Science.gov

Sample records for optimizing ablation algorithm

  1. Mixed variable optimization for radio frequency ablation planning

    NASA Astrophysics Data System (ADS)

    Kapoor, Ankur; Li, Ming; Wood, Bradford

    2011-03-01

    We present a method towards optimization of multiple ablation probe placement to provide efficient coverage of a tumor for thermal therapy while respecting clinical needs such as limiting the sites of probe insertions at the pleura/liver surface, choosing secure probe trajectories and locations, avoiding ablation of critical structures, reducing ablation of healthy tissue and overlap of ablation zones. The ablation optimizer treats each ablation location independently, and the number of ablation probe placements itself is treated as a variable to be optimized. This allows us to potentially feedback the ablation after deployment and re-optimize the next steps during the plan. The optimization method uses a new class of derivate-free algorithms for solving a non-linear mixed variable problem with hard and soft constraints derived from clinical images. Our methods use discretization of the ablation volume, which can accommodate irregular shape of the ablation zone. The non-gradient based strategy produce new candidates to yield a feasible solution within a few iterations. In our simulation experiments this strategy typically reduced the ablation zone overlap and ablated healthy tissue ablated by 46% and 29%, respectively in a single iteration, resulting in a feasible solution to be found within 35 iterations. Our method for optimization provides efficient implementation for planning the coverage of a tumor while respecting clinical constraints. The ablation planning can be combined with navigation assistance to enable accurate translation and feedback of the plan.

  2. Coverage planning in computer-assisted ablation based on Genetic Algorithm.

    PubMed

    Ren, Hongliang; Guo, Weian; Sam Ge, Shuzhi; Lim, Wancheng

    2014-06-01

    An ablation planning system plays a pivotal role in tumor ablation procedures, as it provides a dry run to guide the surgeons in a complicated anatomical environment. Over-ablation, over-perforation or under-ablation may result in complications during the treatments. An optimal solution is desired to have complete tumor coverage with minimal invasiveness, including minimal number of ablations and minimal number of perforation trajectories. As the planning of tumor ablation is a multi-objective problem, it is challenging to obtain optimal covering solutions based on clinician׳s experiences. Meanwhile, it is effective for computer-assisted systems to decide a set of optimal plans. This paper proposes a novel approach of integrating a computational optimization algorithm into the ablation planning system. The proposed ablation planning system is designed based on the following objectives: to achieve complete tumor coverage and to minimize the number of ablations, number of needle trajectories and over-ablation to the healthy tissue. These objectives are taken into account using a Genetic Algorithm, which is capable of generating feasible solutions within a constrained search space. The candidate ablation plans can be encoded in generations of chromosomes, which subsequently evolve based on a fitness function. In this paper, an exponential weight-criterion fitness function has been designed by incorporating constraint parameters that were reflective of the different objectives. According to the test results, the proposed planner is able to generate the set of optimal solutions for tumor ablation problem, thereby fulfilling the aforementioned multiple objectives.

  3. An optimal sliding choke antenna for hepatic microwave ablation.

    PubMed

    Prakash, Punit; Converse, Mark C; Webster, John G; Mahvi, David M

    2009-10-01

    Microwave ablation (MWA) is a minimally invasive technique increasingly used for thermal therapy of liver tumors. Effective MWA requires efficient interstitial antennas that destroy tumors and a margin of healthy tissue, in situ, while minimizing damage to the rest of the organ. Previously, we presented a method for optimizing MWA antenna designs by coupling finite element method models of antennas with a real-coded, multiobjective genetic algorithm. We utilized this procedure to optimize the design of a minimally invasive choke antenna that can be used to create near-spherical ablation zones of adjustable size (radius 1-2 cm) by adjusting treatment durations and a sliding structure of the antenna. Computational results were validated with experiments in ex vivo bovine liver. The optimization procedure yielded antennas with reflection coefficients below -30 dB, which were capable of creating spherical ablation zones up to 2 cm in radius using 100 W input power at 2.45 GHz with treatment durations under 2 min.

  4. PATH OPTIMIZATION AND CONTROL OF A SHAPE MEMORY ALLOY ACTUATED CATHETER FOR ENDOCARDIAL RADIOFREQUENCY ABLATION

    PubMed Central

    Wiest, Jennifer H.; Buckner, Gregory D.

    2014-01-01

    This paper introduces a real-time path optimization and control strategy for shape memory alloy (SMA) actuated cardiac ablation catheters, potentially enabling the creation of more precise lesions with reduced procedure times and improved patient outcomes. Catheter tip locations and orientations are optimized using parallel genetic algorithms to produce continuous ablation paths with near normal tissue contact through physician-specified points. A nonlinear multivariable control strategy is presented to compensate for SMA hysteresis, bandwidth limitations, and coupling between system inputs. Simulated and experimental results demonstrate efficient generation of ablation paths and optimal reference trajectories. Closed-loop control of the SMA-actuated catheter along optimized ablation paths is validated experimentally. PMID:25684857

  5. Multilevel Algorithms for Nonlinear Optimization

    DTIC Science & Technology

    1994-06-01

    NASA Contractor Report 194940 ICASE Report No. 94-53 AD-A284 318 * ICASE MULTILEVEL ALGORITHMSDDTIC FOR NONLINEAR OPTIMIZATION ELECTESEP 1 4 1994 F...Association SOperated b MULTILEVEL ALGORITHMS FOR NONLINEAR OPTIMIZATION Natalia Alexandrov Accesion For ICASE C Mail Stop 132C NTIS CRA&ID C TAB 1Q...ABSTRACT Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that

  6. Algorithms for bilevel optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.

  7. Optimal transseptal puncture location for robot-assisted left atrial catheter ablation.

    PubMed

    Jayender, Jagadeesan; Patel, Rajni V; Michaud, Gregory F; Hatal, Nobuhiko

    2009-01-01

    The preferred method of treatment for Atrial Fibrillation (AF) is by catheter ablation wherein a catheter is guided into the left atrium through a transseptal puncture. However, the transseptal puncture constrains the catheter, thereby limiting its maneuverability and increasing the difficulty in reaching various locations in the left atrium. In this paper, we address the problem of choosing the optimal transseptal puncture location for performing cardiac ablation to obtain maximum maneuverability of the catheter. We have employed an optimization algorithm to maximize the Global Isotropy Index (GII) to evaluate the optimal transseptal puncture location. As part of this algorithm, a novel kinematic model for the catheter has been developed based on a continuum robot model. Preoperative MR/CT images of the heart are segmented using the open source image-guided therapy software, Slicer 3, to obtain models of the left atrium and septal wall. These models are input to the optimization algorithm to evaluate the optimal transseptal puncture location. Simulation results for the optimization algorithm are presented in this paper.

  8. Optimization of the generator settings for endobiliary radiofrequency ablation.

    PubMed

    Barret, Maximilien; Leblanc, Sarah; Vienne, Ariane; Rouquette, Alexandre; Beuvon, Frederic; Chaussade, Stanislas; Prat, Frederic

    2015-11-10

    To determine the optimal generator settings for endobiliary radiofrequency ablation. Endobiliary radiofrequency ablation was performed in live swine on the ampulla of Vater, the common bile duct and in the hepatic parenchyma. Radiofrequency ablation time, "effect", and power were allowed to vary. The animals were sacrificed two hours after the procedure. Histopathological assessment of the depth of the thermal lesions was performed. Twenty-five radiofrequency bursts were applied in three swine. In the ampulla of Vater (n = 3), necrosis of the duodenal wall was observed starting with an effect set at 8, power output set at 10 W, and a 30 s shot duration, whereas superficial mucosal damage of up to 350 μm in depth was recorded for an effect set at 8, power output set at 6 W and a 30 s shot duration. In the common bile duct (n = 4), a 1070 μm, safe and efficient ablation was obtained for an effect set at 8, a power output of 8 W, and an ablation time of 30 s. Within the hepatic parenchyma (n = 18), the depth of tissue damage varied from 1620 μm (effect = 8, power = 10 W, ablation time = 15 s) to 4480 μm (effect = 8, power = 8 W, ablation time = 90 s). The duration of the catheter application appeared to be the most important parameter influencing the depth of the thermal injury during endobiliary radiofrequency ablation. In healthy swine, the currently recommended settings of the generator may induce severe, supratherapeutic tissue damage in the biliary tree, especially in the high-risk area of the ampulla of Vater.

  9. Constrained Multiobjective Biogeography Optimization Algorithm

    PubMed Central

    Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping

    2014-01-01

    Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591

  10. Model-based optimal planning of hepatic radiofrequency ablation.

    PubMed

    Chen, Qiyong; Müftü, Sinan; Meral, Faik Can; Tuncali, Kemal; Akçakaya, Murat

    2016-07-19

    This article presents a model-based pre-treatment optimal planning framework for hepatic tumour radiofrequency (RF) ablation. Conventional hepatic radiofrequency (RF) ablation methods rely on pre-specified input voltage and treatment length based on the tumour size. Using these experimentally obtained pre-specified treatment parameters in RF ablation is not optimal to achieve the expected level of cell death and usually results in more healthy tissue damage than desired. In this study we present a pre-treatment planning framework that provides tools to control the levels of both the healthy tissue preservation and tumour cell death. Over the geometry of tumour and surrounding tissue, we formulate the RF ablation planning as a constrained optimization problem. With specific constraints over the temperature profile (TP) in pre-determined areas of the target geometry, we consider two different cost functions based on the history of the TP and Arrhenius index (AI) of the target location, respectively. We optimally compute the input voltage variation to minimize the damage to the healthy tissue while ensuring a complete cell death in the tumour and immediate area covering the tumour. As an example, we use a simulation of a 1D symmetric target geometry mimicking the application of single electrode RF probe. Results demonstrate that compared to the conventional methods both cost functions improve the healthy tissue preservation.

  11. Multilevel algorithms for nonlinear optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.

  12. Genetic Algorithm for Optimization: Preprocessor and Algorithm

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam A.

    2006-01-01

    Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.

  13. Algorithms for optimal redundancy allocation

    SciTech Connect

    Vandenkieboom, J.; Youngblood, R.

    1993-01-01

    Heuristic and exact methods for solving the redundancy allocation problem are compared to an approach based on genetic algorithms. The various methods are applied to the bridge problem, which has been used as a benchmark in earlier work on optimization methods. Comparisons are presented in terms of the best configuration found by each method, and the computation effort which was necessary in order to find it.

  14. Transrectal Array Configurations Optimized For Prostate HIFU Ablation

    NASA Astrophysics Data System (ADS)

    Anand, Ajay; Raju, Balasundar I.; Sethuraman, Shriram; Sokka, Shunmugavelu

    2009-04-01

    The objectives of this study were to evaluate and compare steering and ablation rates from several types of transrectal arrays operated at different frequencies for whole prostate ablation. Three-dimensional acoustic and thermal modeling (Rayleigh-Sommerfield and Penne's BHTE) were performed. Treatment volumes up to 70cc and anterior-posterior distances up to 6 cm were considered. The maximum transducer dimensions were constrained to 5 cm (along rectum) and 2.5 cm (elevation), and the channel count was limited to 256. Planar array configurations for truncated-annular, 1/1.5D, and 2D random arrays were evaluated at 1, 2, and 4 MHz for capability to treat the entire prostate. The acoustic intensity at the surface was fixed at 10 W/cm2. The maximum temperature was restricted to 80° C. The volumetric ablation rate was computed to compare the treatment times amongst different configurations. The 1.5D Planar array at 1 MHz ablated the whole prostate in the shortest amount of time while maintaining adequate steering. The higher frequency arrays required smaller elevation apertures for a fixed channel count to maintain a single focal spot at the desired location. Consequently, these arrays resulted in slower heating rates with increased near-field heating. The 1 MHz 1.5D array would also be advantageous compared to single-element transducers since only one mechanical degree of motion is required. This study demonstrates the selection of an optimal array geometry and frequency for transrectal HIFU, resulting in faster ablation rates and reduced treatment times.

  15. Transrectal Array Configurations Optimized For Prostate HIFU Ablation

    SciTech Connect

    Anand, Ajay; Raju, Balasundar I.; Sethuraman, Shriram; Sokka, Shunmugavelu

    2009-04-14

    The objectives of this study were to evaluate and compare steering and ablation rates from several types of transrectal arrays operated at different frequencies for whole prostate ablation. Three-dimensional acoustic and thermal modeling (Rayleigh-Sommerfield and Penne's BHTE) were performed. Treatment volumes up to 70cc and anterior-posterior distances up to 6 cm were considered. The maximum transducer dimensions were constrained to 5 cm (along rectum) and 2.5 cm (elevation), and the channel count was limited to 256. Planar array configurations for truncated-annular, 1/1.5D, and 2D random arrays were evaluated at 1, 2, and 4 MHz for capability to treat the entire prostate. The acoustic intensity at the surface was fixed at 10 W/cm{sup 2}. The maximum temperature was restricted to 80 deg. C. The volumetric ablation rate was computed to compare the treatment times amongst different configurations. The 1.5D Planar array at 1 MHz ablated the whole prostate in the shortest amount of time while maintaining adequate steering. The higher frequency arrays required smaller elevation apertures for a fixed channel count to maintain a single focal spot at the desired location. Consequently, these arrays resulted in slower heating rates with increased near-field heating. The 1 MHz 1.5D array would also be advantageous compared to single-element transducers since only one mechanical degree of motion is required. This study demonstrates the selection of an optimal array geometry and frequency for transrectal HIFU, resulting in faster ablation rates and reduced treatment times.

  16. Approximate algorithms for fast optimal attitude computation

    NASA Technical Reports Server (NTRS)

    Shuster, M. D.

    1978-01-01

    Fast accurate algorithms are presented for computing an optimal attitude which minimizes a quadratic loss function. These algorithms compute an optimal rotation which carries a set of reference vectors into a set of corresponding observation vectors. Simplifications of these algorithms are obtained for the case of small rotation angles. Applications to the Magsat mission are discussed.

  17. Prospective, Tissue-Specific Optimization of Ablation for Multiwavelet Reentry: Predicting the Required Amount, Location, and Configuration of Lesions.

    PubMed

    Carrick, Richard T; Benson, Bryce E; Bates, Jason H T; Spector, Peter S

    2016-03-01

    Treatment of multiwavelet reentry (MWR) remains difficult. We previously developed a metric, the fibrillogenicity index, to assess the propensity of homogeneous, 2-dimensional tissues to support MWR. In this study, we demonstrate a method by which fibrillogenicity index can be generalized to heterogeneous tissues and validate an algorithm for prospective, tissue-specific optimization of ablation to reduce MWR burden. We used a computational model to simulate and measure the duration of MWR in tissues with heterogeneously distributed action potential durations and then assessed the relative efficacy of a variety of ablation strategies for reducing tissues' ability to support MWR. We then derived and tested a strategy in which multiple linear lesions partially divided a fibrillogenic tissue into functionally equivalent subsections. The composite action potential duration of heterogeneous tissue was well approximated by an inverse sum of cellular action potential durations (R(2)=0.82). Linear ablation more efficiently reduced MWR duration than branching ablation patterns and optimally reduced disease burden when positioned at a tissue's functional (rather than geometric) center. The duration of MWR after application of prospective, individually optimized ablation sets fell within 4.4% (95% confidence interval, 3-5.8) of the predicted target. We think that this study presents a novel approach for (1) quantifying the extent of a tissue's electric derangement, (2) prospectively determining the amount of ablation required to minimize the burden of MWR, and (3) predicting the most efficient distribution of these ablation lesions in tissue refractory to standard ablation strategies. © 2016 American Heart Association, Inc.

  18. Optimal Multistage Algorithm for Adjoint Computation

    SciTech Connect

    Aupy, Guillaume; Herrmann, Julien; Hovland, Paul; Robert, Yves

    2016-01-01

    We reexamine the work of Stumm and Walther on multistage algorithms for adjoint computation. We provide an optimal algorithm for this problem when there are two levels of checkpoints, in memory and on disk. Previously, optimal algorithms for adjoint computations were known only for a single level of checkpoints with no writing and reading costs; a well-known example is the binomial checkpointing algorithm of Griewank and Walther. Stumm and Walther extended that binomial checkpointing algorithm to the case of two levels of checkpoints, but they did not provide any optimality results. We bridge the gap by designing the first optimal algorithm in this context. We experimentally compare our optimal algorithm with that of Stumm and Walther to assess the difference in performance.

  19. Parallel algorithms for unconstrained optimizations by multisplitting

    SciTech Connect

    He, Qing

    1994-12-31

    In this paper a new parallel iterative algorithm for unconstrained optimization using the idea of multisplitting is proposed. This algorithm uses the existing sequential algorithms without any parallelization. Some convergence and numerical results for this algorithm are presented. The experiments are performed on an Intel iPSC/860 Hyper Cube with 64 nodes. It is interesting that the sequential implementation on one node shows that if the problem is split properly, the algorithm converges much faster than one without splitting.

  20. Privacy Preservation in Distributed Subgradient Optimization Algorithms.

    PubMed

    Lou, Youcheng; Yu, Lean; Wang, Shouyang; Yi, Peng

    2017-07-31

    In this paper, some privacy-preserving features for distributed subgradient optimization algorithms are considered. Most of the existing distributed algorithms focus mainly on the algorithm design and convergence analysis, but not the protection of agents' privacy. Privacy is becoming an increasingly important issue in applications involving sensitive information. In this paper, we first show that the distributed subgradient synchronous homogeneous-stepsize algorithm is not privacy preserving in the sense that the malicious agent can asymptotically discover other agents' subgradients by transmitting untrue estimates to its neighbors. Then a distributed subgradient asynchronous heterogeneous-stepsize projection algorithm is proposed and accordingly its convergence and optimality is established. In contrast to the synchronous homogeneous-stepsize algorithm, in the new algorithm agents make their optimization updates asynchronously with heterogeneous stepsizes. The introduced two mechanisms of projection operation and asynchronous heterogeneous-stepsize optimization can guarantee that agents' privacy can be effectively protected.

  1. Simulated annealing algorithm for optimal capital growth

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Zhu, Bo; Tang, Yong

    2014-08-01

    We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.

  2. An Optimal Class Association Rule Algorithm

    NASA Astrophysics Data System (ADS)

    Jean Claude, Turiho; Sheng, Yang; Chuang, Li; Kaia, Xie

    Classification and association rule mining algorithms are two important aspects of data mining. Class association rule mining algorithm is a promising approach for it involves the use of association rule mining algorithm to discover classification rules. This paper introduces an optimal class association rule mining algorithm known as OCARA. It uses optimal association rule mining algorithm and the rule set is sorted by priority of rules resulting into a more accurate classifier. It outperforms the C4.5, CBA, RMR on UCI eight data sets, which is proved by experimental results.

  3. Optimal Fungal Space Searching Algorithms.

    PubMed

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  4. Intelligent perturbation algorithms to space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1991-01-01

    The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed.

  5. An optimal structural design algorithm using optimality criteria

    NASA Technical Reports Server (NTRS)

    Taylor, J. E.; Rossow, M. P.

    1976-01-01

    An algorithm for optimal design is given which incorporates several of the desirable features of both mathematical programming and optimality criteria, while avoiding some of the undesirable features. The algorithm proceeds by approaching the optimal solution through the solutions of an associated set of constrained optimal design problems. The solutions of the constrained problems are recognized at each stage through the application of optimality criteria based on energy concepts. Two examples are described in which the optimal member size and layout of a truss is predicted, given the joint locations and loads.

  6. An Algorithmic Framework for Multiobjective Optimization

    PubMed Central

    Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.

    2013-01-01

    Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795

  7. A comprehensive review of swarm optimization algorithms.

    PubMed

    Ab Wahab, Mohd Nadhir; Nefti-Meziani, Samia; Atyabi, Adham

    2015-01-01

    Many swarm optimization algorithms have been introduced since the early 60's, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches.

  8. A Comprehensive Review of Swarm Optimization Algorithms

    PubMed Central

    2015-01-01

    Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655

  9. Smell Detection Agent Based Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Vinod Chandra, S. S.

    2016-09-01

    In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.

  10. Stochastic optimization algorithms for barrier dividend strategies

    NASA Astrophysics Data System (ADS)

    Yin, G.; Song, Q. S.; Yang, H.

    2009-01-01

    This work focuses on finding optimal barrier policy for an insurance risk model when the dividends are paid to the share holders according to a barrier strategy. A new approach based on stochastic optimization methods is developed. Compared with the existing results in the literature, more general surplus processes are considered. Precise models of the surplus need not be known; only noise-corrupted observations of the dividends are used. Using barrier-type strategies, a class of stochastic optimization algorithms are developed. Convergence of the algorithm is analyzed; rate of convergence is also provided. Numerical results are reported to demonstrate the performance of the algorithm.

  11. Spaceborne SAR Imaging Algorithm for Coherence Optimized

    PubMed Central

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446

  12. Spaceborne SAR Imaging Algorithm for Coherence Optimized.

    PubMed

    Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun

    2016-01-01

    This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.

  13. Algorithmic Differentiation for Calculus-based Optimization

    NASA Astrophysics Data System (ADS)

    Walther, Andrea

    2010-10-01

    For numerous applications, the computation and provision of exact derivative information plays an important role for optimizing the considered system but quite often also for its simulation. This presentation introduces the technique of Algorithmic Differentiation (AD), a method to compute derivatives of arbitrary order within working precision. Quite often an additional structure exploitation is indispensable for a successful coupling of these derivatives with state-of-the-art optimization algorithms. The talk will discuss two important situations where the problem-inherent structure allows a calculus-based optimization. Examples from aerodynamics and nano optics illustrate these advanced optimization approaches.

  14. Aerodynamic Shape Optimization using an Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Hoist, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem-both single and two-objective variations is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

  15. Aerodynamic Shape Optimization using an Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem, both single and two-objective variations, is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

  16. Aerodynamic Shape Optimization using an Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem, both single and two-objective variations, is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

  17. Aerodynamic Shape Optimization using an Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Hoist, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem-both single and two-objective variations is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

  18. Adaptive cuckoo search algorithm for unconstrained optimization.

    PubMed

    Ong, Pauline

    2014-01-01

    Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases.

  19. Angelic Hierarchical Planning: Optimal and Online Algorithms

    DTIC Science & Technology

    2008-12-06

    describe an alternative “satisficing” algorithm, AHSS . 4.1 Abstract Lookahead Trees Our ALT data structures support our search algorithms by efficiently...Angelic Hierarchical Satisficing Search ( AHSS ), which at- tempts to find a plan that reaches the goal with at most some pre-specified cost α. AHSS can be...much more efficient than AHA*, since it can commit to a plan without first proving its optimality. At each step, AHSS (see Algorithm 3) begins by

  20. Global Optimality of the Successive Maxbet Algorithm.

    ERIC Educational Resources Information Center

    Hanafi, Mohamed; ten Berge, Jos M. F.

    2003-01-01

    It is known that the Maxbet algorithm, which is an alternative to the method of generalized canonical correlation analysis and Procrustes analysis, may converge to local maxima. Discusses an eigenvalue criterion that is sufficient, but not necessary, for global optimality of the successive Maxbet algorithm. (SLD)

  1. Optimizing connected component labeling algorithms

    SciTech Connect

    Wu, Kesheng; Otoo, Ekow; Shoshani, Arie

    2005-01-16

    This paper presents two new strategies that can be used to greatly improve the speed of connected component labeling algorithms. To assign a label to a new object, most connected component labeling algorithms use a scanning step that examines some of its neighbors. The first strategy exploits the dependencies among them to reduce the number of neighbors examined. When considering 8-connected components in a 2D image, this can reduce the number of neighbors examined from four to one in many cases. The second strategy uses an array to store the equivalence information among the labels. This replaces the pointer based rooted trees used to store the same equivalence information. It reduces the memory required and also produces consecutive final labels. Using an array instead of the pointer based rooted trees speeds up the connected component labeling algorithms by a factor of 5 {approx} 100 in our tests on random binary images.

  2. Optimizing connected component labeling algorithms

    NASA Astrophysics Data System (ADS)

    Wu, Kesheng; Otoo, Ekow; Shoshani, Arie

    2005-04-01

    This paper presents two new strategies that can be used to greatly improve the speed of connected component labeling algorithms. To assign a label to a new object, most connected component labeling algorithms use a scanning step that examines some of its neighbors. The first strategy exploits the dependencies among them to reduce the number of neighbors examined. When considering 8-connected components in a 2D image, this can reduce the number of neighbors examined from four to one in many cases. The second strategy uses an array to store the equivalence information among the labels. This replaces the pointer based rooted trees used to store the same equivalence information. It reduces the memory required and also produces consecutive final labels. Using an array instead of the pointer based rooted trees speeds up the connected component labeling algorithms by a factor of 5 ~ 100 in our tests on random binary images.

  3. Belief Propagation Algorithm for Portfolio Optimization Problems

    PubMed Central

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm. PMID:26305462

  4. Belief Propagation Algorithm for Portfolio Optimization Problems.

    PubMed

    Shinzato, Takashi; Yasuda, Muneki

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  5. Algorithms for optimal dyadic decision trees

    SciTech Connect

    Hush, Don; Porter, Reid

    2009-01-01

    A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.

  6. An algorithm for online optimization of accelerators

    SciTech Connect

    Huang, Xiaobiao; Corbett, Jeff; Safranek, James; Wu, Juhao

    2013-10-01

    We developed a general algorithm for online optimization of accelerator performance, i.e., online tuning, using the performance measure as the objective function. This method, named robust conjugate direction search (RCDS), combines the conjugate direction set approach of Powell's method with a robust line optimizer which considers the random noise in bracketing the minimum and uses parabolic fit of data points that uniformly sample the bracketed zone. Moreover, it is much more robust against noise than traditional algorithms and is therefore suitable for online application. Simulation and experimental studies have been carried out to demonstrate the strength of the new algorithm.

  7. Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems

    NASA Astrophysics Data System (ADS)

    Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao

    Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.

  8. Patient specific optimization-based treatment planning for catheter-based ultrasound hyperthermia and thermal ablation

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.

    2009-02-01

    A 3D optimization-based thermal treatment planning platform has been developed for the application of catheter-based ultrasound hyperthermia in conjunction with high dose rate (HDR) brachytherapy for treating advanced pelvic tumors. Optimal selection of applied power levels to each independently controlled transducer segment can be used to conform and maximize therapeutic heating and thermal dose coverage to the target region, providing significant advantages over current hyperthermia technology and improving treatment response. Critical anatomic structures, clinical target outlines, and implant/applicator geometries were acquired from sequential multi-slice 2D images obtained from HDR treatment planning and used to reconstruct patient specific 3D biothermal models. A constrained optimization algorithm was devised and integrated within a finite element thermal solver to determine a priori the optimal applied power levels and the resulting 3D temperature distributions such that therapeutic heating is maximized within the target, while placing constraints on maximum tissue temperature and thermal exposure of surrounding non-targeted tissue. This optimizationbased treatment planning and modeling system was applied on representative cases of clinical implants for HDR treatment of cervix and prostate to evaluate the utility of this planning approach. The planning provided significant improvement in achievable temperature distributions for all cases, with substantial increase in T90 and thermal dose (CEM43T90) coverage to the hyperthermia target volume while decreasing maximum treatment temperature and reducing thermal dose exposure to surrounding non-targeted tissues and thermally sensitive rectum and bladder. This optimization based treatment planning platform with catheter-based ultrasound applicators is a useful tool that has potential to significantly improve the delivery of hyperthermia in conjunction with HDR brachytherapy. The planning platform has been extended

  9. Optimal Hops-Based Adaptive Clustering Algorithm

    NASA Astrophysics Data System (ADS)

    Xuan, Xin; Chen, Jian; Zhen, Shanshan; Kuo, Yonghong

    This paper proposes an optimal hops-based adaptive clustering algorithm (OHACA). The algorithm sets an energy selection threshold before the cluster forms so that the nodes with less energy are more likely to go to sleep immediately. In setup phase, OHACA introduces an adaptive mechanism to adjust cluster head and load balance. And the optimal distance theory is applied to discover the practical optimal routing path to minimize the total energy for transmission. Simulation results show that OHACA prolongs the life of network, improves utilizing rate and transmits more data because of energy balance.

  10. An algorithm for LQ optimal actuator location

    NASA Astrophysics Data System (ADS)

    Darivandi, Neda; Morris, Kirsten; Khajepour, Amir

    2013-03-01

    The locations of the control hardware are typically a design variable in controller design for distributed parameter systems. In order to obtain the most efficient control system, the locations of control hardware as well as the feedback gain should be optimized. These optimization problems are generally non-convex. In addition, the models for these systems typically have a large number of degrees of freedom. Consequently, existing optimization schemes for optimal actuator placement may be inaccurate or computationally impractical. In this paper, the feedback control is chosen to be an optimal linear quadratic regulator. The optimal actuator location problem is reformulated as a convex optimization problem. A subgradient-based optimization scheme which leads to the global solution of the problem is used to optimize actuator locations. The optimization algorithm is applied to optimize the placement of piezoelectric actuators in vibration control of flexible structures. This method is compared with a genetic algorithm, and is observed to be faster and more accurate. Experiments are performed to verify the efficacy of optimal actuator placement.

  11. A novel bee swarm optimization algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Akbari, Reza; Mohammadi, Alireza; Ziarati, Koorush

    2010-10-01

    The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently introduced population based techniques. In this paper, a novel algorithm called bee swarm optimization, or BSO, and its two extensions for improving its performance are presented. The BSO is a population based optimization technique which is inspired from foraging behavior of honey bees. The proposed approach provides different patterns which are used by the bees to adjust their flying trajectories. As the first extension, the BSO algorithm introduces different approaches such as repulsion factor and penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently the balance between exploration and exploitation, time-varying weights (TVW) are introduced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO-RP and BSO-RPTVW) are compared with existing algorithms which are based on intelligent behavior of honey bees, on a set of well known numerical test functions. The experimental results show that the BSO algorithms are effective and robust; produce excellent results, and outperform other algorithms investigated in this consideration.

  12. A cuckoo search algorithm for multimodal optimization.

    PubMed

    Cuevas, Erik; Reyna-Orta, Adolfo

    2014-01-01

    Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration.

  13. A Cuckoo Search Algorithm for Multimodal Optimization

    PubMed Central

    2014-01-01

    Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850

  14. An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.

    PubMed

    Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed

    2015-10-01

    Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front.

  15. A Genetic Algorithm Optimization Method for Mapping Non-Conducting Atrial Regions: A Theoretical Feasibility Study.

    PubMed

    Shiff, Shai; Swissa, Moshe; Zlochiver, Sharon

    2016-03-01

    Atrial ablation has been recently utilized for curing atrial fibrillation. The success rate of empirical ablation is relatively low as often the exact locations of the arrhythmogenic sources remain elusive. Guided ablation has been proposed to improve ablation technique by providing guidance regarding the potential localization of the sources; yet to date no main technological solution has been widely adopted as an integral part of the ablation process. Here we propose a genetic algorithm optimization technique to map a major arrhythmogenic substance-non-conducting regions (NCRs). Excitation delays in a set of electrodes of known locations are measured following external tissue stimulation, and the spatial distribution of obstacles that is most likely to yield the measured delays is reconstructed. A forward problem module was solved to provide synthetic time delay measurements using a 2D human atrial model with known NCR distribution. An inverse genetic algorithm module was implemented to optimally reconstruct the locations of the now unknown obstacle distribution using the synthetic measurements. The performance of the algorithm was demonstrated for several distributions varying in NCR number and shape. The proposed algorithm was found robust to measurements with a signal-to-noise ratio of at least -20 dB, and for measuring electrodes separated by up to 3.2 mm. Our results support the feasibility of the proposed algorithm in mapping NCRs; nevertheless, further research is required prior to clinical implementation for incorporating more complex atrial tissue geometrical configurations as well as for testing the algorithm with experimental data.

  16. Firefly Mating Algorithm for Continuous Optimization Problems

    PubMed Central

    Ritthipakdee, Amarita; Premasathian, Nol; Jitkongchuen, Duangjai

    2017-01-01

    This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima. PMID:28808442

  17. A Boundary Condition Relaxation Algorithm for Strongly Coupled, Ablating Flows Including Shape Change

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.

    2011-01-01

    Implementations of a model for equilibrium, steady-state ablation boundary conditions are tested for the purpose of providing strong coupling with a hypersonic flow solver. The objective is to remove correction factors or film cooling approximations that are usually applied in coupled implementations of the flow solver and the ablation response. Three test cases are considered - the IRV-2, the Galileo probe, and a notional slender, blunted cone launched at 10 km/s from the Earth's surface. A successive substitution is employed and the order of succession is varied as a function of surface temperature to obtain converged solutions. The implementation is tested on a specified trajectory for the IRV-2 to compute shape change under the approximation of steady-state ablation. Issues associated with stability of the shape change algorithm caused by explicit time step limits are also discussed.

  18. Optimizing electrode placement using finite-element models in radiofrequency ablation treatment planning.

    PubMed

    Chen, Chun-Cheng R; Miga, Michael I; Galloway, Robert L

    2009-02-01

    Conventional radiofrequency ablation (RFA) planning methods for identifying suitable electrode placements typically use geometric shapes to model ablation outcomes. A method is presented for searching electrode placements that couples finite-element models (FEMs) of RFA together with a novel optimization strategy. The method was designed to reduce the need for model solutions per local search step. The optimization strategy was tested against scenarios requiring single and multiple ablations. In particular, for a scenario requiring multiple ablations, a domain decomposition strategy was described to minimize the complexity of simultaneously searching multiple electrode placements. The effects of nearby vasculature on optimal electrode placement were also studied. Compared with geometric planning approaches, FEMs could potentially deliver electrode placement plans that provide more physically meaningful predictions of therapeutic outcomes.

  19. Algorithm Optimally Allocates Actuation of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Motaghedi, Shi

    2007-01-01

    A report presents an algorithm that solves the following problem: Allocate the force and/or torque to be exerted by each thruster and reaction-wheel assembly on a spacecraft for best performance, defined as minimizing the error between (1) the total force and torque commanded by the spacecraft control system and (2) the total of forces and torques actually exerted by all the thrusters and reaction wheels. The algorithm incorporates the matrix vector relationship between (1) the total applied force and torque and (2) the individual actuator force and torque values. It takes account of such constraints as lower and upper limits on the force or torque that can be applied by a given actuator. The algorithm divides the aforementioned problem into two optimization problems that it solves sequentially. These problems are of a type, known in the art as semi-definite programming problems, that involve linear matrix inequalities. The algorithm incorporates, as sub-algorithms, prior algorithms that solve such optimization problems very efficiently. The algorithm affords the additional advantage that the solution requires the minimum rate of consumption of fuel for the given best performance.

  20. Protein structure optimization with a "Lamarckian" ant colony algorithm.

    PubMed

    Oakley, Mark T; Richardson, E Grace; Carr, Harriet; Johnston, Roy L

    2013-01-01

    We describe the LamarckiAnt algorithm: a search algorithm that combines the features of a "Lamarckian" genetic algorithm and ant colony optimization. We have implemented this algorithm for the optimization of BLN model proteins, which have frustrated energy landscapes and represent a challenge for global optimization algorithms. We demonstrate that LamarckiAnt performs competitively with other state-of-the-art optimization algorithms.

  1. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  2. Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Lopez, Nicolas

    This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.

  3. A novel metaheuristic for continuous optimization problems: Virus optimization algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue

    2016-01-01

    A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.

  4. Optimization of a chemical identification algorithm

    NASA Astrophysics Data System (ADS)

    Chyba, Thomas H.; Fisk, Brian; Gunning, Christin; Farley, Kevin; Polizzi, Amber; Baughman, David; Simpson, Steven; Slamani, Mohamed-Adel; Almassy, Robert; Da Re, Ryan; Li, Eunice; MacDonald, Steve; Slamani, Ahmed; Mitchell, Scott A.; Pendell-Jones, Jay; Reed, Timothy L.; Emge, Darren

    2010-04-01

    A procedure to evaluate and optimize the performance of a chemical identification algorithm is presented. The Joint Contaminated Surface Detector (JCSD) employs Raman spectroscopy to detect and identify surface chemical contamination. JCSD measurements of chemical warfare agents, simulants, toxic industrial chemicals, interferents and bare surface backgrounds were made in the laboratory and under realistic field conditions. A test data suite, developed from these measurements, is used to benchmark algorithm performance throughout the improvement process. In any one measurement, one of many possible targets can be present along with interferents and surfaces. The detection results are expressed as a 2-category classification problem so that Receiver Operating Characteristic (ROC) techniques can be applied. The limitations of applying this framework to chemical detection problems are discussed along with means to mitigate them. Algorithmic performance is optimized globally using robust Design of Experiments and Taguchi techniques. These methods require figures of merit to trade off between false alarms and detection probability. Several figures of merit, including the Matthews Correlation Coefficient and the Taguchi Signal-to-Noise Ratio are compared. Following the optimization of global parameters which govern the algorithm behavior across all target chemicals, ROC techniques are employed to optimize chemical-specific parameters to further improve performance.

  5. Algorithm for fixed-range optimal trajectories

    NASA Technical Reports Server (NTRS)

    Lee, H. Q.; Erzberger, H.

    1980-01-01

    An algorithm for synthesizing optimal aircraft trajectories for specified range was developed and implemented in a computer program written in FORTRAN IV. The algorithm, its computer implementation, and a set of example optimum trajectories for the Boeing 727-100 aircraft are described. The algorithm optimizes trajectories with respect to a cost function that is the weighted sum of fuel cost and time cost. The optimum trajectory consists at most of a three segments: climb, cruise, and descent. The climb and descent profiles are generated by integrating a simplified set of kinematic and dynamic equations wherein the total energy of the aircraft is the independent or time like variable. At each energy level the optimum airspeeds and thrust settings are obtained as the values that minimize the variational Hamiltonian. Although the emphasis is on an off-line, open-loop computation, eventually the most important application will be in an on-board flight management system.

  6. Optimized TRIAD Algorithm for Attitude Determination

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    1996-01-01

    TRIAD is a well known simple algorithm that generates the attitude matrix between two coordinate systems when the components of two abstract vectors are given in the two systems. TRIAD however, is sensitive to the order in which the algorithm handles the vectors, such that the resulting attitude matrix is influenced more by the vector processed first. In this work we present a new algorithm, which we call Optimized TRIAD, that blends in a specified manner the two matrices generated by TRIAD when processing one vector first, and then when processing the other vector first. On the average, Optimized TRIAD yields a matrix which is better than either one of the two matrices in that is ti the closest to the correct matrix. This result is demonstrated through simulation.

  7. An efficient algorithm for numerical airfoil optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1979-01-01

    A new optimization algorithm is presented. The method is based on sequential application of a second-order Taylor's series approximation to the airfoil characteristics. Compared to previous methods, design efficiency improvements of more than a factor of 2 are demonstrated. If multiple optimizations are performed, the efficiency improvements are more dramatic due to the ability of the technique to utilize existing data. The method is demonstrated by application to subsonic and transonic airfoil design but is a general optimization technique and is not limited to a particular application or aerodynamic analysis.

  8. Optimization Algorithms in Optimal Predictions of Atomistic Properties by Kriging.

    PubMed

    Di Pasquale, Nicodemo; Davie, Stuart J; Popelier, Paul L A

    2016-04-12

    The machine learning method kriging is an attractive tool to construct next-generation force fields. Kriging can accurately predict atomistic properties, which involves optimization of the so-called concentrated log-likelihood function (i.e., fitness function). The difficulty of this optimization problem quickly escalates in response to an increase in either the number of dimensions of the system considered or the size of the training set. In this article, we demonstrate and compare the use of two search algorithms, namely, particle swarm optimization (PSO) and differential evolution (DE), to rapidly obtain the maximum of this fitness function. The ability of these two algorithms to find a stationary point is assessed by using the first derivative of the fitness function. Finally, the converged position obtained by PSO and DE is refined through the limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B) algorithm, which belongs to the class of quasi-Newton algorithms. We show that both PSO and DE are able to come close to the stationary point, even in high-dimensional problems. They do so in a reasonable amount of time, compared to that with the Newton and quasi-Newton algorithms, regardless of the starting position in the search space of kriging hyperparameters. The refinement through L-BFGS-B is able to give the position of the maximum with whichever precision is desired.

  9. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  10. Wind farm optimization using evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Ituarte-Villarreal, Carlos M.

    In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a

  11. Optimized dynamical decoupling via genetic algorithms

    NASA Astrophysics Data System (ADS)

    Quiroz, Gregory; Lidar, Daniel A.

    2013-11-01

    We utilize genetic algorithms aided by simulated annealing to find optimal dynamical decoupling (DD) sequences for a single-qubit system subjected to a general decoherence model under a variety of control pulse conditions. We focus on the case of sequences with equal pulse intervals and perform the optimization with respect to pulse type and order. In this manner, we obtain robust DD sequences, first in the limit of ideal pulses, then when including pulse imperfections such as finite-pulse duration and qubit rotation (flip-angle) errors. Although our optimization is numerical, we identify a deterministic structure that underlies the top-performing sequences. We use this structure to devise DD sequences which outperform previously designed concatenated DD (CDD) and quadratic DD (QDD) sequences in the presence of pulse errors. We explain our findings using time-dependent perturbation theory and provide a detailed scaling analysis of the optimal sequences.

  12. Polynomial Local Improvement Algorithms in Combinatorial Optimization.

    DTIC Science & Technology

    1981-11-01

    NUMBER SOL 81- 21 IIS -J O 15 14. TITLE (am#Su&Utl & YEO RPR ERO OEE Polynomial Local Improvement Algorithms in TcnclRpr Combinatorial Optimization 6...Stanford, CA 94305 II . CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE Office of Naval Research - Dept. of the Navy November 1981 800 N. Qu~incy Street...corresponds to a node of the tree. ii ) The father of a vertex is its optimal adjacent vertex; if a vertex is a local optimum, it has no father. The tree is

  13. FOGSAA: Fast Optimal Global Sequence Alignment Algorithm

    NASA Astrophysics Data System (ADS)

    Chakraborty, Angana; Bandyopadhyay, Sanghamitra

    2013-04-01

    In this article we propose a Fast Optimal Global Sequence Alignment Algorithm, FOGSAA, which aligns a pair of nucleotide/protein sequences faster than any optimal global alignment method including the widely used Needleman-Wunsch (NW) algorithm. FOGSAA is applicable for all types of sequences, with any scoring scheme, and with or without affine gap penalty. Compared to NW, FOGSAA achieves a time gain of (70-90)% for highly similar nucleotide sequences (> 80% similarity), and (54-70)% for sequences having (30-80)% similarity. For other sequences, it terminates with an approximate score. For protein sequences, the average time gain is between (25-40)%. Compared to three heuristic global alignment methods, the quality of alignment is improved by about 23%-53%. FOGSAA is, in general, suitable for aligning any two sequences defined over a finite alphabet set, where the quality of the global alignment is of supreme importance.

  14. Intelligent perturbation algorithms for space scheduling optimization

    NASA Technical Reports Server (NTRS)

    Kurtzman, Clifford R.

    1990-01-01

    The optimization of space operations is examined in the light of optimization heuristics for computer algorithms and iterative search techniques. Specific attention is given to the search concepts known collectively as intelligent perturbation algorithms (IPAs) and their application to crew/resource allocation problems. IPAs iteratively examine successive schedules which become progressively more efficient, and the characteristics of good perturbation operators are listed. IPAs can be applied to aerospace systems to efficiently utilize crews, payloads, and resources in the context of systems such as Space-Station scheduling. A program is presented called the MFIVE Space Station Scheduling Worksheet which generates task assignments and resource usage structures. The IPAs can be used to develop flexible manifesting and scheduling for the Industrial Space Facility.

  15. Genetic algorithm optimization of atomic clusters

    SciTech Connect

    Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E. |

    1996-12-31

    The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process.

  16. Optimization of Catheter Ablation of Atrial Fibrillation: Insights Gained from Clinically-Derived Computer Models

    PubMed Central

    Zhao, Jichao; Kharche, Sanjay R.; Hansen, Brian J.; Csepe, Thomas A.; Wang, Yufeng; Stiles, Martin K.; Fedorov, Vadim V.

    2015-01-01

    Atrial fibrillation (AF) is the most common heart rhythm disturbance, and its treatment is an increasing economic burden on the health care system. Despite recent intense clinical, experimental and basic research activity, the treatment of AF with current antiarrhythmic drugs and catheter/surgical therapies remains limited. Radiofrequency catheter ablation (RFCA) is widely used to treat patients with AF. Current clinical ablation strategies are largely based on atrial anatomy and/or substrate detected using different approaches, and they vary from one clinical center to another. The nature of clinical ablation leads to ambiguity regarding the optimal patient personalization of the therapy partly due to the fact that each empirical configuration of ablation lines made in a patient is irreversible during one ablation procedure. To investigate optimized ablation lesion line sets, in silico experimentation is an ideal solution. 3D computer models give us a unique advantage to plan and assess the effectiveness of different ablation strategies before and during RFCA. Reliability of in silico assessment is ensured by inclusion of accurate 3D atrial geometry, realistic fiber orientation, accurate fibrosis distribution and cellular kinetics; however, most of this detailed information in the current computer models is extrapolated from animal models and not from the human heart. The predictive power of computer models will increase as they are validated with human experimental and clinical data. To make the most from a computer model, one needs to develop 3D computer models based on the same functionally and structurally mapped intact human atria with high spatial resolution. The purpose of this review paper is to summarize recent developments in clinically-derived computer models and the clinical insights they provide for catheter ablation. PMID:25984605

  17. Optical flow optimization using parallel genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe

    2011-06-01

    A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.

  18. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared

  19. Optimization of dual slot antenna using floating metallic sleeve for microwave ablation.

    PubMed

    Ibitoye, Z A; Nwoye, E O; Aweda, M A; Oremosu, A A; Annunobi, C C; Akanmu, O N

    2015-04-01

    Backward heating reduction is vital in power distribution optimization in microwave thermal ablation. In this study, we optimized dual slot antenna to yield reduction in backward heating pattern along the antenna shaft with the application of floating metallic sleeve. Finite element methods were used to generate the electromagnetic (EM) field and thermal distribution in liver tissue. The position of the sleeve from the tip of the probe (z = 0 mm) was varied within the range 14 ≤ z ≤ 22 mm while sleeve length was varied within 16 ≤ z ≤ 48 mm at 2 mm interval using operating frequency of 2.45 GHz. The best optimized design has reflection coefficient of -20.87 dB and axial ratio of 0.41 when the sleeve position was at 17 mm and sleeve length was 18 mm. Experimental validation shows that inclusion of a floating metallic sleeve on dual slot antenna for hepatic microwave ablation averagely increased ablation diameter and aspect ratio by 17.8% and 33.9% respectively and decreased ablation length by 11.2%. Reduction in backward heating and increase in power deposition into liver tissue could be achieved by using this antenna to provide greater efficiency and localization of specific absorption rate in delivering microwave energy for hepatic ablation. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Bell-Curve Based Evolutionary Optimization Algorithm

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.

    1998-01-01

    The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.

  1. Algorithms for optimizing CT fluence control

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    The ability to customize the incident x-ray fluence in CT via beam-shaping filters or mA modulation is known to improve image quality and/or reduce radiation dose. Previous work has shown that complete control of x-ray fluence (ray-by-ray fluence modulation) would further improve dose efficiency. While complete control of fluence is not currently possible, emerging concepts such as dynamic attenuators and inverse-geometry CT allow nearly complete control to be realized. Optimally using ray-by-ray fluence modulation requires solving a very high-dimensional optimization problem. Most optimization techniques fail or only provide approximate solutions. We present efficient algorithms for minimizing mean or peak variance given a fixed dose limit. The reductions in variance can easily be translated to reduction in dose, if the original variance met image quality requirements. For mean variance, a closed form solution is derived. The peak variance problem is recast as iterated, weighted mean variance minimization, and at each iteration it is possible to bound the distance to the optimal solution. We apply our algorithms in simulations of scans of the thorax and abdomen. Peak variance reductions of 45% and 65% are demonstrated in the abdomen and thorax, respectively, compared to a bowtie filter alone. Mean variance shows smaller gains (about 15%).

  2. Optimization of Direct Current-Enhanced Radiofrequency Ablation: An Ex Vivo Study

    SciTech Connect

    Tanaka, Toshihiro Isfort, Peter; Bruners, Philipp; Penzkofer, Tobias; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H.

    2010-10-15

    The purpose of this study was to investigate the optimal setting for radiofrequency (RF) ablation combined with direct electrical current (DC) ablation in ex vivo bovine liver. An electrical circuit combining a commercially available RF ablation system with DC was developed. The negative electrode of a rectifier that provides DC was connected to a 3-cm multitined expandable RF probe. A 100-mH inductor was used to prevent electrical leakage from the RF generator. DC was applied for 15 min and followed by RF ablation in freshly excised bovine livers. Electric current was measured by an ammeter. Coagulation volume, ablation duration, and mean amperage were assessed for various DC voltages (no DC, 2.2, 4.5, and 9.0 V) and different RF ablation protocols (stepwise increase from 40 to 80 W, 40 W fixed, and 80 W fixed). Results were compared using Kruskal-Wallis and Mann-Whitney U test. Applying DC with 4.5 or 9.0 V, in combination with 40 W fixed or a stepwise increase of RF energy, resulted in significantly increased zone of ablation size compared with 2.2 V or no DC (P = 0.009). At 4.5 V DC, the stepwise increase of RF energy resulted in the same necrosis size as a 40 W fixed protocol (26.6 {+-} 3.9 vs. 26.5 {+-} 4.0 ml), but ablation duration was significantly decreased (296 {+-} 85 s vs. 423 {+-} 104 s; P = 0.028). Mean amperage was significantly lower at 4.5 V compared with 9.0 V (P = 0.028). Combining a stepwise increase of RF energy with a DC voltage of 4.5 V is most appropriate to increase coagulation volume and to minimize procedure time.

  3. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    SciTech Connect

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  4. Lesion Optimization for Laser Ablation: Fluid Evacuation Prior to Laser-Induced Thermal Therapy.

    PubMed

    Wong, Timothy; Patel, Nitesh V; Feiteiro, Filipe; Danish, Shabbar F; Hanft, Simon

    2017-08-01

    Magnetic resonance-guided laser-induced thermal therapy (MRgLITT) is a minimally invasive surgical procedure for ablating intracranial lesions. The presence of a fluid body can sequester thermal energy generated by the laser catheter, which compromises the performance of MRgLITT, resulting in suboptimal ablation of cystic lesions. We report our use of stereotactic fluid evacuation followed by MRgLITT in 2 patients with cystic brain tumors. This is the first report on lesion optimization by fluid aspiration before MRgLITT. Two cystic tumors in 2 patients were treated. In 1 patient, an external ventricular drain was placed stereotactically to allow drainage of cystic fluid 1 day before laser ablation. In the second patient, a stereotactic biopsy needle was used to aspirate the cystic fluid immediately before laser ablation. The remaining solid portions of the both tumors were ablated using the Visualase system. Both patients were followed clinically and radiologically after the procedures. Stereotactic placement of an external ventricular drain and a biopsy needle both successfully resulted in fluid evacuation. MRgLITT was performed without any complications in both patients after fluid evacuation. Both patients demonstrated clinical and radiologic improvement after the procedure. Cystic fluid evacuation is a promising strategy for optimizing intracranial cystic lesions for MRgLITT. This novel approach may broaden the utility of MRgLITT in the management of various technically demanding lesions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Unification of algorithms for minimum mode optimization

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Xiao, Penghao; Henkelman, Graeme

    2014-01-01

    Minimum mode following algorithms are widely used for saddle point searching in chemical and material systems. Common to these algorithms is a component to find the minimum curvature mode of the second derivative, or Hessian matrix. Several methods, including Lanczos, dimer, Rayleigh-Ritz minimization, shifted power iteration, and locally optimal block preconditioned conjugate gradient, have been proposed for this purpose. Each of these methods finds the lowest curvature mode iteratively without calculating the Hessian matrix, since the full matrix calculation is prohibitively expensive in the high dimensional spaces of interest. Here we unify these iterative methods in the same theoretical framework using the concept of the Krylov subspace. The Lanczos method finds the lowest eigenvalue in a Krylov subspace of increasing size, while the other methods search in a smaller subspace spanned by the set of previous search directions. We show that these smaller subspaces are contained within the Krylov space for which the Lanczos method explicitly finds the lowest curvature mode, and hence the theoretical efficiency of the minimum mode finding methods are bounded by the Lanczos method. Numerical tests demonstrate that the dimer method combined with second-order optimizers approaches but does not exceed the efficiency of the Lanczos method for minimum mode optimization.

  6. Unification of algorithms for minimum mode optimization.

    PubMed

    Zeng, Yi; Xiao, Penghao; Henkelman, Graeme

    2014-01-28

    Minimum mode following algorithms are widely used for saddle point searching in chemical and material systems. Common to these algorithms is a component to find the minimum curvature mode of the second derivative, or Hessian matrix. Several methods, including Lanczos, dimer, Rayleigh-Ritz minimization, shifted power iteration, and locally optimal block preconditioned conjugate gradient, have been proposed for this purpose. Each of these methods finds the lowest curvature mode iteratively without calculating the Hessian matrix, since the full matrix calculation is prohibitively expensive in the high dimensional spaces of interest. Here we unify these iterative methods in the same theoretical framework using the concept of the Krylov subspace. The Lanczos method finds the lowest eigenvalue in a Krylov subspace of increasing size, while the other methods search in a smaller subspace spanned by the set of previous search directions. We show that these smaller subspaces are contained within the Krylov space for which the Lanczos method explicitly finds the lowest curvature mode, and hence the theoretical efficiency of the minimum mode finding methods are bounded by the Lanczos method. Numerical tests demonstrate that the dimer method combined with second-order optimizers approaches but does not exceed the efficiency of the Lanczos method for minimum mode optimization.

  7. Intervals in evolutionary algorithms for global optimization

    SciTech Connect

    Patil, R.B.

    1995-05-01

    Optimization is of central concern to a number of disciplines. Interval Arithmetic methods for global optimization provide us with (guaranteed) verified results. These methods are mainly restricted to the classes of objective functions that are twice differentiable and use a simple strategy of eliminating a splitting larger regions of search space in the global optimization process. An efficient approach that combines the efficient strategy from Interval Global Optimization Methods and robustness of the Evolutionary Algorithms is proposed. In the proposed approach, search begins with randomly created interval vectors with interval widths equal to the whole domain. Before the beginning of the evolutionary process, fitness of these interval parameter vectors is defined by evaluating the objective function at the center of the initial interval vectors. In the subsequent evolutionary process the local optimization process returns an estimate of the bounds of the objective function over the interval vectors. Though these bounds may not be correct at the beginning due to large interval widths and complicated function properties, the process of reducing interval widths over time and a selection approach similar to simulated annealing helps in estimating reasonably correct bounds as the population evolves. The interval parameter vectors at these estimated bounds (local optima) are then subjected to crossover and mutation operators. This evolutionary process continues for predetermined number of generations in the search of the global optimum.

  8. An organizational evolutionary algorithm for numerical optimization.

    PubMed

    Liu, Jing; Zhong, Weicai; Jiao, Licheng

    2007-08-01

    Taking inspiration from the interacting process among organizations in human societies, this correspondence designs a kind of structured population and corresponding evolutionary operators to form a novel algorithm, Organizational Evolutionary Algorithm (OEA), for solving both unconstrained and constrained optimization problems. In OEA, a population consists of organizations, and an organization consists of individuals. All evolutionary operators are designed to simulate the interaction among organizations. In experiments, 15 unconstrained functions, 13 constrained functions, and 4 engineering design problems are used to validate the performance of OEA, and thorough comparisons are made between the OEA and the existing approaches. The results show that the OEA obtains good performances in both the solution quality and the computational cost. Moreover, for the constrained problems, the good performances are obtained by only incorporating two simple constraints handling techniques into the OEA. Furthermore, systematic analyses have been made on all parameters of the OEA. The results show that the OEA is quite robust and easy to use.

  9. Automatic Tracking Algorithm in Coaxial Near-Infrared Laser Ablation Endoscope for Fetus Surgery

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Yamanaka, Noriaki; Masamune, Ken

    2014-07-01

    This article reports a stable vessel object tracking method for the treatment of twin-to-twin transfusion syndrome based on our previous 2 DOF endoscope. During the treatment of laser coagulation, it is necessary to focus on the exact position of the target object, however it moves by the mother's respiratory motion and still remains a challenge to obtain and track the position precisely. In this article, an algorithm which uses features from accelerated segment test (FAST) to extract the features and optical flow as the object tracking method, is proposed to deal with above problem. Further, we experimentally simulate the movement due to the mother's respiration, and the results of position errors and similarity verify the effectiveness of the proposed tracking algorithm for laser ablation endoscopy in-vitro and under water considering two influential factors. At average, the errors are about 10 pixels and the similarity over 0.92 are obtained in the experiments.

  10. Lunar Habitat Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.

    2007-01-01

    Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.

  11. OPC recipe optimization using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Asthana, Abhishek; Wilkinson, Bill; Power, Dave

    2016-03-01

    Optimization of OPC recipes is not trivial due to multiple parameters that need tuning and their correlation. Usually, no standard methodologies exist for choosing the initial recipe settings, and in the keyword development phase, parameters are chosen either based on previous learning, vendor recommendations, or to resolve specific problems on particular special constructs. Such approaches fail to holistically quantify the effects of parameters on other or possible new designs, and to an extent are based on the keyword developer's intuition. In addition, when a quick fix is needed for a new design, numerous customization statements are added to the recipe, which make it more complex. The present work demonstrates the application of Genetic Algorithm (GA) technique for optimizing OPC recipes. GA is a search technique that mimics Darwinian natural selection and has applications in various science and engineering disciplines. In this case, GA search heuristic is applied to two problems: (a) an overall OPC recipe optimization with respect to selected parameters and, (b) application of GA to improve printing and via coverage at line end geometries. As will be demonstrated, the optimized recipe significantly reduced the number of ORC violations for case (a). For case (b) line end for various features showed significant printing and filling improvement.

  12. Instrument design and optimization using genetic algorithms

    SciTech Connect

    Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter

    2006-10-15

    This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.

  13. Optimizing doped libraries by using genetic algorithms.

    PubMed

    Tomandl, D; Schober, A; Schwienhorst, A

    1997-01-01

    The insertion of random sequences into protein-encoding genes in combination with biological selection techniques has become a valuable tool in the design of molecules that have useful and possibly novel properties. By employing highly effective screening protocols, a functional and unique structure that had not been anticipated can be distinguished among a huge collection of inactive molecules that together represent all possible amino acid combinations. This technique is severely limited by its restriction to a library of manageable size. One approach for limiting the size of a mutant library relies on 'doping schemes', where subsets of amino acids are generated that reveal only certain combinations of amino acids in a protein sequence. Three mononucleotide mixtures for each codon concerned must be designed, such that the resulting codons that are assembled during chemical gene synthesis represent the desired amino acid mixture on the level of the translated protein. In this paper we present a doping algorithm that "reverse translates' a desired mixture of certain amino acids into three mixtures of mononucleotides. The algorithm is designed to optimally bias these mixtures towards the codons of choice. This approach combines a genetic algorithm with local optimization strategies based on the downhill simplex method. Disparate relative representations of all amino acids (and stop codons) within a target set can be generated. Optional weighing factors are employed to emphasize the frequencies of certain amino acids and their codon usage, and to compensate for reaction rates of different mononucleotide building blocks (synthons) during chemical DNA synthesis. The effect of statistical errors that accompany an experimental realization of calculated nucleotide mixtures on the generated mixtures of amino acids is simulated. These simulations show that the robustness of different optima with respect to small deviations from calculated values depends on their concomitant

  14. An improved marriage in honey bees optimization algorithm for single objective unconstrained optimization.

    PubMed

    Celik, Yuksel; Ulker, Erkan

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.

  15. A correction factor for ablation algorithms assuming deviations of Lambert-Beer's law with a Gaussian-profile beam

    NASA Astrophysics Data System (ADS)

    Rodríguez-Marín, Francisco; Anera, Rosario G.; Alarcón, Aixa; Hita, E.; Jiménez, J. R.

    2012-04-01

    In this work, we propose an adjustment factor to be considered in ablation algorithms used in refractive surgery. This adjustment factor takes into account potential deviations of Lambert-Beer's law and the characteristics of a Gaussian-profile beam. To check whether the adjustment factor deduced is significant for visual function, we applied it to the paraxial Munnerlyn formula and found that it significantly influences the post-surgical corneal radius and p-factor. The use of the adjustment factor can help reduce the discrepancies in corneal shape between the real data and corneal shape expected when applying laser ablation algorithms.

  16. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  17. Expedite Particle Swarm Optimization Algorithm (EPSO) for Optimization of MSA

    NASA Astrophysics Data System (ADS)

    Rathi, Amit; Vijay, Ritu

    This paper presents a new designing method of Rectangular patch Microstrip Antenna using an Artificial searches Algorithm with some constraints. It requires two stages for designing. In first stage, bandwidth of MSA is modeled using bench Mark function. In second stage, output of first stage give to modified Artificial search Algorithm which is Particle Swarm Algorithm (PSO) as input and get output in the form of five parameter- dimensions width, frequency range, dielectric loss tangent, length over a ground plane with a substrate thickness and electrical thickness. In PSO Cognition, factor and Social learning Factor give very important effect on balancing the local search and global search in PSO. Basing the modification of cognition factor and social learning factor, this paper presents the strategy that at the starting process cognition-learning factor has more effect then social learning factor. Gradually social learning factor has more impact after learning cognition factor for find out global best. The aim is to find out under above circumstances these modifications in PSO can give better result for optimization of microstrip Antenna (MSA).

  18. Cardiac ablation catheter guidance by means of a single equivalent moving dipole inverse algorithm.

    PubMed

    Lee, Kichang; Lv, Wener; Ter-Ovanesyan, Evgeny; Barley, Maya E; Voysey, Graham E; Galea, Anna M; Hirschman, Gordon B; Leroy, Kristen; Marini, Robert P; Barrett, Conor; Armoundas, Antonis A; Cohen, Richard J

    2013-07-01

    We developed and evaluated a novel system for guiding radiofrequency catheter ablation therapy of ventricular tachycardia. This guidance system employs an inverse solution guidance algorithm (ISGA) using a single equivalent moving dipole (SEMD) localization method. The method and system were evaluated in both a saline tank phantom model and in vivo animal (swine) experiments. A catheter with two platinum electrodes spaced 3 mm apart was used as the dipole source in the phantom study. A 40-Hz sinusoidal signal was applied to the electrode pair. In the animal study, four to eight electrodes were sutured onto the right ventricle. These electrodes were connected to a stimulus generator delivering 1-ms duration pacing pulses. Signals were recorded from 64 electrodes, located either on the inner surface of the saline tank or on the body surface of the pig, and then processed by the ISGA to localize the physical or bioelectrical SEMD. In the phantom studies, the guidance algorithm was used to advance a catheter tip to the location of the source dipole. The distance from the final position of the catheter tip to the position of the target dipole was 2.22 ± 0.78 mm in real space and 1.38 ± 0.78 mm in image space (computational space). The ISGA successfully tracked the locations of electrodes sutured on the ventricular myocardium and the movement of an endocardial catheter placed in the animal's right ventricle. In conclusion, we successfully demonstrated the feasibility of using an SEMD inverse algorithm to guide a cardiac ablation catheter. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  19. PDE Nozzle Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  20. Optimizing doped libraries by using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Tomandl, Dirk; Schober, Andreas; Schwienhorst, Andreas

    1997-01-01

    The insertion of random sequences into protein-encoding genes in combination with biologicalselection techniques has become a valuable tool in the design of molecules that have usefuland possibly novel properties. By employing highly effective screening protocols, a functionaland unique structure that had not been anticipated can be distinguished among a hugecollection of inactive molecules that together represent all possible amino acid combinations.This technique is severely limited by its restriction to a library of manageable size. Oneapproach for limiting the size of a mutant library relies on `doping schemes', where subsetsof amino acids are generated that reveal only certain combinations of amino acids in a proteinsequence. Three mononucleotide mixtures for each codon concerned must be designed, suchthat the resulting codons that are assembled during chemical gene synthesis represent thedesired amino acid mixture on the level of the translated protein. In this paper we present adoping algorithm that `reverse translates' a desired mixture of certain amino acids into threemixtures of mononucleotides. The algorithm is designed to optimally bias these mixturestowards the codons of choice. This approach combines a genetic algorithm with localoptimization strategies based on the downhill simplex method. Disparate relativerepresentations of all amino acids (and stop codons) within a target set can be generated.Optional weighing factors are employed to emphasize the frequencies of certain amino acidsand their codon usage, and to compensate for reaction rates of different mononucleotidebuilding blocks (synthons) during chemical DNA synthesis. The effect of statistical errors thataccompany an experimental realization of calculated nucleotide mixtures on the generatedmixtures of amino acids is simulated. These simulations show that the robustness of differentoptima with respect to small deviations from calculated values depends on their concomitantfitness. Furthermore

  1. Interior search algorithm (ISA): a novel approach for global optimization.

    PubMed

    Gandomi, Amir H

    2014-07-01

    This paper presents the interior search algorithm (ISA) as a novel method for solving optimization tasks. The proposed ISA is inspired by interior design and decoration. The algorithm is different from other metaheuristic algorithms and provides new insight for global optimization. The proposed method is verified using some benchmark mathematical and engineering problems commonly used in the area of optimization. ISA results are further compared with well-known optimization algorithms. The results show that the ISA is efficiently capable of solving optimization problems. The proposed algorithm can outperform the other well-known algorithms. Further, the proposed algorithm is very simple and it only has one parameter to tune. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Theory and Algorithms for Global/Local Design Optimization

    DTIC Science & Technology

    2005-09-29

    algorithm with memory for optimal design of laminated sandwich composite panels ", Composite Structures, 58 (2002) 513-520. V. B. Gantovnik, Z. Giirdal, L...34, AIAA J., 43 (2005) 1844-1849. D. B. Adams, L. T. Watson, and Z. Gilrdal, " Optimization and blending of composite laminates using genetic algorithms ...Anderson-Cook, " Genetic algorithm optimization and blending of composite laminates by locally

  3. Optimal Pid Controller Design Using Adaptive Vurpso Algorithm

    NASA Astrophysics Data System (ADS)

    Zirkohi, Majid Moradi

    2015-04-01

    The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.

  4. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  5. Clinical Outcomes of an Optimized Prolate Ablation Procedure for Correcting Residual Refractive Errors Following Laser Surgery.

    PubMed

    Chung, Byunghoon; Lee, Hun; Choi, Bong Joon; Seo, Kyung Ryul; Kim, Eung Kwon; Kim, Dae Yune; Kim, Tae-Im

    2017-02-01

    The purpose of this study was to investigate the clinical efficacy of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery. We analyzed 24 eyes of 15 patients who underwent an optimized prolate ablation procedure for the correction of residual refractive errors following laser in situ keratomileusis, laser-assisted subepithelial keratectomy, or photorefractive keratectomy surgeries. Preoperative ophthalmic examinations were performed, and uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction values (sphere, cylinder, and spherical equivalent), point spread function, modulation transfer function, corneal asphericity (Q value), ocular aberrations, and corneal haze measurements were obtained postoperatively at 1, 3, and 6 months. Uncorrected distance visual acuity improved and refractive errors decreased significantly at 1, 3, and 6 months postoperatively. Total coma aberration increased at 3 and 6 months postoperatively, while changes in all other aberrations were not statistically significant. Similarly, no significant changes in point spread function were detected, but modulation transfer function increased significantly at the postoperative time points measured. The optimized prolate ablation procedure was effective in terms of improving visual acuity and objective visual performance for the correction of persistent refractive errors following laser surgery.

  6. Clinical Outcomes of an Optimized Prolate Ablation Procedure for Correcting Residual Refractive Errors Following Laser Surgery

    PubMed Central

    Chung, Byunghoon; Lee, Hun; Choi, Bong Joon; Seo, Kyung Ryul; Kim, Eung Kwon; Kim, Dae Yune

    2017-01-01

    Purpose The purpose of this study was to investigate the clinical efficacy of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery. Methods We analyzed 24 eyes of 15 patients who underwent an optimized prolate ablation procedure for the correction of residual refractive errors following laser in situ keratomileusis, laser-assisted subepithelial keratectomy, or photorefractive keratectomy surgeries. Preoperative ophthalmic examinations were performed, and uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction values (sphere, cylinder, and spherical equivalent), point spread function, modulation transfer function, corneal asphericity (Q value), ocular aberrations, and corneal haze measurements were obtained postoperatively at 1, 3, and 6 months. Results Uncorrected distance visual acuity improved and refractive errors decreased significantly at 1, 3, and 6 months postoperatively. Total coma aberration increased at 3 and 6 months postoperatively, while changes in all other aberrations were not statistically significant. Similarly, no significant changes in point spread function were detected, but modulation transfer function increased significantly at the postoperative time points measured. Conclusions The optimized prolate ablation procedure was effective in terms of improving visual acuity and objective visual performance for the correction of persistent refractive errors following laser surgery. PMID:28243019

  7. Honey Bees Inspired Optimization Method: The Bees Algorithm

    PubMed Central

    Yuce, Baris; Packianather, Michael S.; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo

    2013-01-01

    Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem. PMID:26462528

  8. Algorithm for correcting optimization convergence errors in Eclipse.

    PubMed

    Zacarias, Albert S; Mills, Michael D

    2009-10-14

    IMRT plans generated in Eclipse use a fast algorithm to evaluate dose for optimization and a more accurate algorithm for a final dose calculation, the Analytical Anisotropic Algorithm. The use of a fast optimization algorithm introduces optimization convergence errors into an IMRT plan. Eclipse has a feature where optimization may be performed on top of an existing base plan. This feature allows for the possibility of arriving at a recursive solution to optimization that relies on the accuracy of the final dose calculation algorithm and not the optimizer algorithm. When an IMRT plan is used as a base plan for a second optimization, the second optimization can compensate for heterogeneity and modulator errors in the original base plan. Plans with the same field arrangement as the initial base plan may be added together by adding the initial plan optimal fluence to the dose correcting plan optimal fluence.A simple procedure to correct for optimization errors is presented that may be implemented in the Eclipse treatment planning system, along with an Excel spreadsheet to add optimized fluence maps together.

  9. Linear antenna array optimization using flower pollination algorithm.

    PubMed

    Saxena, Prerna; Kothari, Ashwin

    2016-01-01

    Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance.

  10. Specific optimization of genetic algorithm on special algebras

    NASA Astrophysics Data System (ADS)

    Habiballa, Hashim; Novak, Vilem; Dyba, Martin; Schenk, Jiri

    2016-06-01

    Searching for complex finite algebras can be succesfully done by the means of genetic algorithm as we showed in former works. This genetic algorithm needs specific optimization of crossover and mutation. We present details about these optimizations which are already implemented in software application for this task - EQCreator.

  11. HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN

    EPA Science Inventory

    While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...

  12. HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN

    EPA Science Inventory

    While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...

  13. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    NASA Astrophysics Data System (ADS)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  14. Applying fuzzy clustering optimization algorithm to extracting traffic spatial pattern

    NASA Astrophysics Data System (ADS)

    Hu, Chunchun; Shi, Wenzhong; Meng, Lingkui; Liu, Min

    2009-10-01

    Traditional analytical methods for traffic information can't meet to need of intelligent traffic system. Mining value-add information can deal with more traffic problems. The paper exploits a new clustering optimization algorithm to extract useful spatial clustered pattern for predicting long-term traffic flow from macroscopic view. Considering the sensitivity of initial parameters and easy falling into local extreme in FCM algorithm, the new algorithm applies Particle Swarm Optimization method, which can discovery the globe optimal result, to the FCM algorithm. And the algorithm exploits the union of the clustering validity index and objective function of the FCM algorithm as the fitness function of the PSO algorithm. The experimental result indicates that it is effective and efficient. For fuzzy clustering of road traffic data, it can produce useful spatial clustered pattern. And the clustered centers represent the locations which have heavy traffic flow. Moreover, the parameters of the patterns can provide intelligent traffic system with assistant decision support.

  15. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2004-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  16. Transonic Wing Shape Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  17. Abstract models for the synthesis of optimization algorithms.

    NASA Technical Reports Server (NTRS)

    Meyer, G. G. L.; Polak, E.

    1971-01-01

    Systematic approach to the problem of synthesis of optimization algorithms. Abstract models for algorithms are developed which guide the inventive process toward ?conceptual' algorithms which may consist of operations that are inadmissible in a practical method. Once the abstract models are established a set of methods for converting ?conceptual' algorithms falling into the class defined by the abstract models into ?implementable' iterative procedures is presented.

  18. Genetic-Algorithm Tool For Search And Optimization

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven

    1995-01-01

    SPLICER computer program used to solve search and optimization problems. Genetic algorithms adaptive search procedures (i.e., problem-solving methods) based loosely on processes of natural selection and Darwinian "survival of fittest." Algorithms apply genetically inspired operators to populations of potential solutions in iterative fashion, creating new populations while searching for optimal or nearly optimal solution to problem at hand. Written in Think C.

  19. An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimization

    PubMed Central

    Celik, Yuksel; Ulker, Erkan

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416

  20. An optimized approach for right atrial flutter ablation: a post hoc analysis of the AURUM 8 study.

    PubMed

    Lewalter, Thorsten; Weiss, Christian; Mewis, Christian; Jung, Werner; Haverkamp, Wilhelm; Proff, Jochen; Bauer, Wolfgang

    2017-03-01

    Radiofrequency catheter ablation of typical atrial flutter can vary largely in duration from patient to patient. The purpose of this work was to determine optimal combination of ablation settings leading to the highest procedural efficacy. Our retrospective multivariate analysis comprised 448 patients undergoing atrial flutter ablation with nonirrigated 8-mm catheters at 19 clinical centers. Four procedural variables were included in the prognostic model: preset maximum temperature, preset maximum power, catheter-tip material (gold vs. platinum-iridium), and ablation technique (maximum voltage-guided vs. conventional anatomical approach). Univariate and multivariate analyses were performed using the logistic regression (for acute ablation success) and Cox constant proportional hazard models (for cumulative ablation time). Significant multivariate predictors of acute ablation success were a higher preset maximum temperature (odds 1.083 per 1 °C, P < 0.05) and gold-tip catheter (odds 2.096, P < 0.05). Predictors of cumulative ablation time were the maximum voltage-guided ablation technique (hazard ratio 1.856, P < 0.001), higher preset maximum temperature (hazard ratio 1.039 per 1 °C, P < 0.001), and gold-tip catheter (hazard ratio 1.225, P < 0.05). The combination of optimal settings (70 °C, 70 W, gold-tip catheter, maximum voltage-guided technique) increased the acute success rate from 91.7 % (for the entire study cohort) to 100 %, and reduced median cumulative ablation time from 8.3 to 4.3 min, median total procedure duration from 76 to 55 min, and median fluoroscopy time from 14 to 7 min. The combination of maximum voltage-guided gold-tip ablation at 70 °C and 70 W was associated with 100 % ablation success and minimal ablation times for nonirrigated ablation of atrial flutter.

  1. Iterative phase retrieval algorithms. I: optimization.

    PubMed

    Guo, Changliang; Liu, Shi; Sheridan, John T

    2015-05-20

    Two modified Gerchberg-Saxton (GS) iterative phase retrieval algorithms are proposed. The first we refer to as the spatial phase perturbation GS algorithm (SPP GSA). The second is a combined GS hybrid input-output algorithm (GS/HIOA). In this paper (Part I), it is demonstrated that the SPP GS and GS/HIO algorithms are both much better at avoiding stagnation during phase retrieval, allowing them to successfully locate superior solutions compared with either the GS or the HIO algorithms. The performances of the SPP GS and GS/HIO algorithms are also compared. Then, the error reduction (ER) algorithm is combined with the HIO algorithm (ER/HIOA) to retrieve the input object image and the phase, given only some knowledge of its extent and the amplitude in the Fourier domain. In Part II, the algorithms developed here are applied to carry out known plaintext and ciphertext attacks on amplitude encoding and phase encoding double random phase encryption systems. Significantly, ER/HIOA is then used to carry out a ciphertext-only attack on AE DRPE systems.

  2. A Danger-Theory-Based Immune Network Optimization Algorithm

    PubMed Central

    Li, Tao; Xiao, Xin; Shi, Yuanquan

    2013-01-01

    Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853

  3. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  4. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models

    PubMed Central

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409

  5. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    PubMed

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  6. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    SciTech Connect

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  7. Evaluation of a particle swarm algorithm for biomechanical optimization.

    PubMed

    Schutte, Jaco F; Koh, Byung-Il; Reinbolt, Jeffrey A; Haftka, Raphael T; George, Alan D; Fregly, Benjamin J

    2005-06-01

    Optimization is frequently employed in biomechanics research to solve system identification problems, predict human movement, or estimate muscle or other internal forces that cannot be measured directly. Unfortunately, biomechanical optimization problems often possess multiple local minima, making it difficult to find the best solution. Furthermore, convergence in gradient-based algorithms can be affected by scaling to account for design variables with different length scales or units. In this study we evaluate a recently-developed version of the particle swarm optimization (PSO) algorithm to address these problems. The algorithm's global search capabilities were investigated using a suite of difficult analytical test problems, while its scale-independent nature was proven mathematically and verified using a biomechanical test problem. For comparison, all test problems were also solved with three off-the-shelf optimization algorithms--a global genetic algorithm (GA) and multistart gradient-based sequential quadratic programming (SQP) and quasi-Newton (BFGS) algorithms. For the analytical test problems, only the PSO algorithm was successful on the majority of the problems. When compared to previously published results for the same problems, PSO was more robust than a global simulated annealing algorithm but less robust than a different, more complex genetic algorithm. For the biomechanical test problem, only the PSO algorithm was insensitive to design variable scaling, with the GA algorithm being mildly sensitive and the SQP and BFGS algorithms being highly sensitive. The proposed PSO algorithm provides a new off-the-shelf global optimization option for difficult biomechanical problems, especially those utilizing design variables with different length scales or units.

  8. Numerical study and optimization of interstitial antennas for microwave ablation therapy

    NASA Astrophysics Data System (ADS)

    Komarov, Vyacheslav V.

    2014-10-01

    Electromagnetic and thermal characteristics of coaxial monopole antennas of 2.45 GHz and 24.125 GHz for microwave ablation of malignant tumors are investigated. Microwave heating processes in an interaction domain (biological tissue) are described by the coupled electromagnetic and heat transfer problem, which was solved numerically in the present study. Proposed applicators provide reducing of reflected power and localized distribution of temperature in the near-field zone. Different mathematical models are used to optimize the antennas sizes and simulate heating patterns.

  9. A hybrid artificial bee colony algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  10. Genetic algorithms - What fitness scaling is optimal?

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik; Quintana, Chris; Fuentes, Olac

    1993-01-01

    A problem of choosing the best scaling function as a mathematical optimization problem is formulated and solved under different optimality criteria. A list of functions which are optimal under different criteria is presented which includes both the best functions empirically proved and new functions that may be worth trying.

  11. A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.; Markos, A. T.

    1975-01-01

    A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.

  12. Flower pollination algorithm: A novel approach for multiobjective optimization

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She; Karamanoglu, Mehmet; He, Xingshi

    2014-09-01

    Multiobjective design optimization problems require multiobjective optimization techniques to solve, and it is often very challenging to obtain high-quality Pareto fronts accurately. In this article, the recently developed flower pollination algorithm (FPA) is extended to solve multiobjective optimization problems. The proposed method is used to solve a set of multiobjective test functions and two bi-objective design benchmarks, and a comparison of the proposed algorithm with other algorithms has been made, which shows that the FPA is efficient with a good convergence rate. Finally, the importance for further parametric studies and theoretical analysis is highlighted and discussed.

  13. A Comparative Study of Optimization Algorithms for Engineering Synthesis.

    DTIC Science & Technology

    1983-03-01

    7AD-R128 689 A COMPARTIVE STUDY OF OPTIMIZATION ALGORITHMS FOR 1/2 ENGINEERING SYNTHESIS(U) NAVAL POSTGRADUATE SCHOOL I MONTEREY CA C M SPRAGUE...STUDY OF OPTIMIZATION ALGORITHMS FOR ENGINEERING SYNTHESIS by Chester Michael Sprague March 1983 IThesis Advisor: G. Vanderplaats Approved for public... Optimization Master’s Thesis; Algorithms for Engineering Synthesis March 1983 6. PwOmORWjNG ORG. REPONT %UNSER 7. AuTNOto) S. CONTRACT OR GRANT st,7m6CiE(o

  14. Genetic algorithms for multicriteria shape optimization of induction furnace

    NASA Astrophysics Data System (ADS)

    Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo

    2012-09-01

    In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.

  15. Machining Parameters Optimization using Hybrid Firefly Algorithm and Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Farahlina Johari, Nur; Zain, Azlan Mohd; Haszlinna Mustaffa, Noorfa; Udin, Amirmudin

    2017-09-01

    Firefly Algorithm (FA) is a metaheuristic algorithm that is inspired by the flashing behavior of fireflies and the phenomenon of bioluminescent communication and the algorithm is used to optimize the machining parameters (feed rate, depth of cut, and spindle speed) in this research. The algorithm is hybridized with Particle Swarm Optimization (PSO) to discover better solution in exploring the search space. Objective function of previous research is used to optimize the machining parameters in turning operation. The optimal machining cutting parameters estimated by FA that lead to a minimum surface roughness are validated using ANOVA test.

  16. A parallel variable metric optimization algorithm

    NASA Technical Reports Server (NTRS)

    Straeter, T. A.

    1973-01-01

    An algorithm, designed to exploit the parallel computing or vector streaming (pipeline) capabilities of computers is presented. When p is the degree of parallelism, then one cycle of the parallel variable metric algorithm is defined as follows: first, the function and its gradient are computed in parallel at p different values of the independent variable; then the metric is modified by p rank-one corrections; and finally, a single univariant minimization is carried out in the Newton-like direction. Several properties of this algorithm are established. The convergence of the iterates to the solution is proved for a quadratic functional on a real separable Hilbert space. For a finite-dimensional space the convergence is in one cycle when p equals the dimension of the space. Results of numerical experiments indicate that the new algorithm will exploit parallel or pipeline computing capabilities to effect faster convergence than serial techniques.

  17. Kidney-inspired algorithm for optimization problems

    NASA Astrophysics Data System (ADS)

    Jaddi, Najmeh Sadat; Alvankarian, Jafar; Abdullah, Salwani

    2017-01-01

    In this paper, a population-based algorithm inspired by the kidney process in the human body is proposed. In this algorithm the solutions are filtered in a rate that is calculated based on the mean of objective functions of all solutions in the current population of each iteration. The filtered solutions as the better solutions are moved to filtered blood and the rest are transferred to waste representing the worse solutions. This is a simulation of the glomerular filtration process in the kidney. The waste solutions are reconsidered in the iterations if after applying a defined movement operator they satisfy the filtration rate, otherwise it is expelled from the waste solutions, simulating the reabsorption and excretion functions of the kidney. In addition, a solution assigned as better solution is secreted if it is not better than the worst solutions simulating the secreting process of blood in the kidney. After placement of all the solutions in the population, the best of them is ranked, the waste and filtered blood are merged to become a new population and the filtration rate is updated. Filtration provides the required exploitation while generating a new solution and reabsorption gives the necessary exploration for the algorithm. The algorithm is assessed by applying it on eight well-known benchmark test functions and compares the results with other algorithms in the literature. The performance of the proposed algorithm is better on seven out of eight test functions when it is compared with the most recent researches in literature. The proposed kidney-inspired algorithm is able to find the global optimum with less function evaluations on six out of eight test functions. A statistical analysis further confirms the ability of this algorithm to produce good-quality results.

  18. A Unified Differential Evolution Algorithm for Global Optimization

    SciTech Connect

    Qiang, Ji; Mitchell, Chad

    2014-06-24

    Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.

  19. Fast-convergence superpixel algorithm via an approximate optimization

    NASA Astrophysics Data System (ADS)

    Nakamura, Kensuke; Hong, Byung-Woo

    2016-09-01

    We propose an optimization scheme that achieves fast yet accurate computation of superpixels from an image. Our optimization is designed to improve the efficiency and robustness for the minimization of a composite energy functional in the expectation-minimization (EM) framework where we restrict the update of an estimate to avoid redundant computations. We consider a superpixel energy formulation that consists of L2-norm for the spatial regularity and L1-norm for the data fidelity in the demonstration of the robustness of the proposed algorithm. The quantitative and qualitative evaluations indicate that our superpixel algorithm outperforms SLIC and SEEDS algorithms. It is also demonstrated that our algorithm guarantees the convergence with less computational cost by up to 89% on average compared to the SLIC algorithm while preserving the accuracy. Our optimization scheme can be easily extended to other applications in which the alternating minimization is applicable in the EM framework.

  20. Path Optimization for Single and Multiple Searchers: Models and Algorithms

    DTIC Science & Technology

    2008-09-01

    the k-th it- eration of Algorithm 11, the master problem MP4 (k) defined below is solved. The optimal value and optimal solution of MP4 (k) are denoted z...k) and y(k), respectively. In each iteration of Algorithm 11, U cuts are generated at once. Formulation of Master problem : MP4 (k) min z = ∑U u=1...master problem MP4 (k), and obtain its optimal value z(k) and optimal solution y(k). If z(k) > q, then q = z(k). Step 3. Calculate fu(y (k)) and fu(y (k

  1. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  2. An algorithm for the systematic disturbance of optimal rotational solutions

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Kaiser, Mary K.

    1989-01-01

    An algorithm for introducing a systematic rotational disturbance into an optimal (i.e., single axis) rotational trajectory is described. This disturbance introduces a motion vector orthogonal to the quaternion-defined optimal rotation axis. By altering the magnitude of this vector, the degree of non-optimality can be controlled. The metric properties of the distortion parameter are described, with analogies to two-dimensional translational motion. This algorithm was implemented in a motion-control program on a three-dimensional graphic workstation. It supports a series of human performance studies on the detectability of rotational trajectory optimality by naive observers.

  3. The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems.

    PubMed

    Salcedo-Sanz, S; Del Ser, J; Landa-Torres, I; Gil-López, S; Portilla-Figueras, J A

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems.

  4. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems

    PubMed Central

    Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860

  5. PCB drill path optimization by combinatorial cuckoo search algorithm.

    PubMed

    Lim, Wei Chen Esmonde; Kanagaraj, G; Ponnambalam, S G

    2014-01-01

    Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process.

  6. PCB Drill Path Optimization by Combinatorial Cuckoo Search Algorithm

    PubMed Central

    Lim, Wei Chen Esmonde; Kanagaraj, G.; Ponnambalam, S. G.

    2014-01-01

    Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198

  7. Research on particle swarm optimization algorithm based on optimal movement probability

    NASA Astrophysics Data System (ADS)

    Ma, Jianhong; Zhang, Han; He, Baofeng

    2017-01-01

    The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.

  8. Superscattering of light optimized by a genetic algorithm

    SciTech Connect

    Mirzaei, Ali Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2014-07-07

    We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.

  9. Shape Optimization of Cochlear Implant Electrode Array Using Genetic Algorithms

    DTIC Science & Technology

    2007-11-02

    Shape Optimization of Cochlear Implant Electrode Array using Genetic Algorithms Charles T.M. Choi, Ph.D., senior member, IEEE Department of...c.t.choi@ieee.org Abstract−Finite element analysis is used to compute the current distribution of the human cochlea during cochlear implant electrical...stimulation. Genetic algorithms are then applied in conjunction with the finite element analysis to optimize the shape of cochlear implant electrode array

  10. PALS — The optimal laser for determining optimal ablative laser propulsion parameters?

    NASA Astrophysics Data System (ADS)

    Boody, Frederick P.

    2005-04-01

    Ablative laser propulsion (ALP) could revolutionize space travel by reducing the 30:1 propellant/payload ratio needed for near-earth orbit 50-fold. To date, experiments have demonstrated the necessary efficiency, coupling coefficient, and specific impulse for application, but were performed at pulse energies and spot sizes much smaller than required and at wavelengths not usable in the atmosphere. Also, most experiments have not simultaneously measured the properties of the ions produced or of the ablated surface, properties that would allow full understanding of the propulsion properties in terms of ion characteristics. Realistic measurement of laser propulsion parameters is proposed using PALS (Prague Asterix Laser System), whose parameters, except for pulse rate and wavelength — pulse energy (˜1kJ), pulse length (400ps), beam diameter (˜29cm), and flat beam profile — equal those required for application. PALS wavelength is a little short (1.3μm vs. >1.5μm) but is closer than any other laser available and, due to PALS 2ω / 3ω capability, wavelength dependence can be studied and results extrapolated to application values. PALS' proven infrastructure for measuring laser-driven ion properties means that only an instrument for measuring momentum transfer, such as a ballistic pendulum, will have to be added.

  11. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    SciTech Connect

    Hajima, Ryoichi

    1995-12-31

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.

  12. Differential evolution algorithm for global optimizations in nuclear physics

    NASA Astrophysics Data System (ADS)

    Qi, Chong

    2017-04-01

    We explore the applicability of the differential evolution algorithm in finding the global minima of three typical nuclear structure physics problems: the global deformation minimum in the nuclear potential energy surface, the optimization of mass model parameters and the lowest eigenvalue of a nuclear Hamiltonian. The algorithm works very effectively and efficiently in identifying the minima in all problems we have tested. We also show that the algorithm can be parallelized in a straightforward way.

  13. Parallel optimization algorithms and their implementation in VLSI design

    NASA Technical Reports Server (NTRS)

    Lee, G.; Feeley, J. J.

    1991-01-01

    Two new parallel optimization algorithms based on the simplex method are described. They may be executed by a SIMD parallel processor architecture and be implemented in VLSI design. Several VLSI design implementations are introduced. An application example is reported to demonstrate that the algorithms are effective.

  14. Relaxed controls and the convergence of optimal control algorithms

    NASA Technical Reports Server (NTRS)

    Williamson, L. J.; Polak, E.

    1976-01-01

    This paper presents a framework for the study of the convergence properties of optimal control algorithms and illustrates its use by means of two examples. The framework consists of an algorithm prototype with a convergence theorem, together with some results in relaxed controls theory.

  15. Can We Optimize Arc Discharge and Laser Ablation for Well-Controlled Carbon Nanotube Synthesis?

    NASA Astrophysics Data System (ADS)

    Das, Rasel; Shahnavaz, Zohreh; Ali, Md. Eaqub; Islam, Mohammed Moinul; Abd Hamid, Sharifah Bee

    2016-11-01

    Although many methods have been documented for carbon nanotube (CNT) synthesis, still, we notice many arguments, criticisms, and appeals for its optimization and process control. Industrial grade CNT production is urgent such that invention of novel methods and engineering principles for large-scale synthesis are needed. Here, we comprehensively review arc discharge (AD) and laser ablation (LA) methods with highlighted features for CNT production. We also display the growth mechanisms of CNT with reasonable grassroots knowledge to make the synthesis more efficient. We postulate the latest developments in engineering carbon feedstock, catalysts, and temperature cum other minor reaction parameters to optimize the CNT yield with desired diameter and chirality. The rate limiting steps of AD and LA are highlighted because of their direct role in tuning the growth process. Future roadmap towards the exploration of CNT synthesis methods is also outlined.

  16. Applying new optimization algorithms to more predictive control

    SciTech Connect

    Wright, S.J.

    1996-03-01

    The connections between optimization and control theory have been explored by many researchers and optimization algorithms have been applied with success to optimal control. The rapid pace of developments in model predictive control has given rise to a host of new problems to which optimization has yet to be applied. Concurrently, developments in optimization, and especially in interior-point methods, have produced a new set of algorithms that may be especially helpful in this context. In this paper, we reexamine the relatively simple problem of control of linear processes subject to quadratic objectives and general linear constraints. We show how new algorithms for quadratic programming can be applied efficiently to this problem. The approach extends to several more general problems in straightforward ways.

  17. Genetic algorithm for neural networks optimization

    NASA Astrophysics Data System (ADS)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  18. Optimization of composite structures by estimation of distribution algorithms

    NASA Astrophysics Data System (ADS)

    Grosset, Laurent

    The design of high performance composite laminates, such as those used in aerospace structures, leads to complex combinatorial optimization problems that cannot be addressed by conventional methods. These problems are typically solved by stochastic algorithms, such as evolutionary algorithms. This dissertation proposes a new evolutionary algorithm for composite laminate optimization, named Double-Distribution Optimization Algorithm (DDOA). DDOA belongs to the family of estimation of distributions algorithms (EDA) that build a statistical model of promising regions of the design space based on sets of good points, and use it to guide the search. A generic framework for introducing statistical variable dependencies by making use of the physics of the problem is proposed. The algorithm uses two distributions simultaneously: the marginal distributions of the design variables, complemented by the distribution of auxiliary variables. The combination of the two generates complex distributions at a low computational cost. The dissertation demonstrates the efficiency of DDOA for several laminate optimization problems where the design variables are the fiber angles and the auxiliary variables are the lamination parameters. The results show that its reliability in finding the optima is greater than that of a simple EDA and of a standard genetic algorithm, and that its advantage increases with the problem dimension. A continuous version of the algorithm is presented and applied to a constrained quadratic problem. Finally, a modification of the algorithm incorporating probabilistic and directional search mechanisms is proposed. The algorithm exhibits a faster convergence to the optimum and opens the way for a unified framework for stochastic and directional optimization.

  19. Global search algorithm for optimal control

    NASA Technical Reports Server (NTRS)

    Brocker, D. H.; Kavanaugh, W. P.; Stewart, E. C.

    1970-01-01

    Random-search algorithm employs local and global properties to solve two-point boundary value problem in Pontryagin maximum principle for either fixed or variable end-time problems. Mixed boundary value problem is transformed to an initial value problem. Mapping between initial and terminal values utilizes hybrid computer.

  20. Speech Algorithm Optimization at 16 KBPS.

    DTIC Science & Technology

    1980-09-30

    spectrum. However, this original ATC algorithm, as proposed by Zelinski and Noll, suffers from a " burbling " characteristic at lower data rates. To...transmission of the LPC and pitch parameters does in fact remove the " burbling " sound and improve the ]overall signal-to-noise ratio. Figure F-2

  1. Optimization of deep learning algorithms for object classification

    NASA Astrophysics Data System (ADS)

    Horváth, András.

    2017-02-01

    Deep learning is currently the state of the art algorithm for image classification. The complexity of these feedforward neural networks have overcome a critical point, resulting algorithmic breakthroughs in various fields. On the other hand their complexity makes them executable in tasks, where High-throughput computing powers are available. The optimization of these networks -considering computational complexity and applicability on embedded systems- has not yet been studied and investigated in details. In this paper I show some examples how this algorithms can be optimized and accelerated on embedded systems.

  2. Evolutionary algorithms for multiobjective and multimodal optimization of diagnostic schemes.

    PubMed

    de Toro, Francisco; Ros, Eduardo; Mota, Sonia; Ortega, Julio

    2006-02-01

    This paper addresses the optimization of noninvasive diagnostic schemes using evolutionary algorithms in medical applications based on the interpretation of biosignals. A general diagnostic methodology using a set of definable characteristics extracted from the biosignal source followed by the specific diagnostic scheme is presented. In this framework, multiobjective evolutionary algorithms are used to meet not only classification accuracy but also other objectives of medical interest, which can be conflicting. Furthermore, the use of both multimodal and multiobjective evolutionary optimization algorithms provides the medical specialist with different alternatives for configuring the diagnostic scheme. Some application examples of this methodology are described in the diagnosis of a specific cardiac disorder-paroxysmal atrial fibrillation.

  3. Automated discrete element method calibration using genetic and optimization algorithms

    NASA Astrophysics Data System (ADS)

    Do, Huy Q.; Aragón, Alejandro M.; Schott, Dingena L.

    2017-06-01

    This research aims at developing a universal methodology for automated calibration of microscopic properties of modelled granular materials. The proposed calibrator can be applied for different experimental set-ups. Two optimization approaches: (1) a genetic algorithm and (2) DIRECT optimization, are used to identify discrete element method input model parameters, e.g., coefficients of sliding and rolling friction. The algorithms are used to minimize the objective function characterized by the discrepancy between the experimental macroscopic properties and the associated numerical results. Two test cases highlight the robustness, stability, and reliability of the two algorithms used for automated discrete element method calibration with different set-ups.

  4. Imperialist competitive algorithm combined with chaos for global optimization

    NASA Astrophysics Data System (ADS)

    Talatahari, S.; Farahmand Azar, B.; Sheikholeslami, R.; Gandomi, A. H.

    2012-03-01

    A novel chaotic improved imperialist competitive algorithm (CICA) is presented for global optimization. The ICA is a new meta-heuristic optimization developed based on a socio-politically motivated strategy and contains two main steps: the movement of the colonies and the imperialistic competition. Here different chaotic maps are utilized to improve the movement step of the algorithm. Seven different chaotic maps are investigated and the Logistic and Sinusoidal maps are found as the best choices. Comparing the new algorithm with the other ICA-based methods demonstrates the superiority of the CICA for the benchmark functions.

  5. Model Specification Searches Using Ant Colony Optimization Algorithms

    ERIC Educational Resources Information Center

    Marcoulides, George A.; Drezner, Zvi

    2003-01-01

    Ant colony optimization is a recently proposed heuristic procedure inspired by the behavior of real ants. This article applies the procedure to model specification searches in structural equation modeling and reports the results. The results demonstrate the capabilities of ant colony optimization algorithms for conducting automated searches.

  6. Optimal fractional order PID design via Tabu Search based algorithm.

    PubMed

    Ateş, Abdullah; Yeroglu, Celaleddin

    2016-01-01

    This paper presents an optimization method based on the Tabu Search Algorithm (TSA) to design a Fractional-Order Proportional-Integral-Derivative (FOPID) controller. All parameter computations of the FOPID employ random initial conditions, using the proposed optimization method. Illustrative examples demonstrate the performance of the proposed FOPID controller design method.

  7. Model Specification Searches Using Ant Colony Optimization Algorithms

    ERIC Educational Resources Information Center

    Marcoulides, George A.; Drezner, Zvi

    2003-01-01

    Ant colony optimization is a recently proposed heuristic procedure inspired by the behavior of real ants. This article applies the procedure to model specification searches in structural equation modeling and reports the results. The results demonstrate the capabilities of ant colony optimization algorithms for conducting automated searches.

  8. Theoretical modeling and optimization of ablation-fed pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Mikellides, Yiangos George

    Theoretical modeling of ablation-fed, pulsed plasma thrusters (PPTs) with the MACH2 code has shown that after repeated pulsed operation, the total expelled mass is due to ablation during the discharge and solid decomposition that persists long after the pulse. The latter mass does not considerably contribute to the impulse-bit thus degrading thruster performance. For the rectangular PPT geometry, optimizing current waveforms in combination with channel widths are presented, that utilize all decomposed mass, electromagnetically. These waveforms are characterized by short rise times (<1 musec) and prolonged decays (>25 musec). Simplified modeling based on steady-state, one-dimensional flow reveals that the mass flow rate vanes linearly with the square of the magnetic field and that the downstream flow speed is driven towards the Alfven wave speed when the magnetic pressure is much greater than the gasdynamic pressure. The model has been confirmed by MACH2. The mass flow requirement for such magnetosonic flow in turn, determines the surface temperature of the solid. Numerical simulations of coaxial geometries show that, compared with the rectangular, annular and linear pinch configurations, only an arrangement which operates an inverse-pinch discharge offers the convenience of axisymmetry for better correlation between theory and experiment, and operation at relatively high magnetic fields with propellant temperatures below the decomposition limit. Design guidelines for an inverse pinch thruster are provided. The inverse-pinch discharge produced by a non-reversing, waveform that rises to 18 kAmps; in 0.625 musec and decays in 6 musec, in a 1cm-(propellant) radius thruster, is found to prevent solid decomposition while still providing ablated mass for acceleration. At these lower magnetic field levels ( ˜ 0.4 T, maximum) it is found that thermal effects are driving the surface temperature of the solid, during the latter times of current decay.

  9. PCNN document segmentation method based on bacterial foraging optimization algorithm

    NASA Astrophysics Data System (ADS)

    Liao, Yanping; Zhang, Peng; Guo, Qiang; Wan, Jian

    2014-04-01

    Pulse Coupled Neural Network(PCNN) is widely used in the field of image processing, but it is a difficult task to define the relative parameters properly in the research of the applications of PCNN. So far the determination of parameters of its model needs a lot of experiments. To deal with the above problem, a document segmentation based on the improved PCNN is proposed. It uses the maximum entropy function as the fitness function of bacterial foraging optimization algorithm, adopts bacterial foraging optimization algorithm to search the optimal parameters, and eliminates the trouble of manually set the experiment parameters. Experimental results show that the proposed algorithm can effectively complete document segmentation. And result of the segmentation is better than the contrast algorithms.

  10. A Novel Hybrid Firefly Algorithm for Global Optimization

    PubMed Central

    Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao

    2016-01-01

    Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate. PMID:27685869

  11. Artificial bee colony algorithm for solving optimal power flow problem.

    PubMed

    Le Dinh, Luong; Vo Ngoc, Dieu; Vasant, Pandian

    2013-01-01

    This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem.

  12. Optimizing Variational Quantum Algorithms Using Pontryagin's Minimum Principle

    NASA Astrophysics Data System (ADS)

    Yang, Zhi-Cheng; Rahmani, Armin; Shabani, Alireza; Neven, Hartmut; Chamon, Claudio

    2017-04-01

    We use Pontryagin's minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale of the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Furthermore, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.

  13. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  14. A Discrete Lagrangian Algorithm for Optimal Routing Problems

    SciTech Connect

    Kosmas, O. T.; Vlachos, D. S.; Simos, T. E.

    2008-11-06

    The ideas of discrete Lagrangian methods for conservative systems are exploited for the construction of algorithms applicable in optimal ship routing problems. The algorithm presented here is based on the discretisation of Hamilton's principle of stationary action Lagrangian and specifically on the direct discretization of the Lagrange-Hamilton principle for a conservative system. Since, in contrast to the differential equations, the discrete Euler-Lagrange equations serve as constrains for the optimization of a given cost functional, in the present work we utilize this feature in order to minimize the cost function for optimal ship routing.

  15. Optimal Configuration of a Square Array Group Testing Algorithm

    PubMed Central

    Hudgens, Michael G.; Kim, Hae-Young

    2009-01-01

    We consider the optimal configuration of a square array group testing algorithm (denoted A2) to minimize the expected number of tests per specimen. For prevalence greater than 0.2498, individual testing is shown to be more efficient than A2. For prevalence less than 0.2498, closed form lower and upper bounds on the optimal group sizes for A2 are given. Arrays of dimension 2 × 2, 3 × 3, and 4 × 4 are shown to never be optimal. The results are illustrated by considering the design of a specimen pooling algorithm for detection of recent HIV infections in Malawi. PMID:21218195

  16. In vitro parameter optimization for spatial control of focused ultrasound ablation when using low boiling point phase-change nanoemulsions.

    PubMed

    Puett, Connor; Phillips, Linsey C; Sheeran, Paul S; Dayton, Paul A

    2013-01-01

    Phase-shift nanoemulsions (PSNEs) provide cavitation sites when the perfluorocarbon (PFC) nanodroplets (ND) are vaporized to microbubbles by acoustic energy. Their presence lowers the power required to ablate tissue by high-intensity focused ultrasound (HIFU), potentially making it a safer option for a broader range of treatment sites. However, spatial control over the ablation region can be problematic when cavitation is used to enhance heating. This study explored relationships between vaporization, ablation, and the PSNE concentration in vitro to optimize the acoustic intensity and insonation time required for spatially controlled ablation enhancement using a PSNE that included a volatile PFC component. HIFU (continuous wave at 1 MHz; insonation times of 5, 10, 15, and 20 s; cool-down times of 2, 4, and 6 s; peak negative pressures of 2, 3, and 4 MPa) was applied to albumin-acrylamide gels containing PFC agents (1:1 mix of volatile decafluorobutane and more stable dodecafluoropentane at 10(5) to 10(8) PFC ND per milliliter) or agent-free controls. Vaporization fields (microbubble clouds) were imaged by conventional ultrasound, and ablation lesions were measured directly by calipers. Controlled ablation was defined as the production of 'cigar'-shaped lesions corresponding with the acoustic focal zone. This control was considered to be lost when ablation occurred in prefocal vaporization fields having a predominantly 'tadpole' or oblong shape. Changes in the vaporization field shape and location occurred on a continuum with increasing PSNE concentration and acoustic intensity. Working with the maximum concentration-intensity combinations resulting in controlled ablation demonstrated a dose-responsive relationship between insonation time and volumes of both the vaporization fields (approximately 20 to 240 mm(3)) and the ablation lesions (1 to 135 mm(3)) within them. HIFU ablation was enhanced by this PSNE and could be achieved using intensities ≤650 W/cm(2

  17. Multidisciplinary Optimization of Airborne Radome Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Tang, Xinggang; Zhang, Weihong; Zhu, Jihong

    A multidisciplinary optimization scheme of airborne radome is proposed. The optimization procedure takes into account the structural and the electromagnetic responses simultaneously. The structural analysis is performed with the finite element method using Patran/Nastran, while the electromagnetic analysis is carried out using the Plane Wave Spectrum and Surface Integration technique. The genetic algorithm is employed for the multidisciplinary optimization process. The thicknesses of multilayer radome wall are optimized to maximize the overall transmission coefficient of the antenna-radome system under the constraint of the structural failure criteria. The proposed scheme and the optimization approach are successfully assessed with an illustrative numerical example.

  18. OPTIMIZATION OF LONG RURAL FEEDERS USING A GENETIC ALGORITHM

    SciTech Connect

    Wishart, Michael; Ledwich, Gerard; Ghosh, Arindam; Ivanovich, Grujica

    2010-06-15

    This paper describes the optimization of conductor size and the voltage regulator location and magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.

  19. A superlinear interior points algorithm for engineering design optimization

    NASA Technical Reports Server (NTRS)

    Herskovits, J.; Asquier, J.

    1990-01-01

    We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.

  20. Comparison of evolutionary algorithms for LPDA antenna optimization

    NASA Astrophysics Data System (ADS)

    Lazaridis, Pavlos I.; Tziris, Emmanouil N.; Zaharis, Zaharias D.; Xenos, Thomas D.; Cosmas, John P.; Gallion, Philippe B.; Holmes, Violeta; Glover, Ian A.

    2016-08-01

    A novel approach to broadband log-periodic antenna design is presented, where some of the most powerful evolutionary algorithms are applied and compared for the optimal design of wire log-periodic dipole arrays (LPDA) using Numerical Electromagnetics Code. The target is to achieve an optimal antenna design with respect to maximum gain, gain flatness, front-to-rear ratio (F/R) and standing wave ratio. The parameters of the LPDA optimized are the dipole lengths, the spacing between the dipoles, and the dipole wire diameters. The evolutionary algorithms compared are the Differential Evolution (DE), Particle Swarm (PSO), Taguchi, Invasive Weed (IWO), and Adaptive Invasive Weed Optimization (ADIWO). Superior performance is achieved by the IWO (best results) and PSO (fast convergence) algorithms.

  1. Optimal recombination in genetic algorithms for flowshop scheduling problems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  2. A Hybrid Ant Colony Algorithm for Loading Pattern Optimization

    NASA Astrophysics Data System (ADS)

    Hoareau, F.

    2014-06-01

    Electricité de France (EDF) operates 58 nuclear power plant (NPP), of the Pressurized Water Reactor (PWR) type. The loading pattern (LP) optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R&D has developed automatic optimization tools that assist the experts. The latter can resort, for instance, to a loading pattern optimization software based on ant colony algorithm. This paper presents an analysis of the search space of a few realistic loading pattern optimization problems. This analysis leads us to introduce a hybrid algorithm based on ant colony and a local search method. We then show that this new algorithm is able to generate loading patterns of good quality.

  3. Compressive Sensing Image Fusion Based on Particle Swarm Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Li, X.; Lv, J.; Jiang, S.; Zhou, H.

    2017-09-01

    In order to solve the problem that the spatial matching is difficult and the spectral distortion is large in traditional pixel-level image fusion algorithm. We propose a new method of image fusion that utilizes HIS transformation and the recently developed theory of compressive sensing that is called HIS-CS image fusion. In this algorithm, the particle swarm optimization algorithm is used to select the fusion coefficient ω. In the iterative process, the image fusion coefficient ω is taken as particle, and the optimal value is obtained by combining the optimal objective function. Then we use the compression-aware weighted fusion algorithm for remote sensing image fusion, taking the coefficient ω as the weight value. The algorithm ensures the optimal selection of fusion effect with a certain degree of self-adaptability. To evaluate the fused images, this paper uses five kinds of index parameters such as Entropy, Standard Deviation, Average Gradient, Degree of Distortion and Peak Signal-to-Noise Ratio. The experimental results show that the image fusion effect of the algorithm in this paper is better than that of traditional methods.

  4. A solution quality assessment method for swarm intelligence optimization algorithms.

    PubMed

    Zhang, Zhaojun; Wang, Gai-Ge; Zou, Kuansheng; Zhang, Jianhua

    2014-01-01

    Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of "value performance," the "ordinal performance" is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and "good enough" set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method.

  5. A Solution Quality Assessment Method for Swarm Intelligence Optimization Algorithms

    PubMed Central

    Wang, Gai-Ge; Zou, Kuansheng; Zhang, Jianhua

    2014-01-01

    Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of “value performance,” the “ordinal performance” is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and “good enough” set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method. PMID:25013845

  6. Optimization of silver nanoparticles production by laser ablation in water using a 150-ps laser

    NASA Astrophysics Data System (ADS)

    Stašić, J.; Živković, Lj.; Trtica, M.

    2016-12-01

    Silver nanoparticles were synthesized by laser ablation in liquid (water) using a 150-ps Nd:YAG laser. Due to their extraordinary characteristics, especially when obtained by this method providing high purity and high stability of colloids, silver NPs are nowadays highly important in various applications. The objective of this study was to optimize the process parameters in order to achieve the highest possible yield while retaining small particle size. Yield/mass concentration of the obtained particles was measured depending on different parameters: time of irradiation, pulse energy, position regarding the focus, and number of irradiation locations. The conditions providing relatively high yield, small particle size, highest production rate, and highest efficiency are 7 mJ, 15-min irradiation time (9000 pulses), and target position ˜4 mm in front of the lens focus. The results are compared with the results obtained by the longer nanosecond as well as the ultrashort pulsed lasers. A possible physical explanation is given.

  7. Sequential unconstrained minimization algorithms for constrained optimization

    NASA Astrophysics Data System (ADS)

    Byrne, Charles

    2008-02-01

    The problem of minimizing a function f(x):RJ → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G_k(x)=f(x)+g_k(x), to obtain xk. The auxiliary functions gk(x):D ⊆ RJ → R+ are nonnegative on the set D, each xk is assumed to lie within D, and the objective is to minimize the continuous function f:RJ → R over x in the set C=\\overline D , the closure of D. We assume that such minimizers exist, and denote one such by \\hat x . We assume that the functions gk(x) satisfy the inequalities 0\\leq g_k(x)\\leq G_{k-1}(x)-G_{k-1}(x^{k-1}), for k = 2, 3, .... Using this assumption, we show that the sequence {f(xk)} is decreasing and converges to f({\\hat x}) . If the restriction of f(x) to D has bounded level sets, which happens if \\hat x is unique and f(x) is closed, proper and convex, then the sequence {xk} is bounded, and f(x^*)=f({\\hat x}) , for any cluster point x*. Therefore, if \\hat x is unique, x^*={\\hat x} and \\{x^k\\}\\rightarrow {\\hat x} . When \\hat x is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton-Raphson method. The proof techniques used for SUMMA can be extended to obtain related results for the induced proximal

  8. Performance Trend of Different Algorithms for Structural Design Optimization

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.

    1996-01-01

    Nonlinear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Center, a project was initiated to assess performance of different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with the sequential unconstrained minimizations technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.

  9. Comparative Evaluation of Different Optimization Algorithms for Structural Design Applications

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.

    1996-01-01

    Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.

  10. Multimodal optimization using a bi-objective evolutionary algorithm.

    PubMed

    Deb, Kalyanmoy; Saha, Amit

    2012-01-01

    In a multimodal optimization task, the main purpose is to find multiple optimal solutions (global and local), so that the user can have better knowledge about different optimal solutions in the search space and as and when needed, the current solution may be switched to another suitable optimum solution. To this end, evolutionary optimization algorithms (EA) stand as viable methodologies mainly due to their ability to find and capture multiple solutions within a population in a single simulation run. With the preselection method suggested in 1970, there has been a steady suggestion of new algorithms. Most of these methodologies employed a niching scheme in an existing single-objective evolutionary algorithm framework so that similar solutions in a population are deemphasized in order to focus and maintain multiple distant yet near-optimal solutions. In this paper, we use a completely different strategy in which the single-objective multimodal optimization problem is converted into a suitable bi-objective optimization problem so that all optimal solutions become members of the resulting weak Pareto-optimal set. With the modified definitions of domination and different formulations of an artificially created additional objective function, we present successful results on problems with as large as 500 optima. Most past multimodal EA studies considered problems having only a few variables. In this paper, we have solved up to 16-variable test problems having as many as 48 optimal solutions and for the first time suggested multimodal constrained test problems which are scalable in terms of number of optima, constraints, and variables. The concept of using bi-objective optimization for solving single-objective multimodal optimization problems seems novel and interesting, and more importantly opens up further avenues for research and application.

  11. Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm.

    PubMed

    Wang, Jiaxi; Lin, Boliang; Jin, Junchen

    2016-01-01

    The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality.

  12. Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm

    PubMed Central

    Jin, Junchen

    2016-01-01

    The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998

  13. Benchmarking derivative-free optimization algorithms.

    SciTech Connect

    More', J. J.; Wild, S. M.; Mathematics and Computer Science; Cornell Univ.

    2009-01-01

    We propose data profiles as a tool for analyzing the performance of derivative-free optimization solvers when there are constraints on the computational budget. We use performance and data profiles, together with a convergence test that measures the decrease in function value, to analyze the performance of three solvers on sets of smooth, noisy, and piecewise-smooth problems. Our results provide estimates for the performance difference between these solvers, and show that on these problems, the model-based solver tested performs better than the two direct search solvers tested.

  14. A multi-group firefly algorithm for numerical optimization

    NASA Astrophysics Data System (ADS)

    Tong, Nan; Fu, Qiang; Zhong, Caiming; Wang, Pengjun

    2017-08-01

    To solve the problem of premature convergence of firefly algorithm (FA), this paper analyzes the evolution mechanism of the algorithm, and proposes an improved Firefly algorithm based on modified evolution model and multi-group learning mechanism (IMGFA). A Firefly colony is divided into several subgroups with different model parameters. Within each subgroup, the optimal firefly is responsible for leading the others fireflies to implement the early global evolution, and establish the information mutual system among the fireflies. And then, each firefly achieves local search by following the brighter firefly in its neighbors. At the same time, learning mechanism among the best fireflies in various subgroups to exchange information can help the population to obtain global optimization goals more effectively. Experimental results verify the effectiveness of the proposed algorithm.

  15. Optimization of computer-generated binary holograms using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Cojoc, Dan; Alexandrescu, Adrian

    1999-11-01

    The aim of this paper is to compare genetic algorithms against direct point oriented coding in the design of binary phase Fourier holograms, computer generated. These are used as fan-out elements for free space optical interconnection. Genetic algorithms are optimization methods which model the natural process of genetic evolution. The configuration of the hologram is encoded to form a chromosome. To start the optimization, a population of different chromosomes randomly generated is considered. The chromosomes compete, mate and mutate until the best chromosome is obtained according to a cost function. After explaining the operators that are used by genetic algorithms, this paper presents two examples with 32 X 32 genes in a chromosome. The crossover type and the number of mutations are shown to be important factors which influence the convergence of the algorithm. GA is demonstrated to be a useful tool to design namely binary phase holograms of complicate structures.

  16. Two hybrid compaction algorithms for the layout optimization problem.

    PubMed

    Xiao, Ren-Bin; Xu, Yi-Chun; Amos, Martyn

    2007-01-01

    In this paper we present two new algorithms for the layout optimization problem: this concerns the placement of circular, weighted objects inside a circular container, the two objectives being to minimize imbalance of mass and to minimize the radius of the container. This problem carries real practical significance in industrial applications (such as the design of satellites), as well as being of significant theoretical interest. We present two nature-inspired algorithms for this problem, the first based on simulated annealing, and the second on particle swarm optimization. We compare our algorithms with the existing best-known algorithm, and show that our approaches out-perform it in terms of both solution quality and execution time.

  17. Optimized Algorithms for Prediction within Robotic Tele-Operative Interfaces

    NASA Technical Reports Server (NTRS)

    Martin, Rodney A.; Wheeler, Kevin R.; SunSpiral, Vytas; Allan, Mark B.

    2006-01-01

    Robonaut, the humanoid robot developed at the Dexterous Robotics Laboratory at NASA Johnson Space Center serves as a testbed for human-robot collaboration research and development efforts. One of the primary efforts investigates how adjustable autonomy can provide for a safe and more effective completion of manipulation-based tasks. A predictive algorithm developed in previous work was deployed as part of a software interface that can be used for long-distance tele-operation. In this paper we provide the details of this algorithm, how to improve upon the methods via optimization, and also present viable alternatives to the original algorithmic approach. We show that all of the algorithms presented can be optimized to meet the specifications of the metrics shown as being useful for measuring the performance of the predictive methods. Judicious feature selection also plays a significant role in the conclusions drawn.

  18. Improved Clonal Selection Algorithm Combined with Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Gao, Shangce; Wang, Wei; Dai, Hongwei; Li, Fangjia; Tang, Zheng

    Both the clonal selection algorithm (CSA) and the ant colony optimization (ACO) are inspired by natural phenomena and are effective tools for solving complex problems. CSA can exploit and explore the solution space parallely and effectively. However, it can not use enough environment feedback information and thus has to do a large redundancy repeat during search. On the other hand, ACO is based on the concept of indirect cooperative foraging process via secreting pheromones. Its positive feedback ability is nice but its convergence speed is slow because of the little initial pheromones. In this paper, we propose a pheromone-linker to combine these two algorithms. The proposed hybrid clonal selection and ant colony optimization (CSA-ACO) reasonably utilizes the superiorities of both algorithms and also overcomes their inherent disadvantages. Simulation results based on the traveling salesman problems have demonstrated the merit of the proposed algorithm over some traditional techniques.

  19. Optimal strategies for combining transcatheter arterial chemoembolization and radiofrequency ablation in rabbit VX2 hepatic tumors.

    PubMed

    Mostafa, Elian M; Ganguli, Suvranu; Faintuch, Salomao; Mertyna, Pawel; Goldberg, S Nahum

    2008-12-01

    To determine the optimum combination strategy of transcatheter arterial chemoembolization and radiofrequency (RF) ablation in an experimentally induced hepatic tumor model. Twenty-five New Zealand White rabbits with VX2 carcinoma-induced hepatic tumors were randomly divided into five treatment groups, which received (i) chemoembolization followed 15 minutes later by RF ablation; (ii) RF ablation followed by chemoembolization; (iii) chemoembolization alone; (iv) RF ablation alone; and (v) bland embolization followed by RF ablation. Animals were euthanized at 48 hours to determine tumor infarction and coagulation, which were compared with analysis of variance. Representative histopathologic slides were compared. Significantly larger areas of coagulation were produced by chemoembolization followed by RF ablation (22.0 cm(3) +/- 7.7) compared with RF ablation followed by chemoembolization (13.1 cm(3) +/- 3.2) and RF ablation alone (10.0 cm(3) +/- 4.5; P < .05). RF ablation followed by chemoembolization showed larger treatment areas than chemoembolization alone (25.0 cm(3) +/- 9.6 vs 12.1 cm(3) +/- 4.6; P < .001), with chemotherapeutic agent preferentially depositing around the coagulation zone. Histopathologic analysis revealed greater vascular thrombosis and necrosis and reduced islands of viable tumor cells in the chemoembolization/RF ablation group versus the groups treated with chemoembolization alone or bland embolization/RF ablation. Larger treatment volumes were produced when chemoembolization was performed before RF ablation than when RF ablation preceded chemoembolization or when RF ablation or chemoembolization were performed alone. Larger treatment volumes were also produced when chemoembolization rather than bland embolization was performed before RF ablation, indicating the importance and synergy of the chemotherapeutic regimen. These results suggest that the reduction of tumor blood flow combined with the effect of hyperthermia and local chemotherapy

  20. Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.

  1. A New Magnetotactic Bacteria Optimization Algorithm Based on Moment Migration.

    PubMed

    Mo, Hongwei; Liu, Lili; Zhao, Jiao

    2017-01-01

    Magnetotactic bacteria is a kind of polyphyletic group of prokaryotes with the characteristics of magnetotaxis that make them orient and swim along geomagnetic field lines. Its distinct biology characteristics are useful to design new optimization technology. In this paper, a new bionic optimization algorithm named Magnetotactic Bacteria Moment Migration Algorithm (MBMMA) is proposed. In the proposed algorithm, the moments of a chain of magnetosomes are considered as solutions. The moments of relative good solutions can migrate each other to enhance the diversity of the MBMMA. It is compared with variants of PSO on standard functions problems. The experiment results show that the MBMMA is effective in solving optimization problems. It shows better or competitive performance compared with the variants of PSO on most of the tested functions in this paper.

  2. An algorithm for optimal structural design with frequency constraints

    NASA Technical Reports Server (NTRS)

    Kiusalaas, J.; Shaw, R. C. J.

    1978-01-01

    The paper presents a finite element method for minimum weight design of structures with lower-bound constraints on the natural frequencies, and upper and lower bounds on the design variables. The design algorithm is essentially an iterative solution of the Kuhn-Tucker optimality criterion. The three most important features of the algorithm are: (1) a small number of design iterations are needed to reach optimal or near-optimal design, (2) structural elements with a wide variety of size-stiffness may be used, the only significant restriction being the exclusion of curved beam and shell elements, and (3) the algorithm will work for multiple as well as single frequency constraints. The design procedure is illustrated with three simple problems.

  3. Swarm algorithms with chaotic jumps for optimization of multimodal functions

    NASA Astrophysics Data System (ADS)

    Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro

    2011-11-01

    In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).

  4. Study of genetic direct search algorithms for function optimization

    NASA Technical Reports Server (NTRS)

    Zeigler, B. P.

    1974-01-01

    The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.

  5. Multi-objective Optimization on Helium Liquefier Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, H. R.; Xiong, L. Y.; Peng, N.; Meng, Y. R.; Liu, L. Q.

    2017-02-01

    Research on optimization of helium liquefier is limited at home and abroad, and most of the optimization is single-objective based on Collins cycle. In this paper, a multi-objective optimization is conducted using genetic algorithm (GA) on the 40 L/h helium liquefier developed by Technical Institute of Physics and Chemistry of the Chinese Academy of Science (TIPC, CAS), steady solutions are obtained in the end. In addition, the exergy loss of the optimized system is studied in the case of with and without liquid nitrogen pre-cooling. The results have guiding significance for the future design of large helium liquefier.

  6. Optimal Design of RF Energy Harvesting Device Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Mori, T.; Sato, Y.; Adriano, R.; Igarashi, H.

    2015-11-01

    This paper presents optimal design of an RF energy harvesting device using genetic algorithm (GA). In the present RF harvester, a planar spiral antenna (PSA) is loaded with matching and rectifying circuits. On the first stage of the optimal design, the shape parameters of PSA are optimized using . Then, the equivalent circuit of the optimized PSA is derived for optimization of the circuits. Finally, the parameters of RF energy harvesting circuit are optimized to maximize the output power using GA. It is shown that the present optimization increases the output power by a factor of five. The manufactured energy harvester starts working when the input electric field is greater than 0.5 V/m.

  7. A limited-memory algorithm for bound-constrained optimization

    SciTech Connect

    Byrd, R.H.; Peihuang, L.; Nocedal, J. |

    1996-03-01

    An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited-memory BFGS matrix to approximate the Hessian of the objective function. We show how to take advantage of the form of the limited-memory approximation to implement the algorithm efficiently. The results of numerical tests on a set of large problems are reported.

  8. Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence

    SciTech Connect

    Pelikan, M.; Goldberg, D.E.; Cantu-Paz, E.

    2000-01-19

    This paper analyzes convergence properties of the Bayesian optimization algorithm (BOA). It settles the BOA into the framework of problem decomposition used frequently in order to model and understand the behavior of simple genetic algorithms. The growth of the population size and the number of generations until convergence with respect to the size of a problem is theoretically analyzed. The theoretical results are supported by a number of experiments.

  9. Seven-Spot Ladybird Optimization: A Novel and Efficient Metaheuristic Algorithm for Numerical Optimization

    PubMed Central

    Zhu, Zhouquan

    2013-01-01

    This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879

  10. Genetic Algorithm Optimizes Q-LAW Control Parameters

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  11. A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.

  12. Multifrequency and multidirection optimizations of antenna arrays using heuristic algorithms and the multilevel fast multipole algorithm

    NASA Astrophysics Data System (ADS)

    Önol, Can; Alkış, Sena; Gökçe, Özer; Ergül, Özgür

    2016-07-01

    We consider fast and efficient optimizations of arrays involving three-dimensional antennas with arbitrary shapes and geometries. Heuristic algorithms, particularly genetic algorithms, are used for optimizations, while the required solutions are carried out accurately and efficiently via the multilevel fast multipole algorithm (MLFMA). The superposition principle is employed to reduce the number of MLFMA solutions to the number of array elements per frequency. The developed mechanism is used to optimize arrays for multifrequency and/or multidirection operations, i.e., to find the most suitable set of antenna excitations for desired radiation characteristics simultaneously at different frequencies and/or directions. The capabilities of the optimization environment are demonstrated on arrays of bowtie and Vivaldi antennas.

  13. [Optimizing algorithm design of piecewise linear classifier for spectra].

    PubMed

    Lan, Tian-Ge; Fang, Yong-Hua; Xiong, Wei; Kong, Chao; Li, Da-Cheng; Dong, Da-Ming

    2008-11-01

    Being able to identify pollutant gases quickly and accurately is a basic request of spectroscopic technique for envirment monitoring for spectral classifier. Piecewise linear classifier is simple needs less computational time and approachs nonlinear boundary beautifully. Combining piecewise linear classifier and linear support vector machine which is based on the principle of maximizing margin, an optimizing algorithm for single side piecewise linear classifier was devised. Experimental results indicate that the piecewise linear classifier trained by the optimizing algorithm proposed in this paper can approach nonolinear boundary with fewer super_planes and has higher veracity for classification and recognition.

  14. Shape optimization of rubber bushing using differential evolution algorithm.

    PubMed

    Kaya, Necmettin

    2014-01-01

    The objective of this study is to design rubber bushing at desired level of stiffness characteristics in order to achieve the ride quality of the vehicle. A differential evolution algorithm based approach is developed to optimize the rubber bushing through integrating a finite element code running in batch mode to compute the objective function values for each generation. Two case studies were given to illustrate the application of proposed approach. Optimum shape parameters of 2D bushing model were determined by shape optimization using differential evolution algorithm.

  15. New near-optimal feedback guidance algorithms for space missions

    NASA Astrophysics Data System (ADS)

    Hawkins, Matthew Jay

    This dissertation describes several different spacecraft guidance algorithms, with applications including asteroid intercept and rendezvous, planetary landing, and orbital transfer. A comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous. Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) guidance is introduced and applied to asteroid intercept and rendezvous, and to a wealth of different example problems, including missile intercept, planetary landing, and orbital transfer. It is seen that the ZEM/ZEV guidance law can be used in many different scenarios, and that it provides near-optimal performance where an analytical optimal guidance law does not exist, such as in a non-linear gravity field.

  16. Shape Optimization of Rubber Bushing Using Differential Evolution Algorithm

    PubMed Central

    2014-01-01

    The objective of this study is to design rubber bushing at desired level of stiffness characteristics in order to achieve the ride quality of the vehicle. A differential evolution algorithm based approach is developed to optimize the rubber bushing through integrating a finite element code running in batch mode to compute the objective function values for each generation. Two case studies were given to illustrate the application of proposed approach. Optimum shape parameters of 2D bushing model were determined by shape optimization using differential evolution algorithm. PMID:25276848

  17. An efficient cuckoo search algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Ong, Pauline; Zainuddin, Zarita

    2013-04-01

    Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.

  18. An Efficient Globally Optimal Algorithm for Asymmetric Point Matching.

    PubMed

    Lian, Wei; Zhang, Lei; Yang, Ming-Hsuan

    2016-08-29

    Although the robust point matching algorithm has been demonstrated to be effective for non-rigid registration, there are several issues with the adopted deterministic annealing optimization technique. First, it is not globally optimal and regularization on the spatial transformation is needed for good matching results. Second, it tends to align the mass centers of two point sets. To address these issues, we propose a globally optimal algorithm for the robust point matching problem where each model point has a counterpart in scene set. By eliminating the transformation variables, we show that the original matching problem is reduced to a concave quadratic assignment problem where the objective function has a low rank Hessian matrix. This facilitates the use of large scale global optimization techniques. We propose a branch-and-bound algorithm based on rectangular subdivision where in each iteration, multiple rectangles are used to increase the chances of subdividing the one containing the global optimal solution. In addition, we present an efficient lower bounding scheme which has a linear assignment formulation and can be efficiently solved. Extensive experiments on synthetic and real datasets demonstrate the proposed algorithm performs favorably against the state-of-the-art methods in terms of robustness to outliers, matching accuracy, and run-time.

  19. Effective and efficient algorithm for multiobjective optimization of hydrologic models

    NASA Astrophysics Data System (ADS)

    Vrugt, Jasper A.; Gupta, Hoshin V.; Bastidas, Luis A.; Bouten, Willem; Sorooshian, Soroosh

    2003-08-01

    Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementary) aspects of the system behavior and to use multicriteria optimization to identify the set of nondominated, efficient, or Pareto optimal solutions. In this paper, we present an efficient and effective Markov Chain Monte Carlo sampler, entitled the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm, which is capable of solving the multiobjective optimization problem for hydrologic models. MOSCEM is an improvement over the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm, using the concept of Pareto dominance (rather than direct single-objective function evaluation) to evolve the initial population of points toward a set of solutions stemming from a stable distribution (Pareto set). The efficacy of the MOSCEM-UA algorithm is compared with the original MOCOM-UA algorithm for three hydrologic modeling case studies of increasing complexity.

  20. Optimization Algorithm for the Generation of ONCV Pseudopotentials

    NASA Astrophysics Data System (ADS)

    Schlipf, Martin; Gygi, Francois

    2015-03-01

    We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z=83 (Bi) (excluding Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function allows us to use a Nelder-Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction for most of the periodic table. We control the accuracy of the resulting pseudopotentials on a test set of materials independent of the training set. We find that the automatically constructed pseudopotentials provide a good agreement with the all-electron results obtained using the FLEUR code with a plane-wave energy cutoff of approximately 60 Ry. Supported by DOE/BES Grant DE-SC0008938.

  1. Optimization algorithm for the generation of ONCV pseudopotentials

    NASA Astrophysics Data System (ADS)

    Schlipf, Martin; Gygi, François

    2015-11-01

    We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z = 83 (Bi) (excluding Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function allows us to use a Nelder-Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction for most of the periodic table. We control the accuracy of the resulting pseudopotentials on a test set of materials independent of the training set. We find that the automatically constructed pseudopotentials

  2. Control optimization, stabilization and computer algorithms for aircraft applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research related to reliable aircraft design is summarized. Topics discussed include systems reliability optimization, failure detection algorithms, analysis of nonlinear filters, design of compensators incorporating time delays, digital compensator design, estimation for systems with echoes, low-order compensator design, descent-phase controller for 4-D navigation, infinite dimensional mathematical programming problems and optimal control problems with constraints, robust compensator design, numerical methods for the Lyapunov equations, and perturbation methods in linear filtering and control.

  3. Superiorization of incremental optimization algorithms for statistical tomographic image reconstruction

    NASA Astrophysics Data System (ADS)

    Helou, E. S.; Zibetti, M. V. W.; Miqueles, E. X.

    2017-04-01

    We propose the superiorization of incremental algorithms for tomographic image reconstruction. The resulting methods follow a better path in its way to finding the optimal solution for the maximum likelihood problem in the sense that they are closer to the Pareto optimal curve than the non-superiorized techniques. A new scaled gradient iteration is proposed and three superiorization schemes are evaluated. Theoretical analysis of the methods as well as computational experiments with both synthetic and real data are provided.

  4. A Global Optimization Algorithm Using Stochastic Differential Equations.

    DTIC Science & Technology

    1985-02-01

    Bari (Italy).2Istituto di Fisica , 2 UniversitA di Roma "Tor Vergata", Via Orazio Raimondo, 00173 (La Romanina) Roma (Italy). 3Istituto di Matematica ...accompanying Algorithm. lDipartininto di Matematica , Universita di Bari, 70125 Bar (Italy). Istituto di Fisica , 2a UniversitA di Roim ’"Tor Vergata", Via...Optimization, Stochastic Differential Equations Work Unit Number 5 (Optimization and Large Scale Systems) 6Dipartimento di Matematica , Universita di Bari, 70125

  5. A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)

    NASA Astrophysics Data System (ADS)

    Cantó, J.; Curiel, S.; Martínez-Gómez, E.

    2009-07-01

    Context: Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims: We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (asexual genetic algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two examples: the orbits of exoplanets by taking a set of radial velocity data, and the spectral energy distribution (SED) observed towards a YSO (Young Stellar Object). Methods: The algorithm AGA may also be called genetic, although it differs from standard genetic algorithms in two main aspects: a) the initial population is not encoded; and b) the new generations are constructed by asexual reproduction. Results: Applying our algorithm in optimizing some complicated functions, we find the global maxima within a few iterations. For model fitting to the orbits of exoplanets and the SED of a YSO, we estimate the parameters and their associated errors.

  6. A new efficient optimal path planner for mobile robot based on Invasive Weed Optimization algorithm

    NASA Astrophysics Data System (ADS)

    Mohanty, Prases K.; Parhi, Dayal R.

    2014-12-01

    Planning of the shortest/optimal route is essential for efficient operation of autonomous mobile robot or vehicle. In this paper Invasive Weed Optimization (IWO), a new meta-heuristic algorithm, has been implemented for solving the path planning problem of mobile robot in partially or totally unknown environments. This meta-heuristic optimization is based on the colonizing property of weeds. First we have framed an objective function that satisfied the conditions of obstacle avoidance and target seeking behavior of robot in partially or completely unknown environments. Depending upon the value of objective function of each weed in colony, the robot avoids obstacles and proceeds towards destination. The optimal trajectory is generated with this navigational algorithm when robot reaches its destination. The effectiveness, feasibility, and robustness of the proposed algorithm has been demonstrated through series of simulation and experimental results. Finally, it has been found that the developed path planning algorithm can be effectively applied to any kinds of complex situation.

  7. Optimization of Power Coefficient of Wind Turbine Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Rajakumar, Sappani; Ravindran, Durairaj; Sivakumar, Mahalingam; Venkatachalam, Gopalan; Muthukumar, Shunmugavelu

    2016-06-01

    In the design of a wind turbine, the goal is to attain the highest possible power output under specified atmospheric conditions. The optimization of power coefficient of horizontal axis wind turbine has been carried out by integration of blade element momentum method and genetic algorithm (GA). The design variables considered are wind velocity, angle of attack and tip speed ratio. The objective function is power coefficient of wind turbine. The different combination of design variables are optimized using GA and then the Power coefficient is optimized. The optimized design variables are validated with the experimental results available in the literature. By this optimization work the optimum design variables of wind turbine can be found economically than experimental work. NACA44XX series airfoils are considered for this optimization work.

  8. Optimization of Power Coefficient of Wind Turbine Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Rajakumar, Sappani; Ravindran, Durairaj; Sivakumar, Mahalingam; Venkatachalam, Gopalan; Muthukumar, Shunmugavelu

    2017-04-01

    In the design of a wind turbine, the goal is to attain the highest possible power output under specified atmospheric conditions. The optimization of power coefficient of horizontal axis wind turbine has been carried out by integration of blade element momentum method and genetic algorithm (GA). The design variables considered are wind velocity, angle of attack and tip speed ratio. The objective function is power coefficient of wind turbine. The different combination of design variables are optimized using GA and then the Power coefficient is optimized. The optimized design variables are validated with the experimental results available in the literature. By this optimization work the optimum design variables of wind turbine can be found economically than experimental work. NACA44XX series airfoils are considered for this optimization work.

  9. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and

  10. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and

  11. The optimal algorithm for Multi-source RS image fusion.

    PubMed

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  12. Fast Optimal Load Balancing Algorithms for 1D Partitioning

    SciTech Connect

    Pinar, Ali; Aykanat, Cevdet

    2002-12-09

    One-dimensional decomposition of nonuniform workload arrays for optimal load balancing is investigated. The problem has been studied in the literature as ''chains-on-chains partitioning'' problem. Despite extensive research efforts, heuristics are still used in parallel computing community with the ''hope'' of good decompositions and the ''myth'' of exact algorithms being hard to implement and not runtime efficient. The main objective of this paper is to show that using exact algorithms instead of heuristics yields significant load balance improvements with negligible increase in preprocessing time. We provide detailed pseudocodes of our algorithms so that our results can be easily reproduced. We start with a review of literature on chains-on-chains partitioning problem. We propose improvements on these algorithms as well as efficient implementation tips. We also introduce novel algorithms, which are asymptotically and runtime efficient. We experimented with data sets from two different applications: Sparse matrix computations and Direct volume rendering. Experiments showed that the proposed algorithms are 100 times faster than a single sparse-matrix vector multiplication for 64-way decompositions on average. Experiments also verify that load balance can be significantly improved by using exact algorithms instead of heuristics. These two findings show that exact algorithms with efficient implementations discussed in this paper can effectively replace heuristics.

  13. Multi-criteria optimization in CO2 laser ablation of multimode polymer waveguides

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Zakariyah, S. S.; Sheikh, N. A.

    2015-12-01

    High interconnection density associated with current electronics products poses certain challenges in designing circuit boards. Methods, including laser-assisted microvia drilling and surface mount technologies for example, are being used to minimize the impacts of the problems. However, the bottleneck is significantly pronounced at bit data rates above 10 Gbit/s where losses, especially those due to crosstalk, become high. One solution is optical interconnections (OI) based on polymer waveguides. Laser ablation of the optical waveguides is viewed as a very compatible technique with ultraviolet laser sources, such as excimer and UV Nd:YAG lasers, being used due to their photochemical nature and minimal thermal effect when they interact with optical materials. In this paper, the authors demonstrate the application of grey relational analysis to determine the optimized processing parameters concerning fabrication of multimode optical polymer waveguides by using infra-red 10.6 μm CO2 laser micromachining to etch acrylate-based photopolymer (Truemode™). CO2 laser micromachining offers a low cost and high speed fabrication route needed for high volume productions as the wavelength of CO2 lasers can couple well with a variety of polymer substrates. Based on the highest grey relational grade, the optimized processing parameters are determined at laser power of 3 W and scanning speed of 100 mm/s.

  14. Constrained Multiobjective Optimization Algorithm Based on Immune System Model.

    PubMed

    Qian, Shuqu; Ye, Yongqiang; Jiang, Bin; Wang, Jianhong

    2016-09-01

    An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite.

  15. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    NASA Astrophysics Data System (ADS)

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  16. Attitude determination using vector observations: A fast optimal matrix algorithm

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1993-01-01

    The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.

  17. Environmental Optimization Using the WAste Reduction Algorithm (WAR)

    EPA Science Inventory

    Traditionally chemical process designs were optimized using purely economic measures such as rate of return. EPA scientists developed the WAste Reduction algorithm (WAR) so that environmental impacts of designs could easily be evaluated. The goal of WAR is to reduce environme...

  18. Environmental Optimization Using the WAste Reduction Algorithm (WAR)

    EPA Science Inventory

    Traditionally chemical process designs were optimized using purely economic measures such as rate of return. EPA scientists developed the WAste Reduction algorithm (WAR) so that environmental impacts of designs could easily be evaluated. The goal of WAR is to reduce environme...

  19. Optimal pulse shaping for coherent control by the penalty algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Hai; Dussault, Jean-Pièrre; Bandrauk, André D.

    1994-04-01

    We use penalty methods coupled with unitary exponential operator methods to solve the optimal control problem for molecular time-dependent Schrödinger equations involving laser pulse excitations. A stable numerical algorithm is presented which propagates directly from initial states to given final states. Results are reported for an analytically solvable model for the complete inversion of a three-state system.

  20. Numerical Optimization Algorithms and Software for Systems Biology

    SciTech Connect

    Saunders, Michael

    2013-02-02

    The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.

  1. Optimization algorithms for large-scale multireservoir hydropower systems

    SciTech Connect

    Hiew, K.L.

    1987-01-01

    Five optimization algorithms were vigorously evaluated based on applications on a hypothetical five-reservoir hydropower system. These algorithms are incremental dynamic programming (IDP), successive linear programing (SLP), feasible direction method (FDM), optimal control theory (OCT) and objective-space dynamic programming (OSDP). The performance of these algorithms were comparatively evaluated using unbiased, objective criteria which include accuracy of results, rate of convergence, smoothness of resulting storage and release trajectories, computer time and memory requirements, robustness and other pertinent secondary considerations. Results have shown that all the algorithms, with the exception of OSDP converge to optimum objective values within 1.0% difference from one another. The highest objective value is obtained by IDP, followed closely by OCT. Computer time required by these algorithms, however, differ by more than two orders of magnitude, ranging from 10 seconds in the case of OCT to a maximum of about 2000 seconds for IDP. With a well-designed penalty scheme to deal with state-space constraints, OCT proves to be the most-efficient algorithm based on its overall performance. SLP, FDM, and OCT were applied to the case study of Mahaweli project, a ten-powerplant system in Sri Lanka.

  2. Experimental implementation of an adiabatic quantum optimization algorithm

    NASA Astrophysics Data System (ADS)

    Steffen, Matthias; van Dam, Wim; Hogg, Tad; Breyta, Greg; Chuang, Isaac

    2003-03-01

    A novel quantum algorithm using adiabatic evolution was recently presented by Ed Farhi [1] and Tad Hogg [2]. This algorithm represents a remarkable discovery because it offers new insights into the usefulness of quantum resources. An experimental demonstration of an adiabatic algorithm has remained beyond reach because it requires an experimentally accessible Hamiltonian which encodes the problem and which must also be smoothly varied over time. We present tools to overcome these difficulties by discretizing the algorithm and extending average Hamiltonian techniques [3]. We used these techniques in the first experimental demonstration of an adiabatic optimization algorithm: solving an instance of the MAXCUT problem using three qubits and nuclear magnetic resonance techniques. We show that there exists an optimal run-time of the algorithm which can be predicted using a previously developed decoherence model. [1] E. Farhi et al., quant-ph/0001106 (2000) [2] T. Hogg, PRA, 61, 052311 (2000) [3] W. Rhim, A. Pines, J. Waugh, PRL, 24,218 (1970)

  3. Enhancing particle swarm optimization algorithm using two new strategies for optimizing design of truss structures

    NASA Astrophysics Data System (ADS)

    Lu, Y. C.; Jan, J. C.; Hung, S. L.; Hung, G. H.

    2013-10-01

    This work develops an augmented particle swarm optimization (AugPSO) algorithm using two new strategies,: boundary-shifting and particle-position-resetting. The purpose of the algorithm is to optimize the design of truss structures. Inspired by a heuristic, the boundary-shifting approach forces particles to move to the boundary between feasible and infeasible regions in order to increase the convergence rate in searching. The purpose of the particle-position-resetting approach, motivated by mutation scheme in genetic algorithms (GAs), is to increase the diversity of particles and to prevent the solution of particles from falling into local minima. The performance of the AugPSO algorithm was tested on four benchmark truss design problems involving 10, 25, 72 and 120 bars. The convergence rates and final solutions achieved were compared among the simple PSO, the PSO with passive congregation (PSOPC) and the AugPSO algorithms. The numerical results indicate that the new AugPSO algorithm outperforms the simple PSO and PSOPC algorithms. The AugPSO achieved a new and superior optimal solution to the 120-bar truss design problem. Numerical analyses showed that the AugPSO algorithm is more robust than the PSO and PSOPC algorithms.

  4. A genetic algorithm approach in interface and surface structure optimization

    SciTech Connect

    Zhang, Jian

    2010-01-01

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.

  5. RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Hogenboom, Alexander; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay

    The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm called RCQ-GA that determines the order in which joins need to be performed for an efficient evaluation of RDF chain queries. The approach is benchmarked against a two-phase optimization algorithm, previously proposed in literature. The more complex a query is, the more RCQ-GA outperforms the benchmark in solution quality, execution time needed, and consistency of solution quality. When the algorithms are constrained by a time limit, the overall performance of RCQ-GA compared to the benchmark further improves.

  6. An improved particle swarm optimization algorithm for reliability problems.

    PubMed

    Wu, Peifeng; Gao, Liqun; Zou, Dexuan; Li, Steven

    2011-01-01

    An improved particle swarm optimization (IPSO) algorithm is proposed to solve reliability problems in this paper. The IPSO designs two position updating strategies: In the early iterations, each particle flies and searches according to its own best experience with a large probability; in the late iterations, each particle flies and searches according to the fling experience of the most successful particle with a large probability. In addition, the IPSO introduces a mutation operator after position updating, which can not only prevent the IPSO from trapping into the local optimum, but also enhances its space developing ability. Experimental results show that the proposed algorithm has stronger convergence and stability than the other four particle swarm optimization algorithms on solving reliability problems, and that the solutions obtained by the IPSO are better than the previously reported best-known solutions in the recent literature.

  7. Model updating based on an affine scaling interior optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Y. X.; Jia, C. X.; Li, Jian; Spencer, B. F.

    2013-11-01

    Finite element model updating is usually considered as an optimization process. Affine scaling interior algorithms are powerful optimization algorithms that have been developed over the past few years. A new finite element model updating method based on an affine scaling interior algorithm and a minimization of modal residuals is proposed in this article, and a general finite element model updating program is developed based on the proposed method. The performance of the proposed method is studied through numerical simulation and experimental investigation using the developed program. The results of the numerical simulation verified the validity of the method. Subsequently, the natural frequencies obtained experimentally from a three-dimensional truss model were used to update a finite element model using the developed program. After updating, the natural frequencies of the truss and finite element model matched well.

  8. Endgame implementations for the Efficient Global Optimization (EGO) algorithm

    NASA Astrophysics Data System (ADS)

    Southall, Hugh L.; O'Donnell, Teresa H.; Kaanta, Bryan

    2009-05-01

    Efficient Global Optimization (EGO) is a competent evolutionary algorithm which can be useful for problems with expensive cost functions [1,2,3,4,5]. The goal is to find the global minimum using as few function evaluations as possible. Our research indicates that EGO requires far fewer evaluations than genetic algorithms (GAs). However, both algorithms do not always drill down to the absolute minimum, therefore the addition of a final local search technique is indicated. In this paper, we introduce three "endgame" techniques. The techniques can improve optimization efficiency (fewer cost function evaluations) and, if required, they can provide very accurate estimates of the global minimum. We also report results using a different cost function than the one previously used [2,3].

  9. Optimization of reinforced soil embankments by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ponterosso, P.; Fox, D. St. J.

    2000-04-01

    A Genetic Algorithm (GA) is described, which produces solutions to the cost optimization problem of reinforcement layout for reinforced soil slopes. These solutions incorporate different types of reinforcement within a single slope. The GA described is implemented with the aim of optimizing the cost of materials for the preliminary layout of reinforced soil embankments. The slope design method chosen is the U.K. Department of Transport HA 68/94 Design Methods for the Reinforcement of Highway Slopes by Reinforced Soil and Soil Nailing Techniques. The results confirm that there is a role for the GA in optimization of reinforced soil design.

  10. Optimal brushless DC motor design using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Rahideh, A.; Korakianitis, T.; Ruiz, P.; Keeble, T.; Rothman, M. T.

    2010-11-01

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using a genetic algorithm. Characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. Electrical and mechanical requirements (i.e. voltage, torque and speed) and other limitations (e.g. upper and lower limits of the motor geometries) are cast into constraints of the optimization problem. One sample case is used to illustrate the design and optimization technique.

  11. Optimal reservoir operation policies using novel nested algorithms

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri

    2015-04-01

    Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested

  12. Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding

    PubMed Central

    Sun, Lijuan; Guo, Jian; Xu, Bin; Li, Shujing

    2017-01-01

    The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur's entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO) and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO), the differential evolution (DE), the Artifical Bee Colony (ABC), and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability. PMID:28127305

  13. Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding.

    PubMed

    Li, Linguo; Sun, Lijuan; Guo, Jian; Qi, Jin; Xu, Bin; Li, Shujing

    2017-01-01

    The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur's entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO) and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO), the differential evolution (DE), the Artifical Bee Colony (ABC), and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability.

  14. Combinatorial optimization problem solution based on improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    2017-08-01

    Traveling salesman problem (TSP) is a classic combinatorial optimization problem. It is a simplified form of many complex problems. In the process of study and research, it is understood that the parameters that affect the performance of genetic algorithm mainly include the quality of initial population, the population size, and crossover probability and mutation probability values. As a result, an improved genetic algorithm for solving TSP problems is put forward. The population is graded according to individual similarity, and different operations are performed to different levels of individuals. In addition, elitist retention strategy is adopted at each level, and the crossover operator and mutation operator are improved. Several experiments are designed to verify the feasibility of the algorithm. Through the experimental results analysis, it is proved that the improved algorithm can improve the accuracy and efficiency of the solution.

  15. Optimization of circuits using a constructive learning algorithm

    SciTech Connect

    Beiu, V.

    1997-05-01

    The paper presents an application of a constructive learning algorithm to optimization of circuits. For a given Boolean function f. a fresh constructive learning algorithm builds circuits belonging to the smallest F{sub n,m} class of functions (n inputs and having m groups of ones in their truth table). The constructive proofs, which show how arbitrary Boolean functions can be implemented by this algorithm, are shortly enumerated An interesting aspect is that the algorithm can be used for generating both classical Boolean circuits and threshold gate circuits (i.e. analogue inputs and digital outputs), or a mixture of them, thus taking advantage of mixed analogue/digital technologies. One illustrative example is detailed The size and the area of the different circuits are compared (special cost functions can be used to closer estimate the area and the delay of VLSI implementations). Conclusions and further directions of research are ending the paper.

  16. An active set algorithm for treatment planning optimization.

    PubMed

    Hristov, D H; Fallone, B G

    1997-09-01

    An active set algorithm for optimization of radiation therapy dose planning by intensity modulated beams has been developed. The algorithm employs a conjugate-gradient routine for subspace minimization in order to achieve a higher rate of convergence than the widely used constrained steepest-descent method at the expense of a negligible amount of overhead calculations. The performance of the new algorithm has been compared to that of the constrained steepest-descent method for various treatment geometries and two different objectives. The active set algorithm is found to be superior to the constrained steepest descent, both in terms of its convergence properties and the residual value of the cost functions at termination. Its use can significantly accelerate the design of conformal plans with intensity modulated beams by decreasing the number of time-consuming dose calculations.

  17. Automated Spectroscopic Analysis Using the Particle Swarm Optimization Algorithm: Implementing a Guided Search Algorithm to Autofit

    NASA Astrophysics Data System (ADS)

    Ervin, Katherine; Shipman, Steven

    2017-06-01

    While rotational spectra can be rapidly collected, their analysis (especially for complex systems) is seldom straightforward, leading to a bottleneck. The AUTOFIT program was designed to serve that need by quickly matching rotational constants to spectra with little user input and supervision. This program can potentially be improved by incorporating an optimization algorithm in the search for a solution. The Particle Swarm Optimization Algorithm (PSO) was chosen for implementation. PSO is part of a family of optimization algorithms called heuristic algorithms, which seek approximate best answers. This is ideal for rotational spectra, where an exact match will not be found without incorporating distortion constants, etc., which would otherwise greatly increase the size of the search space. PSO was tested for robustness against five standard fitness functions and then applied to a custom fitness function created for rotational spectra. This talk will explain the Particle Swarm Optimization algorithm and how it works, describe how Autofit was modified to use PSO, discuss the fitness function developed to work with spectroscopic data, and show our current results. Seifert, N.A., Finneran, I.A., Perez, C., Zaleski, D.P., Neill, J.L., Steber, A.L., Suenram, R.D., Lesarri, A., Shipman, S.T., Pate, B.H., J. Mol. Spec. 312, 13-21 (2015)

  18. A novel algorithm for spectral interval combination optimization.

    PubMed

    Song, Xiangzhong; Huang, Yue; Yan, Hong; Xiong, Yanmei; Min, Shungeng

    2016-12-15

    In this study, a new wavelength interval selection algorithm named as interval combination optimization (ICO) was proposed under the framework of model population analysis (MPA). In this method, the full spectra are divided into a fixed number of equal-width intervals firstly. Then the optimal interval combination is searched iteratively under the guide of MPA in a soft shrinkage manner, among which weighted bootstrap sampling (WBS) is employed as random sampling method. Finally, local search is conducted to optimize the widths of selected intervals. Three NIR datasets were used to validate the performance of ICO algorithm. Results show that ICO can select fewer wavelengths with better prediction performance when compared with other four wavelength selection methods, including VISSA, VISSA-iPLS, iVISSA and GA-iPLS. In addition, the computational intensity of ICO is also economical, benefit from fewer tune parameters and faster convergence speed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Genetic algorithms for the construction of D-optimal designs

    SciTech Connect

    Heredia-Langner, Alejandro; Carlyle, W M.; Montgomery, D C.; Borror, Connie M.; Runger, George C.

    2003-01-01

    Computer-generated designs are useful for situations where standard factorial, fractional factorial or response surface designs cannot be easily employed. Alphabetically-optimal designs are the most widely used type of computer-generated designs, and of these, the D-optimal (or D-efficient) class of designs are extremely popular. D-optimal designs are usually constructed by algorithms that sequentially add and delete points from a potential design based using a candidate set of points spaced over the region of interest. We present a technique to generate D-efficient designs using genetic algorithms (GA). This approach eliminates the need to explicitly consider a candidate set of experimental points and it can handle highly constrained regions while maintaining a level of performance comparable to more traditional design construction techniques.

  20. Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2001-01-01

    A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.

  1. Optimization of image processing algorithms on mobile platforms

    NASA Astrophysics Data System (ADS)

    Poudel, Pramod; Shirvaikar, Mukul

    2011-03-01

    This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.

  2. A hardware-algorithm co-design approach to optimize seizure detection algorithms for implantable applications.

    PubMed

    Raghunathan, Shriram; Gupta, Sumeet K; Markandeya, Himanshu S; Roy, Kaushik; Irazoqui, Pedro P

    2010-10-30

    Implantable neural prostheses that deliver focal electrical stimulation upon demand are rapidly emerging as an alternate therapy for roughly a third of the epileptic patient population that is medically refractory. Seizure detection algorithms enable feedback mechanisms to provide focally and temporally specific intervention. Real-time feasibility and computational complexity often limit most reported detection algorithms to implementations using computers for bedside monitoring or external devices communicating with the implanted electrodes. A comparison of algorithms based on detection efficacy does not present a complete picture of the feasibility of the algorithm with limited computational power, as is the case with most battery-powered applications. We present a two-dimensional design optimization approach that takes into account both detection efficacy and hardware cost in evaluating algorithms for their feasibility in an implantable application. Detection features are first compared for their ability to detect electrographic seizures from micro-electrode data recorded from kainate-treated rats. Circuit models are then used to estimate the dynamic and leakage power consumption of the compared features. A score is assigned based on detection efficacy and the hardware cost for each of the features, then plotted on a two-dimensional design space. An optimal combination of compared features is used to construct an algorithm that provides maximal detection efficacy per unit hardware cost. The methods presented in this paper would facilitate the development of a common platform to benchmark seizure detection algorithms for comparison and feasibility analysis in the next generation of implantable neuroprosthetic devices to treat epilepsy.

  3. Optimization of wireless sensor networks based on chicken swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Qingxi; Zhu, Lihua

    2017-05-01

    In order to reduce the energy consumption of wireless sensor network and improve the survival time of network, the clustering routing protocol of wireless sensor networks based on chicken swarm optimization algorithm was proposed. On the basis of LEACH agreement, it was improved and perfected that the points on the cluster and the selection of cluster head using the chicken group optimization algorithm, and update the location of chicken which fall into the local optimum by Levy flight, enhance population diversity, ensure the global search capability of the algorithm. The new protocol avoided the die of partial node of intensive using by making balanced use of the network nodes, improved the survival time of wireless sensor network. The simulation experiments proved that the protocol is better than LEACH protocol on energy consumption, also is better than that of clustering routing protocol based on particle swarm optimization algorithm.

  4. Threshold optimization of adaptive template filtering for MRI based on intelligent optimization algorithm.

    PubMed

    Guo, Lei; Wu, Youxi; Liu, Xuena; Li, Ying; Xu, Guizhi; Yan, Weili

    2006-01-01

    Intelligent Optimization Algorithm (IOA) mainly includes Immune Algorithm (IA) and Genetic Algorithm (GA). One of the most important characteristics of MRI is the complicated changes of gray level. Traditional filtering algorithms are not fit for MRI. Adaptive Template Filtering Method (ATFM) is an appropriate denoising method for MRI. However, selecting threshold for ATFM is a complicated problem which directly affects the denoising result. Threshold selection has been based on experience. Thus, it was lack of solid theoretical foundation. In this paper, 2 kinds of IOA are proposed for threshold optimization respectively. As our experiment demonstrates, they can effectively solve the problem of threshold selection and perfect ATFM. Through algorithm analysis, the performance of IA surpasses the performance of GA. As a new kind of IOA, IA exhibits its great potential in image processing.

  5. Radiofrequency ablation of the pancreas. I: Definition of optimal thermal kinetic parameters and the effect of simulated portal venous circulation in an ex-vivo porcine model.

    PubMed

    Date, Ravindra S; McMahon, Ray F; Siriwardena, Ajith K

    2005-11-10

    Radiofrequency ablation of pancreatic tumours carries a risk of injury to important structures such as the bile duct and duodenum. We have recently developed an ex-vivo model of radiofrequency ablation of the porcine pancreas. This study evaluates the effect of variations in probe temperature, duration of ablation and simulated portal venous flow on radiofrequency-induced injury. SPECIMEN RETRIEVAL: Pancreata of 30 6-month-old healthy pigs undergoing sacrifice in a commercial abattoir were used. Radiofrequency energy was applied to a pre-marked area of the pancreatic head. Pancreatic head biopsies were taken after ablation to incorporate duodenum, portal vein and bile duct respectively and frozen in liquid nitrogen. For each experiment a portion of the tail of the pancreas was studied as non-ablated control. Paired slides using haematoxylin and eosin (H&E) and nicotinamide adenine dinucleotide (NADH) stains were prepared. The effects of variation in target temperature (100 degrees C to 80 degrees C), duration of ablation and of simulated portal perfusion were studied. Optimal thermal kinetic characteristics were produced by a target temperature of 90 degrees C applied for 5 minutes. At this temperature there was ablation of pancreas without injury to adjacent viscera. Higher temperatures resulted in injury to the bile duct and portal vein. Simulated portal circulation had no effect on ablation. In this ex-vivo study radiofrequency produced a temperature and duration dependent ablation with the optimal characteristics being 90 degrees C for 5 minutes.

  6. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.

    PubMed

    Garro, Beatriz A; Vázquez, Roberto A

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.

  7. STP: A Stochastic Tunneling Algorithm for Global Optimization

    SciTech Connect

    Oblow, E.M.

    1999-05-20

    A stochastic approach to solving continuous function global optimization problems is presented. It builds on the tunneling approach to deterministic optimization presented by Barhen et al, by combining a series of local descents with stochastic searches. The method uses a rejection-based stochastic procedure to locate new local minima descent regions and a fixed Lipschitz-like constant to reject unpromising regions in the search space, thereby increasing the efficiency of the tunneling process. The algorithm is easily implemented in low-dimensional problems and scales easily to large problems. It is less effective without further heuristics in these latter cases, however. Several improvements to the basic algorithm which make use of approximate estimates of the algorithms parameters for implementation in high-dimensional problems are also discussed. Benchmark results are presented, which show that the algorithm is competitive with the best previously reported global optimization techniques. A successful application of the approach to a large-scale seismology problem of substantial computational complexity using a low-dimensional approximation scheme is also reported.

  8. Feature selection for optimized skin tumor recognition using genetic algorithms.

    PubMed

    Handels, H; Ross, T; Kreusch, J; Wolff, H H; Pöppl, S J

    1999-07-01

    In this paper, a new approach to computer supported diagnosis of skin tumors in dermatology is presented. High resolution skin surface profiles are analyzed to recognize malignant melanomas and nevocytic nevi (moles), automatically. In the first step, several types of features are extracted by 2D image analysis methods characterizing the structure of skin surface profiles: texture features based on cooccurrence matrices, Fourier features and fractal features. Then, feature selection algorithms are applied to determine suitable feature subsets for the recognition process. Feature selection is described as an optimization problem and several approaches including heuristic strategies, greedy and genetic algorithms are compared. As quality measure for feature subsets, the classification rate of the nearest neighbor classifier computed with the leaving-one-out method is used. Genetic algorithms show the best results. Finally, neural networks with error back-propagation as learning paradigm are trained using the selected feature sets. Different network topologies, learning parameters and pruning algorithms are investigated to optimize the classification performance of the neural classifiers. With the optimized recognition system a classification performance of 97.7% is achieved.

  9. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms

    PubMed Central

    Vázquez, Roberto A.

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132

  10. Optimization in optical systems revisited: Beyond genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Dubé, Louis

    2013-05-01

    Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

  11. Optimal control of switched linear systems based on Migrant Particle Swarm Optimization algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Fuqiang; Wang, Yongji; Zheng, Zongzhun; Li, Chuanfeng

    2009-10-01

    The optimal control problem for switched linear systems with internally forced switching has more constraints than with externally forced switching. Heavy computations and slow convergence in solving this problem is a major obstacle. In this paper we describe a new approach for solving this problem, which is called Migrant Particle Swarm Optimization (Migrant PSO). Imitating the behavior of a flock of migrant birds, the Migrant PSO applies naturally to both continuous and discrete spaces, in which definitive optimization algorithm and stochastic search method are combined. The efficacy of the proposed algorithm is illustrated via a numerical example.

  12. Harmony search algorithm: application to the redundancy optimization problem

    NASA Astrophysics Data System (ADS)

    Nahas, Nabil; Thien-My, Dao

    2010-09-01

    The redundancy optimization problem is a well known NP-hard problem which involves the selection of elements and redundancy levels to maximize system performance, given different system-level constraints. This article presents an efficient algorithm based on the harmony search algorithm (HSA) to solve this optimization problem. The HSA is a new nature-inspired algorithm which mimics the improvization process of music players. Two kinds of problems are considered in testing the proposed algorithm, with the first limited to the binary series-parallel system, where the problem consists of a selection of elements and redundancy levels used to maximize the system reliability given various system-level constraints; the second problem for its part concerns the multi-state series-parallel systems with performance levels ranging from perfect operation to complete failure, and in which identical redundant elements are included in order to achieve a desirable level of availability. Numerical results for test problems from previous research are reported and compared. The results of HSA showed that this algorithm could provide very good solutions when compared to those obtained through other approaches.

  13. Optimization of warfarin dose by population-specific pharmacogenomic algorithm.

    PubMed

    Pavani, A; Naushad, S M; Rupasree, Y; Kumar, T R; Malempati, A R; Pinjala, R K; Mishra, R C; Kutala, V K

    2012-08-01

    To optimize the warfarin dose, a population-specific pharmacogenomic algorithm was developed using multiple linear regression model with vitamin K intake and cytochrome P450 IIC polypeptide9 (CYP2C9(*)2 and (*)3), vitamin K epoxide reductase complex 1 (VKORC1(*)3, (*)4, D36Y and -1639 G>A) polymorphism profile of subjects who attained therapeutic international normalized ratio as predictors. New algorithm was validated by correlating with Wadelius, International Warfarin Pharmacogenetics Consortium and Gage algorithms; and with the therapeutic dose (r=0.64, P<0.0001). New algorithm was more accurate (Overall: 0.89 vs 0.51, warfarin resistant: 0.96 vs 0.77 and warfarin sensitive: 0.80 vs 0.24), more sensitive (0.87 vs 0.52) and specific (0.93 vs 0.50) compared with clinical data. It has significantly reduced the rate of overestimation (0.06 vs 0.50) and underestimation (0.13 vs 0.48). To conclude, this population-specific algorithm has greater clinical utility in optimizing the warfarin dose, thereby decreasing the adverse effects of suboptimal dose.

  14. Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.

  15. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    EPA Pesticide Factsheets

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  16. Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle

    DOE PAGES

    Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza; ...

    2017-05-18

    We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less

  17. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    EPA Pesticide Factsheets

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  18. Nonconvex compressed sensing by nature-inspired optimization algorithms.

    PubMed

    Liu, Fang; Lin, Leping; Jiao, Licheng; Li, Lingling; Yang, Shuyuan; Hou, Biao; Ma, Hongmei; Yang, Li; Xu, Jinghuan

    2015-05-01

    The l 0 regularized problem in compressed sensing reconstruction is nonconvex with NP-hard computational complexity. Methods available for such problems fall into one of two types: greedy pursuit methods and thresholding methods, which are characterized by suboptimal fast search strategies. Nature-inspired algorithms for combinatorial optimization are famous for their efficient global search strategies and superior performance for nonconvex and nonlinear problems. In this paper, we study and propose nonconvex compressed sensing for natural images by nature-inspired optimization algorithms. We get measurements by the block-based compressed sampling and introduce an overcomplete dictionary of Ridgelet for image blocks. An atom of this dictionary is identified by the parameters of direction, scale and shift. Of them, direction parameter is important for adapting to directional regularity. So we propose a two-stage reconstruction scheme (TS_RS) of nature-inspired optimization algorithms. In the first reconstruction stage, we design a genetic algorithm for a class of image blocks to acquire the estimation of atomic combinations in all directions; and in the second reconstruction stage, we adopt clonal selection algorithm to search better atomic combinations in the sub-dictionary resulted by the first stage for each image block further on scale and shift parameters. In TS_RS, to reduce the uncertainty and instability of the reconstruction problems, we adopt novel and flexible heuristic searching strategies, which include delicately designing the initialization, operators, evaluating methods, and so on. The experimental results show the efficiency and stability of the proposed TS_RS of nature-inspired algorithms, which outperforms classic greedy and thresholding methods.

  19. Optimization of an antenna array using genetic algorithms

    SciTech Connect

    Kiehbadroudinezhad, Shahideh; Noordin, Nor Kamariah; Sali, A.; Abidin, Zamri Zainal

    2014-06-01

    An array of antennas is usually used in long distance communication. The observation of celestial objects necessitates a large array of antennas, such as the Giant Metrewave Radio Telescope (GMRT). Optimizing this kind of array is very important when observing a high performance system. The genetic algorithm (GA) is an optimization solution for these kinds of problems that reconfigures the position of antennas to increase the u-v coverage plane or decrease the sidelobe levels (SLLs). This paper presents how to optimize a correlator antenna array using the GA. A brief explanation about the GA and operators used in this paper (mutation and crossover) is provided. Then, the results of optimization are discussed. The results show that the GA provides efficient and optimum solutions among a pool of candidate solutions in order to achieve the desired array performance for the purposes of radio astronomy. The proposed algorithm is able to distribute the u-v plane more efficiently than GMRT with a more than 95% distribution ratio at snapshot, and to fill the u-v plane from a 20% to more than 68% filling ratio as the number of generations increases in the hour tracking observations. Finally, the algorithm is able to reduce the SLL to –21.75 dB.

  20. Facial Skin Segmentation Using Bacterial Foraging Optimization Algorithm

    PubMed Central

    Bakhshali, Mohamad Amin; Shamsi, Mousa

    2012-01-01

    Nowadays, analyzing human facial image has gained an ever-increasing importance due to its various applications. Image segmentation is required as a very important and fundamental operation for significant analysis and interpretation of images. Among the segmentation methods, image thresholding technique is one of the most well-known methods due to its simplicity, robustness, and high precision. Thresholding based on optimization of the objective function is among the best methods. Numerous methods exist for the optimization process and bacterial foraging optimization (BFO) is among the most efficient and novel ones. Using this method, optimal threshold is extracted and then segmentation of facial skin is performed. In the proposed method, first, the color facial image is converted from RGB color space to Improved Hue-Luminance-Saturation (IHLS) color space, because IHLS has a great mapping of the skin color. To perform thresholding, the entropy-based method is applied. In order to find the optimum threshold, BFO is used. In order to analyze the proposed algorithm, color images of the database of Sahand University of Technology of Tabriz, Iran were used. Then, using Otsu and Kapur methods, thresholding was performed. In order to have a better understanding from the proposed algorithm; genetic algorithm (GA) is also used for finding the optimum threshold. The proposed method shows the better results than other thresholding methods. These results include misclassification error accuracy (88%), non-uniformity accuracy (89%), and the accuracy of region's area error (89%). PMID:23724370

  1. Facial skin segmentation using bacterial foraging optimization algorithm.

    PubMed

    Bakhshali, Mohamad Amin; Shamsi, Mousa

    2012-10-01

    Nowadays, analyzing human facial image has gained an ever-increasing importance due to its various applications. Image segmentation is required as a very important and fundamental operation for significant analysis and interpretation of images. Among the segmentation methods, image thresholding technique is one of the most well-known methods due to its simplicity, robustness, and high precision. Thresholding based on optimization of the objective function is among the best methods. Numerous methods exist for the optimization process and bacterial foraging optimization (BFO) is among the most efficient and novel ones. Using this method, optimal threshold is extracted and then segmentation of facial skin is performed. In the proposed method, first, the color facial image is converted from RGB color space to Improved Hue-Luminance-Saturation (IHLS) color space, because IHLS has a great mapping of the skin color. To perform thresholding, the entropy-based method is applied. In order to find the optimum threshold, BFO is used. In order to analyze the proposed algorithm, color images of the database of Sahand University of Technology of Tabriz, Iran were used. Then, using Otsu and Kapur methods, thresholding was performed. In order to have a better understanding from the proposed algorithm; genetic algorithm (GA) is also used for finding the optimum threshold. The proposed method shows the better results than other thresholding methods. These results include misclassification error accuracy (88%), non-uniformity accuracy (89%), and the accuracy of region's area error (89%).

  2. Hierarchical artificial bee colony algorithm for RFID network planning optimization.

    PubMed

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

  3. A Degree Distribution Optimization Algorithm for Image Transmission

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Yang, Junjie

    2016-09-01

    Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.

  4. Optimization of Circular Ring Microstrip Antenna Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Sathi, V.; Ghobadi, Ch.; Nourinia, J.

    2008-10-01

    Circular ring microstrip antennas have several interesting properties that make it attractive in wireless applications. Although several analysis techniques such as cavity model, generalized transmission line model, Fourier-Hankel transform domain and the method of matched asymptotic expansion have been studied by researchers, there is no efficient design tool that has been incorporated with a suitable optimization algorithm. In this paper, the cavity model analysis along with the genetic optimization algorithm is presented for the design of circular ring microstrip antennas. The method studied here is based on the well-known cavity model and the optimization of the dimensions and feed point location of the circular ring antenna is performed via the genetic optimization algorithm, to achieve an acceptable antenna operation around a desired resonance frequency. The antennas designed by this efficient design procedure were realized experimentally, and the results are compared. In addition, these results are also compared to the results obtained by the commercial electromagnetic simulation tool, the FEM based software, HFSS by ANSOFT.

  5. Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization

    PubMed Central

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness. PMID:24592200

  6. Study of sequential optimal control algorithm smart isolation structure based on Simulink-S function

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohuan; Liu, Yanhui

    2017-01-01

    The study of this paper focuses on smart isolation structure, a method for realizing structural vibration control by using Simulink simulation is proposed according to the proposed sequential optimal control algorithm. In the Simulink simulation environment, A smart isolation structure is used to compare the control effect of three algorithms, i.e., classical optimal control algorithm, linear quadratic gaussian control algorithm and sequential optimal control algorithm under the condition of sensor contaminated with noise. Simulation results show that this method can be applied to the simulation of sequential optimal control algorithm and the proposed sequential optimal control algorithm has a good ability of resisting the noise and better control efficiency.

  7. Acceleration of quantum optimal control theory algorithms with mixing strategies.

    PubMed

    Castro, Alberto; Gross, E K U

    2009-05-01

    We propose the use of mixing strategies to accelerate the convergence of the common iterative algorithms utilized in quantum optimal control theory (QOCT). We show how the nonlinear equations of QOCT can be viewed as a "fixed-point" nonlinear problem. The iterative algorithms for this class of problems may benefit from mixing strategies, as it happens, e.g., in the quest for the ground-state density in Kohn-Sham density-functional theory. We demonstrate, with some numerical examples, how the same mixing schemes utilized in this latter nonlinear problem may significantly accelerate the QOCT iterative procedures.

  8. Preliminary flight evaluation of an engine performance optimization algorithm

    NASA Technical Reports Server (NTRS)

    Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.

    1991-01-01

    A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.

  9. A filter-based evolutionary algorithm for constrained optimization.

    SciTech Connect

    Clevenger, Lauren M.; Hart, William Eugene; Ferguson, Lauren Ann

    2004-02-01

    We introduce a filter-based evolutionary algorithm (FEA) for constrained optimization. The filter used by an FEA explicitly imposes the concept of dominance on a partially ordered solution set. We show that the algorithm is provably robust for both linear and nonlinear problems and constraints. FEAs use a finite pattern of mutation offsets, and our analysis is closely related to recent convergence results for pattern search methods. We discuss how properties of this pattern impact the ability of an FEA to converge to a constrained local optimum.

  10. Optimization of multicast optical networks with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  11. Global structual optimizations of surface systems with a genetic algorithm

    SciTech Connect

    Chuang, Feng-Chuan

    2005-01-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Aln algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems.

  12. Multi-objective nested algorithms for optimal reservoir operation

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Solomatine, Dimitri

    2016-04-01

    The optimal reservoir operation is in general a multi-objective problem, meaning that multiple objectives are to be considered at the same time. For solving multi-objective optimization problems there exist a large number of optimization algorithms - which result in a generation of a Pareto set of optimal solutions (typically containing a large number of them), or more precisely, its approximation. At the same time, due to the complexity and computational costs of solving full-fledge multi-objective optimization problems some authors use a simplified approach which is generically called "scalarization". Scalarization transforms the multi-objective optimization problem to a single-objective optimization problem (or several of them), for example by (a) single objective aggregated weighted functions, or (b) formulating some objectives as constraints. We are using the approach (a). A user can decide how many multi-objective single search solutions will generate, depending on the practical problem at hand and by choosing a particular number of the weight vectors that are used to weigh the objectives. It is not guaranteed that these solutions are Pareto optimal, but they can be treated as a reasonably good and practically useful approximation of a Pareto set, albeit small. It has to be mentioned that the weighted-sum approach has its known shortcomings because the linear scalar weights will fail to find Pareto-optimal policies that lie in the concave region of the Pareto front. In this context the considered approach is implemented as follows: there are m sets of weights {w1i, …wni} (i starts from 1 to m), and n objectives applied to single objective aggregated weighted sum functions of nested dynamic programming (nDP), nested stochastic dynamic programming (nSDP) and nested reinforcement learning (nRL). By employing the multi-objective optimization by a sequence of single-objective optimization searches approach, these algorithms acquire the multi-objective properties

  13. Integer programming model for optimizing bus timetable using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wihartiko, F. D.; Buono, A.; Silalahi, B. P.

    2017-01-01

    Bus timetable gave an information for passengers to ensure the availability of bus services. Timetable optimal condition happened when bus trips frequency could adapt and suit with passenger demand. In the peak time, the number of bus trips would be larger than the off-peak time. If the number of bus trips were more frequent than the optimal condition, it would make a high operating cost for bus operator. Conversely, if the number of trip was less than optimal condition, it would make a bad quality service for passengers. In this paper, the bus timetabling problem would be solved by integer programming model with modified genetic algorithm. Modification was placed in the chromosomes design, initial population recovery technique, chromosomes reconstruction and chromosomes extermination on specific generation. The result of this model gave the optimal solution with accuracy 99.1%.

  14. All-Optical Implementation of the Ant Colony Optimization Algorithm

    PubMed Central

    Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare

    2016-01-01

    We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems. PMID:27222098

  15. All-Optical Implementation of the Ant Colony Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare

    2016-05-01

    We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems.

  16. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen

    NASA Astrophysics Data System (ADS)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2012-12-01

    High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach

  17. CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET

    PubMed Central

    Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel

    2016-01-01

    A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO. PMID:27149517

  18. CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET.

    PubMed

    Aadil, Farhan; Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel

    2016-01-01

    A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO.

  19. Random search optimization based on genetic algorithm and discriminant function

    NASA Technical Reports Server (NTRS)

    Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.

    1990-01-01

    The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.

  20. Optimization of broadband semiconductor chirped mirrors with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Dems, Maciej; Wnuk, Paweł; Wasylczyk, Piotr; Zinkiewicz, Łukasz; Wójcik-Jedlińska, Anna; Regiński, Kazimierz; Hejduk, Krzysztof; Jasik, Agata

    2016-10-01

    Genetic algorithm was applied for optimization of dispersion properties in semiconductor Bragg reflectors for applications in femtosecond lasers. Broadband, large negative group-delay dispersion was achieved in the optimized design: The group-delay dispersion (GDD) as large as -3500 fs2 was theoretically obtained over a 10-nm bandwidth. The designed structure was manufactured and tested, providing GDD -3320 fs2 over a 7-nm bandwidth. The mirror performance was verified in semiconductor structures grown with molecular beam epitaxy. The mirror was tested in a passively mode-locked Yb:KYW laser.

  1. Random search optimization based on genetic algorithm and discriminant function

    NASA Technical Reports Server (NTRS)

    Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.

    1990-01-01

    The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.

  2. A versatile multi-objective FLUKA optimization using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Vlachoudis, Vasilis; Antoniucci, Guido Arnau; Mathot, Serge; Kozlowska, Wioletta Sandra; Vretenar, Maurizio

    2017-09-01

    Quite often Monte Carlo simulation studies require a multi phase-space optimization, a complicated task, heavily relying on the operator experience and judgment. Examples of such calculations are shielding calculations with stringent conditions in the cost, in residual dose, material properties and space available, or in the medical field optimizing the dose delivered to a patient under a hadron treatment. The present paper describes our implementation inside flair[1] the advanced user interface of FLUKA[2,3] of a multi-objective Genetic Algorithm[Erreur ! Source du renvoi introuvable.] to facilitate the search for the optimum solution.

  3. An adaptive penalty method for DIRECT algorithm in engineering optimization

    NASA Astrophysics Data System (ADS)

    Vilaça, Rita; Rocha, Ana Maria A. C.

    2012-09-01

    The most common approach for solving constrained optimization problems is based on penalty functions, where the constrained problem is transformed into a sequence of unconstrained problem by penalizing the objective function when constraints are violated. In this paper, we analyze the implementation of an adaptive penalty method, within the DIRECT algorithm, in which the constraints that are more difficult to be satisfied will have relatively higher penalty values. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.

  4. Genetic algorithm application in optimization of wireless sensor networks.

    PubMed

    Norouzi, Ali; Zaim, A Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs.

  5. Parallel Algorithms for Graph Optimization using Tree Decompositions

    SciTech Connect

    Sullivan, Blair D; Weerapurage, Dinesh P; Groer, Christopher S

    2012-06-01

    Although many $\\cal{NP}$-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of the necessary dynamic programming tables and excessive runtimes of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree decomposition-based approach to solve the maximum weighted independent set problem. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques.

  6. Quantum algorithm for molecular properties and geometry optimization.

    PubMed

    Kassal, Ivan; Aspuru-Guzik, Alán

    2009-12-14

    Quantum computers, if available, could substantially accelerate quantum simulations. We extend this result to show that the computation of molecular properties (energy derivatives) could also be sped up using quantum computers. We provide a quantum algorithm for the numerical evaluation of molecular properties, whose time cost is a constant multiple of the time needed to compute the molecular energy, regardless of the size of the system. Molecular properties computed with the proposed approach could also be used for the optimization of molecular geometries or other properties. For that purpose, we discuss the benefits of quantum techniques for Newton's method and Householder methods. Finally, global minima for the proposed optimizations can be found using the quantum basin hopper algorithm, which offers an additional quadratic reduction in cost over classical multi-start techniques.

  7. Genetic Algorithm Application in Optimization of Wireless Sensor Networks

    PubMed Central

    Norouzi, Ali; Zaim, A. Halim

    2014-01-01

    There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235

  8. Implementation and Optimization of Image Processing Algorithms on Embedded GPU

    NASA Astrophysics Data System (ADS)

    Singhal, Nitin; Yoo, Jin Woo; Choi, Ho Yeol; Park, In Kyu

    In this paper, we analyze the key factors underlying the implementation, evaluation, and optimization of image processing and computer vision algorithms on embedded GPU using OpenGL ES 2.0 shader model. First, we present the characteristics of the embedded GPU and its inherent advantage when compared to embedded CPU. Additionally, we propose techniques to achieve increased performance with optimized shader design. To show the effectiveness of the proposed techniques, we employ cartoon-style non-photorealistic rendering (NPR), speeded-up robust feature (SURF) detection, and stereo matching as our example algorithms. Performance is evaluated in terms of the execution time and speed-up achieved in comparison with the implementation on embedded CPU.

  9. Optimization of telescope scheduling. Algorithmic research and scientific policy

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, A. I.; Yáñez, J.

    2003-05-01

    The use of very expensive facilities in Modern Astronomy has demonstrated the importance of automatic modes in the operation of large telescopes. As a consequence, several mathematical tools have been applied and developed to solve the (NP-hard) scheduling optimization problem: from simple heuristics to the more complex genetic algorithms or neural networks. In this work, the basic scheduling problem is translated into mathematical language and two main methods are used to solve it: neighborhood search methods and genetic algorithms; both of them are analysed. It is shown that the algorithms are sensitive to the scientific policy by means of the definition of the objective function (F) and also by the assignment of scientific priorities to the projects. The definition of F is not trivial and requires a detailed discussion among the Astronomical Community.

  10. Gradient gravitational search: An efficient metaheuristic algorithm for global optimization.

    PubMed

    Dash, Tirtharaj; Sahu, Prabhat K

    2015-05-30

    The adaptation of novel techniques developed in the field of computational chemistry to solve the concerned problems for large and flexible molecules is taking the center stage with regard to efficient algorithm, computational cost and accuracy. In this article, the gradient-based gravitational search (GGS) algorithm, using analytical gradients for a fast minimization to the next local minimum has been reported. Its efficiency as metaheuristic approach has also been compared with Gradient Tabu Search and others like: Gravitational Search, Cuckoo Search, and Back Tracking Search algorithms for global optimization. Moreover, the GGS approach has also been applied to computational chemistry problems for finding the minimal value potential energy of two-dimensional and three-dimensional off-lattice protein models. The simulation results reveal the relative stability and physical accuracy of protein models with efficient computational cost. © 2015 Wiley Periodicals, Inc.

  11. A hierarchical evolutionary algorithm for multiobjective optimization in IMRT

    PubMed Central

    Holdsworth, Clay; Kim, Minsun; Liao, Jay; Phillips, Mark H.

    2010-01-01

    Purpose: The current inverse planning methods for intensity modulated radiation therapy (IMRT) are limited because they are not designed to explore the trade-offs between the competing objectives of tumor and normal tissues. The goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pareto optimal plans. Methods: A hierarchical evolutionary multiobjective algorithm designed to quickly generate a small diverse Pareto optimal set of IMRT plans that meet all clinical constraints and reflect the optimal trade-offs in any radiation therapy plan was developed. The top level of the hierarchical algorithm is a multiobjective evolutionary algorithm (MOEA). The genes of the individuals generated in the MOEA are the parameters that define the penalty function minimized during an accelerated deterministic IMRT optimization that represents the bottom level of the hierarchy. The MOEA incorporates clinical criteria to restrict the search space through protocol objectives and then uses Pareto optimality among the fitness objectives to select individuals. The population size is not fixed, but a specialized niche effect, domination advantage, is used to control the population and plan diversity. The number of fitness objectives is kept to a minimum for greater selective pressure, but the number of genes is expanded for flexibility that allows a better approximation of the Pareto front. Results: The MOEA improvements were evaluated for two example prostate cases with one target and two organs at risk (OARs). The population of plans generated by the modified MOEA was closer to the Pareto front than populations of plans generated using a standard genetic algorithm package. Statistical significance of the method was established by compiling the results of 25 multiobjective optimizations using each method. From these sets of 12–15 plans, any random plan selected from a MOEA

  12. Optimizing phase-estimation algorithms for diamond spin magnetometry

    NASA Astrophysics Data System (ADS)

    Nusran, N. M.; Dutt, M. V. Gurudev

    2014-07-01

    We present a detailed theoretical and numerical study discussing the application and optimization of phase-estimation algorithms (PEAs) to diamond spin magnetometry. We compare standard Ramsey magnetometry, the nonadaptive PEA (NAPEA), and quantum PEA (QPEA) incorporating error checking. Our results show that the NAPEA requires lower measurement fidelity, has better dynamic range, and greater consistency in sensitivity. We elucidate the importance of dynamic range to Ramsey magnetic imaging with diamond spins, and introduce the application of PEAs to time-dependent magnetometry.

  13. Managing and learning with multiple models: Objectives and optimization algorithms

    USGS Publications Warehouse

    Probert, William J. M.; Hauser, C.E.; McDonald-Madden, E.; Runge, M.C.; Baxter, P.W.J.; Possingham, H.P.

    2011-01-01

    The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. ?? 2010 Elsevier Ltd.

  14. Optimizing remediation of an unconfined aquifer using a hybrid algorithm.

    PubMed

    Hsiao, Chin-Tsai; Chang, Liang-Cheng

    2005-01-01

    We present a novel hybrid algorithm, integrating a genetic algorithm (GA) and constrained differential dynamic programming (CDDP), to achieve remediation planning for an unconfined aquifer. The objective function includes both fixed and dynamic operation costs. GA determines the primary structure of the proposed algorithm, and a chromosome therein implemented by a series of binary digits represents a potential network design. The time-varying optimal operation cost associated with the network design is computed by the CDDP, in which is embedded a numerical transport model. Several computational approaches, including a chromosome bookkeeping procedure, are implemented to alleviate computational loading. Additionally, case studies that involve fixed and time-varying operating costs for confined and unconfined aquifers, respectively, are discussed to elucidate the effectiveness of the proposed algorithm. Simulation results indicate that the fixed costs markedly affect the optimal design, including the number and locations of the wells. Furthermore, the solution obtained using the confined approximation for an unconfined aquifer may be infeasible, as determined by an unconfined simulation.

  15. Algorithm Optimally Orders Forward-Chaining Inference Rules

    NASA Technical Reports Server (NTRS)

    James, Mark

    2008-01-01

    People typically develop knowledge bases in a somewhat ad hoc manner by incrementally adding rules with no specific organization. This often results in a very inefficient execution of those rules since they are so often order sensitive. This is relevant to tasks like Deep Space Network in that it allows the knowledge base to be incrementally developed and have it automatically ordered for efficiency. Although data flow analysis was first developed for use in compilers for producing optimal code sequences, its usefulness is now recognized in many software systems including knowledge-based systems. However, this approach for exhaustively computing data-flow information cannot directly be applied to inference systems because of the ubiquitous execution of the rules. An algorithm is presented that efficiently performs a complete producer/consumer analysis for each antecedent and consequence clause in a knowledge base to optimally order the rules to minimize inference cycles. An algorithm was developed that optimally orders a knowledge base composed of forwarding chaining inference rules such that independent inference cycle executions are minimized, thus, resulting in significantly faster execution. This algorithm was integrated into the JPL tool Spacecraft Health Inference Engine (SHINE) for verification and it resulted in a significant reduction in inference cycles for what was previously considered an ordered knowledge base. For a knowledge base that is completely unordered, then the improvement is much greater.

  16. Threshold matrix for digital halftoning by genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero

    1998-10-01

    Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.

  17. Optimization algorithm performance in determining optimal controls in human movement analyses.

    PubMed

    Neptune, R R

    1999-04-01

    The objective of this study was to evaluate the performance of different multivariate optimization algorithms by solving a "tracking" problem using a forward dynamic model of pedaling. The tracking problem was defined as solving for the muscle controls (muscle stimulation onset, offset, and magnitude) that minimized the error between experimentally collected kinetic and kinematic data and the simulation results of pedaling at 90 rpm and 250 W. Three different algorithms were evaluated: a downhill simplex method, a gradient-based sequential quadratic programming algorithm, and a simulated annealing global optimization routine. The results showed that the simulated annealing algorithm performed for superior to the conventional routines by converging more rapidly and avoiding local minima.

  18. Optimizing SRF Gun Cavity Profiles in a Genetic Algorithm Framework

    SciTech Connect

    Alicia Hofler, Pavel Evtushenko, Frank Marhauser

    2009-09-01

    Automation of DC photoinjector designs using a genetic algorithm (GA) based optimization is an accepted practice in accelerator physics. Allowing the gun cavity field profile shape to be varied can extend the utility of this optimization methodology to superconducting and normal conducting radio frequency (SRF/RF) gun based injectors. Finding optimal field and cavity geometry configurations can provide guidance for cavity design choices and verify existing designs. We have considered two approaches for varying the electric field profile. The first is to determine the optimal field profile shape that should be used independent of the cavity geometry, and the other is to vary the geometry of the gun cavity structure to produce an optimal field profile. The first method can provide a theoretical optimal and can illuminate where possible gains can be made in field shaping. The second method can produce more realistically achievable designs that can be compared to existing designs. In this paper, we discuss the design and implementation for these two methods for generating field profiles for SRF/RF guns in a GA based injector optimization scheme and provide preliminary results.

  19. Combined treatment for facial rejuvenation using an optimized pulsed light source followed by a fractional non-ablative laser.

    PubMed

    Chan, C Stanley; Saedi, Nazanin; Mickle, Clinzo; Dover, Jeffrey S

    2013-09-01

    Combination laser treatments can potentially increase the effectiveness of treatment without the additional downtime associated with another procedure. To assess the effectiveness and safety of combining non-ablative fractional treatments with optimized intense pulsed light. Ten subjects (Group A) received full face treatments with a non-ablative fractional either followed or preceded by an optimized intense pulsed light source. Twenty-six subjects (Group B) received only full face treatments with the same non-ablative, fractional laser device. For Group A, the overall average Fitzpatrick Wrinkle Scale for all patients improved from 6.3 ± 1.1 at baseline to 5.9 ± 0.8 one month following one treatment for an average improvement of 0.4 ± 0.6 (P < 0.10 paired t-test n = 9). The average pigment improvement score was 1.8 ± 0.9 on a 4-point scale. In Group B, the average Fitzpatrick Wrinkle Scale improved from 6.0 ± 1.6 at baseline to 5.2 ± 1.4 at 3 months for an average improvement of 0.8 ± 0.7 (P < 0.001, n = 26 paired t-test). The average pigment improvement score was 1.4 ± 1.0 (P < 0.001, t-test, n = 26). Adverse events were similar in the two groups. The combination of an optimized intense pulsed light source with a non-ablative fractional laser during the same treatment session is safe and effective. © 2013 Wiley Periodicals, Inc.

  20. A diagnostic algorithm to optimize data collection and interpretation of Ripple Maps in atrial tachycardias.

    PubMed

    Koa-Wing, Michael; Nakagawa, Hiroshi; Luther, Vishal; Jamil-Copley, Shahnaz; Linton, Nick; Sandler, Belinda; Qureshi, Norman; Peters, Nicholas S; Davies, D Wyn; Francis, Darrel P; Jackman, Warren; Kanagaratnam, Prapa

    2015-11-15

    Ripple Mapping (RM) is designed to overcome the limitations of existing isochronal 3D mapping systems by representing the intracardiac electrogram as a dynamic bar on a surface bipolar voltage map that changes in height according to the electrogram voltage-time relationship, relative to a fiduciary point. We tested the hypothesis that standard approaches to atrial tachycardia CARTO™ activation maps were inadequate for RM creation and interpretation. From the results, we aimed to develop an algorithm to optimize RMs for future prospective testing on a clinical RM platform. CARTO-XP™ activation maps from atrial tachycardia ablations were reviewed by two blinded assessors on an off-line RM workstation. Ripple Maps were graded according to a diagnostic confidence scale (Grade I - high confidence with clear pattern of activation through to Grade IV - non-diagnostic). The RM-based diagnoses were corroborated against the clinical diagnoses. 43 RMs from 14 patients were classified as Grade I (5 [11.5%]); Grade II (17 [39.5%]); Grade III (9 [21%]) and Grade IV (12 [28%]). Causes of low gradings/errors included the following: insufficient chamber point density; window-of-interest<100% of cycle length (CL); <95% tachycardia CL mapped; variability of CL and/or unstable fiducial reference marker; and suboptimal bar height and scar settings. A data collection and map interpretation algorithm has been developed to optimize Ripple Maps in atrial tachycardias. This algorithm requires prospective testing on a real-time clinical platform. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Constrained Multi-Level Algorithm for Trajectory Optimization

    NASA Astrophysics Data System (ADS)

    Adimurthy, V.; Tandon, S. R.; Jessy, Antony; Kumar, C. Ravi

    The emphasis on low cost access to space inspired many recent developments in the methodology of trajectory optimization. Ref.1 uses a spectral patching method for optimization, where global orthogonal polynomials are used to describe the dynamical constraints. A two-tier approach of optimization is used in Ref.2 for a missile mid-course trajectory optimization. A hybrid analytical/numerical approach is described in Ref.3, where an initial analytical vacuum solution is taken and gradually atmospheric effects are introduced. Ref.4 emphasizes the fact that the nonlinear constraints which occur in the initial and middle portions of the trajectory behave very nonlinearly with respect the variables making the optimization very difficult to solve in the direct and indirect shooting methods. The problem is further made complex when different phases of the trajectory have different objectives of optimization and also have different path constraints. Such problems can be effectively addressed by multi-level optimization. In the multi-level methods reported so far, optimization is first done in identified sub-level problems, where some coordination variables are kept fixed for global iteration. After all the sub optimizations are completed, higher-level optimization iteration with all the coordination and main variables is done. This is followed by further sub system optimizations with new coordination variables. This process is continued until convergence. In this paper we use a multi-level constrained optimization algorithm which avoids the repeated local sub system optimizations and which also removes the problem of non-linear sensitivity inherent in the single step approaches. Fall-zone constraints, structural load constraints and thermal constraints are considered. In this algorithm, there is only a single multi-level sequence of state and multiplier updates in a framework of an augmented Lagrangian. Han Tapia multiplier updates are used in view of their special role in

  2. Particle Swarm Optimization algorithms for geophysical inversion, practical hints

    NASA Astrophysics Data System (ADS)

    Garcia Gonzalo, E.; Fernandez Martinez, J.; Fernandez Alvarez, J.; Kuzma, H.; Menendez Perez, C.

    2008-12-01

    PSO is a stochastic optimization technique that has been successfully used in many different engineering fields. PSO algorithm can be physically interpreted as a stochastic damped mass-spring system (Fernandez Martinez and Garcia Gonzalo 2008). Based on this analogy we present a whole family of PSO algorithms and their respective first order and second order stability regions. Their performance is also checked using synthetic functions (Rosenbrock and Griewank) showing a degree of ill-posedness similar to that found in many geophysical inverse problems. Finally, we present the application of these algorithms to the analysis of a Vertical Electrical Sounding inverse problem associated to a seawater intrusion in a coastal aquifer in South Spain. We analyze the role of PSO parameters (inertia, local and global accelerations and discretization step), both in convergence curves and in the a posteriori sampling of the depth of an intrusion. Comparison is made with binary genetic algorithms and simulated annealing. As result of this analysis, practical hints are given to select the correct algorithm and to tune the corresponding PSO parameters. Fernandez Martinez, J.L., Garcia Gonzalo, E., 2008a. The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications. DOI:10.1155/2008/861275.

  3. Quantum-based algorithm for optimizing artificial neural networks.

    PubMed

    Tzyy-Chyang Lu; Gwo-Ruey Yu; Jyh-Ching Juang

    2013-08-01

    This paper presents a quantum-based algorithm for evolving artificial neural networks (ANNs). The aim is to design an ANN with few connections and high classification performance by simultaneously optimizing the network structure and the connection weights. Unlike most previous studies, the proposed algorithm uses quantum bit representation to codify the network. As a result, the connectivity bits do not indicate the actual links but the probability of the existence of the connections, thus alleviating mapping problems and reducing the risk of throwing away a potential candidate. In addition, in the proposed model, each weight space is decomposed into subspaces in terms of quantum bits. Thus, the algorithm performs a region by region exploration, and evolves gradually to find promising subspaces for further exploitation. This is helpful to provide a set of appropriate weights when evolving the network structure and to alleviate the noisy fitness evaluation problem. The proposed model is tested on four benchmark problems, namely breast cancer and iris, heart, and diabetes problems. The experimental results show that the proposed algorithm can produce compact ANN structures with good generalization ability compared to other algorithms.

  4. Optimization of Optical Systems Using Genetic Algorithms: a Comparison Among Different Implementations of The Algorithm

    NASA Astrophysics Data System (ADS)

    López-Medina, Mario E.; Vázquez-Montiel, Sergio; Herrera-Vázquez, Joel

    2008-04-01

    The Genetic Algorithms, GAs, are a method of global optimization that we use in the stage of optimization in the design of optical systems. In the case of optical design and optimization, the efficiency and convergence speed of GAs are related with merit function, crossover operator, and mutation operator. In this study we present a comparison between several genetic algorithms implementations using different optical systems, like achromatic cemented doublet, air spaced doublet and telescopes. We do the comparison varying the type of design parameters and the number of parameters to be optimized. We also implement the GAs using discreet parameters with binary chains and with continuous parameter using real numbers in the chromosome; analyzing the differences in the time taken to find the solution and the precision in the results between discreet and continuous parameters. Additionally, we use different merit function to optimize the same optical system. We present the obtained results in tables, graphics and a detailed example; and of the comparison we conclude which is the best way to implement GAs for design and optimization optical system. The programs developed for this work were made using the C programming language and OSLO for the simulation of the optical systems.

  5. Optimal robust motion controller design using multiobjective genetic algorithm.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm-differential evolution.

  6. Chaos Time Series Prediction Based on Membrane Optimization Algorithms

    PubMed Central

    Li, Meng; Yi, Liangzhong; Pei, Zheng; Gao, Zhisheng

    2015-01-01

    This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ, m) and least squares support vector machine (LS-SVM) (γ, σ) by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM) broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). PMID:25874249

  7. An Accelerated Particle Swarm Optimization Algorithm on Parametric Optimization of WEDM of Die-Steel

    NASA Astrophysics Data System (ADS)

    Muthukumar, V.; Suresh Babu, A.; Venkatasamy, R.; Senthil Kumar, N.

    2015-01-01

    This study employed Accelerated Particle Swarm Optimization (APSO) algorithm to optimize the machining parameters that lead to a maximum Material Removal Rate (MRR), minimum surface roughness and minimum kerf width values for Wire Electrical Discharge Machining (WEDM) of AISI D3 die-steel. Four machining parameters that are optimized using APSO algorithm include Pulse on-time, Pulse off-time, Gap voltage, Wire feed. The machining parameters are evaluated by Taguchi's L9 Orthogonal Array (OA). Experiments are conducted on a CNC WEDM and output responses such as material removal rate, surface roughness and kerf width are determined. The empirical relationship between control factors and output responses are established by using linear regression models using Minitab software. Finally, APSO algorithm, a nature inspired metaheuristic technique, is used to optimize the WEDM machining parameters for higher material removal rate and lower kerf width with surface roughness as constraint. The confirmation experiments carried out with the optimum conditions show that the proposed algorithm was found to be potential in finding numerous optimal input machining parameters which can fulfill wide requirements of a process engineer working in WEDM industry.

  8. Resistive Network Optimal Power Flow: Uniqueness and Algorithms

    SciTech Connect

    Tan, CW; Cai, DWH; Lou, X

    2015-01-01

    The optimal power flow (OPF) problem minimizes the power loss in an electrical network by optimizing the voltage and power delivered at the network buses, and is a nonconvex problem that is generally hard to solve. By leveraging a recent development on the zero duality gap of OPF, we propose a second-order cone programming convex relaxation of the resistive network OPF, and study the uniqueness of the optimal solution using differential topology, especially the Poincare-Hopf Index Theorem. We characterize the global uniqueness for different network topologies, e.g., line, radial, and mesh networks. This serves as a starting point to design distributed local algorithms with global behaviors that have low complexity, are computationally fast, and can run under synchronous and asynchronous settings in practical power grids.

  9. A universal optimization strategy for ant colony optimization algorithms based on the Physarum-inspired mathematical model.

    PubMed

    Zhang, Zili; Gao, Chao; Liu, Yuxin; Qian, Tao

    2014-09-01

    Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP.

  10. A heterogeneous algorithm for PDT dose optimization for prostate

    PubMed Central

    Altschuler, Martin D.; Zhu, Timothy C.; Hu, Yida; Finlay, Jarod C.; Dimofte, Andreea; Wang, Ken; Li, Jun; Cengel, Keith; Malkowicz, S.B.; Hahn, Stephen M.

    2015-01-01

    The object of this study is to develop optimization procedures that account for both the optical heterogeneity as well as photosensitizer (PS) drug distribution of the patient prostate and thereby enable delivery of uniform photodynamic dose to that gland. We use the heterogeneous optical properties measured for a patient prostate to calculate a light fluence kernel (table). PS distribution is then multiplied with the light fluence kernel to form the PDT dose kernel. The Cimmino feasibility algorithm, which is fast, linear, and always converges reliably, is applied as a search tool to choose the weights of the light sources to optimize PDT dose. Maximum and minimum PDT dose limits chosen for sample points in the prostate constrain the solution for the source strengths of the cylindrical diffuser fibers (CDF). We tested the Cimmino optimization procedures using the light fluence kernel generated for heterogeneous optical properties, and compared the optimized treatment plans with those obtained using homogeneous optical properties. To study how different photosensitizer distributions in the prostate affect optimization, comparisons of light fluence rate and PDT dose distributions were made with three distributions of photosensitizer: uniform, linear spatial distribution, and the measured PS distribution. The study shows that optimization of individual light source positions and intensities are feasible for the heterogeneous prostate during PDT. PMID:25914793

  11. A heterogeneous algorithm for PDT dose optimization for prostate

    NASA Astrophysics Data System (ADS)

    Altschuler, Martin D.; Zhu, Timothy C.; Hu, Yida; Finlay, Jarod C.; Dimofte, Andreea; Wang, Ken; Li, Jun; Cengel, Keith; Malkowicz, S. B.; Hahn, Stephen M.

    2009-02-01

    The object of this study is to develop optimization procedures that account for both the optical heterogeneity as well as photosensitizer (PS) drug distribution of the patient prostate and thereby enable delivery of uniform photodynamic dose to that gland. We use the heterogeneous optical properties measured for a patient prostate to calculate a light fluence kernel (table). PS distribution is then multiplied with the light fluence kernel to form the PDT dose kernel. The Cimmino feasibility algorithm, which is fast, linear, and always converges reliably, is applied as a search tool to choose the weights of the light sources to optimize PDT dose. Maximum and minimum PDT dose limits chosen for sample points in the prostate constrain the solution for the source strengths of the cylindrical diffuser fibers (CDF). We tested the Cimmino optimization procedures using the light fluence kernel generated for heterogeneous optical properties, and compared the optimized treatment plans with those obtained using homogeneous optical properties. To study how different photosensitizer distributions in the prostate affect optimization, comparisons of light fluence rate and PDT dose distributions were made with three distributions of photosensitizer: uniform, linear spatial distribution, and the measured PS distribution. The study shows that optimization of individual light source positions and intensities are feasible for the heterogeneous prostate during PDT.

  12. Coil optimization for electromagnetic levitation using a genetic like algorithm

    NASA Astrophysics Data System (ADS)

    Royer, Z. L.; Tackes, C.; LeSar, R.; Napolitano, R. E.

    2013-06-01

    The technique of electromagnetic levitation (EML) provides a means for thermally processing an electrically conductive specimen in a containerless manner. For the investigation of metallic liquids and related melting or freezing transformations, the elimination of substrate-induced nucleation affords access to much higher undercooling than otherwise attainable. With heating and levitation both arising from the currents induced by the coil, the performance of any EML system depends on controlling the balance between lifting forces and heating effects, as influenced by the levitation coil geometry. In this work, a genetic algorithm is developed and utilized to optimize the design of electromagnetic levitation coils. The optimization is targeted specifically to reduce the steady-state temperature of the stably levitated metallic specimen. Reductions in temperature of nominally 70 K relative to that obtained with the initial design are achieved through coil optimization, and the results are compared with experiments for aluminum. Additionally, the optimization method is shown to be robust, generating a small range of converged results from a variety of initial starting conditions. While our optimization criterion was set to achieve the lowest possible sample temperature, the method is general and can be used to optimize for other criteria as well.

  13. [Research on and application of hybrid optimization algorithm in Brillouin scattering spectrum parameter extraction problem].

    PubMed

    Zhang, Yan-jun; Zhang, Shu-guo; Fu, Guang-wei; Li, Da; Liu, Yin; Bi, Wei-hong

    2012-04-01

    This paper presents a novel algorithm which blends optimize particle swarm optimization (PSO) algorithm and Levenberg-Marquardt (LM) algorithm according to the probability. This novel algorithm can be used for Pseudo-Voigt type of Brillouin scattering spectrum to improve the degree of fitting and precision of shift extraction. This algorithm uses PSO algorithm as the main frame. First, PSO algorithm is used in global search, after a certain number of optimization every time there generates a random probability rand (0, 1). If rand (0, 1) is less than or equal to the predetermined probability P, the optimal solution obtained by PSO algorithm will be used as the initial value of LM algorithm. Then LM algorithm is used in local depth search and the solution of LM algorithm is used to replace the previous PSO algorithm for optimal solutions. Again the PSO algorithm is used for global search. If rand (0, 1) was greater than P, PSO algorithm is still used in search, waiting the next optimization to generate random probability rand (0, 1) to judge. Two kinds of algorithms are alternatively used to obtain ideal global optimal solution. Simulation analysis and experimental results show that the new algorithm overcomes the shortcomings of single algorithm and improves the degree of fitting and precision of frequency shift extraction in Brillouin scattering spectrum, and fully prove that the new method is practical and feasible.

  14. An implementable algorithm for the optimal design centering, tolerancing, and tuning problem

    SciTech Connect

    Polak, E.

    1982-05-01

    An implementable master algorithm for solving optimal design centering, tolerancing, and tuning problems is presented. This master algorithm decomposes the original nondifferentiable optimization problem into a sequence of ordinary nonlinear programming problems. The master algorithm generates sequences with accumulation points that are feasible and satisfy a new optimality condition, which is shown to be stronger than the one previously used for these problems.

  15. Efficiency Improvements to the Displacement Based Multilevel Structural Optimization Algorithm

    NASA Technical Reports Server (NTRS)

    Plunkett, C. L.; Striz, A. G.; Sobieszczanski-Sobieski, J.

    2001-01-01

    subsystems level, where the derivative verification feature of the optimizer NPSOL had been utilized in the optimizations. This resulted in large runtimes. In this paper, the optimizations were repeated without using the derivative verification, and the results are compared to those from the previous work. Also, the optimizations were run on both, a network of SUN workstations using the MPICH implementation of the Message Passing Interface (MPI) and on the faster Beowulf cluster at ICASE, NASA Langley Research Center, using the LAM implementation of UP]. The results on both systems were consistent and showed that it is not necessary to verify the derivatives and that this gives a large increase in efficiency of the DMSO algorithm.

  16. Efficient and scalable Pareto optimization by evolutionary local selection algorithms.

    PubMed

    Menczer, F; Degeratu, M; Street, W N

    2000-01-01

    Local selection is a simple selection scheme in evolutionary computation. Individual fitnesses are accumulated over time and compared to a fixed threshold, rather than to each other, to decide who gets to reproduce. Local selection, coupled with fitness functions stemming from the consumption of finite shared environmental resources, maintains diversity in a way similar to fitness sharing. However, it is more efficient than fitness sharing and lends itself to parallel implementations for distributed tasks. While local selection is not prone to premature convergence, it applies minimal selection pressure to the population. Local selection is, therefore, particularly suited to Pareto optimization or problem classes where diverse solutions must be covered. This paper introduces ELSA, an evolutionary algorithm employing local selection and outlines three experiments in which ELSA is applied to multiobjective problems: a multimodal graph search problem, and two Pareto optimization problems. In all these experiments, ELSA significantly outperforms other well-known evolutionary algorithms. The paper also discusses scalability, parameter dependence, and the potential distributed applications of the algorithm.

  17. Optimal design of link systems using successive zooming genetic algorithm

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Doo; Sohn, Chang-hyun; Kwon, Soon-Bum; Lim, Jae-gyoo

    2009-07-01

    Link-systems have been around for a long time and are still used to control motion in diverse applications such as automobiles, robots and industrial machinery. This study presents a procedure involving the use of a genetic algorithm for the optimal design of single four-bar link systems and a double four-bar link system used in diesel engine. We adopted the Successive Zooming Genetic Algorithm (SZGA), which has one of the most rapid convergence rates among global search algorithms. The results are verified by experiment and the Recurdyn dynamic motion analysis package. During the optimal design of single four-bar link systems, we found in the case of identical input/output (IO) angles that the initial and final configurations show certain symmetry. For the double link system, we introduced weighting factors for the multi-objective functions, which minimize the difference between output angles, providing balanced engine performance, as well as the difference between final output angle and the desired magnitudes of final output angle. We adopted a graphical method to select a proper ratio between the weighting factors.

  18. Optimized Algorithms for Prediction Within Robotic Tele-Operative Interfaces

    NASA Technical Reports Server (NTRS)

    Martin, Rodney A.; Wheeler, Kevin R.; Allan, Mark B.; SunSpiral, Vytas

    2010-01-01

    Robonaut, the humanoid robot developed at the Dexterous Robotics Labo ratory at NASA Johnson Space Center serves as a testbed for human-rob ot collaboration research and development efforts. One of the recent efforts investigates how adjustable autonomy can provide for a safe a nd more effective completion of manipulation-based tasks. A predictiv e algorithm developed in previous work was deployed as part of a soft ware interface that can be used for long-distance tele-operation. In this work, Hidden Markov Models (HMM?s) were trained on data recorded during tele-operation of basic tasks. In this paper we provide the d etails of this algorithm, how to improve upon the methods via optimization, and also present viable alternatives to the original algorithmi c approach. We show that all of the algorithms presented can be optim ized to meet the specifications of the metrics shown as being useful for measuring the performance of the predictive methods. 1

  19. Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali; Sen, S. K.

    2007-01-01

    Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *

  20. Library design using genetic algorithms for catalyst discovery and optimization

    NASA Astrophysics Data System (ADS)

    Clerc, Frederic; Lengliz, Mourad; Farrusseng, David; Mirodatos, Claude; Pereira, Sílvia R. M.; Rakotomalala, Ricco

    2005-06-01

    This study reports a detailed investigation of catalyst library design by genetic algorithm (GA). A methodology for assessing GA configurations is described. Operators, which promote the optimization speed while being robust to noise and outliers, are revealed through statistical studies. The genetic algorithms were implemented in GA platform software called OptiCat, which enables the construction of custom-made workflows using a tool box of operators. Two separate studies were carried out (i) on a virtual benchmark and (ii) on real surface response which is derived from HT screening. Additionally, we report a methodology to model a complex surface response by binning the search space in small zones that are then independently modeled by linear regression. In contrast to artificial neural networks, this approach allows one to obtain an explicit model in an analogical form that can be further used in Excel or entered in OptiCat to perform simulations. While speeding the implementation of a hybrid algorithm combining a GA with a knowledge-based extraction engine is described, while speeding up the optimization process by means of virtual prescreening the hybrid GA enables one to open the "black-box" by providing knowledge as a set of association rules.

  1. Effective multi-objective optimization with the coral reefs optimization algorithm

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Pastor-Sánchez, A.; Portilla-Figueras, J. A.; Prieto, L.

    2016-06-01

    In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.

  2. Low-Thrust Trajectory Optimization with Simplified SQP Algorithm

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Scheeres, Daniel J.

    2017-01-01

    The problem of low-thrust trajectory optimization in highly perturbed dynamics is a stressing case for many optimization tools. Highly nonlinear dynamics and continuous thrust are each, separately, non-trivial problems in the field of optimal control, and when combined, the problem is even more difficult. This paper de-scribes a fast, robust method to design a trajectory in the CRTBP (circular restricted three body problem), beginning with no or very little knowledge of the system. The approach is inspired by the SQP (sequential quadratic programming) algorithm, in which a general nonlinear programming problem is solved via a sequence of quadratic problems. A few key simplifications make the algorithm presented fast and robust to initial guess: a quadratic cost function, neglecting the line search step when the solution is known to be far away, judicious use of end-point constraints, and mesh refinement on multiple shooting with fixed-step integration.In comparison to the traditional approach of plugging the problem into a “black-box” NLP solver, the methods shown converge even when given no knowledge of the solution at all. It was found that the only piece of information that the user needs to provide is a rough guess for the time of flight, as the transfer time guess will dictate which set of local solutions the algorithm could converge on. This robustness to initial guess is a compelling feature, as three-body orbit transfers are challenging to design with intuition alone. Of course, if a high-quality initial guess is available, the methods shown are still valid.We have shown that endpoints can be efficiently constrained to lie on 3-body repeating orbits, and that time of flight can be optimized as well. When optimizing the endpoints, we must make a trade between converging quickly on sub-optimal endpoints or converging more slowly on end-points that are arbitrarily close to optimal. It is easy for the mission design engineer to adjust this trade based on

  3. A particle swarm optimization algorithm with random learning mechanism and Levy flight for optimization of atomic clusters

    NASA Astrophysics Data System (ADS)

    Yan, Bailu; Zhao, Zheng; Zhou, Yingcheng; Yuan, Wenyan; Li, Jian; Wu, Jun; Cheng, Daojian

    2017-10-01

    Swarm intelligence optimization algorithms are mainstream algorithms for solving complex optimization problems. Among these algorithms, the particle swarm optimization (PSO) algorithm has the advantages of fast computation speed and few parameters. However, PSO is prone to premature convergence. To solve this problem, we develop a new PSO algorithm (RPSOLF) by combining the characteristics of random learning mechanism and Levy flight. The RPSOLF algorithm increases the diversity of the population by learning from random particles and random walks in Levy flight. On the one hand, we carry out a large number of numerical experiments on benchmark test functions, and compare these results with the PSO algorithm with Levy flight (PSOLF) algorithm and other PSO variants in previous reports. The results show that the optimal solution can be found faster and more efficiently by the RPSOLF algorithm. On the other hand, the RPSOLF algorithm can also be applied to optimize the Lennard-Jones clusters, and the results indicate that the algorithm obtains the optimal structure (2-60 atoms) with an extraordinary high efficiency. In summary, RPSOLF algorithm proposed in our paper is proved to be an extremely effective tool for global optimization.

  4. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    NASA Astrophysics Data System (ADS)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  5. Genetic algorithm optimized triply compensated pulses in NMR spectroscopy.

    PubMed

    Manu, V S; Veglia, Gianluigi

    2015-11-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π/2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-(13)C, (15)N NAVL peptide as well as U-(13)C, (15)N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.

  6. Genetic Algorithm Optimized Triply Compensated Pulses in NMR Spectroscopy

    PubMed Central

    Manu, V. S.; Veglia, Gianluigi

    2015-01-01

    Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature’s evolutionary processes. The newly designed π and π/2 pulses belong to the ‘Type A’ (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U – 13C, 15N NAVL peptide as well as U – 13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences. PMID:26473327

  7. Cardiopulmonary resuscitation algorithms, defibrillation and optimized ventilation during resuscitation.

    PubMed

    Samson, Ricardo A; Berg, Marc D; Berg, Robert A

    2006-04-01

    In 2005, the American Heart Association released its Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. This article reviews the treatment algorithms for Advanced Cardiac Life Support, citing the evidence on which the Guidelines are based. Additional focus is placed on defibrillation and optimized ventilation. Major changes include a reorganization of the algorithms for cardiac arrest. Emphasis on effective cardiopulmonary resuscitation is placed as the key to improved survival. Single defibrillation shocks are recommended (compared with three 'stacked' shocks) with immediate provision of cardiopulmonary resuscitation and minimal interruptions in chest compressions. The recommended chest compression : ventilation rate for single rescuers has been changed to 30:2. Despite advances in resuscitation science, basic life support remains the key to improving survival outcomes. Ultimately, as new knowledge is gained, we believe resuscitation therapies will be more individualized, on the basis of pathophysiology and etiology of the initial cardiac arrest.

  8. An optimal algorithm for computing all subtree repeats in trees

    PubMed Central

    Flouri, T.; Kobert, K.; Pissis, S. P.; Stamatakis, A.

    2014-01-01

    Given a labelled tree T, our goal is to group repeating subtrees of T into equivalence classes with respect to their topologies and the node labels. We present an explicit, simple and time-optimal algorithm for solving this problem for unrooted unordered labelled trees and show that the running time of our method is linear with respect to the size of T. By unordered, we mean that the order of the adjacent nodes (children/neighbours) of any node of T is irrelevant. An unrooted tree T does not have a node that is designated as root and can also be referred to as an undirected tree. We show how the presented algorithm can easily be modified to operate on trees that do not satisfy some or any of the aforementioned assumptions on the tree structure; for instance, how it can be applied to rooted, ordered or unlabelled trees. PMID:24751873

  9. An exact algorithm for optimal MAE stack filter design.

    PubMed

    Dellamonica, Domingos; Silva, Paulo J S; Humes, Carlos; Hirata, Nina S T; Barrera, Junior

    2007-02-01

    We propose a new algorithm for optimal MAE stack filter design. It is based on three main ingredients. First, we show that the dual of the integer programming formulation of the filter design problem is a minimum cost network flow problem. Next, we present a decomposition principle that can be used to break this dual problem into smaller subproblems. Finally, we propose a specialization of the network Simplex algorithm based on column generation to solve these smaller subproblems. Using our method, we were able to efficiently solve instances of the filter problem with window size up to 25 pixels. To the best of our knowledge, this is the largest dimension for which this problem was ever solved exactly.

  10. Optimizing treatment of hepatic metastases from colorectal cancer: Resection or resection plus ablation?

    PubMed

    Chiappa, Antonio; Bertani, Emilio; Zbar, Andrew P; Foschi, Diego; Fazio, Nicola; Zampino, Maria; Belluco, Claudio; Orsi, Franco; Della Vigna, Paolo; Bonomo, Guido; Venturino, Marco; Ferrari, Carlo; Biffi, Roberto

    2016-03-01

    The present study determines the oncologic outcome of the combined resection and ablation strategy for colorectal liver metastases (CRLM). Between January 1994 and December 2014, 360 patients underwent surgery for CRLM. There were 280 patients who underwent hepatic resection only (group 1) and 80 hepatic resection plus ablation (group 2). group 2 patients had a higher incidence of multiple metastases than group 1 cases (100% in group 2 vs. 28.2% in group 1; P<0.001) and bilobar involvement (76.5% in group 2 vs. 12.9% in group 1; P<0.001). Perioperative mortality was nil in either group with a higher postoperative complication rate amongst group 1 vs. group 2 cases (18 vs. 0, respectively). The median follow-up was 90 months (range, 1-180) with a 5-year overall survival for group 1 and group 2 of 49 and 80%, respectively (P=0.193). The median disease-free survival for patients with R0 resection was 50, 43 and 34% at 1, 2 and 3 years, respectively, and remained steadily higher (at 50%) in those patients treated with resection combined with ablation up to 5 years (P=0.069). The only intraoperative ablation failure was for a large lesion (≥5 cm). Our data support the use of intraoperative ablation when complete hepatic resection cannot be achieved.

  11. Robust Optimization Design Algorithm for High-Frequency TWTs

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  12. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade

    SciTech Connect

    Huang, Xiaobiao; Safranek, James

    2014-09-01

    Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.

  13. Control optimization, stabilization and computer algorithms for aircraft applications

    NASA Technical Reports Server (NTRS)

    Athans, M. (Editor); Willsky, A. S. (Editor)

    1982-01-01

    The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory.

  14. Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Story, George

    2014-01-01

    Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and later on solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. A remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state of the art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.

  15. Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Story, George

    2015-01-01

    Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.

  16. Population Induced Instabilities in Genetic Algorithms for Constrained Optimization

    NASA Astrophysics Data System (ADS)

    Vlachos, D. S.; Parousis-Orthodoxou, K. J.

    2013-02-01

    Evolutionary computation techniques, like genetic algorithms, have received a lot of attention as optimization techniques but, although they exhibit a very promising potential in curing the problem, they have not produced a significant breakthrough in the area of systematic treatment of constraints. There are two mainly ways of handling the constraints: the first is to produce an infeasibility measure and add it to the general cost function (the well known penalty methods) and the other is to modify the mutation and crossover operation in a way that they only produce feasible members. Both methods have their drawbacks and are strongly correlated to the problem that they are applied. In this work, we propose a different treatment of the constraints: we induce instabilities in the evolving population, in a way that infeasible solution cannot survive as they are. Preliminary results are presented in a set of well known from the literature constrained optimization problems.

  17. Quadruped Robot Locomotion using a Global Optimization Stochastic Algorithm

    NASA Astrophysics Data System (ADS)

    Oliveira, Miguel; Santos, Cristina; Costa, Lino; Ferreira, Manuel

    2011-09-01

    The problem of tuning nonlinear dynamical systems parameters, such that the attained results are considered good ones, is a relevant one. This article describes the development of a gait optimization system that allows a fast but stable robot quadruped crawl gait. We combine bio-inspired Central Patterns Generators (CPGs) and Genetic Algorithms (GA). CPGs are modelled as autonomous differential equations, that generate the necessar y limb movement to perform the required walking gait. The GA finds parameterizations of the CPGs parameters which attain good gaits in terms of speed, vibration and stability. Moreover, two constraint handling techniques based on tournament selection and repairing mechanism are embedded in the GA to solve the proposed constrained optimization problem and make the search more efficient. The experimental results, performed on a simulated Aibo robot, demonstrate that our approach allows low vibration with a high velocity and wide stability margin for a quadruped slow crawl gait.

  18. Parallel optimization algorithm for drone inspection in the building industry

    NASA Astrophysics Data System (ADS)

    Walczyński, Maciej; BoŻejko, Wojciech; Skorupka, Dariusz

    2017-07-01

    In this paper we present an approach for Vehicle Routing Problem with Drones (VRPD) in case of building inspection from the air. In autonomic inspection process there is a need to determine of the optimal route for inspection drone. This is especially important issue because of the very limited flight time of modern multicopters. The method of determining solutions for Traveling Salesman Problem(TSP), described in this paper bases on Parallel Evolutionary Algorithm (ParEA)with cooperative and independent approach for communication between threads. This method described first by Bożejko and Wodecki [1] bases on the observation that if exists some number of elements on certain positions in a number of permutations which are local minima, then those elements will be in the same position in the optimal solution for TSP problem. Numerical experiments were made on BEM computational cluster with using MPI library.

  19. An optimized algorithm for detecting and annotating regional differential methylation

    PubMed Central

    2013-01-01

    Background DNA methylation profiling reveals important differentially methylated regions (DMRs) of the genome that are altered during development or that are perturbed by disease. To date, few programs exist for regional analysis of enriched or whole-genome bisulfate conversion sequencing data, even though such data are increasingly common. Here, we describe an open-source, optimized method for determining empirically based DMRs (eDMR) from high-throughput sequence data that is applicable to enriched whole-genome methylation profiling datasets, as well as other globally enriched epigenetic modification data. Results Here we show that our bimodal distribution model and weighted cost function for optimized regional methylation analysis provides accurate boundaries of regions harboring significant epigenetic modifications. Our algorithm takes the spatial distribution of CpGs into account for the enrichment assay, allowing for optimization of the definition of empirical regions for differential methylation. Combined with the dependent adjustment for regional p-value combination and DMR annotation, we provide a method that may be applied to a variety of datasets for rapid DMR analysis. Our method classifies both the directionality of DMRs and their genome-wide distribution, and we have observed that shows clinical relevance through correct stratification of two Acute Myeloid Leukemia (AML) tumor sub-types. Conclusions Our weighted optimization algorithm eDMR for calling DMRs extends an established DMR R pipeline (methylKit) and provides a needed resource in epigenomics. Our method enables an accurate and scalable way of finding DMRs in high-throughput methylation sequencing experiments. eDMR is available for download at http://code.google.com/p/edmr/. PMID:23735126

  20. An optimized algorithm for detecting and annotating regional differential methylation.

    PubMed

    Li, Sheng; Garrett-Bakelman, Francine E; Akalin, Altuna; Zumbo, Paul; Levine, Ross; To, Bik L; Lewis, Ian D; Brown, Anna L; D'Andrea, Richard J; Melnick, Ari; Mason, Christopher E

    2013-01-01

    DNA methylation profiling reveals important differentially methylated regions (DMRs) of the genome that are altered during development or that are perturbed by disease. To date, few programs exist for regional analysis of enriched or whole-genome bisulfate conversion sequencing data, even though such data are increasingly common. Here, we describe an open-source, optimized method for determining empirically based DMRs (eDMR) from high-throughput sequence data that is applicable to enriched whole-genome methylation profiling datasets, as well as other globally enriched epigenetic modification data. Here we show that our bimodal distribution model and weighted cost function for optimized regional methylation analysis provides accurate boundaries of regions harboring significant epigenetic modifications. Our algorithm takes the spatial distribution of CpGs into account for the enrichment assay, allowing for optimization of the definition of empirical regions for differential methylation. Combined with the dependent adjustment for regional p-value combination and DMR annotation, we provide a method that may be applied to a variety of datasets for rapid DMR analysis. Our method classifies both the directionality of DMRs and their genome-wide distribution, and we have observed that shows clinical relevance through correct stratification of two Acute Myeloid Leukemia (AML) tumor sub-types. Our weighted optimization algorithm eDMR for calling DMRs extends an established DMR R pipeline (methylKit) and provides a needed resource in epigenomics. Our method enables an accurate and scalable way of finding DMRs in high-throughput methylation sequencing experiments. eDMR is available for download at http://code.google.com/p/edmr/.

  1. Teaching-learning-based Optimization Algorithm for Parameter Identification in the Design of IIR Filters

    NASA Astrophysics Data System (ADS)

    Singh, R.; Verma, H. K.

    2013-12-01

    This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.

  2. Treatment Planning and Image Guidance for Radiofrequency Ablations of Large Tumors

    PubMed Central

    Ren, Hongliang; Campos-Nanez, Enrique; Yaniv, Ziv; Banovac, Filip; Abeledo, Hernan; Hata, Nobuhiko; Cleary, Kevin

    2014-01-01

    This article addresses the two key challenges in computer-assisted percutaneous tumor ablation: planning multiple overlapping ablations for large tumors while avoiding critical structures, and executing the prescribed plan. Towards semi-automatic treatment planning for image-guided surgical interventions, we develop a systematic approach to the needle-based ablation placement task, ranging from pre-operative planning algorithms to an intra-operative execution platform. The planning system incorporates clinical constraints on ablations and trajectories using a multiple objective optimization formulation, which consists of optimal path selection and ablation coverage optimization based on integer programming. The system implementation is presented and validated in phantom studies and on an animal model. The presented system can potentially be further extended for other ablation techniques such as cryotherapy. PMID:24235279

  3. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization

    PubMed Central

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-01-01

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500

  4. Optimizing quantum gas production by an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Lausch, T.; Hohmann, M.; Kindermann, F.; Mayer, D.; Schmidt, F.; Widera, A.

    2016-05-01

    We report on the application of an evolutionary algorithm (EA) to enhance performance of an ultra-cold quantum gas experiment. The production of a ^{87}rubidium Bose-Einstein condensate (BEC) can be divided into fundamental cooling steps, specifically magneto-optical trapping of cold atoms, loading of atoms to a far-detuned crossed dipole trap, and finally the process of evaporative cooling. The EA is applied separately for each of these steps with a particular definition for the feedback, the so-called fitness. We discuss the principles of an EA and implement an enhancement called differential evolution. Analyzing the reasons for the EA to improve, e.g., the atomic loading rates and increase the BEC phase-space density, yields an optimal parameter set for the BEC production and enables us to reduce the BEC production time significantly. Furthermore, we focus on how additional information about the experiment and optimization possibilities can be extracted and how the correlations revealed allow for further improvement. Our results illustrate that EAs are powerful optimization tools for complex experiments and exemplify that the application yields useful information on the dependence of these experiments on the optimized parameters.

  5. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.

    PubMed

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-04-17

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.

  6. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  7. Gravitational Lens Modeling with Genetic Algorithms and Particle Swarm Optimizers

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Fiege, Jason D.

    2011-02-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our "matrix-free" approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image χ2 and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest χ2 is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.

  8. GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS

    SciTech Connect

    Rogers, Adam; Fiege, Jason D.

    2011-02-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image {chi}{sup 2} and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest {chi}{sup 2} is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.

  9. Optimal high speed CMOS inverter design using craziness based Particle Swarm Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    De, Bishnu P.; Kar, Rajib; Mandal, Durbadal; Ghoshal, Sakti P.

    2015-07-01

    The inverter is the most fundamental logic gate that performs a Boolean operation on a single input variable. In this paper, an optimal design of CMOS inverter using an improved version of particle swarm optimization technique called Craziness based Particle Swarm Optimization (CRPSO) is proposed. CRPSO is very simple in concept, easy to implement and computationally efficient algorithm with two main advantages: it has fast, nearglobal convergence, and it uses nearly robust control parameters. The performance of PSO depends on its control parameters and may be influenced by premature convergence and stagnation problems. To overcome these problems the PSO algorithm has been modiffed to CRPSO in this paper and is used for CMOS inverter design. In birds' flocking or ffsh schooling, a bird or a ffsh often changes direction suddenly. In the proposed technique, the sudden change of velocity is modelled by a direction reversal factor associated with the previous velocity and a "craziness" velocity factor associated with another direction reversal factor. The second condition is introduced depending on a predeffned craziness probability to maintain the diversity of particles. The performance of CRPSO is compared with real code.gnetic algorithm (RGA), and conventional PSO reported in the recent literature. CRPSO based design results are also compared with the PSPICE based results. The simulation results show that the CRPSO is superior to the other algorithms for the examples considered and can be efficiently used for the CMOS inverter design.

  10. An Orthogonal Wavelet Transform Blind Equalization Algorithm Based on the Optimization of Immune Clone Particle Swarm

    NASA Astrophysics Data System (ADS)

    Yecai, Guo; Lingling, Hu

    On the basis of the analyzing the futures of particle swarm algorithm, orthogonal wavelet transform constant modulus blind equalization algorithm (WTCMA), and immune clone algorithm, an orthogonal wavelet transform constant modulus blind equalization algorithm based on the immune clone particle swarm optimization is proposed. In this proposed algorithm, the diversity of population in particle swarm algorithm is effectively regulated via the immune clone operation after introducing the immune clone algorithm into particle swarm optimization. Therefore, the local extreme points and the premature convergence caused by the diversity variation of population in the evolution late of the particle swarm algorithm are avoided and the global search capability of particle swarm optimization algorithm is improved. So, the proposed algorithm has fastest convergence rate and smallest mean square error. The performance of the proposed algorithm is proved by computer simulation in underwater acoustic channels.

  11. Adaptive reference update (ARU) algorithm. A stochastic search algorithm for efficient optimization of multi-drug cocktails

    PubMed Central

    2012-01-01

    Background Multi-target therapeutics has been shown to be effective for treating complex diseases, and currently, it is a common practice to combine multiple drugs to treat such diseases to optimize the therapeutic outcomes. However, considering the huge number of possible ways to mix multiple drugs at different concentrations, it is practically difficult to identify the optimal drug combination through exhaustive testing. Results In this paper, we propose a novel stochastic search algorithm, called the adaptive reference update (ARU) algorithm, that can provide an efficient and systematic way for optimizing multi-drug cocktails. The ARU algorithm iteratively updates the drug combination to improve its response, where the update is made by comparing the response of the current combination with that of a reference combination, based on which the beneficial update direction is predicted. The reference combination is continuously updated based on the drug response values observed in the past, thereby adapting to the underlying drug response function. To demonstrate the effectiveness of the proposed algorithm, we evaluated its performance based on various multi-dimensional drug functions and compared it with existing algorithms. Conclusions Simulation results show that the ARU algorithm significantly outperforms existing stochastic search algorithms, including the Gur Game algorithm. In fact, the ARU algorithm can more effectively identify potent drug combinations and it typically spends fewer iterations for finding effective combinations. Furthermore, the ARU algorithm is robust to random fluctuations and noise in the measured drug response, which makes the algorithm well-suited for practical drug optimization applications. PMID:23134742

  12. Prediction-Correction Algorithms for Time-Varying Constrained Optimization

    DOE PAGES

    Dall-Anese, Emiliano; Simonetto, Andrea

    2017-07-26

    This paper develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less

  13. An adaptive /N-body algorithm of optimal order

    NASA Astrophysics Data System (ADS)

    Pruett, C. David; Rudmin, Joseph W.; Lacy, Justin M.

    2003-05-01

    Picard iteration is normally considered a theoretical tool whose primary utility is to establish the existence and uniqueness of solutions to first-order systems of ordinary differential equations (ODEs). However, in 1996, Parker and Sochacki [Neural, Parallel, Sci. Comput. 4 (1996)] published a practical numerical method for a certain class of ODEs, based upon modified Picard iteration, that generates the Maclaurin series of the solution to arbitrarily high order. The applicable class of ODEs consists of first-order, autonomous systems whose right-hand side functions (generators) are projectively polynomial; that is, they can be written as polynomials in the unknowns. The class is wider than might be expected. The method is ideally suited to the classical N-body problem, which is projectively polynomial. Here, we recast the N-body problem in polynomial form and develop a Picard-based algorithm for its solution. The algorithm is highly accurate, parameter-free, and simultaneously adaptive in time and order. Test cases for both benign and chaotic N-body systems reveal that optimal order is dynamic. That is, in addition to dependency upon N and the desired accuracy, optimal order depends upon the configuration of the bodies at any instant.

  14. Software Piracy Detection Model Using Ant Colony Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Astiqah Omar, Nor; Zakuan, Zeti Zuryani Mohd; Saian, Rizauddin

    2017-06-01

    Internet enables information to be accessible anytime and anywhere. This scenario creates an environment whereby information can be easily copied. Easy access to the internet is one of the factors which contribute towards piracy in Malaysia as well as the rest of the world. According to a survey conducted by Compliance Gap BSA Global Software Survey in 2013 on software piracy, found out that 43 percent of the software installed on PCs around the world was not properly licensed, the commercial value of the unlicensed installations worldwide was reported to be 62.7 billion. Piracy can happen anywhere including universities. Malaysia as well as other countries in the world is faced with issues of piracy committed by the students in universities. Piracy in universities concern about acts of stealing intellectual property. It can be in the form of software piracy, music piracy, movies piracy and piracy of intellectual materials such as books, articles and journals. This scenario affected the owner of intellectual property as their property is in jeopardy. This study has developed a classification model for detecting software piracy. The model was developed using a swarm intelligence algorithm called the Ant Colony Optimization algorithm. The data for training was collected by a study conducted in Universiti Teknologi MARA (Perlis). Experimental results show that the model detection accuracy rate is better as compared to J48 algorithm.

  15. GMG: A Guaranteed, Efficient Global Optimization Algorithm for Remote Sensing.

    SciTech Connect

    D'Helon, CD

    2004-08-18

    The monocular passive ranging (MPR) problem in remote sensing consists of identifying the precise range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem may be set as a global optimization problem (GOP) whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. Using additional information about the error function between the predicted and observed radiances of the target, we developed GMG, a new algorithm to find the Global Minimum with a Guarantee. The new algorithm transforms the original continuous GOP into a discrete search problem, thereby guaranteeing to find the position of the global minimum in a reasonably short time. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions and then applied to various realizations of the MPR problem.

  16. Constant-complexity stochastic simulation algorithm with optimal binning.

    PubMed

    Sanft, Kevin R; Othmer, Hans G

    2015-08-21

    At the molecular level, biochemical processes are governed by random interactions between reactant molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of reactants are large, a deterministic description is adequate, but when they are small, such systems are often modeled as continuous-time Markov jump processes that can be described by the chemical master equation. Gillespie's Stochastic Simulation Algorithm (SSA) generates exact trajectories of these systems, but the amount of computational work required for each step of the original SSA is proportional to the number of reaction channels, leading to computational complexity that scales linearly with the problem size. The original SSA is therefore inefficient for large problems, which has prompted the development of several alternative formulations with improved scaling properties. We describe an exact SSA that uses a table data structure with event time binning to achieve constant computational complexity with respect to the number of reaction channels for weakly coupled reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm parameters. We compare the computational efficiency of the algorithm to existing methods and demonstrate excellent scaling for large problems. This method is well suited for generating exact trajectories of large weakly coupled models, including those that can be described by the reaction-diffusion master equation that arises from spatially discretized reaction-diffusion processes.

  17. Constant-complexity stochastic simulation algorithm with optimal binning

    SciTech Connect

    Sanft, Kevin R.; Othmer, Hans G.

    2015-08-21

    At the molecular level, biochemical processes are governed by random interactions between reactant molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of reactants are large, a deterministic description is adequate, but when they are small, such systems are often modeled as continuous-time Markov jump processes that can be described by the chemical master equation. Gillespie’s Stochastic Simulation Algorithm (SSA) generates exact trajectories of these systems, but the amount of computational work required for each step of the original SSA is proportional to the number of reaction channels, leading to computational complexity that scales linearly with the problem size. The original SSA is therefore inefficient for large problems, which has prompted the development of several alternative formulations with improved scaling properties. We describe an exact SSA that uses a table data structure with event time binning to achieve constant computational complexity with respect to the number of reaction channels for weakly coupled reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm parameters. We compare the computational efficiency of the algorithm to existing methods and demonstrate excellent scaling for large problems. This method is well suited for generating exact trajectories of large weakly coupled models, including those that can be described by the reaction-diffusion master equation that arises from spatially discretized reaction-diffusion processes.

  18. Quantum-inspired immune clonal algorithm for global optimization.

    PubMed

    Jiao, Licheng; Li, Yangyang; Gong, Maoguo; Zhang, Xiangrong

    2008-10-01

    Based on the concepts and principles of quantum computing, a novel immune clonal algorithm, called a quantum-inspired immune clonal algorithm (QICA), is proposed to deal with the problem of global optimization. In QICA, the antibody is proliferated and divided into a set of subpopulation groups. The antibodies in a subpopulation group are represented by multistate gene quantum bits. In the antibody's updating, the general quantum rotation gate strategy and the dynamic adjusting angle mechanism are applied to accelerate convergence. The quantum not gate is used to realize quantum mutation to avoid premature convergences. The proposed quantum recombination realizes the information communication between subpopulation groups to improve the search efficiency. Theoretical analysis proves that QICA converges to the global optimum. In the first part of the experiments, 10 unconstrained and 13 constrained benchmark functions are used to test the performance of QICA. The results show that QICA performs much better than the other improved genetic algorithms in terms of the quality of solution and computational cost. In the second part of the experiments, QICA is applied to a practical problem (i.e., multiuser detection in direct-sequence code-division multiple-access systems) with a satisfying result.

  19. Variance Based Measure for Optimization of Parametric Realignment Algorithms

    PubMed Central

    Mehring, Carsten

    2016-01-01

    Neuronal responses to sensory stimuli or neuronal responses related to behaviour are often extracted by averaging neuronal activity over large number of experimental trials. Such trial-averaging is carried out to reduce noise and to diminish the influence of other signals unrelated to the corresponding stimulus or behaviour. However, if the recorded neuronal responses are jittered in time with respect to the corresponding stimulus or behaviour, averaging over trials may distort the estimation of the underlying neuronal response. Temporal jitter between single trial neural responses can be partially or completely removed using realignment algorithms. Here, we present a measure, named difference of time-averaged variance (dTAV), which can be used to evaluate the performance of a realignment algorithm without knowing the internal triggers of neural responses. Using simulated data, we show that using dTAV to optimize the parameter values for an established parametric realignment algorithm improved its efficacy and, therefore, reduced the jitter of neuronal responses. By removing the jitter more effectively and, therefore, enabling more accurate estimation of neuronal responses, dTAV can improve analysis and interpretation of the neural responses. PMID:27159490

  20. In-Space Radiator Shape Optimization using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael

    2006-01-01

    Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in

  1. Optimal sliding guidance algorithm for Mars powered descent phase

    NASA Astrophysics Data System (ADS)

    Wibben, Daniel R.; Furfaro, Roberto

    2016-02-01

    Landing on large planetary bodies (e.g. Mars) with pinpoint accuracy presents a set of new challenges that must be addressed. One such challenge is the development of new guidance algorithms that exhibit a higher degree of robustness and flexibility. In this paper, the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) optimal sliding guidance (OSG) scheme is applied to the Mars powered descent phase. This guidance algorithm has been specifically designed to combine techniques from both optimal and sliding control theories to generate an acceleration command based purely on the current estimated spacecraft state and desired final target state. Consequently, OSG yields closed-loop trajectories that do not need a reference trajectory. The guidance algorithm has its roots in the generalized ZEM/ZEV feedback guidance and its mathematical equations are naturally derived by defining a non-linear sliding surface as a function of the terms Zero-Effort-Miss and Zero-Effort-Velocity. With the addition of the sliding mode and using Lyapunov theory for non-autonomous systems, one can formally prove that the developed OSG law is globally finite-time stable to unknown but bounded perturbations. Here, the focus is on comparing the generalized ZEM/ZEV feedback guidance with the OSG law to explicitly demonstrate the benefits of the sliding mode augmentation. Results show that the sliding guidance provides a more robust solution in off-nominal scenarios while providing similar fuel consumption when compared to the non-sliding guidance command. Further, a Monte Carlo analysis is performed to examine the performance of the OSG law under perturbed conditions.

  2. Parallel global optimization with the particle swarm algorithm.

    PubMed

    Schutte, J F; Reinbolt, J A; Fregly, B J; Haftka, R T; George, A D

    2004-12-07

    Present day engineering optimization problems often impose large computational demands, resulting in long solution times even on a modern high-end processor. To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the particle swarm optimization (PSO) algorithm. Parallel PSO performance was evaluated using two categories of optimization problems possessing multiple local minima-large-scale analytical test problems with computationally cheap function evaluations and medium-scale biomechanical system identification problems with computationally expensive function evaluations. For load-balanced analytical test problems formulated using 128 design variables, speedup was close to ideal and parallel efficiency above 95% for up to 32 nodes on a Beowulf cluster. In contrast, for load-imbalanced biomechanical system identification problems with 12 design variables, speedup plateaued and parallel efficiency decreased almost linearly with increasing number of nodes. The primary factor affecting parallel performance was the synchronization requirement of the parallel algorithm, which dictated that each iteration must wait for completion of the slowest fitness evaluation. When the analytical problems were solved using a fixed number of swarm iterations, a single population of 128 particles produced a better convergence rate than did multiple independent runs performed using sub-populations (8 runs with 16 particles, 4 runs with 32 particles, or 2 runs with 64 particles). These results suggest that (1) parallel PSO exhibits excellent parallel performance under load-balanced conditions, (2) an asynchronous implementation would be valuable for real-life problems subject to load imbalance, and (3) larger population sizes should be considered when multiple processors are available.

  3. A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous optimization problems.

    PubMed

    Duan, Hai-Bin; Xu, Chun-Fang; Xing, Zhi-Hui

    2010-02-01

    In this paper, a novel hybrid Artificial Bee Colony (ABC) and Quantum Evolutionary Algorithm (QEA) is proposed for solving continuous optimization problems. ABC is adopted to increase the local search capacity as well as the randomness of the populations. In this way, the improved QEA can jump out of the premature convergence and find the optimal value. To show the performance of our proposed hybrid QEA with ABC, a number of experiments are carried out on a set of well-known Benchmark continuous optimization problems and the related results are compared with two other QEAs: the QEA with classical crossover operation, and the QEA with 2-crossover strategy. The experimental comparison results demonstrate that the proposed hybrid ABC and QEA approach is feasible and effective in solving complex continuous optimization problems.

  4. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm.

    PubMed

    Sidky, Emil Y; Jørgensen, Jakob H; Pan, Xiaochuan

    2012-05-21

    The primal-dual optimization algorithm developed in Chambolle and Pock (CP) (2011 J. Math. Imag. Vis. 40 1-26) is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in this paper, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity x-ray illumination is presented.

  5. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    PubMed Central

    Sidky, Emil Y.; Jørgensen, Jakob H.; Pan, Xiaochuan

    2012-01-01

    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented. PMID:22538474

  6. A comparison of three optimization algorithms for intensity modulated radiation therapy.

    PubMed

    Pflugfelder, Daniel; Wilkens, Jan J; Nill, Simeon; Oelfke, Uwe

    2008-01-01

    In intensity modulated treatment techniques, the modulation of each treatment field is obtained using an optimization algorithm. Multiple optimization algorithms have been proposed in the literature, e.g. steepest descent, conjugate gradient, quasi-Newton methods to name a few. The standard optimization algorithm in our in-house inverse planning tool KonRad is a quasi-Newton algorithm. Although this algorithm yields good results, it also has some drawbacks. Thus we implemented an improved optimization algorithm based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) routine. In this paper the improved optimization algorithm is described. To compare the two algorithms, several treatment plans are optimized using both algorithms. This included photon (IMRT) as well as proton (IMPT) intensity modulated therapy treatment plans. To present the results in a larger context the widely used conjugate gradient algorithm was also included into this comparison. On average, the improved optimization algorithm was six times faster to reach the same objective function value. However, it resulted not only in an acceleration of the optimization. Due to the faster convergence, the improved optimization algorithm usually terminates the optimization process at a lower objective function value. The average of the observed improvement in the objective function value was 37%. This improvement is clearly visible in the corresponding dose-volume-histograms. The benefit of the improved optimization algorithm is particularly pronounced in proton therapy plans. The conjugate gradient algorithm ranked in between the other two algorithms with an average speedup factor of two and an average improvement of the objective function value of 30%.

  7. Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms.

    PubMed

    Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo

    2017-01-01

    In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human

  8. Inner Random Restart Genetic Algorithm for Practical Delivery Schedule Optimization

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshitaka; Takada, Kouhei; Onoyama, Takashi; Tsukamoto, Natsuki; Tsuruta, Setsuo

    A delivery route optimization that improves the efficiency of real time delivery or a distribution network requires solving several tens to hundreds but less than 2 thousands cities Traveling Salesman Problems (TSP) within interactive response time (less than about 3 second), with expert-level accuracy (less than about 3% of error rate). Further, to make things more difficult, the optimization is subjects to special requirements or preferences of each various delivery sites, persons, or societies. To meet these requirements, an Inner Random Restart Genetic Algorithm (Irr-GA) is proposed and developed. This method combines meta-heuristics such as random restart and GA having different types of simple heuristics. Such simple heuristics are 2-opt and NI (Nearest Insertion) methods, each applied for gene operations. The proposed method is hierarchical structured, integrating meta-heuristics and heuristics both of which are multiple but simple. This method is elaborated so that field experts as well as field engineers can easily understand to make the solution or method easily customized and extended according to customers' needs or taste. Comparison based on the experimental results and consideration proved that the method meets the above requirements more than other methods judging from not only optimality but also simplicity, flexibility, and expandability in order for this method to be practically used.

  9. Optimization of heterogeneous Bin packing using adaptive genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sridhar, R.; Chandrasekaran, M.; Sriramya, C.; Page, Tom

    2017-03-01

    This research is concentrates on a very interesting work, the bin packing using hybrid genetic approach. The optimal and feasible packing of goods for transportation and distribution to various locations by satisfying the practical constraints are the key points in this project work. As the number of boxes for packing can not be predicted in advance and the boxes may not be of same category always. It also involves many practical constraints that are why the optimal packing makes much importance to the industries. This work presents a combinational of heuristic Genetic Algorithm (HGA) for solving Three Dimensional (3D) Single container arbitrary sized rectangular prismatic bin packing optimization problem by considering most of the practical constraints facing in logistic industries. This goal was achieved in this research by optimizing the empty volume inside the container using genetic approach. Feasible packing pattern was achieved by satisfying various practical constraints like box orientation, stack priority, container stability, weight constraint, overlapping constraint, shipment placement constraint. 3D bin packing problem consists of ‘n’ number of boxes being to be packed in to a container of standard dimension in such a way to maximize the volume utilization and in-turn profit. Furthermore, Boxes to be packed may be of arbitrary sizes. The user input data are the number of bins, its size, shape, weight, and constraints if any along with standard container dimension. This user input were stored in the database and encoded to string (chromosomes) format which were normally acceptable by GA. GA operators were allowed to act over these encoded strings for finding the best solution.

  10. Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications

    USDA-ARS?s Scientific Manuscript database

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...

  11. GenMin: An enhanced genetic algorithm for global optimization

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, I. E.

    2008-06-01

    A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the

  12. Maximizing microbial perchlorate degradation using a genetic algorithm: consortia optimization.

    PubMed

    Kucharzyk, Katarzyna H; Soule, Terence; Hess, Thomas F

    2013-09-01

    Microorganisms in consortia perform many tasks more effectively than individual organisms and in addition grow more rapidly and in greater abundance. In this work, experimental datasets were assembled consisting of all possible selected combinations of perchlorate reducing strains of microorganisms and their perchlorate degradation rates were evaluated. A genetic algorithm (GA) methodology was successfully applied to define sets of microbial strains to achieve maximum rates of perchlorate degradation. Over the course of twenty generations of optimization using a GA, we saw a statistically significant 2.06 and 4.08-fold increase in average perchlorate degradation rates by consortia constructed using solely the perchlorate reducing bacteria (PRB) and by consortia consisting of PRB and accompanying organisms that did not degrade perchlorate, respectively. The comparison of kinetic rates constant in two types of microbial consortia additionally showed marked increases.

  13. An optimization-based iterative algorithm for recovering fluorophore location

    NASA Astrophysics Data System (ADS)

    Yi, Huangjian; Peng, Jinye; Jin, Chen; He, Xiaowei

    2015-10-01

    Fluorescence molecular tomography (FMT) is a non-invasive technique that allows three-dimensional visualization of fluorophore in vivo in small animals. In practical applications of FMT, however, there are challenges in the image reconstruction since it is a highly ill-posed problem due to the diffusive behaviour of light transportation in tissue and the limited measurement data. In this paper, we presented an iterative algorithm based on an optimization problem for three dimensional reconstruction of fluorescent target. This method alternates weighted algebraic reconstruction technique (WART) with steepest descent method (SDM) for image reconstruction. Numerical simulations experiments and physical phantom experiment are performed to validate our method. Furthermore, compared to conjugate gradient method, the proposed method provides a better three-dimensional (3D) localization of fluorescent target.

  14. Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Akturk, Cemal; Karaaslan, Muharrem; Ozdemir, Ersin; Ozkaner, Vedat; Dincer, Furkan; Bakir, Mehmet; Ozer, Zafer

    2015-03-01

    Chiral metamaterials have been a research area for many researchers due to their polarization rotation properties on electromagnetic waves. However, most of the proposed chiral metamaterials are designed depending on experience or time-consuming inefficient simulations. A method is investigated for designing a chiral metamaterial with a strong and natural chirality admittance by optimizing a grid of metallic pixels through both sides of a dielectric sheet placed perpendicular to the incident wave by using a genetic algorithm (GA) technique based on finite element method solver. The effective medium parameters are obtained by using constitutive equations and S parameters. The proposed methodology is very efficient for designing a chiral metamaterial with the desired effective medium parameters. By using GA-based topology, it is proven that a chiral metamaterial can be designed and manufactured more easily and with a low cost.

  15. Laser Surface Preparation of Epoxy Composites for Secondary Bonding: Optimization of Ablation Depth

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank L.; Hopkins, John; Wohl, Christopher J.; Lin, Yi; Connell, John W.; Belcher, Marcus A.; Blohowiak, Kay Y.

    2015-01-01

    Surface preparation has been identified as one of the most critical aspects of attaining predictable and reliable adhesive bonds. Energetic processes such as laser ablation or plasma treatment are amenable to automation and are easily monitored and adjusted for controlled surface preparation. A laser ablation process was developed to accurately remove a targeted depth of resin, approximately 0.1 to 20 micrometers, from a carbon fiber reinforced epoxy composite surface while simultaneously changing surface chemistry and creating micro-roughness. This work demonstrates the application of this process to prepare composite surfaces for bonding without exposing or damaging fibers on the surface. Composite panels were prepared in an autoclave and had a resin layer approximately 10 micrometers thick above the fiber reinforcement. These composite panels were laser surface treated using several conditions, fabricated into bonded panels and hygrothermally aged. Bond performance of aged, experimental specimens was compared with grit blast surface treated specimens using a modified double cantilever beam test that enabled accelerated saturation of the specimen with water. Comparison of bonded specimens will be used to determine how ablation depth may affect average fracture energies and failure modes.

  16. Source mask optimization using real-coded genetic algorithms

    NASA Astrophysics Data System (ADS)

    Yang, Chaoxing; Wang, Xiangzhao; Li, Sikun; Erdmann, Andreas

    2013-04-01

    Source mask optimization (SMO) is considered to be one of the technologies to push conventional 193nm lithography to its ultimate limits. In comparison with other SMO methods that use an inverse problem formulation, SMO based on genetic algorithm (GA) requires very little knowledge of the process, and has the advantage of flexible problem formulation. Recent publications on SMO using a GA employ a binary-coded GA. In general, the performance of a GA depends not only on the merit or fitness function, but also on the parameters, operators and their algorithmic implementation. In this paper, we propose a SMO method using real-coded GA where the source and mask solutions are represented by floating point strings instead of bit strings. Besides from that, the selection, crossover, and mutation operators are replaced by corresponding floating-point versions. Both binary-coded and real-coded genetic algorithms were implemented in two versions of SMO and compared in numerical experiments, where the target patterns are staggered contact holes and a logic pattern with critical dimensions of 100 nm, respectively. The results demonstrate the performance improvement of the real-coded GA in comparison to the binary-coded version. Specifically, these improvements can be seen in a better convergence behavior. For example, the numerical experiments for the logic pattern showed that the average number of generations to converge to a proper fitness of 6.0 using the real-coded method is 61.8% (100 generations) less than that using binary-coded method.

  17. Ant Colony Optimization Algorithm for Continuous Domains Based on Position Distribution Model of Ant Colony Foraging

    PubMed Central

    Liu, Liqiang; Dai, Yuntao

    2014-01-01

    Ant colony optimization algorithm for continuous domains is a major research direction for ant colony optimization algorithm. In this paper, we propose a distribution model of ant colony foraging, through analysis of the relationship between the position distribution and food source in the process of ant colony foraging. We design a continuous domain optimization algorithm based on the model and give the form of solution for the algorithm, the distribution model of pheromone, the update rules of ant colony position, and the processing method of constraint condition. Algorithm performance against a set of test trials was unconstrained optimization test functions and a set of optimization test functions, and test results of other algorithms are compared and analyzed to verify the correctness and effectiveness of the proposed algorithm. PMID:24955402

  18. Ant colony optimization algorithm for continuous domains based on position distribution model of ant colony foraging.

    PubMed

    Liu, Liqiang; Dai, Yuntao; Gao, Jinyu

    2014-01-01

    Ant colony optimization algorithm for continuous domains is a major research direction for ant colony optimization algorithm. In this paper, we propose a distribution model of ant colony foraging, through analysis of the relationship between the position distribution and food source in the process of ant colony foraging. We design a continuous domain optimization algorithm based on the model and give the form of solution for the algorithm, the distribution model of pheromone, the update rules of ant colony position, and the processing method of constraint condition. Algorithm performance against a set of test trials was unconstrained optimization test functions and a set of optimization test functions, and test results of other algorithms are compared and analyzed to verify the correctness and effectiveness of the proposed algorithm.

  19. Particle swarm optimization algorithm based low cost magnetometer calibration

    NASA Astrophysics Data System (ADS)

    Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.

    2011-12-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments

  20. A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm.

    PubMed

    Amoshahy, Mohammad Javad; Shamsi, Mousa; Sedaaghi, Mohammad Hossein

    2016-01-01

    Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.

  1. A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm

    PubMed Central

    Shamsi, Mousa; Sedaaghi, Mohammad Hossein

    2016-01-01

    Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO’s parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate. PMID:27560945

  2. Skull removal in MR images using a modified artificial bee colony optimization algorithm.

    PubMed

    Taherdangkoo, Mohammad

    2014-01-01

    Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.

  3. Controlling dental enamel-cavity ablation depth with optimized stepping parameters along the focal plane normal using a three axis, numerically controlled picosecond laser.

    PubMed

    Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Sun, Yuchun; Wang, Yong

    2015-02-01

    The purpose of this study was to establish a depth-control method in enamel-cavity ablation by optimizing the timing of the focal-plane-normal stepping and the single-step size of a three axis, numerically controlled picosecond laser. Although it has been proposed that picosecond lasers may be used to ablate dental hard tissue, the viability of such a depth-control method in enamel-cavity ablation remains uncertain. Forty-two enamel slices with approximately level surfaces were prepared and subjected to two-dimensional ablation by a picosecond laser. The additive-pulse layer, n, was set to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70. A three-dimensional microscope was then used to measure the ablation depth, d, to obtain a quantitative function relating n and d. Six enamel slices were then subjected to three dimensional ablation to produce 10 cavities, respectively, with additive-pulse layer and single-step size set to corresponding values. The difference between the theoretical and measured values was calculated for both the cavity depth and the ablation depth of a single step. These were used to determine minimum-difference values for both the additive-pulse layer (n) and single-step size (d). When the additive-pulse layer and the single-step size were set 5 and 45, respectively, the depth error had a minimum of 2.25 μm, and 450 μm deep enamel cavities were produced. When performing three-dimensional ablating of enamel with a picosecond laser, adjusting the timing of the focal-plane-normal stepping and the single-step size allows for the control of ablation-depth error to the order of micrometers.

  4. A comparison of various optimization algorithms of protein-ligand docking programs by fitness accuracy.

    PubMed

    Guo, Liyong; Yan, Zhiqiang; Zheng, Xiliang; Hu, Liang; Yang, Yongliang; Wang, Jin

    2014-07-01

    In protein-ligand docking, an optimization algorithm is used to find the best binding pose of a ligand against a protein target. This algorithm plays a vital role in determining the docking accuracy. To evaluate the relative performance of different optimization algorithms and provide guidance for real applications, we performed a comparative study on six efficient optimization algorithms, containing two evolutionary algorithm (EA)-based optimizers (LGA, DockDE) and four particle swarm optimization (PSO)-based optimizers (SODock, varCPSO, varCPSO-ls, FIPSDock), which were implemented into the protein-ligand docking program AutoDock. We unified the objective functions by applying the same scoring function, and built a new fitness accuracy as the evaluation criterion that incorporates optimization accuracy, robustness, and efficiency. The varCPSO and varCPSO-ls algorithms show high efficiency with fast convergence speed. However, their accuracy is not optimal, as they cannot reach very low energies. SODock has the highest accuracy and robustness. In addition, SODock shows good performance in efficiency when optimizing drug-like ligands with less than ten rotatable bonds. FIPSDock shows excellent robustness and is close to SODock in accuracy and efficiency. In general, the four PSO-based algorithms show superior performance than the two EA-based algorithms, especially for highly flexible ligands. Our method can be regarded as a reference for the validation of new optimization algorithms in protein-ligand docking.

  5. Factors affecting optimal linear endovenous energy density for endovenous laser ablation in incompetent lower limb truncal veins - A review of the clinical evidence.

    PubMed

    Cowpland, Christine A; Cleese, Amy L; Whiteley, Mark S

    2017-06-01

    Objectives The objective is to identify the factors that affect the optimal linear endovenous energy density (LEED) to ablate incompetent truncal veins. Methods We performed a literature review of clinical studies, which reported truncal vein ablation rates and LEED. A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) flow diagram documents the search strategy. We analysed 13 clinical papers which fulfilled the criteria to be able to compare results of great saphenous vein occlusion as defined by venous duplex ultrasound, with the LEED used in the treatment. Results Evidence suggests that the optimal LEED for endovenous laser ablation of the great saphenous vein is >80 J/cm and <100 J/cm in terms of optimal closure rates with minimal side-effects and complications. Longer wavelengths targeting water might have a lower optimal LEED. A LEED <60 J/cm has reduced efficacy regardless of wavelength. The optimal LEED may vary with vein diameter and may be reduced by using specially shaped fibre tips. Laser delivery technique and type as well as the duration time of energy delivery appear to play a role in determining LEED. Conclusion The optimal LEED to ablate an incompetent great saphenous vein appears to be >80 J/cm and <95 J/cm based on current evidence for shorter wavelength lasers. There is evidence that longer wavelength lasers may be effective at LEEDs of <85 J/cm.

  6. An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to Solve the Split Delivery Vehicle Routing Problem

    DTIC Science & Technology

    2015-01-01

    Optimization and 2) hybrid metaheuristics algorithm comprising a combination of ACO, Genetic Algorithm (GA) and heuristics are proposed and tested on...Optimization, Split Delivery Vehicle Routing Problem, Genetic Algorithm 1. Introduction The Vehicle Routing Problem (VRP) is a prominent problem in the areas...several heuristic methods have been applied to solve the SDVRP, such as a construction heuristic (Wilck and Cavalier, 2012a), a genetic algorithm (Wilck

  7. New knowledge-based genetic algorithm for excavator boom structural optimization

    NASA Astrophysics Data System (ADS)

    Hua, Haiyan; Lin, Shuwen

    2014-03-01

    Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.

  8. Cat Swarm Optimization algorithm for optimal linear phase FIR filter design.

    PubMed

    Saha, Suman Kumar; Ghoshal, Sakti Prasad; Kar, Rajib; Mandal, Durbadal

    2013-11-01

    In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its' own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Exchange inlet optimization by genetic algorithm for improved RBCC performance

    NASA Astrophysics Data System (ADS)

    Chorkawy, G.; Etele, J.

    2017-09-01

    A genetic algorithm based on real parameter representation using a variable selection pressure and variable probability of mutation is used to optimize an annular air breathing rocket inlet called the Exchange Inlet. A rapid and accurate design method which provides estimates for air breathing, mixing, and isentropic flow performance is used as the engine of the optimization routine. Comparison to detailed numerical simulations show that the design method yields desired exit Mach numbers to within approximately 1% over 75% of the annular exit area and predicts entrained air massflows to between 1% and 9% of numerically simulated values depending on the flight condition. Optimum designs are shown to be obtained within approximately 8000 fitness function evaluations in a search space on the order of 106. The method is also shown to be able to identify beneficial values for particular alleles when they exist while showing the ability to handle cases where physical and aphysical designs co-exist at particular values of a subset of alleles within a gene. For an air breathing engine based on a hydrogen fuelled rocket an exchange inlet is designed which yields a predicted air entrainment ratio within 95% of the theoretical maximum.

  10. A homogeneous superconducting magnet design using a hybrid optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ni, Zhipeng; Wang, Qiuliang; Liu, Feng; Yan, Luguang

    2013-12-01

    This paper employs a hybrid optimization algorithm with a combination of linear programming (LP) and nonlinear programming (NLP) to design the highly homogeneous superconducting magnets for magnetic resonance imaging (MRI). The whole work is divided into two stages. The first LP stage provides a global optimal current map with several non-zero current clusters, and the mathematical model for the LP was updated by taking into account the maximum axial and radial magnetic field strength limitations. In the second NLP stage, the non-zero current clusters were discretized into practical solenoids. The superconducting conductor consumption was set as the objective function both in the LP and NLP stages to minimize the construction cost. In addition, the peak-peak homogeneity over the volume of imaging (VOI), the scope of 5 Gauss fringe field, and maximum magnetic field strength within superconducting coils were set as constraints. The detailed design process for a dedicated 3.0 T animal MRI scanner was presented. The homogeneous magnet produces a magnetic field quality of 6.0 ppm peak-peak homogeneity over a 16 cm by 18 cm elliptical VOI, and the 5 Gauss fringe field was limited within a 1.5 m by 2.0 m elliptical region.

  11. Aerodynamics Design and Genetic Algorithms for Optimization of Airship Bodies

    NASA Astrophysics Data System (ADS)

    Nejati, Vahid; Matsuuchi, Kazuo

    A special and effective aerodynamics calculation method has been applied for the flow field around a body of revolution to find the drag coefficient for a wide range of Reynolds numbers. The body profile is described by a first order continuous axial singularity distribution. The solution of the direct problem then gives the radius and inviscid velocity distribution. Viscous effects are considered by means of an integral boundary layer procedure, and for determination of the transition location the forced transition criterion is applied. By avoiding those profiles, which result in the separation of the boundary layer, the drag can be calculated at the end of the body by using Young's formula. In this study, a powerful optimization procedure known as a Genetic Algorithms (GA) is used for the first time in the shape optimization of airship hulls. GA represents a particular artificial intelligence technique for large spaces, striking a remarkable balance between exploration and exploitation of search space. This method could reach to minimum objective function through a better path, and also could minimize the drag coefficient faster for different Reynolds number regimes. It was found that GA is a powerful method for such multi-dimensional, multi-modal and nonlinear objective function.

  12. Stochastic optimization algorithm for inverse modeling of air pollution

    NASA Astrophysics Data System (ADS)

    Yeo, Kyongmin; Hwang, Youngdeok; Liu, Xiao; Kalagnanam, Jayant

    2016-11-01

    A stochastic optimization algorithm to estimate a smooth source function from a limited number of observations is proposed in the context of air pollution, where the source-receptor relation is given by an advection-diffusion equation. First, a smooth source function is approximated by a set of Gaussian kernels on a rectangular mesh system. Then, the generalized polynomial chaos (gPC) expansion is used to represent the model uncertainty due to the choice of the mesh system. It is shown that the convolution of gPC basis and the Gaussian kernel provides hierarchical basis functions for a spectral function estimation. The spectral inverse model is formulated as a stochastic optimization problem. We propose a regularization strategy based on the hierarchical nature of the basis polynomials. It is shown that the spectral inverse model is capable of providing a good estimate of the source function even when the number of unknown parameters (m) is much larger the number of data (n), m/n > 50.

  13. Optimization of the marinelli beaker dimensions using genetic algorithm.

    PubMed

    Zamzamian, Seyed Mehrdad; Hosseini, Seyed Abolfazl; Samadfam, Mohammad

    2017-06-01

    A computational code, based on the genetic algorithm and MCNPX version 2.6 code was developed and used to investigate the effects of some important parameters of HPGe detector (such as Al cap thickness, dead-layer thickness and Ge hole size) on optimum dimensions of marinelli beaker. In addition, the effects of detector material on optimal beaker dimensions were also investigated. Finally, the optimized beaker dimensions at various beaker volumes (300, 500, 700, 1000 and 1500 cm(3)) were determined for some conventional Ge detectors with different crystal sizes (16 sizes). These sets of data then were used to drive mathematical formulas (obtained by best fitting to data sets). The results showed that, there is no meaningful correlation between the optimum dimensions of the beaker and each of the dead-layer thickness, Al cap thickness and the Ge-crystal hole size. On the other hand, the optimum beaker radius increases with decreasing the density of the detector material while the beaker height decreases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. An effective hybrid cuckoo search and genetic algorithm for constrained engineering design optimization

    NASA Astrophysics Data System (ADS)

    Kanagaraj, G.; Ponnambalam, S. G.; Jawahar, N.; Mukund Nilakantan, J.

    2014-10-01

    This article presents an effective hybrid cuckoo search and genetic algorithm (HCSGA) for solving engineering design optimization problems involving problem-specific constraints and mixed variables such as integer, discrete and continuous variables. The proposed algorithm, HCSGA, is first applied to 13 standard benchmark constrained optimization functions and subsequently used to solve three well-known design problems reported in the literature. The numerical results obtained by HCSGA show competitive performance with respect to recent algorithms for constrained design optimization problems.

  15. The optimal solution prediction for genetic and distribution building algorithms with binary representation

    NASA Astrophysics Data System (ADS)

    Sopov, E.; Semenkina, O.

    2015-01-01

    Genetic and distribution building algorithms with binary representation are analyzed. A property of convergence to the optimal solution is discussed. A novel convergence prediction method is proposed and investigated. The method is based on analysis of gene value probabilities distribution dynamics, thus it can predict gene values of the optimal solution to which the algorithm converges. The results of investigations for the optimal prediction algorithm performance are presented.

  16. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests.

    PubMed

    Ma, Li; Fan, Suohai

    2017-03-14

    The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.

  17. Optimizations Of Coat-Hanger Die, Using Constraint Optimization Algorithm And Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lebaal, Nadhir; Schmidt, Fabrice; Puissant, Stephan

    2007-05-01

    Polymer extrusion is one of the most important manufacturing methods used today. A flat die, is commonly used to extrude thin thermoplastics sheets. If the channel geometry in a flat die is not designed properly, the velocity at the die exit may be perturbed, which can affect the thickness across the width of the die. The ultimate goal of this work is to optimize the die channel geometry in a way that a uniform velocity distribution is obtained at the die exit. While optimizing the exit velocity distribution, we have coupled three-dimensional extrusion simulation software Rem3D®, with an automatic constraint optimization algorithm to control the maximum allowable pressure drop in the die; according to this constraint we can control the pressure in the die (decrease the pressure while minimizing the velocity dispersion across the die exit). For this purpose, we investigate the effect of the design variables in the objective and constraint function by using Taguchi method. In the second study we use the global response surface method with Kriging interpolation to optimize flat die geometry. Two optimization results are presented according to the imposed constraint on the pressure. The optimum is obtained with a very fast convergence (2 iterations). To respect the constraint while ensuring a homogeneous distribution of velocity, the results with a less severe constraint offers the best minimum.

  18. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization

    NASA Astrophysics Data System (ADS)

    Ogren, Ryan M.

    For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.

  19. Management of endovenous heat-induced thrombus using a classification system and treatment algorithm following segmental thermal ablation of the small saphenous vein.

    PubMed

    Harlander-Locke, Michael; Jimenez, Juan Carlos; Lawrence, Peter F; Derubertis, Brian G; Rigberg, David A; Gelabert, Hugh A; Farley, Steven M

    2013-08-01

    We evaluated our experience with segmental radiofrequency ablation (RFA) of the small saphenous vein (SSV), a less common procedure than great saphenous vein ablation, and developed a classification system and algorithm for endovenous heat-induced thrombus (EHIT), based on modifications of our prior algorithm of EHIT following great saphenous ablation. Endovenous ablation was performed on symptomatic patients with incompetent SSVs following a minimum of 3 months of compression therapy. Demographic data, risk factors, CEAP classification, procedure details, and follow-up data were recorded. A four-tier classification system and treatment algorithm was developed, based on EHIT proximity to the popliteal vein. Eighty limbs (in 76 patients) were treated with RFA of the SSV between January 2008 and August 2012. Duplex ultrasound was performed between 24 and 72 hours postprocedure in all patients. Ablation was successful in 98.7% (79/80) of procedures. Sixty-eight (85%) patients had level A closures (≥ 1 mm caudal to popliteal vein) and 10 patients (13%) had level B closures (flush with popliteal vein) and were observed. Two limbs (3%) had EHIT extending into the popliteal vein (level C) and were treated with outpatient low-molecular-weight heparin anticoagulation. Thrombus retracted to the level of the saphenopopliteal junction in both patients following a short course of anticoagulation. No patient developed an occlusive deep vein thrombosis (DVT) (level D). Mean follow-up period was 6.2 months; no patient had small saphenous recanalization, occlusive DVT, or pulmonary embolus. The presence or absence of the Giacomini vein was not predictive of level B and C closure. RFA of the SSV in symptomatic patients has a high success rate with a low risk of DVT. A classification system and treatment protocol based on the level of EHIT in relation to the saphenopopliteal junction is useful in managing patients. The approach to patients with thrombus flush with the popliteal

  20. Optimization of the double dosimetry algorithm for interventional cardiologists

    NASA Astrophysics Data System (ADS)

    Chumak, Vadim; Morgun, Artem; Bakhanova, Elena; Voloskiy, Vitalii; Borodynchik, Elena

    2014-11-01

    A double dosimetry method is recommended in interventional cardiology (IC) to assess occupational exposure; yet currently there is no common and universal algorithm for effective dose estimation. In this work, flexible and adaptive algorithm building methodology was developed and some specific algorithm applicable for typical irradiation conditions of IC procedures was obtained. It was shown that the obtained algorithm agrees well with experimental measurements and is less conservative compared to other known algorithms.

  1. Optimized Uncertainty Quantification Algorithm Within a Dynamic Event Tree Framework

    SciTech Connect

    J. W. Nielsen; Akira Tokuhiro; Robert Hiromoto

    2014-06-01

    Methods for developing Phenomenological Identification and Ranking Tables (PIRT) for nuclear power plants have been a useful tool in providing insight into modelling aspects that are important to safety. These methods have involved expert knowledge with regards to reactor plant transients and thermal-hydraulic codes to identify are of highest importance. Quantified PIRT provides for rigorous method for quantifying the phenomena that can have the greatest impact. The transients that are evaluated and the timing of those events are typically developed in collaboration with the Probabilistic Risk Analysis. Though quite effective in evaluating risk, traditional PRA methods lack the capability to evaluate complex dynamic systems where end states may vary as a function of transition time from physical state to physical state . Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. A limitation of DPRA is its potential for state or combinatorial explosion that grows as a function of the number of components; as well as, the sampling of transition times from state-to-state of the entire system. This paper presents a method for performing QPIRT within a dynamic event tree framework such that timing events which result in the highest probabilities of failure are captured and a QPIRT is performed simultaneously while performing a discrete dynamic event tree evaluation. The resulting simulation results in a formal QPIRT for each end state. The use of dynamic event trees results in state explosion as the number of possible component states increases. This paper utilizes a branch and bound algorithm to optimize the solution of the dynamic event trees. The paper summarizes the methods used to implement the branch-and-bound algorithm in solving the discrete dynamic event trees.

  2. The optimal extraction of feature algorithm based on KAZE

    NASA Astrophysics Data System (ADS)

    Yao, Zheyi; Gu, Guohua; Qian, Weixian; Wang, Pengcheng

    2015-10-01

    As a novel method of 2D features extraction algorithm over the nonlinear scale space, KAZE provide a special method. However, the computation of nonlinear scale space and the construction of KAZE feature vectors are more expensive than the SIFT and SURF significantly. In this paper, the given image is used to build the nonlinear space up to a maximum evolution time through the efficient Additive Operator Splitting (AOS) techniques and the variable conductance diffusion. Changing the parameter can improve the construction of nonlinear scale space and simplify the image conductivities for each dimension space, with the predigest computation. Then, the detection for points of interest can exhibit a maxima of the scale-normalized determinant with the Hessian response in the nonlinear scale space. At the same time, the detection of feature vectors is optimized by the Wavelet Transform method, which can avoid the second Gaussian smoothing in the KAZE Features and cut down the complexity of the algorithm distinctly in the building and describing vectors steps. In this way, the dominant orientation is obtained, similar to SURF, by summing the responses within a sliding circle segment covering an angle of π/3 in the circular area of radius 6σ with a sampling step of size σ one by one. Finally, the extraction in the multidimensional patch at the given scale, centered over the points of interest and rotated to align its dominant orientation to a canonical direction, is able to simplify the description of feature by reducing the description dimensions, just as the PCA-SIFT method. Even though the features are somewhat more expensive to compute than SIFT due to the construction of nonlinear scale space, but compared to SURF, the result revels a step forward in performance in detection, description and application against the previous ways by the following contrast experiments.

  3. Ultra-fast fluence optimization for beam angle selection algorithms

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Ziegenhein, P.; Oelfke, U.

    2014-03-01

    Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ~ 4 s. BAS runs including FOs for 1000 different beam ensembles take ~ 15-70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.

  4. SOPRA: Scaffolding algorithm for paired reads via statistical optimization

    PubMed Central

    2010-01-01

    Background High throughput sequencing (HTS) platforms produce gigabases of short read (<100 bp) data per run. While these short reads are adequate for resequencing applications, de novo assembly of moderate size genomes from such reads remains a significant challenge. These limitations could be partially overcome by utilizing mate pair technology, which provides pairs of short reads separated by a known distance along the genome. Results We have developed SOPRA, a tool designed to exploit the mate pair/paired-end information for assembly of short reads. The main focus of the algorithm is selecting a sufficiently large subset of simultaneously satisfiable mate pair constraints to achieve a balance between the size and the quality of the output scaffolds. Scaffold assembly is presented as an optimization problem for variables associated with vertices and with edges of the contig connectivity graph. Vertices of this graph are individual contigs with edges drawn between contigs connected by mate pairs. Similar graph problems have been invoked in the context of shotgun sequencing and scaffold building for previous generation of sequencing projects. However, given the error-prone nature of HTS data and the fundamental limitations from the shortness of the reads, the ad hoc greedy algorithms used in the earlier studies are likely to lead to poor quality results in the current context. SOPRA circumvents this problem by treating all the constraints on equal footing for solving the optimization problem, the solution itself indicating the problematic constraints (chimeric/repetitive contigs, etc.) to be removed. The process of solving and removing of constraints is iterated till one reaches a core set of consistent constraints. For SOLiD sequencer data, SOPRA uses a dynamic programming approach to robustly translate the color-space assembly to base-space. For assessing the quality of an assembly, we report the no-match/mismatch error rate as well as the rates of various

  5. Genetics algorithm optimization of DWT-DCT based image Watermarking

    NASA Astrophysics Data System (ADS)

    Budiman, Gelar; Novamizanti, Ledya; Iwut, Iwan

    2017-01-01

    Data hiding in an image content is mandatory for setting the ownership of the image. Two dimensions discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed as transform method in this paper. First, the host image in RGB color space is converted to selected color space. We also can select the layer where the watermark is embedded. Next, 2D-DWT transforms the selected layer obtaining 4 subband. We select only one subband. And then block-based 2D-DCT transforms the selected subband. Binary-based watermark is embedded on the AC coefficients of each block after zigzag movement and range based pixel selection. Delta parameter replacing pixels in each range represents embedded bit. +Delta represents bit “1” and -delta represents bit “0”. Several parameters to be optimized by Genetics Algorithm (GA) are selected color space, layer, selected subband of DWT decomposition, block size, embedding range, and delta. The result of simulation performs that GA is able to determine the exact parameters obtaining optimum imperceptibility and robustness, in any watermarked image condition, either it is not attacked or attacked. DWT process in DCT based image watermarking optimized by GA has improved the performance of image watermarking. By five attacks: JPEG 50%, resize 50%, histogram equalization, salt-pepper and additive noise with variance 0.01, robustness in the proposed method has reached perfect watermark quality with BER=0. And the watermarked image quality by PSNR parameter is also increased about 5 dB than the watermarked image quality from previous method.

  6. Optimization of Power Systems Using Real Coded Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Deep, Kusum

    2008-10-01

    This talk highlights the recently proposed Real Coded Crossover Operator, called the Laplace Crossover (LX) of [1] and Real Coded Mutation Operator called Power Mutation (PM) of [2], wherein The performance of LX and PM is compared with Heuristic Crossover (HX) and Non-Uniform Mutation (NUM) and Makinen, Periaux and Toivanen Mutation (MPTM). The test bed is a set of 20 test problems available in global optimization literature. Various performance criterion like computational cost, success rate, solution quality, efficiency and reliability are reported using two kinds of analysis. The results show that LX-PM outperforms all other GAs considered. In this paper, the above algorithms are extended for obtaining global optimal solution of constrained optimization problems. Constraints are handled using the parameter less approach proposed by Deb and the six RCGAs described above are modified accordingly. Comparison is shown with other existing RCGAs using Simulated Binary Crossover (SBX) and Polynomial Mutation (POL) of [3], [4]. Inclusion of two operators, SBX and POL, gives rise to two more combinations namely, LX with POL and SBX with PM. Two new RCGAs namely, LX-POL and SBX-PM are proposed by taking these two operators into account. Thus, in all, nine RCGAs are used for comparative study, namely: LX-POL, LX-PM, LX-MPTM, LX-NUM, HX-PM, HX-MPTM, HX-NUM, SBX-POL and SBX-PM. A set of 25 benchmark test problems are chosen, consisting of linear/nonlinear objective function and equality/inequality constraint. Comparison is made with respect to percentage of success, the average number of function evaluations and execution of successful runs. It is observed that the overall success rate of LX-POL is better than all other RCGAs. Based on extensive analysis, it is concluded that LX-POL clearly outperform other RCGAs considered in this study. The problem of optimization of Directional Over current Relay is modeled as a nonlinear constrained optimization problem. It is required

  7. Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains

    NASA Astrophysics Data System (ADS)

    Dutta, Rajdeep; Ganguli, Ranjan; Mani, V.

    2011-10-01

    Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.

  8. Improved mine blast algorithm for optimal cost design of water distribution systems

    NASA Astrophysics Data System (ADS)

    Sadollah, Ali; Guen Yoo, Do; Kim, Joong Hoon

    2015-12-01

    The design of water distribution systems is a large class of combinatorial, nonlinear optimization problems with complex constraints such as conservation of mass and energy equations. Since feasible solutions are often extremely complex, traditional optimization techniques are insufficient. Recently, metaheuristic algorithms have been applied to this class of problems because they are highly efficient. In this article, a recently developed optimizer called the mine blast algorithm (MBA) is considered. The MBA is improved and coupled with the hydraulic simulator EPANET to find the optimal cost design for water distribution systems. The performance of the improved mine blast algorithm (IMBA) is demonstrated using the well-known Hanoi, New York tunnels and Balerma benchmark networks. Optimization results obtained using IMBA are compared to those using MBA and other optimizers in terms of their minimum construction costs and convergence rates. For the complex Balerma network, IMBA offers the cheapest network design compared to other optimization algorithms.

  9. Optimizing the lithography model calibration algorithms for NTD process

    NASA Astrophysics Data System (ADS)

    Hu, C. M.; Lo, Fred; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2016-03-01

    As patterns shrink to the resolution limits of up-to-date ArF immersion lithography technology, negative tone development (NTD) process has been an increasingly adopted technique to get superior imaging quality through employing bright-field (BF) masks to print the critical dark-field (DF) metal and contact layers. However, from the fundamental materials and process interaction perspectives, several key differences inherently exist between NTD process and the traditional positive tone development (PTD) system, especially the horizontal/vertical resist shrinkage and developer depletion effects, hence the traditional resist parameters developed for the typical PTD process have no longer fit well in NTD process modeling. In order to cope with the inherent differences between PTD and NTD processes accordingly get improvement on NTD modeling accuracy, several NTD models with different combinations of complementary terms were built to account for the NTD-specific resist shrinkage, developer depletion and diffusion, and wafer CD jump induced by sub threshold assistance feature (SRAF) effects. Each new complementary NTD term has its definite aim to deal with the NTD-specific phenomena. In this study, the modeling accuracy is compared among different models for the specific patterning characteristics on various feature types. Multiple complementary NTD terms were finally proposed to address all the NTD-specific behaviors simultaneously and further optimize the NTD modeling accuracy. The new algorithm of multiple complementary NTD term tested on our critical dark-field layers demonstrates consistent model accuracy improvement for both calibration and verification.

  10. Optimization on robot arm machining by using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Tung-Kuan; Chen, Chiu-Hung; Tsai, Shang-En

    2007-12-01

    In this study, an optimization problem on the robot arm machining is formulated and solved by using genetic algorithms (GAs). The proposed approach adopts direct kinematics model and utilizes GA's global search ability to find the optimum solution. The direct kinematics equations of the robot arm are formulated and can be used to compute the end-effector coordinates. Based on these, the objective of optimum machining along a set of points can be evolutionarily evaluated with the distance between machining points and end-effector positions. Besides, a 3D CAD application, CATIA, is used to build up the 3D models of the robot arm, work-pieces and their components. A simulated experiment in CATIA is used to verify the computation results first and a practical control on the robot arm through the RS232 port is also performed. From the results, this approach is proved to be robust and can be suitable for most machining needs when robot arms are adopted as the machining tools.

  11. Optimization of process parameters in stereolithography using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chockalingam, K.; Jawahar, N.; Vijaybabu, E. R.

    2003-10-01

    Stereolithography is the most popular RP process in which intricate models are directly constructed from a CAD package by polymerizing a plastic monomer. The application range is still limited, because dimensional accuracy is still inferior to that of conventional machining process. The ultimate dimensional accuracy of a part built on a layer-by-layer basis depends on shrinkage which depend on many factors such as layer thickness, hatch spacing, hatch style, hatch over cure and fill cure depth. The influence of the above factors on shrinkage in X and Y directions fit to the nonlinear pattern. A particular combination of process variables that would result same shrinkage rate in both directions would enable to predict shrinkage allowance to be provided on a part and hence the CAD model could be constructed including shrinkage allowance. In this concern, the objective of the present work is set as determination of process parameters to have same shrinkage rate in both X and Y directions. A genetic algorithm (GA) is proposed to find optimal process parameters for the above objective. This approach is an analytical approach with experimental sample data and has great potential to predict process parameters for better dimensional accuracy in stereolithography process.

  12. Optimal placement of active material actuators using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Johnson, Terrence; Frecker, Mary I.

    2004-07-01

    Actuators based on smart materials generally exhibit a tradeoff between force and stroke. Researchers have surrounded piezoelectric materials (PZT"s) with complaint structures to magnify either their geometric or mechanical advantage. Most of these designs are literally built around a particular piezoelectric device, so the design space consists of only the compliant mechanism. Materials scientists researchers have demonstrated the ability to pole a PZT in an arbitrary direction, and some engineers have taken advantage of this to build "shear mode" actuators. The goal of this work is to determine if the performance of compliant mechanisms improves by the inclusion of the piezoelectric polarization as a design variable. The polarization vector is varied via transformation matrixes, and the compliant actuator is modeled using the SIMP (Solid Isotropic Material with Penalization) or "power-law method." The concept of mutual potential energy is used to form an objective function to measure the piezoelectric actuator"s performance. The optimal topology of the compliant mechanism and orientation of the polarization method are determined using a sequential linear programming algorithm. This paper presents a demonstration problem that shows small changes in the polarization vector have a marginal effect on the optimum topology of the mechanism, but improves actuation.

  13. An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization.

    PubMed

    Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing

    2015-01-01

    An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.

  14. A hybrid approach using chaotic dynamics and global search algorithms for combinatorial optimization problems

    NASA Astrophysics Data System (ADS)

    Igeta, Hideki; Hasegawa, Mikio

    Chaotic dynamics have been effectively applied to improve various heuristic algorithms for combinatorial optimization problems in many studies. Currently, the most used chaotic optimization scheme is to drive heuristic solution search algorithms applicable to large-scale problems by chaotic neurodynamics including the tabu effect of the tabu search. Alternatively, meta-heuristic algorithms are used for combinatorial optimization by combining a neighboring solution search algorithm, such as tabu, gradient, or other search method, with a global search algorithm, such as genetic algorithms (GA), ant colony optimization (ACO), or others. In these hybrid approaches, the ACO has effectively optimized the solution of many benchmark problems in the quadratic assignment problem library. In this paper, we propose a novel hybrid method that combines the effective chaotic search algorithm that has better performance than the tabu search and global search algorithms such as ACO and GA. Our results show that the proposed chaotic hybrid algorithm has better performance than the conventional chaotic search and conventional hybrid algorithms. In addition, we show that chaotic search algorithm combined with ACO has better performance than when combined with GA.

  15. An intelligent scheduling method based on improved particle swarm optimization algorithm for drainage pipe network

    NASA Astrophysics Data System (ADS)

    Luo, Yaqi; Zeng, Bi

    2017-08-01

    This paper researches the drainage routing problem in drainage pipe network, and propose an intelligent scheduling method. The method relates to the design of improved particle swarm optimization algorithm, the establishment of the corresponding model from the pipe network, and the process by using the algorithm based on improved particle swarm optimization to find the optimum drainage route in the current environment.

  16. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    ERIC Educational Resources Information Center

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  17. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    ERIC Educational Resources Information Center

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  18. Optimizing a head-tracked stereo display system to guide hepatic tumor ablation.

    PubMed

    Fuchs, Henry; State, Andrei; Yang, Hua; Peck, Tabitha; Lee, Sang Woo; Rosenthal, Michael; Bulysheva, Anna; Burke, Charles

    2008-01-01

    Radio frequency ablation is a minimally invasive intervention that introduces -- under 2D ultrasound guidance and via a needle-like probe -- high-frequency electrical current into non-resectable hepatic tumors. These recur mostly on the periphery, indicating errors in probe placement. Hypothesizing that a contextually correct 3D display will aid targeting and decrease recurrence, we have developed a prototype guidance system based on a head-tracked 3D display and motion-tracked instruments. We describe our reasoning and our experience in selecting components for, designing and constructing the 3D display. Initial candidates were an augmented reality see-through head-mounted display and a virtual reality "fish tank" system. We describe the system requirements and explain how we arrived at the final decision. We show the operational guidance system in use on phantoms and animals.

  19. Optimized Phase Generated Carrier (PGC) demodulation algorithm insensitive to C value

    NASA Astrophysics Data System (ADS)

    Wu, B.; Yuan, Y.; Yang, J.; Liang, S.; Yuan, L.

    2015-07-01

    An optimized phase generated carrier (PGC) demodulation algorithm is proposed for signal demodulation of interferometer. Similar to the traditional PGC algorithm, this optimized algorithm also need to adopt differential cross multiply (DCM), divides the two signals which processed by differential cross-multiplying could get the square of the tangent function of the output phase, output phase can be obtained by the corresponding calculation. The output of the optimization algorithm has no related items of modulated amplitude (C value) and interference signal AC amplitude (B value), therefor the demodulation error caused by C value and B value fluctuation could be suppressed.

  20. Pattern Search Ranking and Selection Algorithms for Mixed-Variable Optimization of Stochastic Systems

    DTIC Science & Technology

    2004-09-01

    optimization problems with stochastic objective functions and a mixture of design variable types. The generalized pattern search (GPS) class of algorithms is...provide computational enhancements to the basic algorithm. Im- plementation alternatives include the use of modern R&S procedures designed to provide...83 vii Page 4.3 Termination Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4 Algorithm Design

  1. Study and optimization of key parameters of a laser ablation ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Li, Jianan; Tang, Binchao; Shi, Yuan; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2016-11-01

    Ion Mobility Spectrometry (IMS), having an advantage in real-time and on-line detection, is an atmospheric pressure detecting technique. LA-IMS (Laser Ablation Ion Mobility Spectrometry) uses Nd-YAG laser as ionization source, whose energy is high enough to ionize metal. In this work, we tested the signal in different electric field intensity by a home-made ion mobility spectrometer, using silicon wafers the sample. The transportation of metal ions was match with the formula: Td = d/K • 1/E, when the electric field intensity is greater than 350v/cm. The relationship between signal intensity and collection angle (the angle between drift tube and the surface of the sample) was studied. With the increasing of the collection angle, signal intensity had a significant increase; while the variation of incident angle of the laser had no significant influence. The signal intensity had a 140% increase when the collection angle varied from 0 to 45 degree, while the angle between the drift tube and incident laser beam keeping the same as 90 degree. The position of ion gate in LA-IMS(Laser Ablation Ion Mobility Spectrometry) is different from the traditional ones for the kinetic energy of the ions is too big, if the distance between ion gate and sampling points less than 2.5cm the ion gate will not work, the ions could go through ion gate when it closed. The SNR had been improved by define the signal when the ion gate is closed as background signal, the signal noise including shock wave and electrical field perturbation produced during the interaction between laser beam and samples is eliminated when the signal that the ion gate opened minus the background signal.

  2. Analytical optimization of the ablation efficiency at normal and non-normal incidence for generic super Gaussian beam profiles

    PubMed Central

    Arba-Mosquera, Samuel; Verma, Shwetabh

    2013-01-01

    We suggest a general method to determine the optimum laser parameters for maximizing the ablation efficiency for different materials (in particular human cornea) at different incidence angles. The model is comprehensive and incorporates laser beam characteristics and ablative spot properties. The model further provides a method to convert energy fluctuations during ablation to equivalent ablation deviations in the cornea. The proposed model can be used for calibration, verification and validation purposes of laser systems used for ablation processes at relatively low cost and would directly improve the quality of results. PMID:24010004

  3. Discrete bat algorithm for optimal problem of permutation flow shop scheduling.

    PubMed

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.

  4. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    PubMed Central

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  5. A new improved artificial bee colony algorithm for ship hull form optimization

    NASA Astrophysics Data System (ADS)

    Huang, Fuxin; Wang, Lijue; Yang, Chi

    2016-04-01

    The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.

  6. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning

    SciTech Connect

    Chen Wei; Craft, David; Madden, Thomas M.; Zhang, Kewu; Kooy, Hanne M.; Herman, Gabor T.

    2010-09-15

    Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. Methods: The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK's interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  7. Chemical process dynamic optimization based on the differential evolution algorithm with an adaptive scheduling mutation strategy

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Yan, Xuefeng; Zhao, Weixiang

    2013-10-01

    To solve chemical process dynamic optimization problems, a differential evolution algorithm integrated with adaptive scheduling mutation strategy (ASDE) is proposed. According to the evolution feedback information, ASDE, with adaptive control parameters, adopts the round-robin scheduling algorithm to adaptively schedule different mutation strategies. By employing an adaptive mutation strategy and control parameters, the real-time optimal control parameters and mutation strategy are obtained to improve the optimization performance. The performance of ASDE is evaluated using a suite of 14 benchmark functions. The results demonstrate that ASDE performs better than four conventional differential evolution (DE) algorithm variants with different mutation strategies, and that the whole performance of ASDE is equivalent to a self-adaptive DE algorithm variant and better than five conventional DE algorithm variants. Furthermore, ASDE was applied to solve a typical dynamic optimization problem of a chemical process. The obtained results indicate that ASDE is a feasible and competitive optimizer for this kind of problem.

  8. Multiple shooting algorithms for jump-discontinuous problems in optimal control and estimation

    NASA Technical Reports Server (NTRS)

    Mook, D. J.; Lew, Jiann-Shiun

    1991-01-01

    Multiple shooting algorithms are developed for jump-discontinuous two-point boundary value problems arising in optimal control and optimal estimation. Examples illustrating the origin of such problems are given to motivate the development of the solution algorithms. The algorithms convert the necessary conditions, consisting of differential equations and transversality conditions, into algebraic equations. The solution of the algebraic equations provides exact solutions for linear problems. The existence and uniqueness of the solution are proved.

  9. Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2001-01-01

    A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.

  10. Bio-inspired optimization algorithms for optical parameter extraction of dielectric materials: A comparative study

    NASA Astrophysics Data System (ADS)

    Ghulam Saber, Md; Arif Shahriar, Kh; Ahmed, Ashik; Hasan Sagor, Rakibul

    2016-10-01

    Particle swarm optimization (PSO) and invasive weed optimization (IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square (RMS) deviation is determined and compared.

  11. Performance Analysis of Particle Swarm Optimization Based Routing Algorithm in Optical Burst Switching Networks

    NASA Astrophysics Data System (ADS)

    Hou, Rui; Yu, Junle

    2011-12-01

    Optical burst switching (OBS) has been regarded as the next generation optical switching technology. In this paper, the routing problem based on particle swarm optimization (PSO) algorithm in OBS has been studies and analyzed. Simulation results indicate that, the PSO based routing algorithm will optimal than the conversional shortest path first algorithm in space cost and calculation cost. Conclusions have certain theoretical significances for the improvement of OBS routing protocols.

  12. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm

    PubMed Central

    Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-01-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301

  13. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.

  14. Optimum design of antennas using metamaterials with the efficient global optimization (EGO) algorithm

    NASA Astrophysics Data System (ADS)

    Southall, Hugh L.; O'Donnell, Teresa H.; Derov, John S.

    2010-04-01

    EGO is an evolutionary, data-adaptive algorithm which can be useful for optimization problems with expensive cost functions. Many antenna design problems qualify since complex computational electromagnetics (CEM) simulations can take significant resources. This makes evolutionary algorithms such as genetic algorithms (GA) or particle swarm optimization (PSO) problematic since iterations of large populations are required. In this paper we discuss multiparameter optimization of a wideband, single-element antenna over a metamaterial ground plane and the interfacing of EGO (optimization) with a full-wave CEM simulation (cost function evaluation).

  15. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm.

    PubMed

    Yoshimaru, Eriko S; Randtke, Edward A; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.

  16. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    PubMed Central

    Deb, Suash; Yang, Xin-She

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730

  17. Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms.

    PubMed

    Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  18. An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation.

    PubMed

    Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2016-01-01

    This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior.

  19. An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation

    PubMed Central

    Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2016-01-01

    This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874

  20. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    NASA Astrophysics Data System (ADS)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2017-04-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  1. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    NASA Astrophysics Data System (ADS)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2016-06-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  2. A global optimization algorithm inspired in the behavior of selfish herds.

    PubMed

    Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián

    2017-10-01

    In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Maximum voltage gradient technique for optimization of ablation for typical atrial flutter with zero-fluoroscopy approach.

    PubMed

    Deutsch, Karol; Śledź, Janusz; Mazij, Mariusz; Ludwik, Bartosz; Labus, Michał; Karbarz, Dariusz; Pasicka, Bernadetta; Chrabąszcz, Michał; Śledź, Arkadiusz; Klank-Szafran, Monika; Vitali-Sendoz, Laura; Kameczura, Tomasz; Śpikowski, Jerzy; Stec, Piotr; Ujda, Marek; Stec, Sebastian

    2017-06-01

    Radiofrequency catheter ablation (RFCA) is an established effective method for the treatment of typical cavo-tricuspid isthmus (CTI)-dependent atrial flutter (AFL). The introduction of 3-dimensional electro-anatomic systems enables RFCA without fluoroscopy (No-X-Ray [NXR]). The aim of this study was to evaluate the feasibility and effectiveness of CTI RFCA during implementation of the NXR approach and the maximum voltage-guided (MVG) technique for ablation of AFL.Data were obtained from prospective standardized multicenter ablation registry. Consecutive patients with the first RFCA for CTI-dependent AFL were recruited. Two navigation approaches (NXR and fluoroscopy based as low as reasonable achievable [ALARA]) and 2 mapping and ablation techniques (MVG and pull-back technique [PBT]) were assessed. NXR + MVG (n  =  164; age: 63.7 ± 9.5; 30% women), NXR + PBT (n  =  55; age: 63.9 ± 10.7; 39% women); ALARA + MVG (n  =  36; age: 64.2 ± 9.6; 39% women); and ALARA + PBT (n  =  205; age: 64.7 ± 9.1; 30% women) were compared, respectively. All groups were simplified with a 2-catheter femoral approach using 8-mm gold tip catheters (Osypka AG, Germany or Biotronik, Germany) with 15 min of observation. The MVG technique was performed using step-by-step application by mapping the largest atrial signals within the CTI.Bidirectional block in CTI was achieved in 99% of all patients (P  =  NS, between groups). In NXR + MVG and NXR + PBT groups, the procedure time decreased (45.4 ± 17.6 and 47.2 ± 15.7 min vs. 52.6 ± 23.7 and 59.8 ± 24.0 min, P < .01) as compared to ALARA + MVG and ALARA + PBT subgroups. In NXR + MVG and NXR + PBT groups, 91% and 98% of the procedures were performed with complete elimination of fluoroscopy. The NXR approach was associated with a significant reduction in fluoroscopy exposure (from 0.2 ± 1.1 [NXR + PBT] and 0.3 ± 1.6 [NXR + MVG] to 7.7 ± 6.0 min [ALARA + MVG] and 9

  4. Maximum voltage gradient technique for optimization of ablation for typical atrial flutter with zero-fluoroscopy approach

    PubMed Central

    Deutsch, Karol; Śledź, Janusz; Mazij, Mariusz; Ludwik, Bartosz; Labus, Michał; Karbarz, Dariusz; Pasicka, Bernadetta; Chrabąszcz, Michał; Śledź, Arkadiusz; Klank-Szafran, Monika; Vitali-Sendoz, Laura; Kameczura, Tomasz; Śpikowski, Jerzy; Stec, Piotr; Ujda, Marek; Stec, Sebastian

    2017-01-01

    Abstract Radiofrequency catheter ablation (RFCA) is an established effective method for the treatment of typical cavo-tricuspid isthmus (CTI)-dependent atrial flutter (AFL). The introduction of 3-dimensional electro-anatomic systems enables RFCA without fluoroscopy (No-X-Ray [NXR]). The aim of this study was to evaluate the feasibility and effectiveness of CTI RFCA during implementation of the NXR approach and the maximum voltage-guided (MVG) technique for ablation of AFL. Data were obtained from prospective standardized multicenter ablation registry. Consecutive patients with the first RFCA for CTI-dependent AFL were recruited. Two navigation approaches (NXR and fluoroscopy based as low as reasonable achievable [ALARA]) and 2 mapping and ablation techniques (MVG and pull-back technique [PBT]) were assessed. NXR + MVG (n  =  164; age: 63.7 ± 9.5; 30% women), NXR + PBT (n  =  55; age: 63.9 ± 10.7; 39% women); ALARA + MVG (n  =  36; age: 64.2 ± 9.6; 39% women); and ALARA + PBT (n  =  205; age: 64.7 ± 9.1; 30% women) were compared, respectively. All groups were simplified with a 2-catheter femoral approach using 8-mm gold tip catheters (Osypka AG, Germany or Biotronik, Germany) with 15 min of observation. The MVG technique was performed using step-by-step application by mapping the largest atrial signals within the CTI. Bidirectional block in CTI was achieved in 99% of all patients (P  =  NS, between groups). In NXR + MVG and NXR + PBT groups, the procedure time decreased (45.4 ± 17.6 and 47.2 ± 15.7 min vs. 52.6 ± 23.7 and 59.8 ± 24.0 min, P < .01) as compared to ALARA + MVG and ALARA + PBT subgroups. In NXR + MVG and NXR + PBT groups, 91% and 98% of the procedures were performed with complete elimination of fluoroscopy. The NXR approach was associated with a significant reduction in fluoroscopy exposure (from 0.2 ± 1.1 [NXR + PBT] and 0.3 ± 1.6 [NXR + MVG] to 7.7 ± 6.0 min [ALARA

  5. MOPSA: A microfluidics-optimized particle simulation algorithm.

    PubMed

    Wang, Junchao; Rodgers, Victor G J; Brisk, Philip; Grover, William H

    2017-05-01

    Computer simulation plays a growing role in the design of microfluidic chips. However, the particle tracers in some existing commercial computational fluid dynamics software are not well suited for accurately simulating the trajectories of particles such as cells, microbeads, and droplets in microfluidic systems. To address this issue, we present a microfluidics-optimized particle simulation algorithm (MOPSA) that simulates the trajectories of cells, droplets, and other particles in microfluidic chips with more lifelike results than particle tracers in existing commercial software. When calculating the velocity of a particle, MOPSA treats the particle as a two-dimensional rigid circular object instead of a single point. MOPSA also checks for unrealistic interactions between particles and channel walls and applies an empirical correcting function to eliminate these errors. To validate the performance of MOPSA, we used it to simulate a variety of important features of microfluidic devices like channel intersections and deterministic lateral displacement (DLD) particle sorter chips. MOPSA successfully predicted that different particle sizes will have different trajectories in six published DLD experiments from three research groups; these DLD chips were used to sort a variety of different cells, particles, and droplets. While some of these particles are not actually rigid or spherical, MOPSA's approximation of these particles as rigid spheres nonetheless resulted in lifelike simulations of the behaviors of these particles (at least for the particle sizes and types shown here). In contrast, existing commercial software failed to replicate these experiments. Finally, to demonstrate that MOPSA can be extended to simulate other properties of particles, we added support for simulating particle density to MOPSA and then used MOPSA to simulate the operation of a microfluidic chip capable of sorting cells by their density. By enabling researchers to accurately simulate the

  6. Full glowworm swarm optimization algorithm for whole-set orders scheduling in single machine.

    PubMed

    Yu, Zhang; Yang, Xiaomei

    2013-01-01

    By analyzing the characteristics of whole-set orders problem and combining the theory of glowworm swarm optimization, a new glowworm swarm optimization algorithm for scheduling is proposed. A new hybrid-encoding schema combining with two-dimensional encoding and random-key encoding is given. In order to enhance the capability of optimal searching and speed up the convergence rate, the dynamical changed step strategy is integrated into this algorithm. Furthermore, experimental results prove its feasibility and efficiency.

  7. Optimization and Improvement of FOA Corner Cube Algorithm

    SciTech Connect

    McClay, W A; Awwal, A S; Burkhart, S C; Candy, J V

    2004-10-01

    Alignment of laser beams based on video images is a crucial task necessary to automate operation of the 192 beams at the National Ignition Facility (NIF). The final optics assembly (FOA) is the optical element that aligns the beam into the target chamber. This work presents an algorithm for determining the position of a corner cube alignment image in the final optics assembly. The improved algorithm was compared to the existing FOA algorithm on 900 noise-simulated images. While the existing FOA algorithm based on correlation with a synthetic template has a radial standard deviation of 1 pixel, the new algorithm based on classical matched filtering (CMF) and polynomial fit to the correlation peak improves the radial standard deviation performance to less than 0.3 pixels. In the new algorithm the templates are designed from real data stored during a year of actual operation.

  8. Compact and efficient large cross-section SOI rib waveguide taper optimized by a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Yujin; Wang, Xi; Dong, Ying; Wang, Xiaohao

    2016-01-01

    A genetic algorithm is applied to optimize a taper between a large cross-section silicon-on-insulator (SOI) rib waveguide and a single-mode fiber to achieve an ultra-compact and highly efficient coupling structure. The coupling efficiency is taken as the objective function of the genetic algorithm in the taper optimization process. To apply the optimization algorithm, the taper is segmented into several sections. Three encoding forms and a two-step optimization strategy are adopted in the optimization process, resulting in a 10μm long taper with a coupling efficiency of 93.30% in quasi-TE mode at 1550nm. The characteristics of the optimized taper including the field profile, spectrum and fabrication tolerances in both horizontal and vertical directions are investigated via a three dimensional eigenmode expansion (EME) method, indicating that the optimized taper is compatible with the prevailing integrated circuit (IC) processing technology.

  9. A new multiobjective performance criterion used in PID tuning optimization algorithms

    PubMed Central

    Sahib, Mouayad A.; Ahmed, Bestoun S.

    2015-01-01

    In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978

  10. A new multiobjective performance criterion used in PID tuning optimization algorithms.

    PubMed

    Sahib, Mouayad A; Ahmed, Bestoun S

    2016-01-01

    In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions.

  11. Dynamic topology multi force particle swarm optimization algorithm and its application

    NASA Astrophysics Data System (ADS)

    Chen, Dongning; Zhang, Ruixing; Yao, Chengyu; Zhao, Zheyu

    2016-01-01

    Particle swarm optimization (PSO) algorithm is an effective bio-inspired algorithm but it has shortage of premature convergence. Researchers have made some improvements especially in force rules and population topologies. However, the current algorithms only consider a single kind of force rules and lack consideration of comprehensive improvement in both multi force rules and population topologies. In this paper, a dynamic topology multi force particle swarm optimization (DTMFPSO) algorithm is proposed in order to get better search performance. First of all, the principle of the presented multi force particle swarm optimization (MFPSO) algorithm is that different force rules are used in different search stages, which can balance the ability of global and local search. Secondly, a fitness-driven edge-changing (FE) topology based on the probability selection mechanism of roulette method is designed to cut and add edges between the particles, and the DTMFPSO algorithm is proposed by combining the FE topology with the MFPSO algorithm through concurrent evolution of both algorithm and structure in order to further improve the search accuracy. Thirdly, Benchmark functions are employed to evaluate the performance of the DTMFPSO algorithm, and test results show that the proposed algorithm is better than the well-known PSO algorithms, such as µPSO, MPSO, and EPSO algorithms. Finally, the proposed algorithm is applied to optimize the process parameters for ultrasonic vibration cutting on SiC wafer, and the surface quality of the SiC wafer is improved by 12.8% compared with the PSO algorithm in Ref. [25]. This research proposes a DTMFPSO algorithm with multi force rules and dynamic population topologies evolved simultaneously, and it has better search performance.

  12. Solution of transient optimization problems by using an algorithm based on nonlinear programming

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.

  13. Solution of transient optimization problems by using an algorithm based on nonlinear programming

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    An algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.

  14. Solution of transient optimization problems by using an algorithm based on nonlinear programming

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1977-01-01

    A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.

  15. Iterative optimization algorithm with parameter estimation for the ambulance location problem.

    PubMed

    Kim, Sun Hoon; Lee, Young Hoon

    2016-12-01

    The emergency vehicle location problem to determine the number of ambulance vehicles and their locations satisfying a required reliability level is investigated in this study. This is a complex nonlinear issue involving critical decision making that has inherent stochastic characteristics. This paper studies an iterative optimization algorithm with parameter estimation to solve the emergency vehicle location problem. In the suggested algorithm, a linear model determines the locations of ambulances, while a hypercube simulation is used to estimate and provide parameters regarding ambulance locations. First, we suggest an iterative hypercube optimization algorithm in which interaction parameters and rules for the hypercube and optimization are identified. The interaction rules employed in this study enable our algorithm to always find the locations of ambulances satisfying the reliability requirement. We also propose an iterative simulation optimization algorithm in which the hypercube method is replaced by a simulation, to achieve computational efficiency. The computational experiments show that the iterative simulation optimization algorithm performs equivalently to the iterative hypercube optimization. The suggested algorithms are found to outperform existing algorithms suggested in the literature.

  16. Optimization of meander line antennas for RFID applications by using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bucuci, Stefania C.; Anchidin, Liliana; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban; Tamas, Razvan D.

    2015-02-01

    In this paper, we propose an approach of optimization of meander line antennas by using genetic algorithm. Such antennas are used in RFID applications. As opposed to other approaches for meander antennas, we propose the use of only two optimization objectives, i.e. gain and size. As an example, we have optimized a single meander dipole antenna, resonating at 869 MHz.

  17. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.

    PubMed

    Rani, R Ranjani; Ramyachitra, D

    2016-12-01

    Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods.

  18. Disaggregated Imaging Spacecraft Constellation Optimization with a Genetic Algorithm

    DTIC Science & Technology

    2014-03-27

    algorithm used throughout. Genetic algorithms are meant to simulate biological evolution and Charles Darwin’s theory of natural selection [41, 42]. Just like...Advances in artificial life: Darwin meets von Neumann - Volume Part II , ECAL’09, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 334–341, Ac- cessed

  19. Optimized feed-forward neural-network algorithm trained for cyclotron-cavity modeling

    NASA Astrophysics Data System (ADS)

    Mohamadian, Masoumeh; Afarideh, Hossein; Ghergherehchi, Mitra

    2017-01-01

    The cyclotron cavity presented in this paper is modeled by a feed-forward neural network trained by the authors’ optimized back-propagation (BP) algorithm. The training samples were obtained from simulation results that are for a number of defined situations and parameters and were achieved parametrically using MWS CST software; furthermore, the conventional BP algorithm with different hidden-neuron numbers, structures, and other optimal parameters such as learning rate that are applied for our purpose was also used here. The present study shows that an optimized FFN can be used to estimate the cyclotron-model parameters with an acceptable error function. A neural network trained by an optimized algorithm therefore shows a proper approximation and an acceptable ability regarding the modeling of the proposed structure. The cyclotron-cavity parameter-modeling results demonstrate that an FNN that is trained by the optimized algorithm could be a suitable method for the estimation of the design parameters in this case.

  20. Aircraft Route Optimization using the A-Star Algorithm

    DTIC Science & Technology

    2014-03-27

    16 Figure 9 . Route Optimization Distance Matrix...performance ....................31 Table 8. Route Optimization model comparison – individual results (1 of 2) .................41 Table 9 . Route...distance, parent node) 9 starting node to a

  1. Partially constrained ant colony optimization algorithm for the solution of constrained optimization problems: Application to storm water network design

    NASA Astrophysics Data System (ADS)

    Afshar, M. H.

    2007-04-01

    This paper exploits the unique feature of the Ant Colony Optimization Algorithm (ACOA), namely incremental solution building mechanism, to develop partially constraint ACO algorithms for the solution of optimization problems with explicit constraints. The method is based on the provision of a tabu list for each ant at each decision point of the problem so that some constraints of the problem are satisfied. The application of the method to the problem of storm water network design is formulated and presented. The network nodes are considered as the decision points and the nodal elevations of the network are used as the decision variables of the optimization problem. Two partially constrained ACO algorithms are formulated and applied to a benchmark example of storm water network design and the results are compared with those of the original unconstrained algorithm and existing methods. In the first algorithm the positive slope constraints are satisfied explicitly and the rest are satisfied by using the penalty method while in the second one the satisfaction of constraints regarding the maximum ratio of flow depth to the diameter are also achieved explicitly via the tabu list. The method is shown to be very effective and efficient in locating the optimal solutions and in terms of the convergence characteristics of the resulting ACO algorithms. The proposed algorithms are also shown to be relatively insensitive to the initial colony used compared to the original algorithm. Furthermore, the method proves itself capable of finding an optimal or near-optimal solution, independent of the discretisation level and the size of the colony used.

  2. Revolute manipulator workspace optimization using a modified bacteria foraging algorithm: A comparative study

    NASA Astrophysics Data System (ADS)

    Panda, S.; Mishra, D.; Biswal, B. B.; Tripathy, M.

    2014-02-01

    Robotic manipulators with three-revolute (3R) motions to attain desired positional configurations are very common in industrial robots. The capability of these robots depends largely on the workspace of the manipulator in addition to other parameters. In this study, an evolutionary optimization algorithm based on the foraging behaviour of the Escherichia coli bacteria present in the human intestine is utilized to optimize the workspace volume of a 3R manipulator. The new optimization method is modified from the original algorithm for faster convergence. This method is also useful for optimization problems in a highly constrained environment, such as robot workspace optimization. The new approach for workspace optimization of 3R manipulators is tested using three cases. The test results are compared with standard results available using other optimization algorithms, i.e. the differential evolution algorithm, the genetic algorithm and the particle swarm optimization algorithm. The present method is found to be superior to the other methods in terms of computational efficiency.

  3. Nonsmooth Optimization Algorithms, System Theory, and Software Tools

    DTIC Science & Technology

    1993-04-13

    Solving Optimal Control Problems with...and D. Q. Mayne, "A Method of Centers Based on Barrier Functions for Solving Optimal Control Problems with Continuum State and Con- trol Constraints...Barrier Functions for Solving Optimal Control Problems with Continuum State and Con- trol Constraints", SIAMJ. Control and Opt., Vol.31, No. 1. pp

  4. Fast algorithm for optimal graph-Laplacian based 3D image segmentation

    NASA Astrophysics Data System (ADS)

    Harizanov, S.; Georgiev, I.

    2016-10-01

    In this paper we propose an iterative steepest-descent-type algorithm that is observed to converge towards the exact solution of the ℓ0 discrete optimization problem, related to graph-Laplacian based image segmentation. Such an algorithm allows for significant additional improvements on the segmentation quality once the minimizer of the associated relaxed ℓ1 continuous optimization problem is computed, unlike the standard strategy of simply hard-thresholding the latter. Convergence analysis of the algorithm is not a subject of this work. Instead, various numerical experiments, confirming the practical value of the algorithm, are documented.

  5. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  6. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  7. Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang

    2017-09-01

    Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.

  8. Performance Comparison of Cuckoo Search and Differential Evolution Algorithm for Constrained Optimization

    NASA Astrophysics Data System (ADS)

    Iwan Solihin, Mahmud; Fauzi Zanil, Mohd

    2016-11-01

    Cuckoo Search (CS) and Differential Evolution (DE) algorithms are considerably robust meta-heuristic algorithms to solve constrained optimization problems. In this study, the performance of CS and DE are compared in solving the constrained optimization problem from selected benchmark functions. Selection of the benchmark functions are based on active or inactive constraints and dimensionality of variables (i.e. number of solution variable). In addition, a specific constraint handling and stopping criterion technique are adopted in the optimization algorithm. The results show, CS approach outperforms DE in term of repeatability and the quality of the optimum solutions.

  9. The optimal range of international normalized ratio for radiofrequency catheter ablation of atrial fibrillation during therapeutic anticoagulation with warfarin.

    PubMed

    Kim, Jin-Seok; Jongnarangsin, Krit; Latchamsetty, Rakesh; Chugh, Aman; Ghanbari, Hamid; Crawford, Thomas; Yokokawa, Miki; Good, Eric; Bogun, Frank; Pelosi, Frank; Morady, Fred; Oral, Hakan

    2013-04-01

    Uninterrupted anticoagulation with warfarin during radiofrequency catheter ablation (RFA) of atrial fibrillation is associated with a lower risk of periprocedural complications than when warfarin is temporarily discontinued. However, the optimal international normalized ratio (INR) levels during RFA have not been defined. In this retrospective analysis, RFA was performed in 1133 consecutive patients (mean age, 61±10 years) with paroxysmal (550) or persistent atrial fibrillation (583). Patients were grouped based on the INR on the day of RFA. There was a quadratic relationship between the INR and bleeding and vascular complications (P<0.001). Complications were less prevalent when INR was ≥2.0 and ≤3.0 (5% [31/572]) than when INR was <2.0 (10% [49/485]; P=0.004) and >3.0 (12% [9/76]; P=0.03). The prevalence of pericardial tamponade (1%) was similar at all INRs. From the quadratic model, the optimal range of INR was calculated as 2.1 to 2.5. INRs<2.0 and >3.0 were associated with a >2-fold increase in complications, with a further steep rise beyond an INR>3.5. Concomitant clopidogrel use was associated with a significant increase in complications at all INRs (odds ratio=3.1; ±95% confidence interval, 1.4-7.4). Unfractionated heparin requirements to maintain a therapeutic activated clotting time during RFA was reduced by 50% in patients with an INR>2.0. The optimal INR range during uninterrupted periprocedural anticoagulation using warfarin is narrow. Therefore, INR levels should be carefully monitored in preparation for RFA of atrial fibrillation.

  10. Contrast Media–Doped Hydrodissection During Thermal Ablation: Optimizing Contrast Media Concentration for Improved Visibility on CT Images

    PubMed Central

    Campbell, Calista; Lubner, Meghan G.; Hinshaw, J. Louis; del Rio, Alejandro Muñoz; Brace, Christopher L.

    2012-01-01

    OBJECTIVE The purpose of this study is to determine a concentration of iodinated contrast media in saline and 5% dextrose in water (D5W) for organ hydrodissection, a technique used to physically separate and protect tissues adjacent to thermal ablations. MATERIALS AND METHODS A total of 28 samples were prepared from 1:1000–1:1 iohexol or iothalamate meglumine contrast media in either normal saline or D5W. Samples alone or juxtaposed with a homogeneous liver-mimicking phantom were imaged by CT using 80–120 kVp and 10–300 mAs. Mean CT numbers and noise were measured from the fluid, background air, phantom adjacent to the fluid, and phantom distant from the fluid. Visibility was determined from the contrast-to-noise ratio between the fluid and phantom, whereas streaking artifact was quantified by relative noise in the phantom. Measures were individually fit using multiple linear regression to determine an optimal contrast-to-fluid ratio for increased visualization without streaking. Contrast media– and blood-doped saline and D5W were also tested to determine whether such doping altered their electrical conductivity. RESULTS Iohexol concentration most influenced CT number; volumetric ratios of 1:1000–1:1 produced 20 HU to over 3000 HU. CT numbers were weakly dependent on x-ray tube voltage, whereas contrast-to-noise ratio and streaking artifacts were somewhat dependent on tube output. An optimal ratio of iohexol in fluid was determined to be 1:50. There was no significant difference between the electrical impedances of doped and pure saline or D5W (p > 0.5, all cases). CONCLUSION A 1:50 ratio of iohexol in saline or D5W provides an optimal combination of increased visibility on CT without streaking artifacts. PMID:22915411

  11. Contrast media-doped hydrodissection during thermal ablation: optimizing contrast media concentration for improved visibility on CT images.

    PubMed

    Campbell, Calista; Lubner, Meghan G; Hinshaw, J Louis; Muñoz del Rio, Alejandro; Brace, Christopher L

    2012-09-01

    The purpose of this study is to determine a concentration of iodinated contrast media in saline and 5% dextrose in water (D5W) for organ hydrodissection, a technique used to physically separate and protect tissues adjacent to thermal ablations. A total of 28 samples were prepared from 1:1000-1:1 iohexol or iothalamate meglumine contrast media in either normal saline or D5W. Samples alone or juxtaposed with a homogeneous liver-mimicking phantom were imaged by CT using 80-120 kVp and 10-300 mAs. Mean CT numbers and noise were measured from the fluid, background air, phantom adjacent to the fluid, and phantom distant from the fluid. Visibility was determined from the contrast-to-noise ratio between the fluid and phantom, whereas streaking artifact was quantified by relative noise in the phantom. Measures were individually fit using multiple linear regression to determine an optimal contrast-to-fluid ratio for increased visualization without streaking. Contrast media- and blood-doped saline and D5W were also tested to determine whether such doping altered their electrical conductivity. Iohexol concentration most influenced CT number; volumetric ratios of 1:1000-1:1 produced 20 HU to over 3000 HU. CT numbers were weakly dependent on x-ray tube voltage, whereas contrast-to-noise ratio and streaking artifacts were somewhat dependent on tube output. An optimal ratio of iohexol in fluid was determined to be 1:50. There was no significant difference between the electrical impedances of doped and pure saline or D5W (p > 0.5, all cases). A 1:50 ratio of iohexol in saline or D5W provides an optimal combination of increased visibility on CT without streaking artifacts.

  12. A prospective, multicenter evaluation of ablating complex fractionated electrograms (CFEs) during atrial fibrillation (AF) identified by an automated mapping algorithm: acute effects on AF and efficacy as an adjuvant strategy.

    PubMed

    Verma, Atul; Novak, Paul; Macle, Laurent; Whaley, Bonnie; Beardsall, Marianne; Wulffhart, Zaev; Khaykin, Yaariv

    2008-02-01

    Complex fractionated electrograms (CFEs) are continuous electrograms (EGMs) of very short cycle length (CL) representing substrate for atrial fibrillation (AF) perpetuation. Ablation of CFEs may result in AF slowing, termination, and prevention, but identifying them can be subjective. The purpose of this study was to prospectively assess (1) whether an automated algorithm can identify CFE regions, (2) the acute effects of ablating these regions on AF, and (3) the long-term efficacy as an adjuvant strategy to pulmonary vein antrum isolation (PVAI). Thirty-five patients (three centers, 61 +/- 9 years, left atrium [LA] 43 +/- 9 mm, ejection fraction 53% +/- 7%) with symptomatic paroxysmal (n = 21) or persistent (n = 14) AF were studied. A decapolar lasso (2-mm spacing) was used for mapping. A three-dimensional shell of the LA and pulmonary veins (PVs) was created. If not already in AF, AF was induced by burst pacing (with or without isoproterenol). Atrial EGMs during AF were mapped/analyzed using an automated CFE algorithm. The algorithm measures the time between discrete deflections in a local EGM over 5 seconds (based on selectable width and peak-to-peak [>0.03 mV] criteria). The mean CL of the local EGM is projected onto the LA shell as a color-coded display. Regions of CL <120 ms (published criteria) were targeted for ablation/elimination. Atrial fibrillation cycle length (AFCL) and regularity were measured from the CS. After CFE ablation, further ablation was done to achieve complete PVAI. AF was spontaneous (n = 20) or induced (n = 15) in all patients. CFEs were most commonly found along the septum (97%), anterior LA (97%), PV antra (83%), base of appendage (83%), and annulus (71%). CFE ablation alone prolonged the AFCL (171 +/- 27 vs. 304 +/- 41 ms; P = .03) and regularized AF to left/right flutter (AFL) in 74% of patients. CFE ablation terminated AF/AFL in 19 patients (54%)-the other 16 were cardioverted-and AF became noninducible in 77%. CFE ablation alone

  13. A VLSI optimal constructive algorithm for classification problems

    SciTech Connect

    Beiu, V.; Draghici, S.; Sethi, I.K.

    1997-10-01

    If neural networks are to be used on a large scale, they have to be implemented in hardware. However, the cost of the hardware implementation is critically sensitive to factors like the precision used for the weights, the total number of bits of information and the maximum fan-in used in the network. This paper presents a version of the Constraint Based Decomposition training algorithm which is able to produce networks using limited precision integer weights and units with limited fan-in. The algorithm is tested on the 2-spiral problem and the results are compared with other existing algorithms.

  14. A new hybrid genetic algorithm for optimizing the single and multivariate objective functions

    SciTech Connect

    Tumuluru, Jaya Shankar; McCulloch, Richard Chet James

    2015-07-01

    In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the most improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.

  15. Application of heuristic optimization techniques and algorithm tuning to multilayered sorptive barrier design.

    PubMed

    Matott, L Shawn; Bartelt-Hunt, Shannon L; Rabideau, Alan J; Fowler, K R

    2006-10-15

    Although heuristic optimization techniques are increasingly applied in environmental engineering applications, algorithm selection and configuration are often approached in an ad hoc fashion. In this study, the design of a multilayer sorptive barrier system served as a benchmark problem for evaluating several algorithm-tuning procedures, as applied to three global optimization techniques (genetic algorithms, simulated annealing, and particle swarm optimization). Each design problem was configured as a combinatorial optimization in which sorptive materials were selected for inclusion in a landfill liner to minimize the transport of three common organic contaminants. Relative to multilayer sorptive barrier design, study results indicate (i) the binary-coded genetic algorithm is highly efficient and requires minimal tuning, (ii) constraint violations must be carefully integrated to avoid poor algorithm convergence, and (iii) search algorithm performance is strongly influenced by the physical-chemical properties of the organic contaminants of concern. More generally, the results suggest that formal algorithm tuning, which has not been widely applied to environmental engineering optimization, can significantly improve algorithm performance and provide insight into the physical processes that control environmental systems.

  16. A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems.

    PubMed

    Ali, Ahmed F; Tawhid, Mohamed A

    2016-01-01

    Cuckoo search algorithm is a promising metaheuristic population based method. It has been applied to solve many real life problems. In this paper, we propose a new cuckoo search algorithm by combining the cuckoo search algorithm with the Nelder-Mead method in order to solve the integer and minimax optimization problems. We call the proposed algorithm by hybrid cuckoo search and Nelder-Mead method (HCSNM). HCSNM starts the search by applying the standard cuckoo search for number of iterations then the best obtained solution is passing to the Nelder-Mead algorithm as an intensification process in order to accelerate the search and overcome the slow convergence of the standard cuckoo search algorithm. The proposed algorithm is balancing between the global exploration of the Cuckoo search algorithm and the deep exploitation of the Nelder-Mead method. We test HCSNM algorithm on seven integer programming problems and ten minimax problems and compare against eight algorithms for solving integer programming problems and seven algorithms for solving minimax problems. The experiments results show the efficiency of the proposed algorithm and its ability to solve integer and minimax optimization problems in reasonable time.

  17. Hybrid particle swarm global optimization algorithm for phase diversity phase retrieval.

    PubMed

    Zhang, P G; Yang, C L; Xu, Z H; Cao, Z L; Mu, Q Q; Xuan, L

    2016-10-31

    The core problem of phase diversity phase retrieval (PDPR) is to find suitable optimization algorithms for wave-front sensing of different scales, especially for large-scale wavefront sensing. When dealing with large-scale wave-front sensing, existing gradient-based local optimization algorithms used in PDPR are easily trapped in local minimums near initial positions, and available global optimization algorithms possess low convergence efficiency. We construct a practicable optimization algorithm used in PDPR for large-scale wave-front sensing. This algorithm, named EPSO-BFGS, is a two-step hybrid global optimization algorithm based on the combination of evolutionary particle swarm optimization (EPSO) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Firstly, EPSO provides global search and obtains a rough global minimum position in limited search steps. Then, BFGS initialized by the rough global minimum position approaches the global minimum with high accuracy and fast convergence speed. Numerical examples testify to the feasibility and reliability of EPSO-BFGS for wave-front sensing of different scales. Two numerical cases also validate the ability of EPSO-BFGS for large-scale wave-front sensing. The effectiveness of EPSO-BFGS is further affirmed by performing a verification experiment.

  18. Research on bulbous bow optimization based on the improved PSO algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng-long; Zhang, Bao-ji; Tezdogan, Tahsin; Xu, Le-ping; Lai, Yu-yang

    2017-08-01

    In order to reduce the total resistance of a hull, an optimization framework for the bulbous bow optimization was presented. The total resistance in calm water was selected as the objective function, and the overset mesh technique was used for mesh generation. RANS method was used to calculate the total resistance of the hull. In order to improve the efficiency and smoothness of the geometric reconstruction, the arbitrary shape deformation (ASD) technique was introduced to change the shape of the bulbous bow. To improve the global search ability of the particle swarm optimization (PSO) algorithm, an improved particle swarm optimization (IPSO) algorithm was proposed to set up the optimization model. After a series of optimization analyses, the optimal hull form was found. It can be concluded that the simulation based design framework built in this paper is a promising method for bulbous bow optimization.

  19. Harris_SIFT algorithm optimization and its applications on nonwovens

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Hou, Jue; Wang, Rongwu

    2017-03-01

    A great improvement of SIFT algorithm were made, which lower the dimension of SIFT feature descriptor in a higher speed and more simple computation. On this basis, a scheme of microscopic image acquisition and image mosaicking was designed. A series of images were acquired in turn automatically and then they were mosaicked to a large image through the improved Harris_SIFT algorithm in real time.

  20. Optimization of Monte Carlo Algorithms and Ray Tracing on GPUs

    NASA Astrophysics Data System (ADS)

    Bergmann, Ryan M.; Vujić, Jasmina L.

    2014-06-01

    To take advantage of the computational power of GPUs, algorithms that work well on CPUs must be modified to conform to the GPU execution model. In this study, typical task-parallel Monte Carlo algorithms have been reformulated in a data-parallel way, and the benefits of doing so are examined. In-progress 3D ray tracing work is also touched upon as a milestone in developing a full-featured neutron transport code. Possible solutions to problems are examined.