increase in actual coverage was achieved over the spatial-only approach (p < 0.001). CONCLUSIONS One in 5 OHCAs occurred near an inaccessible AED at the time of the OHCA. Potential AED use was significantly improved with a spatiotemporal optimization model guiding deployment. PMID:27539176

  9. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Using Multispectral and Elevation Data to Predict Soil Properties for a Better Management of Fertilizers at Field Scale

    NASA Astrophysics Data System (ADS)

    Drouin, Ariane; Michaud, Aubert; Sylvain, Jean-Daniel; N'Dayegamiye, Adrien; Gasser, Marc-Olivier; Nolin, Michel; Perron, Isabelle; Grenon, Lucie; Beaudin, Isabelle; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    This project aims at developing and validating an operational integrated management and localized approach at field scale using remote sensing data. It is realized in order to support the competitiveness of agricultural businesses, to ensure soil productivity in the long term and prevent diffuse contamination of surface waters. Our intention is to help agrienvironmental advisors and farmers in the consideration of spatial variability of soil properties in the management of fields. The proposed approach of soil properties recognition is based on the combination of elevation data and multispectral satellite imagery (Landsat) within statistical models. The method is based on the use of the largest possible number of satellite images to cover the widest range of soil moisture variability. Several spectral indices are calculated for each image (normalized brightness index, soil color index, organic matter index, etc.). The assignation of soils is based on a calibration procedure making use of the spatial soil database available in Canada. It includes soil profile point data associated to a database containing the information collected in the field. Three soil properties are predicted and mapped: A horizon texture, B horizon texture and drainage class. All the spectral indices, elevation data and soil data are combined in a discriminant analysis that produces discriminant functions. These are then used to produce maps of soil properties. In addition, from mapping soil properties, management zones are delineated within the field. The delineation of management zones with relatively similar soil properties is created to enable farmers to manage their fertilizers by taking greater account of their soils. This localized or precision management aims to adjust the application of fertilizer according to the real needs of soils and to reduce costs for farmers and the exports of nutrients to the stream. Mapping of soil properties will be validated in three agricultural regions in Quebec through an experimental field protocol (spatial sampling by management zones). Soils will be sampled, but crop yields under different nitrogen rates will also be assessed. Specifically, in each of the management areas defined, five different doses of nitrogen were applied (0, 50, 100, 150, 200 kg N / ha) on corn fields. In fall, the corn is harvested to assess differences in yields between the management areas and also in terms of doses of nitrogen. Ultimately, on the basis of well-established management areas, showing contrasting soil properties, the farmer will be able to ensure optimal correction of soil acidity, nitrogen fertilization, richness of soil in P and K, and improve soil drainage and physical properties. Environmentally, the principles of integrated and localized management carries significant benefits, particularly in terms of reduction of diffuse nutrient pollution.

  11. Controlled supercontinua via spatial beam shaping

    NASA Astrophysics Data System (ADS)

    Zhdanova, Alexandra A.; Shen, Yujie; Thompson, Jonathan V.; Scully, Marlan O.; Yakovlev, Vladislav V.; Sokolov, Alexei V.

    2018-06-01

    Recently, optimization techniques have had a significant impact in a variety of fields, leading to a higher signal-to-noise and more streamlined techniques. We consider the possibility for using programmable phase-only spatial optimization of the pump beam to influence the supercontinuum generation process. Preliminary results show that significant broadening and rough control of the supercontinuum spectrum in the visible region are possible without loss of input energy. This serves as a proof-of-concept demonstration that spatial effects can controllably influence the supercontinuum spectrum, leading to possibilities for utilizing supercontinuum power more efficiently and achieving excellent spectral control.

  12. Bioenergy Landscape Design to Minimize the Environmental Impacts of Feedstock Cultivation

    NASA Astrophysics Data System (ADS)

    Field, J.; Dinh, T.; Paustian, K.

    2012-12-01

    The United States has adopted aggressive mandates for the use of biofuels in an attempt to improve domestic energy security, reduce greenhouse gas (GHG) emissions in the transportation sector, and stimulate rural development. The Renewable Fuel Standard requires that the environmental impact of all conventional, advanced, and cellulosic biofuels be evaluated through standardized lifecycle assessment (LCA) techniques relative to a baseline of petroleum-derived gasoline and diesel fuels. A significant fraction of the energy use, GHG emissions, and water quality impact of the production of all types of biofuel occurs during the cultivation of feedstocks (either starch- or oil-based or lignocellulosic), which requires some combination of crop switching, land use change, or cultivation intensification. Furthermore, these impacts exhibit a high degree of spatial variability with local climate, soil type, land use history, and farm management practices. Here we present a spatially-explicit LCA methodology based on the DayCent soil biogeochemistry model capable of accurately evaluating cultivation impacts for a variety of biofuel feedstocks. This methodology considers soil GHG emissions and nitrate leaching as well as the embodied emissions of agricultural inputs and fuels used for field operations and biomass transport to a centralized collection point (biorefinery or transportation hub). Model results are incorporated into a biomass production cost analysis in order to identify the impact of different system designs on production cost. Finally, the resulting multi-criteria optimization problem is solved by monetizing all environmental externalities based on figures from the non-market valuation literature and using a heuristic optimization algorithm to identify optimal cultivation areas and collection point locations to minimize overall environmental impacts at lowest possible cost. Preliminary analysis results are presented for an illustrative case study of switchgrass production to supply a commercial-scale cellulosic ethanol plant currently under construction in the Great Plains. This case study supports a larger effort to mobilize this methodology into a web-based, user-friendly tool allowing farmers, academics, and biorefinery facility owners to investigate the effects of management choices and facility siting on system environmental performance, and advancing the state-of-the-art for regulatory assessment tools in the bioenergy sector.

  13. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness

    PubMed Central

    Li, Jin; Tran, Maggie; Siwabessy, Justy

    2016-01-01

    Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models. PMID:26890307

  14. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness.

    PubMed

    Li, Jin; Tran, Maggie; Siwabessy, Justy

    2016-01-01

    Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia's marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to 'small p and large n' problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models.

  15. Components of spatial information management in wildlife ecology: Software for statistical and modeling analysis [Chapter 14

    Treesearch

    Hawthorne L. Beyer; Jeff Jenness; Samuel A. Cushman

    2010-01-01

    Spatial information systems (SIS) is a term that describes a wide diversity of concepts, techniques, and technologies related to the capture, management, display and analysis of spatial information. It encompasses technologies such as geographic information systems (GIS), global positioning systems (GPS), remote sensing, and relational database management systems (...

  16. Perception of scale in forest management planning: Challenges and implications

    Treesearch

    Swee May Tang; Eric J. Gustafson

    1997-01-01

    Forest management practices imposed at one spatial scale may affect the patterns and processes of ecosystems at other scales. These impacts and feedbacks on the functioning of ecosystems across spatial scales are not well understood. We examined the effects of silvicultural manipulations simulated at two spatial scales of management planning on landscape pattern and...

  17. Optimization of water-level monitoring networks in the eastern Snake River Plain aquifer using a kriging-based genetic algorithm method

    USGS Publications Warehouse

    Fisher, Jason C.

    2013-01-01

    Long-term groundwater monitoring networks can provide essential information for the planning and management of water resources. Budget constraints in water resource management agencies often mean a reduction in the number of observation wells included in a monitoring network. A network design tool, distributed as an R package, was developed to determine which wells to exclude from a monitoring network because they add little or no beneficial information. A kriging-based genetic algorithm method was used to optimize the monitoring network. The algorithm was used to find the set of wells whose removal leads to the smallest increase in the weighted sum of the (1) mean standard error at all nodes in the kriging grid where the water table is estimated, (2) root-mean-squared-error between the measured and estimated water-level elevation at the removed sites, (3) mean standard deviation of measurements across time at the removed sites, and (4) mean measurement error of wells in the reduced network. The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The network design tool was applied to optimize two observation well networks monitoring the water table of the eastern Snake River Plain aquifer, Idaho; these networks include the 2008 Federal-State Cooperative water-level monitoring network (Co-op network) with 166 observation wells, and the 2008 U.S. Geological Survey-Idaho National Laboratory water-level monitoring network (USGS-INL network) with 171 wells. Each water-level monitoring network was optimized five times: by removing (1) 10, (2) 20, (3) 40, (4) 60, and (5) 80 observation wells from the original network. An examination of the trade-offs associated with changes in the number of wells to remove indicates that 20 wells can be removed from the Co-op network with a relatively small degradation of the estimated water table map, and 40 wells can be removed from the USGS-INL network before the water table map degradation accelerates. The optimal network designs indicate the robustness of the network design tool. Observation wells were removed from high well-density areas of the network while retaining the spatial pattern of the existing water-table map.

  18. Small worlds in space: Synchronization, spatial and relational modularity

    NASA Astrophysics Data System (ADS)

    Brede, M.

    2010-06-01

    In this letter we investigate networks that have been optimized to realize a trade-off between enhanced synchronization and cost of wire to connect the nodes in space. Analyzing the evolved arrangement of nodes in space and their corresponding network topology, a class of small-world networks characterized by spatial and network modularity is found. More precisely, for low cost of wire optimal configurations are characterized by a division of nodes into two spatial groups with maximum distance from each other, whereas network modularity is low. For high cost of wire, the nodes organize into several distinct groups in space that correspond to network modules connected on a ring. In between, spatially and relationally modular small-world networks are found.

  19. Spatial Search by Quantum Walk is Optimal for Almost all Graphs.

    PubMed

    Chakraborty, Shantanav; Novo, Leonardo; Ambainis, Andris; Omar, Yasser

    2016-03-11

    The problem of finding a marked node in a graph can be solved by the spatial search algorithm based on continuous-time quantum walks (CTQW). However, this algorithm is known to run in optimal time only for a handful of graphs. In this work, we prove that for Erdös-Renyi random graphs, i.e., graphs of n vertices where each edge exists with probability p, search by CTQW is almost surely optimal as long as p≥log^{3/2}(n)/n. Consequently, we show that quantum spatial search is in fact optimal for almost all graphs, meaning that the fraction of graphs of n vertices for which this optimality holds tends to one in the asymptotic limit. We obtain this result by proving that search is optimal on graphs where the ratio between the second largest and the largest eigenvalue is bounded by a constant smaller than 1. Finally, we show that we can extend our results on search to establish high fidelity quantum communication between two arbitrary nodes of a random network of interacting qubits, namely, to perform quantum state transfer, as well as entanglement generation. Our work shows that quantum information tasks typically designed for structured systems retain performance in very disordered structures.

  20. [Application of simulated annealing method and neural network on optimizing soil sampling schemes based on road distribution].

    PubMed

    Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng

    2015-03-01

    Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.

  1. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA.

    PubMed

    Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura

    2015-01-01

    A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.

  2. A hydro-meteorological model chain to assess the influence of natural variability and impacts of climate change on extreme events and propose optimal water management

    NASA Astrophysics Data System (ADS)

    von Trentini, F.; Willkofer, F.; Wood, R. R.; Schmid, F. J.; Ludwig, R.

    2017-12-01

    The ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) focuses on the effects of climate change on hydro-meteorological extreme events and their implications for water management in Bavaria and Québec. Therefore, a hydro-meteorological model chain is applied. It employs high performance computing capacity of the Leibniz Supercomputing Centre facility SuperMUC to dynamically downscale 50 members of the Global Circulation Model CanESM2 over European and Eastern North American domains using the Canadian Regional Climate Model (RCM) CRCM5. Over Europe, the unique single model ensemble is conjointly analyzed with the latest information provided through the CORDEX-initiative, to better assess the influence of natural climate variability and climatic change in the dynamics of extreme events. Furthermore, these 50 members of a single RCM will enhance extreme value statistics (extreme return periods) by exploiting the available 1500 model years for the reference period from 1981 to 2010. Hence, the RCM output is applied to drive the process based, fully distributed, and deterministic hydrological model WaSiM in high temporal (3h) and spatial (500m) resolution. WaSiM and the large ensemble are further used to derive a variety of hydro-meteorological patterns leading to severe flood events. A tool for virtual perfect prediction shall provide a combination of optimal lead time and management strategy to mitigate certain flood events following these patterns.

  3. Real Time Integration of Field Data Into a GIS Platform for the Management of Hydrological Emergencies

    NASA Astrophysics Data System (ADS)

    Mangiameli, M.; Mussumeci, G.

    2013-01-01

    A wide series of events requires immediate availability of information and field data to be provided to decision-makers. An example is the necessity of quickly transferring the information acquired from monitoring and alerting sensors or the data of the reconnaissance of damage after a disastrous event to an Emergency Operations Center. To this purpose, we developed an integrated GIS and WebGIS system to dynamically create and populate via Web a database with spatial features. In particular, this work concerns the gathering and transmission of spatial data and related information to the desktop GIS so that they can be displayed and analyzed in real time to characterize the operational scenario and to decide the rescue interventions. As basic software, we used only free and open source: QuantumGIS and Grass as Desktop GIS, Map Server with PMapper application for the Web-Gis functionality and PostGreSQL/PostGIS as Data Base Management System (DBMS). The approach has been designed, developed and successfully tested in the management of GIS-based navigation of an autonomous robot, both to map its trajectories and to assign optimal paths. This paper presents the application of our system to a simulated hydrological event that could interest the province of Catania, in Sicily. In particular, assuming that more teams draw up an inventory of the damage, we highlight the benefits of real-time transmission of the information collected from the field to headquarters.

  4. The pan-sharpening of satellite and UAV imagery for agricultural applications

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Woroszkiewicz, Malgorzata

    2016-10-01

    Remote sensing techniques are widely used in many different areas of interest, i.e. urban studies, environmental studies, agriculture, etc., due to fact that they provide rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. Agricultural management is one of the most common application of remote sensing methods nowadays. Monitoring of agricultural sites and creating information regarding spatial distribution and characteristics of crops are important tasks to provide data for precision agriculture, crop management and registries of agricultural lands. For monitoring of cultivated areas many different types of remote sensing data can be used- most popular are multispectral satellites imagery. Such data allow for generating land use and land cover maps, based on various methods of image processing and remote sensing methods. This paper presents fusion of satellite and unnamed aerial vehicle (UAV) imagery for agricultural applications, especially for distinguishing crop types. Authors in their article presented chosen data fusion methods for satellite images and data obtained from low altitudes. Moreover the authors described pan- sharpening approaches and applied chosen pan- sharpening methods for multiresolution image fusion of satellite and UAV imagery. For such purpose, satellite images from Landsat- 8 OLI sensor and data collected within various UAV flights (with mounted RGB camera) were used. In this article, the authors not only had shown the potential of fusion of satellite and UAV images, but also presented the application of pan- sharpening in crop identification and management.

  5. An adaptable toolkit to assess commercial fishery costs and benefits related to marine protected area network design.

    PubMed

    Daigle, Rémi M; Monaco, Cristián J; Elgin, Ashley K

    2015-01-01

    Around the world, governments are establishing Marine Protected Area (MPA) networks to meet their commitments to the United Nations Convention on Biological Diversity. MPAs are often used in an effort to conserve biodiversity and manage fisheries stocks. However, their efficacy and effect on fisheries yields remain unclear. We conducted a case-study on the economic impact of different MPA network design strategies on the Atlantic cod ( Gadus morhua ) fisheries in Canada. The open-source R package that we developed to analyze this case study can be customized to conduct similar analyses for other systems. We used a spatially-explicit individual-based model of population growth and dispersal coupled with a fisheries management and harvesting component. We found that MPA networks that both protect the target species' habitat and were spatially optimized to improve population connectivity had the highest net present value (i.e., were most profitable for the fishing industry). These higher profits were achieved primarily by reducing the distance travelled for fishing and reducing the probability of a moratorium event. These findings add to a growing body of knowledge demonstrating the importance of incorporating population connectivity in the MPA planning process, as well as the ability of this R package to explore ecological and economic consequences of alternative MPA network designs.

  6. Coupling the Biophysical and Social Dimensions of Wildfire Risk to Improve Wildfire Mitigation Planning.

    PubMed

    Ager, Alan A; Kline, Jeffrey D; Fischer, A Paige

    2015-08-01

    We describe recent advances in biophysical and social aspects of risk and their potential combined contribution to improve mitigation planning on fire-prone landscapes. The methods and tools provide an improved method for defining the spatial extent of wildfire risk to communities compared to current planning processes. They also propose an expanded role for social science to improve understanding of community-wide risk perceptions and to predict property owners' capacities and willingness to mitigate risk by treating hazardous fuels and reducing the susceptibility of dwellings. In particular, we identify spatial scale mismatches in wildfire mitigation planning and their potential adverse impact on risk mitigation goals. Studies in other fire-prone regions suggest that these scale mismatches are widespread and contribute to continued wildfire dwelling losses. We discuss how risk perceptions and behavior contribute to scale mismatches and how they can be minimized through integrated analyses of landscape wildfire transmission and social factors that describe the potential for collaboration among landowners and land management agencies. These concepts are then used to outline an integrated socioecological planning framework to identify optimal strategies for local community risk mitigation and improve landscape-scale prioritization of fuel management investments by government entities. © 2015 Society for Risk Analysis.

  7. A dynamic spatio-temporal model for spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.

    2017-01-01

    Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.

  8. Geostatistical Characterization of Cereal Leaf Beetle (Coleoptera: Chrysomelidae) Distributions in Wheat.

    PubMed

    Reay-Jones, Francis P F

    2017-08-01

    A 3-yr study was conducted in wheat, Triticum aestivum L., in South Carolina to characterize the spatial distribution of Oulema melanopus (L.) adults, eggs, and larvae using semivariograms, which provides a measure of spatial dependence among sampling data. Moran's I coefficients for peak densities of each life stage indicated significant positive autocorrelation for seven (two for eggs, one for larvae, and four for adults) of the 16 datasets. Aggregation was detected in 13 of these 16 datasets when analyzed by semivariogram modeling, with spherical, Gaussian, and exponential models best fitting for eight, four, and one dataset, respectively, and with models for two datasets having only one parameter (nugget) significantly different from zero. The nugget-to-sill ratios ranged from 0.043 to 0.774, and indicated strong spatial dependence in six models (three for adults, two for eggs, and one for larvae), moderate spatial dependence in six models (three for adults and six for eggs), and weak spatial dependence in one model (adults). Range values varied from 39.1 m to 234.1 m, with an average of 120.1 ± 14.0 m. Average range values were 104.9, 135.2, and 161.2 m for adults, eggs, and larvae, respectively. Because the majority of semivariogram models in our study indicated aggregated distributions, spatial sampling will provide more information than nonspatial random sampling. Developing our understanding of spatial dependence of crop pests is needed to optimize sampling plans and can provide a basis for exploring site-specific management tactics. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Spatial patterns of recreational impact on experimental campsites

    Treesearch

    David N. Cole; Christopher A. Monz

    2004-01-01

    Management of camping impacts in protected areas worldwide is limited by inadequate understanding of spatial patterns of impact and attention to spatial management strategies. Spatial patterns of campsite impact were studied in two subalpine plant communities in the Wind River Mountains, Wyoming, USA (a forest and a meadow). Response to chronic disturbance and recovery...

  10. The European 2015 drought from a groundwater perspective

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Kumar, Rohini; Mishra, Vimal

    2017-04-01

    In 2015 central and eastern Europe were affected by severe drought. Impacts of the drought were felt across many sectors, incl. agriculture, drinking water supply, electricity production, navigation, fisheries, and recreation. This drought event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater drought has been performed. This is not surprising because real-time groundwater level observations often are not available. In this study we use previously established spatially-explicit relationships between meteorological drought and groundwater drought to quantify the 2015 groundwater drought over two regions in southern Germany and eastern Netherlands. We also tested the applicability of the Gravity Recovery Climate Experiment (GRACE) Terrestrial Water Storage (TWS) and GRACE-based groundwater anomalies to capture the spatial variability of the 2003 and 2015 drought events. We use the monthly groundwater observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardized Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.250 gridded scale. The resulting optimal accumulation periods range between 1 and more than 24 months, indicating strong spatial differences in groundwater response time to meteorological input over the region. Based on these optimal accumulation periods, we found that in Germany a uniform severe groundwater drought persisted for several months (i.e. SGI below the drought threshold of 20th percentile for almost all grid cells in August, September and October 2015), whereas the Netherlands appeared to have relatively high groundwater levels (never below the drought threshold of 20th percentile). The differences between this event and the European 2003 benchmark drought are striking. The 2003 groundwater drought was less uniformly pronounced, both in the Netherlands and Germany, with the regional averaged SGI above the 50th percentile. This is because slowly responding wells still were above average from the wet year of 2002-2003, which experienced severe flooding in central Europe. GRACE-TWS does show that both 2003 and 2015 were relatively dry, but the difference between Germany and the Netherlands in 2015 and the spatially-variable groundwater drought pattern in 2003 were not captured. This could be associated to the coarse spatial scale of GRACE. The simulated groundwater anomalies based on GRACE-TWS deviated considerably from the GRACE-TWS signal and from observed groundwater anomalies. These are therefore not suitable for use in real-time groundwater drought monitoring in our case study regions. Our study shows that the relationship between meteorological drought and groundwater drought can be used to quantify groundwater drought and that the 2015 groundwater drought in southern Germany was more severe than the 2003 drought, because of preconditions in slowly responding groundwater wells. For sustainable groundwater drought management strategies the use of groundwater level monitoring is needed to study the spatial variability of local groundwater drought, which mostly coincides with drought impacts.

  11. VIEWCACHE: An incremental pointer-based access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, N.; Sellis, Timos

    1993-01-01

    One of the biggest problems facing NASA today is to provide scientists efficient access to a large number of distributed databases. Our pointer-based incremental data base access method, VIEWCACHE, provides such an interface for accessing distributed datasets and directories. VIEWCACHE allows database browsing and search performing inter-database cross-referencing with no actual data movement between database sites. This organization and processing is especially suitable for managing Astrophysics databases which are physically distributed all over the world. Once the search is complete, the set of collected pointers pointing to the desired data are cached. VIEWCACHE includes spatial access methods for accessing image datasets, which provide much easier query formulation by referring directly to the image and very efficient search for objects contained within a two-dimensional window. We will develop and optimize a VIEWCACHE External Gateway Access to database management systems to facilitate database search.

  12. VIEWCACHE: An incremental pointer-based access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, N.; Sellis, Timos

    1992-01-01

    One of biggest problems facing NASA today is to provide scientists efficient access to a large number of distributed databases. Our pointer-based incremental database access method, VIEWCACHE, provides such an interface for accessing distributed data sets and directories. VIEWCACHE allows database browsing and search performing inter-database cross-referencing with no actual data movement between database sites. This organization and processing is especially suitable for managing Astrophysics databases which are physically distributed all over the world. Once the search is complete, the set of collected pointers pointing to the desired data are cached. VIEWCACHE includes spatial access methods for accessing image data sets, which provide much easier query formulation by referring directly to the image and very efficient search for objects contained within a two-dimensional window. We will develop and optimize a VIEWCACHE External Gateway Access to database management systems to facilitate distributed database search.

  13. Tendinopathy: injury, repair, and current exploration

    PubMed Central

    Lipman, Kelsey; Wang, Chenchao; Ting, Kang; Soo, Chia; Zheng, Zhong

    2018-01-01

    Both acute and chronic tendinopathy result in high morbidity, requiring management that is often lengthy and expensive. However, limited and conflicting scientific evidence surrounding current management options has presented a challenge when trying to identify the best treatment for tendinopathy. As a result of shortcomings of current treatments, response to available therapies is often poor, resulting in frustration in both patients and physicians. Due to a lack of understanding of basic tendon-cell biology, further scientific investigation is needed in the field for the development of biological solutions. Optimization of new delivery systems and therapies that spatially and temporally mimic normal tendon physiology hold promise for clinical application. This review focuses on the clinical importance of tendinopathy, the structure of healthy tendons, tendon injury, and healing, and a discussion of current approaches for treatment that highlight the need for the development of new nonsurgical interventions. PMID:29593382

  14. Tight coupling between coral reef morphology and mapped resilience in the Red Sea.

    PubMed

    Rowlands, Gwilym; Purkis, Sam; Bruckner, Andrew

    2016-04-30

    Lack of knowledge on the conservation value of different reef types can stymie decision making, and result in less optimal management solutions. Addressing the information gap of coral reef resilience, we produce a map-based Remote Sensed Resilience Index (RSRI) from data describing the spatial distribution of stressors, and properties of reef habitats on the Farasan Banks, Saudi Arabia. We contrast the distribution of this index among fourteen reef types, categorized on a scale of maturity that includes juvenile (poorly aggraded), mature (partially aggraded), and senile (fully aggraded) reefs. Sites with high reef resilience can be found in most detached reef types; however they are most common in mature reefs. We aim to stimulate debate on the coupling that exists between geomorphology and conservation biology, and consider how such information can be used to inform management decisions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hybrid Optimal Design of the Eco-Hydrological Wireless Sensor Network in the Middle Reach of the Heihe River Basin, China

    PubMed Central

    Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao

    2014-01-01

    The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables. PMID:25317762

  16. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China.

    PubMed

    Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao

    2014-10-14

    The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables.

  17. Snowmaking in ski resorts: spatial decision support for management of snowpack

    NASA Astrophysics Data System (ADS)

    Loubier, Jean-Christophe; Kanevski, Mikhail; Doctor, Marut; Schumacher, Michael; Timonin, Vadim

    2010-05-01

    Since the early 2000s, the question of snowmaking that ensures activity in ski areas is controversial, because solutions to face climate change and sustainable development seem to be opposed to the economical needs of winter tourism. Actually, according to the Advisory Body on Climate Change (OCCC), we can expect an average rise of the limit of 0 degrees to 360 m in 2050. The application of the rule of 100 days (30 cm of snow for 100 days) shows that 1 ° increase in temperature reduced by 20% the number of viable skiing areas. Snowmaking seems thus to be a solution for continuing an optimal economical usage of the ski resorts. The usage of machine-made snow raises environmental issues which can no longer be denied. [Badre et al.2009] However, these issues should not be disconnected from local economic specificities of the high mountain valleys, where the ski economy is critical. This paper presents a study at the economic-environmental interface. The aim is to develop a tool for managing the production of artificial snow, with the goal to: • Reduce production costs and improve profit margins of companies operating ski areas; • Reduce environmental impacts by an optimized snow production "just in time". In this way, water and energy needs will be reduced. The problem of managing the snow is a highly complex problem: it cannot be solved analytically. Indeed, changes in height of snow are subject to intakes of snow (natural or manufactured) associated with changing weather conditions and the impact of skiers. Therefore, the work presented in this paper has chosen a probabilistic approach in a simulation using neural networks to predict and to manage snow height. We do this in two points: • We measure snowpack heights with radars mounted on grooming machines; • We produce a snow cover prediction in relation with weather prediction using a neuron network. This neural approach thus deals with the spatial prediction of snow cover [Kanevski et al., 2009] The result is a map of probable heights provided to stakeholders, allowing them to adjust their production strategy based on the situation. Acknowledgements This work was partly supported by Swiss CTI project "Juste Neige". Bibliography SHARDUL Agrawala (ed)2007;Climate Change in the European Alps Adapting Winter Tourism and Natural Hazards Management; OECD Publishing Paris, France BADRE Michel, PRIME Jean-Louis, RIBIERE Georges 2009 ; Neige de culture : état des lieux et impacts environnementaux - Note socio-économique ; Conseil général de l'environnement et du développement durable ; Paris ; France DE JONG, Carmen., 2008. 'Resource conflicts in mountain: source and solutions'. Mountain Forum Bulletin 8:1,pp. 5-7. KANEVSKI Mikhail, POZDNOUKHOV Alexei, and TIMONIN Vadim (2009); Machine Learning for Spatial Environmental Data. Theory, Applications" Softwsare. EPFL and CRC Press.

  18. Targeted intervention strategies to optimise diversion of BMW in the Dublin, Ireland region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purcell, M., E-mail: mary.purcell@cit.ie; Centre for Water Resources Research, School of Architecture, Landscape and Civil Engineering, University College Dublin, Newstead, Belfield, Dublin 4; Magette, W.L.

    Highlights: > Previous research indicates that targeted strategies designed for specific areas should lead to improved diversion. > Survey responses and GIS model predictions from previous research were the basis for goal setting. > Then logic modelling and behavioural research were employed to develop site-specific management intervention strategies. > Waste management initiatives can be tailored to specific needs of areas rather than one size fits all means currently used. - Abstract: Urgent transformation is required in Ireland to divert biodegradable municipal waste (BMW) from landfill and prevent increases in overall waste generation. When BMW is optimally managed, it becomes amore » resource with value instead of an unwanted by-product requiring disposal. An analysis of survey responses from commercial and residential sectors for the Dublin region in previous research by the authors proved that attitudes towards and behaviour regarding municipal solid waste is spatially variable. This finding indicates that targeted intervention strategies designed for specific geographic areas should lead to improved diversion rates of BMW from landfill, a requirement of the Landfill Directive 1999/31/EC. In the research described in this paper, survey responses and GIS model predictions from previous research were the basis for goal setting, after which logic modelling and behavioural research were employed to develop site-specific waste management intervention strategies. The main strategies devised include (a) roll out of the Brown Bin (Organics) Collection and Community Workshops in Dun Laoghaire Rathdown, (b) initiation of a Community Composting Project in Dublin City (c) implementation of a Waste Promotion and Motivation Scheme in South Dublin (d) development and distribution of a Waste Booklet to promote waste reduction activities in Fingal (e) region wide distribution of a Waste Booklet to the commercial sector and (f) Greening Irish Pubs Initiative. Each of these strategies was devised after interviews with both the residential and commercial sectors to help make optimal waste management the norm for both sectors. Strategy (b), (e) and (f) are detailed in this paper. By integrating a human element into accepted waste management approaches, these strategies will make optimal waste behaviour easier to achieve. Ultimately this will help divert waste from landfill and improve waste management practice as a whole for the region. This method of devising targeted intervention strategies can be adapted for many other regions.« less

  19. Spatial Irrigation Management Using Remote Sensing Water Balance Modeling and Soil Water Content Monitoring

    NASA Astrophysics Data System (ADS)

    Barker, J. Burdette

    Spatially informed irrigation management may improve the optimal use of water resources. Sub-field scale water balance modeling and measurement were studied in the context of irrigation management. A spatial remote-sensing-based evapotranspiration and soil water balance model was modified and validated for use in real-time irrigation management. The modeled ET compared well with eddy covariance data from eastern Nebraska. Placement and quantity of sub-field scale soil water content measurement locations was also studied. Variance reduction factor and temporal stability were used to analyze soil water content data from an eastern Nebraska field. No consistent predictor of soil water temporal stability patterns was identified. At least three monitoring locations were needed per irrigation management zone to adequately quantify the mean soil water content. The remote-sensing-based water balance model was used to manage irrigation in a field experiment. The research included an eastern Nebraska field in 2015 and 2016 and a western Nebraska field in 2016 for a total of 210 plot-years. The response of maize and soybean to irrigation using variations of the model were compared with responses from treatments using soil water content measurement and a rainfed treatment. The remote-sensing-based treatment prescribed more irrigation than the other treatments in all cases. Excessive modeled soil evaporation and insufficient drainage times were suspected causes of the model drift. Modifying evaporation and drainage reduced modeled soil water depletion error. None of the included response variables were significantly different between treatments in western Nebraska. In eastern Nebraska, treatment differences for maize and soybean included evapotranspiration and a combined variable including evapotranspiration and deep percolation. Both variables were greatest for the remote-sensing model when differences were found to be statistically significant. Differences in maize yield in 2015 were attributed to random error. Soybean yield was lowest for the remote-sensing-based treatment and greatest for rainfed, possibly because of overwatering and lodging. The model performed well considering that it did not include soil water content measurements during the season. Future work should improve the soil evaporation and drainage formulations, because of excessive precipitation and include aerial remote sensing imagery and soil water content measurement as model inputs.

  20. Getting it right for the North Atlantic right whale (Eubalaenaglacialis): a last opportunity for effective marine spatial planning?

    PubMed

    Petruny, Loren M; Wright, Andrew J; Smith, Courtney E

    2014-08-15

    The North Atlantic right whale (Eubalaena glacialis) faces increasing pressure from commercial shipping traffic and proposed marine renewable energy developments. Drawing upon the successful Stellwagen Bank National Marine Sanctuary model, we propose a multi-stakeholder marine spatial planning process that considers both appropriate positioning of offshore wind farms and redefining commercial shipping lanes relative to whale migration routes: placement of wind turbines within certain right whale habitats may prove beneficial for the species. To that end, it may be advisable to initially relocate the shipping lanes for the benefit of the whales prior to selecting wind energy areas. The optimal end-state is the commercial viability of renewable energy, as well as a safe shipping infrastructure, with minimal risk of collision and exposure to shipping noise for the whales. This opportunity to manage impacts on right whales could serve as a model for other problematic interactions between marine life and commercial activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Gis-Based Accessibility Analysis of Urban Emergency Shelters: the Case of Adana City

    NASA Astrophysics Data System (ADS)

    Unal, M.; Uslu, C.

    2016-10-01

    Accessibility analysis of urban emergency shelters can help support urban disaster prevention planning. Pre-disaster emergency evacuation zoning has become a significant topic on disaster prevention and mitigation research. In this study, we assessed the level of serviceability of urban emergency shelters within maximum capacity, usability, sufficiency and a certain walking time limit by employing spatial analysis techniques of GIS-Network Analyst. The methodology included the following aspects: the distribution analysis of emergency evacuation demands, the calculation of shelter space accessibility and the optimization of evacuation destinations. This methodology was applied to Adana, a city in Turkey, which is located within the Alpine-Himalayan orogenic system, the second major earthquake belt after the Pacific-Belt. It was found that the proposed methodology could be useful in aiding to understand the spatial distribution of urban emergency shelters more accurately and establish effective future urban disaster prevention planning. Additionally, this research provided a feasible way for supporting emergency management in terms of shelter construction, pre-disaster evacuation drills and rescue operations.

  2. The further development of legal cadastral domain model of China based on ontology

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Du, Qingyun; Zhao, Zhongjun; Guo, Yan; Cheng, Gang

    2008-10-01

    The cadastral plays a very important role in managing spatial and non-spatial legal real property information. And the legal aspect is the important component of the cadastral. And the success of a cadastral system is not dependent on its legal or technical sophistication, but whether it protects land rights adequately and permits those rights to be traded (where appropriate) efficiently, simply, quickly, securely and at low cost. However, the ambiguity of legal cadastral domain has been the major barrier to data integration and interoperability. This paper intends to optimize the concept model of legal cadastral domain based on the model established in my previous paper which can be a first step towards facilitate the effective interchange of cadastral information and the administration of land use. And the way expressing these conceptions and relationships between them was an object-oriented approach in ontology principles. The outcome of this paper is also a basic but better expression legal cadastral domain model of china.

  3. Femtoelectron-Based Terahertz Imaging of Hydration State in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Buaphad, P.; Thamboon, P.; Kangrang, N.; Rhodes, M. W.; Thongbai, C.

    2015-08-01

    Imbalanced water management in a proton exchange membrane (PEM) fuel cell significantly reduces the cell performance and durability. Visualization of water distribution and transport can provide greater comprehension toward optimization of the PEM fuel cell. In this work, we are interested in water flooding issues that occurred in flow channels on cathode side of the PEM fuel cell. The sample cell was fabricated with addition of a transparent acrylic window allowing light access and observed the process of flooding formation (in situ) via a CCD camera. We then explore potential use of terahertz (THz) imaging, consisting of femtoelectron-based THz source and off-angle reflective-mode imaging, to identify water presence in the sample cell. We present simulations of two hydration states (water and nonwater area), which are in agreement with the THz image results. A line-scan plot is utilized for quantitative analysis and for defining spatial resolution of the image. Implementing metal mesh filtering can improve spatial resolution of our THz imaging system.

  4. [MODIS-driven estimation of regional evapotranspiration in Karst area of Southwest China based on the Penman-Monteith-Leuning algorithm.

    PubMed

    Zhong, Hao Zhe; Xu, Xian Li; Zhang, Rong Fei; Liu, Mei Xian

    2018-05-01

    Karst area in southwestern China is characterized with complex topography, low soil water capacity, and fragile ecosystem. Accurate estimation of regional evapotranspiration is essential for ecological restoration and water resources management in southwestern China. Based on observed evapotranspiration and meteorological data, this study aimed to estimate spatial upscale evapotranspiration using the MOD15A2 LAI and Penman-Monteith-Leuning (PML) model, within which the stomatal conductance and soil wetness index were optimized by the least-square method. The results showed that the modeled ET well fitted with the observations, with the determination coefficient, Nash efficiency coefficient and RMSE being 0.85, 0.75 and 1.56 mm·d -1 , respectively. The ET exhibited clear seasonality and reached to its maximum in summer, coinciding with vegetation phenology. The annual ET ranged from 534 to 1035 mm·a -1 , with strong spatial heterogeneity which highly related to the precipitation. Evapotranspiration may be affected by precipitation as well as land use types.

  5. Spatial analysis of groundwater levels using Fuzzy Logic and geostatistical tools

    NASA Astrophysics Data System (ADS)

    Theodoridou, P. G.; Varouchakis, E. A.; Karatzas, G. P.

    2017-12-01

    The spatial variability evaluation of the water table of an aquifer provides useful information in water resources management plans. Geostatistical methods are often employed to map the free surface of an aquifer. In geostatistical analysis using Kriging techniques the selection of the optimal variogram is very important for the optimal method performance. This work compares three different criteria to assess the theoretical variogram that fits to the experimental one: the Least Squares Sum method, the Akaike Information Criterion and the Cressie's Indicator. Moreover, variable distance metrics such as the Euclidean, Minkowski, Manhattan, Canberra and Bray-Curtis are applied to calculate the distance between the observation and the prediction points, that affects both the variogram calculation and the Kriging estimator. A Fuzzy Logic System is then applied to define the appropriate neighbors for each estimation point used in the Kriging algorithm. The two criteria used during the Fuzzy Logic process are the distance between observation and estimation points and the groundwater level value at each observation point. The proposed techniques are applied to a data set of 250 hydraulic head measurements distributed over an alluvial aquifer. The analysis showed that the Power-law variogram model and Manhattan distance metric within ordinary kriging provide the best results when the comprehensive geostatistical analysis process is applied. On the other hand, the Fuzzy Logic approach leads to a Gaussian variogram model and significantly improves the estimation performance. The two different variogram models can be explained in terms of a fractional Brownian motion approach and of aquifer behavior at local scale. Finally, maps of hydraulic head spatial variability and of predictions uncertainty are constructed for the area with the two different approaches comparing their advantages and drawbacks.

  6. Vulnerable land ecosystems classification using spatial context and spectral indices

    NASA Astrophysics Data System (ADS)

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martín, Consuelo; Marcello, Javier

    2017-10-01

    Natural habitats are exposed to growing pressure due to intensification of land use and tourism development. Thus, obtaining information on the vegetation is necessary for conservation and management projects. In this context, remote sensing is an important tool for monitoring and managing habitats, being classification a crucial stage. The majority of image classifications techniques are based upon the pixel-based approach. An alternative is the object-based (OBIA) approach, in which a previous segmentation step merges image pixels to create objects that are then classified. Besides, improved results may be gained by incorporating additional spatial information and specific spectral indices into the classification process. The main goal of this work was to implement and assess object-based classification techniques on very-high resolution imagery incorporating spectral indices and contextual spatial information in the classification models. The study area was Teide National Park in Canary Islands (Spain) using Worldview-2 orthoready imagery. In the classification model, two common indices were selected Normalized Difference Vegetation Index (NDVI) and Optimized Soil Adjusted Vegetation Index (OSAVI), as well as two specific Worldview-2 sensor indices, Worldview Vegetation Index and Worldview Soil Index. To include the contextual information, Grey Level Co-occurrence Matrices (GLCM) were used. The classification was performed training a Support Vector Machine with sufficient and representative number of vegetation samples (Spartocytisus supranubius, Pterocephalus lasiospermus, Descurainia bourgaeana and Pinus canariensis) as well as urban, road and bare soil classes. Confusion Matrices were computed to evaluate the results from each classification model obtaining the highest overall accuracy (90.07%) combining both Worldview indices with the GLCM-dissimilarity.

  7. Low leopard populations in protected areas of Maputaland: a consequence of poaching, habitat condition, abundance of prey, and a top predator.

    PubMed

    Ramesh, Tharmalingam; Kalle, Riddhika; Rosenlund, Havard; Downs, Colleen T

    2017-03-01

    Identifying the primary causes affecting population densities and distribution of flagship species are necessary in developing sustainable management strategies for large carnivore conservation. We modeled drivers of spatial density of the common leopard ( Panthera pardus ) using a spatially explicit capture-recapture-Bayesian approach to understand their population dynamics in the Maputaland Conservation Unit, South Africa. We camera-trapped leopards in four protected areas (PAs) of varying sizes and disturbance levels covering 198 camera stations. Ours is the first study to explore the effects of poaching level, abundance of prey species (small, medium, and large), competitors (lion Panthera leo and spotted hyenas Crocuta crocuta ), and habitat on the spatial distribution of common leopard density. Twenty-six male and 41 female leopards were individually identified and estimated leopard density ranged from 1.6 ± 0.62/100 km 2 (smallest PA-Ndumo) to 8.4 ± 1.03/100 km 2 (largest PA-western shores). Although dry forest thickets and plantation habitats largely represented the western shores, the plantation areas had extremely low leopard density compared to native forest. We found that leopard density increased in areas when low poaching levels/no poaching was recorded in dry forest thickets and with high abundance of medium-sized prey, but decreased with increasing abundance of lion. Because local leopard populations are vulnerable to extinction, particularly in smaller PAs, the long-term sustainability of leopard populations depend on developing appropriate management strategies that consider a combination of multiple factors to maintain their optimal habitats.

  8. Movement patterns of silvertip sharks ( Carcharhinus albimarginatus) on coral reefs

    NASA Astrophysics Data System (ADS)

    Espinoza, Mario; Heupel, Michelle. R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2015-09-01

    Understanding how sharks use coral reefs is essential for assessing risk of exposure to fisheries, habitat loss, and climate change. Despite a wide Indo-Pacific distribution, little is known about the spatial ecology of silvertip sharks ( Carcharhinus albimarginatus), compromising the ability to effectively manage their populations. We examined the residency and movements of silvertip sharks in the central Great Barrier Reef (GBR). An array of 56 VR2W acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Twenty-seven individuals tagged with acoustic transmitters were monitored from 70 to 731 d. Residency index to the study site ranged from 0.05 to 0.97, with a mean residency (±SD) of 0.57 ± 0.26, but most individuals were detected at or near their tagging reef. Clear seasonal patterns were apparent, with fewer individuals detected between September and February. A large proportion of the tagged population (>71 %) moved regularly between reefs. Silvertip sharks were detected less during daytime and exhibited a strong diel pattern in depth use, which may be a strategy for optimizing energetic budgets and foraging opportunities. This study provides the first detailed examination of the spatial ecology and behavior of silvertip sharks on coral reefs. Silvertip sharks remained resident at coral reef habitats over long periods, but our results also suggest this species may have more complex movement patterns and use larger areas of the GBR than common reef shark species. Our findings highlight the need to further understand the movement ecology of silvertip sharks at different spatial and temporal scales, which is critical for developing effective management approaches.

  9. Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters

    NASA Astrophysics Data System (ADS)

    Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.

    2016-12-01

    Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.

  10. Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters

    NASA Astrophysics Data System (ADS)

    Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.

    2016-02-01

    Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.

  11. Optimal Access to NASA Water Cycle Data for Water Resources Management

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Arctur, D. K.; Espinoza, G. E.; Rui, H.; Strub, R. F.; Vollmer, B.

    2016-12-01

    A "Digital Divide" in data representation exists between the preferred way of data access by the hydrology community (i.e., as time series of discrete spatial objects) and the common way of data archival by earth science data centers (i.e., as continuous spatial fields, one file per time step). This Divide has been an obstacle, specifically, between the Consortium of Universities for the Advancement of Hydrologic Science, Inc. Hydrologic Information System (CUAHSI HIS) and NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). An optimal approach to bridging the Divide, developed by the GES DISC, is to reorganize data from the way they are archived to some way that is optimal for the desired method of data access. Specifically for CUAHSI HIS, selected data sets were reorganized into time series files, one per geographical "point." These time series files, termed "data rods," are pre-generated or virtual (generated on-the-fly). Data sets available as data rods include North American Land Data Assimilation System (NLDAS), Global Land Data Assimilation System (GLDAS), TRMM Multi-satellite Precipitation Analysis (TMPA), Land Parameter Retrieval Model (LPRM), Modern-Era Retrospective Analysis for Research and Applications (MERRA)-Land, and Groundwater and Soil Moisture Conditions from Gravity Recovery and Climate Experiment (GRACE) Data Assimilation drought indicators for North America Drought Monitor (GRACE-DA-DM). In order to easily avail the operational water resources community the benefits of optimally reorganized data, we have developed multiple methods of making these data more easily accessible and usable. These include direct access via RESTful Web services, a browser-based Web map and statistical tool for selected NLDAS variables for the U.S. (CONUS), a HydroShare app (Data Rods Explorer, under development) on the Tethys Platform, and access via the GEOSS Portal. Examples of drought-related applications of these data and data access methods are provided.

  12. Preservation of three-dimensional spatial structure in the gut microbiome.

    PubMed

    Hasegawa, Yuko; Mark Welch, Jessica L; Rossetti, Blair J; Borisy, Gary G

    2017-01-01

    Preservation of three-dimensional structure in the gut is necessary in order to analyze the spatial organization of the gut microbiota and gut luminal contents. In this study, we evaluated preparation methods for mouse gut with the goal of preserving micron-scale spatial structure while performing fluorescence imaging assays. Our evaluation of embedding methods showed that commonly used media such as Tissue-Tek Optimal Cutting Temperature (OCT) compound, paraffin, and polyester waxes resulted in redistribution of luminal contents. By contrast, a hydrophilic methacrylate resin, Technovit H8100, preserved three-dimensional organization. Our mouse intestinal preparation protocol optimized using the Technovit H8100 embedding method was compatible with microbial fluorescence in situ hybridization (FISH) and other labeling techniques, including immunostaining and staining with both wheat germ agglutinin (WGA) and 4', 6-diamidino-2-phenylindole (DAPI). Mucus could be visualized whether the sample was fixed with paraformaldehyde (PFA) or with Carnoy's fixative. The protocol optimized in this study enabled simultaneous visualization of micron-scale spatial patterns formed by microbial cells in the mouse intestines along with biogeographical landmarks such as host-derived mucus and food particles.

  13. A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena

    NASA Technical Reports Server (NTRS)

    Zingg, David W.

    1996-01-01

    This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.

  14. Spatial education: improving conservation delivery through space-structured decision making

    USGS Publications Warehouse

    Moore, Clinton T.; Shaffer, Terry L.; Gannon, Jill J.

    2013-01-01

    Adaptive management is a form of structured decision making designed to guide management of natural resource systems when their behaviors are uncertain. Where decision making can be replicated across units of a landscape, learning can be accelerated, and biological processes can be understood in a larger spatial context. Broad-based partnerships among land management agencies, exemplified by Landscape Conservation Cooperatives (conservation partnerships created through the U.S. Department of the Interior), are potentially ideal environments for implementing spatially structured adaptive management programs.

  15. Cost-Effective and Ecofriendly Plug-In Hybrid Electric Vehicle Charging Management

    DOE PAGES

    Kontou, Eleftheria; Yin, Yafeng; Ge, Ying-en

    2017-01-01

    In this study we explore two charging management schemes for plug-in hybrid electric vehicles (PHEVs). The PHEV drivers and the government were stakeholders who might have preferred different charging control strategies. For the former, a proposed controlled charging scheme minimized the operational cost during PHEV charge-depleting and sustaining modes. For the latter, the research minimized monetized carbon dioxide emissions from electricity generation for the PHEVs charging, as well as tailpipe emissions for the portion of PHEV trips fueled by gasoline. Hourly driving patterns and electricity data were leveraged. Both were representative of each of the eight North American Electric Reliabilitymore » Corporation regions to examine the results of the proposed schemes. The model accounted for drivers' activity patterns and charging availability spatial and temporal heterogeneity. The optimal charging profiles confirmed the differing nature of the objectives of PHEV drivers and the government; cost-effective charge should occur early in the morning, while ecofriendly charge should be late in the afternoon. Each control's trade-offs between operation cost and emission savings are discussed for each North American Electric Reliability Corporation region. The availability of workplace and public charging was found to affect the optimal charging profiles greatly. Charging control is more efficient for drivers and government when PHEVs have greater electric range.« less

  16. Cost-Effective and Ecofriendly Plug-In Hybrid Electric Vehicle Charging Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontou, Eleftheria; Yin, Yafeng; Ge, Ying-en

    In this study we explore two charging management schemes for plug-in hybrid electric vehicles (PHEVs). The PHEV drivers and the government were stakeholders who might have preferred different charging control strategies. For the former, a proposed controlled charging scheme minimized the operational cost during PHEV charge-depleting and sustaining modes. For the latter, the research minimized monetized carbon dioxide emissions from electricity generation for the PHEVs charging, as well as tailpipe emissions for the portion of PHEV trips fueled by gasoline. Hourly driving patterns and electricity data were leveraged. Both were representative of each of the eight North American Electric Reliabilitymore » Corporation regions to examine the results of the proposed schemes. The model accounted for drivers' activity patterns and charging availability spatial and temporal heterogeneity. The optimal charging profiles confirmed the differing nature of the objectives of PHEV drivers and the government; cost-effective charge should occur early in the morning, while ecofriendly charge should be late in the afternoon. Each control's trade-offs between operation cost and emission savings are discussed for each North American Electric Reliability Corporation region. The availability of workplace and public charging was found to affect the optimal charging profiles greatly. Charging control is more efficient for drivers and government when PHEVs have greater electric range.« less

  17. A decision support system for prioritizing forested wetland restoration in the Yazoo Backwater Area, Mississippi

    USGS Publications Warehouse

    O'Hara, Charles G.; Davis, Angela A.; Kleiss, Barbara A.

    2000-01-01

    A working prototype decision support system (DSS) was developed for the Yazoo Backwater Area, Mississippi, to help planners and managers prioritize, plan, conduct, and optimize forested wetland restoration activities. The DSS comprises geographic information system (GIS) spatial data themes, application programs that provide a cumulative analysis of the relative ability of sites to function as wetlands, and output data that are specific to a given restoration analysis scenario. The DSS input includes GIS data themes such as geomorphology, soils, land use, elevation, farmed wetlands, flood frequency, topographic depressions, streams, public lands, roads, and permanent water bodies, which can be used as spatial templates to define areal hydrologic settings. These GIS data themes can then be ranked and combined to estimate the relative suitability of a potential wetland restoration site, thereby, determining relative wetland equivalence on the landscape. The GIS applications used in this DSS perform the following three functions: assess the ecology (the Eco-Assessor); reclassify land-use in areas selected for restoration (the Tree-Translator); and generate output data to compare restoration scenarios (the Parameter-Generator). Areas selected for reforestation are translated (in the GIS) into ?forested? land use, and the tree species that are ?planted? on the landscape (in the DSS) either compose an ecologically optimal or an economically optimal community of tree species. Output from the DSS can be compared and analyzed by using economic, statistical, graphical, and tabular methods. Output data for seven selected scenarios were generated for the Yazoo Backwater Area and are presented as examples to illustrate the flexibility of the DSS to identify areas that meet restoration objectives.

  18. Geostatistical analysis of the flood risk perception queries in the village of Navaluenga (Central Spain)

    NASA Astrophysics Data System (ADS)

    Guardiola-Albert, Carolina; Díez-Herrero, Andrés; Amérigo, María; García, Juan Antonio; María Bodoque, José; Fernández-Naranjo, Nuria

    2017-04-01

    Flash floods provoke a high average mortality as they are usually unexpected events which evolve rapidly and affect relatively small areas. The short time available for minimizing risks requires preparedness and response actions to be put into practice. Therefore, it is necessary the development of emergency response plans to evacuate and rescue people in the context of a flash-flood hazard. In this framework, risk management has to integrate the social dimension of flash-flooding and its spatial distribution by understanding the characteristics of local communities in order to enhance community resilience during a flash-flood. In this regard, the flash-flood social risk perception of the village of Navaluenga (Central Spain) has been recently assessed, as well as the level of awareness of civil protection and emergency management strategies (Bodoque et al., 2016). This has been done interviewing 254 adults, representing roughly 12% of the population census. The present study wants to go further in the analysis of the resulting questionnaires, incorporating in the analysis the location of home spatial coordinates in order to characterize the spatial distribution and possible geographical interpretation of flood risk perception. We apply geostatistical methods to analyze spatial relations of social risk perception and level of awareness with distance to the rivers (Alberche and Chorrerón) or to the flood-prone areas (50-year, 100-year and 500-year flood plains). We want to discover spatial patterns, if any, using correlation functions (variograms). Geostatistical analyses results can help to either confirm the logical pattern (i.e., less awareness further to the rivers or high return period of flooding) or reveal departures from expected. It can also be possible to identify hot spots, cold spots, and spatial outliers. The interpretation of these spatial patterns can give valuable information to define strategies to improve the awareness regarding preparedness and response actions, such as designing optimal evacuation routes during flood emergencies. Geostatistical tools also provide a set of interpolation techniques for the prediction of the variable value at unstudied similar locations, basing on the sample point values and other variables related with the measured variable. We attempt different geostatistical interpolation methods to obtain continuous surfaces of the risk perception and level of awareness in the study area. The use of these maps for future extensions and actualizations of the Civil Protection Plan is evaluated. References Bodoque, J. M., Amérigo, M., Díez-Herrero, A., García, J. A., Cortés, B., Ballesteros-Cánovas, J. A., & Olcina, J. (2016). Improvement of resilience of urban areas by integrating social perception in flash-flood risk management.Journal of Hydrology.

  19. Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater

    PubMed Central

    Shabbir, Javid; M. AbdEl-Salam, Nasser; Hussain, Tajammal

    2016-01-01

    Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design. PMID:27683016

  20. Implementing the optimal provision of ecosystem services

    PubMed Central

    Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Nelson, Erik

    2014-01-01

    Many ecosystem services are public goods whose provision depends on the spatial pattern of land use. The pattern of land use is often determined by the decisions of multiple private landowners. Increasing the provision of ecosystem services, though beneficial for society as a whole, may be costly to private landowners. A regulator interested in providing incentives to landowners for increased provision of ecosystem services often lacks complete information on landowners’ costs. The combination of spatially dependent benefits and asymmetric cost information means that the optimal provision of ecosystem services cannot be achieved using standard regulatory or payment for ecosystem services approaches. Here we show that an auction that sets payments between landowners and the regulator for the increased value of ecosystem services with conservation provides incentives for landowners to truthfully reveal cost information, and allows the regulator to implement the optimal provision of ecosystem services, even in the case with spatially dependent benefits and asymmetric information. PMID:24722635

  1. Implementing the optimal provision of ecosystem services.

    PubMed

    Polasky, Stephen; Lewis, David J; Plantinga, Andrew J; Nelson, Erik

    2014-04-29

    Many ecosystem services are public goods whose provision depends on the spatial pattern of land use. The pattern of land use is often determined by the decisions of multiple private landowners. Increasing the provision of ecosystem services, though beneficial for society as a whole, may be costly to private landowners. A regulator interested in providing incentives to landowners for increased provision of ecosystem services often lacks complete information on landowners' costs. The combination of spatially dependent benefits and asymmetric cost information means that the optimal provision of ecosystem services cannot be achieved using standard regulatory or payment for ecosystem services approaches. Here we show that an auction that sets payments between landowners and the regulator for the increased value of ecosystem services with conservation provides incentives for landowners to truthfully reveal cost information, and allows the regulator to implement the optimal provision of ecosystem services, even in the case with spatially dependent benefits and asymmetric information.

  2. A Spatial Decision Support System to incorporate hydro-economic modeling results in the management of water resources under decentralized institutional arrangements in a semiarid reservoir region in Brazil

    NASA Astrophysics Data System (ADS)

    Moraes, M. G. A.; Souza da Silva, G.; Siegmund-Schultze, M.

    2016-12-01

    The integration of economic and hydrological components in models, aimed to support evaluating alternatives of water allocation policies, is promising, though, challenging. Worldwide, these models have been used primarily in academia, and so far seldom by water managers for practical purposes. Ideally, the models should be available through a Decision Support System. The São Francisco River Basin in Northeast of Brazil has around 48% of its area in a semi-arid region. Irrigation and public water supply are the primary water use sectors, along with hydropower utilization. The water for electricity generation is stored in two large reservoirs, built 30 to 50 years ago under the premise of regulating flows for hydropower and controlling floods. Since 20 years, however, the law stipulates the multiple uses paradigm in a participatory and decentralized way. So far, only few rules laid down. Studies revealed that most of the respective institutions still needed to update their routines to the new paradigm.A hydro-economic model was developed and applied in order to determine the economically optimal water allocation of main users in that semiarid reservoir region. In order to make this model available to the decision makers, a minimum required is some form of manipulating data entry and output as well as some graphical interfaces. We propose a Spatial Decision Support System (SDSS) with dedicated hydro-economic modules in a web-based Geographic Information System (GIS) environment for integrated water resource management. The open model platform will include geoprocessing tasks and water user related data management. The hydro-economic geoprocessing will link to generic optimization modeling systems, such as EXCEL Solver, GAMS and MATLAB. The institutions that are deliberating or deciding over water allocation at different scales could use the generated information on potential economic benefits as a transparent basis for discussion. In addition, they can use the SDSS to include constraints into the model in order to account for further objectives, such as preference given to specific uses or timing of uses. This information, and corresponding policies, can foster enhanced economic welfare and sustainable water use, as well as help to solve water use conflicts.

  3. A Spatial Decision Support System to incorporate hydro-economic modeling results in the management of water resources under decentralized institutional arrangements in a semiarid reservoir region in Brazil

    NASA Astrophysics Data System (ADS)

    Alcoforado de Moraes, Márcia; Silva, Gerald; Siegmund-Schultze, Marianna

    2017-04-01

    The integration of economic and hydrological components in models, aimed to support evaluating alternatives of water allocation policies, is promising, though, challenging. Worldwide, these models have been used primarily in academia, and so far seldom by water managers for practical purposes. Ideally, the models should be available through a Decision Support System. The São Francisco River Basin in Northeast of Brazil has around 48% of its area in a semi-arid region. Irrigation and public water supply are the primary water use sectors, along with hydropower utilization. The water for electricity generation is stored in two large reservoirs, built 30 to 50 years ago under the premise of regulating flows for hydropower and controlling floods. Since 20 years, however, the law stipulates the multiple uses paradigm in a participatory and decentralized way. So far, only few rules laid down. Studies revealed that most of the respective institutions still needed to update their routines to the new paradigm. A hydro-economic model was developed and applied in order to determine the economically optimal water allocation of main users in that semiarid reservoir region. In order to make this model available to the decision makers, a minimum required is some form of manipulating data entry and output as well as some graphical interfaces. We propose and present the first features of a Spatial Decision Support System (SDSS) with dedicated hydro-economic modules in a web-based Geographic Information System (GIS) environment for integrated water resource management. The open model platform should include geoprocessing tasks and water user related data management. The hydro-economic geoprocessing will link to generic optimization modeling systems, such as EXCEL Solver, GAMS and MATLAB. The institutions are deliberating or deciding over water allocation at different scales could use the generated information on potential economic benefits as a transparent basis for discussion. In addition, they can use the SDSS to include constraints into the model in order to account for further objectives, such as preference given to specific uses or timing of uses. This information, and corresponding policies, can foster enhanced economic welfare and sustainable water use, as well as help to solve water use conflicts.

  4. Large-Scale Multiantenna Multisine Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Clerckx, Bruno

    2017-11-01

    Wireless Power Transfer (WPT) is expected to be a technology reshaping the landscape of low-power applications such as the Internet of Things, Radio Frequency identification (RFID) networks, etc. Although there has been some progress towards multi-antenna multi-sine WPT design, the large-scale design of WPT, reminiscent of massive MIMO in communications, remains an open challenge. In this paper, we derive efficient multiuser algorithms based on a generalizable optimization framework, in order to design transmit sinewaves that maximize the weighted-sum/minimum rectenna output DC voltage. The study highlights the significant effect of the nonlinearity introduced by the rectification process on the design of waveforms in multiuser systems. Interestingly, in the single-user case, the optimal spatial domain beamforming, obtained prior to the frequency domain power allocation optimization, turns out to be Maximum Ratio Transmission (MRT). In contrast, in the general weighted sum criterion maximization problem, the spatial domain beamforming optimization and the frequency domain power allocation optimization are coupled. Assuming channel hardening, low-complexity algorithms are proposed based on asymptotic analysis, to maximize the two criteria. The structure of the asymptotically optimal spatial domain precoder can be found prior to the optimization. The performance of the proposed algorithms is evaluated. Numerical results confirm the inefficiency of the linear model-based design for the single and multi-user scenarios. It is also shown that as nonlinear model-based designs, the proposed algorithms can benefit from an increasing number of sinewaves.

  5. Spatial Dependence and Determinants of Dairy Farmers' Adoption of Best Management Practices for Water Protection in New Zealand

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Sharp, Basil

    2017-04-01

    This paper analyses spatial dependence and determinants of the New Zealand dairy farmers' adoption of best management practices to protect water quality. A Bayesian spatial durbin probit model is used to survey data collected from farmers in the Waikato region of New Zealand. The results show that farmers located near each other exhibit similar choice behaviour, indicating the importance of farmer interactions in adoption decisions. The results also address that information acquisition is the most important determinant of farmers' adoption of best management practices. Financial problems are considered a significant barrier to adopting best management practices. Overall, the existence of distance decay effect and spatial dependence in farmers' adoption decisions highlights the importance of accounting for spatial effects in farmers' decision-making, which emerges as crucial to the formulation of sustainable agriculture policy.

  6. Spatial Dependence and Determinants of Dairy Farmers' Adoption of Best Management Practices for Water Protection in New Zealand.

    PubMed

    Yang, Wei; Sharp, Basil

    2017-04-01

    This paper analyses spatial dependence and determinants of the New Zealand dairy farmers' adoption of best management practices to protect water quality. A Bayesian spatial durbin probit model is used to survey data collected from farmers in the Waikato region of New Zealand. The results show that farmers located near each other exhibit similar choice behaviour, indicating the importance of farmer interactions in adoption decisions. The results also address that information acquisition is the most important determinant of farmers' adoption of best management practices. Financial problems are considered a significant barrier to adopting best management practices. Overall, the existence of distance decay effect and spatial dependence in farmers' adoption decisions highlights the importance of accounting for spatial effects in farmers' decision-making, which emerges as crucial to the formulation of sustainable agriculture policy.

  7. Examining leisure event opportunities of Isle Royale National Park: bridging the gap between social process and spatial form

    Treesearch

    Chad D. Pierskalla; Dorothy H. Anderson; David W. Lime

    2000-01-01

    To manage various recreation opportunities, managers and planners must consider the spatial and temporal scale of social process when identifying opportunities on base maps. However, analyses of social process and spatial form are often treated as two distinct approaches--sociological and geographical approaches. A sociologist might control for spatial form by adopting...

  8. Improved algorithm for estimating optical properties of food and biological materials using spatially-resolved diffuse reflectance

    USDA-ARS?s Scientific Manuscript database

    In this research, the inverse algorithm for estimating optical properties of food and biological materials from spatially-resolved diffuse reflectance was optimized in terms of data smoothing, normalization and spatial region of reflectance profile for curve fitting. Monte Carlo simulation was used ...

  9. Alternative Zoning Scenarios for Regional Sustainable Land Use Controls in China: A Knowledge-Based Multiobjective Optimisation Model

    PubMed Central

    Xia, Yin; Liu, Dianfeng; Liu, Yaolin; He, Jianhua; Hong, Xiaofeng

    2014-01-01

    Alternative land use zoning scenarios provide guidance for sustainable land use controls. This study focused on an ecologically vulnerable catchment on the Loess Plateau in China, proposed a novel land use zoning model, and generated alternative zoning solutions to satisfy the various requirements of land use stakeholders and managers. This model combined multiple zoning objectives, i.e., maximum zoning suitability, maximum planning compatibility and maximum spatial compactness, with land use constraints by using goal programming technique, and employed a modified simulated annealing algorithm to search for the optimal zoning solutions. The land use zoning knowledge was incorporated into the initialisation operator and neighbourhood selection strategy of the simulated annealing algorithm to improve its efficiency. The case study indicates that the model is both effective and robust. Five optimal zoning scenarios of the study area were helpful for satisfying the requirements of land use controls in loess hilly regions, e.g., land use intensification, agricultural protection and environmental conservation. PMID:25170679

  10. Decomposition and control of complex systems - Application to the analysis and control of industrial and economic systems /energy production/ with limited supplies

    NASA Astrophysics Data System (ADS)

    de Coligny, M.

    Optimized control strategies are developed for industrial installations where many variables of energy supply and storage are involved, with a particular focus on characteristics of a solar central tower power plant. It is shown that optimal regulation resides in controlling all disturbances which occur in a limited domain of the entire system, using robust control schemes. Choosing a command is then dependent on defining precise operational limits as constraints on the machines' performances. Attention is given to the development of variational principles used for the elements of the command logic. Particular consideration is given to a limited supply in storage in spatial and temporal terms. Commands for alterations in functions are then available on-line, and discontinuities are not a feature of the control system. The strategy is applied to the case of a field of heliostats and a central tower themal receiver showing that management is possible on the basis of a sliding horizon.

  11. A Synergy Cropland of China by Fusing Multiple Existing Maps and Statistics.

    PubMed

    Lu, Miao; Wu, Wenbin; You, Liangzhi; Chen, Di; Zhang, Li; Yang, Peng; Tang, Huajun

    2017-07-12

    Accurate information on cropland extent is critical for scientific research and resource management. Several cropland products from remotely sensed datasets are available. Nevertheless, significant inconsistency exists among these products and the cropland areas estimated from these products differ considerably from statistics. In this study, we propose a hierarchical optimization synergy approach (HOSA) to develop a hybrid cropland map of China, circa 2010, by fusing five existing cropland products, i.e., GlobeLand30, Climate Change Initiative Land Cover (CCI-LC), GlobCover 2009, MODIS Collection 5 (MODIS C5), and MODIS Cropland, and sub-national statistics of cropland area. HOSA simplifies the widely used method of score assignment into two steps, including determination of optimal agreement level and identification of the best product combination. The accuracy assessment indicates that the synergy map has higher accuracy of spatial locations and better consistency with statistics than the five existing datasets individually. This suggests that the synergy approach can improve the accuracy of cropland mapping and enhance consistency with statistics.

  12. Can hydro-economic river basin models simulate water shadow prices under asymmetric access?

    PubMed

    Kuhn, A; Britz, W

    2012-01-01

    Hydro-economic river basin models (HERBM) based on mathematical programming are conventionally formulated as explicit 'aggregate optimization' problems with a single, aggregate objective function. Often unintended, this format implicitly assumes that decisions on water allocation are made via central planning or functioning markets such as to maximize social welfare. In the absence of perfect water markets, however, individually optimal decisions by water users will differ from the social optimum. Classical aggregate HERBMs cannot simulate that situation and thus might be unable to describe existing institutions governing access to water and might produce biased results for alternative ones. We propose a new solution format for HERBMs, based on the format of the mixed complementarity problem (MCP), where modified shadow price relations express spatial externalities resulting from asymmetric access to water use. This new problem format, as opposed to commonly used linear (LP) or non-linear programming (NLP) approaches, enables the simultaneous simulation of numerous 'independent optimization' decisions by multiple water users while maintaining physical interdependences based on water use and flow in the river basin. We show that the alternative problem format allows the formulation HERBMs that yield more realistic results when comparing different water management institutions.

  13. Comparison of Marine Spatial Planning Methods in Madagascar Demonstrates Value of Alternative Approaches

    PubMed Central

    Allnutt, Thomas F.; McClanahan, Timothy R.; Andréfouët, Serge; Baker, Merrill; Lagabrielle, Erwann; McClennen, Caleb; Rakotomanjaka, Andry J. M.; Tianarisoa, Tantely F.; Watson, Reg; Kremen, Claire

    2012-01-01

    The Government of Madagascar plans to increase marine protected area coverage by over one million hectares. To assist this process, we compare four methods for marine spatial planning of Madagascar's west coast. Input data for each method was drawn from the same variables: fishing pressure, exposure to climate change, and biodiversity (habitats, species distributions, biological richness, and biodiversity value). The first method compares visual color classifications of primary variables, the second uses binary combinations of these variables to produce a categorical classification of management actions, the third is a target-based optimization using Marxan, and the fourth is conservation ranking with Zonation. We present results from each method, and compare the latter three approaches for spatial coverage, biodiversity representation, fishing cost and persistence probability. All results included large areas in the north, central, and southern parts of western Madagascar. Achieving 30% representation targets with Marxan required twice the fish catch loss than the categorical method. The categorical classification and Zonation do not consider targets for conservation features. However, when we reduced Marxan targets to 16.3%, matching the representation level of the “strict protection” class of the categorical result, the methods show similar catch losses. The management category portfolio has complete coverage, and presents several management recommendations including strict protection. Zonation produces rapid conservation rankings across large, diverse datasets. Marxan is useful for identifying strict protected areas that meet representation targets, and minimize exposure probabilities for conservation features at low economic cost. We show that methods based on Zonation and a simple combination of variables can produce results comparable to Marxan for species representation and catch losses, demonstrating the value of comparing alternative approaches during initial stages of the planning process. Choosing an appropriate approach ultimately depends on scientific and political factors including representation targets, likelihood of adoption, and persistence goals. PMID:22359534

  14. Comparison of marine spatial planning methods in Madagascar demonstrates value of alternative approaches.

    PubMed

    Allnutt, Thomas F; McClanahan, Timothy R; Andréfouët, Serge; Baker, Merrill; Lagabrielle, Erwann; McClennen, Caleb; Rakotomanjaka, Andry J M; Tianarisoa, Tantely F; Watson, Reg; Kremen, Claire

    2012-01-01

    The Government of Madagascar plans to increase marine protected area coverage by over one million hectares. To assist this process, we compare four methods for marine spatial planning of Madagascar's west coast. Input data for each method was drawn from the same variables: fishing pressure, exposure to climate change, and biodiversity (habitats, species distributions, biological richness, and biodiversity value). The first method compares visual color classifications of primary variables, the second uses binary combinations of these variables to produce a categorical classification of management actions, the third is a target-based optimization using Marxan, and the fourth is conservation ranking with Zonation. We present results from each method, and compare the latter three approaches for spatial coverage, biodiversity representation, fishing cost and persistence probability. All results included large areas in the north, central, and southern parts of western Madagascar. Achieving 30% representation targets with Marxan required twice the fish catch loss than the categorical method. The categorical classification and Zonation do not consider targets for conservation features. However, when we reduced Marxan targets to 16.3%, matching the representation level of the "strict protection" class of the categorical result, the methods show similar catch losses. The management category portfolio has complete coverage, and presents several management recommendations including strict protection. Zonation produces rapid conservation rankings across large, diverse datasets. Marxan is useful for identifying strict protected areas that meet representation targets, and minimize exposure probabilities for conservation features at low economic cost. We show that methods based on Zonation and a simple combination of variables can produce results comparable to Marxan for species representation and catch losses, demonstrating the value of comparing alternative approaches during initial stages of the planning process. Choosing an appropriate approach ultimately depends on scientific and political factors including representation targets, likelihood of adoption, and persistence goals.

  15. Putting Climate Adaptation on the Map: Developing Spatial Management Strategies for Whitebark Pine in the Greater Yellowstone Ecosystem.

    PubMed

    Ireland, Kathryn B; Hansen, Andrew J; Keane, Robert E; Legg, Kristin; Gump, Robert L

    2018-06-01

    Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climate-informed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.

  16. Putting Climate Adaptation on the Map: Developing Spatial Management Strategies for Whitebark Pine in the Greater Yellowstone Ecosystem

    NASA Astrophysics Data System (ADS)

    Ireland, Kathryn B.; Hansen, Andrew J.; Keane, Robert E.; Legg, Kristin; Gump, Robert L.

    2018-06-01

    Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We spatially prioritized management actions aimed at mitigating climate impacts to WBP under two management strategies: (1) current management and (2) climate-informed management. The current strategy reflected management actions permissible under existing policy and access constraints. Our goal was to understand how consideration of climate might alter the placement of management actions, so the climate-informed strategies did not include these constraints. The spatial distribution of actions differed among the current and climate-informed management strategies, with 33-60% more wilderness area prioritized for action under climate-informed management. High priority areas for implementing management actions include the 1-8% of the GYE where current and climate-informed management agreed, since this is where actions are most likely to be successful in the long-term and where current management permits implementation. Areas where climate-informed strategies agreed with one another but not with current management (6-22% of the GYE) are potential locations for experimental testing of management actions. Our method for spatial climate adaptation planning is applicable to any species for which information regarding climate vulnerability and climate-mediated risk factors is available.

  17. Tracking historical increases in nitrogen-driven crop production possibilities

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Lassaletta, L.; Billen, G.; Garnier, J.; Gerber, J. S.

    2015-12-01

    The environmental costs of nitrogen use have prompted a focus on improving the efficiency of nitrogen use in the global food system, the primary source of nitrogen pollution. Typical approaches to improving agricultural nitrogen use efficiency include more targeted field-level use (timing, placement, and rate) and modification of the crop mix. However, global efficiency gains can also be achieved by improving the spatial allocation of nitrogen between regions or countries, due to consistent diminishing returns at high nitrogen use. This concept is examined by constructing a tradeoff frontier (or production possibilities frontier) describing global crop protein yield as a function of applied nitrogen from all sources, given optimal spatial allocation. Yearly variation in country-level input-output nitrogen budgets are utilized to parameterize country-specific hyperbolic yield-response models. Response functions are further characterized for three ~15-year eras beginning in 1961, and series of calculations uses these curves to simulate optimal spatial allocation in each era and determine the frontier. The analyses reveal that excess nitrogen (in recent years) could be reduced by ~40% given optimal spatial allocation. Over time, we find that gains in yield potential and in-country nitrogen use efficiency have led to increases in the global nitrogen production possibilities frontier. However, this promising shift has been accompanied by an actual spatial distribution of nitrogen use that has become less optimal, in an absolute sense, relative to the frontier. We conclude that examination of global production possibilities is a promising approach to understanding production constraints and efficiency opportunities in the global food system.

  18. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    PubMed

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  19. The Use of Social Ecological Hotspots Mapping: Co-Developing Adaptation Strategies for Resource Management by Communities and Policy Makers

    NASA Astrophysics Data System (ADS)

    Alessa, L.

    2014-12-01

    Ultimately, adaptation is based on a set of trade-offs rather than optimal conditions, something that is rarely seen in messy social ecological systems (SES). In this talk, we discuss the role of spatial hot-spot mapping using social and biophysical data to understand the feedbacks in SES. We review the types of data needed, their means of acquisition and the analytic methods involved. In addition, we outline the challenges faced in co-developing this type of inquiry based on lessons learned from several long-term programs. Finally, we present the utility of SES hotspots in developing adaptation strategies on the ground by communities and policy makers.

  20. Economic vulnerability of timber resources to forest fires.

    PubMed

    y Silva, Francisco Rodríguez; Molina, Juan Ramón; González-Cabán, Armando; Machuca, Miguel Ángel Herrera

    2012-06-15

    The temporal-spatial planning of activities for a territorial fire management program requires knowing the value of forest ecosystems. In this paper we extend to and apply the economic valuation principle to the concept of economic vulnerability and present a methodology for the economic valuation of the forest production ecosystems. The forest vulnerability is analyzed from criteria intrinsically associated to the forest characterization, and to the potential behavior of surface fires. Integrating a mapping process of fire potential and analytical valuation algorithms facilitates the implementation of fire prevention planning. The availability of cartography of economic vulnerability of the forest ecosystems is fundamental for budget optimization, and to help in the decision making process. Published by Elsevier Ltd.

  1. Analysis of shifts in the spatial distribution of vegetation due to climate change

    NASA Astrophysics Data System (ADS)

    del Jesus, Manuel; Díez-Sierra, Javier; Rinaldo, Andrea; Rodríguez-Iturbe, Ignacio

    2017-04-01

    Climate change will modify the statistical regime of most climatological variables, inducing changes on average values and in the natural variability of environmental variables. These environmental variables may be used to explain the spatial distribution of functional types of vegetation in arid and semiarid watersheds through the use of plant optimization theories. Therefore, plant optimization theories may be used to approximate the response of the spatial distribution of vegetation to a changing climate. Predicting changes in these spatial distributions is important to understand how climate change may affect vegetated ecosystems, but it is also important for hydrological engineering applications where climate change effects on water availability are assessed. In this work, Maximum Entropy Production (MEP) is used as the plant optimization theory that describes the spatial distribution of functional types of vegetation. Current climatological conditions are obtained from direct observations from meteorological stations. Climate change effects are evaluated for different temporal horizons and different climate change scenarios using numerical model outputs from the CMIP5. Rainfall estimates are downscaled by means of a stochastic point process used to model rainfall. The study is carried out for the Rio Salado watershed, located within the Sevilleta LTER site, in New Mexico (USA). Results show the expected changes in the spatial distribution of vegetation and allow to evaluate the expected variability of the changes. The updated spatial distributions allow to evaluate the vegetated ecosystem health and its updated resilience. These results can then be used to inform the hydrological modeling part of climate change assessments analyzing water availability in arid and semiarid watersheds.

  2. Minimizing Spatial Variability of Healthcare Spatial Accessibility-The Case of a Dengue Fever Outbreak.

    PubMed

    Chu, Hone-Jay; Lin, Bo-Cheng; Yu, Ming-Run; Chan, Ta-Chien

    2016-12-13

    Outbreaks of infectious diseases or multi-casualty incidents have the potential to generate a large number of patients. It is a challenge for the healthcare system when demand for care suddenly surges. Traditionally, valuation of heath care spatial accessibility was based on static supply and demand information. In this study, we proposed an optimal model with the three-step floating catchment area (3SFCA) to account for the supply to minimize variability in spatial accessibility. We used empirical dengue fever outbreak data in Tainan City, Taiwan in 2015 to demonstrate the dynamic change in spatial accessibility based on the epidemic trend. The x and y coordinates of dengue-infected patients with precision loss were provided publicly by the Tainan City government, and were used as our model's demand. The spatial accessibility of heath care during the dengue outbreak from August to October 2015 was analyzed spatially and temporally by producing accessibility maps, and conducting capacity change analysis. This study also utilized the particle swarm optimization (PSO) model to decrease the spatial variation in accessibility and shortage areas of healthcare resources as the epidemic went on. The proposed method in this study can help decision makers reallocate healthcare resources spatially when the ratios of demand and supply surge too quickly and form clusters in some locations.

  3. Optimal chemotaxis in intermittent migration of animal cells

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Salbreux, G.

    2015-04-01

    Animal cells can sense chemical gradients without moving and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases, and performing persistent migration during run phases. We show that the chaser average run time can be adjusted to minimize the target catching time or the spatial dispersion of the chasers. We obtain analytical results for the catching time and for the spatial dispersion in the limits of small and large ratios of run time to tumble time and scaling laws for the optimal run times. Our findings have implications for optimal chemotactic strategies in animal cell migration.

  4. Handling Uncertain Gross Margin and Water Demand in Agricultural Water Resources Management using Robust Optimization

    NASA Astrophysics Data System (ADS)

    Chaerani, D.; Lesmana, E.; Tressiana, N.

    2018-03-01

    In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.

  5. The research and development of water resources management information system based on ArcGIS

    NASA Astrophysics Data System (ADS)

    Cui, Weiqun; Gao, Xiaoli; Li, Yuzhi; Cui, Zhencai

    According to that there are large amount of data, complexity of data type and format in the water resources management, we built the water resources calculation model and established the water resources management information system based on the advanced ArcGIS and Visual Studio.NET development platform. The system can integrate the spatial data and attribute data organically, and manage them uniformly. It can analyze spatial data, inquire by map and data bidirectionally, provide various charts and report forms automatically, link multimedia information, manage database etc. . So it can provide spatial and static synthetical information services for study, management and decision of water resources, regional geology and eco-environment etc..

  6. Land management decisions in a carbonatic geo-environment

    NASA Astrophysics Data System (ADS)

    Siska, P.; Hung, I.-K.

    2017-10-01

    Land is the uppermost territorial unit of the earth’s surface that is quasi-homogeneous in its physical, natural, and also anthropogenic properties. The fundamental component of land is lithosphere. The focus of this work is on a carbonatic geo-environment that is dominantly characterized by Mesozoic rock complexes, significant chemical weathering, and a set of landforms that are unique to this type of a geological structures. In general, optimal land management is a composite of land sharing and land sparing practices; however, in order to answer the question: ‘What is a parcel of land best suited for?’ often requires well-organized spatial data. In this work, we have focused on developing a model that would evaluate the suitability of a carbonatic geo-environment for land management practices. Due to the potential hazards of some sinkhole infested areas, the risk of natural hazards must be first evaluated. In addition, the level of hazards depends on population pressure and the intensity of human impact on this particular environment. In this research, we have applied the principles of geostatistics to evaluate the probabilities for sinkhole hazards as well as fuzzy logic to evaluate the suitability of land sharing and land sparing management.

  7. Overcoming Spatial and Temporal Barriers to Public Access Defibrillators Via Optimization.

    PubMed

    Sun, Christopher L F; Demirtas, Derya; Brooks, Steven C; Morrison, Laurie J; Chan, Timothy C Y

    2016-08-23

    Immediate access to an automated external defibrillator (AED) increases the chance of survival for out-of-hospital cardiac arrest (OHCA). Current deployment usually considers spatial AED access, assuming AEDs are available 24 h a day. The goal of this study was to develop an optimization model for AED deployment, accounting for spatial and temporal accessibility, to evaluate if OHCA coverage would improve compared with deployment based on spatial accessibility alone. This study was a retrospective population-based cohort trial using data from the Toronto Regional RescuNET Epistry cardiac arrest database. We identified all nontraumatic public location OHCAs in Toronto, Ontario, Canada (January 2006 through August 2014) and obtained a list of registered AEDs (March 2015) from Toronto Paramedic Services. Coverage loss due to limited temporal access was quantified by comparing the number of OHCAs that occurred within 100 meters of a registered AED (assumed coverage 24 h per day, 7 days per week) with the number that occurred both within 100 meters of a registered AED and when the AED was available (actual coverage). A spatiotemporal optimization model was then developed that determined AED locations to maximize OHCA actual coverage and overcome the reported coverage loss. The coverage gain between the spatiotemporal model and a spatial-only model was computed by using 10-fold cross-validation. A total of 2,440 nontraumatic public OHCAs and 737 registered AED locations were identified. A total of 451 OHCAs were covered by registered AEDs under assumed coverage 24 h per day, 7 days per week, and 354 OHCAs under actual coverage, representing a coverage loss of 21.5% (p < 0.001). Using the spatiotemporal model to optimize AED deployment, a 25.3% relative increase in actual coverage was achieved compared with the spatial-only approach (p < 0.001). One in 5 OHCAs occurred near an inaccessible AED at the time of the OHCA. Potential AED use was significantly improved with a spatiotemporal optimization model guiding deployment. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Optimization of the spatial resolution for the GE discovery PET/CT 710 by using NEMA NU 2-2007 standards

    NASA Astrophysics Data System (ADS)

    Yoon, Hyun Jin; Jeong, Young Jin; Son, Hye Joo; Kang, Do-Young; Hyun, Kyung-Yae; Lee, Min-Kyung

    2015-01-01

    The spatial resolution in positron emission tomography (PET) is fundamentally limited by the geometry of the detector element, the positron's recombination range with electrons, the acollinearity of the positron, the crystal decoding error, the penetration into the detector ring, and the reconstruction algorithms. In this paper, optimized parameters are suggested to produce high-resolution PET images by using an iterative reconstruction algorithm. A phantom with three point sources structured with three capillary tubes was prepared with an axial extension of less than 1 mm and was filled with 18F-fluorodeoxyglucose (18F-FDG) with concentrations above 200 MBq/cc. The performance measures of all the PET images were acquired according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standards procedures. The parameters for the iterative reconstruction were adjusted around the values recommended by General Electric GE, and the optimized values of the spatial resolution and the full width at half maximum (FWHM) or the full width at tenth of maximum (FWTM) values were found for the best PET resolution. The axial and the transverse spatial resolutions, according to the filtered back-projection (FBP) at 1 cm off-axis, were 4.81 and 4.48 mm, respectively. The axial and the transaxial spatial resolutions at 10 cm off-axis were 5.63 mm and 5.08 mm, respectively, and the trans-axial resolution at 10 cm was evaluated as the average of the radial and the tangential measurements. The recommended optimized parameters of the spatial resolution according to the NEMA phantom for the number of subsets, the number of iterations, and the Gaussian post-filter are 12, 3, and 3 mm for the iterative reconstruction VUE Point HD without the SharpIR algorithm (HD), and 12, 12, and 5.2 mm with SharpIR (HD.S), respectively, according to the Advantage Workstation Volume Share 5 (AW4.6). The performance measurements for the GE Discovery PET/CT 710 using the NEMA NU 2-2007 standards from our results will be helpful in the quantitative analysis of PET scanner images. The spatial resolution was modified more by using an improved algorithm such as HD.S, than by using HD and FBP. The use of the optimized parameters for iterative reconstructions is strongly recommended for qualitative images from the GE Discovery PET/CT 710 scanner.

  9. Topology Optimization for Energy Management in Underwater Sensor Networks

    DTIC Science & Technology

    2015-02-01

    1 To appear in International Journal of Control as a regular paper Topology Optimization for Energy Management in Underwater Sensor Networks ⋆ Devesh...K. Jha1 Thomas A. Wettergren2 Asok Ray1 Kushal Mukherjee3 Keywords: Underwater Sensor Network , Energy Management, Pareto Optimization, Adaptation...Optimization for Energy Management in Underwater Sensor Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  10. Collaborative adaptive landscape management (CALM) in rangelands: Discussion of general principles

    USDA-ARS?s Scientific Manuscript database

    The management of rangeland landscapes involves broad spatial extents, mixed land ownership, and multiple resource objectives. Management outcomes depend on biophysical heterogeneity, highly variable weather conditions, land use legacies, and spatial processes such as wildlife movement, hydrological...

  11. PRAIRIEMAP: A GIS database for prairie grassland management in western North America

    USGS Publications Warehouse

    ,

    2003-01-01

    The USGS Forest and Rangeland Ecosystem Science Center, Snake River Field Station (SRFS) maintains a database of spatial information, called PRAIRIEMAP, which is needed to address the management of prairie grasslands in western North America. We identify and collect spatial data for the region encompassing the historical extent of prairie grasslands (Figure 1). State and federal agencies, the primary entities responsible for management of prairie grasslands, need this information to develop proactive management strategies to prevent prairie-grassland wildlife species from being listed as Endangered Species, or to develop appropriate responses if listing does occur. Spatial data are an important component in documenting current habitat and other environmental conditions, which can be used to identify areas that have undergone significant changes in land cover and to identify underlying causes. Spatial data will also be a critical component guiding the decision processes for restoration of habitat in the Great Plains. As such, the PRAIRIEMAP database will facilitate analyses of large-scale and range-wide factors that may be causing declines in grassland habitat and populations of species that depend on it for their survival. Therefore, development of a reliable spatial database carries multiple benefits for land and wildlife management. The project consists of 3 phases: (1) identify relevant spatial data, (2) assemble, document, and archive spatial data on a computer server, and (3) develop and maintain the web site (http://prairiemap.wr.usgs.gov) for query and transfer of GIS data to managers and researchers.

  12. Method to optimize patch size based on spatial frequency response in image rendering of the light field

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Yanan; Zhu, Zhenhao; Su, Jinhui

    2018-05-01

    A focused plenoptic camera can effectively transform angular and spatial information to yield a refocused rendered image with high resolution. However, choosing a proper patch size poses a significant problem for the image-rendering algorithm. By using a spatial frequency response measurement, a method to obtain a suitable patch size is presented. By evaluating the spatial frequency response curves, the optimized patch size can be obtained quickly and easily. Moreover, the range of depth over which images can be rendered without artifacts can be estimated. Experiments show that the results of the image rendered based on frequency response measurement are in accordance with the theoretical calculation, which indicates that this is an effective way to determine the patch size. This study may provide support to light-field image rendering.

  13. Spatial allocation of forest recreation value

    Treesearch

    Kenneth A. Baerenklau; Armando Gonzalez-Caban; Catrina Paez; Edgard Chavez

    2009-01-01

    Non-market valuation methods and geographic information systems are useful planning and management tools for public land managers. Recent attention has been given to investigation and demonstration of methods for combining these tools to provide spatially-explicit representations of non-market value. Most of these efforts have focused on spatial allocation of...

  14. Ecosystem service tradeoff analysis reveals the value of marine spatial planning for multiple ocean uses

    PubMed Central

    White, Crow; Halpern, Benjamin S.; Kappel, Carrie V.

    2012-01-01

    Marine spatial planning (MSP) is an emerging responsibility of resource managers around the United States and elsewhere. A key proposed advantage of MSP is that it makes tradeoffs in resource use and sector (stakeholder group) values explicit, but doing so requires tools to assess tradeoffs. We extended tradeoff analyses from economics to simultaneously assess multiple ecosystem services and the values they provide to sectors using a robust, quantitative, and transparent framework. We used the framework to assess potential conflicts among offshore wind energy, commercial fishing, and whale-watching sectors in Massachusetts and identify and quantify the value from choosing optimal wind farm designs that minimize conflicts among these sectors. Most notably, we show that using MSP over conventional planning could prevent >$1 million dollars in losses to the incumbent fishery and whale-watching sectors and could generate >$10 billion in extra value to the energy sector. The value of MSP increased with the greater the number of sectors considered and the larger the area under management. Importantly, the framework can be applied even when sectors are not measured in dollars (e.g., conservation). Making tradeoffs explicit improves transparency in decision-making, helps avoid unnecessary conflicts attributable to perceived but weak tradeoffs, and focuses debate on finding the most efficient solutions to mitigate real tradeoffs and maximize sector values. Our analysis demonstrates the utility, feasibility, and value of MSP and provides timely support for the management transitions needed for society to address the challenges of an increasingly crowded ocean environment. PMID:22392996

  15. Spatial Data Mining for Estimating Cover Management Factor of Universal Soil Loss Equation

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Lin, T. C.; Chiang, S. H.; Chen, W. W.

    2016-12-01

    Universal Soil Loss Equation (USLE) is a widely used mathematical model that describes long-term soil erosion processes. Among the six different soil erosion risk factors of USLE, the cover-management factor (C-factor) is related to land-cover/land-use. The value of C-factor ranges from 0.001 to 1, so it alone might cause a thousandfold difference in a soil erosion analysis using USLE. The traditional methods for the estimation of USLE C-factor include in situ experiments, soil physical parameter models, USLE look-up tables with land use maps, and regression models between vegetation indices and C-factors. However, these methods are either difficult or too expensive to implement in large areas. In addition, the values of C-factor obtained using these methods can not be updated frequently, either. To address this issue, this research developed a spatial data mining approach to estimate the values of C-factor with assorted spatial datasets for a multi-temporal (2004 to 2008) annual soil loss analysis of a reservoir watershed in northern Taiwan. The idea is to establish the relationship between the USLE C-factor and spatial data consisting of vegetation indices and texture features extracted from satellite images, soil and geology attributes, digital elevation model, road and river distribution etc. A decision tree classifier was used to rank influential conditional attributes in the preliminary data mining. Then, factor simplification and separation were considered to optimize the model and the random forest classifier was used to analyze 9 simplified factor groups. Experimental results indicate that the overall accuracy of the data mining model is about 79% with a kappa value of 0.76. The estimated soil erosion amounts in 2004-2008 according to the data mining results are about 50.39 - 74.57 ton/ha-year after applying the sediment delivery ratio and correction coefficient. Comparing with estimations calculated with C-factors from look-up tables, the soil erosion values estimated with C-factors generated from spatial data mining results are more in agreement with the values published by the watershed administration authority.

  16. Optimal population prediction of sandhill crane recruitment based on climate-mediated habitat limitations

    USGS Publications Warehouse

    Gerber, Brian D.; Kendall, William L.; Hooten, Mevin B.; Dubovsky, James A.; Drewien, Roderick C.

    2015-01-01

    Prediction is fundamental to scientific enquiry and application; however, ecologists tend to favour explanatory modelling. We discuss a predictive modelling framework to evaluate ecological hypotheses and to explore novel/unobserved environmental scenarios to assist conservation and management decision-makers. We apply this framework to develop an optimal predictive model for juvenile (<1 year old) sandhill crane Grus canadensis recruitment of the Rocky Mountain Population (RMP). We consider spatial climate predictors motivated by hypotheses of how drought across multiple time-scales and spring/summer weather affects recruitment.Our predictive modelling framework focuses on developing a single model that includes all relevant predictor variables, regardless of collinearity. This model is then optimized for prediction by controlling model complexity using a data-driven approach that marginalizes or removes irrelevant predictors from the model. Specifically, we highlight two approaches of statistical regularization, Bayesian least absolute shrinkage and selection operator (LASSO) and ridge regression.Our optimal predictive Bayesian LASSO and ridge regression models were similar and on average 37% superior in predictive accuracy to an explanatory modelling approach. Our predictive models confirmed a priori hypotheses that drought and cold summers negatively affect juvenile recruitment in the RMP. The effects of long-term drought can be alleviated by short-term wet spring–summer months; however, the alleviation of long-term drought has a much greater positive effect on juvenile recruitment. The number of freezing days and snowpack during the summer months can also negatively affect recruitment, while spring snowpack has a positive effect.Breeding habitat, mediated through climate, is a limiting factor on population growth of sandhill cranes in the RMP, which could become more limiting with a changing climate (i.e. increased drought). These effects are likely not unique to cranes. The alteration of hydrological patterns and water levels by drought may impact many migratory, wetland nesting birds in the Rocky Mountains and beyond.Generalizable predictive models (trained by out-of-sample fit and based on ecological hypotheses) are needed by conservation and management decision-makers. Statistical regularization improves predictions and provides a general framework for fitting models with a large number of predictors, even those with collinearity, to simultaneously identify an optimal predictive model while conducting rigorous Bayesian model selection. Our framework is important for understanding population dynamics under a changing climate and has direct applications for making harvest and habitat management decisions.

  17. Matching spatial property rights fisheries with scales of fish dispersal.

    PubMed

    White, Crow; Costello, Christopher

    2011-03-01

    Regulation of fisheries using spatial property rights can alleviate competition for high-value patches that hinders economic efficiency in quota-based, rights-based, and open-access management programs. However, efficiency gains erode when delineation of spatial rights constitutes incomplete ownership of the resource, thereby degrading its local value and promoting overexploitation. Incomplete ownership may be particularly prevalent in the spatial management of mobile fishery species. We developed a game-theoretic bioeconomic model of spatial property rights representing territorial user rights fisheries (TURF) management of nearshore marine fish and invertebrate species with mobile adult and larval life history stages. Strategic responses by fisheries in neighboring management units result in overexploitation of the stock and reduced yields for each fishery compared with those attainable without resource mobility or with coordination or sole control in fishing effort. High dispersal potential of the larval stage, a common trait among nearshore fishery species, coupled with scaling of management units to only capture adult mobility, a common characteristic of many nearshore TURF programs, in particular substantially reduced stock levels and yields. In a case study of hypothetical TURF programs of nearshore fish and invertebrate species, management units needed to be tens of kilometers in alongshore length to minimize larval export and generate reasonable returns to fisheries. Cooperation and quota regulations represent solutions to the problem that need to be quantified in cost and integrated into the determination of the acceptability of spatial property rights management of fisheries.

  18. Evaluation of the Gini Coefficient in Spatial Scan Statistics for Detecting Irregularly Shaped Clusters

    PubMed Central

    Kim, Jiyu; Jung, Inkyung

    2017-01-01

    Spatial scan statistics with circular or elliptic scanning windows are commonly used for cluster detection in various applications, such as the identification of geographical disease clusters from epidemiological data. It has been pointed out that the method may have difficulty in correctly identifying non-compact, arbitrarily shaped clusters. In this paper, we evaluated the Gini coefficient for detecting irregularly shaped clusters through a simulation study. The Gini coefficient, the use of which in spatial scan statistics was recently proposed, is a criterion measure for optimizing the maximum reported cluster size. Our simulation study results showed that using the Gini coefficient works better than the original spatial scan statistic for identifying irregularly shaped clusters, by reporting an optimized and refined collection of clusters rather than a single larger cluster. We have provided a real data example that seems to support the simulation results. We think that using the Gini coefficient in spatial scan statistics can be helpful for the detection of irregularly shaped clusters. PMID:28129368

  19. Optimal management of non-Markovian biological populations

    USGS Publications Warehouse

    Williams, B.K.

    2007-01-01

    Wildlife populations typically are described by Markovian models, with population dynamics influenced at each point in time by current but not previous population levels. Considerable work has been done on identifying optimal management strategies under the Markovian assumption. In this paper we generalize this work to non-Markovian systems, for which population responses to management are influenced by lagged as well as current status and/or controls. We use the maximum principle of optimal control theory to derive conditions for the optimal management such a system, and illustrate the effects of lags on the structure of optimal habitat strategies for a predator-prey system.

  20. Spatial targeting of agri-environmental policy using bilevel evolutionary optimization

    USDA-ARS?s Scientific Manuscript database

    In this study we describe the optimal designation of agri-environmental policy as a bilevel optimization problem and propose an integrated solution method using a hybrid genetic algorithm. The problem is characterized by a single leader, the agency, that establishes a policy with the goal of optimiz...

  1. Urban Rain Gauge Siting Selection Based on Gis-Multicriteria Analysis

    NASA Astrophysics Data System (ADS)

    Fu, Yanli; Jing, Changfeng; Du, Mingyi

    2016-06-01

    With the increasingly rapid growth of urbanization and climate change, urban rainfall monitoring as well as urban waterlogging has widely been paid attention. In the light of conventional siting selection methods do not take into consideration of geographic surroundings and spatial-temporal scale for the urban rain gauge site selection, this paper primarily aims at finding the appropriate siting selection rules and methods for rain gauge in urban area. Additionally, for optimization gauge location, a spatial decision support system (DSS) aided by geographical information system (GIS) has been developed. In terms of a series of criteria, the rain gauge optimal site-search problem can be addressed by a multicriteria decision analysis (MCDA). A series of spatial analytical techniques are required for MCDA to identify the prospective sites. With the platform of GIS, using spatial kernel density analysis can reflect the population density; GIS buffer analysis is used to optimize the location with the rain gauge signal transmission character. Experiment results show that the rules and the proposed method are proper for the rain gauge site selection in urban areas, which is significant for the siting selection of urban hydrological facilities and infrastructure, such as water gauge.

  2. Modeling watershed-scale impacts of stormwater management with traditional versus low impact development design

    USGS Publications Warehouse

    Sparkman, Stephanie A.; Hogan, Dianna; Hopkins, Kristina G.; Loperfido, J. V.

    2017-01-01

    Stormwater runoff and associated pollutants from urban areas in the greater Chesapeake Bay Watershed (CBW) impair local streams and downstream ecosystems, despite urbanized land comprising only 7% of the CBW area. More recently, stormwater best management practices (BMPs) have been implemented in a low impact development (LID) manner to treat stormwater runoff closer to its source. This approach included the development of a novel BMP model to compare traditional and LID design, pioneering the use of comprehensively digitized storm sewer infrastructure and BMP design connectivity with spatial patterns in a geographic information system at the watershed scale. The goal was to compare total watershed pollutant removal efficiency in two study watersheds with differing spatial patterns of BMP design (traditional and LID), by quantifying the improved water quality benefit of LID BMP design. An estimate of uncertainty was included in the modeling framework by using ranges for BMP pollutant removal efficiencies that were based on the literature. Our model, using Monte Carlo analysis, predicted that the LID watershed removed approximately 78 kg more nitrogen, 3 kg more phosphorus, and 1,592 kg more sediment per square kilometer as compared with the traditional watershed on an annual basis. Our research provides planners a valuable model to prioritize watersheds for BMP design based on model results or in optimizing BMP selection.

  3. A two-phase copula entropy-based multiobjective optimization approach to hydrometeorological gauge network design

    NASA Astrophysics Data System (ADS)

    Xu, Pengcheng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi; Liu, Jiufu; Zou, Ying; He, Ruimin

    2017-12-01

    Hydrometeorological data are needed for obtaining point and areal mean, quantifying the spatial variability of hydrometeorological variables, and calibration and verification of hydrometeorological models. Hydrometeorological networks are utilized to collect such data. Since data collection is expensive, it is essential to design an optimal network based on the minimal number of hydrometeorological stations in order to reduce costs. This study proposes a two-phase copula entropy- based multiobjective optimization approach that includes: (1) copula entropy-based directional information transfer (CDIT) for clustering the potential hydrometeorological gauges into several groups, and (2) multiobjective method for selecting the optimal combination of gauges for regionalized groups. Although entropy theory has been employed for network design before, the joint histogram method used for mutual information estimation has several limitations. The copula entropy-based mutual information (MI) estimation method is shown to be more effective for quantifying the uncertainty of redundant information than the joint histogram (JH) method. The effectiveness of this approach is verified by applying to one type of hydrometeorological gauge network, with the use of three model evaluation measures, including Nash-Sutcliffe Coefficient (NSC), arithmetic mean of the negative copula entropy (MNCE), and MNCE/NSC. Results indicate that the two-phase copula entropy-based multiobjective technique is capable of evaluating the performance of regional hydrometeorological networks and can enable decision makers to develop strategies for water resources management.

  4. Development a heuristic method to locate and allocate the medical centers to minimize the earthquake relief operation time.

    PubMed

    Aghamohammadi, Hossein; Saadi Mesgari, Mohammad; Molaei, Damoon; Aghamohammadi, Hasan

    2013-01-01

    Location-allocation is a combinatorial optimization problem, and is defined as Non deterministic Polynomial Hard (NP) hard optimization. Therefore, solution of such a problem should be shifted from exact to heuristic or Meta heuristic due to the complexity of the problem. Locating medical centers and allocating injuries of an earthquake to them has high importance in earthquake disaster management so that developing a proper method will reduce the time of relief operation and will consequently decrease the number of fatalities. This paper presents the development of a heuristic method based on two nested genetic algorithms to optimize this location allocation problem by using the abilities of Geographic Information System (GIS). In the proposed method, outer genetic algorithm is applied to the location part of the problem and inner genetic algorithm is used to optimize the resource allocation. The final outcome of implemented method includes the spatial location of new required medical centers. The method also calculates that how many of the injuries at each demanding point should be taken to any of the existing and new medical centers as well. The results of proposed method showed high performance of designed structure to solve a capacitated location-allocation problem that may arise in a disaster situation when injured people has to be taken to medical centers in a reasonable time.

  5. An assessment of the feasibility of the use of satellite-only rainfall estimates for the hydrological monitoring in central Italy

    NASA Astrophysics Data System (ADS)

    Campo, Lorenzo; Caparrini, Francesca

    2013-04-01

    The need for accurate distributed hydrological modelling has constantly increased in last years for several purposes: agricultural applications, water resources management, hydrological balance at watershed scale, floods forecast. The main input for the hydrological numerical models is rainfall data that present, at the same time, a large availability of measures (in gauged regions, with respect to other micro-meteorological variables) and the most complex spatial patterns. While also in presence of densely gauged watersheds the spatial interpolation of the rainfall is a non-trivial problem, due to the spatial intermittence of the variable (especially at finer temporal scales), ungauged regions need an alternative source of rainfall data in order to perform the hydrological modelling. Such source can be constituted by the satellite-estimated rainfall fields, with reference to both geostationary and polar-orbit platforms. In this work the rainfall product obtained by the Aqua-AIRS sensor were used in order to assess the feasibility of the use of satellite-based rainfall as input for distributed hydrological modelling. The MOBIDIC (MOdello di BIlancio Distribuito e Continuo) model, developed at the Department of civil and Environmental Engineering of the University of Florence and operationally used by Tuscany Region and Umbria Region for flood prediction and management, was used for the experiments. In particular three experiments were carried on: a) hydrological simulation with the use of rain-gauges data, b) simulation with the use of satellite-only rainfall estimates, c) simulation with the combined use of the two sources of data in order to obtain an optimal estimate of the actual rainfall fields. The domain of the study was the central Italy. Several critical events occurred in the area were analyzed. A discussion of the results is provided.

  6. Spatial and temporal variability of N2O emission on grazed pastures - influence of management and meteorological drivers

    NASA Astrophysics Data System (ADS)

    Ammann, Christof; Voglmeier, Karl; Jocher, Markus

    2017-04-01

    Grazed pastures are considered as strong sources of the greenhouse gas nitrous oxide (N2O) with local hot-spots resulting from the uneven spatial distribution of the excretion of the grazing animals. Especially urine patches can result in a high local nitrogen (N) surplus, which can cause large deviations from average soil conditions. The strong spatial and temporal variability of the gaseous emissions represents an inherent problem for the quantification, interpretation and modelling. Micrometeorological methods integrating over a larger domain like the eddy covariance method are well suited to quantify the integrated ecosystem emissions of N2O. In contrast, chamber methods are more useful to investigate specific underlying processes and their dependences on driving parameters. We present results of a pasture experiment in western Switzerland where eddy covariance and chamber measurements of N2O fluxes have been performed using a very sensitive and fast response quantum cascade laser (QCL) instrument. Small scale emissions of N2O from dung and urine patches as well as from other "background" pasture surface areas were quantified using an optimized 'fast-box' chamber system. Variable and partly high N2O emissions of the pasture were observed during all seasons. Beside management factors (grazing phases, fertiliser application), temperature and soil moisture showed a large effect on the fluxes. Fresh urine patches from grazing cows were found to be main emission sources and their temporal dynamics was studied in detail. We present a first approach to up-scale the chamber measurements to the field-scale and compare the results with the eddy covariance measurements.

  7. Investigating Temporal and Spatial Variations in Near Surface Water Content using GPR

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Grote, K.; Kowalsky, M. B.; Rubin, Y.

    2001-12-01

    Using only conventional point or well logging measurements, it is difficult to obtain information about water content with sufficient spatial resolution and coverage to be useful for near surface applications such as for input to vadose zone predictive models or for assisting with precision crop management. Prompted by successful results of a controlled ground penetrating radar (GPR) pilot study, we are investigating the applicability of GPR methods to estimate near surface water content at a study site within the Robert Mondavi vineyards in Napa County, California. Detailed information about soil variability and water content within vineyards could assist in estimation of plantable acreage, in the design of vineyard layout and in the design of an efficient irrigation/agrochemical application procedure. Our research at the winery study site involves investigation of optimal GPR acquisition and processing techniques, modeling of GPR attributes, and inversion of the attributes for water content information over space and time. A secondary goal of our project is to compare water content information obtained from the GPR data with information available from other types of measurements that are being used to assist in precision crop management. This talk will focus on point and spatial correlation estimation of water content obtained using GPR groundwave information only, and comparison of those estimates with information obtained from analysis of soils, TDR, neutron probe and remote sensing data sets. This comparison will enable us to 1) understand the potential of GPR for providing water content information in the very shallow subsurface, and to 2) investigate the interrelationships between the different types of measurements (and associated measurement scales) that are being utilized to characterize the shallow subsurface water content over space and time.

  8. Damage identification in beams using speckle shearography and an optimal spatial sampling

    NASA Astrophysics Data System (ADS)

    Mininni, M.; Gabriele, S.; Lopes, H.; Araújo dos Santos, J. V.

    2016-10-01

    Over the years, the derivatives of modal displacement and rotation fields have been used to localize damage in beams. Usually, the derivatives are computed by applying finite differences. The finite differences propagate and amplify the errors that exist in real measurements, and thus, it is necessary to minimize this problem in order to get reliable damage localizations. A way to decrease the propagation and amplification of the errors is to select an optimal spatial sampling. This paper presents a technique where an optimal spatial sampling of modal rotation fields is computed and used to obtain the modal curvatures. Experimental measurements of modal rotation fields of a beam with single and multiple damages are obtained with shearography, which is an optical technique allowing the measurement of full-fields. These measurements are used to test the validity of the optimal sampling technique for the improvement of damage localization in real structures. An investigation on the ability of a model updating technique to quantify the damage is also reported. The model updating technique is defined by the variations of measured natural frequencies and measured modal rotations and aims at calibrating the values of the second moment of area in the damaged areas, which were previously localized.

  9. Adjoint-based optimization of mechanical performance in polycrystalline materials and structures through texture control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Grace; Brown, Judith Alice; Bishop, Joseph E.

    The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities ofmore » interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.« less

  10. Average variograms to guide soil sampling

    NASA Astrophysics Data System (ADS)

    Kerry, R.; Oliver, M. A.

    2004-10-01

    To manage land in a site-specific way for agriculture requires detailed maps of the variation in the soil properties of interest. To predict accurately for mapping, the interval at which the soil is sampled should relate to the scale of spatial variation. A variogram can be used to guide sampling in two ways. A sampling interval of less than half the range of spatial dependence can be used, or the variogram can be used with the kriging equations to determine an optimal sampling interval to achieve a given tolerable error. A variogram might not be available for the site, but if the variograms of several soil properties were available on a similar parent material and or particular topographic positions an average variogram could be calculated from these. Averages of the variogram ranges and standardized average variograms from four different parent materials in southern England were used to suggest suitable sampling intervals for future surveys in similar pedological settings based on half the variogram range. The standardized average variograms were also used to determine optimal sampling intervals using the kriging equations. Similar sampling intervals were suggested by each method and the maps of predictions based on data at different grid spacings were evaluated for the different parent materials. Variograms of loss on ignition (LOI) taken from the literature for other sites in southern England with similar parent materials had ranges close to the average for a given parent material showing the possible wider application of such averages to guide sampling.

  11. Modeling sugar cane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-01-01

    Agro-Land Surface Models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugar cane cultivation in Australia and Brazil. Ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting climate-mediated different sensitivities of modeled sugar cane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  12. Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-06-01

    Agro-land surface models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugarcane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte Carlo sampling method associated with the calculation of partial ranked correlation coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugarcane cultivation in Australia and Brazil. The ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting different climate-mediated sensitivities of modeled sugarcane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  13. An intelligent user interface for browsing satellite data catalogs

    NASA Technical Reports Server (NTRS)

    Cromp, Robert F.; Crook, Sharon

    1989-01-01

    A large scale domain-independent spatial data management expert system that serves as a front-end to databases containing spatial data is described. This system is unique for two reasons. First, it uses spatial search techniques to generate a list of all the primary keys that fall within a user's spatial constraints prior to invoking the database management system, thus substantially decreasing the amount of time required to answer a user's query. Second, a domain-independent query expert system uses a domain-specific rule base to preprocess the user's English query, effectively mapping a broad class of queries into a smaller subset that can be handled by a commercial natural language processing system. The methods used by the spatial search module and the query expert system are explained, and the system architecture for the spatial data management expert system is described. The system is applied to data from the International Ultraviolet Explorer (IUE) satellite, and results are given.

  14. Spatial Coverage Planning and Optimization for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Chouinard, Caroline

    2008-01-01

    We are developing onboard planning and scheduling technology to enable in situ robotic explorers, such as rovers and aerobots, to more effectively assist scientists in planetary exploration. In our current work, we are focusing on situations in which the robot is exploring large geographical features such as craters, channels or regional boundaries. In to develop valid and high quality plans, the robot must take into account a range of scientific and engineering constraints and preferences. We have developed a system that incorporates multiobjective optimization and planning allowing the robot to generate high quality mission operations plans that respect resource limitations and mission constraints while attempting to maximize science and engineering objectives. An important scientific objective for the exploration of geological features is selecting observations that spatially cover an area of interest. We have developed a metric to enable an in situ explorer to reason about and track the spatial coverage quality of a plan. We describe this technique and show how it is combined in the overall multiobjective optimization and planning algorithm.

  15. Small-Tip-Angle Spokes Pulse Design Using Interleaved Greedy and Local Optimization Methods

    PubMed Central

    Grissom, William A.; Khalighi, Mohammad-Mehdi; Sacolick, Laura I.; Rutt, Brian K.; Vogel, Mika W.

    2013-01-01

    Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods. PMID:22392822

  16. A dam-reservoir module for a semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2017-04-01

    Developing modeling tools that help to assess the spatial distribution of water resources is a key issue to achieve better solutions for the optimal management of water availability among users in a river basin. Streamflow dynamics depends on (i) the spatial variability of rainfall, (ii) the heterogeneity of catchment behavior and response, and (iii) local human regulations (e.g., reservoirs) that store and control surface water. These aspects can be successfully handled by distributed or semi-distributed hydrological models. In this study, we develop a dam-reservoir module within a semi-distributed rainfall-runoff model (de Lavenne et al. 2016). The model runs at the daily time step, and has five parameters for each sub-catchment as well as a streamflow velocity parameter for flow routing. Its structure is based on two stores, one for runoff production and one for routing. The calibration of the model is performed from upstream to downstream sub-catchments, which efficiently uses spatially-distributed streamflow measurements. In a previous study, Payan et al. (2008) described a strategy to implement a dam module within a lumped rainfall-runoff model. Here we propose to adapt this strategy to a semi-distributed hydrological modelling framework. In this way, the specific location of existing reservoirs inside a river basin is explicitly accounted for. Our goal is to develop a tool that can provide answers to the different issues involved in spatial water management in human-influenced contexts and at large modelling scales. The approach is tested for the Seine basin in France. Results are shown for model performance with and without the dam module. Also, a comparison with the lumped GR5J model highlights the improvements obtained in model performance by considering human influences more explicitly, and by facilitating parameter identifiability. This work opens up new perspectives for streamflow naturalization analyses and scenario-based spatial assessment of water resources under global change. References de Lavenne, A.; Thirel, G.; Andréassian, V.; Perrin, C. & Ramos, M.-H. (2016), 'Spatial variability of the parameters of a semi-distributed hydrological model', PIAHS 373, 87-94. Payan, J.-L.; Perrin, C.; Andréassian, V. & Michel, C. (2008), 'How can man-made water reservoirs be accounted for in a lumped rainfall-runoff model?', Water Resour. Res. 44(3), W03420.

  17. Optimizing information flow in small genetic networks. IV. Spatial coupling

    NASA Astrophysics Data System (ADS)

    Sokolowski, Thomas R.; Tkačik, Gašper

    2015-06-01

    We typically think of cells as responding to external signals independently by regulating their gene expression levels, yet they often locally exchange information and coordinate. Can such spatial coupling be of benefit for conveying signals subject to gene regulatory noise? Here we extend our information-theoretic framework for gene regulation to spatially extended systems. As an example, we consider a lattice of nuclei responding to a concentration field of a transcriptional regulator (the input) by expressing a single diffusible target gene. When input concentrations are low, diffusive coupling markedly improves information transmission; optimal gene activation functions also systematically change. A qualitatively different regulatory strategy emerges where individual cells respond to the input in a nearly steplike fashion that is subsequently averaged out by strong diffusion. While motivated by early patterning events in the Drosophila embryo, our framework is generically applicable to spatially coupled stochastic gene expression models.

  18. Implementing optimal thinning strategies

    Treesearch

    Kurt H. Riitters; J. Douglas Brodie

    1984-01-01

    Optimal thinning regimes for achieving several management objectives were derived from two stand-growth simulators by dynamic programming. Residual mean tree volumes were then plotted against stand density management diagrams. The results supported the use of density management diagrams for comparing, checking, and implementing the results of optimization analyses....

  19. A management-oriented framework for selecting metrics used to assess habitat- and path-specific quality in spatially structured populations

    USGS Publications Warehouse

    Nicol, Sam; Wiederholt, Ruscena; Diffendorfer, James E.; Mattsson, Brady; Thogmartin, Wayne E.; Semmens, Darius J.; Laura Lopez-Hoffman,; Norris, Ryan

    2016-01-01

    Mobile species with complex spatial dynamics can be difficult to manage because their population distributions vary across space and time, and because the consequences of managing particular habitats are uncertain when evaluated at the level of the entire population. Metrics to assess the importance of habitats and pathways connecting habitats in a network are necessary to guide a variety of management decisions. Given the many metrics developed for spatially structured models, it can be challenging to select the most appropriate one for a particular decision. To guide the management of spatially structured populations, we define three classes of metrics describing habitat and pathway quality based on their data requirements (graph-based, occupancy-based, and demographic-based metrics) and synopsize the ecological literature relating to these classes. Applying the first steps of a formal decision-making approach (problem framing, objectives, and management actions), we assess the utility of metrics for particular types of management decisions. Our framework can help managers with problem framing, choosing metrics of habitat and pathway quality, and to elucidate the data needs for a particular metric. Our goal is to help managers to narrow the range of suitable metrics for a management project, and aid in decision-making to make the best use of limited resources.

  20. Monte Carlo design of optimal wire mesh collimator for breast tumor imaging process

    NASA Astrophysics Data System (ADS)

    Saad, W. H. M.; Roslan, R. E.; Mahdi, M. A.; Choong, W.-S.; Saion, E.; Saripan, M. I.

    2011-08-01

    This paper presents the modeling of breast tumor imaging process using wire mesh collimator gamma camera. Previous studies showed that the wire mesh collimator has a potential to improve the sensitivity of the tumor detection. In this paper, we extend our research significantly, to find an optimal configuration of the wire mesh collimator specifically for semi-compressed breast tumor detection, by looking into four major factors: weight, sensitivity, spatial resolution and tumor contrast. The numbers of layers in the wire mesh collimator is varied to optimize the collimator design. The statistical variations of the results are studied by simulating multiple realizations for each experiment using different starting random numbers. All the simulation environments are modeled using Monte Carlo N-Particle Code (MCNP). The quality of the detection is measured directly by comparing the sensitivity, spatial resolution and tumor contrast of the images produced by the wire mesh collimator and benchmarked that with a standard multihole collimator. The proposed optimal configuration of the wire mesh collimator is optimized by selecting the number of layers in wire mesh collimator, where the tumor contrast shows a relatively comparable value to the multihole collimator, when it is tested with uniformly semi-compressed breast phantom. The wire mesh collimator showed higher number of sensitivity because of its loose arrangement while the spatial resolution of wire mesh collimator does not shows much different compared to the multihole collimator. With a relatively good tumor contrast and spatial resolution, and increased in sensitivity, a new proposed wire mesh collimator gives a significant improvement in the wire mesh collimator design for breast cancer imaging process. The proposed collimator configuration is reduced to 44.09% from the total multihole collimator weight.

  1. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel.

  2. Including spatial data in nutrient balance modelling on dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies at Dutch dairy farms. We selected two dairy farms located on cover sands in the Netherlands. One farm was located on relatively homogeneous soil type, and one on many different soil types within the sandy soils. A full year of data of N and P inputs and outputs on farm and field level were provided by the farmers, including field level yields, yield composition, manure composition, degree of grazing and degree of mowing. Soil heterogeneity was defined as the number of soil units within the farm corrected for surface area, and quantified from the Dutch 1:50.000 soil map. N and P balances at farm and field level were determined, as well as differences in nutrient use efficiency, leaching, and N emission. We will present the effect of the spatial scale on nutrient balance analysis and discuss to which degree any differences are caused by within-farm land management and soil variation. This study highlights to which extent within-farm land management and soil variation should be taken into account when modelling nutrient flows and nutrient use efficiencies at farm level, to contribute to field-based decision making for improved land management.

  3. A Fuzzy Logic Approach to Marine Spatial Management

    NASA Astrophysics Data System (ADS)

    Teh, Lydia C. L.; Teh, Louise S. L.

    2011-04-01

    Marine spatial planning tends to prioritise biological conservation targets over socio-economic considerations, which may incur lower user compliance and ultimately compromise management success. We argue for more inclusion of human dimensions in spatial management, so that outcomes not only fulfill biodiversity and conservation objectives, but are also acceptable to resource users. We propose a fuzzy logic framework that will facilitate this task- The protected area suitability index (PASI) combines fishers' spatial preferences with biological criteria to assess site suitability for protection from fishing. We apply the PASI in a spatial evaluation of a small-scale reef fishery in Sabah, Malaysia. While our results pertain to fishers specifically, the PASI can also be customized to include the interests of other stakeholders and resource users, as well as incorporate varying levels of protection.

  4. Evaluating localism in the management of post-consumer plastic bottles in Honolulu, Hawai'i: perspectives from industrial ecology and political ecology.

    PubMed

    Park, Joo Young; Gupta, Clare

    2015-05-01

    Localism or regionalization has become a popular topic in urban design, but recent critics raise the question of whether the local or regional scale is most desirable for industrial ecosystems. As a way to explore the claim that localized metabolism is more sustainable, this study examines the costs and benefits of two differentially scaled strategies for the management of post-consumer polyethylene terephthalate (PET) bottles originating in the city of Honolulu, Hawai'i: local incineration and trans-continental recycling. We first estimate total environmental impacts of two options using life cycle assessment, and then disaggregate them into local versus non-local impacts to examine the spatial distribution of costs and benefits. We further assess the environmental justification for localized waste management in relation to the broader socio-economic motivations that underlie the way that plastics are managed in Honolulu. In doing so we assess the scale at which waste management is optimized from an environmental standpoint as well as the non-environmental considerations such as security and safety that influence the politics of scale involved in urban metabolic design. By illustrating the trade-offs between a local versus global metabolic pathway for plastic waste, the results from our Honolulu case study are globally relevant for communities interested in sustainable urban design and in particular urban waste management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Optimal Integration of Departure and Arrivals in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Xue, Min; Zelinski, Shannon Jean

    2012-01-01

    Coordination of operations with spatially and temporally shared resources such as route segments, fixes, and runways improves the efficiency of terminal airspace management. Problems in this category include scheduling and routing, thus they are normally difficult to solve compared with pure scheduling problems. In order to reduce the computational time, a fast time algorithm formulation using a non-dominated sorting genetic algorithm (NSGA) was introduced in this work and applied to a test case based on existing literature. The experiment showed that new method can solve the whole problem in fast time instead of solving sub-problems sequentially with a window technique. The results showed a 60% or 406 second delay reduction was achieved by sharing departure fixes (more details on the comparison with MILP results will be presented in the final paper). Furthermore, the NSGA algorithm was applied to a problem in LAX terminal airspace, where interactions between 28% of LAX arrivals and 10% of LAX departures are resolved by spatial segregation, which may introduce unnecessary delays. In this work, spatial segregation, temporal segregation, and hybrid segregation were formulated using the new algorithm. Results showed that spatial and temporal segregation approaches achieved similar delay. Hybrid segregation introduced much less delay than the other two approaches. For a total of 9 interacting departures and arrivals, delay reduction varied from 4 minutes to 6.4 minutes corresponding flight time uncertainty from 0 to 60 seconds. Considering the amount of flights that could be affected, total annual savings with hybrid segregation would be significant.

  6. Improving data management and dissemination in web based information systems by semantic enrichment of descriptive data aspects

    NASA Astrophysics Data System (ADS)

    Gebhardt, Steffen; Wehrmann, Thilo; Klinger, Verena; Schettler, Ingo; Huth, Juliane; Künzer, Claudia; Dech, Stefan

    2010-10-01

    The German-Vietnamese water-related information system for the Mekong Delta (WISDOM) project supports business processes in Integrated Water Resources Management in Vietnam. Multiple disciplines bring together earth and ground based observation themes, such as environmental monitoring, water management, demographics, economy, information technology, and infrastructural systems. This paper introduces the components of the web-based WISDOM system including data, logic and presentation tier. It focuses on the data models upon which the database management system is built, including techniques for tagging or linking metadata with the stored information. The model also uses ordered groupings of spatial, thematic and temporal reference objects to semantically tag datasets to enable fast data retrieval, such as finding all data in a specific administrative unit belonging to a specific theme. A spatial database extension is employed by the PostgreSQL database. This object-oriented database was chosen over a relational database to tag spatial objects to tabular data, improving the retrieval of census and observational data at regional, provincial, and local areas. While the spatial database hinders processing raster data, a "work-around" was built into WISDOM to permit efficient management of both raster and vector data. The data model also incorporates styling aspects of the spatial datasets through styled layer descriptions (SLD) and web mapping service (WMS) layer specifications, allowing retrieval of rendered maps. Metadata elements of the spatial data are based on the ISO19115 standard. XML structured information of the SLD and metadata are stored in an XML database. The data models and the data management system are robust for managing the large quantity of spatial objects, sensor observations, census and document data. The operational WISDOM information system prototype contains modules for data management, automatic data integration, and web services for data retrieval, analysis, and distribution. The graphical user interfaces facilitate metadata cataloguing, data warehousing, web sensor data analysis and thematic mapping.

  7. Optimal Audiovisual Integration in the Ventriloquism Effect But Pervasive Deficits in Unisensory Spatial Localization in Amblyopia.

    PubMed

    Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F

    2018-01-01

    Classically understood as a deficit in spatial vision, amblyopia is increasingly recognized to also impair audiovisual multisensory processing. Studies to date, however, have not determined whether the audiovisual abnormalities reflect a failure of multisensory integration, or an optimal strategy in the face of unisensory impairment. We use the ventriloquism effect and the maximum-likelihood estimation (MLE) model of optimal integration to investigate integration of audiovisual spatial information in amblyopia. Participants with unilateral amblyopia (n = 14; mean age 28.8 years; 7 anisometropic, 3 strabismic, 4 mixed mechanism) and visually normal controls (n = 16, mean age 29.2 years) localized brief unimodal auditory, unimodal visual, and bimodal (audiovisual) stimuli during binocular viewing using a location discrimination task. A subset of bimodal trials involved the ventriloquism effect, an illusion in which auditory and visual stimuli originating from different locations are perceived as originating from a single location. Localization precision and bias were determined by psychometric curve fitting, and the observed parameters were compared with predictions from the MLE model. Spatial localization precision was significantly reduced in the amblyopia group compared with the control group for unimodal visual, unimodal auditory, and bimodal stimuli. Analyses of localization precision and bias for bimodal stimuli showed no significant deviations from the MLE model in either the amblyopia group or the control group. Despite pervasive deficits in localization precision for visual, auditory, and audiovisual stimuli, audiovisual integration remains intact and optimal in unilateral amblyopia.

  8. Factors affecting private forest landowner interest in ecosystem management: linking spatial and survey data.

    PubMed

    Jacobson, Michael G

    2002-10-01

    Many factors influence forest landowner management decisions. This study examines landowner decisions regarding participation in ecosystem management activities, such as a landscape corridor cutting across their private lands. Landscape corridors are recognized worldwide as an important tool in biodiversity conservation. For ecosystem management activities to occur in areas dominated by a multitude of small private forest landholdings, landowner participation and cooperation is necessary. Data from a survey of landowners combined with an analysis of their land's spatial attributes is used to assess their interest in ecosystem management. Results suggest that spatial attributes are not good predictors of an owner's interest in ecosystem management. Other factors such as attitudes and opinions about the environment are more effective in explaining landowner interest. The results have implications for any land manager using GIS data and implementing ecosystem management activities on private forestland.

  9. A novel medical information management and decision model for uncertain demand optimization.

    PubMed

    Bi, Ya

    2015-01-01

    Accurately planning the procurement volume is an effective measure for controlling the medicine inventory cost. Due to uncertain demand it is difficult to make accurate decision on procurement volume. As to the biomedicine sensitive to time and season demand, the uncertain demand fitted by the fuzzy mathematics method is obviously better than general random distribution functions. To establish a novel medical information management and decision model for uncertain demand optimization. A novel optimal management and decision model under uncertain demand has been presented based on fuzzy mathematics and a new comprehensive improved particle swarm algorithm. The optimal management and decision model can effectively reduce the medicine inventory cost. The proposed improved particle swarm optimization is a simple and effective algorithm to improve the Fuzzy interference and hence effectively reduce the calculation complexity of the optimal management and decision model. Therefore the new model can be used for accurate decision on procurement volume under uncertain demand.

  10. The agronomic science of spatial and temporal water management:How much, when and where

    USDA-ARS?s Scientific Manuscript database

    The agronomic sciences are those that are applied to soil and water management and crop production, including soil, water and plant sciences and related disciplines. The science of spatial and temporal water management includes many agronomic science factors, including soil physics, biophysics, plan...

  11. Region Templates: Data Representation and Management for High-Throughput Image Analysis

    PubMed Central

    Pan, Tony; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Klasky, Scott; Saltz, Joel

    2015-01-01

    We introduce a region template abstraction and framework for the efficient storage, management and processing of common data types in analysis of large datasets of high resolution images on clusters of hybrid computing nodes. The region template abstraction provides a generic container template for common data structures, such as points, arrays, regions, and object sets, within a spatial and temporal bounding box. It allows for different data management strategies and I/O implementations, while providing a homogeneous, unified interface to applications for data storage and retrieval. A region template application is represented as a hierarchical dataflow in which each computing stage may be represented as another dataflow of finer-grain tasks. The execution of the application is coordinated by a runtime system that implements optimizations for hybrid machines, including performance-aware scheduling for maximizing the utilization of computing devices and techniques to reduce the impact of data transfers between CPUs and GPUs. An experimental evaluation on a state-of-the-art hybrid cluster using a microscopy imaging application shows that the abstraction adds negligible overhead (about 3%) and achieves good scalability and high data transfer rates. Optimizations in a high speed disk based storage implementation of the abstraction to support asynchronous data transfers and computation result in an application performance gain of about 1.13×. Finally, a processing rate of 11,730 4K×4K tiles per minute was achieved for the microscopy imaging application on a cluster with 100 nodes (300 GPUs and 1,200 CPU cores). This computation rate enables studies with very large datasets. PMID:26139953

  12. Assessment of a Bayesian Belief Network-GIS framework as a practical tool to support marine planning.

    PubMed

    Stelzenmüller, V; Lee, J; Garnacho, E; Rogers, S I

    2010-10-01

    For the UK continental shelf we developed a Bayesian Belief Network-GIS framework to visualise relationships between cumulative human pressures, sensitive marine landscapes and landscape vulnerability, to assess the consequences of potential marine planning objectives, and to map uncertainty-related changes in management measures. Results revealed that the spatial assessment of footprints and intensities of human activities had more influence on landscape vulnerabilities than the type of landscape sensitivity measure used. We addressed questions regarding consequences of potential planning targets, and necessary management measures with spatially-explicit assessment of their consequences. We conclude that the BN-GIS framework is a practical tool allowing for the visualisation of relationships, the spatial assessment of uncertainty related to spatial management scenarios, the engagement of different stakeholder views, and enables a quick update of new spatial data and relationships. Ultimately, such BN-GIS based tools can support the decision-making process used in adaptive marine management. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Spatial versus Day-To-Day Within-Lake Variability in Tropical Floodplain Lake CH4 Emissions – Developing Optimized Approaches to Representative Flux Measurements

    PubMed Central

    Peixoto, Roberta B.; Machado-Silva, Fausto; Marotta, Humberto; Enrich-Prast, Alex; Bastviken, David

    2015-01-01

    Inland waters (lakes, rivers and reservoirs) are now understood to contribute large amounts of methane (CH4) to the atmosphere. However, fluxes are poorly constrained and there is a need for improved knowledge on spatiotemporal variability and on ways of optimizing sampling efforts to yield representative emission estimates for different types of aquatic ecosystems. Low-latitude floodplain lakes and wetlands are among the most high-emitting environments, and here we provide a detailed investigation of spatial and day-to-day variability in a shallow floodplain lake in the Pantanal in Brazil over a five-day period. CH4 flux was dominated by frequent and ubiquitous ebullition. A strong but predictable spatial variability (decreasing flux with increasing distance to the shore or to littoral vegetation) was found, and this pattern can be addressed by sampling along transects from the shore to the center. Although no distinct day-to-day variability were found, a significant increase in flux was identified from measurement day 1 to measurement day 5, which was likely attributable to a simultaneous increase in temperature. Our study demonstrates that representative emission assessments requires consideration of spatial variability, but also that spatial variability patterns are predictable for lakes of this type and may therefore be addressed through limited sampling efforts if designed properly (e.g., fewer chambers may be used if organized along transects). Such optimized assessments of spatial variability are beneficial by allowing more of the available sampling resources to focus on assessing temporal variability, thereby improving overall flux assessments. PMID:25860229

  14. Spatial frequency performance limitations of radiation dose optimization and beam positioning

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.

    2018-06-01

    The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.

  15. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds.

    PubMed

    Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.

  16. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds

    PubMed Central

    Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds. PMID:27974884

  17. Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Ren, Zhigang; Xu, Chao; Lin, Qun; Loxton, Ryan; Teo, Kok Lay

    2016-03-01

    Establishing a good current spatial profile in tokamak fusion reactors is crucial to effective steady-state operation. The evolution of the current spatial profile is related to the evolution of the poloidal magnetic flux, which can be modeled in the normalized cylindrical coordinates using a parabolic partial differential equation (PDE) called the magnetic diffusion equation. In this paper, we consider the dynamic optimization problem of attaining the best possible current spatial profile during the ramp-up phase of the tokamak. We first use the Galerkin method to obtain a finite-dimensional ordinary differential equation (ODE) model based on the original magnetic diffusion PDE. Then, we combine the control parameterization method with a novel time-scaling transformation to obtain an approximate optimal parameter selection problem, which can be solved using gradient-based optimization techniques such as sequential quadratic programming (SQP). This control parameterization approach involves approximating the tokamak input signals by piecewise-linear functions whose slopes and break-points are decision variables to be optimized. We show that the gradient of the objective function with respect to the decision variables can be computed by solving an auxiliary dynamic system governing the state sensitivity matrix. Finally, we conclude the paper with simulation results for an example problem based on experimental data from the DIII-D tokamak in San Diego, California.

  18. A spatial stochastic programming model for timber and core area management under risk of stand-replacing fire

    Treesearch

    Dung Tuan Nguyen

    2012-01-01

    Forest harvest scheduling has been modeled using deterministic and stochastic programming models. Past models seldom address explicit spatial forest management concerns under the influence of natural disturbances. In this research study, we employ multistage full recourse stochastic programming models to explore the challenges and advantages of building spatial...

  19. Rasdaman for Big Spatial Raster Data

    NASA Astrophysics Data System (ADS)

    Hu, F.; Huang, Q.; Scheele, C. J.; Yang, C. P.; Yu, M.; Liu, K.

    2015-12-01

    Spatial raster data have grown exponentially over the past decade. Recent advancements on data acquisition technology, such as remote sensing, have allowed us to collect massive observation data of various spatial resolution and domain coverage. The volume, velocity, and variety of such spatial data, along with the computational intensive nature of spatial queries, pose grand challenge to the storage technologies for effective big data management. While high performance computing platforms (e.g., cloud computing) can be used to solve the computing-intensive issues in big data analysis, data has to be managed in a way that is suitable for distributed parallel processing. Recently, rasdaman (raster data manager) has emerged as a scalable and cost-effective database solution to store and retrieve massive multi-dimensional arrays, such as sensor, image, and statistics data. Within this paper, the pros and cons of using rasdaman to manage and query spatial raster data will be examined and compared with other common approaches, including file-based systems, relational databases (e.g., PostgreSQL/PostGIS), and NoSQL databases (e.g., MongoDB and Hive). Earth Observing System (EOS) data collected from NASA's Atmospheric Scientific Data Center (ASDC) will be used and stored in these selected database systems, and a set of spatial and non-spatial queries will be designed to benchmark their performance on retrieving large-scale, multi-dimensional arrays of EOS data. Lessons learnt from using rasdaman will be discussed as well.

  20. Identifying Cost-Effective Water Resources Management Strategies: Watershed Management Optimization Support Tool (WMOST)

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a public-domain software application designed to aid decision makers with integrated water resources management. The tool allows water resource managers and planners to screen a wide-range of management practices for c...

  1. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity

    NASA Astrophysics Data System (ADS)

    Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard; Durkin, Anthony J.

    2013-06-01

    Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns.

  2. Airborne hyperspectral imaging for the detection of powdery mildew in wheat

    NASA Astrophysics Data System (ADS)

    Franke, Jonas; Mewes, Thorsten; Menz, Gunter

    2008-08-01

    Plant stresses, in particular fungal diseases, show a high variability in spatial and temporal dimension with respect to their impact on the host. Recent "Precision Agriculture"-techniques allow for a spatially and temporally adjusted pest control that might reduce the amount of cost-intensive and ecologically harmful agrochemicals. Conventional stressdetection techniques such as random monitoring do not meet demands of such optimally placed management actions. The prerequisite is an accurate sensor-based detection of stress symptoms. The present study focuses on a remotely sensed detection of the fungal disease powdery mildew (Blumeria graminis) in wheat, Europe's main crop. In a field experiment, the potential of hyperspectral data for an early detection of stress symptoms was tested. A sophisticated endmember selection procedure was used and, additionally, a linear spectral mixture model was applied to a pixel spectrum with known characteristics, in order to derive an endmember representing 100% powdery mildew-infected wheat. Regression analyses of matched fraction estimates of this endmember and in-field-observed powdery mildew severities showed promising results (r=0.82 and r2=0.67).

  3. Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography.

    PubMed

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  4. Integration and management of massive remote-sensing data based on GeoSOT subdivision model

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Cheng, Chengqi; Chen, Bo; Meng, Li

    2016-07-01

    Owing to the rapid development of earth observation technology, the volume of spatial information is growing rapidly; therefore, improving query retrieval speed from large, rich data sources for remote-sensing data management systems is quite urgent. A global subdivision model, geographic coordinate subdivision grid with one-dimension integer coding on 2n-tree, which we propose as a solution, has been used in data management organizations. However, because a spatial object may cover several grids, ample data redundancy will occur when data are stored in relational databases. To solve this redundancy problem, we first combined the subdivision model with the spatial array database containing the inverted index. We proposed an improved approach for integrating and managing massive remote-sensing data. By adding a spatial code column in an array format in a database, spatial information in remote-sensing metadata can be stored and logically subdivided. We implemented our method in a Kingbase Enterprise Server database system and compared the results with the Oracle platform by simulating worldwide image data. Experimental results showed that our approach performed better than Oracle in terms of data integration and time and space efficiency. Our approach also offers an efficient storage management system for existing storage centers and management systems.

  5. Spatial and Temporal Self-Calibration of a Hydroeconomic Model

    NASA Astrophysics Data System (ADS)

    Howitt, R. E.; Hansen, K. M.

    2008-12-01

    Hydroeconomic modeling of water systems where risk and reliability of water supply are of critical importance must address explicitly how to model water supply uncertainty. When large fluctuations in annual precipitation and significant variation in flows by location are present, a model which solves with perfect foresight of future water conditions may be inappropriate for some policy and research questions. We construct a simulation-optimization model with limited foresight of future water conditions using positive mathematical programming and self-calibration techniques. This limited foresight netflow (LFN) model signals the value of storing water for future use and reflects a more accurate economic value of water at key locations, given that future water conditions are unknown. Failure to explicitly model this uncertainty could lead to undervaluation of storage infrastructure and contractual mechanisms for managing water supply risk. A model based on sequentially updated information is more realistic, since water managers make annual storage decisions without knowledge of yet to be realized future water conditions. The LFN model runs historical hydrological conditions through the current configuration of the California water system to determine the economically efficient allocation of water under current economic conditions and infrastructure. The model utilizes current urban and agricultural demands, storage and conveyance infrastructure, and the state's hydrological history to indicate the scarcity value of water at key locations within the state. Further, the temporal calibration penalty functions vary by year type, reflecting agricultural water users' ability to alter cropping patterns in response to water conditions. The model employs techniques from positive mathematical programming (Howitt, 1995; Howitt, 1998; Cai and Wang, 2006) to generate penalty functions that are applied to deviations from observed data. The functions are applied to monthly flows across key nodes on the network and to annual carryover storage at ground and surface water storage facilities. To our knowledge, this is the first hydroeconomic model to perform spatial and temporal calibration simultaneously. The base for the LFN model is CALVIN, a hydroeconomic optimization model of the California water system developed at the University of California, Davis (Draper, et al. 2003). The LFN model, programmed in GAMS, is nonlinear, which permits incorporation of dynamic groundwater pumping costs that reflect head elevation. Hydropower production, also nonlinear in storage levels, could be added in the future. In this paper, we describe model implementation and performance over a sequence of water years drawn from the historical hydrologic record in California. Preliminary findings indicate that calibration occurs within acceptable limits and simulations replicate base case results well. Cai, X., and Wang, D. 2006. "Calibrating Holistic Water Resources-Economic Models." Journal of Water Resources Planning and Management November-December. Draper, A.J., M.W. Jenkins, K.W. Kirby, J.R. Lund, and R.E. Howitt. 2003. "Economic-Engineering Optimization for California Water Management." Journal of Water Resources Planning and Management 129(3):155-164. Howitt, R.E. 1995. "Positive Mathematical Programming." American Journal of Agricultural Economics 77:329-342. Howitt, R.E. 1998. "Self-Calibrating Network Flow Models." Working Paper, Department of Agricultural and Resource Economics, University of California, Davis. October 1998. class="ab'>

  6. Optimizing protection efforts for amphibian conservation in Mediterranean landscapes

    NASA Astrophysics Data System (ADS)

    García-Muñoz, Enrique; Ceacero, Francisco; Carretero, Miguel A.; Pedrajas-Pulido, Luis; Parra, Gema; Guerrero, Francisco

    2013-05-01

    Amphibians epitomize the modern biodiversity crisis, and attract great attention from the scientific community since a complex puzzle of factors has influence on their disappearance. However, these factors are multiple and spatially variable, and declining in each locality is due to a particular combination of causes. This study shows a suitable statistical procedure to determine threats to amphibian species in medium size administrative areas. For our study case, ten biological and ecological variables feasible to affect the survival of 15 amphibian species were categorized and reduced through Principal Component Analysis. The principal components extracted were related to ecological plasticity, reproductive potential, and specificity of breeding habitats. Finally, the factor scores of species were joined in a presence-absence matrix that gives us information to identify where and why conservation management are requires. In summary, this methodology provides the necessary information to maximize benefits of conservation measures in small areas by identifying which ecological factors need management efforts and where should we focus them on.

  7. Designing marine reserve networks for both conservation and fisheries management.

    PubMed

    Gaines, Steven D; White, Crow; Carr, Mark H; Palumbi, Stephen R

    2010-10-26

    Marine protected areas (MPAs) that exclude fishing have been shown repeatedly to enhance the abundance, size, and diversity of species. These benefits, however, mean little to most marine species, because individual protected areas typically are small. To meet the larger-scale conservation challenges facing ocean ecosystems, several nations are expanding the benefits of individual protected areas by building networks of protected areas. Doing so successfully requires a detailed understanding of the ecological and physical characteristics of ocean ecosystems and the responses of humans to spatial closures. There has been enormous scientific interest in these topics, and frameworks for the design of MPA networks for meeting conservation and fishery management goals are emerging. Persistent in the literature is the perception of an inherent tradeoff between achieving conservation and fishery goals. Through a synthetic analysis across these conservation and bioeconomic studies, we construct guidelines for MPA network design that reduce or eliminate this tradeoff. We present size, spacing, location, and configuration guidelines for designing networks that simultaneously can enhance biological conservation and reduce fishery costs or even increase fishery yields and profits. Indeed, in some settings, a well-designed MPA network is critical to the optimal harvest strategy. When reserves benefit fisheries, the optimal area in reserves is moderately large (mode ≈30%). Assessing network design principals is limited currently by the absence of empirical data from large-scale networks. Emerging networks will soon rectify this constraint.

  8. Model-based optimization of near-field binary-pixelated beam shapers

    DOE PAGES

    Dorrer, C.; Hassett, J.

    2017-01-23

    The optimization of components that rely on spatially dithered distributions of transparent or opaque pixels and an imaging system with far-field filtering for transmission control is demonstrated. The binary-pixel distribution can be iteratively optimized to lower an error function that takes into account the design transmission and the characteristics of the required far-field filter. Simulations using a design transmission chosen in the context of high-energy lasers show that the beam-fluence modulation at an image plane can be reduced by a factor of 2, leading to performance similar to using a non-optimized spatial-dithering algorithm with pixels of size reduced by amore » factor of 2 without the additional fabrication complexity or cost. The optimization process preserves the pixel distribution statistical properties. Analysis shows that the optimized pixel distribution starting from a high-noise distribution defined by a random-draw algorithm should be more resilient to fabrication errors than the optimized pixel distributions starting from a low-noise, error-diffusion algorithm, while leading to similar beamshaping performance. Furthermore, this is confirmed by experimental results obtained with various pixel distributions and induced fabrication errors.« less

  9. [Ecological risk assessment of land use based on exploratory spatial data analysis (ESDA): a case study of Haitan Island, Fujian Province].

    PubMed

    Wu, Jian; Chen, Peng; Wen, Chao-Xiang; Fu, Shi-Feng; Chen, Qing-Hui

    2014-07-01

    As a novel environment management tool, ecological risk assessment has provided a new perspective for the quantitative evaluation of ecological effects of land-use change. In this study, Haitan Island in Fujian Province was taken as a case. Based on the Landsat TM obtained in 1990, SPOT5 RS images obtained in 2010, general layout planning map of Pingtan Comprehensive Experimental Zone in 2030, as well as the field investigation data, we established an ecological risk index to measure ecological endpoints. By using spatial autocorrelation and semivariance analysis of Exploratory Spatial Data Analysis (ESDA), the ecological risk of Haitan Island under different land-use situations was assessed, including the past (1990), present (2010) and future (2030), and the potential risk and its changing trend were analyzed. The results revealed that the ecological risk index showed obvious scale effect, with strong positive correlation within 3000 meters. High-high (HH) and low-low (LL) aggregations were predominant types in spatial distribution of ecological risk index. The ecological risk index showed significant isotropic characteristics, and its spatial distribution was consistent with Anselin Local Moran I (LISA) distribution during the same period. Dramatic spatial distribution change of each ecological risk area was found among 1990, 2010 and 2030, and the fluctuation trend and amplitude of different ecological risk areas were diverse. The low ecological risk area showed a rise-to-fall trend while the medium and high ecological risk areas showed a fall-to-rise trend. In the planning period, due to intensive anthropogenic disturbance, the high ecological risk area spread throughout the whole region. To reduce the ecological risk in land-use and maintain the regional ecological security, the following ecological risk control strategies could be adopted, i.e., optimizing the spatial pattern of land resources, protecting the key ecoregions and controlling the scale of construction land use.

  10. Watershed Management Optimization Support Tool (WMOST) Webinar

    EPA Science Inventory

    This webinar will highlight version 3 of EPA’s Watershed Management Optimization Support Tool (WMOST). WMOST facilitates implementation of integrated water management by communities, utilities, watershed management organizations, consultants, and others. There can be many o...

  11. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: contralateral comparative study.

    PubMed

    Padmanabhan, Prema; Mrochen, Michael; Basuthkar, Subam; Viswanathan, Deepa; Joseph, Roy

    2008-03-01

    To compare the outcomes of wavefront-guided and wavefront-optimized treatment in fellow eyes of patients having laser in situ keratomileusis (LASIK) for myopia. Medical and Vision Research Foundation, Tamil Nadu, India. This prospective comparative study comprised 27 patients who had wavefront-guided LASIK in 1 eye and wavefront-optimized LASIK in the fellow eye. The Hansatome (Bausch & Lomb) was used to create a superior-hinged flap and the Allegretto laser (WaveLight Laser Technologie AG), for photoablation. The Allegretto wave analyzer was used to measure ocular wavefront aberrations and the Functional Acuity Contrast Test chart, to measure contrast sensitivity before and 1 month after LASIK. The refractive and visual outcomes and the changes in aberrations and contrast sensitivity were compared between the 2 treatment modalities. One month postoperatively, 92% of eyes in the wavefront-guided group and 85% in the wavefront-optimized group had uncorrected visual acuity of 20/20 or better; 93% and 89%, respectively, had a postoperative spherical equivalent refraction of +/-0.50 diopter. The differences between groups were not statistically significant. Wavefront-guided LASIK induced less change in 18 of 22 higher-order Zernike terms than wavefront-optimized LASIK, with the change in positive spherical aberration the only statistically significant one (P= .01). Contrast sensitivity improved at the low and middle spatial frequencies (not statistically significant) and worsened significantly at high spatial frequencies after wavefront-guided LASIK; there was a statistically significant worsening at all spatial frequencies after wavefront-optimized LASIK. Although both wavefront-guided and wavefront-optimized LASIK gave excellent refractive correction results, the former induced less higher-order aberrations and was associated with better contrast sensitivity.

  12. Optimal sensor placement for spatial lattice structure based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Gao, Wei-cheng; Sun, Yi; Xu, Min-jian

    2008-10-01

    Optimal sensor placement technique plays a key role in structural health monitoring of spatial lattice structures. This paper considers the problem of locating sensors on a spatial lattice structure with the aim of maximizing the data information so that structural dynamic behavior can be fully characterized. Based on the criterion of optimal sensor placement for modal test, an improved genetic algorithm is introduced to find the optimal placement of sensors. The modal strain energy (MSE) and the modal assurance criterion (MAC) have been taken as the fitness function, respectively, so that three placement designs were produced. The decimal two-dimension array coding method instead of binary coding method is proposed to code the solution. Forced mutation operator is introduced when the identical genes appear via the crossover procedure. A computational simulation of a 12-bay plain truss model has been implemented to demonstrate the feasibility of the three optimal algorithms above. The obtained optimal sensor placements using the improved genetic algorithm are compared with those gained by exiting genetic algorithm using the binary coding method. Further the comparison criterion based on the mean square error between the finite element method (FEM) mode shapes and the Guyan expansion mode shapes identified by data-driven stochastic subspace identification (SSI-DATA) method are employed to demonstrate the advantage of the different fitness function. The results showed that some innovations in genetic algorithm proposed in this paper can enlarge the genes storage and improve the convergence of the algorithm. More importantly, the three optimal sensor placement methods can all provide the reliable results and identify the vibration characteristics of the 12-bay plain truss model accurately.

  13. Error Estimation in an Optimal Interpolation Scheme for High Spatial and Temporal Resolution SST Analyses

    NASA Technical Reports Server (NTRS)

    Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn

    2010-01-01

    Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.

  14. The Bayesian group lasso for confounded spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.

    2017-01-01

    Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.

  15. Broadband interferometric characterization of divergence and spatial chirp.

    PubMed

    Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-09-01

    We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).

  16. Latent spatial models and sampling design for landscape genetics

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  17. Scale considerations for ecosystem management

    Treesearch

    Jonathan B. Haufler; Thomas R. Crow; David Wilcove

    1999-01-01

    One of the difficult challenges facing ecosystem management is the determination of appropriate spatial and temporal scales to use. Scale in spatial sence includes considerations of both the size area or extent of an ecosystem management activity, as well as thedegree of resolution of mapped or measured data. In the temporal sense, scale concerns the duration of both...

  18. Potential for using visual, auditory, and olfactory cues to manage foraging behaviour and spatial distribution of rangeland livestock

    USDA-ARS?s Scientific Manuscript database

    This paper reviews the literature and reports on the current state of knowledge regarding the potential for managers to use visual (VC), auditory (AC), and olfactory (OC) cues to manage foraging behavior and spatial distribution of rangeland livestock. We present evidence that free-ranging livestock...

  19. Simulating spatial and temporal context of forest management using hypothetical landscapes

    Treesearch

    Eric J. Gustafson; Thomas R. Crow

    1998-01-01

    Spatially explicit models that combine remote sensing with geographic information systems (GIS) offer great promise to land managers because they consider the arrangement of landscape elements in time and space. Their visual and geographic nature facilitate the comparison of alternative landscape designs. Among various activities associated with forest management,...

  20. Guidance on spatial wildland fire analysis: models, tools, and techniques

    Treesearch

    Richard D. Stratton

    2006-01-01

    There is an increasing need for spatial wildland fire analysis in support of incident management, fuel treatment planning, wildland-urban assessment, and land management plan development. However, little guidance has been provided to the field in the form of training, support, or research examples. This paper provides guidance to fire managers, planners, specialists,...

  1. Raccoon spatial requirements and multi-scale habitat selection within an intensively managed central Appalachian forest

    USGS Publications Warehouse

    Owen, Sheldon F.; Berl, Jacob L.; Edwards, John W.; Ford, W. Mark; Wood, Petra Bohall

    2015-01-01

    We studied a raccoon (Procyon lotor) population within a managed central Appalachian hardwood forest in West Virginia to investigate the effects of intensive forest management on raccoon spatial requirements and habitat selection. Raccoon home-range (95% utilization distribution) and core-area (50% utilization distribution) size differed between sexes with males maintaining larger (2×) home ranges and core areas than females. Home-range and core-area size did not differ between seasons for either sex. We used compositional analysis to quantify raccoon selection of six different habitat types at multiple spatial scales. Raccoons selected riparian corridors (riparian management zones [RMZ]) and intact forests (> 70 y old) at the core-area spatial scale. RMZs likely were used by raccoons because they provided abundant denning resources (i.e., large-diameter trees) as well as access to water. Habitat composition associated with raccoon foraging locations indicated selection for intact forests, riparian areas, and regenerating harvest (stands <10 y old). Although raccoons were able to utilize multiple habitat types for foraging resources, a selection of intact forest and RMZs at multiple spatial scales indicates the need of mature forest (with large-diameter trees) for this species in managed forests in the central Appalachians.

  2. Optimal environmental management strategy and implementation for groundwater contamination prevention and restoration.

    PubMed

    Wang, Mingyu

    2006-04-01

    An innovative management strategy is proposed for optimized and integrated environmental management for regional or national groundwater contamination prevention and restoration allied with consideration of sustainable development. This management strategy accounts for availability of limited resources, human health and ecological risks from groundwater contamination, costs for groundwater protection measures, beneficial uses and values from groundwater protection, and sustainable development. Six different categories of costs are identified with regard to groundwater prevention and restoration. In addition, different environmental impacts from groundwater contamination including human health and ecological risks are individually taken into account. System optimization principles are implemented to accomplish decision-makings on the optimal resources allocations of the available resources or budgets to different existing contaminated sites and projected contamination sites for a maximal risk reduction. Established management constraints such as budget limitations under different categories of costs are satisfied at the optimal solution. A stepwise optimization process is proposed in which the first step is to select optimally a limited number of sites where remediation or prevention measures will be taken, from all the existing contaminated and projected contamination sites, based on a total regionally or nationally available budget in a certain time frame such as 10 years. Then, several optimization steps determined year-by-year optimal distributions of the available yearly budgets for those selected sites. A hypothetical case study is presented to demonstrate a practical implementation of the management strategy. Several issues pertaining to groundwater contamination exposure and risk assessments and remediation cost evaluations are briefly discussed for adequately understanding implementations of the management strategy.

  3. Spatial Data Management System (SDMS)

    NASA Technical Reports Server (NTRS)

    Hutchison, Mark W.

    1994-01-01

    The Spatial Data Management System (SDMS) is a testbed for retrieval and display of spatially related material. SDMS permits the linkage of large graphical display objects with detail displays and explanations of its smaller components. SDMS combines UNIX workstations, MIT's X Window system, TCP/IP and WAIS information retrieval technology to prototype a means of associating aggregate data linked via spatial orientation. SDMS capitalizes upon and extends previous accomplishments of the Software Technology Branch in the area of Virtual Reality and Automated Library Systems.

  4. Place mapping and the role of spatial scale in understanding landowner views of fire and fuels management

    Treesearch

    Michael A. Cacciapaglia; Laurie Yung; Michael E. Patterson

    2011-01-01

    Place mapping is emerging as a way to understand the spatial components of people's relationships with particular locations and how these relate to support for management proposals. But despite the spatial focus of place mapping, scale is rarely explicitly examined in such exercises. This is particularly problematic since scalar definitions and configurations have...

  5. Spatial Query for Planetary Data

    NASA Technical Reports Server (NTRS)

    Shams, Khawaja S.; Crockett, Thomas M.; Powell, Mark W.; Joswig, Joseph C.; Fox, Jason M.

    2011-01-01

    Science investigators need to quickly and effectively assess past observations of specific locations on a planetary surface. This innovation involves a location-based search technology that was adapted and applied to planetary science data to support a spatial query capability for mission operations software. High-performance location-based searching requires the use of spatial data structures for database organization. Spatial data structures are designed to organize datasets based on their coordinates in a way that is optimized for location-based retrieval. The particular spatial data structure that was adapted for planetary data search is the R+ tree.

  6. Fuel management optimization using genetic algorithms and expert knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1996-09-01

    The CIGARO fuel management optimization code based on genetic algorithms is described and tested. The test problem optimized the core lifetime for a pressurized water reactor with a penalty function constraint on the peak normalized power. A bit-string genotype encoded the loading patterns, and genotype bias was reduced with additional bits. Expert knowledge about fuel management was incorporated into the genetic algorithm. Regional crossover exchanged physically adjacent fuel assemblies and improved the optimization slightly. Biasing the initial population toward a known priority table significantly improved the optimization.

  7. Design of investment management optimization system for power grid companies under new electricity reform

    NASA Astrophysics Data System (ADS)

    Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei

    2017-03-01

    The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.

  8. Bridging the Gap Between Surveyors and the Geo-Spatial Society

    NASA Astrophysics Data System (ADS)

    Müller, H.

    2016-06-01

    For many years FIG, the International Association of Surveyors, has been trying to bridge the gap between surveyors and the geospatial society as a whole, with the geospatial industries in particular. Traditionally the surveying profession contributed to the good of society by creating and maintaining highly precise and accurate geospatial data bases, based on an in-depth knowledge of spatial reference frameworks. Furthermore in many countries surveyors may be entitled to make decisions about land divisions and boundaries. By managing information spatially surveyors today develop into the role of geo-data managers, the longer the more. Job assignments in this context include data entry management, data and process quality management, design of formal and informal systems, information management, consultancy, land management, all that in close cooperation with many different stakeholders. Future tasks will include the integration of geospatial information into e-government and e-commerce systems. The list of professional tasks underpins the capabilities of surveyors to contribute to a high quality geospatial data and information management. In that way modern surveyors support the needs of a geo-spatial society. The paper discusses several approaches to define the role of the surveyor within the modern geospatial society.

  9. A DSS for sustainable development and environmental protection of agricultural regions.

    PubMed

    Manos, Basil D; Papathanasiou, Jason; Bournaris, Thomas; Voudouris, Kostas

    2010-05-01

    This paper presents a decision support system (DSS) for sustainable development and environmental protection of agricultural regions developed in the framework of the Interreg-Archimed project entitled WaterMap (development and utilization of vulnerability maps for the monitoring and management of groundwater resources in the ARCHIMED areas). Its aim is to optimize the production plan of an agricultural region taking in account the available resources, the environmental parameters, and the vulnerability map of the region. The DSS is based on an optimization multicriteria model. The spatial integration of vulnerability maps in the DSS enables regional authorities to design policies for optimal agricultural development and groundwater protection from the agricultural land uses. The DSS can further be used to simulate different scenarios and policies by the local stakeholders due to changes on different social, economic, and environmental parameters. In this way, they can achieve alternative production plans and agricultural land uses as well as to estimate economic, social, and environmental impacts of different policies. The DSS is computerized and supported by a set of relational databases. The corresponding software has been developed in a Microsoft Windows XP platform, using Microsoft Visual Basic, Microsoft Access, and the LINDO library. For demonstration reasons, the paper includes an application of the DSS in a region of Northern Greece.

  10. Optimal design of a bank of spatio-temporal filters for EEG signal classification.

    PubMed

    Higashi, Hiroshi; Tanaka, Toshihisa

    2011-01-01

    The spatial weights for electrodes called common spatial pattern (CSP) are known to be effective in EEG signal classification for motor imagery based brain computer interfaces (MI-BCI). To achieve accurate classification in CSP, the frequency filter should be properly designed. To this end, several methods for designing the filter have been proposed. However, the existing methods cannot consider plural brain activities described with different frequency bands and different spatial patterns such as activities of mu and beta rhythms. In order to efficiently extract these brain activities, we propose a method to design plural filters and spatial weights which extract desired brain activity. The proposed method designs finite impulse response (FIR) filters and the associated spatial weights by optimization of an objective function which is a natural extension of CSP. Moreover, we show by a classification experiment that the bank of FIR filters which are designed by introducing an orthogonality into the objective function can extract good discriminative features. Moreover, the experiment result suggests that the proposed method can automatically detect and extract brain activities related to motor imagery.

  11. Spatially adaptive bases in wavelet-based coding of semi-regular meshes

    NASA Astrophysics Data System (ADS)

    Denis, Leon; Florea, Ruxandra; Munteanu, Adrian; Schelkens, Peter

    2010-05-01

    In this paper we present a wavelet-based coding approach for semi-regular meshes, which spatially adapts the employed wavelet basis in the wavelet transformation of the mesh. The spatially-adaptive nature of the transform requires additional information to be stored in the bit-stream in order to allow the reconstruction of the transformed mesh at the decoder side. In order to limit this overhead, the mesh is first segmented into regions of approximately equal size. For each spatial region, a predictor is selected in a rate-distortion optimal manner by using a Lagrangian rate-distortion optimization technique. When compared against the classical wavelet transform employing the butterfly subdivision filter, experiments reveal that the proposed spatially-adaptive wavelet transform significantly decreases the energy of the wavelet coefficients for all subbands. Preliminary results show also that employing the proposed transform for the lowest-resolution subband systematically yields improved compression performance at low-to-medium bit-rates. For the Venus and Rabbit test models the compression improvements add up to 1.47 dB and 0.95 dB, respectively.

  12. Experimental study on the crack detection with optimized spatial wavelet analysis and windowing

    NASA Astrophysics Data System (ADS)

    Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine

    2018-05-01

    In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.

  13. Spatial and Spin Symmetry Breaking in Semidefinite-Programming-Based Hartree-Fock Theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2018-05-08

    The Hartree-Fock problem was recently recast as a semidefinite optimization over the space of rank-constrained two-body reduced-density matrices (RDMs) [ Phys. Rev. A 2014 , 89 , 010502(R) ]. This formulation of the problem transfers the nonconvexity of the Hartree-Fock energy functional to the rank constraint on the two-body RDM. We consider an equivalent optimization over the space of positive semidefinite one-electron RDMs (1-RDMs) that retains the nonconvexity of the Hartree-Fock energy expression. The optimized 1-RDM satisfies ensemble N-representability conditions, and ensemble spin-state conditions may be imposed as well. The spin-state conditions place additional linear and nonlinear constraints on the 1-RDM. We apply this RDM-based approach to several molecular systems and explore its spatial (point group) and spin ( Ŝ 2 and Ŝ 3 ) symmetry breaking properties. When imposing Ŝ 2 and Ŝ 3 symmetry but relaxing point group symmetry, the procedure often locates spatial-symmetry-broken solutions that are difficult to identify using standard algorithms. For example, the RDM-based approach yields a smooth, spatial-symmetry-broken potential energy curve for the well-known Be-H 2 insertion pathway. We also demonstrate numerically that, upon relaxation of Ŝ 2 and Ŝ 3 symmetry constraints, the RDM-based approach is equivalent to real-valued generalized Hartree-Fock theory.

  14. Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications

    NASA Astrophysics Data System (ADS)

    Zu, Yue

    Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network.

  15. Spatial distribution of ammonium and calcium in optimally fertilized pine plantation soils

    Treesearch

    Ivan Edwards; Andrew Gillespie; Jennifer Chen; Kurt Johnsen; Ronald Turco

    2005-01-01

    Commercial timber production is increasingly reliant on long-term fertilization to maximize stand productivity, yet we do not understand the extent to which this practice homogenizes soil properties. The effects of 16 yr of optimal fertilization and optimal fertilization with irrigation (fertigation) on forest floor depth, pH, total organic carbon (TOC) and total...

  16. Spatial exposure-hazard and landscape models for assessing the impact of GM crops on non-target organisms.

    PubMed

    Leclerc, Melen; Walker, Emily; Messéan, Antoine; Soubeyrand, Samuel

    2018-05-15

    The cultivation of Genetically Modified (GM) crops may have substantial impacts on populations of non-target organisms (NTOs) in agroecosystems. These impacts should be assessed at larger spatial scales than the cultivated field, and, as landscape-scale experiments are difficult, if not impossible, modelling approaches are needed to address landscape risk management. We present an original stochastic and spatially explicit modelling framework for assessing the risk at the landscape level. We use techniques from spatial statistics for simulating simplified landscapes made up of (aggregated or non-aggregated) GM fields, neutral fields and NTO's habitat areas. The dispersal of toxic pollen grains is obtained by convolving the emission of GM plants and validated dispersal kernel functions while the locations of exposed individuals are drawn from a point process. By taking into account the adherence of the ambient pollen on plants, the loss of pollen due to climatic events, and, an experimentally-validated mortality-dose function we predict risk maps and provide a distribution giving how the risk varies within exposed individuals in the landscape. Then, we consider the impact of the Bt maize on Inachis io in worst-case scenarii where exposed individuals are located in the vicinity of GM fields and pollen shedding overlaps with larval emergence. We perform a Global Sensitivity Analysis (GSA) to explore numerically how our input parameters influence the risk. Our results confirm the important effects of pollen emission and loss. Most interestingly they highlight that the optimal spatial distribution of GM fields that mitigates the risk depends on our knowledge of the habitats of NTOs, and finally, moderate the influence of the dispersal kernel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. SMART: A Spatially Explicit Bio-Economic Model for Assessing and Managing Demersal Fisheries, with an Application to Italian Trawlers in the Strait of Sicily

    PubMed Central

    Russo, Tommaso; Parisi, Antonio; Garofalo, Germana; Gristina, Michele; Cataudella, Stefano; Fiorentino, Fabio

    2014-01-01

    Management of catches, effort and exploitation pattern are considered the most effective measures to control fishing mortality and ultimately ensure productivity and sustainability of fisheries. Despite the growing concerns about the spatial dimension of fisheries, the distribution of resources and fishing effort in space is seldom considered in assessment and management processes. Here we propose SMART (Spatial MAnagement of demersal Resources for Trawl fisheries), a tool for assessing bio-economic feedback in different management scenarios. SMART combines information from different tasks gathered within the European Data Collection Framework on fisheries and is composed of: 1) spatial models of fishing effort, environmental characteristics and distribution of demersal resources; 2) an Artificial Neural Network which captures the relationships among these aspects in a spatially explicit way and uses them to predict resources abundances; 3) a deterministic module which analyzes the size structure of catches and the associated revenues, according to different spatially-based management scenarios. SMART is applied to demersal fishery in the Strait of Sicily, one of the most productive fisheries of the Mediterranean Sea. Three of the main target species are used as proxies for the whole range exploited by trawlers. After training, SMART is used to evaluate different management scenarios, including spatial closures, using a simulation approach that mimics the recent exploitation patterns. Results evidence good model performance, with a noteworthy coherence and reliability of outputs for the different components. Among others, the main finding is that a partial improvement in resource conditions can be achieved by means of nursery closures, even if the overall fishing effort in the area remains stable. Accordingly, a series of strategically designed areas of trawling closures could significantly improve the resource conditions of demersal fisheries in the Strait of Sicily, also supporting sustainable economic returns for fishermen if not applied simultaneously for different species. PMID:24465971

  18. The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Cüneyd Demirel, Mehmet; Stisen, Simon

    2018-05-01

    The process of model evaluation is not only an integral part of model development and calibration but also of paramount importance when communicating modelling results to the scientific community and stakeholders. The modelling community has a large and well-tested toolbox of metrics to evaluate temporal model performance. In contrast, spatial performance evaluation does not correspond to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study makes a contribution towards advancing spatial-pattern-oriented model calibration by rigorously testing a multiple-component performance metric. The promoted SPAtial EFficiency (SPAEF) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multiple-component approach is found to be advantageous in order to achieve the complex task of comparing spatial patterns. SPAEF, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are applied in a spatial-pattern-oriented model calibration of a catchment model in Denmark. Results suggest the importance of multiple-component metrics because stand-alone metrics tend to fail to provide holistic pattern information. The three SPAEF components are found to be independent, which allows them to complement each other in a meaningful way. In order to optimally exploit spatial observations made available by remote sensing platforms, this study suggests applying bias insensitive metrics which further allow for a comparison of variables which are related but may differ in unit. This study applies SPAEF in the hydrological context using the mesoscale Hydrologic Model (mHM; version 5.8), but we see great potential across disciplines related to spatially distributed earth system modelling.

  19. Spatial data analytics on heterogeneous multi- and many-core parallel architectures using python

    USGS Publications Warehouse

    Laura, Jason R.; Rey, Sergio J.

    2017-01-01

    Parallel vector spatial analysis concerns the application of parallel computational methods to facilitate vector-based spatial analysis. The history of parallel computation in spatial analysis is reviewed, and this work is placed into the broader context of high-performance computing (HPC) and parallelization research. The rise of cyber infrastructure and its manifestation in spatial analysis as CyberGIScience is seen as a main driver of renewed interest in parallel computation in the spatial sciences. Key problems in spatial analysis that have been the focus of parallel computing are covered. Chief among these are spatial optimization problems, computational geometric problems including polygonization and spatial contiguity detection, the use of Monte Carlo Markov chain simulation in spatial statistics, and parallel implementations of spatial econometric methods. Future directions for research on parallelization in computational spatial analysis are outlined.

  20. The agent-based spatial information semantic grid

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren

    2006-10-01

    Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.

Top