Kuu, Wei Y; Nail, Steven L
2009-09-01
Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.
Market-Based and System-Wide Fuel Cycle Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Paul Philip Hood; Scopatz, Anthony; Gidden, Matthew
This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.
Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions
NASA Astrophysics Data System (ADS)
Carlsen, Robert W.
Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors. Historically, fuel cycle analysis has focused on answerin questions of fuel cycle feasibility and optimality. However, there has no been much work done to address uncertainty in fuel cycle analysis helpin answer questions of fuel cycle robustness. This work develops an demonstrates a methodology for evaluating deployment strategies whil accounting for uncertainty. Techniques are developed for measuring th hedging properties of deployment strategies under uncertainty. Additionally methods for using optimization to automatically find good hedging strategie are demonstrated.
NASA Astrophysics Data System (ADS)
Mendoza, Sergio; Rothenberger, Michael; Hake, Alison; Fathy, Hosam
2016-03-01
This article presents a framework for optimizing the thermal cycle to estimate a battery cell's entropy coefficient at 20% state of charge (SOC). Our goal is to maximize Fisher identifiability: a measure of the accuracy with which a parameter can be estimated. Existing protocols in the literature for estimating entropy coefficients demand excessive laboratory time. Identifiability optimization makes it possible to achieve comparable accuracy levels in a fraction of the time. This article demonstrates this result for a set of lithium iron phosphate (LFP) cells. We conduct a 24-h experiment to obtain benchmark measurements of their entropy coefficients. We optimize a thermal cycle to maximize parameter identifiability for these cells. This optimization proceeds with respect to the coefficients of a Fourier discretization of this thermal cycle. Finally, we compare the estimated parameters using (i) the benchmark test, (ii) the optimized protocol, and (iii) a 15-h test from the literature (by Forgez et al.). The results are encouraging for two reasons. First, they confirm the simulation-based prediction that the optimized experiment can produce accurate parameter estimates in 2 h, compared to 15-24. Second, the optimized experiment also estimates a thermal time constant representing the effects of thermal capacitance and convection heat transfer.
Global linear-irreversible principle for optimization in finite-time thermodynamics
NASA Astrophysics Data System (ADS)
Johal, Ramandeep S.
2018-03-01
There is intense effort into understanding the universal properties of finite-time models of thermal machines —at optimal performance— such as efficiency at maximum power, coefficient of performance at maximum cooling power, and other such criteria. In this letter, a global principle consistent with linear irreversible thermodynamics is proposed for the whole cycle —without considering details of irreversibilities in the individual steps of the cycle. This helps to express the total duration of the cycle as τ \\propto {\\bar{Q}^2}/{Δ_\\text{tot}S} , where \\bar{Q} models the effective heat transferred through the machine during the cycle, and Δ_ \\text{tot} S is the total entropy generated. By taking \\bar{Q} in the form of simple algebraic means (such as arithmetic and geometric means) over the heats exchanged by the reservoirs, the present approach is able to predict various standard expressions for figures of merit at optimal performance, as well as the bounds respected by them. It simplifies the optimization procedure to a one-parameter optimization, and provides a fresh perspective on the issue of universality at optimal performance, for small difference in reservoir temperatures. As an illustration, we compare the performance of a partially optimized four-step endoreversible cycle with the present approach.
Maximum cycle work output optimization for generalized radiative law Otto cycle engines
NASA Astrophysics Data System (ADS)
Xia, Shaojun; Chen, Lingen; Sun, Fengrui
2016-11-01
An Otto cycle internal combustion engine which includes thermal and friction losses is investigated by finite-time thermodynamics, and the optimization objective is the maximum cycle work output. The thermal energy transfer from the working substance to the cylinder inner wall follows the generalized radiative law (q∝Δ (Tn)). Under the condition that all of the fuel consumption, the compression ratio and the cycle period are given, the optimal piston trajectories for both the examples with unlimited and limited accelerations on every stroke are determined, and the cycle-period distribution among all strokes is also optimized. Numerical calculation results for the case of radiative law are provided and compared with those obtained for the cases of Newtonian law and linear phenomenological law. The results indicate that the optimal piston trajectory on each stroke contains three sections, which consist of an original maximum-acceleration and a terminal maximum-deceleration parts; for the case of radiative law, optimizing the piston motion path can achieve an improvement of more than 20% in both the cycle-work output and the second-law efficiency of the Otto cycle compared with the conventional near-sinusoidal operation, and heat transfer mechanisms have both qualitative and quantitative influences on the optimal paths of piston movements.
Performance of discrete heat engines and heat pumps in finite time
Feldmann; Kosloff
2000-05-01
The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.
Modeling and optimization of a hybrid solar combined cycle (HYCS)
NASA Astrophysics Data System (ADS)
Eter, Ahmad Adel
2011-12-01
The main objective of this thesis is to investigate the feasibility of integrating concentrated solar power (CSP) technology with the conventional combined cycle technology for electric generation in Saudi Arabia. The generated electricity can be used locally to meet the annual increasing demand. Specifically, it can be utilized to meet the demand during the hours 10 am-3 pm and prevent blackout hours, of some industrial sectors. The proposed CSP design gives flexibility in the operation system. Since, it works as a conventional combined cycle during night time and it switches to work as a hybrid solar combined cycle during day time. The first objective of the thesis is to develop a thermo-economical mathematical model that can simulate the performance of a hybrid solar-fossil fuel combined cycle. The second objective is to develop a computer simulation code that can solve the thermo-economical mathematical model using available software such as E.E.S. The developed simulation code is used to analyze the thermo-economic performance of different configurations of integrating the CSP with the conventional fossil fuel combined cycle to achieve the optimal integration configuration. This optimal integration configuration has been investigated further to achieve the optimal design of the solar field that gives the optimal solar share. Thermo-economical performance metrics which are available in the literature have been used in the present work to assess the thermo-economic performance of the investigated configurations. The economical and environmental impact of integration CSP with the conventional fossil fuel combined cycle are estimated and discussed. Finally, the optimal integration configuration is found to be solarization steam side in conventional combined cycle with solar multiple 0.38 which needs 29 hectare and LEC of HYCS is 63.17 $/MWh under Dhahran weather conditions.
Kim, Jeong Jin; Kang, Jun Hyeok; Lee, Kyo Won; Kim, Kye Hyun; Song, Taejong
2017-05-01
The aim of this study was to determine whether the different phases of the menstrual cycle could affect operative bleeding in women undergoing laparoscopic hysterectomy. This was a retrospective comparative study. Based on the adjusted day of menstrual cycle, 212 women who underwent laparoscopic hysterectomy were classified into three groups: the follicular phase (n = 51), luteal phase group (n = 125), and menstruation group (n = 36). The primary outcome measure was the operative bleeding. There was no difference in the baseline characteristics of the patients belonging to the three groups. For the groups, there were no significant differences in operative bleeding (p = .469) and change in haemoglobin (p = .330), including operative time, length of hospital stay and complications. The menstrual cycle did not affect the operative bleeding and other parameters. Therefore, no phase of the menstrual cycle could be considered as an optimal timing for performing laparoscopic hysterectomy with minimal operative bleeding. Impact statement What is already known on this subject: the menstrual cycle results in periodic changes in haemostasis and blood flow in the reproductive organs. What the results of this study add: the menstrual cycle did not affect the operative bleeding and other operative parameters during laparoscopic hysterectomy. What the implications are of these findings for clinical practice and/or further research: no phase of the menstrual cycle could be considered as an optimal timing for performing laparoscopic hysterectomy with minimal operative bleeding.
Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.
Fintelman, D M; Sterling, M; Hemida, H; Li, F-X
2014-06-03
The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Trailokyanath; Mishra, Pandit Jagatananda; Pattanayak, Hadibandhu
2017-12-01
In this paper, an economic order quantity (EOQ) inventory model for a deteriorating item is developed with the following characteristics: (i) The demand rate is deterministic and two-staged, i.e., it is constant in first part of the cycle and linear function of time in the second part. (ii) Deterioration rate is time-proportional. (iii) Shortages are not allowed to occur. The optimal cycle time and the optimal order quantity have been derived by minimizing the total average cost. A simple solution procedure is provided to illustrate the proposed model. The article concludes with a numerical example and sensitivity analysis of various parameters as illustrations of the theoretical results.
Mantziaras, I D; Stamou, A; Katsiri, A
2011-06-01
This paper refers to nitrogen removal optimization of an alternating oxidation ditch system through the use of a mathematical model and pilot testing. The pilot system where measurements have been made has a total volume of 120 m(3) and consists of two ditches operating in four phases during one cycle and performs carbon oxidation, nitrification, denitrification and settling. The mathematical model consists of one-dimensional mass balance (convection-dispersion) equations based on the IAWPRC ASM 1 model. After the calibration and verification of the model, simulation system performance was made. Optimization is achieved by testing operational cycles and phases with different time lengths. The limits of EU directive 91/271 for nitrogen removal have been used for comparison. The findings show that operational cycles with smaller time lengths can achieve higher nitrogen removals and that an "equilibrium" between phase time percentages in the whole cycle, for a given inflow, must be achieved.
Thermodynamical analysis of a quantum heat engine based on harmonic oscillators.
Insinga, Andrea; Andresen, Bjarne; Salamon, Peter
2016-07-01
Many models of heat engines have been studied with the tools of finite-time thermodynamics and an ensemble of independent quantum systems as the working fluid. Because of their convenient analytical properties, harmonic oscillators are the most frequently used example of a quantum system. We analyze different thermodynamical aspects with the final aim of the optimization of the performance of the engine in terms of the mechanical power provided during a finite-time Otto cycle. The heat exchange mechanism between the working fluid and the thermal reservoirs is provided by the Lindblad formalism. We describe an analytical method to find the limit cycle and give conditions for a stable limit cycle to exist. We explore the power production landscape as the duration of the four branches of the cycle are varied for short times, intermediate times, and special frictionless times. For short times we find a periodic structure with atolls of purely dissipative operation surrounding islands of divergent behavior where, rather than tending to a limit cycle, the working fluid accumulates more and more energy. For frictionless times the periodic structure is gone and we come very close to the global optimal operation. The global optimum is found and interestingly comes with a particular value of the cycle time.
NASA Astrophysics Data System (ADS)
Doi, Masafumi; Tokutomi, Tsukasa; Hachiya, Shogo; Kobayashi, Atsuro; Tanakamaru, Shuhei; Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken
2016-08-01
NAND flash memory’s reliability degrades with increasing endurance, retention-time and/or temperature. After a comprehensive evaluation of 1X nm triple-level cell (TLC) NAND flash, two highly reliable techniques are proposed. The first proposal, quick low-density parity check (Quick-LDPC), requires only one cell read in order to accurately estimate a bit-error rate (BER) that includes the effects of temperature, write and erase (W/E) cycles and retention-time. As a result, 83% read latency reduction is achieved compared to conventional AEP-LDPC. Also, W/E cycling is extended by 100% compared with conventional Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code (ECC). The second proposal, dynamic threshold voltage optimization (DVO) has two parts, adaptive V Ref shift (AVS) and V TH space control (VSC). AVS reduces read error and latency by adaptively optimizing the reference voltage (V Ref) based on temperature, W/E cycles and retention-time. AVS stores the optimal V Ref’s in a table in order to enable one cell read. VSC further improves AVS by optimizing the voltage margins between V TH states. DVO reduces BER by 80%.
Time Scale Optimization and the Hunt for Astronomical Cycles in Deep Time Strata
NASA Astrophysics Data System (ADS)
Meyers, Stephen R.
2016-04-01
A valuable attribute of astrochronology is the direct link between chronometer and climate change, providing a remarkable opportunity to constrain the evolution of the surficial Earth System. Consequently, the hunt for astronomical cycles in strata has spurred the development of a rich conceptual framework for climatic/oceanographic change, and has allowed exploration of the geologic record with unprecedented temporal resolution. Accompanying these successes, however, has been a persistent skepticism about appropriate astrochronologic testing and circular reasoning: how does one reliably test for astronomical cycles in stratigraphic data, especially when time is poorly constrained? From this perspective, it would seem that the merits and promise of astrochronology (e.g., a geologic time scale measured in ≤400 kyr increments) also serves as its Achilles heel, if the confirmation of such short rhythms defies rigorous statistical testing. To address these statistical challenges in astrochronologic testing, a new approach has been developed that (1) explicitly evaluates time scale uncertainty, (2) is resilient to common problems associated with spectrum confidence level assessment and 'multiple testing', and (3) achieves high statistical power under a wide range of conditions (it can identify astronomical cycles when present in data). Designated TimeOpt (for "time scale optimization"; Meyers 2015), the method employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This presentation will review the TimeOpt method, and demonstrate how the flexible statistical framework can be further extended to evaluate (and optimize upon) complex sedimentation rate models, enhancing the statistical power of the approach, and addressing the challenge of unsteady sedimentation. Meyers, S. R. (2015), The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization, Paleoceanography, 30, doi:10.1002/ 2015PA002850.
Finite-size effect on optimal efficiency of heat engines.
Tajima, Hiroyasu; Hayashi, Masahito
2017-07-01
The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.
Rigo, Vincent; Graas, Estelle; Rigo, Jacques
2012-07-01
Selected optimal respiratory cycles should allow calculation of respiratory mechanic parameters focusing on patient-ventilator interaction. New computer software automatically selecting optimal breaths and respiratory mechanics derived from those cycles are evaluated. Retrospective study. University level III neonatal intensive care unit. Ten mins synchronized intermittent mandatory ventilation and assist/control ventilation recordings from ten newborns. The ventilator provided respiratory mechanic data (ventilator respiratory cycles) every 10 secs. Pressure, flow, and volume waves and pressure-volume, pressure-flow, and volume-flow loops were reconstructed from continuous pressure-volume recordings. Visual assessment determined assisted leak-free optimal respiratory cycles (selected respiratory cycles). New software graded the quality of cycles (automated respiratory cycles). Respiratory mechanic values were derived from both sets of optimal cycles. We evaluated quality selection and compared mean values and their variability according to ventilatory mode and respiratory mechanic provenance. To assess discriminating power, all 45 "t" values obtained from interpatient comparisons were compared for each respiratory mechanic parameter. A total of 11,724 breaths are evaluated. Automated respiratory cycle/selected respiratory cycle selections agreement is high: 88% of maximal κ with linear weighting. Specificity and positive predictive values are 0.98 and 0.96, respectively. Averaged values are similar between automated respiratory cycle and ventilator respiratory cycle. C20/C alone is markedly decreased in automated respiratory cycle (1.27 ± 0.37 vs. 1.81 ± 0.67). Tidal volume apparent similarity disappears in assist/control: automated respiratory cycle tidal volume (4.8 ± 1.0 mL/kg) is significantly lower than for ventilator respiratory cycle (5.6 ± 1.8 mL/kg). Coefficients of variation decrease for all automated respiratory cycle parameters in all infants. "t" values from ventilator respiratory cycle data are two to three times higher than ventilator respiratory cycles. Automated selection is highly specific. Automated respiratory cycle reflects most the interaction of both ventilator and patient. Improving discriminating power of ventilator monitoring will likely help in assessing disease status and following trends. Averaged parameters derived from automated respiratory cycles are more precise and could be displayed by ventilators to improve real-time fine tuning of ventilator settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breedveld, Sebastiaan; Storchi, Pascal R. M.; Voet, Peter W. J.
2012-02-15
Purpose: To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles. Methods: A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives. The higher an objective priority is, the higher the probability that the corresponding objective will be met. Beam directions are selected from an input set of candidate directions. Input sets can be restricted, e.g., to allow only generation of coplanar plans, or to avoid collisions betweenmore » patient/couch and the gantry in a noncoplanar setup. Obtaining clinically feasible calculation times was an important design criterium for development of iCycle. This could be realized by sequentially adding beams to the treatment plan in an iterative procedure. Each iteration loop starts with selection of the optimal direction to be added. Then, a Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes all so far selected directions, using a previously published algorithm for multicriterial optimization of fluence profiles for a fixed beam arrangement Breedveld et al.[Phys. Med. Biol. 54, 7199-7209 (2009)]. To select the next direction, each not yet selected candidate direction is temporarily added to the plan and an optimization problem, derived from the Lagrangian obtained from the just performed optimization for establishing the Pareto-optimal plan, is solved. For each patient, a single one-beam, two-beam, three-beam, etc. Pareto-optimal plan is generated until addition of beams does no longer result in significant plan quality improvement. Plan generation with iCycle is fully automated. Results: Performance and characteristics of iCycle are demonstrated by generating plans for a maxillary sinus case, a cervical cancer patient, and a liver patient treated with SBRT. Plans generated with beam angle optimization did better meet the clinical goals than equiangular or manually selected configurations. For the maxillary sinus and liver cases, significant improvements for noncoplanar setups were seen. The cervix case showed that also in IMRT with coplanar setups, beam angle optimization with iCycle may improve plan quality. Computation times for coplanar plans were around 1-2 h and for noncoplanar plans 4-7 h, depending on the number of beams and the complexity of the site. Conclusions: Integrated beam angle and profile optimization with iCycle may result in significant improvements in treatment plan quality. Due to automation, the plan generation workload is minimal. Clinical application has started.« less
NASA Astrophysics Data System (ADS)
Kim, Tae-Ho; Hyun Song, Seok; Kim, Hyo-Jae; Oh, Seong-Hyeon; Han, Song-Yi; Kim, Goung; Nah, Yoon-Chae
2018-06-01
Herein, we report the effects of applied voltage on the electrochromic (EC) stability of poly(3-hexylthiophene) (P3HT) films during EC reactions. The transmittance difference and cycling stability of these films were monitored to optimize the oxidation voltage, and their chemical compositions were analyzed by X-ray photoelectron spectroscopy after long-term electrochemical cycling. High oxidation voltages increased the color contrast of P3HT films but decreased their cycling stability due to facilitating chemical degradation. Furthermore, at an optimized oxidation voltage, the retention time during potential pulsing was adjusted utilizing the optical memory of P3HT, revealing that the decreased voltage application time reduced power consumption by 9.6% and enhanced EC stability without loss of color contrast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, T; Fujii, Y; Hitachi Ltd., Hitachi-shi, Ibaraki
2015-06-15
Purpose: We have developed a gated spot scanning proton beam therapy system with real-time tumor-tracking. This system has the ability of multiple-gated irradiation in a single synchrotron operation cycle controlling the wait-time for consecutive gate signals during a flat-top phase so that the decrease in irradiation efficiency induced by irregular variation of gate signal is reduced. Our previous studies have shown that a 200 ms wait-time is appropriate to increase the average irradiation efficiency, but the optimal wait-time can vary patient by patient and day by day. In this research, we have developed an evaluation system of the optimal wait-timemore » in each irradiation based on the log data of the real-time-image gated proton beam therapy (RGPT) system. Methods: The developed system consists of logger for operation of RGPT system and software for evaluation of optimal wait-time. The logger records timing of gate on/off, timing and the dose of delivered beam spots, beam energy and timing of X-ray irradiation. The evaluation software calculates irradiation time in the case of different wait-time by simulating the multiple-gated irradiation operation using several timing information. Actual data preserved in the log data are used for gate on and off time, spot irradiation time, and time moving to the next spot. Design values are used for the acceleration and deceleration times. We applied this system to a patient treated with the RGPT system. Results: The evaluation system found the optimal wait-time of 390 ms that reduced the irradiation time by about 10 %. The irradiation time with actual wait-time used in treatment was reproduced with accuracy of 0.2 ms. Conclusion: For spot scanning proton therapy system with multiple-gated irradiation in one synchrotron operation cycle, an evaluation system of the optimal wait-time in each irradiation based on log data has been developed. Funding Support: Japan Society for the Promotion of Science (JSPS) through the FIRST Program.« less
Optimization of removal function in computer controlled optical surfacing
NASA Astrophysics Data System (ADS)
Chen, Xi; Guo, Peiji; Ren, Jianfeng
2010-10-01
The technical principle of computer controlled optical surfacing (CCOS) and the common method of optimizing removal function that is used in CCOS are introduced in this paper. A new optimizing method time-sharing synthesis of removal function is proposed to solve problems of the removal function being far away from Gaussian type and slow approaching of the removal function error that encountered in the mode of planet motion or translation-rotation. Detailed time-sharing synthesis of using six removal functions is discussed. For a given region on the workpiece, six positions are selected as the centers of the removal function; polishing tool controlled by the executive system of CCOS revolves around each centre to complete a cycle in proper order. The overall removal function obtained by the time-sharing process is the ratio of total material removal in six cycles to time duration of the six cycles, which depends on the arrangement and distribution of the six removal functions. Simulations on the synthesized overall removal functions under two different modes of motion, i.e., planet motion and translation-rotation are performed from which the optimized combination of tool parameters and distribution of time-sharing synthesis removal functions are obtained. The evaluation function when optimizing is determined by an approaching factor which is defined as the ratio of the material removal within the area of half of the polishing tool coverage from the polishing center to the total material removal within the full polishing tool coverage area. After optimization, it is found that the optimized removal function obtained by time-sharing synthesis is closer to the ideal Gaussian type removal function than those by the traditional methods. The time-sharing synthesis method of the removal function provides an efficient way to increase the convergence speed of the surface error in CCOS for the fabrication of aspheric optical surfaces, and to reduce the intermediate- and high-frequency error.
Wang, Jie-sheng; Li, Shu-xia; Song, Jiang-di
2015-01-01
In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy. PMID:26366164
Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites.
Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong
2018-03-13
Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59-60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties.
Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites
Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong
2018-01-01
Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59–60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties. PMID:29534048
NASA Technical Reports Server (NTRS)
Hou, Jean W.
1985-01-01
The thermal analysis and the calculation of thermal sensitivity of a cure cycle in autoclave processing of thick composite laminates were studied. A finite element program for the thermal analysis and design derivatives calculation for temperature distribution and the degree of cure was developed and verified. It was found that the direct differentiation was the best approach for the thermal design sensitivity analysis. In addition, the approach of the direct differentiation provided time histories of design derivatives which are of great value to the cure cycle designers. The approach of direct differentiation is to be used for further study, i.e., the optimal cycle design.
NASA Astrophysics Data System (ADS)
Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen S.; Skov, Julia; Sun, Yi; Duong Bang, Dang; Pedersen, Michael E.; Hansen, Mikkel F.; Wolff, Anders
2013-07-01
We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence signal from Rhodamine B. The method was validated with the PCR amplification of mecA gene (162 bp) from methicillin-resistant Staphylococcus aureus bacterium (MRSA), where the time for 30 cycles was reduced from 50 min (without over- and undershooting) to 20 min.
The fully actuated traffic control problem solved by global optimization and complementarity
NASA Astrophysics Data System (ADS)
Ribeiro, Isabel M.; de Lurdes de Oliveira Simões, Maria
2016-02-01
Global optimization and complementarity are used to determine the signal timing for fully actuated traffic control, regarding effective green and red times on each cycle. The average values of these parameters can be used to estimate the control delay of vehicles. In this article, a two-phase queuing system for a signalized intersection is outlined, based on the principle of minimization of the total waiting time for the vehicles. The underlying model results in a linear program with linear complementarity constraints, solved by a sequential complementarity algorithm. Departure rates of vehicles during green and yellow periods were treated as deterministic, while arrival rates of vehicles were assumed to follow a Poisson distribution. Several traffic scenarios were created and solved. The numerical results reveal that it is possible to use global optimization and complementarity over a reasonable number of cycles and determine with efficiency effective green and red times for a signalized intersection.
Optimization and Simulation of Plastic Injection Process using Genetic Algorithm and Moldflow
NASA Astrophysics Data System (ADS)
Martowibowo, Sigit Yoewono; Kaswadi, Agung
2017-03-01
The use of plastic-based products is continuously increasing. The increasing demands for thinner products, lower production costs, yet higher product quality has triggered an increase in the number of research projects on plastic molding processes. An important branch of such research is focused on mold cooling system. Conventional cooling systems are most widely used because they are easy to make by using conventional machining processes. However, the non-uniform cooling processes are considered as one of their weaknesses. Apart from the conventional systems, there are also conformal cooling systems that are designed for faster and more uniform plastic mold cooling. In this study, the conformal cooling system is applied for the production of bowl-shaped product made of PP AZ564. Optimization is conducted to initiate machine setup parameters, namely, the melting temperature, injection pressure, holding pressure and holding time. The genetic algorithm method and Moldflow were used to optimize the injection process parameters at a minimum cycle time. It is found that, an optimum injection molding processes could be obtained by setting the parameters to the following values: T M = 180 °C; P inj = 20 MPa; P hold = 16 MPa and t hold = 8 s, with a cycle time of 14.11 s. Experiments using the conformal cooling system yielded an average cycle time of 14.19 s. The studied conformal cooling system yielded a volumetric shrinkage of 5.61% and the wall shear stress was found at 0.17 MPa. The difference between the cycle time obtained through simulations and experiments using the conformal cooling system was insignificant (below 1%). Thus, combining process parameters optimization and simulations by using genetic algorithm method with Moldflow can be considered as valid.
Goldman, Johnathan M; More, Haresh T; Yee, Olga; Borgeson, Elizabeth; Remy, Brenda; Rowe, Jasmine; Sadineni, Vikram
2018-06-08
Development of optimal drug product lyophilization cycles is typically accomplished via multiple engineering runs to determine appropriate process parameters. These runs require significant time and product investments, which are especially costly during early phase development when the drug product formulation and lyophilization process are often defined simultaneously. Even small changes in the formulation may require a new set of engineering runs to define lyophilization process parameters. In order to overcome these development difficulties, an eight factor definitive screening design (DSD), including both formulation and process parameters, was executed on a fully human monoclonal antibody (mAb) drug product. The DSD enables evaluation of several interdependent factors to define critical parameters that affect primary drying time and product temperature. From these parameters, a lyophilization development model is defined where near optimal process parameters can be derived for many different drug product formulations. This concept is demonstrated on a mAb drug product where statistically predicted cycle responses agree well with those measured experimentally. This design of experiments (DoE) approach for early phase lyophilization cycle development offers a workflow that significantly decreases the development time of clinically and potentially commercially viable lyophilization cycles for a platform formulation that still has variable range of compositions. Copyright © 2018. Published by Elsevier Inc.
Sousa, Vitor; Dias-Ferreira, Celia; Vaz, João M; Meireles, Inês
2018-05-01
Extensive research has been carried out on waste collection costs mainly to differentiate costs of distinct waste streams and spatial optimization of waste collection services (e.g. routes, number, and location of waste facilities). However, waste collection managers also face the challenge of optimizing assets in time, for instance deciding when to replace and how to maintain, or which technological solution to adopt. These issues require a more detailed knowledge about the waste collection services' cost breakdown structure. The present research adjusts the methodology for buildings' life-cycle cost (LCC) analysis, detailed in the ISO 15686-5:2008, to the waste collection assets. The proposed methodology is then applied to the waste collection assets owned and operated by a real municipality in Portugal (Cascais Ambiente - EMAC). The goal is to highlight the potential of the LCC tool in providing a baseline for time optimization of the waste collection service and assets, namely assisting on decisions regarding equipment operation and replacement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, S; Yea, J; Kang, M
Purpose: Respiratory gated radiation therapy (RGRT) is used to minimize the radiation dose to normal tissue in lung cancer patients. Determination of the optimal point in the respiratory phase of a patient is important in RGRT but it is not easy. The goal of the present study was to see if a visible guidance system is helpful in determining the optimal phase in respiratory gated therapy. Methods: The breathing signals of 23 lung cancer patients were recorded with a Real-time Position Management (RPM) respiratory gating system (Varian, USA). The patients underwent breathing training with our visible guidance system, after whichmore » their breathing signals were recorded during 5 min of free breathing and 5 min of guided breathing. The breathing signals recorded between 3 and 5 min before and after training were compared. We performed statistical analysis of the breathing signals to find the optimal duty cycle in guided breathing for RGRT. Results: The breathing signals aided by the visible guidance system had more regular cycles over time and smaller variations in the positions of the marker block than the free breathing signals. Of the 23 lung cancer patients, 19 showed statistically significant differences by time when the values obtained before and after breathing were compared (p < 0.05); 30% and 40% of the duty cycle, respectively, was determined to be the most effective, and the corresponding phases were 30 60% (duty cycle, 30%; p < 0.05) and 30 70% (duty cycle, 40%; p < 0.05). Conclusion: Respiratory regularity was significantly improved with the use of the RPM with our visible guiding system; therefore, it would help improve the accuracy and efficiency of RGRT.« less
Pisano, Roberto; Fissore, Davide; Barresi, Antonello A; Brayard, Philippe; Chouvenc, Pierre; Woinet, Bertrand
2013-02-01
This paper shows how to optimize the primary drying phase, for both product quality and drying time, of a parenteral formulation via design space. A non-steady state model, parameterized with experimentally determined heat and mass transfer coefficients, is used to define the design space when the heat transfer coefficient varies with the position of the vial in the array. The calculations recognize both equipment and product constraints, and also take into account model parameter uncertainty. Examples are given of cycles designed for the same formulation, but varying the freezing conditions and the freeze-dryer scale. These are then compared in terms of drying time. Furthermore, the impact of inter-vial variability on design space, and therefore on the optimized cycle, is addressed. With this regard, a simplified method is presented for the cycle design, which reduces the experimental effort required for the system qualification. The use of mathematical modeling is demonstrated to be very effective not only for cycle development, but also for solving problem of process transfer. This study showed that inter-vial variability remains significant when vials are loaded on plastic trays, and how inter-vial variability can be taken into account during process design.
Area/latency optimized early output asynchronous full adders and relative-timed ripple carry adders.
Balasubramanian, P; Yamashita, S
2016-01-01
This article presents two area/latency optimized gate level asynchronous full adder designs which correspond to early output logic. The proposed full adders are constructed using the delay-insensitive dual-rail code and adhere to the four-phase return-to-zero handshaking. For an asynchronous ripple carry adder (RCA) constructed using the proposed early output full adders, the relative-timing assumption becomes necessary and the inherent advantages of the relative-timed RCA are: (1) computation with valid inputs, i.e., forward latency is data-dependent, and (2) computation with spacer inputs involves a bare minimum constant reverse latency of just one full adder delay, thus resulting in the optimal cycle time. With respect to different 32-bit RCA implementations, and in comparison with the optimized strong-indication, weak-indication, and early output full adder designs, one of the proposed early output full adders achieves respective reductions in latency by 67.8, 12.3 and 6.1 %, while the other proposed early output full adder achieves corresponding reductions in area by 32.6, 24.6 and 6.9 %, with practically no power penalty. Further, the proposed early output full adders based asynchronous RCAs enable minimum reductions in cycle time by 83.4, 15, and 8.8 % when considering carry-propagation over the entire RCA width of 32-bits, and maximum reductions in cycle time by 97.5, 27.4, and 22.4 % for the consideration of a typical carry chain length of 4 full adder stages, when compared to the least of the cycle time estimates of various strong-indication, weak-indication, and early output asynchronous RCAs of similar size. All the asynchronous full adders and RCAs were realized using standard cells in a semi-custom design fashion based on a 32/28 nm CMOS process technology.
Power performance of nonisentropic Brayton cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C.; Kiang, R.L.
In this paper work and power optimization of a Brayton cycle are analyzed with a finite-time heat transfer analysis. This work extends the recent flurry of publications in heat engine efficiency under the maximum power condition by incorporating nonisentropic compression and expansion. As expected, these nonisentropic processes lower the power output as well as the cycle efficiency when compared with an endoreversible Brayton cycle under the same conditions.
Parameter optimization for surface flux transport models
NASA Astrophysics Data System (ADS)
Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.
2017-11-01
Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.
NASA Astrophysics Data System (ADS)
Saavedra, Juan Alejandro
Quality Control (QC) and Quality Assurance (QA) strategies vary significantly across industries in the manufacturing sector depending on the product being built. Such strategies range from simple statistical analysis and process controls, decision-making process of reworking, repairing, or scraping defective product. This study proposes an optimal QC methodology in order to include rework stations during the manufacturing process by identifying the amount and location of these workstations. The factors that are considered to optimize these stations are cost, cycle time, reworkability and rework benefit. The goal is to minimize the cost and cycle time of the process, but increase the reworkability and rework benefit. The specific objectives of this study are: (1) to propose a cost estimation model that includes energy consumption, and (2) to propose an optimal QC methodology to identify quantity and location of rework workstations. The cost estimation model includes energy consumption as part of the product direct cost. The cost estimation model developed allows the user to calculate product direct cost as the quality sigma level of the process changes. This provides a benefit because a complete cost estimation calculation does not need to be performed every time the processes yield changes. This cost estimation model is then used for the QC strategy optimization process. In order to propose a methodology that provides an optimal QC strategy, the possible factors that affect QC were evaluated. A screening Design of Experiments (DOE) was performed on seven initial factors and identified 3 significant factors. It reflected that one response variable was not required for the optimization process. A full factorial DOE was estimated in order to verify the significant factors obtained previously. The QC strategy optimization is performed through a Genetic Algorithm (GA) which allows the evaluation of several solutions in order to obtain feasible optimal solutions. The GA evaluates possible solutions based on cost, cycle time, reworkability and rework benefit. Finally it provides several possible solutions because this is a multi-objective optimization problem. The solutions are presented as chromosomes that clearly state the amount and location of the rework stations. The user analyzes these solutions in order to select one by deciding which of the four factors considered is most important depending on the product being manufactured or the company's objective. The major contribution of this study is to provide the user with a methodology used to identify an effective and optimal QC strategy that incorporates the number and location of rework substations in order to minimize direct product cost, and cycle time, and maximize reworkability, and rework benefit.
Ma, Chao; Zhang, Yan-Bo; Ho, Shih-Hsin; Xing, De-Feng; Ren, Nan-Qi; Liu, Bing-Feng
2017-01-01
The light/dark cycle is one of the most important factors affecting the microalgal growth and lipid accumulation. Biomass concentration and lipid productivity could be enhanced by optimization of light/dark cycles, and this is considered an effective control strategy for microalgal cultivation. Currently, most research on effects of light/dark cycles on algae is carried out under autotrophic conditions and little information is about the effects under mixotrophic cultivation. At the same time, many studies related to mixotrophic cultivation of microalgal strains, even at large scale, have been performed to obtain satisfactory biomass and lipid production. Therefore, it is necessary to investigate cellular metabolism under autotrophic and mixotrophic conditions at different light/dark cycles. Even though microalgal lipid production under optimal environmental factors has been reported by some researchers, the light/dark cycle and temperature are regarded as separate parameters in their studies. In practical cases, light/dark cycling and temperature variation during the day occur simultaneously. Therefore, studies about the combined effects of light/dark cycles and temperature variation on microalgal lipid production are of practical value, potentially providing significant guidelines for large-scale microalgal cultivation under natural conditions. In this work, cell growth and lipid accumulation of an oleaginous microalgal mutant, Scenedesmus sp. Z-4, were investigated at five light/dark cycles (0 h/24 h, 8 h/16 h, 12 h/12 h, 16 h/8 h, and 24 h/0 h) in batch culture. The results showed that the optimal light/dark cycle was 12 h/12 h, when maximum lipid productivity rates of 56.8 and 182.6 mg L -1 day -1 were obtained under autotrophic and mixotrophic cultivation, respectively. Poor microalgal growth and lipid accumulation appeared in the light/dark cycles of 0 h/24 h and 24 h/0 h under autotrophic condition. Prolonging the light duration was unfavorable to the production of chlorophyll a and b, which was mainly due to photooxidation effect. Polysaccharide was converted into lipid and protein when the light irradiation time increased from 0 to 12 h; however, further increasing irradiation time had a negative effect on lipid accumulation. Due to the dependence of autotrophically cultured cells on light energy, the light/dark cycle has a more remarkable influence on cellular metabolism under autotrophic conditions. Furthermore, the combined effects of temperature variation and light/dark cycle of 12 h/12 h on cell growth and lipid accumulation of microalgal mutant Z-4 were investigated under mixotrophic cultivation, and the results showed that biomass was mainly produced at higher temperatures during the day, and a portion of biomass was converted into lipid under dark condition. The extension of irradiation time was beneficial to biomass accumulation, but not in favor of lipid production. Even though effects of light/dark cycles on autotrophic and mixotrophic cells were not exactly the same, the optimal lipid productivities of Scenedesmus sp. Z-4 under both cultivation conditions were achieved at the light/dark of 12 h/12 h. This may be attributed to its long-term acclimation in natural environment. By combining temperature variation with optimal light/dark cycle of 12 h/12 h, this study will be of great significance for practical microalgae-biodiesel production in the outdoor conditions.
Optimized dispatch in a first-principles concentrating solar power production model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.
Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum andmore » maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.« less
An Evolutionary Optimization of the Refueling Simulation for a CANDU Reactor
NASA Astrophysics Data System (ADS)
Do, Q. B.; Choi, H.; Roh, G. H.
2006-10-01
This paper presents a multi-cycle and multi-objective optimization method for the refueling simulation of a 713 MWe Canada deuterium uranium (CANDU-6) reactor based on a genetic algorithm, an elitism strategy and a heuristic rule. The proposed algorithm searches for the optimal refueling patterns for a single cycle that maximizes the average discharge burnup, minimizes the maximum channel power and minimizes the change in the zone controller unit water fills while satisfying the most important safety-related neutronic parameters of the reactor core. The heuristic rule generates an initial population of individuals very close to a feasible solution and it reduces the computing time of the optimization process. The multi-cycle optimization is carried out based on a single cycle refueling simulation. The proposed approach was verified by a refueling simulation of a natural uranium CANDU-6 reactor for an operation period of 6 months at an equilibrium state and compared with the experience-based automatic refueling simulation and the generalized perturbation theory. The comparison has shown that the simulation results are consistent from each other and the proposed approach is a reasonable optimization method of the refueling simulation that controls all the safety-related parameters of the reactor core during the simulation
Sensitivity Analysis and Optimization of the Nuclear Fuel Cycle: A Systematic Approach
NASA Astrophysics Data System (ADS)
Passerini, Stefano
For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon as technically feasible in order to extend the nuclear fuel resources. More recently, arguments have been made for deployment of fast reactors in order to reduce the amount of higher actinides, hence the longevity of radioactivity, in the materials destined to a geologic repository. The cost of the fast reactors, together with concerns about the proliferation of the technology of extraction of plutonium from used LWR fuel as well as the large investments in construction of reprocessing facilities have been the basis for arguments to defer the introduction of recycling technologies in many countries including the US. In this thesis, the impacts of alternative reactor technologies on the fuel cycle are assessed. Additionally, metrics to characterize the fuel cycles and systematic approaches to using them to optimize the fuel cycle are presented. The fuel cycle options of the 2010 MIT fuel cycle study are re-examined in light of the expected slower rate of growth in nuclear energy today, using the CAFCA (Code for Advanced Fuel Cycle Analysis). The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include limited recycling in L WRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. Additional fuel cycle scenarios presented for the first time in this work assume the deployment of innovative recycling reactor technologies such as the Reduced Moderation Boiling Water Reactors and Uranium-235 initiated Fast Reactors. A sensitivity study focused on system and technology parameters of interest has been conducted to test the robustness of the conclusions presented in the MIT Fuel Cycle Study. These conclusions are found to still hold, even when considering alternative technologies and different sets of simulation assumptions. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. Optimization metrics of interest for different stakeholders in the fuel cycle (economics, fuel resource utilization, high level waste, transuranics/proliferation management, and environmental impact) are utilized for two different optimization techniques: a linear one and a stochastic one. Stakeholder elicitation provided sets of relative weights for the identified metrics appropriate to each stakeholder group, which were then successfully used to arrive at optimum fuel cycle configurations for recycling technologies. The stochastic optimization tool, based on a genetic algorithm, was used to identify non-inferior solutions according to Pareto's dominance approach to optimization. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Antibiotic Cycling and Antibiotic Mixing: Which One Best Mitigates Antibiotic Resistance?
Beardmore, Robert Eric; Peña-Miller, Rafael; Gori, Fabio; Iredell, Jonathan
2017-04-01
Can we exploit our burgeoning understanding of molecular evolution to slow the progress of drug resistance? One role of an infection clinician is exactly that: to foresee trajectories to resistance during antibiotic treatment and to hinder that evolutionary course. But can this be done at a hospital-wide scale? Clinicians and theoreticians tried to when they proposed two conflicting behavioral strategies that are expected to curb resistance evolution in the clinic, these are known as "antibiotic cycling" and "antibiotic mixing." However, the accumulated data from clinical trials, now approaching 4 million patient days of treatment, is too variable for cycling or mixing to be deemed successful. The former implements the restriction and prioritization of different antibiotics at different times in hospitals in a manner said to "cycle" between them. In antibiotic mixing, appropriate antibiotics are allocated to patients but randomly. Mixing results in no correlation, in time or across patients, in the drugs used for treatment which is why theorists saw this as an optimal behavioral strategy. So while cycling and mixing were proposed as ways of controlling evolution, we show there is good reason why clinical datasets cannot choose between them: by re-examining the theoretical literature we show prior support for the theoretical optimality of mixing was misplaced. Our analysis is consistent with a pattern emerging in data: neither cycling or mixing is a priori better than the other at mitigating selection for antibiotic resistance in the clinic. : antibiotic cycling, antibiotic mixing, optimal control, stochastic models. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Astrophysics Data System (ADS)
Krugon, Seelam; Nagaraju, Dega
2017-05-01
This work describes and proposes an two echelon inventory system under supply chain, where the manufacturer offers credit period to the retailer with exponential price dependent demand. The model is framed as demand is expressed as exponential function of retailer’s unit selling price. Mathematical model is framed to demonstrate the optimality of cycle time, retailer replenishment quantity, number of shipments, and total relevant cost of the supply chain. The major objective of the paper is to provide trade credit concept from the manufacturer to the retailer with exponential price dependent demand. The retailer would like to delay the payments of the manufacturer. At the first stage retailer and manufacturer expressions are expressed with the functions of ordering cost, carrying cost, transportation cost. In second stage combining of the manufacturer and retailer expressions are expressed. A MATLAB program is written to derive the optimality of cycle time, retailer replenishment quantity, number of shipments, and total relevant cost of the supply chain. From the optimality criteria derived managerial insights can be made. From the research findings, it is evident that the total cost of the supply chain is decreased with the increase in credit period under exponential price dependent demand. To analyse the influence of the model parameters, parametric analysis is also done by taking with help of numerical example.
Zhang, Yawei; Deng, Xinchen; Yin, Fang-Fang; Ren, Lei
2018-01-01
Limited-angle intrafraction verification (LIVE) has been previously developed for four-dimensional (4D) intrafraction target verification either during arc delivery or between three-dimensional (3D)/IMRT beams. Preliminary studies showed that LIVE can accurately estimate the target volume using kV/MV projections acquired over orthogonal view 30° scan angles. Currently, the LIVE imaging acquisition requires slow gantry rotation and is not clinically optimized. The goal of this study is to optimize the image acquisition parameters of LIVE for different patient respiratory periods and gantry rotation speeds for the effective clinical implementation of the system. Limited-angle intrafraction verification imaging acquisition was optimized using a digital anthropomorphic phantom (XCAT) with simulated respiratory periods varying from 3 s to 6 s and gantry rotation speeds varying from 1°/s to 6°/s. LIVE scanning time was optimized by minimizing the number of respiratory cycles needed for the four-dimensional scan, and imaging dose was optimized by minimizing the number of kV and MV projections needed for four-dimensional estimation. The estimation accuracy was evaluated by calculating both the center-of-mass-shift (COMS) and three-dimensional volume-percentage-difference (VPD) between the tumor in estimated images and the ground truth images. The robustness of LIVE was evaluated with varied respiratory patterns, tumor sizes, and tumor locations in XCAT simulation. A dynamic thoracic phantom (CIRS) was used to further validate the optimized imaging schemes from XCAT study with changes of respiratory patterns, tumor sizes, and imaging scanning directions. Respiratory periods, gantry rotation speeds, number of respiratory cycles scanned and number of kV/MV projections acquired were all positively correlated with the estimation accuracy of LIVE. Faster gantry rotation speed or longer respiratory period allowed less respiratory cycles to be scanned and less kV/MV projections to be acquired to estimate the target volume accurately. Regarding the scanning time minimization, for patient respiratory periods of 3-4 s, gantry rotation speeds of 1°/s, 2°/s, 3-6°/s required scanning of five, four, and three respiratory cycles, respectively. For patient respiratory periods of 5-6 s, the corresponding respiratory cycles required in the scan changed to four, three, and two cycles, respectively. Regarding the imaging dose minimization, for patient respiratory periods of 3-4 s, gantry rotation speeds of 1°/s, 2-4°/s, 5-6°/s required acquiring of 7, 5, 4 kV and MV projections, respectively. For patient respiratory periods of 5-6 s, 5 kV and 5 MV projections are sufficient for all gantry rotation speeds. The optimized LIVE system was robust against breathing pattern, tumor size and tumor location changes. In the CIRS study, the optimized LIVE system achieved the average center-of-mass-shift (COMS)/volume-percentage-difference (VPD) of 0.3 ± 0.1 mm/7.7 ± 2.0% for the scanning time priority case, 0.2 ± 0.1 mm/6.1 ± 1.2% for the imaging dose priority case, respectively, among all gantry rotation speeds tested. LIVE was robust against different scanning directions investigated. The LIVE system has been preliminarily optimized for different patient respiratory periods and treatment gantry rotation speeds using digital and physical phantoms. The optimized imaging parameters, including number of respiratory cycles scanned and kV/MV projection numbers acquired, provide guidelines for optimizing the scanning time and imaging dose of the LIVE system for its future evaluations and clinical implementations through patient studies. © 2017 American Association of Physicists in Medicine.
The individual time trial as an optimal control problem
de Jong, Jenny; Fokkink, Robbert; Olsder, Geert Jan; Schwab, AL
2017-01-01
In a cycling time trial, the rider needs to distribute his power output optimally to minimize the time between start and finish. Mathematically, this is an optimal control problem. Even for a straight and flat course, its solution is non-trivial and involves a singular control, which corresponds to a power that is slightly above the aerobic level. The rider must start at full anaerobic power to reach an optimal speed and maintain that speed for the rest of the course. If the course is flat but not straight, then the speed at which the rider can round the bends becomes crucial. PMID:29388631
Time-dependent Variation in Life Cycle Assessment of Microalgal Biorefinery Co-products
NASA Astrophysics Data System (ADS)
Montazeri, Mahdokht
Microalgae can serve as a highly productive biological feedstock for fuels and chemicals. The lipid fraction of algal seeds has been the primary target of research for biofuel production. However, numerous assessments have found that valorization of co-products is essential to achieve economic and environmental goals. The relative proportion of co-products depends on the biomolecular composition of algae at the time of harvesting. In the present study the productivity of lipid, starch, and protein fractions were shown through growth experiments to vary widely with species, feeding regime, and harvesting time. Four algae species were cultivated under nitrogen-replete and -deplete conditions and analyzed at regular harvesting intervals. Dynamic growth results were then used for life cycle assessment using the U.S. Department of Energy's GREET model to determine optimal growth scenarios that minimize life cycle greenhouse gas (GHG) emissions, eutrophication, and cumulative energy demand (CED), while aiming for an energy return on investment (EROI) greater than unity. Per kg of biodiesel produced, C. sorokiniana in N-replete conditions harvested at 12 days was most favorable for GHG emissions and CED, despite having a lipid content of <20%. N. oculata under the same conditions had the lowest life cycle eutrophication impacts, driven by efficient nutrient cycling and valorization of microalgal protein and anaerobic digester residue co-products. The results indicate that growth cycle times that maximize a single fraction do not necessarily result in the most favorable environmental performance on a life cycle basis, underscoring the importance of designing biorefinery systems that simultaneously optimize for lipid and non-lipid fractions.
Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes
NASA Technical Reports Server (NTRS)
Rogers, James L.; McCulley, Collin M.; Bloebaum, Christina L.
1996-01-01
The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to determine the best ordering of the processes within these subcycles to reduce design cycle time and cost. Many decomposition approaches assume the capability is available to determine what design processes and couplings exist and what order of execution will be imposed during the design cycle. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow the design manager to rapidly examine many different combinations of ordering processes in an iterative subcycle and to optimize the ordering based on cost, time, and iteration requirements. Two sample test cases are presented to show the effects of optimizing the ordering with a genetic algorithm.
Flat-plate photovoltaic array design optimization
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1980-01-01
An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.
Unified trade-off optimization for general heat devices with nonisothermal processes.
Long, Rui; Liu, Wei
2015-04-01
An analysis of the efficiency and coefficient of performance (COP) for general heat engines and refrigerators with nonisothermal processes is conducted under the trade-off criterion. The specific heat of the working medium has significant impacts on the optimal configurations of heat devices. For cycles with constant specific heat, the bounds of the efficiency and COP are found to be the same as those obtained through the endoreversible Carnot ones. However, they are independent of the cycle time durations. For cycles with nonconstant specific heat, whose dimensionless contact time approaches infinity, the general alternative upper and lower bounds of the efficiency and COP under the trade-off criteria have been proposed under the asymmetric limits. Furthermore, when the dimensionless contact time approaches zero, the endoreversible Carnot model is recovered. In addition, the efficiency and COP bounds of different kinds of actual heat engines and refrigerators have also been analyzed. This paper may provide practical insight for designing and operating actual heat engines and refrigerators.
Conceptual design study of small long-life PWR based on thorium cycle fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul
2014-09-30
A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWRmore » result small excess reactivity and reduced power peaking during its operation.« less
Van Dongen, Hans P.A.; Belenky, Gregory; Vila, Bryan J.
2011-01-01
Objectives: Under simulated shift-work conditions, we investigated the efficacy of a restart break for maintaining neurobehavioral functioning across consecutive duty cycles, as a function of the circadian timing of the duty periods. Design: As part of a 14-day experiment, subjects underwent two cycles of five simulated daytime or nighttime duty days, separated by a 34-hour restart break. Cognitive functioning and high-fidelity driving simulator performance were tested 4 times per day during the two duty cycles. Lapses on a psychomotor vigilance test (PVT) served as the primary outcome variable. Selected sleep periods were recorded polysomnographically. Setting: The experiment was conducted under standardized, controlled laboratory conditions with continuous monitoring. Participants: Twenty-seven healthy adults (13 men, 14 women; aged 22–39 years) participated in the study. Interventions: Subjects were randomly assigned to a nighttime duty (experimental) condition or a daytime duty (control) condition. The efficacy of the 34-hour restart break for maintaining neurobehavioral functioning from the pre-restart duty cycle to the post-restart duty cycle was compared between these two conditions. Results: Relative to the daytime duty condition, the nighttime duty condition was associated with reduced amounts of sleep, whereas sleep latencies were shortened and slow-wave sleep appeared to be conserved. Neurobehavioral performance measures ranging from lapses of attention on the PVT to calculated fuel consumption on the driving simulators remained optimal across time of day in the daytime duty schedule, but degraded across time of night in the nighttime duty schedule. The 34-hour restart break was efficacious for maintaining PVT performance and other objective neurobehavioral functioning profiles from one duty cycle to the next in the daytime duty condition, but not in the nighttime duty condition. Subjective sleepiness did not reliably track objective neurobehavioral deficits. Conclusions: The 34-hour restart break was adequate for maintaining performance in the case of optimal circadian placement of sleep and duty periods (control condition) but was inadequate (and perhaps even detrimental) for maintaining performance in a simulated nighttime duty schedule (experimental condition). Current US transportation hours-of-service regulations mandate time off duty but do not consider the circadian aspects of shift scheduling. Reinforcing a recent trend of applying sleep science to inform policymaking for duty and rest times, our findings indicate that restart provisions in hours-of-service regulations could be improved by taking the circadian timing of the duty schedules into account. Citation: Van Dongen HPA; Belenky G; Vila BJ. The efficacy of a restart break for recycling with optimal performance depends critically on circadian timing. SLEEP 2011;34(7):917-929. PMID:21731142
Uiberacker, Christoph; Jakubetz, Werner
2004-06-22
Using 550 previously calculated vibrational energy levels and dipole moments we performed simulations of the HCN-->HNC isomerization dynamics induced by sub-one-cycle and few-cycle IR pulses, which we represent as Gaussian pulses with 0.25-2 optical cycles in the pulse width. Starting from vibrationally pre-excited states, isomerization probabilities of up to 50% are obtained for optimized pulses. With decreasing number of optical cycles a strong dependence on the carrier-envelope phase (CEP) emerges. Although the optimized pulse parameters change significantly with the number of optical cycles, the distortion by the Gaussian envelope produces nearly equal fields, with a positive lobe followed by a negative one. The positions and areas of the lobes are also almost unchanged, irrespective of the number of cycles in the half-width. Isomerization proceeds via a pump-dumplike mechanism induced by the sequential lobes. The first lobe prepares a wave packet incorporating many delocalized states above the barrier. It is the motion of this wave packet across the barrier, which determines the timing of the pump and dump lobes. The role of the pulse parameters, and in particular of the CEP, is to produce the correct lobe sequence, size and timing within a continuous pulse. (c) 2004 American Institute of Physics.
The microsomal metabolism of phenol (11 degrees C) over an annual reproductive cycle from June to December has been studied using fall spawning adult brook trout (Salvelinus fontinalis). Incubations were optimized for time, cofactor connection, pH, and microsomal protein concentr...
Polysaccharide extraction from Sphallerocarpus gracilis roots by response surface methodology.
Ma, Tingting; Sun, Xiangyu; Tian, Chengrui; Luo, Jiyang; Zheng, Cuiping; Zhan, Jicheng
2016-07-01
The extraction process of Sphallerocarpus gracilis root polysaccharides (SGRP) was optimized using response surface methodology with two methods [hot-water extraction (HWE) and ultrasonic-assisted extraction (UAE)]. The antioxidant activities of SGRP were determined, and the structural features of the untreated materials (HWE residue and UAE residue) and the extracted polysaccharides were compared by scanning electron microscopy. Results showed that the optimal UAE conditions were extraction temperature of 81°C, extraction time of 1.7h, liquid-solid ratio of 17ml/g, ultrasonic power of 300W and three extraction cycles. The optimal HWE conditions were 93°C extraction temperature, 3.6h extraction time, 21ml/g liquid-solid ratio and three extraction cycles. UAE offered a higher extraction yield with a shorter time, lower temperature and a lower solvent consumption compared with HWE, and the extracted polysaccharides possessed a higher antioxidant capacity. Therefore, UAE could be used as an alternative to conventional HWE for SGRP extraction. Copyright © 2016 Elsevier B.V. All rights reserved.
Active model-based balancing strategy for self-reconfigurable batteries
NASA Astrophysics Data System (ADS)
Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter
2016-08-01
This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.
Optimizing MRI Logistics: Prospective Analysis of Performance, Efficiency, and Patient Throughput.
Beker, Kevin; Garces-Descovich, Alejandro; Mangosing, Jason; Cabral-Goncalves, Ines; Hallett, Donna; Mortele, Koenraad J
2017-10-01
The objective of this study is to optimize MRI logistics through evaluation of MRI workflow and analysis of performance, efficiency, and patient throughput in a tertiary care academic center. For 2 weeks, workflow data from two outpatient MRI scanners were prospectively collected and stratified by value added to the process (i.e., value-added time, business value-added time, or non-value-added time). Two separate time cycles were measured: the actual MRI process cycle as well as the complete length of patient stay in the department. In addition, the impact and frequency of delays across all observations were measured. A total of 305 MRI examinations were evaluated, including body (34.1%), neurologic (28.9%), musculoskeletal (21.0%), and breast examinations (16.1%). The MRI process cycle lasted a mean of 50.97 ± 24.4 (SD) minutes per examination; the mean non-value-added time was 13.21 ± 18.77 minutes (25.87% of the total process cycle time). The mean length-of-stay cycle was 83.51 ± 33.63 minutes; the mean non-value-added time was 24.33 ± 24.84 minutes (29.14% of the total patient stay). The delay with the highest frequency (5.57%) was IV or port placement, which had a mean delay of 22.82 minutes. The delay with the greatest impact on time was MRI arthrography for which joint injection of contrast medium was necessary but was not accounted for in the schedule (mean delay, 42.2 minutes; frequency, 1.64%). Of 305 patients, 34 (11.15%) did not arrive at or before their scheduled time. Non-value-added time represents approximately one-third of the total MRI process cycle and patient length of stay. Identifying specific delays may expedite the application of targeted improvement strategies, potentially increasing revenue, efficiency, and overall patient satisfaction.
Van Dongen, Hans P A; Belenky, Gregory; Vila, Bryan J
2011-07-01
Under simulated shift-work conditions, we investigated the efficacy of a restart break for maintaining neurobehavioral functioning across consecutive duty cycles, as a function of the circadian timing of the duty periods. As part of a 14-day experiment, subjects underwent two cycles of five simulated daytime or nighttime duty days, separated by a 34-hour restart break. Cognitive functioning and high-fidelity driving simulator performance were tested 4 times per day during the two duty cycles. Lapses on a psychomotor vigilance test (PVT) served as the primary outcome variable. Selected sleep periods were recorded polysomnographically. The experiment was conducted under standardized, controlled laboratory conditions with continuous monitoring. Twenty-seven healthy adults (13 men, 14 women; aged 22-39 years) participated in the study. Subjects were randomly assigned to a nighttime duty (experimental) condition or a daytime duty (control) condition. The efficacy of the 34-hour restart break for maintaining neurobehavioral functioning from the pre-restart duty cycle to the post-restart duty cycle was compared between these two conditions. Relative to the daytime duty condition, the nighttime duty condition was associated with reduced amounts of sleep, whereas sleep latencies were shortened and slow-wave sleep appeared to be conserved. Neurobehavioral performance measures ranging from lapses of attention on the PVT to calculated fuel consumption on the driving simulators remained optimal across time of day in the daytime duty schedule, but degraded across time of night in the nighttime duty schedule. The 34-hour restart break was efficacious for maintaining PVT performance and other objective neurobehavioral functioning profiles from one duty cycle to the next in the daytime duty condition, but not in the nighttime duty condition. Subjective sleepiness did not reliably track objective neurobehavioral deficits. The 34-hour restart break was adequate for maintaining performance in the case of optimal circadian placement of sleep and duty periods (control condition) but was inadequate (and perhaps even detrimental) for maintaining performance in a simulated nighttime duty schedule (experimental condition). Current US transportation hours-of-service regulations mandate time off duty but do not consider the circadian aspects of shift scheduling. Reinforcing a recent trend of applying sleep science to inform policymaking for duty and rest times, our findings indicate that restart provisions in hours-of-service regulations could be improved by taking the circadian timing of the duty schedules into account.
Deterministic methods for multi-control fuel loading optimization
NASA Astrophysics Data System (ADS)
Rahman, Fariz B. Abdul
We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.
Ott, Denise; Kralisch, Dana; Denčić, Ivana; Hessel, Volker; Laribi, Yosra; Perrichon, Philippe D; Berguerand, Charline; Kiwi-Minsker, Lioubov; Loeb, Patrick
2014-12-01
As the demand for new drugs is rising, the pharmaceutical industry faces the quest of shortening development time, and thus, reducing the time to market. Environmental aspects typically still play a minor role within the early phase of process development. Nevertheless, it is highly promising to rethink, redesign, and optimize process strategies as early as possible in active pharmaceutical ingredient (API) process development, rather than later at the stage of already established processes. The study presented herein deals with a holistic life-cycle-based process optimization and intensification of a pharmaceutical production process targeting a low-volume, high-value API. Striving for process intensification by transfer from batch to continuous processing, as well as an alternative catalytic system, different process options are evaluated with regard to their environmental impact to identify bottlenecks and improvement potentials for further process development activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of wave rotors for use as gas turbine engine topping cycles
NASA Technical Reports Server (NTRS)
Wilson, Jack; Paxson, Daniel E.
1995-01-01
Use of a wave rotor as a topping cycle for a gas turbine engine can improve specific power and reduce specific fuel consumption. Maximum improvement requires the wave rotor to be optimized for best performance at the mass flow of the engine. The optimization is a trade-off between losses due to friction and passage opening time, and rotational effects. An experimentally validated, one-dimensional CFD code, which includes these effects, has been used to calculate wave rotor performance, and find the optimum configuration. The technique is described, and results given for wave rotors sized for engines with sea level mass flows of 4, 26, and 400 lb/sec.
Multi-Criteria Optimization of Regulation in Metabolic Networks
Higuera, Clara; Villaverde, Alejandro F.; Banga, Julio R.; Ross, John; Morán, Federico
2012-01-01
Determining the regulation of metabolic networks at genome scale is a hard task. It has been hypothesized that biochemical pathways and metabolic networks might have undergone an evolutionary process of optimization with respect to several criteria over time. In this contribution, a multi-criteria approach has been used to optimize parameters for the allosteric regulation of enzymes in a model of a metabolic substrate-cycle. This has been carried out by calculating the Pareto set of optimal solutions according to two objectives: the proper direction of flux in a metabolic cycle and the energetic cost of applying the set of parameters. Different Pareto fronts have been calculated for eight different “environments” (specific time courses of end product concentrations). For each resulting front the so-called knee point is identified, which can be considered a preferred trade-off solution. Interestingly, the optimal control parameters corresponding to each of these points also lead to optimal behaviour in all the other environments. By calculating the average of the different parameter sets for the knee solutions more frequently found, a final and optimal consensus set of parameters can be obtained, which is an indication on the existence of a universal regulation mechanism for this system.The implications from such a universal regulatory switch are discussed in the framework of large metabolic networks. PMID:22848435
A graphic approach to include dissipative-like effects in reversible thermal cycles
NASA Astrophysics Data System (ADS)
Gonzalez-Ayala, Julian; Arias-Hernandez, Luis Antonio; Angulo-Brown, Fernando
2017-05-01
Since the decade of 1980's, a connection between a family of maximum-work reversible thermal cycles and maximum-power finite-time endoreversible cycles has been established. The endoreversible cycles produce entropy at their couplings with the external heat baths. Thus, this kind of cycles can be optimized under criteria of merit that involve entropy production terms. Meanwhile the relation between the concept of work and power is quite direct, apparently, the finite-time objective functions involving entropy production have not reversible counterparts. In the present paper we show that it is also possible to establish a connection between irreversible cycle models and reversible ones by means of the concept of "geometric dissipation", which has to do with the equivalent role of a deficit of areas between some reversible cycles and the Carnot cycle and actual dissipative terms in a Curzon-Ahlborn engine.
NASA Astrophysics Data System (ADS)
Wisnuadi, Alief Regyan; Damayanti, Retno Wulan; Pujiyanto, Eko
2018-02-01
Bearing is one of the most widely used parts in automotive industry. One of the leading bearing manufacturing companies in the world is SKF Indonesia. This company must produce bearing with international standard. SKF Indonesia must do continuous improvement in order to face competition. During this time, SKF Indonesia is only performing quality control at its Quality Assurance department. In other words, quality improvement at SKF Indonesia has not been done thoroughly. The purpose of this research is to improve quality of outer ring product at SKF Indonesia by conducting an internal grinding process experiment about setting speed ratio, fine position, and spark out grinding time. The specific purpose of this experiment is to optimize some quality responses such as roughness, roundness, and cycle time. All of the response in this experiment were smaller the better. Taguchi method and PCR-TOPSIS are used for the optimization process. The result of this research shows that by using Taguchi method and PCR-TOPSIS, the optimum condition occurs on speed ratio 36, fine position 18 µm/s and spark out 0.5 s. The optimum conditions result were roughness 0.398 µm, roundness 1.78 µm and cycle time 8.1 s. This results have been better than the previous results and meet the standards. The roughness of 0.523 µm decrease to 0.398 µm and the average cycle time of 8.5 s decrease to 8.1 s.
Application of Particle Swarm Optimization Algorithm in the Heating System Planning Problem
Ma, Rong-Jiang; Yu, Nan-Yang; Hu, Jun-Yi
2013-01-01
Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was improved. An actual case study was calculated to check its feasibility in practical use. The results show that the improved particle swarm optimization (IPSO) algorithm can more preferably solve the HSP problem than PSO algorithm. Moreover, the results also present the potential to provide useful information when making decisions in the practical planning process. Therefore, it is believed that if this approach is applied correctly and in combination with other elements, it can become a powerful and effective optimization tool for HSP problem. PMID:23935429
Piao, Wenhua; Kim, Changwon; Cho, Sunja; Kim, Hyosoo; Kim, Minsoo; Kim, Yejin
2016-12-01
In wastewater treatment plants (WWTPs), the portion of operating costs related to electric power consumption is increasing. If the electric power consumption decreased, however, it would be difficult to comply with the effluent water quality requirements. A protocol was proposed to minimize the environmental impacts as well as to optimize the electric power consumption under the conditions needed to meet the effluent water quality standards in this study. This protocol was comprised of six phases of procedure and was tested using operating data from S-WWTP to prove its applicability. The 11 major operating variables were categorized into three groups using principal component analysis and K-mean cluster analysis. Life cycle assessment (LCA) was conducted for each group to deduce the optimal operating conditions for each operating state. Then, employing mathematical modeling, six improvement plans to reduce electric power consumption were deduced. The electric power consumptions for suggested plans were estimated using an artificial neural network. This was followed by a second round of LCA conducted on the plans. As a result, a set of optimized improvement plans were derived for each group that were able to optimize the electric power consumption and life cycle environmental impact, at the same time. Based on these test results, the WWTP operating management protocol presented in this study is deemed able to suggest optimal operating conditions under which power consumption can be optimized with minimal life cycle environmental impact, while allowing the plant to meet water quality requirements.
Arterial signal timing optimization using PASSER II-87
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, E.C.P.; Messer, C.J.; Garza, R.U.
1988-11-01
PASSER is the acronym for the Progression Analysis and Signal System Evaluation Routine. PASSER II was originally developed by the Texas Transportation Institute (TTI) for the Dallas Corridor Project. The Texas State Department of Highways and Public Transportation (SDHPT) has sponsored the subsequent program development on both mainframe computers and microcomputers. The theory, model structure, methodology, and logic of PASSER II have been evaluated and well documented. PASSER II is widely used because of its ability to easily select multiple-phase sequences by adjusting the background cycle length and progression speeds to find the optimal timing plants, such as cycle, greenmore » split, phase sequence, and offsets, that can efficiently maximize the two-way progression bands.« less
Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm.
Pickett, Stephen D; Green, Darren V S; Hunt, David L; Pardoe, David A; Hughes, Ian
2011-01-13
Traditional lead optimization projects involve long synthesis and testing cycles, favoring extensive structure-activity relationship (SAR) analysis and molecular design steps, in an attempt to limit the number of cycles that a project must run to optimize a development candidate. Microfluidic-based chemistry and biology platforms, with cycle times of minutes rather than weeks, lend themselves to unattended autonomous operation. The bottleneck in the lead optimization process is therefore shifted from synthesis or test to SAR analysis and design. As such, the way is open to an algorithm-directed process, without the need for detailed user data analysis. Here, we present results of two synthesis and screening experiments, undertaken using traditional methodology, to validate a genetic algorithm optimization process for future application to a microfluidic system. The algorithm has several novel features that are important for the intended application. For example, it is robust to missing data and can suggest compounds for retest to ensure reliability of optimization. The algorithm is first validated on a retrospective analysis of an in-house library embedded in a larger virtual array of presumed inactive compounds. In a second, prospective experiment with MMP-12 as the target protein, 140 compounds are submitted for synthesis over 10 cycles of optimization. Comparison is made to the results from the full combinatorial library that was synthesized manually and tested independently. The results show that compounds selected by the algorithm are heavily biased toward the more active regions of the library, while the algorithm is robust to both missing data (compounds where synthesis failed) and inactive compounds. This publication places the full combinatorial library and biological data into the public domain with the intention of advancing research into algorithm-directed lead optimization methods.
Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm
2010-01-01
Traditional lead optimization projects involve long synthesis and testing cycles, favoring extensive structure−activity relationship (SAR) analysis and molecular design steps, in an attempt to limit the number of cycles that a project must run to optimize a development candidate. Microfluidic-based chemistry and biology platforms, with cycle times of minutes rather than weeks, lend themselves to unattended autonomous operation. The bottleneck in the lead optimization process is therefore shifted from synthesis or test to SAR analysis and design. As such, the way is open to an algorithm-directed process, without the need for detailed user data analysis. Here, we present results of two synthesis and screening experiments, undertaken using traditional methodology, to validate a genetic algorithm optimization process for future application to a microfluidic system. The algorithm has several novel features that are important for the intended application. For example, it is robust to missing data and can suggest compounds for retest to ensure reliability of optimization. The algorithm is first validated on a retrospective analysis of an in-house library embedded in a larger virtual array of presumed inactive compounds. In a second, prospective experiment with MMP-12 as the target protein, 140 compounds are submitted for synthesis over 10 cycles of optimization. Comparison is made to the results from the full combinatorial library that was synthesized manually and tested independently. The results show that compounds selected by the algorithm are heavily biased toward the more active regions of the library, while the algorithm is robust to both missing data (compounds where synthesis failed) and inactive compounds. This publication places the full combinatorial library and biological data into the public domain with the intention of advancing research into algorithm-directed lead optimization methods. PMID:24900251
Time is money: Rational life cycle inertia and the delegation of investment management.
Kim, Hugh Hoikwang; Maurer, Raimond; Mitchell, Olivia S
2016-08-01
Many households display inertia in investment management over their life cycles. Our calibrated dynamic life cycle portfolio choice model can account for such an apparently 'irrational' outcome, by incorporating the fact that investors must forgo acquiring job-specific skills when they spend time managing their money, and their efficiency in financial decision making varies with age. Resulting inertia patterns mesh well with findings from prior studies and our own empirical results from Panel Study of Income Dynamics (PSID) data. We also analyze how people optimally choose between actively managing their assets versus delegating the task to financial advisors. Delegation proves valuable to both the young and the old. Our calibrated model quantifies welfare gains from including investment time and money costs as well as delegation in a life cycle setting.
Optimal tuning of a confined Brownian information engine.
Park, Jong-Min; Lee, Jae Sung; Noh, Jae Dong
2016-03-01
A Brownian information engine is a device extracting mechanical work from a single heat bath by exploiting the information on the state of a Brownian particle immersed in the bath. As for engines, it is important to find the optimal operating condition that yields the maximum extracted work or power. The optimal condition for a Brownian information engine with a finite cycle time τ has been rarely studied because of the difficulty in finding the nonequilibrium steady state. In this study, we introduce a model for the Brownian information engine and develop an analytic formalism for its steady-state distribution for any τ. We find that the extracted work per engine cycle is maximum when τ approaches infinity, while the power is maximum when τ approaches zero.
Polyhedral Interpolation for Optimal Reaction Control System Jet Selection
NASA Technical Reports Server (NTRS)
Gefert, Leon P.; Wright, Theodore
2014-01-01
An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.
NASA Technical Reports Server (NTRS)
Kegelman, Jerome T.
1998-01-01
The advantage of managing organizations to minimize product development cycle time has been well established. This paper provides an overview of the wind tunnel testing cycle time reduction activities at Langley Research Center (LaRC) and gives the status of several improvements in the wind tunnel productivity and cost reductions that have resulted from these activities. Processes have been examined and optimized. Metric data from monitoring processes provides guidance for investments in advanced technologies. The most promising technologies under implementation today include the use of formally designed experiments, a diverse array of quick disconnect technology and the judicious use of advanced electronic and information technologies.
Generation of single-cycle mid-infrared pulses via coherent synthesis.
Ma, Fen; Liu, Hongjun; Huang, Nan; Sun, Qibing
2012-12-17
A new approach for the generation of single-cycle mid-infrared pulses without complicated control systems is proposed, which is based on direct coherent synthesis of two idlers generated by difference frequency generation (DFG) processes. It is found that the waveform of synthesized pulses is mainly determined by the spectra superposition, the carrier-envelope phase (CEP) difference, the relative timing and the chirp ratio between the idlers. The influences of these parameters on the synthesized waveform are also numerically calculated and analyzed via second-order autocorrelation, which offers general guidelines for the waveform optimization. The single-cycle synthesized mid-infrared pulses, which are centered at 4233 nm with the spectrum spanning from 3000 nm to 7000 nm, are achieved by carefully optimizing these parameters. The single-cycle mid-infrared laser source presents the possibility of investigating and controlling the strong field light-matter interaction.
Borah, Pallab Kumar; Deka, Sankar Chandra; Duary, Raj Kumar
2017-05-15
The effects of repeated cycled crystallization on the digestibility and molecular structure of glutinous Bora rice starch were investigated. Temperature cycle 4/45°C; cycle duration 5d; time interval of cycles 24h; and starch to water ratio 1:2 were found to be optimum for SDS (slow digestible starch) product development. The SDS content increased from 18.01±2.11% to 82.81±2.34%. An increase in the resistance to digestion, crystallinity, molecular weight, polydispersity and molecular order was observed in the optimal SDS product. Notably, the FT-IR peak at 947cm -1 and XRD peaks at 2θ≈13° and 20° in the optimal SDS product indicated the formation of V-type complexes even without the presence of co-polymers. Birefringence studies showed a loss of typical Maltese cross in the SDS product and revealed a reorientation of crystalline structures within starch granules, suggestive of imperfect crystallite development. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rainarli, E.; E Dewi, K.
2017-04-01
The research conducted by Fister & Panetta shown an optimal control model of bone marrow cells against Cell Cycle Specific chemotherapy drugs. The model used was a bilinear system model. Fister & Panetta research has proved existence, uniqueness, and characteristics of optimal control (the chemotherapy effect). However, by using this model, the amount of bone marrow at the final time could achieve less than 50 percent from the amount of bone marrow before given treatment. This could harm patients because the lack of bone marrow cells made the number of leukocytes declining and patients will experience leukemia. This research would examine the optimal control of a bilinear system that applied to fixed final state. It will be used to determine the length of optimal time in administering chemotherapy and kept bone marrow cells on the allowed level at the same time. Before simulation conducted, this paper shows that the system could be controlled by using a theory of Lie Algebra. Afterward, it shows the characteristics of optimal control. Based on the simulation, it indicates that strong chemotherapy drug given in a short time frame is the most optimal condition to keep bone marrow cells spine on the allowed level but still could put playing an effective treatment. It gives preference of the weight of treatment for keeping bone marrow cells. The result of chemotherapy’s effect (u) is not able to reach the maximum value. On the other words, it needs to make adjustments of medicine’s dosage to satisfy the final treatment condition e.g. the number of bone marrow cells should be at the allowed level.
NASA Technical Reports Server (NTRS)
Seldner, K.
1977-01-01
An algorithm was developed to optimally control the traffic signals at each intersection using a discrete time traffic model applicable to heavy or peak traffic. Off line optimization procedures were applied to compute the cycle splits required to minimize the lengths of the vehicle queues and delay at each intersection. The method was applied to an extensive traffic network in Toledo, Ohio. Results obtained with the derived optimal settings are compared with the control settings presently in use.
Antibiotic Cycling and Antibiotic Mixing: Which One Best Mitigates Antibiotic Resistance?
Peña-Miller, Rafael; Gori, Fabio; Iredell, Jonathan
2017-01-01
Abstract Can we exploit our burgeoning understanding of molecular evolution to slow the progress of drug resistance? One role of an infection clinician is exactly that: to foresee trajectories to resistance during antibiotic treatment and to hinder that evolutionary course. But can this be done at a hospital-wide scale? Clinicians and theoreticians tried to when they proposed two conflicting behavioral strategies that are expected to curb resistance evolution in the clinic, these are known as “antibiotic cycling” and “antibiotic mixing.” However, the accumulated data from clinical trials, now approaching 4 million patient days of treatment, is too variable for cycling or mixing to be deemed successful. The former implements the restriction and prioritization of different antibiotics at different times in hospitals in a manner said to “cycle” between them. In antibiotic mixing, appropriate antibiotics are allocated to patients but randomly. Mixing results in no correlation, in time or across patients, in the drugs used for treatment which is why theorists saw this as an optimal behavioral strategy. So while cycling and mixing were proposed as ways of controlling evolution, we show there is good reason why clinical datasets cannot choose between them: by re-examining the theoretical literature we show prior support for the theoretical optimality of mixing was misplaced. Our analysis is consistent with a pattern emerging in data: neither cycling or mixing is a priori better than the other at mitigating selection for antibiotic resistance in the clinic. Key words: antibiotic cycling, antibiotic mixing, optimal control, stochastic models. PMID:28096304
Optimal Charging of Nickel-Hydrogen Batteries for Life Extension
NASA Technical Reports Server (NTRS)
Hartley, Tom T.; Lorenzo, Carl F.
2002-01-01
We are exploring the possibility of extending the cycle life of battery systems by using a charging profile that minimizes cell damage. Only nickel-hydrogen cells are discussed at this time, but applications to lithium-ion cells are being considered. The process first requires the development of a fractional calculus based nonlinear dynamic model of the specific cells being used. The parameters of this model are determined from the cell transient responses. To extend cell cycle life, an instantaneous damage rate model is developed. The model is based on cycle life data and is highly dependent on cell voltage. Once both the cell dynamic model and the instantaneous damage rate model have been determined, the charging profile for a specific cell is determined by numerical optimization. Results concerning the percentage life extension for different charging strategies are presented. The overall procedure is readily adaptable to real-time implementations where the charging profile can maintain its minimum damage nature as the specific cell ages.
Fatigue life estimation on coke drum due to cycle optimization
NASA Astrophysics Data System (ADS)
Siahaan, Andrey Stephan; Ambarita, Himsar; Kawai, Hideki; Daimaruya, Masashi
2018-04-01
In the last decade, due to the increasing demand of petroleum product, the necessity for converting the heavy oil are increasing. Thus, demand for installing coke drum in whole world will be increase. The coke drum undergoes the cyclic high temperature and suddenly cooling but in fact is not designed to withstand that kind of cycle, thus the operational life of coke drum is much shorter in comparison to other equipment in oil refinery. Various factors determine in order to improve reliability and minimize the down time, and it is found that the cycle optimization due to cycle, temperature, and pressure have an important role. From this research it is found that the fatigue life of the short cycle is decrease by a half compare to the normal cycle. It also found that in the preheating stage, the stress peak is far exceed the yield strength of coke drum material and fall into plastic deformation. This is happened because of the temperature leap in the preheating stage that cause thermal shock in the upper part of the skirt of the coke drum.
Time is money: Rational life cycle inertia and the delegation of investment management
Kim, Hugh Hoikwang; Maurer, Raimond; Mitchell, Olivia S.
2016-01-01
Many households display inertia in investment management over their life cycles. Our calibrated dynamic life cycle portfolio choice model can account for such an apparently ‘irrational’ outcome, by incorporating the fact that investors must forgo acquiring job-specific skills when they spend time managing their money, and their efficiency in financial decision making varies with age. Resulting inertia patterns mesh well with findings from prior studies and our own empirical results from Panel Study of Income Dynamics (PSID) data. We also analyze how people optimally choose between actively managing their assets versus delegating the task to financial advisors. Delegation proves valuable to both the young and the old. Our calibrated model quantifies welfare gains from including investment time and money costs as well as delegation in a life cycle setting. PMID:28344380
Meringer, Markus; Cleaves, H James
2017-12-13
The reverse tricarboxylic acid (rTCA) cycle has been explored from various standpoints as an idealized primordial metabolic cycle. Its simplicity and apparent ubiquity in diverse organisms across the tree of life have been used to argue for its antiquity and its optimality. In 2000 it was proposed that chemoinformatics approaches support some of these views. Specifically, defined queries of the Beilstein database showed that the molecules of the rTCA are heavily represented in such compound databases. We explore here the chemical structure "space," e.g. the set of organic compounds which possesses some minimal set of defining characteristics, of the rTCA cycle's intermediates using an exhaustive structure generation method. The rTCA's chemical space as defined by the original criteria and explored by our method is some six to seven times larger than originally considered. Acknowledging that each assumption in what is a defining criterion making the rTCA cycle special limits possible generative outcomes, there are many unrealized compounds which fulfill these criteria. That these compounds are unrealized could be due to evolutionary frozen accidents or optimization, though this optimization may also be for systems-level reasons, e.g., the way the pathway and its elements interface with other aspects of metabolism.
Hong, K i-Ho; Chang, Duk; Hur, Joon-Moo; Han, Sang-Bae
2003-01-01
Phased isolation ditch system with intrachannel clarifier is a simplified novel oxidation ditch system enhancing simultaneous removal of biological nitrogen and phosphorus in municipal wastewater. The system employs two ditches with intra-clarifier, and eliminates external final clarifier, additional preanaerobic reactor, and recycle of sludge and nitrified effluent. Separation of anoxic, anaerobic, and aerobic phases can be accomplished by alternating flow and intermittent aeration. Its pilot-scale system operated at HRTs of 10-21 h, SRTs of 15-41 days, and a cycle times of 2-8 h showed removals of BOD, TN, and TP in the range of mixed liquor temperature above 10 degrees C as high as 88-97, 70-84, and 65-90%, respectively. As the SRTs became longer, the effluent TN decreased dramatically, whereas the effluent TP increased. Higher nitrogen removal was accomplished at shorter cycle times, while better phosphorus removal was achieved in longer cycle times. Optimal system operating strategies maximizing the performance and satisfying both the best nitrogen and phosphorus removals included HRTs ranged 10-14 h, SRTs ranged 25-30 days, and a cycle time of 4 h at the mixed liquor temperature above 10 degrees C. Thus, complete phase separation in a cycle maximizing phosphorus release and uptake as well as nitrification and denitrification was accomplished by scheduling of alternating flow and intermittent aeration in the simplified process scheme. Especially, temporal phase separation for phosphorus release without additional anaerobic reactor was successfully accomplished during anaerobic period without any nitrate interference and carbon-limiting.
Multiple quay cranes scheduling for double cycling in container terminals
Chu, Yanling; Zhang, Xiaoju; Yang, Zhongzhen
2017-01-01
Double cycling is an efficient tool to increase the efficiency of quay crane (QC) in container terminals. In this paper, an optimization model for double cycling is developed to optimize the operation sequence of multiple QCs. The objective is to minimize the makespan of the ship handling operation considering the ship balance constraint. To solve the model, an algorithm based on Lagrangian relaxation is designed. Finally, we compare the efficiency of the Lagrangian relaxation based heuristic with the branch-and-bound method and a genetic algorithm using instances of different sizes. The results of numerical experiments indicate that the proposed model can effectively reduce the unloading and loading times of QCs. The effects of the ship balance constraint are more notable when the number of QCs is high. PMID:28692699
Multiple quay cranes scheduling for double cycling in container terminals.
Chu, Yanling; Zhang, Xiaoju; Yang, Zhongzhen
2017-01-01
Double cycling is an efficient tool to increase the efficiency of quay crane (QC) in container terminals. In this paper, an optimization model for double cycling is developed to optimize the operation sequence of multiple QCs. The objective is to minimize the makespan of the ship handling operation considering the ship balance constraint. To solve the model, an algorithm based on Lagrangian relaxation is designed. Finally, we compare the efficiency of the Lagrangian relaxation based heuristic with the branch-and-bound method and a genetic algorithm using instances of different sizes. The results of numerical experiments indicate that the proposed model can effectively reduce the unloading and loading times of QCs. The effects of the ship balance constraint are more notable when the number of QCs is high.
Photovoltaic design optimization for terrestrial applications
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1978-01-01
As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, a comprehensive program of module cost-optimization has been carried out. The objective of these studies has been to define means of reducing the cost and improving the utility and reliability of photovoltaic modules for the broad spectrum of terrestrial applications. This paper describes one of the methods being used for module optimization, including the derivation of specific equations which allow the optimization of various module design features. The method is based on minimizing the life-cycle cost of energy for the complete system. Comparison of the life-cycle energy cost with the marginal cost of energy each year allows the logical plant lifetime to be determined. The equations derived allow the explicit inclusion of design parameters such as tracking, site variability, and module degradation with time. An example problem involving the selection of an optimum module glass substrate is presented.
Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth
Knoop, Henning; Bockmayr, Alexander; Steuer, Ralf
2017-01-01
Cyanobacteria are an integral part of Earth’s biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO2. Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions. PMID:28720699
Distributed computer system enhances productivity for SRB joint optimization
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Young, Katherine C.; Barthelemy, Jean-Francois M.
1987-01-01
Initial calculations of a redesign of the solid rocket booster joint that failed during the shuttle tragedy showed that the design had a weight penalty associated with it. Optimization techniques were to be applied to determine if there was any way to reduce the weight while keeping the joint opening closed and limiting the stresses. To allow engineers to examine as many alternatives as possible, a system was developed consisting of existing software that coupled structural analysis with optimization which would execute on a network of computer workstations. To increase turnaround, this system took advantage of the parallelism offered by the finite difference technique of computing gradients to allow several workstations to contribute to the solution of the problem simultaneously. The resulting system reduced the amount of time to complete one optimization cycle from two hours to one-half hour with a potential of reducing it to 15 minutes. The current distributed system, which contains numerous extensions, requires one hour turnaround per optimization cycle. This would take four hours for the sequential system.
Real Time Optimal Control of Supercapacitor Operation for Frequency Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yusheng; Panwar, Mayank; Mohanpurkar, Manish
2016-07-01
Supercapacitors are gaining wider applications in power systems due to fast dynamic response. Utilizing supercapacitors by means of power electronics interfaces for power compensation is a proven effective technique. For applications such as requency restoration if the cost of supercapacitors maintenance as well as the energy loss on the power electronics interfaces are addressed. It is infeasible to use traditional optimization control methods to mitigate the impacts of frequent cycling. This paper proposes a Front End Controller (FEC) using Generalized Predictive Control featuring real time receding optimization. The optimization constraints are based on cost and thermal management to enhance tomore » the utilization efficiency of supercapacitors. A rigorous mathematical derivation is conducted and test results acquired from Digital Real Time Simulator are provided to demonstrate effectiveness.« less
Time cycle analysis and simulation of material flow in MOX process layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.; Saraswat, A.; Danny, K.M.
The (U,Pu)O{sub 2} MOX fuel is the driver fuel for the upcoming PFBR (Prototype Fast Breeder Reactor). The fuel has around 30% PuO{sub 2}. The presence of high percentages of reprocessed PuO{sub 2} necessitates the design of optimized fuel fabrication process line which will address both production need as well as meet regulatory norms regarding radiological safety criteria. The powder pellet route has highly unbalanced time cycle. This difficulty can be overcome by optimizing process layout in terms of equipment redundancy and scheduling of input powder batches. Different schemes are tested before implementing in the process line with the helpmore » of a software. This software simulates the material movement through the optimized process layout. The different material processing schemes have been devised and validity of the schemes are tested with the software. Schemes in which production batches are meeting at any glove box location are considered invalid. A valid scheme ensures adequate spacing between the production batches and at the same time it meets the production target. This software can be further improved by accurately calculating material movement time through glove box train. One important factor is considering material handling time with automation systems in place.« less
Optimization methods applied to hybrid vehicle design
NASA Technical Reports Server (NTRS)
Donoghue, J. F.; Burghart, J. H.
1983-01-01
The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.
Comolli, Lorenzo; Ferrante, Simona; Pedrocchi, Alessandra; Bocciolone, Marco; Ferrigno, Giancarlo; Molteni, Franco
2010-05-01
Functional electrical stimulation (FES) is a well established method in the rehabilitation of stroke patients. Indeed, a bilateral movement such as cycling induced by FES would be crucial for these patients who had an unilateral motor impairment and had to recover an equivalent use of limbs. The aim of this study was to develop a low-cost meteorologically qualified cycle-ergometer, optimized for patients with stroke. A commercial ergometer was instrumented with resistive strain gauges and was able to provide the torque produced at the right and left crank, independently. The developed system was integrated with a stimulator, obtaining a novel FES cycling device able to control in real-time the movement unbalance. A dynamic calibration of the sensors was performed and a total torque uncertainty was computed. The system was tested on a healthy subject and on a stroke patient. Results demonstrated that the proposed sensors could be successfully used during FES cycling sessions where the maximum torque produced is about 9Nm, an order of magnitude less than the torque produced during voluntary cycling. This FES cycling system will assist in future investigations on stroke rehabilitation by means of FES and in new exercise regimes designed specifically for patients with unilateral impairments.
Optimization of the performance of the polymerase chain reaction in silicon-based microstructures.
Taylor, T B; Winn-Deen, E S; Picozza, E; Woudenberg, T M; Albin, M
1997-01-01
We have demonstrated the ability to perform real-time homogeneous, sequence specific detection of PCR products in silicon microstructures. Optimal design/ processing result in equivalent performance (yield and specificity) for high surface-to-volume silicon structures as compared to larger volume reactions in polypropylene tubes. Amplifications in volumes as small as 0.5 microl and thermal cycling times reduced as much as 5-fold from that of conventional systems have been demonstrated for the microstructures. PMID:9224619
NASA Astrophysics Data System (ADS)
Hinze, J. F.; Klein, S. A.; Nellis, G. F.
2015-12-01
Mixed refrigerant (MR) working fluids can significantly increase the cooling capacity of a Joule-Thomson (JT) cycle. The optimization of MRJT systems has been the subject of substantial research. However, most optimization techniques do not model the recuperator in sufficient detail. For example, the recuperator is usually assumed to have a heat transfer coefficient that does not vary with the mixture. Ongoing work at the University of Wisconsin-Madison has shown that the heat transfer coefficients for two-phase flow are approximately three times greater than for a single phase mixture when the mixture quality is between 15% and 85%. As a result, a system that optimizes a MR without also requiring that the flow be in this quality range may require an extremely large recuperator or not achieve the performance predicted by the model. To ensure optimal performance of the JT cycle, the MR should be selected such that it is entirely two-phase within the recuperator. To determine the optimal MR composition, a parametric study was conducted assuming a thermodynamically ideal cycle. The results of the parametric study are graphically presented on a contour plot in the parameter space consisting of the extremes of the qualities that exist within the recuperator. The contours show constant values of the normalized refrigeration power. This ‘map’ shows the effect of MR composition on the cycle performance and it can be used to select the MR that provides a high cooling load while also constraining the recuperator to be two phase. The predicted best MR composition can be used as a starting point for experimentally determining the best MR.
NASA Astrophysics Data System (ADS)
Mahata, Puspita; Mahata, Gour Chandra; Kumar De, Sujit
2018-03-01
Traditional supply chain inventory modes with trade credit usually only assumed that the up-stream suppliers offered the down-stream retailers a fixed credit period. However, in practice the retailers will also provide a credit period to customers to promote the market competition. In this paper, we formulate an optimal supply chain inventory model under two levels of trade credit policy with default risk consideration. Here, the demand is assumed to be credit-sensitive and increasing function of time. The major objective is to determine the retailer's optimal credit period and cycle time such that the total profit per unit time is maximized. The existence and uniqueness of the optimal solution to the presented model are examined, and an easy method is also shown to find the optimal inventory policies of the considered problem. Finally, numerical examples and sensitive analysis are presented to illustrate the developed model and to provide some managerial insights.
Smart sensing to drive real-time loads scheduling algorithm in a domotic architecture
NASA Astrophysics Data System (ADS)
Santamaria, Amilcare Francesco; Raimondo, Pierfrancesco; De Rango, Floriano; Vaccaro, Andrea
2014-05-01
Nowadays the focus on power consumption represent a very important factor regarding the reduction of power consumption with correlated costs and the environmental sustainability problems. Automatic control load based on power consumption and use cycle represents the optimal solution to costs restraint. The purpose of these systems is to modulate the power request of electricity avoiding an unorganized work of the loads, using intelligent techniques to manage them based on real time scheduling algorithms. The goal is to coordinate a set of electrical loads to optimize energy costs and consumptions based on the stipulated contract terms. The proposed algorithm use two new main notions: priority driven loads and smart scheduling loads. The priority driven loads can be turned off (stand by) according to a priority policy established by the user if the consumption exceed a defined threshold, on the contrary smart scheduling loads are scheduled in a particular way to don't stop their Life Cycle (LC) safeguarding the devices functions or allowing the user to freely use the devices without the risk of exceeding the power threshold. The algorithm, using these two kind of notions and taking into account user requirements, manages loads activation and deactivation allowing the completion their operation cycle without exceeding the consumption threshold in an off-peak time range according to the electricity fare. This kind of logic is inspired by industrial lean manufacturing which focus is to minimize any kind of power waste optimizing the available resources.
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung
2014-01-01
For the fabrication of resin matrix fiber reinforced composite laminates, a workable cure cycle (i.e., temperature and pressure profiles as a function of processing time) is needed and is critical for achieving void-free laminate consolidation. Design of such a cure cycle is not trivial, especially when dealing with reactive matrix resins. An empirical "trial and error" approach has been used as common practice in the composite industry. Such an approach is not only costly, but also ineffective at establishing the optimal processing conditions for a specific resin/fiber composite system. In this report, a rational "processing science" based approach is established, and a universal cure cycle design protocol is proposed. Following this protocol, a workable and optimal cure cycle can be readily and rationally designed for most reactive resin systems in a cost effective way. This design protocol has been validated through experimental studies of several reactive polyimide composites for a wide spectrum of usage that has been documented in the previous publications.
The effects of DRIE operational parameters on vertically aligned micropillar arrays
NASA Astrophysics Data System (ADS)
Miller, Kane; Li, Mingxiao; Walsh, Kevin M.; Fu, Xiao-An
2013-03-01
Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90° and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments.
Interplay between intrinsic noise and the stochasticity of the cell cycle in bacterial colonies.
Canela-Xandri, Oriol; Sagués, Francesc; Buceta, Javier
2010-06-02
Herein we report on the effects that different stochastic contributions induce in bacterial colonies in terms of protein concentration and production. In particular, we consider for what we believe to be the first time cell-to-cell diversity due to the unavoidable randomness of the cell-cycle duration and its interplay with other noise sources. To that end, we model a recent experimental setup that implements a protein dilution protocol by means of division events to characterize the gene regulatory function at the single cell level. This approach allows us to investigate the effect of different stochastic terms upon the total randomness experimentally reported for the gene regulatory function. In addition, we show that the interplay between intrinsic fluctuations and the stochasticity of the cell-cycle duration leads to different constructive roles. On the one hand, we show that there is an optimal value of protein concentration (alternatively an optimal value of the cell cycle phase) such that the noise in protein concentration attains a minimum. On the other hand, we reveal that there is an optimal value of the stochasticity of the cell cycle duration such that the coherence of the protein production with respect to the colony average production is maximized. The latter can be considered as a novel example of the recently reported phenomenon of diversity induced resonance. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Electromagnetic Smart Valves for Cryogenic Applications
NASA Astrophysics Data System (ADS)
Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.
2004-06-01
Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.
Cardiopulmonary resuscitation duty cycle in out-of-hospital cardiac arrest.
Johnson, Bryce V; Johnson, Bryce; Coult, Jason; Fahrenbruch, Carol; Blackwood, Jennifer; Sherman, Larry; Kudenchuk, Peter; Sayre, Michael; Rea, Thomas
2015-02-01
Duty cycle is the portion of time spent in compression relative to total time of the compression-decompression cycle. Guidelines recommend a 50% duty cycle based largely on animal investigation. We undertook a descriptive evaluation of duty cycle in human resuscitation, and whether duty cycle correlates with other CPR measures. We calculated the duty cycle, compression depth, and compression rate during EMS resuscitation of 164 patients with out-of-hospital ventricular fibrillation cardiac arrest. We captured force recordings from a chest accelerometer to measure ten-second CPR epochs that preceded rhythm analysis. Duty cycle was calculated using two methods. Effective compression time (ECT) is the time from beginning to end of compression divided by total period for that compression-decompression cycle. Area duty cycle (ADC) is the ratio of area under the force curve divided by total area of one compression-decompression cycle. We evaluated the compression depth and compression rate according to duty cycle quartiles. There were 369 ten-second epochs among 164 patients. The median duty cycle was 38.8% (SD=5.5%) using ECT and 32.2% (SD=4.3%) using ADC. A relatively shorter compression phase (lower duty cycle) was associated with greater compression depth (test for trend <0.05 for ECT and ADC) and slower compression rate (test for trend <0.05 for ADC). Sixty-one of 164 patients (37%) survived to hospital discharge. Duty cycle was below the 50% recommended guideline, and was associated with compression depth and rate. These findings provider rationale to incorporate duty cycle into research aimed at understanding optimal CPR metrics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Li, Sheng; Yao, Xinhua; Fu, Jianzhong
2014-07-16
Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle.
Li, Sheng; Yao, Xinhua; Fu, Jianzhong
2014-01-01
Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle. PMID:25033189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silaev, A. A., E-mail: silaev@appl.sci-nnov.ru; Vvedenskii, N. V., E-mail: vved@appl.sci-nnov.ru; University of Nizhny Novgorod, Nizhny Novgorod 603950
2015-05-15
When a gas is ionized by a few-cycle laser pulse, some residual current density (RCD) of free electrons remains in the produced plasma after the passage of the laser pulse. This quasi-dc RCD is an initial impetus to plasma polarization and excitation of the plasma oscillations which can radiate terahertz (THz) waves. In this work, the analytical model for calculation of RCD excited by a few-cycle laser pulse is developed for the first time. The dependences of the RCD on the carrier-envelope phase (CEP), wavelength, duration, and intensity of the laser pulse are derived. It is shown that maximum RCDmore » corresponding to optimal CEP increases with the laser pulse wavelength, which indicates the prospects of using mid-infrared few-cycle laser pulses in the schemes of generation of high-power THz pulses. Analytical formulas for optimal pulse intensity and maximum efficiency of excitation of the RCD are obtained. Basing on numerical solution of the 3D time-dependent Schrödinger equation for hydrogen atoms, RCD dependence on CEP is calculated in a wide range of wavelengths. High accuracy of analytical formulas is demonstrated at the laser pulse parameters which correspond to the tunneling regime of ionization.« less
Real-time parameter optimization based on neural network for smart injection molding
NASA Astrophysics Data System (ADS)
Lee, H.; Liau, Y.; Ryu, K.
2018-03-01
The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.
Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools
NASA Technical Reports Server (NTRS)
Orr, Stanley A.; Narducci, Robert P.
2009-01-01
A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.
Aziz, Abdul Rashid; Chia, Michael Yong Hwa; Low, Chee Yong; Slater, Gary John; Png, Weileen; Teh, Kong Chuan
2012-10-01
This study examines the effects of Ramadan fasting on performance during an intense exercise session performed at three different times of the day, i.e., 08:00, 18:00, and 21:00 h. The purpose was to determine the optimal time of the day to perform an acute high-intensity interval exercise during the Ramadan fasting month. After familiarization, nine trained athletes performed six 30-s Wingate anaerobic test (WAnT) cycle bouts followed by a time-to-exhaustion (T(exh)) cycle on six separate randomized and counterbalanced occasions. The three time-of-day nonfasting (control, CON) exercise sessions were performed before the Ramadan month, and the three corresponding time-of-day Ramadan fasting (RAM) exercise sessions were performed during the Ramadan month. Note that the 21:00 h session during Ramadan month was conducted in the nonfasted state after the breaking of the day's fast. Total work (TW) completed during the six WAnT bouts was significantly lower during RAM compared to CON for the 08:00 and 18:00 h (p < .017; effect size [d] = .55 [small] and .39 [small], respectively) sessions, but not for the 21:00 h (p = .03, d = .18 [trivial]) session. The T(exh) cycle duration was significantly shorter during RAM than CON in the 18:00 (p < .017, d = .93 [moderate]) session, but not in the 08:00 (p = .03, d = .57 [small]) and 21:00 h (p = .96, d = .02 [trivial]) sessions. In conclusion, Ramadan fasting had a small to moderate, negative impact on quality of performance during an acute high-intensity exercise session, particularly during the period of the daytime fast. The optimal time to conduct an acute high-intensity exercise session during the Ramadan fasting month is in the evening, after the breaking of the day's fast.
NASA Astrophysics Data System (ADS)
Hou, Huirang; Zheng, Dandan; Nie, Laixiao
2015-04-01
For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.
Optimal Power and Efficiency of Quantum Thermoacoustic Micro-cycle Working in 1D Harmonic Trap
NASA Astrophysics Data System (ADS)
E, Qing; Wu, Feng; Yin, Yong; Liu, XiaoWei
2017-10-01
Thermoacoustic engines (including heat engines and refrigerators) are energy conversion devices without moving part. They have great potential in aviation, new energy utilization, power technology, refrigerating and cryogenics. The thermoacoustic parcels, which compose the working fluid of a thermoacoustic engine, oscillate within the sound channel with a temperature gradient. The thermodynamic foundation of a thermoacoustic engine is the thermoacoustic micro-cycle (TAMC). In this paper, the theory of quantum mechanics is applied to the study of the actual thermoacoustic micro-cycle for the first time. A quantum mechanics model of the TAMC working in a 1D harmonic trap, which is named as a quantum thermoacoustic micro-cycle (QTAMC), is established. The QTAMC is composed of two constant force processes connected by two straight line processes. Analytic expressions of the power output and the efficiency for QTAMC have been derived. The effects of the trap width and the temperature amplitude on the power output and the thermal efficiency have been discussed. Some optimal characteristic curves of power output versus efficiency are plotted, and then the optimization region of QTAMC is given in this paper. The results obtained here not only enrich the thermoacoustic theory but also expand the application of quantum thermodynamics.
Circadian rhythms, time-restricted feeding, and healthy aging.
Manoogian, Emily N C; Panda, Satchidananda
2017-10-01
Circadian rhythms optimize physiology and health by temporally coordinating cellular function, tissue function, and behavior. These endogenous rhythms dampen with age and thus compromise temporal coordination. Feeding-fasting patterns are an external cue that profoundly influence the robustness of daily biological rhythms. Erratic eating patterns can disrupt the temporal coordination of metabolism and physiology leading to chronic diseases that are also characteristic of aging. However, sustaining a robust feeding-fasting cycle, even without altering nutrition quality or quantity, can prevent or reverse these chronic diseases in experimental models. In humans, epidemiological studies have shown erratic eating patterns increase the risk of disease, whereas sustained feeding-fasting cycles, or prolonged overnight fasting, is correlated with protection from breast cancer. Therefore, optimizing the timing of external cues with defined eating patterns can sustain a robust circadian clock, which may prevent disease and improve prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.
The optimization of total laboratory automation by simulation of a pull-strategy.
Yang, Taho; Wang, Teng-Kuan; Li, Vincent C; Su, Chia-Lo
2015-01-01
Laboratory results are essential for physicians to diagnose medical conditions. Because of the critical role of medical laboratories, an increasing number of hospitals use total laboratory automation (TLA) to improve laboratory performance. Although the benefits of TLA are well documented, systems occasionally become congested, particularly when hospitals face peak demand. This study optimizes TLA operations. Firstly, value stream mapping (VSM) is used to identify the non-value-added time. Subsequently, batch processing control and parallel scheduling rules are devised and a pull mechanism that comprises a constant work-in-process (CONWIP) is proposed. Simulation optimization is then used to optimize the design parameters and to ensure a small inventory and a shorter average cycle time (CT). For empirical illustration, this approach is applied to a real case. The proposed methodology significantly improves the efficiency of laboratory work and leads to a reduction in patient waiting times and increased service level.
Epelboym, Irene; Zenati, Mazen S; Hamad, Ahmad; Steve, Jennifer; Lee, Kenneth K; Bahary, Nathan; Hogg, Melissa E; Zeh, Herbert J; Zureikat, Amer H
2017-09-01
Receipt of 6 cycles of adjuvant chemotherapy (AC) is standard of care in pancreatic cancer (PC). Neoadjuvant chemotherapy (NAC) is increasingly utilized; however, optimal number of cycles needed alone or in combination with AC remains unknown. We sought to determine the optimal number and sequence of perioperative chemotherapy cycles in PC. Single institutional review of all resected PCs from 2008 to 2015. The impact of cumulative number of chemotherapy cycles received (0, 1-5, and ≥6 cycles) and their sequence (NAC, AC, or NAC + AC) on overall survival was evaluated Cox-proportional hazard modeling, using 6 cycles of AC as reference. A total of 522 patients were analyzed. Based on sample size distribution, four combinations were evaluated: 0 cycles = 12.1%, 1-5 cycles of combined NAC + AC = 29%, 6 cycles of AC = 25%, and ≥6 cycles of combined NAC + AC = 34%, with corresponding survival. 13.1, 18.5, 37, and 36.8 months. On MVA (P < 0.0001), tumor stage [hazard ratio (HR) 1.35], LNR (HR 4.3), and R1 margins (HR 1.77) were associated with increased hazard of death. Compared with 6 cycles AC, receipt of 0 cycles [HR 3.57, confidence interval (CI) 2.47-5.18] or 1-5 cycles in any combination (HR 2.37, CI 1.73-3.23) was associated with increased hazard of death, whereas receipt of ≥6 cycles in any sequence was associated with optimal and comparable survival (HR 1.07, CI 0.78-1.47). Receipt of 6 or more perioperative cycles of chemotherapy either as combined neoadjuvant and adjuvant or adjuvant alone may be associated with optimal and comparable survival in resected PC.
On the efficiency of FES cycling: a framework and systematic review.
Hunt, K J; Fang, J; Saengsuwan, J; Grob, M; Laubacher, M
2012-01-01
Research and development in the art of cycling using functional electrical stimulation (FES) of the paralysed leg muscles has been going on for around thirty years. A range of physiological benefits has been observed in clinical studies but an outstanding problem with FES-cycling is that efficiency and power output are very low. The present work had the following aims: (i) to provide a tutorial introduction to a novel framework and methods of estimation of metabolic efficiency using example data sets, and to propose benchmark measures for evaluating FES-cycling performance; (ii) to systematically review the literature pertaining specifically to the metabolic efficiency of FES-cycling, to analyse the observations and possible explanations for the low efficiency, and to pose hypotheses for future studies which aim to improve performance. We recommend the following as benchmark measures for assessment of the performance of FES-cycling: (i) total work efficiency, delta efficiency and stimulation cost; (ii) we recommend, further, that these benchmark measures be complemented by mechanical measures of maximum power output, sustainable steady-state power output and endurance. Performance assessments should be carried out at a well-defined operating point, i.e. under conditions of well controlled work rate and cadence, because these variables have a strong effect on energy expenditure. Future work should focus on the two main factors which affect FES-cycling performance, namely: (i) unfavourable biomechanics, i.e. crude recruitment of muscle groups, non-optimal timing of muscle activation, and lack of synergistic and antagonistic joint control; (ii) non-physiological recruitment of muscle fibres, i.e. mixed recruitment of fibres of different type and deterministic constant-frequency stimulation. We hypothesise that the following areas may bring better FES-cycling performance: (i) study of alternative stimulation strategies for muscle activation including irregular stimulation patterns (e.g. doublets, triplets, stochastic patterns) and variable frequency stimulation trains, where it appears that increasing frequency over time may be profitable; (ii) study of better timing parameters for the stimulated muscle groups, and addition of more muscle groups: this path may be approached using EMG studies and constrained numerical optimisation employing dynamic models; (iii) development of optimal stimulation protocols for muscle reconditioning and FES-cycle training.
Optimal control of the power adiabatic stroke of an optomechanical heat engine.
Bathaee, M; Bahrampour, A R
2016-08-01
We consider the power adiabatic stroke of the Otto optomechanical heat engine introduced in Phys. Rev. Lett. 112, 150602 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.150602. We derive the maximum extractable work of both optomechanical normal modes in the minimum time while the system experiences quantum friction effects. We show that the total work done by the system in the power adiabatic stroke is optimized by a bang-bang control. The time duration of the power adiabatic stroke is of the order of the inverse of the effective optomechanical-coupling coefficient. The optimal phase-space trajectory of the Otto cycle for both optomechanical normal modes is also obtained.
Real Time Energy Management Control Strategies for Hybrid Powertrains
NASA Astrophysics Data System (ADS)
Zaher, Mohamed Hegazi Mohamed
In order to improve fuel efficiency and reduce emissions of mobile vehicles, various hybrid power-train concepts have been developed over the years. This thesis focuses on embedded control of hybrid powertrain concepts for mobile vehicle applications. Optimal robust control approach is used to develop a real time energy management strategy for continuous operations. The main idea is to store the normally wasted mechanical regenerative energy in energy storage devices for later usage. The regenerative energy recovery opportunity exists in any condition where the speed of motion is in opposite direction to the applied force or torque. This is the case when the vehicle is braking, decelerating, or the motion is driven by gravitational force, or load driven. There are three main concepts for regernerative energy storing devices in hybrid vehicles: electric, hydraulic, and flywheel. The real time control challenge is to balance the system power demand from the engine and the hybrid storage device, without depleting the energy storage device or stalling the engine in any work cycle, while making optimal use of the energy saving opportunities in a given operational, often repetitive cycle. In the worst case scenario, only engine is used and hybrid system completely disabled. A rule based control is developed and tuned for different work cycles and linked to a gain scheduling algorithm. A gain scheduling algorithm identifies the cycle being performed by the machine and its position via GPS, and maps them to the gains.
Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa
2013-04-09
Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.
Optimizing conceptual aircraft designs for minimum life cycle cost
NASA Technical Reports Server (NTRS)
Johnson, Vicki S.
1989-01-01
A life cycle cost (LCC) module has been added to the FLight Optimization System (FLOPS), allowing the additional optimization variables of life cycle cost, direct operating cost, and acquisition cost. Extensive use of the methodology on short-, medium-, and medium-to-long range aircraft has demonstrated that the system works well. Results from the study show that optimization parameter has a definite effect on the aircraft, and that optimizing an aircraft for minimum LCC results in a different airplane than when optimizing for minimum take-off gross weight (TOGW), fuel burned, direct operation cost (DOC), or acquisition cost. Additionally, the economic assumptions can have a strong impact on the configurations optimized for minimum LCC or DOC. Also, results show that advanced technology can be worthwhile, even if it results in higher manufacturing and operating costs. Examining the number of engines a configuration should have demonstrated a real payoff of including life cycle cost in the conceptual design process: the minimum TOGW of fuel aircraft did not always have the lowest life cycle cost when considering the number of engines.
NASA Astrophysics Data System (ADS)
Panda, S.; Saha, S.; Basu, M.
2013-01-01
Product perishability is an important aspect of inventory control. To minimise the effect of deterioration, retailers in supermarkets, departmental store managers, etc. always want higher inventory depletion rate. In this article, we propose a dynamic pre- and post-deterioration cumulative discount policy to enhance inventory depletion rate resulting low volume of deterioration cost, holding cost and hence higher profit. It is assumed that demand is a price and time dependent ramp-type function and the product starts to deteriorate after certain amount of time. Unlike the conventional inventory models with pricing strategies, which are restricted to a fixed number of price changes and to a fixed cycle length, we allow the number of price changes before as well as after the start of deterioration and the replenishment cycle length to be the decision variables. Before start of deterioration, discounts on unit selling price are provided cumulatively in successive pricing cycles. After the start of deterioration, discounts on reduced unit selling price are also provided in a cumulative way. A mathematical model is developed and the existence of the optimal solution is verified. A numerical example is presented, which indicates that under the cumulative effect of price discounting, dynamic pricing policy outperforms static pricing strategy. Sensitivity analysis of the model is carried out.
NASA Astrophysics Data System (ADS)
Jun, Jaemoon; Lee, Jun Seop; Shin, Dong Hoon; Kim, Sung Gun; Jang, Jyongsik
2015-09-01
One-dimensional (1D)-structured nanomaterials represent one of the most attractive candidates for energy-storage systems due to their contribution to design simplicity, fast charge-transportation network, and their allowance for more accessible ion diffusion. In particular, 1D-structured nanomaterials with a highly complex inner-pore configuration enhance functionality by taking advantage of both the hollow and 1D structures. In this study, we report a MnO2 nanohair-decorated, hybrid multichannel carbon nanofiber (Mn_MCNF) fabricated via single-nozzle co-electrospinning of two immiscible polymer solutions, followed by carbonization and redox reactions. With improved ion accessibility, the optimized Mn_MCNF sample (Mn_MCNF_60 corresponding to a reaction duration time of 60 min for optimal MnO2 nanohair growth) exhibited a high specific capacitance of 855 F g-1 and excellent cycling performance with ~87.3% capacitance retention over 5000 cycles.One-dimensional (1D)-structured nanomaterials represent one of the most attractive candidates for energy-storage systems due to their contribution to design simplicity, fast charge-transportation network, and their allowance for more accessible ion diffusion. In particular, 1D-structured nanomaterials with a highly complex inner-pore configuration enhance functionality by taking advantage of both the hollow and 1D structures. In this study, we report a MnO2 nanohair-decorated, hybrid multichannel carbon nanofiber (Mn_MCNF) fabricated via single-nozzle co-electrospinning of two immiscible polymer solutions, followed by carbonization and redox reactions. With improved ion accessibility, the optimized Mn_MCNF sample (Mn_MCNF_60 corresponding to a reaction duration time of 60 min for optimal MnO2 nanohair growth) exhibited a high specific capacitance of 855 F g-1 and excellent cycling performance with ~87.3% capacitance retention over 5000 cycles. Electronic supplementary information (ESI) available: Experimental data includes optical images, TGA, magnified pore distribution curves and supercapacitor device of the MCNF and Mn_MCNF. See DOI: 10.1039/C5NR03616J
Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.
2016-01-01
A new engine cycle analysis tool, called Pycycle, was built using the OpenMDAO framework. Pycycle provides analytic derivatives allowing for an efficient use of gradient-based optimization methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.
Heuristic-based scheduling algorithm for high level synthesis
NASA Technical Reports Server (NTRS)
Mohamed, Gulam; Tan, Han-Ngee; Chng, Chew-Lye
1992-01-01
A new scheduling algorithm is proposed which uses a combination of a resource utilization chart, a heuristic algorithm to estimate the minimum number of hardware units based on operator mobilities, and a list-scheduling technique to achieve fast and near optimal schedules. The schedule time of this algorithm is almost independent of the length of mobilities of operators as can be seen from the benchmark example (fifth order digital elliptical wave filter) presented when the cycle time was increased from 17 to 18 and then to 21 cycles. It is implemented in C on a SUN3/60 workstation.
Pricing policy for declining demand using item preservation technology.
Khedlekar, Uttam Kumar; Shukla, Diwakar; Namdeo, Anubhav
2016-01-01
We have designed an inventory model for seasonal products in which deterioration can be controlled by item preservation technology investment. Demand for the product is considered price sensitive and decreases linearly. This study has shown that the profit is a concave function of optimal selling price, replenishment time and preservation cost parameter. We simultaneously determined the optimal selling price of the product, the replenishment cycle and the cost of item preservation technology. Additionally, this study has shown that there exists an optimal selling price and optimal preservation investment to maximize the profit for every business set-up. Finally, the model is illustrated by numerical examples and sensitive analysis of the optimal solution with respect to major parameters.
NASA Astrophysics Data System (ADS)
Ambarita, H.; Siahaan, A. S.; Kawai, H.; Daimaruya, M.
2018-02-01
In the last decade, the demand for delayed coking capacity has been steadily increasing. The trend in the past 15 to 20 years has been for operators to try to maximize the output of their units by reducing cycle times. This mode of operation can result in very large temperature gradients within the drums during preheating stage and even more so during the quench cycle. This research provide the optimization estimation of fatigue life due to each for the absence of preheating stage and cutting stage. In the absence of preheating stage the decreasing of fatigue life is around 19% and the increasing of maximum stress in point 5 of shell-to-skirt junction is around 97 MPa. However for the absence of cutting stage it was found that is more severe compare to normal cycle. In this adjustment fatigue life reduce around 39% and maximum stress is increased around 154 MPa. It can concluded that for cycle optimization, eliminating preheating stage possibly can become an option due to the increasing demand of delayed coking process.
Optimization of offsets and cycle length using high resolution signal event data.
DOT National Transportation Integrated Search
2011-01-01
Traffic signal systems represent a substantial component of the highway transportation network in the United States. It is challenging for most agencies to find engineering resources to properly update signal policies and timing plans to accommodate ...
Niphadkar, Sonali S; Rathod, Virendra K
2015-01-01
Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase (PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t-butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0-40% (w/v), extract to t-butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0-40% (w/v), crude extract to t-butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26-36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers.
Stabilizing lithium metal using ionic liquids for long-lived batteries
Basile, A.; Bhatt, A. I.; O'Mullane, A. P.
2016-01-01
Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid–electrolyte interphase that allows safe charge–discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid–electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery. PMID:27292652
Optimizing product life cycle processes in design phase
NASA Astrophysics Data System (ADS)
Faneye, Ola. B.; Anderl, Reiner
2002-02-01
Life cycle concepts do not only serve as basis in assisting product developers understand the dependencies between products and their life cycles, they also help in identifying potential opportunities for improvement in products. Common traditional concepts focus mainly on energy and material flow across life phases, necessitating the availability of metrics derived from a reference product. Knowledge of life cycle processes won from an existing product is directly reused in its redesign. Depending on sales volume nevertheless, the environmental impact before product optimization can be substantial. With modern information technologies today, computer-aided life cycle methodologies can be applied well before product use. On the basis of a virtual prototype, life cycle processes are analyzed and optimized, using simulation techniques. This preventive approach does not only help in minimizing (or even eliminating) environmental burdens caused by product, costs incurred due to changes in real product can also be avoided. The paper highlights the relationship between product and life cycle and presents a computer-based methodology for optimizing the product life cycle during design, as presented by SFB 392: Design for Environment - Methods and Tools at Technical University, Darmstadt.
The Timing of the Cognitive Cycle
Madl, Tamas; Baars, Bernard J.; Franklin, Stan
2011-01-01
We propose that human cognition consists of cascading cycles of recurring brain events. Each cognitive cycle senses the current situation, interprets it with reference to ongoing goals, and then selects an internal or external action in response. While most aspects of the cognitive cycle are unconscious, each cycle also yields a momentary “ignition” of conscious broadcasting. Neuroscientists have independently proposed ideas similar to the cognitive cycle, the fundamental hypothesis of the LIDA model of cognition. High-level cognition, such as deliberation, planning, etc., is typically enabled by multiple cognitive cycles. In this paper we describe a timing model LIDA's cognitive cycle. Based on empirical and simulation data we propose that an initial phase of perception (stimulus recognition) occurs 80–100 ms from stimulus onset under optimal conditions. It is followed by a conscious episode (broadcast) 200–280 ms after stimulus onset, and an action selection phase 60–110 ms from the start of the conscious phase. One cognitive cycle would therefore take 260–390 ms. The LIDA timing model is consistent with brain evidence indicating a fundamental role for a theta-gamma wave, spreading forward from sensory cortices to rostral corticothalamic regions. This posteriofrontal theta-gamma wave may be experienced as a conscious perceptual event starting at 200–280 ms post stimulus. The action selection component of the cycle is proposed to involve frontal, striatal and cerebellar regions. Thus the cycle is inherently recurrent, as the anatomy of the thalamocortical system suggests. The LIDA model fits a large body of cognitive and neuroscientific evidence. Finally, we describe two LIDA-based software agents: the LIDA Reaction Time agent that simulates human performance in a simple reaction time task, and the LIDA Allport agent which models phenomenal simultaneity within timeframes comparable to human subjects. While there are many models of reaction time performance, these results fall naturally out of a biologically and computationally plausible cognitive architecture. PMID:21541015
Optimal cure cycle design of a resin-fiber composite laminate
NASA Technical Reports Server (NTRS)
Hou, Jean W.; Sheen, Jeenson
1987-01-01
A unified computed aided design method was studied for the cure cycle design that incorporates an optimal design technique with the analytical model of a composite cure process. The preliminary results of using this proposed method for optimal cure cycle design are reported and discussed. The cure process of interest is the compression molding of a polyester which is described by a diffusion reaction system. The finite element method is employed to convert the initial boundary value problem into a set of first order differential equations which are solved simultaneously by the DE program. The equations for thermal design sensitivities are derived by using the direct differentiation method and are solved by the DE program. A recursive quadratic programming algorithm with an active set strategy called a linearization method is used to optimally design the cure cycle, subjected to the given design performance requirements. The difficulty of casting the cure cycle design process into a proper mathematical form is recognized. Various optimal design problems are formulated to address theses aspects. The optimal solutions of these formulations are compared and discussed.
Analysis of different image-based biofeedback models for improving cycling performances
NASA Astrophysics Data System (ADS)
Bibbo, D.; Conforto, S.; Bernabucci, I.; Carli, M.; Schmid, M.; D'Alessio, T.
2012-03-01
Sport practice can take advantage from the quantitative assessment of task execution, which is strictly connected to the implementation of optimized training procedures. To this aim, it is interesting to explore the effectiveness of biofeedback training techniques. This implies a complete chain for information extraction containing instrumented devices, processing algorithms and graphical user interfaces (GUIs) to extract valuable information (i.e. kinematics, dynamics, and electrophysiology) to be presented in real-time to the athlete. In cycling, performance indexes displayed in a simple and perceivable way can help the cyclist optimize the pedaling. To this purpose, in this study four different GUIs have been designed and used in order to understand if and how a graphical biofeedback can influence the cycling performance. In particular, information related to the mechanical efficiency of pedaling is represented in each of the designed interfaces and then displayed to the user. This index is real-time calculated on the basis of the force signals exerted on the pedals during cycling. Instrumented pedals for bikes, already designed and implemented in our laboratory, have been used to measure those force components. A group of subjects underwent an experimental protocol and pedaled with (the interfaces have been used in a randomized order) and without graphical biofeedback. Preliminary results show how the effective perception of the biofeedback influences the motor performance.
2017-01-01
Crystal size and shape can be manipulated to enhance the qualities of the final product. In this work the steady-state shape and size of succinic acid crystals, with and without a polymeric additive (Pluronic P123) at 350 mL, scale is reported. The effect of the amplitude of cycles as well as the heating/cooling rates is described, and convergent cycling (direct nucleation control) is compared to static cycling. The results show that the shape of succinic acid crystals changes from plate- to diamond-like after multiple cycling steps, and that the time required for this morphology change to occur is strongly related to the type of cycling. Addition of the polymer is shown to affect both the final shape of the crystals and the time needed to reach size and shape steady-state conditions. It is shown how this phenomenon can be used to improve the design of the crystallization step in order to achieve more efficient downstream operations and, in general, to help optimize the whole manufacturing process. PMID:28867966
Effective coating of titania nanoparticles with alumina via atomic layer deposition
NASA Astrophysics Data System (ADS)
Azizpour, H.; Talebi, M.; Tichelaar, F. D.; Sotudeh-Gharebagh, R.; Guo, J.; van Ommen, J. R.; Mostoufi, N.
2017-12-01
Alumina films were deposited on titania nanoparticles via atomic layer deposition (ALD) in a fluidized bed reactor at 180 °C and 1 bar. Online mass spectrometry was used for real time monitoring of effluent gases from the reactor during each reaction cycle in order to determine the optimal dosing time of precursors. Different oxygen sources were used to see which oxygen source, in combination with trimethyl aluminium (TMA), provides the highest alumina growth per cycle (GPC). Experiments were carried out in 4, 7 and 10 cycles using the optimal dosing time of precursors. Several characterization methods, such as high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and instrumental neutron activation analysis (INAA), were conducted on the products. Formation of the alumina film was confirmed by EDX mapping and EDX line profiling, FTIR and TEM. When using either water or deuterium oxide as the oxygen source, the thickness of the alumina film was greater than that of ozone. The average GPC measured by TEM for the ALD of TMA with water, deuterium oxide and ozone was about 0.16 nm, 0.15 nm and 0.11 nm, respectively. The average GPC calculated using the mass fraction of aluminum from INAA was close to those measured from TEM images. Excess amounts of precursors lead to a higher average growth of alumina film per cycle due to insufficient purging time. XRD analysis demonstrated that amorphous alumina was coated on titania nanoparticles. This amorphous layer was easily distinguished from the crystalline core in the TEM images. Decrease in the photocatalytic activity of titania nanoparticles after alumina coating was confirmed by measuring degradation of Rhodamine B by ultraviolet irradiation.
Computer Modeling and Optimization of OBOGS with Contaminants
1986-10-10
OBOGS model can be ucd to optimize and design OBOGS systems with respect to system parameters such as cycle time and bed and valve dimensions. 3. C N I...6,172) TP 172 FORMLATC FINAL OBSERVATION TIME (SEC’,T40,F.4,/) READ *, TF1 IF(TFl.LT.EPSI) GOTO 10 TF=TF 1 COTO 10 175 WRITE(6,177) TCYC 177 FORMAT...225,235,207 207 IF(N-10) 336,246,255 209 WRITE(6,210) DBYIN 210 FORMAT(’ BY-PASS VALVE DIAMETER (IN)’,T40,FS.4,/) READ -,DBYIN1 IFCDBYIN1.LT.EPSI
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1979-01-01
The performance optimization of expander cycle engines at vacuum thrust levels of 10K, 15K, and 20K lb is discussed. The optimization is conducted for a maximum engine length with an extendible nozzle in the retracted position of 60 inches and an engine mixture ratio of 6.0:1. The thrust chamber geometry and cycle analyses are documented. In addition, the sensitivity of a recommended baseline expander cycle to component performance variations is determined and chilldown/start propellant consumptions are estimated.
NASA Astrophysics Data System (ADS)
Açıkkalp, Emin; Yamık, Hasan
2015-03-01
In classical thermodynamics, the maximum power obtained from a system is defined as exergy (availability). However, the term exergy is used for reversible cycles only; in reality, reversible cycles do not exist, and all systems are irreversible. Reversible cycles do not have such restrictions as time and dimension, and are assumed to work in an equilibrium state. The objective of this study is to obtain maximum available work for SI, CI and Brayton cycles while considering the aforementioned restrictions and assumptions. We assume that the specific heat of the working fluid varies with temperature, we define optimum compression ratios and pressure ratio in order to obtain maximum available work, and we discuss the results obtained. The design parameter most appropriate for the results obtained is presented.
Digby, Geneviève C; Robinson, Andrew
2017-11-01
Patients with lung cancer (LC) frequently have chronic obstructive pulmonary disease (COPD), the optimization of which improves outcomes. A 2014 Queen's University Hospitals audit demonstrated that COPD was underdiagnosed and undertreated in outpatients with LC. We sought to improve the diagnosis and management of COPD in this population. We implemented change using a Define/Measure/Analyze/Improve/Control (DMAIC) improvement cycle. Data were obtained by chart review from the Cancer Care Ontario database and e-Patient System for patients with newly diagnosed LC, including patient characteristics, pulmonary function test (PFT) data, and bronchodilator therapies. Improvement cycle 1 included engaging stakeholders and prioritizing COPD management by respirologists in the Lung Diagnostic Assessment Program. Improvement cycle 2 included physician restructuring and developing a standard work protocol. Data were analyzed monthly and presented on statistical process control P-charts, which assessed differences over time. The χ 2 and McNemar tests assessed for significance between independent and dependent groups, respectively. A total of 477 patients were studied (165 patients at baseline, 166 patients in cycle 1, and 127 patients in cycle 2). There was no change in PFT completion over time, although respirology-managed patients were significantly more likely to undergo a PFT than patients who were not managed by respirology (56.7% v 96.1%; P < .00001). The proportion of respirology-managed patients with LC with airflow obstruction receiving inhaled bronchodilator significantly increased (baseline, 46.3%; cycle 1, 51.0%; and cycle 2, 74.3%). By cycle 2, patients with airflow obstruction were more likely to receive a long-acting bronchodilator if managed by respirology (74.3% v 44.8%; P = .0009). COPD is underdiagnosed and undertreated in outpatients with LC. A DMAIC quality improvement strategy emphasizing COPD treatment during LC evaluation in the Lung Diagnostic Assessment Program significantly improved COPD management.
Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors.
Zhu, Jixin; Shi, Wenhui; Xiao, Ni; Rui, Xianhong; Tan, Huiteng; Lu, Xuehong; Hng, Huey Hoon; Ma, Jan; Yan, Qingyu
2012-05-01
1D hierarchical tubular MnO(2) nanostructures have been prepared through a facile hydrothermal method using carbon nanofibres (CNFs) as sacrificial template. The morphology of MnO(2) nanostructures can be adjusted by changing the reaction time or annealing process. Polycrystalline MnO(2) nanotubes are formed with a short reaction time (e.g., 10 min) while hierarchical tubular MnO(2) nanostructures composed of assembled nanosheets are obtained at longer reaction times (>45 min). The polycrystalline MnO(2) nanotubes can be further converted to porous nanobelts and sponge-like nanowires by annealing in air. Among all the types of MnO(2) nanostructures prepared, tubular MnO(2) nanostructures composed of assembled nanosheets show optimized charge storage performance when tested as supercapacitor electrodes, for example, delivering an power density of 13.33 kW·kg(-1) and a energy density of 21.1 Wh·kg(-1) with a long cycling life over 3000 cycles, which is mainly related to their features of large specific surface area and optimized charge transfer pathway.
Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.
2016-01-01
A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.
NASA Astrophysics Data System (ADS)
Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał
2017-11-01
District Heating (DH) systems are commonly supplied using local heat sources. Nowadays, modern insulation materials allow for effective and economically viable heat transportation over long distances (over 20 km). In the paper a method for optimized selection of design and operating parameters of long distance Heat Transportation System (HTS) is proposed. The method allows for evaluation of feasibility and effectivity of heat transportation from the considered heat sources. The optimized selection is formulated as multicriteria decision-making problem. The constraints for this problem include a static HTS model, allowing considerations of system life cycle, time variability and spatial topology. Thereby, variation of heat demand and ground temperature within the DH area, insulation and pipe aging and/or terrain elevation profile are taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. Inner pipe diameter, insulation thickness, temperatures and pumping stations locations are optimized during the decision-making process. Moreover, the variants of pipe-laying e.g. one pipeline with the larger diameter or two with the smaller might be considered during the optimization. The analyzed optimization problem is multicriteria, hybrid and nonlinear. Because of such problem properties, the genetic solver was applied.
Stochastic Optimization for Nuclear Facility Deployment Scenarios
NASA Astrophysics Data System (ADS)
Hays, Ross Daniel
Single-use, low-enriched uranium oxide fuel, consumed through several cycles in a light-water reactor (LWR) before being disposed, has become the dominant source of commercial-scale nuclear electric generation in the United States and throughout the world. However, it is not without its drawbacks and is not the only potential nuclear fuel cycle available. Numerous alternative fuel cycles have been proposed at various times which, through the use of different reactor and recycling technologies, offer to counteract many of the perceived shortcomings with regards to waste management, resource utilization, and proliferation resistance. However, due to the varying maturity levels of these technologies, the complicated material flow feedback interactions their use would require, and the large capital investments in the current technology, one should not deploy these advanced designs without first investigating the potential costs and benefits of so doing. As the interactions among these systems can be complicated, and the ways in which they may be deployed are many, the application of automated numerical optimization to the simulation of the fuel cycle could potentially be of great benefit to researchers and interested policy planners. To investigate the potential of these methods, a computational program has been developed that applies a parallel, multi-objective simulated annealing algorithm to a computational optimization problem defined by a library of relevant objective functions applied to the Ver ifiable Fuel Cycle Simulati on Model (VISION, developed at the Idaho National Laboratory). The VISION model, when given a specified fuel cycle deployment scenario, computes the numbers and types of, and construction, operation, and utilization schedules for, the nuclear facilities required to meet a predetermined electric power demand function. Additionally, it calculates the location and composition of the nuclear fuels within the fuel cycle, from initial mining through to eventual disposal. By varying the specifications of the deployment scenario, the simulated annealing algorithm will seek to either minimize the value of a single objective function, or enumerate the trade-off surface between multiple competing objective functions. The available objective functions represent key stakeholder values, minimizing such important factors as high-level waste disposal burden, required uranium ore supply, relative proliferation potential, and economic cost and uncertainty. The optimization program itself is designed to be modular, allowing for continued expansion and exploration as research needs and curiosity indicate. The utility and functionality of this optimization program are demonstrated through its application to one potential fuel cycle scenario of interest. In this scenario, an existing legacy LWR fleet is assumed at the year 2000. The electric power demand grows exponentially at a rate of 1.8% per year through the year 2100. Initially, new demand is met by the construction of 1-GW(e) LWRs. However, beginning in the year 2040, 600-MW(e) sodium-cooled, fast-spectrum reactors operating in a transuranic burning regime with full recycling of spent fuel become available to meet demand. By varying the fraction of new capacity allocated to each reactor type, the optimization program is able to explicitly show the relationships that exist between uranium utilization, long-term heat for geologic disposal, and cost-of-electricity objective functions. The trends associated with these trade-off surfaces tend to confirm many common expectations about the use of nuclear power, namely that while overall it is quite insensitive to variations in the cost of uranium ore, it is quite sensitive to changes in the capital costs of facilities. The optimization algorithm has shown itself to be robust and extensible, with possible extensions to many further fuel cycle optimization problems of interest.
Circadian clock regulation of the cell cycle in the zebrafish intestine.
Peyric, Elodie; Moore, Helen A; Whitmore, David
2013-01-01
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.
Circadian Clock Regulation of the Cell Cycle in the Zebrafish Intestine
Peyric, Elodie; Moore, Helen A.; Whitmore, David
2013-01-01
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally. PMID:24013905
The evolution of complex life cycles when parasite mortality is size- or time-dependent.
Ball, M A; Parker, G A; Chubb, J C
2008-07-07
In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.
The right place for the right job in the photovoltaic life cycle.
Kawajiri, Kotaro; Genchi, Yutaka
2012-07-03
The potential for photovoltaic power generation (PV) to reduce primary energy consumption (PEC) and CO(2) emissions depends on the physical locations of each stage of its life cycle. When stages are optimally located, CO(2) emissions are reduced nearly ten times as much as when each stage is located in the country having the largest current market share. The usage stage contributes the most to reducing CO(2) emissions and PEC, and total CO(2) emissions actually increase when PV is installed in countries having small CO(2) emissions from electricity generation. Global maps of CO(2) reduction potential indicate that Botswana and Gobi in Mongolia are the optimal locations to install PV due to favorable conditions for PV power generation and high CO(2) emissions from current electricity generation. However, the small electricity demand in those countries limits the contribution to global CO(2) reduction. The type of PVs has a small but significant effect on life cycle PEC and CO(2) emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, J
Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of computemore » node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant.« less
Orbit transfer vehicle advanced expander cycle engine point design study. Volume 2: Study results
NASA Technical Reports Server (NTRS)
Diem, H. G.
1980-01-01
The design characteristics of the baseline engine configuration of the advanced expander cycle engine are described. Several aspects of engine optimization are considered which directly impact the design of the baseline thrust chamber. Four major areas of the power cycle optimization are emphasized: main turbine arrangement; cycle engine source; high pressure pump design; and boost pump drive.
NASA Astrophysics Data System (ADS)
Fan, Peng; Chen, Hualing; Li, Bo; Wang, Yongquan
2017-11-01
In this letter, a theoretical framework describing an energy harvesting cycle including the loss of tension (LT) process is proposed to investigate the energy harvesting performance of a dielectric elastomer generator (DEG) with a triangular energy harvesting scheme by considering material viscosity and leakage current. As the external force that is applied to the membrane decreases, the membrane is relaxed. When the external force decreases to zero, the condition is known as LT. Then the membrane undergoing LT can further relax, which is referred to as the LT process. The LT process is usually ignored in theoretical analysis but observed from energy harvesting experiments of DEGs. It is also studied how shrinking time and transfer capacitor affect the energy conversion of a DEG. The results indicate that energy density and conversion efficiency can be simultaneously improved by choosing appropriate shrinking time and transfer capacitor to optimize the energy harvesting cycle. The results and methods are expected to provide guidelines for the optimal design and assessment of DEGs.
The controlled growth method - A tool for structural optimization
NASA Technical Reports Server (NTRS)
Hajela, P.; Sobieszczanski-Sobieski, J.
1981-01-01
An adaptive design variable linking scheme in a NLP based optimization algorithm is proposed and evaluated for feasibility of application. The present scheme, based on an intuitive effectiveness measure for each variable, differs from existing methodology in that a single dominant variable controls the growth of all others in a prescribed optimization cycle. The proposed method is implemented for truss assemblies and a wing box structure for stress, displacement and frequency constraints. Substantial reduction in computational time, even more so for structures under multiple load conditions, coupled with a minimal accompanying loss in accuracy, vindicates the algorithm.
Environment-friendly cycle time optimization and quality improvisation using Six Sigma.
Deshpande, V S; Mungle, N P
2008-07-01
Healthy environment in any organization can make a difference in improving productivity and quality with low defect, lack of concentration, willingness to work, minimum accidental problems etc. Six Sigma is one of the more recent quality improvement initiatives to gain popularity and acceptance in many industries across the globe. It is an alternative to TQM to obtain minimum manufacturing defect, cycle time reduction, cost reduction, inventory reduction etc. Its use is increasingly widespread in many industries, in both manufacturing and service industries with many proponents of the approach claiming that it has developed beyond a quality control approach into a broader process improvement concept.
Jiang, Yuan; Liese, Eric; Zitney, Stephen E.; ...
2018-02-25
This paper presents a baseline design and optimization approach developed in Aspen Custom Modeler (ACM) for microtube shell-and-tube exchangers (MSTEs) used for high- and low-temperature recuperation in a 10 MWe indirect supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC). The MSTE-type recuperators are designed using one-dimensional models with thermal-hydraulic correlations appropriate for sCO 2 and properties models that capture considerable nonlinear changes in CO 2 properties near the critical and pseudo-critical points. Using the successive quadratic programming (SQP) algorithm in ACM, optimal recuperator designs are obtained for either custom or industry-standard microtubes considering constraints based on current advancedmore » manufacturing techniques. The three decision variables are the number of tubes, tube pitch-to-diameter ratio, and tube diameter. Five different objective functions based on different key design measures are considered: minimization of total heat transfer area, heat exchanger volume, metal weight, thermal residence time, and maximization of compactness. Sensitivities studies indicate the constraint on the maximum number of tubes per shell does affect the number of parallel heat exchanger trains but not the tube selection, total number of tubes, tube length and other key design measures in the final optimal design when considering industry-standard tubes. In this study, the optimally designed high- and low-temperature recuperators have 47,000 3/32 inch tubes and 63,000 1/16 inch tubes, respectively. In addition, sensitivities to the design temperature approach and maximum allowable pressure drop are studied, since these specifications significantly impact the optimal design of the recuperators as well as the thermal efficiency and the economic performance of the entire sCO 2 Brayton cycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yuan; Liese, Eric; Zitney, Stephen E.
This paper presents a baseline design and optimization approach developed in Aspen Custom Modeler (ACM) for microtube shell-and-tube exchangers (MSTEs) used for high- and low-temperature recuperation in a 10 MWe indirect supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC). The MSTE-type recuperators are designed using one-dimensional models with thermal-hydraulic correlations appropriate for sCO 2 and properties models that capture considerable nonlinear changes in CO 2 properties near the critical and pseudo-critical points. Using the successive quadratic programming (SQP) algorithm in ACM, optimal recuperator designs are obtained for either custom or industry-standard microtubes considering constraints based on current advancedmore » manufacturing techniques. The three decision variables are the number of tubes, tube pitch-to-diameter ratio, and tube diameter. Five different objective functions based on different key design measures are considered: minimization of total heat transfer area, heat exchanger volume, metal weight, thermal residence time, and maximization of compactness. Sensitivities studies indicate the constraint on the maximum number of tubes per shell does affect the number of parallel heat exchanger trains but not the tube selection, total number of tubes, tube length and other key design measures in the final optimal design when considering industry-standard tubes. In this study, the optimally designed high- and low-temperature recuperators have 47,000 3/32 inch tubes and 63,000 1/16 inch tubes, respectively. In addition, sensitivities to the design temperature approach and maximum allowable pressure drop are studied, since these specifications significantly impact the optimal design of the recuperators as well as the thermal efficiency and the economic performance of the entire sCO 2 Brayton cycle.« less
Mutlu, Selime; Kahraman, Kevser; Öztürk, Serpil
2017-02-01
The effects of microwave irradiation on resistant starch (RS) formation and functional properties in high-amylose corn starch, Hylon VII, by applying microwave-storing cycles and drying processes were investigated. The Response Surface Methodology (RSM) was used to optimize the reaction conditions, microwave time (2-4min) and power (20-100%), for RS formation. The starch:water (1:10) mixtures were cooked and autoclaved and then different microwave-storing cycles and drying (oven or freeze drying) processes were applied. The RS contents of the samples increased with increasing microwave-storing cycle. The highest RS (43.4%) was obtained by oven drying after 3 cycles of microwave treatment at 20% power for 2min. The F, p (<0.05) and R 2 values indicated that the selected models were consistent. Linear equations were obtained for oven-dried samples applied by 1 and 3 cycles of microwave with regression coefficients of 0.65 and 0.62, respectively. Quadratic equation was obtained for freeze-dried samples applied by 3 cycles of microwave with a regression coefficient of 0.83. The solubility, water binding capacity (WBC) and RVA viscosity values of the microwave applied samples were higher than those of native Hylon VII. The WBC and viscosity values of the freeze-dried samples were higher than those of the oven-dried ones. Copyright © 2016 Elsevier B.V. All rights reserved.
Adjoint-Based Methodology for Time-Dependent Optimization
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2008-01-01
This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.
Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok; ...
2016-01-01
Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok
Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less
Modeling the densification of metal matrix composite monotape
NASA Technical Reports Server (NTRS)
Elzey, D. M.; Wadley, H. N. G.
1993-01-01
We present a first model that enables prediction of the density (and its time evolution) of a monotape lay-up subjected to a hot isostatic or vacuum hot pressing consolidation cycle. Our approach is to break down the complicated (and probabilistic) consolidation problem into simple, analyzable parts and to combine them in a way that correctly represents the statistical aspects of the problem, the change in the problem's interior geometry, and the evolving contributions of the different deformation mechanisms. The model gives two types of output. One is in the form of maps showing the relative density dependence upon pressure, temperature, and time for step function temperature and pressure cycles. They are useful for quickly determining the best place to begin developing an optimized process. The second gives the evolution of density over time for any (arbitrary) applied temperature and pressure cycle. This has promise for refining process cycles and possibly for process control. Examples of the models application are given for Ti3Al + Nb, gamma TiAl, Ti6Al4V, and pure aluminum.
Nonlinear solar cycle forecasting: theory and perspectives
NASA Astrophysics Data System (ADS)
Baranovski, A. L.; Clette, F.; Nollau, V.
2008-02-01
In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters - the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.
NASA Astrophysics Data System (ADS)
Agarwal, R. K.; Zhang, Z.; Zhu, C.
2013-12-01
For optimization of CO2 storage and reduced CO2 plume migration in saline aquifers, a genetic algorithm (GA) based optimizer has been developed which is combined with the DOE multi-phase flow and heat transfer numerical simulation code TOUGH2. Designated as GA-TOUGH2, this combined solver/optimizer has been verified by performing optimization studies on a number of model problems and comparing the results with brute-force optimization which requires a large number of simulations. Using GA-TOUGH2, an innovative reservoir engineering technique known as water-alternating-gas (WAG) injection has been investigated to determine the optimal WAG operation for enhanced CO2 storage capacity. The topmost layer (layer # 9) of Utsira formation at Sleipner Project, Norway is considered as a case study. A cylindrical domain, which possesses identical characteristics of the detailed 3D Utsira Layer #9 model except for the absence of 3D topography, was used. Topographical details are known to be important in determining the CO2 migration at Sleipner, and are considered in our companion model for history match of the CO2 plume migration at Sleipner. However, simplification on topography here, without compromising accuracy, is necessary to analyze the effectiveness of WAG operation on CO2 migration without incurring excessive computational cost. Selected WAG operation then can be simulated with full topography details later. We consider a cylindrical domain with thickness of 35 m with horizontal flat caprock. All hydrogeological properties are retained from the detailed 3D Utsira Layer #9 model, the most important being the horizontal-to-vertical permeability ratio of 10. Constant Gas Injection (CGI) operation with nine-year average CO2 injection rate of 2.7 kg/s is considered as the baseline case for comparison. The 30-day, 15-day, and 5-day WAG cycle durations are considered for the WAG optimization design. Our computations show that for the simplified Utsira Layer #9 model, the WAG operation with 5-day cycle leads to most noticeable reduction in plume migration. For 5-day WAG cycle, the values of design variables corresponding to optimal WAG operation are found as optimal CO2 injection ICO2,optimal = 11.56 kg/s, and optimal water injection Iwater,optimal = 7.62 kg/s. The durations of CO2 and water injection in one WAG cycle are 11 and 19 days, respectively. Identical WAG cycles are repeated 20 times to complete a two-year operation. Significant reduction (22%) in CO2 migration is achieved compared to CGI operation after only two years of WAG operation. In addition, CO2 dissolution is also significantly enhanced from about 9% to 22% of the total injected CO2 . The results obtained from this and other optimization studies suggest that over 50% reduction of in situ CO2 footprint, greatly enhanced CO2 dissolution, and significantly improved well injectivity can be achieved by employing GA-TOUGH2. The optimization code has also been employed to determine the optimal well placement in a multi-well injection operation. GA-TOUGH2 appears to hold great promise for studying a host of other optimization problems related to Carbon Storage.
Optimal Implementations for Reliable Circadian Clocks
NASA Astrophysics Data System (ADS)
Hasegawa, Yoshihiko; Arita, Masanori
2014-09-01
Circadian rhythms are acquired through evolution to increase the chances for survival through synchronizing with the daylight cycle. Reliable synchronization is realized through two trade-off properties: regularity to keep time precisely, and entrainability to synchronize the internal time with daylight. We find by using a phase model with multiple inputs that achieving the maximal limit of regularity and entrainability entails many inherent features of the circadian mechanism. At the molecular level, we demonstrate the role sharing of two light inputs, phase advance and delay, as is well observed in mammals. At the behavioral level, the optimal phase-response curve inevitably contains a dead zone, a time during which light pulses neither advance nor delay the clock. We reproduce the results of phase-controlling experiments entrained by two types of periodic light pulses. Our results indicate that circadian clocks are designed optimally for reliable clockwork through evolution.
NASA Astrophysics Data System (ADS)
Hosono, Kunihiro; Kato, Kokoro
2008-10-01
This is a report on a panel discussion organized in Photomask Japan 2008, where the challenges about "Mask Complexities, Cost, and Cycle Time in 32-nm System LSI Generation" were addressed to have a look over the possible solutions from the standpoints of chipmaker, commercial mask shop, DA tool vendor and equipments makers. The wrap-up is as follows: Mask complexities justify the mask cost, while the acceptable increase rate of 32nm-mask cost significantly differs between mask suppliers or users side. The efficiency progress by new tools or DFM has driven their cycle-time reductions. Mask complexities and cost will be crucial issues prior to cycle time, and there seems to be linear correlation between them. Controlling complexity and cycle time requires developing a mix of advanced technologies, and especially for cost reduction, shot prices in writers and processing rates in inspection tools have been improved remarkably by tool makers. In addition, activities of consortium in Japan (Mask D2I) are expected to enhance the total optimization of mask design, writing and inspection. The cycle-time reduction potentially drives the lowering of mask cost, and, on the other, the pattern complexities and tighter mask specifications get in the way to 32nm generation as well as the nano-economics and market challenges. There are still many difficult problems in mask manufacturing now, and we are sure to go ahead to overcome a 32nm hurdle with the advances of technologies and collaborations by not only technologies but also finance.
A Parallel Trade Study Architecture for Design Optimization of Complex Systems
NASA Technical Reports Server (NTRS)
Kim, Hongman; Mullins, James; Ragon, Scott; Soremekun, Grant; Sobieszczanski-Sobieski, Jaroslaw
2005-01-01
Design of a successful product requires evaluating many design alternatives in a limited design cycle time. This can be achieved through leveraging design space exploration tools and available computing resources on the network. This paper presents a parallel trade study architecture to integrate trade study clients and computing resources on a network using Web services. The parallel trade study solution is demonstrated to accelerate design of experiments, genetic algorithm optimization, and a cost as an independent variable (CAIV) study for a space system application.
Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes
NASA Astrophysics Data System (ADS)
Shang, Song-Min; Li, Zhengxiong; Xing, Yanjun; Xin, John H.; Tao, Xiao-Ming
2010-12-01
Durable superhydrophobic cellulose fabric was prepared from water glass and n-octadecyltriethoxysilane (ODTES) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) as crosslinker by sol-gel method. The result showed that the addition of GPTMS could result in a better fixation of silica coating from water glass on cellulose fabric. The silanization of hydrolyzed ODTES at different temperatures and times was studied and optimized. The results showed that silanization time was more important than temperature in forming durable hydrophobic surface. The durability of superhydrophobicity treatment was analyzed by XPS. As a result, the superhydrophobic cotton treated under the optimal condition still remained hydrophobic properties after 50 washing cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, A.; Sienicki, J. J.
2009-07-01
Analyses of supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle performance have largely settled on the recompression supercritical cycle (or Feher cycle) incorporating a flow split between the main compressor downstream of heat rejection, a recompressing compressor providing direct compression without heat rejection, and high and low temperature recuperators to raise the effectiveness of recuperation and the cycle efficiency. Alternative cycle layouts have been previously examined by Angelino (Politecnico, Milan), by MIT (Dostal, Hejzlar, and Driscoll), and possibly others but not for sodium-cooled fast reactors (SFRs) operating at relatively low core outlet temperature. Thus, the present authors could not be suremore » that the recompression cycle is an optimal arrangement for application to the SFR. To ensure that an advantageous alternative layout has not been overlooked, several alternative cycle layouts have been investigated for a S-CO{sub 2} Brayton cycle coupled to the Advanced Burner Test Reactor (ABTR) SFR preconceptual design having a 510 C core outlet temperature and a 470 C turbine inlet temperature to determine if they provide any benefit in cycle performance (e.g., enhanced cycle efficiency). No such benefits were identified, consistent with the previous examinations, such that attention was devoted to optimizing the recompression supercritical cycle. The effects of optimizing the cycle minimum temperature and pressure are investigated including minimum temperatures and/or pressures below the critical values. It is found that improvements in the cycle efficiency of 1% or greater relative to previous analyses which arbitrarily fixed the minimum temperature and pressure can be realized through an optimal choice of the combination of the minimum cycle temperature and pressure (e.g., for a fixed minimum temperature there is an optimal minimum pressure). However, this leads to a requirement for a larger cooler for heat rejection which may impact the tradeoff between efficiency and capital cost. In addition, for minimum temperatures below the critical temperature, a lower heat sink temperature is required the availability of which is dependent upon the climate at the specific plant site.« less
Omics in Reproductive Medicine: Application of Novel Technologies to Improve the IVF Success Rate.
Nerenz, R D
Treatment for many infertile couples often consists of in vitro fertilization (IVF) but an estimated 70% of IVF cycles fail to produce a live birth. In an attempt to improve the live birth rate, the vast majority of IVF cycles performed in the United States involve the transfer of multiple embryos, a practice that increases the risk of multiple gestation pregnancy. This is a concern because multiple gestation pregnancies are associated with an increased incidence of maternal and fetal complications and significant cost associated with the care of preterm infants. As the ideal outcome of each IVF cycle is the birth of a single healthy baby, significant effort has focused on identifying embryos with the greatest developmental potential. To date, selection of euploid embryos using comprehensive chromosome screening (CCS) is the most promising approach while metabolomic and proteomic assessment of spent culture medium have the potential to noninvasively assess embryo viability. Endometrial gene expression profiling may help determine the optimal time to perform embryo transfer. While CCS has been implemented in some clinics, further development and optimization will be required before analysis of spent culture medium and endometrial gene expression profiling make the transition to clinical use. This review will describe efforts to identify embryos with the greatest potential to result in a healthy, live birth, with a particular emphasis on detection of embryo aneuploidy and metabolic profiling of spent embryo culture medium. Assessment of endometrial receptivity to identify the optimal time to perform embryo transfer will also be discussed. © 2016 Elsevier Inc. All rights reserved.
Optimization of ultrahigh-speed multiplex PCR for forensic analysis.
Gibson-Daw, Georgiana; Crenshaw, Karin; McCord, Bruce
2018-01-01
In this paper, we demonstrate the design and optimization of an ultrafast PCR amplification technique, used with a seven-locus multiplex that is compatible with conventional capillary electrophoresis systems as well as newer microfluidic chip devices. The procedure involves the use of a high-speed polymerase and a rapid cycling protocol to permit multiplex PCR amplification of forensic short tandem repeat loci in 6.5 min. We describe the selection and optimization of master mix reagents such as enzyme, buffer, MgCl 2 , and dNTPs, as well as primer ratios, total volume, and cycle conditions, in order to get the best profile in the shortest time possible. Sensitivity and reproducibility studies are also described. The amplification process utilizes a small high-speed thermocycler and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The seven loci of the multiplex were taken from conventional STR genotyping kits and selected for their size and lack of overlap. Analysis was performed using conventional capillary electrophoresis and microfluidics with fluorescent detection. Overall, this technique provides a more rapid method for rapid sample screening of suspects and victims. Graphical abstract Rapid amplification of forensic DNA using high speed thermal cycling followed by capillary or microfluidic electrophoresis.
Optimal cure cycle design of a resin-fiber composite laminate
NASA Technical Reports Server (NTRS)
Hou, Jean W.; Hou, Tan H.; Sheen, Jeen S.
1987-01-01
Fibers reinforced composites are used in many applications. The composite parts and structures are often manufactured by curing the prepreg or unmolded material. The magnitudes and durations of the cure temperature and the cure pressure applied during the cure process have significant consequences on the performance of the finished product. The goal of this study is to exploit the potential of applying the optimization technique to the cure cycle design. The press molding process of a polyester is used as an example. Various optimization formulations for the cure cycle design are investigated. Recommendations are given for further research in computerizing the cure cycle design.
Respiratory Mechanical and Cardiorespiratory Consequences of Cycling with Aerobars.
Charlton, Jesse M; Ramsook, Andrew H; Mitchell, Reid A; Hunt, Michael A; Puyat, Joseph H; Guenette, Jordan A
2017-12-01
Aerobars place a cyclist in a position where the trunk is flexed forward and the elbows are close to the midline of the body. This position is known to improve cycling aerodynamics and time trial race performance compared with upright cycling positions. However, the aggressive nature of this position may have important cardiorespiratory and metabolic consequences. The purpose of this investigation was to examine the respiratory mechanical, ventilatory, metabolic, and sensory consequences of cycling while using aerobars during laboratory-based cycling. Eleven endurance-trained male cyclists (age, 26 ± 9 yr; V˙O2peak, 55 ± 5 mL·kg·min) were recruited. Visit 1 consisted of an incremental cycling test to determine peak power output. Visit 2 consisted of 6-min bouts of constant load cycling at 70% of peak incremental power output in the aerobar position, drop position, and upright position while grasping the brake hoods. Metabolic and ventilatory responses were measured using a commercially available metabolic cart, and respiratory pressures were measured using an esophageal catheter. Cycling in the aerobar position significantly increased the work of breathing (Wb), power of breathing (Pb), minute ventilation, ventilatory equivalent for oxygen and carbon dioxide, and transdiaphragmatic pressure compared with the upright position. Increases in the Wb and Pb in the aerobars relative to the upright position were strongly correlated with the degree of thoracic restriction, measured as the shoulder-to-aerobar width ratio (Wb: r = 0.80, P = 0.01; Pb: r = 0.69, P = 0.04). Aerobars significantly increase the mechanical cost of breathing and leads to greater ventilatory inefficiency compared with upright cycling. Future work is needed to optimize aerobar width to minimize the respiratory mechanical consequences while optimizing aerodynamics.
USDA-ARS?s Scientific Manuscript database
Circadian clocks synchronize internal processes with environmental cycles to ensure optimal timing of biological events on daily and seasonal timescales. External light and temperature cues set the core molecular oscillator to local conditions. In Arabidopsis, EARLY FLOWERING 3 (ELF3) is thought to ...
Liu, Wanke; Jin, Xueyuan; Wu, Mingkui; Hu, Jie; Wu, Yun
2018-02-01
Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data.
Liu, Wanke; Wu, Mingkui; Hu, Jie; Wu, Yun
2018-01-01
Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data. PMID:29389879
A Method of Trajectory Design for Manned Asteroid Explorations1,2
NASA Astrophysics Data System (ADS)
Gan, Qing-Bo; Zhang, Yang; Zhu, Zheng-Fan; Han, Wei-Hua; Dong, Xin
2015-07-01
A trajectory optimization method for the nuclear-electric propulsion manned asteroid explorations is presented. In the case of launching between 2035 and 2065, based on the two-pulse single-cycle Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory is selected by pruning the flight sequences in two feasible regions. Setting the flight strategy of propelling-taxiing-propelling, and taking the minimal fuel consumption as the performance index, the nuclear-electric propulsion flight trajectory is optimized using the hybrid method. Finally, taking the segmentally optimized parameters as the initial values, in accordance with the overall mission constraints, the globally optimized parameters are obtained. And the numerical and diagrammatical results are given at the same time.
Parallel approach on sorting of genes in search of optimal solution.
Kumar, Pranav; Sahoo, G
2018-05-01
An important tool for comparing genome analysis is the rearrangement event that can transform one given genome into other. For finding minimum sequence of fission and fusion, we have proposed here an algorithm and have shown a transformation example for converting the source genome into the target genome. The proposed algorithm comprises of circular sequence i.e. "cycle graph" in place of mapping. The main concept of algorithm is based on optimal result of permutation. These sorting processes are performed in constant running time by showing permutation in the form of cycle. In biological instances it has been observed that transposition occurs half of the frequency as that of reversal. In this paper we are not dealing with reversal instead commencing with the rearrangement of fission, fusion as well as transposition. Copyright © 2017 Elsevier Inc. All rights reserved.
Optimizing an ELF/VLF Phased Array at HAARP
NASA Astrophysics Data System (ADS)
Fujimaru, S.; Moore, R. C.
2013-12-01
The goal of this study is to maximize the amplitude of 1-5 kHz ELF/VLF waves generated by ionospheric HF heating and measured at a ground-based ELF/VLF receiver. The optimization makes use of experimental observations performed during ELF/VLF wave generation experiments at the High-frequency Active Auroral Research Program (HAARP) Observatory in Gakona, Alaska. During these experiments, the amplitude, phase, and propagation delay of the ELF/VLF waves were carefully measured. The HF beam was aimed at 15 degrees zenith angle in 8 different azimuthal directions, equally spaced in a circle, while broadcasting a 3.25 MHz (X-mode) signal that was amplitude modulated (square wave) with a linear frequency-time chirp between 1 and 5 kHz. The experimental observations are used to provide reference amplitudes, phases, and propagation delays for ELF/VLF waves generated at these specific locations. The presented optimization accounts for the trade-off between duty cycle, heated area, and the distributed nature of the source region in order to construct a "most efficient" phased array. The amplitudes and phases generated by modulated heating at each location are combined in post-processing to find an optimal combination of duty cycle, heating location, and heating order.
Driving external chemistry optimization via operations management principles.
Bi, F Christopher; Frost, Heather N; Ling, Xiaolan; Perry, David A; Sakata, Sylvie K; Bailey, Simon; Fobian, Yvette M; Sloan, Leslie; Wood, Anthony
2014-03-01
Confronted with the need to significantly raise the productivity of remotely located chemistry CROs Pfizer embraced a commitment to continuous improvement which leveraged the tools from both Lean Six Sigma and queue management theory to deliver positive measurable outcomes. During 2012 cycle times were reduced by 48% by optimization of the work in progress and conducting a detailed workflow analysis to identify and address pinch points. Compound flow was increased by 29% by optimizing the request process and de-risking the chemistry. Underpinning both achievements was the development of close working relationships and productive communications between Pfizer and CRO chemists. Copyright © 2013 Elsevier Ltd. All rights reserved.
Energy optimization aspects by injection process technology
NASA Astrophysics Data System (ADS)
Tulbure, A.; Ciortea, M.; Hutanu, C.; Farcas, V.
2016-08-01
In the proposed paper, the authors examine the energy aspects related to the injection moulding process technology in the automotive industry. Theoretical considerations have been validated by experimental measurements on the manufacturing process, for two types of injections moulding machines, hydraulic and electric. Practical measurements have been taken with professional equipment separately on each technological operation: lamination, compression, injection and expansion. For results traceability, the following parameters were, whenever possible, maintained: cycle time, product weight and the relative time. The aim of the investigations was to carry out a professional energy audit with accurate losses identification. Base on technological diagram for each production cycle, at the end of this contribution, some measure to reduce the energy consumption were proposed.
Integral blow moulding for cycle time reduction of CFR-TP aluminium contour joint processing
NASA Astrophysics Data System (ADS)
Barfuss, Daniel; Würfel, Veit; Grützner, Raik; Gude, Maik; Müller, Roland
2018-05-01
Integral blow moulding (IBM) as a joining technology of carbon fibre reinforced thermoplastic (CFR-TP) hollow profiles with metallic load introduction elements enables significant cycle time reduction by shortening of the process chain. As the composite part is joined to the metallic part during its consolidation process subsequent joining steps are omitted. In combination with a multi-scale structured load introduction element its form closure function enables to pass very high loads and is capable to achieve high degrees of material utilization. This paper first shows the process set-up utilizing thermoplastic tape braided preforms and two-staged press and internal hydro formed load introduction elements. Second focuses on heating technologies and process optimization. Aiming at cycle time reduction convection and induction heating in regard to the resulting product quality is inspected by photo micrographs and computer tomographic scans. Concluding remarks give final recommendations for the process design in regard to the structural design.
NASA Astrophysics Data System (ADS)
Adelkhani, H.; Ghaemi, M.; Jafari, S. M.
Pulse current electrodeposition (PCD) method has been applied to the preparation of novel electrolytic manganese dioxide (EMD) in order to enhance the cycle life of rechargeable alkaline MnO 2-Zn batteries (RAM). The investigation was carried out under atmospheric pressure through a systematic variation of pulse current parameters using additive free sulfuric acid-MnSO 4 electrolyte solutions. On time (t on) was varied from 0.1 to 98.5 ms, off time (t off) from 0.25 to 19.5 ms, pulse frequencies (f) from 10 to 1000 Hz and duty cycles (θ) from 0.02 to 0.985. A constant pulse current density (I p) of 0.8 A dm -2 and average current densities (I a) in the range of 0.08-0.8 A dm -2 were applied in all experiments. Resultant materials were characterized by analyzing their chemical compositions, X-ray diffractions (XRD) and scanning electron microscopy (SEM). Electrochemical characterizations carried out by charge/discharge cycling of samples in laboratory designed RAM batteries and cyclic voltammetric experiments (CV). It has been proved that specific selection of duty cycle, in the order of 0.25, and a pulse frequency of 500 Hz, results in the production of pulse deposited samples (pcMDs) with more uniform distribution of particles and more compact structure than those obtained by direct current techniques (dcMDs). Results of the test batteries demonstrated that, in spite of reduction of bath temperature in the order of 40 °C, the cycle life of batteries made of pcMDs (bath temperature: 60 °C) was rather higher than those made of conventional dcMDs (boiling electrolyte solution). Under the same conditions of EMD synthesis temperature of 80 °C and battery testing, the maximum obtainable cycle life of optimized pcMD was nearly 230 cycles with approximately 30 mAh g -1 MnO 2, compared to that of dcMD, which did not exceed 20 cycles. In accordance to these results, CV has confirmed that the pulse duty cycle is the most influential parameter on the cycle life than the pulse frequency. Because of operating at lower bath temperatures, the presented synthetic mode could improve its competitiveness in economical aspects.
Sastrawan, J; Jones, C; Akhalwaya, I; Uys, H; Biercuk, M J
2016-08-01
We introduce concepts from optimal estimation to the stabilization of precision frequency standards limited by noisy local oscillators. We develop a theoretical framework casting various measures for frequency standard variance in terms of frequency-domain transfer functions, capturing the effects of feedback stabilization via a time series of Ramsey measurements. Using this framework, we introduce an optimized hybrid predictive feedforward measurement protocol that employs results from multiple past measurements and transfer-function-based calculations of measurement covariance to improve the accuracy of corrections within the feedback loop. In the presence of common non-Markovian noise processes these measurements will be correlated in a calculable manner, providing a means to capture the stochastic evolution of the local oscillator frequency during the measurement cycle. We present analytic calculations and numerical simulations of oscillator performance under competing feedback schemes and demonstrate benefits in both correction accuracy and long-term oscillator stability using hybrid feedforward. Simulations verify that in the presence of uncompensated dead time and noise with significant spectral weight near the inverse cycle time predictive feedforward outperforms traditional feedback, providing a path towards developing a class of stabilization software routines for frequency standards limited by noisy local oscillators.
Ali, Huma; Dixit, Savita
2013-01-01
Objective. To optimize the conditions for the extraction of alkaloid palmatine from Tinospora cordifolia by using response surface methodology (RSM) and study its anticancerous property against 7,12-dimethylbenz(a)anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice. Methods. The effect of three independent variables, namely, extraction temperature, time, and cycles was investigated by using central composite design. A single topical application of DMBA (100 μg/100 μL of acetone), followed 2 weeks later by repeated application of croton oil (1% in acetone three times a week) for 16 weeks, exhibited 100 percent tumor incidence (Group 2). Results. The highest yield of alkaloid from Tinospora cordifolia could be achieved at 16 hours of extraction time under 40°C with 4 extraction cycles. Alkaloid administration significantly decreases tumor size, number, and the activity of serum enzyme when compared with the control (Group 2). In addition, depleted levels of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase and increased DNA damage were restored in palmatine treated groups. Conclusion. The data of the present study clearly indicate the anticancer potential of palmatine alkaloid in DMBA induced skin cancer model in mice. PMID:24379740
Going full circle: phase-transition thermodynamics of ionic liquids.
Preiss, Ulrich; Verevkin, Sergey P; Koslowski, Thorsten; Krossing, Ingo
2011-05-27
We present the full enthalpic phase transition cycle for ionic liquids (ILs) as examples of non-classical salts. The cycle was closed for the lattice, solvation, dissociation, and vaporization enthalpies of 30 different ILs, relying on as much experimental data as was available. High-quality dissociation enthalpies were calculated at the G3 MP2 level. From the cycle, we could establish, for the first time, the lattice and solvation enthalpies of ILs with imidazolium ions. For vaporization, lattice, and dissociation enthalpies, we also developed new prediction methods in the course of our investigations. Here, as only single-ion values need to be calculated and the tedious optimization of an ion pair can be circumvented, the computational time is short. For the vaporization enthalpy, a very simple approach was found, using a surface term and the calculated enthalpic correction to the total gas-phase energy. For the lattice enthalpy, the most important constituent proved to be the calculated conductor-like screening model (COSMO) solvation enthalpy in the ideal electric conductor. A similar model was developed for the dissociation enthalpy. According to our assessment, the typical error of the lattice enthalpy would be 9.4 kJ mol(-1), which is less than half the deviation we get when using the (optimized) Kapustinskii equation or the recent volume-based thermodynamics (VBT) theory. In contrast, the non-optimized VBT formula gives lattice enthalpies 20 to 140 kJ mol(-1) lower than the ones we assessed in the cycle, because of the insufficient description of dispersive interactions. Our findings show that quantum-chemical calculations can greatly improve the VBT approaches, which were parameterized for simple, inorganic salts with ideally point-shaped charges. In conclusion, we suggest the term "augmented VBT", or "aVBT", to describe this kind of theoretical approach. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods
NASA Technical Reports Server (NTRS)
Olds, John R.; Walberg, Gerald D.
1993-01-01
Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.
Programming scheme based optimization of hybrid 4T-2R OxRAM NVSRAM
NASA Astrophysics Data System (ADS)
Majumdar, Swatilekha; Kingra, Sandeep Kaur; Suri, Manan
2017-09-01
In this paper, we present a novel single-cycle programming scheme for 4T-2R NVSRAM, exploiting pulse engineered input signals. OxRAM devices based on 3 nm thick bi-layer active switching oxide and 90 nm CMOS technology node were used for all simulations. The cell design is implemented for real-time non-volatility rather than last-bit, or power-down non-volatility. Detailed analysis of the proposed single-cycle, parallel RRAM device programming scheme is presented in comparison to the two-cycle sequential RRAM programming used for similar 4T-2R NVSRAM bit-cells. The proposed single-cycle programming scheme coupled with the 4T-2R architecture leads to several benefits such as- possibility of unconventional transistor sizing, 50% lower latency, 20% improvement in SNM and ∼20× reduced energy requirements, when compared against two-cycle programming approach.
Frozen embryo transfer: a review on the optimal endometrial preparation and timing.
Mackens, S; Santos-Ribeiro, S; van de Vijver, A; Racca, A; Van Landuyt, L; Tournaye, H; Blockeel, C
2017-11-01
What is the optimal endometrial preparation protocol for a frozen embryo transfer (FET)? Although the optimal endometrial preparation protocol for FET needs further research and is yet to be determined, we propose a standardized timing strategy based on the current available evidence which could assist in the harmonization and comparability of clinic practice and future trials. Amid a continuous increase in the number of FET cycles, determining the optimal endometrial preparation protocol has become paramount to maximize ART success. In current daily practice, different FET preparation methods and timing strategies are used. This is a review of the current literature on FET preparation methods, with special attention to the timing of the embryo transfer. Literature on the topic was retrieved in PubMed and references from relevant articles were investigated until June 2017. The number of high quality randomized controlled trials (RCTs) is scarce and, hence, the evidence for the best protocol for FET is poor. Future research should compare both the pregnancy and neonatal outcomes between HRT and true natural cycle (NC) FET. In terms of embryo transfer timing, we propose to start progesterone intake on the theoretical day of oocyte retrieval in HRT and to perform blastocyst transfer at hCG + 7 or LH + 6 in modified or true NC, respectively. As only a few high quality RCTs on the optimal preparation for FET are available in the existing literature, no definitive conclusion for benefit of one protocol over the other can be drawn so far. Caution when using HRT for FET is warranted since the rate of early pregnancy loss is alarmingly high in some reports. S.M. is funded by the Research Fund of Flanders (FWO). H.T. and C.B. report grants from Merck, Goodlife, Besins and Abbott during the conduct of the study. Not applicable. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Cooled variable nozzle radial turbine for rotor craft applications
NASA Technical Reports Server (NTRS)
Rogo, C.
1981-01-01
An advanced, small 2.27 kb/sec (5 lbs/sec), high temperature, variable area radial turbine was studied for a rotor craft application. Variable capacity cycles including single-shaft and free-turbine engine configurations were analyzed to define an optimum engine design configuration. Parametric optimizations were made on cooled and uncooled rotor configurations. A detailed structural and heat transfer analysis was conducted to provide a 4000-hour life HP turbine with material properties of the 1988 time frame. A pivoted vane and a moveable sidewall geometry were analyzed. Cooling and variable geometry penalties were included in the cycle analysis. A variable geometry free-turbine engine configuration with a design 1477K (2200 F) inlet temperature and a compressor pressure ratio of 16:1 was selected. An uncooled HP radial turbine rotor with a moveable sidewall nozzle showed the highest performance potential for a time weighted duty cycle.
Aerodynamics of a cycling team in a time trial: does the cyclist at the front benefit?
NASA Astrophysics Data System (ADS)
Íñiguez-de-la Torre, A.; Íñiguez, J.
2009-11-01
When seasonal journeys take place in nature, birds and fishes migrate in groups. This provides them not only with security but also a considerable saving of energy. The power they need to travel requires overcoming aerodynamic or hydrodynamic drag forces, which can be substantially reduced when the group travels in an optimal arrangement. Also in this area, humans imitate nature, which is especially evident in the practice of outdoor sports and motor competitions. Cycle races, in which speeds of up to 15 m s-1 are frequent, offer great opportunities to appreciate the advantage of travelling in a group. Here we present a brief analysis of the aerodynamics of a cycling team in a time-trial challenge, showing how each rider is favoured according to his position in the group. We conclude that the artificial tail wind created by the team also benefits the cyclist at the front by about 5%.
Orbit transfer vehicle engine study, phase A, extension 1: Volume 2: Study results
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1981-01-01
Because of the advantage of the Advanced Expander Cycle Engine brought out in initial studies, further design optimization and comparative analyses were undertaken. The major results and conclusion derived are summarized. The primary areas covered are (1) thrust chamber geometry optimization, (2) expander cycle optimization, (3) alternate low thrust capability, (4) safety and reliability, (5) development risk comparison, and (6) cost comparisons. All of the results obtained were used to baseline the initial design concept for the OTV Advanced Expander Cycle Engine Point Design Study.
Optimized open-flow mixing: insights from microbubble streaming
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha
2015-11-01
Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.
NASA Astrophysics Data System (ADS)
Wang, Qian; Lu, Guangqi; Li, Xiaoyu; Zhang, Yichi; Yun, Zejian; Bian, Di
2018-01-01
To take advantage of the energy storage system (ESS) sufficiently, the factors that the service life of the distributed energy storage system (DESS) and the load should be considered when establishing optimization model. To reduce the complexity of the load shifting of DESS in the solution procedure, the loss coefficient and the equal capacity ratio distribution principle were adopted in this paper. Firstly, the model was established considering the constraint conditions of the cycles, depth, power of the charge-discharge of the ESS, the typical daily load curves, as well. Then, dynamic programming method was used to real-time solve the model in which the difference of power Δs, the real-time revised energy storage capacity Sk and the permission error of depth of charge-discharge were introduced to optimize the solution process. The simulation results show that the optimized results was achieved when the load shifting in the load variance was not considered which means the charge-discharge of the energy storage system was not executed. In the meantime, the service life of the ESS would increase.
Ding, Xu; Han, Jianghong; Shi, Lei
2015-01-01
In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305
Ding, Xu; Han, Jianghong; Shi, Lei
2015-03-16
In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.
Filipiak, Wojciech; Filipiak, Anna; Ager, Clemens; Wiesenhofer, Helmut; Amann, Anton
2012-06-01
The approach for breath-VOCs' collection and preconcentration by applying needle traps was developed and optimized. The alveolar air was collected from only a few exhalations under visual control of expired CO(2) into a large gas-tight glass syringe and then warmed up to 45 °C for a short time to avoid condensation. Subsequently, a specially constructed sampling device equipped with Bronkhorst® electronic flow controllers was used for automated adsorption. This sampling device allows time-saving collection of expired/inspired air in parallel onto three different needle traps as well as improvement of sensitivity and reproducibility of NT-GC-MS analysis by collection of relatively large (up to 150 ml) volume of exhaled breath. It was shown that the collection of alveolar air derived from only a few exhalations into a large syringe followed by automated adsorption on needle traps yields better results than manual sorption by up/down cycles with a 1 ml syringe, mostly due to avoided condensation and electronically controlled stable sample flow rate. The optimal profile and composition of needle traps consists of 2 cm Carbopack X and 1 cm Carboxen 1000, allowing highly efficient VOCs' enrichment, while injection by a fast expansive flow technique requires no modifications in instrumentation and fully automated GC-MS analysis can be performed with a commercially available autosampler. This optimized analytical procedure considerably facilitates the collection and enrichment of alveolar air, and is therefore suitable for application at the bedside of critically ill patients in an intensive care unit. Due to its simplicity it can replace the time-consuming sampling of sufficient breath volume by numerous up/down cycles with a 1 ml syringe.
Dynamics of intracellular information decoding.
Kobayashi, Tetsuya J; Kamimura, Atsushi
2011-10-01
A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.
Research on optimization of test cycles for comfort to the special vehicles
NASA Astrophysics Data System (ADS)
Mitroi, Marian; Chiru, Anghel
2017-10-01
The comfort of vehicles, regardless of their type is represent a requirement to by fulfilled in the context of current technological developments special vehicles generally move under different soil, time, or season conditions, and the land in which the vehicles move is complex and varied in the physical structure. Due to the high level of involvement in the driveability, safety and comfort of automotive, suspension system is a key factor with major implications for vibration and noise, affecting the human body. The objective of the research is related to determining the test cycles of special vehicles that are approaching real situations, to determine the level of comfort. The evaluate of the degree of comfort will be realized on acceleration values recorded, especially the vertical ones that have the highest influence on the human body. Thus, in this way the tests can be established needed to determine the level of comfort required for each particular type of special vehicle. The utility of the test cycles to optimize comfort is given to the accurate identification of the specific test needs, depending on the each vehicle.
Cell-cycle research with synchronous cultures: an evaluation
NASA Technical Reports Server (NTRS)
Helmstetter, C. E.; Thornton, M.; Grover, N. B.
2001-01-01
The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.
Goldman, Marlene B.; Thornton, Kim L.; Ryley, David; Alper, Michael M.; Fung, June L.; Hornstein, Mark D.; Reindollar, Richard H.
2014-01-01
Objective To determine optimal infertility therapy in women at the end of their reproductive potential. Design Randomized clinical trial. Setting Academic medical centers and private infertility center in a state with mandated insurance coverage. Patients Couples with ≥ 6 months of unexplained infertility; female partner aged 38–42. Interventions Randomized to treatment with 2 cycles of clomiphene citrate (CC) and intrauterine insemination (IUI), follicle stimulating hormone (FSH)/IUI, or immediate IVF, followed by IVF if not pregnant. Main Outcome Measures Proportion with a clinically recognized pregnancy, number of treatment cycles, and time to conception after 2 treatment cycles and at the end of treatment. Results 154 couples were randomized to receive CC/IUI (N=51), FSH/IUI (N=52), or immediate IVF (N=51); 140 (90.9%) couples initiated treatment. Cumulative clinical pregnancy rates per couple after the first 2 cycles of CC/IUI, FSH/IUI, or immediate IVF were 21.6%, 17.3%, and 49.0%, respectively. After all treatment, 71.4% (110/154) of couples conceived a clinically recognized pregnancy and 46.1% delivered at least one live-born baby. 84.2% of all live born infants resulting from treatment were achieved from IVF. There were 36% fewer treatment cycles in the IVF arm compared to either COH/IUI arm and couples conceived a pregnancy leading to a live birth after fewer treatment cycles. Conclusions An RCT to compare treatment initiated with 2 cycles of COH/IUI to immediate IVF in older women with unexplained infertility demonstrated superior pregnancy rates with fewer treatment cycles in the immediate IVF group. PMID:24796764
On processing development for fabrication of fiber reinforced composite, part 2
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Hou, Gene J. W.; Sheen, Jeen S.
1989-01-01
Fiber-reinforced composite laminates are used in many aerospace and automobile applications. The magnitudes and durations of the cure temperature and the cure pressure applied during the curing process have significant consequences for the performance of the finished product. The objective of this study is to exploit the potential of applying the optimization technique to the cure cycle design. Using the compression molding of a filled polyester sheet molding compound (SMC) as an example, a unified Computer Aided Design (CAD) methodology, consisting of three uncoupled modules, (i.e., optimization, analysis and sensitivity calculations), is developed to systematically generate optimal cure cycle designs. Various optimization formulations for the cure cycle design are investigated. The uniformities in the distributions of the temperature and the degree with those resulting from conventional isothermal processing conditions with pre-warmed platens. Recommendations with regards to further research in the computerization of the cure cycle design are also addressed.
Long-Run Savings and Investment Strategy Optimization
Gerrard, Russell; Guillén, Montserrat; Pérez-Marín, Ana M.
2014-01-01
We focus on automatic strategies to optimize life cycle savings and investment. Classical optimal savings theory establishes that, given the level of risk aversion, a saver would keep the same relative amount invested in risky assets at any given time. We show that, when optimizing lifecycle investment, performance and risk assessment have to take into account the investor's risk aversion and the maximum amount the investor could lose, simultaneously. When risk aversion and maximum possible loss are considered jointly, an optimal savings strategy is obtained, which follows from constant rather than relative absolute risk aversion. This result is fundamental to prove that if risk aversion and the maximum possible loss are both high, then holding a constant amount invested in the risky asset is optimal for a standard lifetime saving/pension process and outperforms some other simple strategies. Performance comparisons are based on downside risk-adjusted equivalence that is used in our illustration. PMID:24711728
Long-run savings and investment strategy optimization.
Gerrard, Russell; Guillén, Montserrat; Nielsen, Jens Perch; Pérez-Marín, Ana M
2014-01-01
We focus on automatic strategies to optimize life cycle savings and investment. Classical optimal savings theory establishes that, given the level of risk aversion, a saver would keep the same relative amount invested in risky assets at any given time. We show that, when optimizing lifecycle investment, performance and risk assessment have to take into account the investor's risk aversion and the maximum amount the investor could lose, simultaneously. When risk aversion and maximum possible loss are considered jointly, an optimal savings strategy is obtained, which follows from constant rather than relative absolute risk aversion. This result is fundamental to prove that if risk aversion and the maximum possible loss are both high, then holding a constant amount invested in the risky asset is optimal for a standard lifetime saving/pension process and outperforms some other simple strategies. Performance comparisons are based on downside risk-adjusted equivalence that is used in our illustration.
DOT National Transportation Integrated Search
2013-10-01
From June to November of 2010, the Louisiana Department of Transportation and : Development (DOTD) deployed ramp metering control, using a simple pre-timed operation : with a xed cycle length (2 seconds of green/2 seconds of red), along a 15-mile ...
NASA Astrophysics Data System (ADS)
Hanish Nithin, Anu; Omenzetter, Piotr
2017-04-01
Optimization of the life-cycle costs and reliability of offshore wind turbines (OWTs) is an area of immense interest due to the widespread increase in wind power generation across the world. Most of the existing studies have used structural reliability and the Bayesian pre-posterior analysis for optimization. This paper proposes an extension to the previous approaches in a framework for probabilistic optimization of the total life-cycle costs and reliability of OWTs by combining the elements of structural reliability/risk analysis (SRA), the Bayesian pre-posterior analysis with optimization through a genetic algorithm (GA). The SRA techniques are adopted to compute the probabilities of damage occurrence and failure associated with the deterioration model. The probabilities are used in the decision tree and are updated using the Bayesian analysis. The output of this framework would determine the optimal structural health monitoring and maintenance schedules to be implemented during the life span of OWTs while maintaining a trade-off between the life-cycle costs and risk of the structural failure. Numerical illustrations with a generic deterioration model for one monitoring exercise in the life cycle of a system are demonstrated. Two case scenarios, namely to build initially an expensive and robust or a cheaper but more quickly deteriorating structures and to adopt expensive monitoring system, are presented to aid in the decision-making process.
FT-NIR: A Tool for Process Monitoring and More.
Martoccia, Domenico; Lutz, Holger; Cohen, Yvan; Jerphagnon, Thomas; Jenelten, Urban
2018-03-30
With ever-increasing pressure to optimize product quality, to reduce cost and to safely increase production output from existing assets, all combined with regular changes in terms of feedstock and operational targets, process monitoring with traditional instruments reaches its limits. One promising answer to these challenges is in-line, real time process analysis with spectroscopic instruments, and above all Fourier-Transform Near Infrared spectroscopy (FT-NIR). Its potential to afford decreased batch cycle times, higher yields, reduced rework and minimized batch variance is presented and application examples in the field of fine chemicals are given. We demonstrate that FT-NIR can be an efficient tool for improved process monitoring and optimization, effective process design and advanced process control.
Cresser, Malcolm S; Aitkenhead, Matthew J; Mian, Ishaq A
2008-08-01
Although soil scientists and most environmental scientists are acutely aware of the interactions between the cycling of carbon and nitrogen, for conceptual convenience when portraying the nitrogen cycle in text books the N cycle tends to be considered in isolation from its interactions with the cycling of other elements and water, usually as a snap shot at the current time; the origins of dinitrogen are rarely considered, for example. The authors suggest that Lovelock's Gaia hypothesis provides a useful and stimulating framework for consideration of the terrestrial nitrogen cycle. If it is used, it suggests that urbanization and management of sewage, and intensive animal rearing are probably bigger global issues than nitrogen deposition from fossil fuel combustion, and that plant evolution may be driven by the requirement of locally sustainable and near optimal soil mineral N supply dynamics. This may, in turn, be partially regulating global carbon and oxygen cycles. It is suggested that pollutant N deposition may disrupt this essential natural plant and terrestrial ecosystem evolutionary process, causing biodiversity change. Interactions between the Earth and other bodies in the solar system, and possibly beyond, also need to be considered in the context of the global N cycle over geological time scales. This is because of direct potential impacts on the nitrogen content of the atmosphere, potential long-term impacts of past boloid collisions on plate tectonics and thus on global N cycling via subduction and volcanic emissions, and indirect effects upon C, O and water cycling that all may impact upon the N cycle in the long term.
NASA Astrophysics Data System (ADS)
Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Riswanto; Budiman, Rachmat
2017-07-01
Green building concept becomes important in current building life cycle to mitigate environment issues. The purpose of this paper is to optimize building construction performance towards green building premium cost, achieving green building rating tools with optimizing life cycle cost. Therefore, this study helps building stakeholder determining building fixture to achieve green building certification target. Empirically the paper collects data of green building in the Indonesian construction industry such as green building fixture, initial cost, operational and maintenance cost, and certification score achievement. After that, using value engineering method optimized green building fixture based on building function and cost aspects. Findings indicate that construction performance optimization affected green building achievement with increasing energy and water efficiency factors and life cycle cost effectively especially chosen green building fixture.
NASA Astrophysics Data System (ADS)
Saruwatari, Shunsuke; Suzuki, Makoto; Morikawa, Hiroyuki
The paper shows a compact hard real-time operating system for wireless sensor nodes called PAVENET OS. PAVENET OS provides hybrid multithreading: preemptive multithreading and cooperative multithreading. Both of the multithreading are optimized for two kinds of tasks on wireless sensor networks, and those are real-time tasks and best-effort ones. PAVENET OS can efficiently perform hard real-time tasks that cannot be performed by TinyOS. The paper demonstrates the hybrid multithreading realizes compactness and low overheads, which are comparable to those of TinyOS, through quantitative evaluation. The evaluation results show PAVENET OS performs 100 Hz sensor sampling with 0.01% jitter while performing wireless communication tasks, whereas optimized TinyOS has 0.62% jitter. In addition, PAVENET OS has a small footprint and low overheads (minimum RAM size: 29 bytes, minimum ROM size: 490 bytes, minimum task switch time: 23 cycles).
Jun, Jaemoon; Lee, Jun Seop; Shin, Dong Hoon; Kim, Sung Gun; Jang, Jyongsik
2015-10-14
One-dimensional (1D)-structured nanomaterials represent one of the most attractive candidates for energy-storage systems due to their contribution to design simplicity, fast charge-transportation network, and their allowance for more accessible ion diffusion. In particular, 1D-structured nanomaterials with a highly complex inner-pore configuration enhance functionality by taking advantage of both the hollow and 1D structures. In this study, we report a MnO2 nanohair-decorated, hybrid multichannel carbon nanofiber (Mn_MCNF) fabricated via single-nozzle co-electrospinning of two immiscible polymer solutions, followed by carbonization and redox reactions. With improved ion accessibility, the optimized Mn_MCNF sample (Mn_MCNF_60 corresponding to a reaction duration time of 60 min for optimal MnO2 nanohair growth) exhibited a high specific capacitance of 855 F g(-1) and excellent cycling performance with ∼87.3% capacitance retention over 5000 cycles.
NASA Astrophysics Data System (ADS)
Goldston, Robert; Brooks, Jeffrey; Hubbard, Amanda; Leonard, Anthony; Lipschultz, Bruce; Maingi, Rajesh; Ulrickson, Michael; Whyte, Dennis
2009-11-01
The plasma facing components in a Demo reactor will face much more extreme boundary plasma conditions and operating requirements than any present or planned experiment. These include 1) Power density a factor of four or more greater than in ITER, 2) Continuous operation resulting in annual energy and particle throughput 100-200 times larger than ITER, 3) Elevated surface operating temperature for efficient electricity production, 4) Tritium fuel cycle control for safety and breeding requirements, and 5) Steady state plasma confinement and control. Consistent with ReNeW Thrust 12, design options are being explored for a new moderate-scale facility to assess core-edge interaction issues and solutions. Key desired features include high power density, sufficient pulse length and duty cycle, elevated wall temperature, steady-state control of an optimized core plasma, and flexibility in changing boundary components as well as access for comprehensive measurements.
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator
Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements. PMID:29209364
Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator.
Hussain, Abid; Muhammad, Yousaf Shad; Nauman Sajid, M; Hussain, Ijaz; Mohamd Shoukry, Alaa; Gani, Showkat
2017-01-01
Genetic algorithms are evolutionary techniques used for optimization purposes according to survival of the fittest idea. These methods do not ensure optimal solutions; however, they give good approximation usually in time. The genetic algorithms are useful for NP-hard problems, especially the traveling salesman problem. The genetic algorithm depends on selection criteria, crossover, and mutation operators. To tackle the traveling salesman problem using genetic algorithms, there are various representations such as binary, path, adjacency, ordinal, and matrix representations. In this article, we propose a new crossover operator for traveling salesman problem to minimize the total distance. This approach has been linked with path representation, which is the most natural way to represent a legal tour. Computational results are also reported with some traditional path representation methods like partially mapped and order crossovers along with new cycle crossover operator for some benchmark TSPLIB instances and found improvements.
Optimizing heliostat positions with local search metaheuristics using a ray tracing optical model
NASA Astrophysics Data System (ADS)
Reinholz, Andreas; Husenbeth, Christof; Schwarzbözl, Peter; Buck, Reiner
2017-06-01
The life cycle costs of solar tower power plants are mainly determined by the investment costs of its construction. Significant parts of these investment costs are used for the heliostat field. Therefore, an optimized placement of the heliostats gaining the maximal annual power production has a direct impact on the life cycle costs revenue ratio. We present a two level local search method implemented in MATLAB utilizing the Monte Carlo raytracing software STRAL [1] for the evaluation of the annual power output for a specific weighted annual time scheme. The algorithm was applied to a solar tower power plant (PS10) with 624 heliostats. Compared to former work of Buck [2], we were able to improve both runtime of the algorithm and quality of the output solutions significantly. Using the same environment for both algorithms, we were able to reach Buck's best solution with a speed up factor of about 20.
NASA Astrophysics Data System (ADS)
Yang, Y.; Chui, T. F. M.
2016-12-01
Green infrastructure (GI) is identified as sustainable and environmentally friendly alternatives to the conventional grey stormwater infrastructure. Commonly used GI (e.g. green roof, bioretention, porous pavement) can provide multifunctional benefits, e.g. mitigation of urban heat island effects, improvements in air quality. Therefore, to optimize the design of GI and grey drainage infrastructure, it is essential to account for their benefits together with the costs. In this study, a comprehensive simulation-optimization modelling framework that considers the economic and hydro-environmental aspects of GI and grey infrastructure for small urban catchment applications is developed. Several modelling tools (i.e., EPA SWMM model, the WERF BMP and LID Whole Life Cycle Cost Modelling Tools) and optimization solvers are coupled together to assess the life-cycle cost-effectiveness of GI and grey infrastructure, and to further develop optimal stormwater drainage solutions. A typical residential lot in New York City is examined as a case study. The life-cycle cost-effectiveness of various GI and grey infrastructure are first examined at different investment levels. The results together with the catchment parameters are then provided to the optimization solvers, to derive the optimal investment and contributing area of each type of the stormwater controls. The relationship between the investment and optimized environmental benefit is found to be nonlinear. The optimized drainage solutions demonstrate that grey infrastructure is preferred at low total investments while more GI should be adopted at high investments. The sensitivity of the optimized solutions to the prices the stormwater controls is evaluated and is found to be highly associated with their utilizations in the base optimization case. The overall simulation-optimization framework can be easily applied to other sites world-wide, and to be further developed into powerful decision support systems.
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
The mean time-limited crash rate of stock price
NASA Astrophysics Data System (ADS)
Li, Yun-Xian; Li, Jiang-Cheng; Yang, Ai-Jun; Tang, Nian-Sheng
2017-05-01
In this article we investigate the occurrence of stock market crash in an economy cycle. Bayesian approach, Heston model and statistical-physical method are considered. Specifically, Heston model and an effective potential are employed to address the dynamic changes of stock price. Bayesian approach has been utilized to estimate the Heston model's unknown parameters. Statistical physical method is used to investigate the occurrence of stock market crash by calculating the mean time-limited crash rate. The real financial data from the Shanghai Composite Index is analyzed with the proposed methods. The mean time-limited crash rate of stock price is used to describe the occurrence of stock market crash in an economy cycle. The monotonous and nonmonotonous behaviors are observed in the behavior of the mean time-limited crash rate versus volatility of stock for various cross correlation coefficient between volatility and price. Also a minimum occurrence of stock market crash matching an optimal volatility is discovered.
Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming
2014-12-31
An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.
Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik
Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based onmore » the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided.« less
Direct Digital Control of HVAC (Heating, Ventilating, and Air Conditioning).
1985-01-01
controller func- tions such as time-of-day, economizer cycles, reset, load shedding, chiller optimization , VAV fan synchronization, and optimum start/stop...control system such as that illustrated in Fig- urc 4. Data on setpoints , reset schedules, and event timing, such as that presented in Figure 6, are...program code (Figure 7). In addition to the control logic, setpoint and other data are readily available. Program logi:, setpoint and schedule data, and
Role of "the frame cycle time" in portal dose imaging using an aS500-II EPID.
Al Kattar Elbalaa, Zeina; Foulquier, Jean Noel; Orthuon, Alexandre; Elbalaa, Hanna; Touboul, Emmanuel
2009-09-01
This paper evaluates the role of an acquisition parameter, the frame cycle time "FCT", in the performance of an aS500-II EPID. The work presented rests on the study of the Varian EPID aS500-II and the image acquisition system 3 (IAS3). We are interested in integrated acquisition using asynchronous mode. For better understanding the image acquisition operation, we investigated the influence of the "frame cycle time" on the speed of acquisition, the pixel value of the averaged gray-scale frame and the noise, using 6 and 15MV X-ray beams and dose rates of 1-6Gy/min on 2100 C/D Linacs. In the integrated mode not synchronized to beam pulses, only one parameter the frame cycle time "FCT" influences the pixel value. The pixel value of the averaged gray-scale frame is proportional to this parameter. When the FCT <55ms (speed of acquisition V(f/s)>18 frames/s), the speed of acquisition becomes unstable and leads to a fluctuation of the portal dose response. A timing instability and saturation are detected when the dose per frame exceeds 1.53MU/frame. Rules were deduced to avoid saturation and to optimize this dosimetric mode. The choice of the acquisition parameter is essential for the accurate portal dose imaging.
NASA Astrophysics Data System (ADS)
Özcan, Abdullah; Rivière-Lorphèvre, Edouard; Ducobu, François
2018-05-01
In part manufacturing, efficient process should minimize the cycle time needed to reach the prescribed quality on the part. In order to optimize it, the machining time needs to be as low as possible and the quality needs to meet some requirements. For a 2D milling toolpath defined by sharp corners, the programmed feedrate is different from the reachable feedrate due to kinematic limits of the motor drives. This phenomena leads to a loss of productivity. Smoothing the toolpath allows to reduce significantly the machining time but the dimensional accuracy should not be neglected. Therefore, a way to address the problem of optimizing a toolpath in part manufacturing is to take into account the manufacturing time and the part quality. On one hand, maximizing the feedrate will minimize the manufacturing time and, on the other hand, the maximum of the contour error needs to be set under a threshold to meet the quality requirements. This paper presents a method to optimize sharp corner smoothing using b-spline curves by adjusting the control points defining the curve. The objective function used in the optimization process is based on the contour error and the difference between the programmed feedrate and an estimation of the reachable feedrate. The estimation of the reachable feedrate is based on geometrical information. Some simulation results are presented in the paper and the machining times are compared in each cases.
NASA Astrophysics Data System (ADS)
Baisden, W. T.; Canessa, S.
2013-01-01
In 1959, Athol Rafter began a substantial programme of systematically monitoring the flow of 14C produced by atmospheric thermonuclear tests through organic matter in New Zealand soils under stable land use. A database of ∼500 soil radiocarbon measurements spanning 50 years has now been compiled, and is used here to identify optimal approaches for soil C-cycle studies. Our results confirm the potential of 14C to determine residence times, by estimating the amount of ‘bomb 14C’ incorporated. High-resolution time series confirm this approach is appropriate, and emphasise that residence times can be calculated routinely with two or more time points as little as 10 years apart. This approach is generally robust to the key assumptions that can create large errors when single time-point 14C measurements are modelled. The three most critical assumptions relate to: (1) the distribution of turnover times, and particularly the proportion of old C (‘passive fraction’), (2) the lag time between photosynthesis and C entering the modelled pool, (3) changes in the rates of C input. When carrying out approaches using robust assumptions on time-series samples, multiple soil layers can be aggregated using a mixing equation. Where good archived samples are available, AMS measurements can develop useful understanding for calibrating models of the soil C cycle at regional to continental scales with sample numbers on the order of hundreds rather than thousands. Sample preparation laboratories and AMS facilities can play an important role in coordinating the efficient delivery of robust calculated residence times for soil carbon.
NASA Astrophysics Data System (ADS)
Musa, Sarah; Supadi, Siti Suzlin; Omar, Mohd
2014-07-01
Rework is one of the solutions to some of the main issues in reverse logistic and green supply chain as it reduces production cost and environmental problem. Many researchers focus on developing rework model, but to the knowledge of the author, none of them has developed a model for time-varying demand rate. In this paper, we extend previous works and develop multiple batch production system for time-varying demand rate with rework. In this model, the rework is done within the same production cycle.
Optimization of a point-focusing, distributed receiver solar thermal electric system
NASA Technical Reports Server (NTRS)
Pons, R. L.
1979-01-01
This paper presents an approach to optimization of a solar concept which employs solar-to-electric power conversion at the focus of parabolic dish concentrators. The optimization procedure is presented through a series of trade studies, which include the results of optical/thermal analyses and individual subsystem trades. Alternate closed-cycle and open-cycle Brayton engines and organic Rankine engines are considered to show the influence of the optimization process, and various storage techniques are evaluated, including batteries, flywheels, and hybrid-engine operation.
NASA Astrophysics Data System (ADS)
Higuchi, Kazuhide; Miyaji, Kousuke; Johguchi, Koh; Takeuchi, Ken
2012-02-01
This paper proposes a verify-programming method for the resistive random access memory (ReRAM) cell which achieves a 50-times higher endurance and a fast set and reset compared with the conventional method. The proposed verify-programming method uses the incremental pulse width with turnback (IPWWT) for the reset and the incremental voltage with turnback (IVWT) for the set. With the combination of IPWWT reset and IVWT set, the endurance-cycle increases from 48 ×103 to 2444 ×103 cycles. Furthermore, the measured data retention-time after 20 ×103 set/reset cycles is estimated to be 10 years. Additionally, the filamentary based physical model is proposed to explain the set/reset failure mechanism with various set/reset pulse shapes. The reset pulse width and set voltage correspond to the width and length of the conductive-filament, respectively. Consequently, since the proposed IPWWT and IVWT recover set and reset failures of ReRAM cells, the endurance-cycles are improved.
Maximum Work of Free-Piston Stirling Engine Generators
NASA Astrophysics Data System (ADS)
Kojima, Shinji
2017-04-01
Using the method of adjoint equations described in Ref. [1], we have calculated the maximum thermal efficiencies that are theoretically attainable by free-piston Stirling and Carnot engine generators by considering the work loss due to friction and Joule heat. The net work done by the Carnot cycle is negative even when the duration of heat addition is optimized to give the maximum amount of heat addition, which is the same situation for the Brayton cycle described in our previous paper. For the Stirling cycle, the net work done is positive, and the thermal efficiency is greater than that of the Otto cycle described in our previous paper by a factor of about 2.7-1.4 for compression ratios of 5-30. The Stirling cycle is much better than the Otto, Brayton, and Carnot cycles. We have found that the optimized piston trajectories of the isothermal, isobaric, and adiabatic processes are the same when the compression ratio and the maximum volume of the same working fluid of the three processes are the same, which has facilitated the present analysis because the optimized piston trajectories of the Carnot and Stirling cycles are the same as those of the Brayton and Otto cycles, respectively.
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1990-01-01
General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path angle and flight path angle rate in construction of the flight path over this Mach range, the resulting algorithm provides the means for rapid near-optimal trajectory generation and propulsion cycle selection over the entire Mach range from take-off to orbit.
Xu, Xia; Deng, Fei; Lv, Mengmeng; Chen, Xiaoxiang
2017-02-01
No consensus exists on the number of chemotherapy cycles to be administered before and after interval debulking surgery (IDS) in patients with advanced stage epithelial ovarian cancer. The present study aims to explore the optimal number of cycles of neoadjuvant chemotherapy (NAC) and post-operation chemotherapy to treat the International Federation of Gynecology and Obstetrics stage IIIc-IV high-grade serous ovarian cancer (HG-SOC). A total of 129 IIIc-IV stage HG-SOC cases were retrospectively analyzed. Cases were comprised of patients who underwent NAC followed by IDS and who achieved clinical complete response (CCR) at the end of primary therapy. Patients were recruited from the Jiangsu Institute of Cancer Research between 1993 and 2013. Optimal IDS-associated factors were explored with logistic regression. The association between progression-free survival (PFS), overall survival (OS) duration, and covariates was assessed by Cox proportional hazards model and log-rank test. The median number of NAC cycle was 3 (range 1-8). CA-125 decreasing kinetics (p = 0.01) was independently associated with optimal IDS. CA-125 decreasing kinetics, optimal IDS, and NAC cycles was independently associated with OS (p < 0.01, p < 0.01, p = 0.03, respectively) and PFS (p < 0.01, p < 0.01, p = 0.04, respectively). The PFS of patients who underwent ≥5 NAC cycles was shorter than those of patients who underwent <5 NAC cycles (12.3 versus 17.2 months). The PFS and OS of patients who underwent <5 cycles of adjuvant chemotherapy post-IDS were shorter than those of patients who underwent ≥5 cycles (14.2 and 20.3 versus 21.2 and 28.8 months). NAC cycles, CA-125 decreasing kinetics, and optimal debulking are independently associated with the prognosis of patients with advanced stage HG-SOC who underwent NAC/IDS and achieved CCR. The number of administered NAC cycles should not exceed 4.
Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU
NASA Astrophysics Data System (ADS)
Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis
2016-06-01
Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.
Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis
Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20xmore » to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.« less
The Relationship between Pedal Force and Crank Angular Velocity in Sprint Cycling.
Bobbert, Maarten Frank; Casius, L J Richard; Van Soest, Arthur J
2016-05-01
Relationships between tangential pedal force and crank angular velocity in sprint cycling tend to be linear. We set out to understand why they are not hyperbolic, like the intrinsic force-velocity relationship of muscles. We simulated isokinetic sprint cycling at crank angular velocities ranging from 30 to 150 rpm with a forward dynamic model of the human musculoskeletal system actuated by eight lower extremity muscle groups. The input of the model was muscle stimulation over time, which we optimized to maximize average power output over a cycle. Peak tangential pedal force was found to drop more with crank angular velocity than expected based on intrinsic muscle properties. This linearizing effect was not due to segmental dynamics but rather due to active state dynamics. Maximizing average power in cycling requires muscles to bring their active state from as high as possible during shortening to as low as possible during lengthening. Reducing the active state is a relatively slow process, and hence must be initiated a certain amount of time before lengthening starts. As crank angular velocity goes up, this amount of time corresponds to a greater angular displacement, so the instant of switching off extensor muscle stimulation must occur earlier relative to the angle at which pedal force was extracted for the force-velocity relationship. Relationships between pedal force and crank angular velocity in sprint cycling do not reflect solely the intrinsic force-velocity relationship of muscles but also the consequences of activation dynamics.
Yoshinaka, Kiichi; Yamaguchi, Ai; Matsumura, Ritsuko; Node, Koichi; Tokuda, Isao; Akashi, Makoto
2017-10-01
Approximately 20% of workers in developed countries are involved in night work. Nevertheless, many studies have strongly suggested that night-work-induced chronic circadian misalignment increases the risk of a diverse range of health problems. Although a relation between night work and irregular menstrual cycles has been indicated epidemiologically, a direct causal link remains elusive. Here, we report that repetitive reversal of light-dark (LD) cycles triggers irregular estrous cycles in mice. The findings showed that the estrous cycle remained irregular for more than four weeks after the mice were returned to regular LD cycles. Importantly, the magnitude of the negative impact of reversed LD cycles on the estrous cycle, or more specifically the decreased number of normal estrous cycles during the observation period, was dependent on the difference in the frequency of LD reversal. Presently, no clear solution to prevent night-work-mediated menstrual abnormalities is available, and reducing night work in modern society is difficult. Our findings indicate that optimizing work schedules could significantly prevent menstrual problems without reducing total night-work time. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Quadrupedal galloping control for a wide range of speed via vertical impulse scaling.
Park, Hae-Won; Kim, Sangbae
2015-03-25
This paper presents a bio-inspired quadruped controller that allows variable-speed galloping. The controller design is inspired by observations from biological runners. Quadrupedal animals increase the vertical impulse that is generated by ground reaction forces at each stride as running speed increases and the duration of each stance phase reduces, whereas the swing phase stays relatively constant. Inspired by this observation, the presented controller estimates the required vertical impulse at each stride by applying the linear momentum conservation principle in the vertical direction and prescribes the ground reaction forces at each stride. The design process begins with deriving a planar model from the MIT Cheetah 2 robot. A baseline periodic limit cycle is obtained by optimizing ground reaction force profiles and the temporal gait pattern (timing and duration of gait phases). To stabilize the optimized limit cycle, the obtained limit cycle is converted to a state feedback controller by representing the obtained ground reaction force profiles as functions of the state variable, which is monotonically increasing throughout the gait, adding impedance control around the height and pitch trajectories of the obtained limit cycle and introducing a finite state machine and a pattern stabilizer to enforce the optimized gait pattern. The controller that achieves a stable 3 m s(-1) gallop successfully adapts the speed change by scaling the vertical ground reaction force to match the momentum lost by gravity and adding a simple speed controller that controls horizontal speed. Without requiring additional gait optimization processes, the controller achieves galloping at speeds ranging from 3 m s(-1) to 14.9 m s(-1) while respecting the torque limit of the motor used in the MIT Cheetah 2 robot. The robustness of the controller is verified by demonstrating stable running during various disturbances, including 1.49 m step down and 0.18 m step up, as well as random ground height and model parameter variations.
An Interactive Design Space Supporting Development of Vehicle Architecture Concept Models
2011-01-01
Denver, Colorado, USA IMECE2011-64510 AN INTERACTIVE DESIGN SPACE SUPPORTING DEVELOPMENT OF VEHICLE ARCHITECTURE CONCEPT MODELS Gary Osborne...early in the development cycle. Optimization taking place later in the cycle usually occurs at the detail design level, and tends to result in...architecture changes may be imposed, but such modifications are equivalent to a huge optimization cycle covering almost the entire design process, and
NASA Astrophysics Data System (ADS)
Lian, Qingwang; Zhou, Gang; Liu, Jiatu; Wu, Chen; Wei, Weifeng; Chen, Libao; Li, Chengchao
2017-10-01
Here, we report a new enhanced extrinsic pseudocapacitve Li-ion storage mechanism via lithiation-induced structural optimization strategy. The flower-like C@SnS and bulk SnS exhibit initial capacity decay and subsequent increase of capacity on cycling. After a long-term lithiation/delithiation process, flower-like C@SnS and bulk SnS exhibit improved rate performance and reversible capacity in comparison with those of initial state. Moreover, a high capacity of 530 mAh g-1 is still remained even after 1550 cycles at a high current density of 5.0 A g-1 for flower-like C@SnS after pre-lithiation of 350 cycles. According to the comprehensive analysis of structural evolution and electrochemical performance, it demonstrates that SnS electrodes experience crystal size reduction and further amorphization on cycling, which enhances the reversibility of conversion reaction for SnS, leading to increasing capacity. On the other hand, surface-dominated extrinsic pseudocapacitive contribution results in enhanced rate performance because electrodes expose a large fraction of Li+ sites on surface or near-surface region with structural optimization on cycling. This study reveals that extrinsic pseudocapacitance of SnS can be stimulated via lithiation-induced structural optimization, which gives rise to high-rate and long-lived performances.
Power of a Finite Speed Carnot Engine
ERIC Educational Resources Information Center
Agrawal, D. C.; Menon, V. J.
2009-01-01
A model of an endoreversible Carnot engine is considered where the piston moves with a constant speed "u." Expressions for the cycle time [tau] for the four branches, as well as output power, P[subscript W], are derived and the optimized root for maximum power is obtained in closed form. Our results are discussed in terms of the isothermal…
Hishikawa, Yoshitaka; An, Shucai; Yamamoto-Fukuda, Tomomi; Shibata, Yasuaki; Koji, Takehiko
2009-01-01
In situ polymerase chain reaction (in situ PCR), which can detect a few copies of genes within a cell by amplifying the target gene, was developed to better understand the biological functions of tissues. In this study, we optimized the protocol conditions for the detection of X chromosome-linked phosphoglycerate kinase-1 (pgk-1) gene in paraffin-embedded sections of mouse reproductive organs. The effects of various concentrations of proteinase K (PK) and PCR cycle numbers were examined. To label the amplified DNA, we used digoxigenin-dUTP (Dig), Cy-3-dUTP (Cy-3), or FluorX-dCTP (FluorX). The optimal concentration of PK was 50 µg/ml for the ovary and 10 µg/ml for the testis. Ten PCR cycles were optimal for Dig and 25 cycles were optimal for FluorX and Cy-3 in the ovary and testis. The signal-to-noise ratio of FluorX and Cy-3 for ovarian tissue was better than that of Dig. Using the above conditions, we detected 1–4 and 1–2 spots of pgk-1 in the nuclei of granulosa and germ cells, respectively. Our results indicate that in situ PCR is useful for detecting a specific gene in paraffin-embedded sections under optimized conditions of both PCR cycle number and PK concentration. PMID:19492023
Effect of dilution in asymmetric recurrent neural networks.
Folli, Viola; Gosti, Giorgio; Leonetti, Marco; Ruocco, Giancarlo
2018-04-16
We study with numerical simulation the possible limit behaviors of synchronous discrete-time deterministic recurrent neural networks composed of N binary neurons as a function of a network's level of dilution and asymmetry. The network dilution measures the fraction of neuron couples that are connected, and the network asymmetry measures to what extent the underlying connectivity matrix is asymmetric. For each given neural network, we study the dynamical evolution of all the different initial conditions, thus characterizing the full dynamical landscape without imposing any learning rule. Because of the deterministic dynamics, each trajectory converges to an attractor, that can be either a fixed point or a limit cycle. These attractors form the set of all the possible limit behaviors of the neural network. For each network we then determine the convergence times, the limit cycles' length, the number of attractors, and the sizes of the attractors' basin. We show that there are two network structures that maximize the number of possible limit behaviors. The first optimal network structure is fully-connected and symmetric. On the contrary, the second optimal network structure is highly sparse and asymmetric. The latter optimal is similar to what observed in different biological neuronal circuits. These observations lead us to hypothesize that independently from any given learning model, an efficient and effective biologic network that stores a number of limit behaviors close to its maximum capacity tends to develop a connectivity structure similar to one of the optimal networks we found. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, M.L.; Kittelson, D.B.; Leuer, R.H.
1996-10-01
A two-dimensional optimization process, which simultaneously adjusts the spark timing and equivalence ratio of a lean-burn, natural gas, Hercules G1600 engine, has been demonstrated. First, the three-dimensional surface of thermal efficiency was mapped versus spark timing and equivalence ratio at a single speed and load combination. Then the ability of the control system to find and hold the combination of timing and equivalence ratio that gives the highest thermal efficiency was explored. NO{sub x}, CO, and HC maps were also constructed from the experimental data to determine the tradeoffs between efficiency and emissions. The optimization process adds small synchronous disturbancesmore » to the spark timing and air flow while the fuel injected per cycle is held constant for four cycles. The engine speed response to these disturbances is used to determine the corrections for spark timing and equivalence ratio. The control process, in effect, uses the engine itself as the primary sensor. The control system can adapt to changes in fuel composition, operating conditions, engine wear, or other factors that may not be easily measured. Although this strategy was previously demonstrated in a Volkswagen 1.7 liter light duty engine (Frankling et al., 1994b), until now it has not been demonstrated in a heavy-duty engine. This paper covers the application of the approach to a Hercules G1600 engine.« less
Chambers, Georgina M; Paul, Repon C; Harris, Katie; Fitzgerald, Oisin; Boothroyd, Clare V; Rombauts, Luk; Chapman, Michael G; Jorm, Louisa
2017-08-07
To estimate cumulative live birth rates (CLBRs) following repeated assisted reproductive technology (ART) ovarian stimulation cycles, including all fresh and frozen/thaw embryo transfers (complete cycles). Prospective follow-up of 56 652 women commencing ART in Australian and New Zealand during 2009-2012, and followed until 2014 or the first treatment-dependent live birth. CLBRs and cycle-specific live birth rates were calculated for up to eight cycles, stratified by the age of the women (< 30, 30-34, 35-39, 40-44, > 44 years). Conservative CLBRs assumed that women discontinuing treatment had no chance of achieving a live birth if had they continued treatment; optimal CLBRs assumed that they would have had the same chance as women who continued treatment. The overall CLBR was 32.7% (95% CI, 32.2-33.1%) in the first cycle, rising by the eighth cycle to 54.3% (95% CI, 53.9-54.7%) (conservative) and 77.2% (95% CI, 76.5-77.9%) (optimal). The CLBR decreased with age and number of complete cycles. For women who commenced ART treatment before 30 years of age, the CLBR for the first complete cycle was 43.7% (95% CI, 42.6-44.7%), rising to 69.2% (95% CI, 68.2-70.1%) (conservative) and 92.8% (95% CI, 91.6-94.0) (optimal) for the seventh cycle. For women aged 40-44 years, the CLBR was 10.7% (95% CI, 10.1-11.3%) for the first complete cycle, rising to 21.0% (95% CI, 20.2-21.8%) (conservative) and 37.9% (95% CI, 35.9-39.9%) (optimal) for the eighth cycle. CLBRs based on complete cycles are meaningful estimates of ART success, reflecting contemporary clinical practice and encouraging safe practice. These estimates can be used when counselling patients and to inform public policy on ART treatment.
Wet cooling towers: rule-of-thumb design and simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeper, Stephen A.
1981-07-01
A survey of wet cooling tower literature was performed to develop a simplified method of cooling tower design and simulation for use in power plant cycle optimization. The theory of heat exchange in wet cooling towers is briefly summarized. The Merkel equation (the fundamental equation of heat transfer in wet cooling towers) is presented and discussed. The cooling tower fill constant (Ka) is defined and values derived. A rule-of-thumb method for the optimized design of cooling towers is presented. The rule-of-thumb design method provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature,more » power requirements and construction cost. In addition, a method for simulation of cooling tower performance at various operating conditions is presented. This information is also useful in power plant cycle evaluation. Using the information presented, it will be possible to incorporate wet cooling tower design and simulation into a procedure to evaluate and optimize power plant cycles.« less
NASA Astrophysics Data System (ADS)
Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Budiman, Rachmat; Riswanto
2017-06-01
Building has a big impact on the environmental developments. There are three general motives in building, namely the economy, society, and environment. Total completed building construction in Indonesia increased by 116% during 2009 to 2011. It made the energy consumption increased by 11% within the last three years. In fact, 70% of energy consumption is used for electricity needs on commercial buildings which leads to an increase of greenhouse gas emissions by 25%. Green Building cycle costs is known as highly building upfront cost in Indonesia. The purpose of optimization in this research improves building performance with some of green concept alternatives. Research methodology is mixed method of qualitative and quantitative approaches through questionnaire surveys and case study. Assessing the successful of optimization functions in the existing green building is based on the operational and maintenance phase with the Life Cycle Assessment Method. Choosing optimization results were based on the largest efficiency of building life cycle and the most effective cost to refund.
Jodice, Patrick G.R.; Collopy, Michael W.
1999-01-01
The diving behavior of Marbled Murrelets (Brachyramphus marmoratus) was studied using telemetry along the Oregon coast during the 1995 and 1996 breeding seasons and examined in relation to predictions from optimal-breathing models. Duration of dives, pauses, dive bouts, time spent under water during dive bouts, and nondiving intervals between successive dive bouts were recorded. Most diving metrics differed between years but not with oceanographic conditions or shore type. There was no effect of water depth on mean dive time or percent time spent under water even though dive bouts occurred in depths from 3 to 36 m. There was a significant, positive relationship between mean dive time and mean pause time at the dive-bout scale each year. At the dive-cycle scale, there was a significant positive relationship between dive time and preceding pause time in each year and a significant positive relationship between dive time and ensuing pause time in 1996. Although it appears that aerobic diving was the norm, there appeared to be an increase in anaerobic diving in 1996. The diving performance of Marbled Murrelets in this study appeared to be affected by annual changes in environmental conditions and prey resources but did not consistently fit predictions from optimal-breathing models.
A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.
2004-01-01
The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.
Optimization of pressurized liquid extraction of inositols from pine nuts (Pinus pinea L.).
Ruiz-Aceituno, L; Rodríguez-Sánchez, S; Sanz, J; Sanz, M L; Ramos, L
2014-06-15
Pressurized liquid extraction (PLE) has been used for the first time to extract bioactive inositols from pine nuts. The influence of extraction time, temperature and cycles of extraction in the yield and composition of the extract was studied. A quadratic lineal model using multiple linear regression in the stepwise mode was used to evaluate possible trends in the process. Under optimised PLE conditions (50°C, 18 min, 3 cycles of 1.5 mL water each one) at 10 MPa, a noticeable reduction in extraction time and solvent volume, compared with solid-liquid extraction (SLE; room temperature, 2h, 2 cycles of 5 mL water each one) was achieved; 5.7 mg/g inositols were extracted by PLE, whereas yields of only 3.7 mg/g were obtained by SLE. Subsequent incubation of PLE extracts with Saccharomyces cerevisiae (37°C, 5h) allowed the removal of other co-extracted low molecular weight carbohydrates which may interfere in the bioactivity of inositols. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhe Sun, Phillip; Lu, Jie; Wu, Yin; Xiao, Gang; Wu, Renhua
2013-09-01
Chemical exchange saturation transfer (CEST) is a magnetic resonance imaging (MRI) contrast mechanism that can detect dilute CEST agents and microenvironmental properties, with a host of promising applications. Experimental measurement of the CEST effect is complex, and depends on not only CEST agent concentration and exchange rate, but also experimental parameters such as RF irradiation amplitude and scheme. Although echo planar imaging (EPI) has been increasingly used for CEST MRI, the relationship between CEST effect and repetition time (TR), RF irradiation duty cycle (DC) and EPI flip angle (α) has not been fully evaluated and optimized to enhance CEST MRI sensitivity. In addition, our study evaluated gradient echo CEST-EPI by quantifying the CEST effect and its signal-to-noise ratio per unit time (SNRput) as functions of TR, DC and α. We found that CEST effect increased with TR and DC but decreased with α. Importantly, we found that SNRput peaked at intermediate TRs of about twice the T1 and α, at approximately 75°, and increased with RF DC. The simulation results were validated using a dual-pH creatine-gel CEST phantom. In summary, our study provides a useful framework for optimizing CEST MRI experiments.
Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.
The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is criticalmore » to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.« less
Moderate temperature control technology for a lunar base
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.; Sridhar, K. R.; Gottmann, Matthias
1993-01-01
A parametric analysis is performed to compare different heat pump based thermal control systems for a Lunar Base. Rankine cycle and absorption cycle heat pumps are compared and optimized for a 100 kW cooling load. Variables include the use or lack of an interface heat exchanger, and different operating fluids. Optimization of system mass to radiator rejection temperature is performed. The results indicate a relatively small sensitivity of Rankine cycle system mass to these variables, with optimized system masses of about 6000 kg for the 100 kW thermal load. It is quantitaively demonstrated that absorption based systems are not mass competitive with Rankine systems.
Carnot cycle at finite power: attainability of maximal efficiency.
Allahverdyan, Armen E; Hovhannisyan, Karen V; Melkikh, Alexey V; Gevorkian, Sasun G
2013-08-02
We want to understand whether and to what extent the maximal (Carnot) efficiency for heat engines can be reached at a finite power. To this end we generalize the Carnot cycle so that it is not restricted to slow processes. We show that for realistic (i.e., not purposefully designed) engine-bath interactions, the work-optimal engine performing the generalized cycle close to the maximal efficiency has a long cycle time and hence vanishing power. This aspect is shown to relate to the theory of computational complexity. A physical manifestation of the same effect is Levinthal's paradox in the protein folding problem. The resolution of this paradox for realistic proteins allows to construct engines that can extract at a finite power 40% of the maximally possible work reaching 90% of the maximal efficiency. For purposefully designed engine-bath interactions, the Carnot efficiency is achievable at a large power.
Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod
Hut, R. A.; Beersma, D. G. M.
2011-01-01
Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a ‘clock’) that is synchronized (‘entrained’) to the environmental cycle by receptor mechanisms responding to relevant environmental signals (‘Zeitgeber’, i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or altitudes. PMID:21690131
Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities.
Haass, Nikolas K; Gabrielli, Brian
2017-07-01
The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lahart, Ian M; Lane, Andrew M; Hulton, Andrew; Williams, Karen; Godfrey, Richard; Pedlar, Charles; Wilson, Mathew G; Whyte, Gregory P
2013-01-01
Multiday ultra-endurance races present athletes with a significant number of physiological and psychological challenges. We examined emotions, the perceived functionality (optimal-dysfunctional) of emotions, strategies to regulate emotions, sleep quality, and energy intake-expenditure in a four-man team participating in the Race Across AMerica (RAAM); a 4856km continuous cycle race. Cyclists reported experiencing an optimal emotional state for less than 50% of total competition, with emotional states differing significantly between each cyclist over time. Coupled with this emotional disturbance, each cyclist experienced progressively worsening sleep deprivation and daily negative energy balances throughout the RAAM. Cyclists managed less than one hour of continuous sleep per sleep episode, high sleep latency and high percentage moving time. Of note, actual sleep and sleep efficiency were better maintained during longer rest periods, highlighting the importance of a race strategy that seeks to optimise the balance between average cycling velocity and sleep time. Our data suggests that future RAAM cyclists and crew should: 1) identify beliefs on the perceived functionality of emotions in relation to best (functional-optimal) and worst (dysfunctional) performance as the starting point to intervention work; 2) create a plan for support sufficient sleep and recovery; 3) create nutritional strategies that maintain energy intake and thus reduce energy deficits; and 4) prepare for the deleterious effects of sleep deprivation so that they are able to appropriately respond to unexpected stressors and foster functional working interpersonal relationships. Key PointsCompleting the Race Across AMerica (RAAM); a 4856km continuous cycle race associated with sleep disturbance, an energy-deficient state, and experiencing intense unwanted emotions.Cyclists reported experiencing an optimal emotional state for less than 50% of total competition and actual sleep and sleep efficiency was better maintained during longer rest periods.We suggest that future RAAM cyclists and crew should:Identify individual beliefs on the perceived functionality of emotional states in relation to best (optimal) and worst (dysfunctional) performance as the starting point to identifying if emotion regulation strategies should be initiated.Plan for enhanced sleep and recovery not just plan and train for maintaining a high average velocity;Create nutritional strategies that maintain energy intake and thus reduce energy deficits;Psychologically prepare cyclists and crew for the deleterious effects of sleep deprivation so that they both are able to appropriately respond to unexpected stressors and foster functional interpersonal working relationships.
Chen, Bailian; Reynolds, Albert C.
2018-03-11
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bailian; Reynolds, Albert C.
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
Optimization of controlled processes in combined-cycle plant (new developments and researches)
NASA Astrophysics Data System (ADS)
Tverskoy, Yu S.; Muravev, I. K.
2017-11-01
All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.
By the Light of the Moon: North Pacific Dolphins Optimize Foraging with the Lunar Cycle
NASA Astrophysics Data System (ADS)
Simonis, Anne Elizabeth
The influence of the lunar cycle on dolphin foraging behavior was investigated in the productive, southern California Current Ecosystem and the oligotrophic Hawaiian Archipelago. Passive acoustic recordings from 2009 to 2015 were analyzed to document the presence of echolocation from four dolphin species that demonstrate distinct foraging preferences and diving abilities. Visual observations of dolphins, cloud coverage, commercial landings of market squid (Doryteuthis opalescens) and acoustic backscatter of fish were also considered in the Southern California Bight. The temporal variability of echolocation is described from daily to annual timescales, with emphasis on the lunar cycle as an established behavioral driver for potential dolphin prey. For dolphins that foraged at night, the presence of echolocation was reduced during nights of the full moon and during times of night that the moon was present in the night sky. In the Southern California Bight, echolocation activity was reduced for both shallow- diving common dolphins (Delphinus delphis) and deeper-diving Risso's dolphins (Grampus griseus) during times of increased illumination. Seasonal differences in acoustic behavior for both species suggest a geographic shift in dolphin populations, shoaling scattering layers or prey switching behavior during warm months, whereby dolphins target prey that do not vertically migrate. In the Hawaiian Archipelago, deep-diving short-finned pilot whales (Globicephala macrorhynchus) and shallow-diving false killer whales (Pseudorca crassidens) also showed reduced echolocation behavior during periods of increased lunar illumination. In contrast to nocturnal foraging in the northwestern Hawaiian Islands, false killer whales in the main Hawaiian Islands mainly foraged during the day and the lunar cycle showed little influence on their nocturnal acoustic behavior. Different temporal patterns in false killer whale acoustic behavior between the main and northwestern Hawaiian Islands can likely be attributed to the presence of distinct populations or social clusters with dissimilar foraging strategies. Consistent observations of reduced acoustic activity during times of increased lunar illumination show that the lunar cycle is an important predictor for nocturnal dolphin foraging behavior. The result of this research advances the scientific understanding of how dolphins optimize their foraging behavior in response to the changing distribution and abundance of their prey.
Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices
NASA Astrophysics Data System (ADS)
Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong
2017-06-01
Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.
Niu, Longjian; Tao, Yan-Bin; Chen, Mao-Sheng; Fu, Qiantang; Li, Chaoqiong; Dong, Yuling; Wang, Xiulan; He, Huiying; Xu, Zeng-Fu
2015-06-03
Real-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt), BestKeeper, geNorm, and NormFinder) were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE), actin (ACT) and phospholipase A22 (PLA) were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13), cyclophilin (CYC) and elongation factor-1alpha (EF1α) were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII) were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi.
Khare, Rahul; Sala, Guillaume; Kinahan, Paul; Esposito, Giuseppe; Banovac, Filip; Cleary, Kevin; Enquobahrie, Andinet
2013-01-01
Positron emission tomography computed tomography (PET-CT) images are increasingly being used for guidance during percutaneous biopsy. However, due to the physics of image acquisition, PET-CT images are susceptible to problems due to respiratory and cardiac motion, leading to inaccurate tumor localization, shape distortion, and attenuation correction. To address these problems, we present a method for motion correction that relies on respiratory gated CT images aligned using a deformable registration algorithm. In this work, we use two deformable registration algorithms and two optimization approaches for registering the CT images obtained over the respiratory cycle. The two algorithms are the BSpline and the symmetric forces Demons registration. In the first optmization approach, CT images at each time point are registered to a single reference time point. In the second approach, deformation maps are obtained to align each CT time point with its adjacent time point. These deformations are then composed to find the deformation with respect to a reference time point. We evaluate these two algorithms and optimization approaches using respiratory gated CT images obtained from 7 patients. Our results show that overall the BSpline registration algorithm with the reference optimization approach gives the best results.
NASA Astrophysics Data System (ADS)
Engwall, E.; Glimelius, L.; Hynning, E.
2018-05-01
Non-small cell lung cancer (NSCLC) is a tumour type thought to be well-suited for proton radiotherapy. However, the lung region poses many problems related to organ motion and can for actively scanned beams induce severe interplay effects. In this study we investigate four mitigating rescanning techniques: (1) volumetric rescanning, (2) layered rescanning, (3) breath-sampled (BS) layered rescanning, and (4) continuous breath-sampled (CBS) layered rescanning. The breath-sampled methods will spread the layer rescans over a full breathing cycle, resulting in an improved averaging effect at the expense of longer treatment times. In CBS, we aim at further improving the averaging by delivering as many rescans as possible within one breathing cycle. The interplay effect was evaluated for 4D robustly optimized treatment plans (with and without rescanning) for seven NSCLC patients in the treatment planning system RayStation. The optimization and final dose calculation used a Monte Carlo dose engine to account for the density heterogeneities in the lung region. A realistic treatment delivery time structure given from the IBA ScanAlgo simulation tool served as basis for the interplay evaluation. Both slow (2.0 s) and fast (0.1 s) energy switching times were simulated. For all seven studied patients, rescanning improves the dose conformity to the target. The general trend is that the breath-sampled techniques are superior to layered and volumetric rescanning with respect to both target coverage and variability in dose to OARs. The spacing between rescans in our breath-sampled techniques is set at planning, based on the average breathing cycle length obtained in conjunction with CT acquisition. For moderately varied breathing cycle lengths between planning and delivery (up to 15%), the breath-sampled techniques still mitigate the interplay effect well. This shows the potential for smooth implementation at the clinic without additional motion monitoring equipment.
NASA Astrophysics Data System (ADS)
Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei
2017-08-01
Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery preventing financial, economic and resource loss that previously occurred.
An EOQ model for weibull distribution deterioration with time-dependent cubic demand and backlogging
NASA Astrophysics Data System (ADS)
Santhi, G.; Karthikeyan, K.
2017-11-01
In this article we introduce an economic order quantity model with weibull deterioration and time dependent cubic demand rate where holding costs as a linear function of time. Shortages are allowed in the inventory system are partially and fully backlogging. The objective of this model is to minimize the total inventory cost by using the optimal order quantity and the cycle length. The proposed model is illustrated by numerical examples and the sensitivity analysis is performed to study the effect of changes in parameters on the optimum solutions.
3D graphics hardware accelerator programming methods for real-time visualization systems
NASA Astrophysics Data System (ADS)
Souetov, Andrew E.
2001-02-01
The paper deals with new approaches in software design for creating real-time applications that use modern graphics acceleration hardware. The growing complexity of such type of software compels programmers to use different types of CASE systems in design and development process. The subject under discussion is integration of such systems in a development process, their effective use, and the combination of these new methods with the necessity to produce optimal codes. A method of simulation integration and modeling tools in real-time software development cycle is described.
3D graphics hardware accelerator programming methods for real-time visualization systems
NASA Astrophysics Data System (ADS)
Souetov, Andrew E.
2000-02-01
The paper deals with new approaches in software design for creating real-time applications that use modern graphics acceleration hardware. The growing complexity of such type of software compels programmers to use different types of CASE systems in design and development process. The subject under discussion is integration of such systems in a development process, their effective use, and the combination of these new methods with the necessity to produce optimal codes. A method of simulation integration and modeling tools in real-time software development cycle is described.
On the design of a radix-10 online floating-point multiplier
NASA Astrophysics Data System (ADS)
McIlhenny, Robert D.; Ercegovac, Milos D.
2009-08-01
This paper describes an approach to design and implement a radix-10 online floating-point multiplier. An online approach is considered because it offers computational flexibility not available with conventional arithmetic. The design was coded in VHDL and compiled, synthesized, and mapped onto a Virtex 5 FPGA to measure cost in terms of LUTs (look-up-tables) as well as the cycle time and total latency. The routing delay which was not optimized is the major component in the cycle time. For a rough estimate of the cost/latency characteristics, our design was compared to a standard radix-2 floating-point multiplier of equivalent precision. The results demonstrate that even an unoptimized radix-10 online design is an attractive implementation alternative for FPGA floating-point multiplication.
Lee, Fook Choon; Rangaiah, Gade Pandu; Ray, Ajay Kumar
2007-10-15
Bulk of the penicillin produced is used as raw material for semi-synthetic penicillin (such as amoxicillin and ampicillin) and semi-synthetic cephalosporins (such as cephalexin and cefadroxil). In the present paper, an industrial penicillin V bioreactor train is optimized for multiple objectives simultaneously. An industrial train, comprising a bank of identical bioreactors, is run semi-continuously in a synchronous fashion. The fermentation taking place in a bioreactor is modeled using a morphologically structured mechanism. For multi-objective optimization for two and three objectives, the elitist non-dominated sorting genetic algorithm (NSGA-II) is chosen. Instead of a single optimum as in the traditional optimization, a wide range of optimal design and operating conditions depicting trade-offs of key performance indicators such as batch cycle time, yield, profit and penicillin concentration, is successfully obtained. The effects of design and operating variables on the optimal solutions are discussed in detail. Copyright 2007 Wiley Periodicals, Inc.
Evolutionary algorithm for vehicle driving cycle generation.
Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott
2011-09-01
Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.
Aerodynamics of a Cycling Team in a Time Trial: Does the Cyclist at the Front Benefit?
ERIC Educational Resources Information Center
Iniguez-de-la Torre, A.; Iniguez, J.
2009-01-01
When seasonal journeys take place in nature, birds and fishes migrate in groups. This provides them not only with security but also a considerable saving of energy. The power they need to travel requires overcoming aerodynamic or hydrodynamic drag forces, which can be substantially reduced when the group travels in an optimal arrangement. Also in…
Buchner, Anton; Elsässer, Reiner; Bias, Peter
2014-11-01
This dose-ranging study was conducted to identify the optimal fixed dose of lipegfilgrastim compared with pegfilgrastim 6.0 mg for the provision of neutrophil support during myelosuppressive chemotherapy in patients with breast cancer. A phase 2 study was conducted in which 208 chemotherapy-naive patients were randomized to receive lipegfilgrastim 3.0, 4.5, or 6.0 mg or pegfilgrastim 6.0 mg. Study drugs were administered as a single subcutaneous injection on day 2 of each chemotherapy cycle (doxorubicin/docetaxel on day 1 for four 3-week cycles). The primary outcome measure was duration of severe neutropenia (DSN) in cycle 1. Patients treated with lipegfilgrastim experienced shorter DSN in cycle 1 with higher doses. The mean DSN was 0.76 days in the lipegfilgrastim 6.0-mg group and 0.87 days in the pegfilgrastim 6.0-mg group, with no significant differences between treatment groups. Treatment with lipegfilgrastim 6.0 mg was consistently associated with a higher absolute neutrophil count (ANC) at nadir, shorter ANC recovery time, and a similar safety and tolerability profile compared with pegfilgrastim. This phase 2 study demonstrated that lipegfilgrastim 6.0 mg is the optimal dose for patients with breast cancer and provides neutrophil support that is at least equivalent to the standard 6.0-mg fixed dose of pegfilgrastim.
Use of soybean oil and ammonium sulfate additions to optimize secondary metabolite production.
Junker, B; Mann, Z; Gailliot, P; Byrne, K; Wilson, J
1998-12-05
A valine-overproducing mutant (MA7040, Streptomyces hygroscopicus) was found to produce 1.5 to 2.0 g/L of the immunoregulant, L-683,590, at the 0.6 m3 fermentation scale in a simple batch process using soybean oil and ammonium sulfate-based GYG5 medium. Levels of both lower (L-683,795) and higher (HH1 and HH2) undesirable homolog levels were controlled adequately. This batch process was utilized to produce broth economically at the 19 m3 fermentation scale. Material of acceptable purity was obtained without the multiple pure crystallizations previously required for an earlier culture, MA6678, requiring valine supplementation for impurity control. Investigations at the 0.6 m3 fermentation scale were conducted, varying agitation, pH, initial soybean oil/ammonium sulfate charges, and initial aeration rate to further improve growth and productivity. Mid-cycle ammonia levels and lipase activity appeared to have an important role. Using mid-cycle soybean oil additions, a titer of 2.3 g/L of L-683,590 was obtained, while titers reached 2.7 g/L using mid-cycle soybean oil and ammonium sulfate additions. Both higher and lower homolog levels remained acceptable during this fed-batch process. Optimal timing of mid-cycle oil and ammonium sulfate additions was considered a critical factor to further titer improvements. Copyright 1998 John Wiley & Sons, Inc.
A two-step method for developing a control rod program for boiling water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taner, M.S.; Levine, S.H.; Hsiao, M.Y.
1992-01-01
This paper reports on a two-step method that is established for the generation of a long-term control rod program for boiling water reactors (BWRs). The new method assumes a time-variant target power distribution in core depletion. In the new method, the BWR control rod programming is divided into two steps. In step 1, a sequence of optimal, exposure-dependent Haling power distribution profiles is generated, utilizing the spectral shift concept. In step 2, a set of exposure-dependent control rod patterns is developed by using the Haling profiles generated at step 1 as a target. The new method is implemented in amore » computer program named OCTOPUS. The optimization procedure of OCTOPUS is based on the method of approximation programming, in which the SIMULATE-E code is used to determine the nucleonics characteristics of the reactor core state. In a test in cycle length over a time-invariant, target Haling power distribution case because of a moderate application of spectral shift. No thermal limits of the core were violated. The gain in cycle length could be increased further by broadening the extent of the spetral shift.« less
Duodu, Godfred Odame; Goonetilleke, Ashantha; Ayoko, Godwin A
2016-04-01
Organochlorine pesticides (OCPs) are ubiquitous environmental contaminants with adverse impacts on aquatic biota, wildlife and human health even at low concentrations. However, conventional methods for their determination in river sediments are resource intensive. This paper presents an approach that is rapid and also reliable for the detection of OCPs. Accelerated Solvent Extraction (ASE) with in-cell silica gel clean-up followed by Triple Quadrupole Gas Chromatograph Mass Spectrometry (GCMS/MS) was used to recover OCPs from sediment samples. Variables such as temperature, solvent ratio, adsorbent mass and extraction cycle were evaluated and optimized for the extraction. With the exception of Aldrin, which was unaffected by any of the variables evaluated, the recovery of OCPs from sediment samples was largely influenced by solvent ratio and adsorbent mass and, to some extent, the number of cycles and temperature. The optimized conditions for OCPs extraction in sediment with good recoveries were determined to be 4 cycles, 4.5 g of silica gel, 105 °C, and 4:3 v/v DCM: hexane mixture. With the exception of two compounds (α-BHC and Aldrin) whose recoveries were low (59.73 and 47.66% respectively), the recovery of the other pesticides were in the range 85.35-117.97% with precision <10% RSD. The method developed significantly reduces sample preparation time, the amount of solvent used, matrix interference, and is highly sensitive and selective. Copyright © 2015 Elsevier B.V. All rights reserved.
Bosca, Serena; Barresi, Antonello A; Fissore, Davide
2013-10-01
This paper is focused on the use of an innovative Process Analytical Technology for the fast design and optimization of freeze-drying cycles for pharmaceuticals. The tool is based on a soft-sensor, a device that uses the experimental measure of product temperature during freeze-drying, a mathematical model of the process, and the Extended Kalman Filter algorithm to estimate the sublimation flux, the residual amount of ice in the vial, and some model parameters (heat and mass transfer coefficients). The accuracy of the estimations provided by the soft-sensor has been shown using as test case aqueous solutions containing different excipients (sucrose, polyvinylpyrrolidone), processed at various operating conditions, pointing out that the soft-sensor allows a fast estimation of model parameters and product dynamics without involving expensive hardware or time consuming analysis. The possibility of using the soft-sensor to calculate in-line (or off-line) the design space of the primary drying phase is here presented and discussed. Results evidences that by this way, it is possible to identify the values of the heating fluid temperature that maintain product temperature below the limit value, as well as the operating conditions that maximize the sublimation flux. Various experiments have been carried out to test the effectiveness of the proposed approach for a fast design of the cycle, evidencing that drying time can be significantly reduced, without impairing product quality. Copyright © 2013 Elsevier B.V. All rights reserved.
Quintero, Catherine; Kariv, Ilona
2009-06-01
To meet the needs of the increasingly rapid and parallelized lead optimization process, a fully integrated local compound storage and liquid handling system was designed and implemented to automate the generation of assay-ready plates directly from newly submitted and cherry-picked compounds. A key feature of the system is the ability to create project- or assay-specific compound-handling methods, which provide flexibility for any combination of plate types, layouts, and plate bar-codes. Project-specific workflows can be created by linking methods for processing new and cherry-picked compounds and control additions to produce a complete compound set for both biological testing and local storage in one uninterrupted workflow. A flexible cherry-pick approach allows for multiple, user-defined strategies to select the most appropriate replicate of a compound for retesting. Examples of custom selection parameters include available volume, compound batch, and number of freeze/thaw cycles. This adaptable and integrated combination of software and hardware provides a basis for reducing cycle time, fully automating compound processing, and ultimately increasing the rate at which accurate, biologically relevant results can be produced for compounds of interest in the lead optimization process.
Adaptive synchronized switch damping on an inductor: a self-tuning switching law
NASA Astrophysics Data System (ADS)
Kelley, Christopher R.; Kauffman, Jeffrey L.
2017-03-01
Synchronized switch damping (SSD) techniques exploit low-power switching between passive circuits connected to piezoelectric material to reduce structural vibration. In the classical implementation of SSD, the piezoelectric material remains in an open circuit for the majority of the vibration cycle and switches briefly to a shunt circuit at every displacement extremum. Recent research indicates that this switch timing is only optimal for excitation exactly at resonance and points to more general optimal switch criteria based on the phase of the displacement and the system parameters. This work proposes a self-tuning approach that implements the more general optimal switch timing for synchronized switch damping on an inductor (SSDI) without needing any knowledge of the system parameters. The law involves a gradient-based search optimization that is robust to noise and uncertainties in the system. Testing of a physical implementation confirms this law successfully adapts to the frequency and parameters of the system. Overall, the adaptive SSDI controller provides better off-resonance steady-state vibration reduction than classical SSDI while matching performance at resonance.
Faridnasr, Maryam; Ghanbari, Bastam; Sassani, Ardavan
2016-05-01
A novel approach was applied for optimization of a moving-bed biofilm sequencing batch reactor (MBSBR) to treat sugar-industry wastewater (BOD5=500-2500 and COD=750-3750 mg/L) at 2-4 h of cycle time (CT). Although the experimental data showed that MBSBR reached high BOD5 and COD removal performances, it failed to achieve the standard limits at the mentioned CTs. Thus, optimization of the reactor was rendered by kinetic computational modeling and using statistical error indicator normalized root mean square error (NRMSE). The results of NRMSE revealed that Stover-Kincannon (error=6.40%) and Grau (error=6.15%) models provide better fits to the experimental data and may be used for CT optimization in the reactor. The models predicted required CTs of 4.5, 6.5, 7 and 7.5 h for effluent standardization of 500, 1000, 1500 and 2500 mg/L influent BOD5 concentrations, respectively. Similar pattern of the experimental data also confirmed these findings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of Data Cubes for Improving Detection of Water Cycle Extreme Events
NASA Technical Reports Server (NTRS)
Albayrak, Arif; Teng, William
2015-01-01
As part of an ongoing NASA-funded project to remove a longstanding barrier to accessing NASA data (i.e., accessing archived time-step array data as point-time series), for the hydrology and other point-time series-oriented communities, "data cubes" are created from which time series files (aka "data rods") are generated on-the-fly and made available as Web services from the Goddard Earth Sciences Data and Information Services Center (GES DISC). Data cubes are data as archived rearranged into spatio-temporal matrices, which allow for easy access to the data, both spatially and temporally. A data cube is a specific case of the general optimal strategy of reorganizing data to match the desired means of access. The gain from such reorganization is greater the larger the data set. As a use case of our project, we are leveraging existing software to explore the application of the data cubes concept to machine learning, for the purpose of detecting water cycle extreme events, a specific case of anomaly detection, requiring time series data. We investigate the use of support vector machines (SVM) for anomaly classification. We show an example of detection of water cycle extreme events, using data from the Tropical Rainfall Measuring Mission (TRMM).
Mixture optimization for mixed gas Joule-Thomson cycle
NASA Astrophysics Data System (ADS)
Detlor, J.; Pfotenhauer, J.; Nellis, G.
2017-12-01
An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.
NASA Astrophysics Data System (ADS)
Wang, H.; Li, X.; Xiao, J.; Ma, M.
2017-12-01
Arid and semi-arid ecosystems cover more than one-third of the Earth's land surface, it is of great important to the global carbon cycle. However, the magnitude of carbon sequestration and its contribution to global atmospheric carbon cycle is poorly understood due to the worldwide paucity of measurements of carbon exchange in the arid ecosystems. Accurate and continuous monitoring the production of arid ecosystem is of great importance for regional carbon cycle estimation. The MOD17A2 product provides high frequency observations of terrestrial Gross Primary Productivity (GPP) over the world. Although there have been plenty of studies to validate the MODIS GPP products with ground based measurements over a range of biome types, few have comprehensively validated the performance of MODIS estimates in arid and semi-arid ecosystems. Thus, this study examined the performance of the MODIS-derived GPP comparing with the EC observed GPP at different timescales for the main arid ecosystems in the arid and semi-arid ecosystems in China, and optimized the performance of the MODIS GPP calculations by using the in-situ metrological forcing data, and optimization of biome-specific parameters with the Bayesian approach. Our result revealed that the MOD17 algorithm could capture the broad trends of GPP at 8-day time scales for all investigated sites on the whole. However, the GPP product was underestimated in most ecosystems in the arid region, especially the irrigated cropland and forest ecosystems, while the desert ecosystem was overestimated in the arid region. On the annual time scale, the best performance was observed in grassland and cropland, followed by forest and desert ecosystems. On the 8-day timescale, the RMSE between MOD17 products and in-situ flux observations of all sites was 2.22 gC/m2/d, and R2 was 0.69. By using the in-situ metrological data driven, optimizing the biome-based parameters of the algorithm, we improved the performances of the MODIS GPP calculation over the main ecosystems in arid region of China.
Optimization of Adhesive Pastes for Dental Caries Prevention.
Sodata, Patteera; Juntavee, Apa; Juntavee, Niwut; Peerapattana, Jomjai
2017-11-01
Dental caries prevention products available on the market contain only remineralizing agents or antibacterial agents. This study aimed to develop adhesive pastes containing calcium phosphate and α-mangostin for dental caries prevention using the optimization technique. Calcium phosphate was used as a remineralizing agent, and extracted α-mangostin was used as an antibacterial agent. The effect of the independent variables, which were fumed silica, Eudragit ® EPO, polyethylene glycol, and ethyl alcohol, on the responses was investigated. The drying time, erosion rate, calcium release rate, and α-mangostin release rate were established as the measured responses. An equation and a model of the relationship were constructed. An optimal formulation was obtained, and its effect on dental caries prevention was investigated using the pH-cycling model. The quadratic equation revealed that the drying time, calcium release rate, and α-mangostin release rate tended to decrease when increasing the fumed silica and decreasing other factors. The erosion rate tended to increase when decreasing Eudragit ® EPO and increasing other factors. The observed responses of the optimal adhesive pastes were not significantly different from the predicted responses. This result demonstrated that optimization is an efficient technique in the formulation development of the adhesive pastes. In addition, the optimal adhesive pastes could enhance acid resistance activity to the tooth enamel.
Strengthening the revenue cycle: a 4-step method for optimizing payment.
Clark, Jonathan J
2008-10-01
Four steps for enhancing the revenue cycle to ensure optimal payment are: *Establish key performance indicator dashboards in each department that compare current with targeted performance; *Create proper organizational structures for each department; *Ensure that high-performing leaders are hired in all management and supervisory positions; *Implement efficient processes in underperforming operations.
Performance analysis of quantum Diesel heat engines with a two-level atom as working substance
NASA Astrophysics Data System (ADS)
Huang, X. L.; Shang, Y. F.; Guo, D. Y.; Yu, Qian; Sun, Qi
2017-07-01
A quantum Diesel cycle, which consists of one quantum isobaric process, one quantum isochoric process and two quantum adiabatic processes, is established with a two-level atom as working substance. The parameter R in this model is defined as the ratio of the time in quantum isochoric process to the timescale for the potential width movement. The positive work condition, power output and efficiency are obtained, and the optimal performance is analyzed with different R. The effects of dissipation, the mixed state in the cycle and the results of other working substances are also discussed at the end of this analysis.
Shirasu, Naoto; Kuroki, Masahide
2014-01-01
We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.
A study of power cycles using supercritical carbon dioxide as the working fluid
NASA Astrophysics Data System (ADS)
Schroder, Andrew Urban
A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a theoretical recuperated Lenoir cycle using supercritical carbon dioxide as the working fluid. The real fluid cycle analysis code was also enhanced to study a combined cycle engine cascade. Two engine cascade configurations were studied. The first consisted of a traditional open loop gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 65.0% using a peak temperature of 1,890K [1,617°C]. The second configuration consisted of a hybrid natural gas powered solid oxide fuel cell and gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 73.1%. Both configurations had a minimum temperature of 306K [33°C]. The hybrid stochastic and gradient based optimization technique was used to optimize all engine design parameters for each engine in the cascade such that the entire engine cascade achieved the maximum thermal efficiency. The parallel design exploration mode was also utilized in order to understand the impact of different design parameters on the overall engine cascade thermal efficiency. Two dimensional conjugate heat transfer (CHT) numerical simulations of a straight, equal height channel heat exchanger using supercritical carbon dioxide were conducted at various Reynolds numbers and channel lengths.
Extended Pulse-Powered Humidity-Freeze Cycling for Testing Module-Level Power Electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hacke, Peter L; Rodriguez, Miguel; Kempe, Michael D
An EMI suppression capacitor (polypropylene film type) failed by 'popcorning' due to vapor outgassing in pulse powered humidity-freeze cycles. No shorts or shunts could be detected despite mildly corroded metallization visible in the failed capacitor. Humidity-freeze cycling is optimized to break into moisture barriers. However, further studies will be required on additional module level power electronic (MLPE) devices to optimize the stress testing for condensation to precipitate any weakness to short circuiting and other humidity/bias failure modes.
NASA Astrophysics Data System (ADS)
Fu, Rong-Huan; Zhang, Xing
2016-09-01
Supercritical carbon dioxide operated in a Brayton cycle offers a numerous of potential advantages for a power generation system, and a lot of thermodynamics analyses have been conducted to increase its efficiency. Because there are a lot of heat-absorbing and heat-lossing subprocesses in a practical thermodynamic cycle and they are implemented by heat exchangers, it will increase the gross efficiency of the whole power generation system to optimize the system combining thermodynamics and heat transfer theory. This paper analyzes the influence of the performance of heat exchangers on the actual efficiency of an ideal Brayton cycle with a simple configuration, and proposes a new method to optimize the power generation system, which aims at the minimum energy consumption. Although the method is operated only for the ideal working fluid in this paper, its merits compared to that only with thermodynamic analysis are fully shown.
Alfa, Michelle J; Olson, Nancy
2014-02-01
Because automated instrument washer-disinfectors (WD) are widely used in health care to reprocess a variety of medical instruments, we developed a study to compare 3 cleaning indicators to determine whether they detected suboptimal temperature, time, enzymatic detergent, and fluid action in a washer-disinfector. The Miele WD was used for this comparison. One optimal cycle and 14 cycles with suboptimal enzymatic detergent, cleaning time, temperature, or inactive spray arms were evaluated. The cleaning indicators evaluated included the following: Pinnacle Monitor for Automated Enzymatic Cleaning Process (PNCL), Wash-Checks (WC), and TOSI. The scoring system for all 3 indicators was harmonized to a common scale. Soiled tweezers were included in each cycle evaluated. The PNCL, TOSI, and WC cleaning indicators showed significantly more failures at 40°C compared with 60°C (100% vs 0% for PNCL, 17% vs 0% for TOSI, and 60% vs 22% for WC, respectively). There were significantly more failures at suboptimal temperatures with a 2- versus 4-minute cycle (100% vs 0% for PNCL, 17% vs 0% for TOSI, and 17% vs 0% for WC, respectively, for 40°C cycles). Despite suboptimal cleaning cycles, all soiled tweezers looked clean. All 3 cleaning indicators responded to suboptimal WD conditions; however, the PNCL was the most affected by alterations in the cycle conditions evaluated. In simulated use testing, cleaning indicators provided a more sensitive audit tool compared with visual inspection of soiled instruments after automated cleaning. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Leong, Wai Fun; Che Man, Yaakob B; Lai, Oi Ming; Long, Kamariah; Misran, Misni; Tan, Chin Ping
2009-09-23
The purpose of this study was to optimize the parameters involved in the production of water-soluble phytosterol microemulsions for use in the food industry. In this study, response surface methodology (RSM) was employed to model and optimize four of the processing parameters, namely, the number of cycles of high-pressure homogenization (1-9 cycles), the pressure used for high-pressure homogenization (100-500 bar), the evaporation temperature (30-70 degrees C), and the concentration ratio of microemulsions (1-5). All responses-particle size (PS), polydispersity index (PDI), and percent ethanol residual (%ER)-were well fit by a reduced cubic model obtained by multiple regression after manual elimination. The coefficient of determination (R(2)) and absolute average deviation (AAD) value for PS, PDI, and %ER were 0.9628 and 0.5398%, 0.9953 and 0.7077%, and 0.9989 and 1.0457%, respectively. The optimized processing parameters were 4.88 (approximately 5) homogenization cycles, homogenization pressure of 400 bar, evaporation temperature of 44.5 degrees C, and concentration ratio of microemulsions of 2.34 cycles (approximately 2 cycles) of high-pressure homogenization. The corresponding responses for the optimized preparation condition were a minimal particle size of 328 nm, minimal polydispersity index of 0.159, and <0.1% of ethanol residual. The chi-square test verified the model, whereby the experimental values of PS, PDI, and %ER agreed with the predicted values at a 0.05 level of significance.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry; Chu, Shih-I.
2013-05-01
We study transient absorption of extreme ultraviolet (XUV) attosecond pulses in presence of near-infrared (NIR) laser fields by analyzing the population and photon emission of excited atomic energy levels. We consider He atoms and apply a self-interaction-free fully ab initio time-dependent density functional theory (TDDFT). Our method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential and incorporates explicitly the self-interaction correction. We focus on the sub-cycle (with respect to NIR field) temporal behavior of the population of the excited energy levels and related dynamics of photon emission. We observe and identify sub-cycle shifts in the photon emission spectrum as a function of the time delay between the XUV and NIR pulses. In the region where the two pulses overlap, the photon emission peaks have an oscillatory structure with a period of 1.3 fs, which is half of the NIR laser optical cycle. Such a structure was also observed in recent experiments on transient absorption. This work was partially supported by DOE and by MOE-NSC-NTU-Taiwan.
The role of elastic energy in activities with high force and power requirements: a brief review.
Wilson, Jacob M; Flanagan, Eamonn P
2008-09-01
The purpose of this article is to provide strength and conditioning practitioners with an understanding of the role of elastic energy in activities with high force and power requirements. Specifically, the article covers 1) the nature of elasticity and its application to human participants, 2) the role of elastic energy in activities requiring a stretch-shorten cycle such as the vertical jump, 3) the role of muscular stiffness in athletic performance, 4) the control of muscular stiffness through feedforward and feedback mechanisms, and 5) factors affecting muscular stiffness. Finally, practical applications are provided. In this section, it is suggested that the storage and reuse of elastic energy is optimized at relatively higher levels of stiffness. Because stiffness decreases as fatigue ensues as well as with stretching before an event, the article emphasizes the need for proper preparation phases in a periodized cycle and the avoidance of long static stretches before high-force activities. The importance of teaching athletes to transition from eccentric to concentric movements with minimal time delays is also proposed due to the finding that time delays appear to decrease the reuse of elastic energy. In addition to teaching within the criterion tasks, evidence is provided that minimizing transitions in plyometric training, a technique demonstrated to increase musculotendinous stiffness, can optimize power output in explosive movements. Finally, evidence is provided that training and teaching programs designed to optimize muscular stiffness may protect athletes against sports-related injuries.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroki; Hasegawa, Hideyuki; Kanai, Hiroshi
2011-07-01
In most methods for evaluation of cardiac function based on echocardiography, the heart wall is currently identified manually by an operator. However, this task is very time-consuming and suffers from inter- and intraobserver variability. The present paper proposes a method that uses multiple features of ultrasonic echo signals for automated identification of the heart wall region throughout an entire cardiac cycle. In addition, the optimal cardiac phase to select a frame of interest, i.e., the frame for the initiation of tracking, was determined. The heart wall region at the frame of interest in this cardiac phase was identified by the expectation-maximization (EM) algorithm, and heart wall regions in the following frames were identified by tracking each point classified in the initial frame as the heart wall region using the phased tracking method. The results for two subjects indicate the feasibility of the proposed method in the longitudinal axis view of the heart.
Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.
2012-11-01
Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.
A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode
Faes, Antonin; Hessler-Wyser, Aïcha; Zryd, Amédée; Van Herle, Jan
2012-01-01
Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles) of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted. PMID:24958298
Experimental Optimization of Exposure Index and Quality of Service in Wlan Networks.
Plets, David; Vermeeren, Günter; Poorter, Eli De; Moerman, Ingrid; Goudos, Sotirios K; Luc, Martens; Wout, Joseph
2017-07-01
This paper presents the first real-life optimization of the Exposure Index (EI). A genetic optimization algorithm is developed and applied to three real-life Wireless Local Area Network scenarios in an experimental testbed. The optimization accounts for downlink, uplink and uplink of other users, for realistic duty cycles, and ensures a sufficient Quality of Service to all users. EI reductions up to 97.5% compared to a reference configuration can be achieved in a downlink-only scenario, in combination with an improved Quality of Service. Due to the dominance of uplink exposure and the lack of WiFi power control, no optimizations are possible in scenarios that also consider uplink traffic. However, future deployments that do implement WiFi power control can be successfully optimized, with EI reductions up to 86% compared to a reference configuration and an EI that is 278 times lower than optimized configurations under the absence of power control. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zu, Ge; Zhang, Rongrui; Yang, Lei; Ma, Chunhui; Zu, Yuangang; Wang, Wenjie; Zhao, Chunjian
2012-01-01
Ionic liquid based, ultrasound-assisted extraction was successfully applied to the extraction of phenolcarboxylic acids, carnosic acid and rosmarinic acid, from Rosmarinus officinalis. Eight ionic liquids, with different cations and anions, were investigated in this work and [C8mim]Br was selected as the optimal solvent. Ultrasound extraction parameters, including soaking time, solid–liquid ratio, ultrasound power and time, and the number of extraction cycles, were discussed by single factor experiments and the main influence factors were optimized by response surface methodology. The proposed approach was demonstrated as having higher efficiency, shorter extraction time and as a new alternative for the extraction of carnosic acid and rosmarinic acid from R. officinalis compared with traditional reference extraction methods. Ionic liquids are considered to be green solvents, in the ultrasound-assisted extraction of key chemicals from medicinal plants, and show great potential. PMID:23109836
Ni, Jun; Dong, Lixiang; Jiang, Zhifang; Yang, Xiuli; Chen, Ziying; Wu, Yuhuan; Xu, Maojun
2018-01-01
Ginkgo leaves are raw materials for flavonoid extraction. Thus, the timing of their harvest is important to optimize the extraction efficiency, which benefits the pharmaceutical industry. In this research, we compared the transcriptomes of Ginkgo leaves harvested at midday and midnight. The differentially expressed genes with the highest probabilities in each step of flavonoid biosynthesis were down-regulated at midnight. Furthermore, real-time PCR corroborated the transcriptome results, indicating the decrease in flavonoid biosynthesis at midnight. The flavonoid profiles of Ginkgo leaves harvested at midday and midnight were compared, and the total flavonoid content decreased at midnight. A detailed analysis of individual flavonoids showed that most of their contents were decreased by various degrees. Our results indicated that circadian rhythms affected the flavonoid contents in Ginkgo leaves, which provides valuable information for optimizing their harvesting times to benefit the pharmaceutical industry.
Optimizing process and equipment efficiency using integrated methods
NASA Astrophysics Data System (ADS)
D'Elia, Michael J.; Alfonso, Ted F.
1996-09-01
The semiconductor manufacturing industry is continually riding the edge of technology as it tries to push toward higher design limits. Mature fabs must cut operating costs while increasing productivity to remain profitable and cannot justify large capital expenditures to improve productivity. Thus, they must push current tool production capabilities to cut manufacturing costs and remain viable. Working to continuously improve mature production methods requires innovation. Furthermore, testing and successful implementation of these ideas into modern production environments require both supporting technical data and commitment from those working with the process daily. At AMD, natural work groups (NWGs) composed of operators, technicians, engineers, and supervisors collaborate to foster innovative thinking and secure commitment. Recently, an AMD NWG improved equipment cycle time on the Genus tungsten silicide (WSi) deposition system. The team used total productive manufacturing (TPM) to identify areas for process improvement. Improved in-line equipment monitoring was achieved by constructing a real time overall equipment effectiveness (OEE) calculator which tracked equipment down, idle, qualification, and production times. In-line monitoring results indicated that qualification time associated with slow Inspex turn-around time and machine downtime associated with manual cleans contributed greatly to reduced availability. Qualification time was reduced by 75% by implementing a new Inspex monitor pre-staging technique. Downtime associated with manual cleans was reduced by implementing an in-situ plasma etch back to extend the time between manual cleans. A designed experiment was used to optimize the process. Time between 18 hour manual cleans has been improved from every 250 to every 1500 cycles. Moreover defect density realized a 3X improvement. Overall, the team achieved a 35% increase in tool availability. This paper details the above strategies and accomplishments.
Li, Wei; Zhao, Li-Chun; Sun, Yin-Shi; Lei, Feng-Jie; Wang, Zi; Gui, Xiong-Bin; Wang, Hui
2012-01-01
In this work, pressurized liquid extraction (PLE) of three acetophenones (4-hydroxyacetophenone, baishouwubenzophenone, and 2,4-dihydroxyacetophenone) from Cynanchum bungei (ACB) were investigated. The optimal conditions for extraction of ACB were obtained using a Box-Behnken design, consisting of 17 experimental points, as follows: Ethanol (100%) as the extraction solvent at a temperature of 120 °C and an extraction pressure of 1500 psi, using one extraction cycle with a static extraction time of 17 min. The extracted samples were analyzed by high-performance liquid chromatography using an UV detector. Under this optimal condition, the experimental values agreed with the predicted values by analysis of variance. The ACB extraction yield with optimal PLE was higher than that obtained by soxhlet extraction and heat-reflux extraction methods. The results suggest that the PLE method provides a good alternative for acetophenone extraction. PMID:23203079
High Performance Artificial Muscles Using Nanofiber and Hybrid Yarns
2015-07-14
provide 3.2% energy conversion efficiency (twice that of our CNT fiber muscles and 10X that of conducting polymer muscles ). They maintain stroke without...rubber dielectric muscle layer in twisted fiber drives torsional actuation. (2) One hundred times higher torsional stroke per muscle length...artificial muscles that provide giant stroke, fast response, high force generation, and long cycle life while optimizing energy conversion efficiencies
Computer Modeling and Optimization of OBOGS with Contaminants
1988-02-15
respect to system parameters such as cycle time and bed and valve dimensions. _-- 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY...schematic (Solenoid valves are numbered 1 to 4 from the top) ..................................................... 46 Figure 12: Dual bed apparatus...most basic continuous PSA system is shown in Figure 1. Here a switching valve imposes supply pressure on Bed #1 and exhaust pressure on Bed #2. As the
Crystal Microbalance Monitors Relative Humidity
NASA Technical Reports Server (NTRS)
Yang, L. C.
1984-01-01
Sensor monitors water evaporation in industrial drying processes. Measured adsorption isotherm for instrument essentially linear over entire range of relative humidity. Testing at each temperature setting less than half hour for full relative-humidity range, with estimated frequency response time less than 10 seconds. Used to measure relative humidity of ambient atmosphere near drying paper, food textile fabrics and pulp to optimize water-drying portion of processing cycle.
Thermal-Aware Test Access Mechanism and Wrapper Design Optimization for System-on-Chips
NASA Astrophysics Data System (ADS)
Yu, Thomas Edison; Yoneda, Tomokazu; Chakrabarty, Krishnendu; Fujiwara, Hideo
Rapid advances in semiconductor manufacturing technology have led to higher chip power densities, which places greater emphasis on packaging and temperature control during testing. For system-on-chips, peak power-based scheduling algorithms have been used to optimize tests under specified power constraints. However, imposing power constraints does not always solve the problem of overheating due to the non-uniform distribution of power across the chip. This paper presents a TAM/Wrapper co-design methodology for system-on-chips that ensures thermal safety while still optimizing the test schedule. The method combines a simplified thermal-cost model with a traditional bin-packing algorithm to minimize test time while satisfying temperature constraints. Furthermore, for temperature checking, thermal simulation is done using cycle-accurate power profiles for more realistic results. Experiments show that even a minimal sacrifice in test time can yield a considerable decrease in test temperature as well as the possibility of further lowering temperatures beyond those achieved using traditional power-based test scheduling.
Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems
NASA Astrophysics Data System (ADS)
Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya
2017-02-01
Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.
NASA Astrophysics Data System (ADS)
Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.
2012-12-01
Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.
Method for depleting BWRs using optimal control rod patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taner, M.S.; Levine, S.H.; Hsiao, M.Y.
1991-01-01
Control rod (CR) programming is an essential core management activity for boiling water reactors (BWRs). After establishing a core reload design for a BWR, CR programming is performed to develop a sequence of exposure-dependent CR patterns that assure the safe and effective depletion of the core through a reactor cycle. A time-variant target power distribution approach has been assumed in this study. The authors have developed OCTOPUS to implement a new two-step method for designing semioptimal CR programs for BWRs. The optimization procedure of OCTOPUS is based on the method of approximation programming and uses the SIMULATE-E code for nucleonicsmore » calculations.« less
The Pasinetti-Solow Growth Model with Optimal Saving Behaviour: A Local Bifurcation Analysis
NASA Astrophysics Data System (ADS)
Commendatore, P.; Palmisani, C.
We present a discrete time version of the Pasinetti-Solow economic growth model. Workers and capitalists are assumed to save on the basis of rational choices. Workers face a finite time horizon and base their consumption choices on a life-cycle motive, whereas capitalists behave like an infinitely-lived dynasty. The accumulation of both capitalists' and workers' wealth through time is reduced to a two-dimensional map whose local asymptotic stability properties are studied. Various types of bifurcation emerge (flip, Neimark-Sacker, saddle-node and transcritical): a precondition for chaotic dynamics.
Incentive-compatible demand-side management for smart grids based on review strategies
NASA Astrophysics Data System (ADS)
Xu, Jie; van der Schaar, Mihaela
2015-12-01
Demand-side load management is able to significantly improve the energy efficiency of smart grids. Since the electricity production cost depends on the aggregate energy usage of multiple consumers, an important incentive problem emerges: self-interested consumers want to increase their own utilities by consuming more than the socially optimal amount of energy during peak hours since the increased cost is shared among the entire set of consumers. To incentivize self-interested consumers to take the socially optimal scheduling actions, we design a new class of protocols based on review strategies. These strategies work as follows: first, a review stage takes place in which a statistical test is performed based on the daily prices of the previous billing cycle to determine whether or not the other consumers schedule their electricity loads in a socially optimal way. If the test fails, the consumers trigger a punishment phase in which, for a certain time, they adjust their energy scheduling in such a way that everybody in the consumer set is punished due to an increased price. Using a carefully designed protocol based on such review strategies, consumers then have incentives to take the socially optimal load scheduling to avoid entering this punishment phase. We rigorously characterize the impact of deploying protocols based on review strategies on the system's as well as the users' performance and determine the optimal design (optimal billing cycle, punishment length, etc.) for various smart grid deployment scenarios. Even though this paper considers a simplified smart grid model, our analysis provides important and useful insights for designing incentive-compatible demand-side management schemes based on aggregate energy usage information in a variety of practical scenarios.
A More Efficient Contextuality Distillation Protocol
NASA Astrophysics Data System (ADS)
Meng, Hui-xian; Cao, Huai-xin; Wang, Wen-hua; Fan, Ya-jing; Chen, Liang
2018-03-01
Based on the fact that both nonlocality and contextuality are resource theories, it is natural to ask how to amplify them more efficiently. In this paper, we present a contextuality distillation protocol which produces an n-cycle box B ∗ B ' from two given n-cycle boxes B and B '. It works efficiently for a class of contextual n-cycle ( n ≥ 4) boxes which we termed as "the generalized correlated contextual n-cycle boxes". For any two generalized correlated contextual n-cycle boxes B and B ', B ∗ B ' is more contextual than both B and B '. Moreover, they can be distilled toward to the maximally contextual box C H n as the times of iteration goes to infinity. Among the known protocols, our protocol has the strongest approximate ability and is optimal in terms of its distillation rate. What is worth noting is that our protocol can witness a larger set of nonlocal boxes that make communication complexity trivial than the protocol in Brunner and Skrzypczyk (Phys. Rev. Lett. 102, 160403 2009), this might be helpful for exploring the problem that why quantum nonlocality is limited.
A More Efficient Contextuality Distillation Protocol
NASA Astrophysics Data System (ADS)
Meng, Hui-xian; Cao, Huai-xin; Wang, Wen-hua; Fan, Ya-jing; Chen, Liang
2017-12-01
Based on the fact that both nonlocality and contextuality are resource theories, it is natural to ask how to amplify them more efficiently. In this paper, we present a contextuality distillation protocol which produces an n-cycle box B ∗ B ' from two given n-cycle boxes B and B '. It works efficiently for a class of contextual n-cycle (n ≥ 4) boxes which we termed as "the generalized correlated contextual n-cycle boxes". For any two generalized correlated contextual n-cycle boxes B and B ', B ∗ B ' is more contextual than both B and B '. Moreover, they can be distilled toward to the maximally contextual box C H n as the times of iteration goes to infinity. Among the known protocols, our protocol has the strongest approximate ability and is optimal in terms of its distillation rate. What is worth noting is that our protocol can witness a larger set of nonlocal boxes that make communication complexity trivial than the protocol in Brunner and Skrzypczyk (Phys. Rev. Lett. 102, 160403 2009), this might be helpful for exploring the problem that why quantum nonlocality is limited.
Sample handling for mass spectrometric proteomic investigations of human urine.
Petri, Anette Lykke; Høgdall, Claus; Christensen, Ib Jarle; Simonsen, Anja Hviid; T'jampens, Davy; Hellmann, Marja-Leena; Kjaer, Susanne Krüger; Fung, Eric T; Høgdall, Estrid
2008-09-01
Because of its non-invasive sample collection method, human urine is an attractive biological material both for discovering biomarkers and for use in future screening trials for different diseases. Before urine can be used for these applications, standardized protocols for sample handling that optimize protein stability are required. In this explorative study, we examine the influence of different urine collection methods, storage temperatures, storage times, and repetitive freeze-thaw procedures on the protein profiles obtained by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Prospectively collected urine samples from 11 women were collected as either morning or midday specimens. The effects of storage temperature, time to freezing, and freeze-thaw cycles were assessed by calculating the number, intensity, and reproducibility of peaks visualized by SELDI-TOF-MS. On the CM10 array, 122 peaks were detected and 28 peaks were found to be significantly different between urine types, storage temperature and time to freezing. On the IMAC-Cu array, 65 peaks were detected and 1 peak was found to be significantly different according to time to freezing. No significant differences were demonstrated for freeze-thaw cycles. Optimal handling and storage conditions are necessary in clinical urine proteomic investigations. Collection of urine with a single and consistently performed protocol is needed to reduce analytical bias. Collecting only one urine type, which is stored for a limited period at 4°C until freezing at -80°C prior to analysis will provide the most stable profiles. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The evolution of life cycle complexity in aphids: Ecological optimization or historical constraint?
Hardy, Nate B; Peterson, Daniel A; von Dohlen, Carol D
2015-06-01
For decades, biologists have debated why many parasites have obligate multihost life cycles. Here, we use comparative phylogenetic analyses of aphids to evaluate the roles of ecological optimization and historical constraint in the evolution of life cycle complexity. If life cycle complexity is adaptive, it should be evolutionarily labile, that is, change in response to selection. We provide evidence that this is true in some aphids (aphidines), but not others (nonaphidines)-groups that differ in the intensity of their relationships with primary hosts. Next, we test specific mechanisms by which life cycle complexity could be adaptive or a constraint. We find that among aphidines there is a strong association between complex life cycles and polyphagy but only a weak correlation between life cycle complexity and reproductive mode. In contrast, among nonaphidines the relationship between life cycle complexity and host breadth is weak but the association between complex life cycles and sexual reproduction is strong. Thus, although the adaptiveness of life cycle complexity appears to be lineage specific, across aphids, life cycle evolution appears to be tightly linked with the evolution of other important natural history traits. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Paleo Data Assimilation of Pseudo-Tree-Ring-Width Chronologies in a Climate Model
NASA Astrophysics Data System (ADS)
Fallah Hassanabadi, B.; Acevedo, W.; Reich, S.; Cubasch, U.
2016-12-01
Using the Time-Averaged Ensemble Kalman Filter (EnKF) and a forward model, we assimilate the pseudo Tree-Ring-Width (TRW) chronologies into an Atmospheric Global Circulation model. This study investigates several aspects of Paleo-Data Assimilation (PDA) within a perfect-model set-up: (i) we test the performance of several forward operators in the framework of a PDA-based climate reconstruction, (ii) compare the PDA-based simulations' skill against the free ensemble runs and (iii) inverstigate the skill of the "online" (with cycling) DA and the "off-line" (no-cycling) DA. In our experiments, the "online" (with cycling) PDA approach did not outperform the "off-line" (no-cycling) one, despite its considerable additional implementation complexity. On the other hand, it was observed that the error reduction achieved by assimilating a particular pseudo-TRW chronology is modulated by the strength of the yearly internal variability of the model at the chronology site. This result might help the dendrochronology community to optimize their sampling efforts.
NASA Astrophysics Data System (ADS)
Yang, Peng; Peng, Yongfei; Ye, Bin; Miao, Lixin
2017-09-01
This article explores the integrated optimization problem of location assignment and sequencing in multi-shuttle automated storage/retrieval systems under the modified 2n-command cycle pattern. The decision of storage and retrieval (S/R) location assignment and S/R request sequencing are jointly considered. An integer quadratic programming model is formulated to describe this integrated optimization problem. The optimal travel cycles for multi-shuttle S/R machines can be obtained to process S/R requests in the storage and retrieval request order lists by solving the model. The small-sized instances are optimally solved using CPLEX. For large-sized problems, two tabu search algorithms are proposed, in which the first come, first served and nearest neighbour are used to generate initial solutions. Various numerical experiments are conducted to examine the heuristics' performance and the sensitivity of algorithm parameters. Furthermore, the experimental results are analysed from the viewpoint of practical application, and a parameter list for applying the proposed heuristics is recommended under different real-life scenarios.
Production of superparamagnetic nanobiocatalysts for green chemistry applications.
Gasser, Christoph A; Ammann, Erik M; Schäffer, Andreas; Shahgaldian, Patrick; Corvini, Philippe F-X
2016-08-01
Immobilization of enzymes on solid supports is a convenient method for increasing enzymatic stability and enabling enzyme reuse. In the present work, a sorption-assisted surface conjugation method was developed and optimized to immobilize enzymes on the surface of superparamagnetic nanoparticles. An oxidative enzyme, i.e., laccase from Trametes versicolor was used as model enzyme. The immobilization method consists of the production of superparamagnetic nanoparticles by co-precipitation of FeCl2 and FeCl3. Subsequently, the particle surface is modified with an organosilane containing an amino group. Next, the enzymes are adsorbed on the particle surface before a cross-linking agent, i.e., glutaraldehyde is added which links the amino groups on the particle surface with the amino groups of the enzymes and leads to internal cross-linking of the enzymes as well. The method was optimized using response surface methodology regarding optimal enzyme and glutaraldehyde amounts, pH, and reaction times. Results allowed formulation of biocatalysts having high specific enzymatic activity and improved stability. The biocatalysts showed considerably higher stability compared with the dissolved enzymes over a pH range from 3 to 9 and in the presence of several chemical denaturants. To demonstrate the reusability of the immobilized enzymes, they were applied as catalysts for the production of a phenoxazinone dye. Virtually, 100 % of the precursor was transformed to the dye in each of the ten conducted reaction cycles while on average 84.5 % of the enzymatic activity present at the beginning of a reaction cycle was retained after each cycle highlighting the considerable potential of superparamagnetic biocatalysts for application in industrial processes.
Optimal Design of a Resonance-Based Voltage Boosting Rectifier for Wireless Power Transmission.
Lim, Jaemyung; Lee, Byunghun; Ghovanloo, Maysam
2018-02-01
This paper presents the design procedure for a new multi-cycle resonance-based voltage boosting rectifier (MCRR) capable of delivering a desired amount of power to the load (PDL) at a designated high voltage (HV) through a loosely-coupled inductive link. This is achieved by shorting the receiver (Rx) LC-tank for several cycles to harvest and accumulate the wireless energy in the RX inductor before boosting the voltage by breaking the loop and transferring the energy to the load in a quarter cycle. By optimizing the geometries of the transmitter (Tx) and Rx coils and the number of cycles, N , for energy harvesting, through an iterative design procedure, the MCRR can achieve the highest PDL under a given set of design constraints. Governing equations in the MCRR operation are derived to identify key specifications and the design guidelines. Using an exemplary set of specs, the optimized MCRR was able to generate 20.9 V DC across a 100 kΩ load from a 1.8 V p , 6.78 MHz sinusoid input in the ISM-band at a Tx/Rx coil separation of 1.3 cm, power transfer efficiency (PTE) of 2.2%, and N = 9 cycles. At the same coil distance and loading, coils optimized for a conventional half-wave rectifier (CHWR) were able to reach only 13.6 V DC from the same source.
Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai
2017-03-01
Lithium (Li) metal battery is an attractive energy storage system owing to the ultrahigh specific capacity and the lowest redox potential of Li metal anode. However, safety concern associated with dendrite growth and limited cycle life especially at a high charge current density are two critical challenges hindering the practical applications of rechargeable Li metal batteries. Here, we report for the first time that an optimal amount (0.05 M) of LiPF6 as additive in the LiTFSI-LiBOB dual-salt/carbonate-based electrolyte can significantly enhance the charging capability and the long-term cycle life of Li metal batteries with a moderately high cathode loading ofmore » 1.75 mAh cm-2. Unprecedented stable-cycling (97.1% capacity retention after 500 cycles) along with very limited increase in electrode over-potential has been achieved at a high current density of 1.75 mA cm-2. This unparalleled fast charging and stable cycling performance is contributed from both the stabilized Al cathode current collector, and, more importantly, the robust and conductive SEI layer formed on Li metal anode in the presence of the LiPF6 additive.« less
Dynamics and control of DNA sequence amplification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marimuthu, Karthikeyan; Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu; Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054
2014-10-28
DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reactionmore » are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.« less
Solution for a bipartite Euclidean traveling-salesman problem in one dimension
NASA Astrophysics Data System (ADS)
Caracciolo, Sergio; Di Gioacchino, Andrea; Gherardi, Marco; Malatesta, Enrico M.
2018-05-01
The traveling-salesman problem is one of the most studied combinatorial optimization problems, because of the simplicity in its statement and the difficulty in its solution. We characterize the optimal cycle for every convex and increasing cost function when the points are thrown independently and with an identical probability distribution in a compact interval. We compute the average optimal cost for every number of points when the distance function is the square of the Euclidean distance. We also show that the average optimal cost is not a self-averaging quantity by explicitly computing the variance of its distribution in the thermodynamic limit. Moreover, we prove that the cost of the optimal cycle is not smaller than twice the cost of the optimal assignment of the same set of points. Interestingly, this bound is saturated in the thermodynamic limit.
Solution for a bipartite Euclidean traveling-salesman problem in one dimension.
Caracciolo, Sergio; Di Gioacchino, Andrea; Gherardi, Marco; Malatesta, Enrico M
2018-05-01
The traveling-salesman problem is one of the most studied combinatorial optimization problems, because of the simplicity in its statement and the difficulty in its solution. We characterize the optimal cycle for every convex and increasing cost function when the points are thrown independently and with an identical probability distribution in a compact interval. We compute the average optimal cost for every number of points when the distance function is the square of the Euclidean distance. We also show that the average optimal cost is not a self-averaging quantity by explicitly computing the variance of its distribution in the thermodynamic limit. Moreover, we prove that the cost of the optimal cycle is not smaller than twice the cost of the optimal assignment of the same set of points. Interestingly, this bound is saturated in the thermodynamic limit.
Getting the most out of your IP--patent management along its life cycle.
Bader, Martin A; Gassmann, Oliver; Ziegler, Nicole; Ruether, Frauke
2012-04-01
Effectively managing and optimizing the value of the patent portfolio is a major challenge for many firms, especially those in knowledge intensive industries, such as the pharmaceutical, biotechnological and chemical industry. However, insights on effective patent portfolio strategies are rare. Therefore, in this article we investigate in detail how firms successfully manage and optimize their patent portfolios to increase their overall competitiveness. We discover that successful patent portfolio management is rooted in managing the patents along their life cycles. Based on the findings of ten case studies, we develop a holistic patent life cycle management model reflecting five distinctive phases of patent management: explore, generate, protect, optimize and decline. We conclude with how our findings can be used in practice. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bessho, Kazuhiro; Iwasa, Yoh
2010-11-21
Marine macroalgae (seaweed) show diverse life cycles. Species with a heteromorphic life cycle have a large multicellular algal body in one generation but have a very small body in the second generation of the same year. In contrast, the diploid and haploid life forms of isomorphic species have similar morphology, and these species often have more than two generations in a year. Here, we first study the optimal life cycle schedule of marine macroalgae when daily mortality changes seasonally, and then we discuss the conditions for coexistence and relative dominance of different life cycles. According to the optimal life cycle schedule, heteromorphic species tend to have a generation with a large algal body when mortality is low, and a microscopic-sized generation when mortality is high. In contrast, isomorphic species tend to mature when body size reaches a threshold value that is the same for different generations. We then examine the coexistence of the two life cycles when growth rate decreases with biomass. The model predicts that (1) at high latitudes (i.e., in strongly seasonal environments), heteromorphic species are likely to dominate over isomorphic species, and (2) species with a heteromorphic life cycle should dominate in the supratidal and upper intertidal zones where macroalgae tend to suffer high mortality, and also in the subtidal zone, where mortality is low, whereas isomorphic species are likely to be more successful when mortality is intermediate. These predictions are consistent with the observed distribution patterns of the two life cycles in macroalgae. Copyright © 2010 Elsevier Ltd. All rights reserved.
Inference of genetic network of Xenopus frog egg: improved genetic algorithm.
Wu, Shinq-Jen; Chou, Chia-Hsien; Wu, Cheng-Tao; Lee, Tsu-Tian
2006-01-01
An improved genetic algorithm (IGA) is proposed to achieve S-system gene network modeling of Xenopus frog egg. Via the time-courses training datasets from Michaelis-Menten model, the optimal parameters are learned. The S-system can clearly describe activative and inhibitory interaction between genes as generating and consuming process. We concern the mitotic control in cell-cycle of Xenopus frog egg to realize cyclin-Cdc2 and Cdc25 for MPF activity. The proposed IGA can achieve global search with migration and keep the best chromosome with elitism operation. The generated gene regulatory networks can provide biological researchers for further experiments in Xenopus frog egg cell cycle control.
NASA Astrophysics Data System (ADS)
Behnken, Barry N.; Karunasiri, Gamani; Chamberlin, Danielle; Robrish, Peter; Faist, Jérôme
2008-02-01
Real-time imaging in the terahertz (THz) spectral range was achieved using a 3.6-THz quantum cascade laser (QCL) and an uncooled, 160×120 pixel microbolometer camera fitted with a picarin lens. Noise equivalent temperature difference of the camera in the 1-5 THz frequency range was calculated to be at least 3 K, confirming the need for external THz illumination when imaging in this frequency regime. After evaluating the effects of various operating parameters on laser performance, the QCL found to perform optimally at 1.9 A in pulsed mode with a 300 kHz repetition rate and 10-20% duty cycle; average output power was approximately 1 mW. Under this scheme, a series of metallic objects were imaged while wrapped in various obscurants. Single-frame and extended video recordings demonstrate strong contrast between metallic materials and those of plastic, cloth, and paper - supporting the viability of this imaging technology in security screening applications. Thermal effects arising from Joule heating of the laser were found to be the dominant issue affecting output power and image quality; these effects were mitigated by limiting laser pulse widths to 670 ns and operating the system under closed-cycle refrigeration at a temperature of 10 K.
NASA Astrophysics Data System (ADS)
Marandi, Maziar; Rahmani, Elham; Ahangarani Farahani, Farzaneh
2017-12-01
CdS quantum dot-sensitized solar cells (QDSCs) have been fabricated and their photoanode optimized by altering the thickness of the photoelectrode and CdS deposition conditions and applying a ZnS electron-blocking layer and TiO2 hollow spheres. Hydrothermally grown TiO2 nanocrystals (NCs) with dominant size of 20 nm were deposited as a sublayer in the photoanode with thickness in the range from 5 μm to 10 μm using a successive ionic layer adsorption and reaction (SILAR) method. The number of deposition cycles was altered over a wide range to obtain optimized sensitization. Photoanode thickness and number of CdS sensitization cycles around the optimum values were selected and used for ZnS deposition. ZnS overlayers were also deposited on the surface of the photoanodes using different numbers of cycles of the SILAR process. The best QDSC with the optimized photoelectrode demonstrated a 153% increase in efficiency compared with a similar cell with ZnS-free photoanode. Such bilayer photoelectrodes were also fabricated with different thicknesses of TiO2 sublayers and one overlayer of TiO2 hollow spheres (HSs) with external diameter of 500 nm fabricated by liquid-phase deposition with carbon spheres as template. The optimization was performed by changing the photoanode thickness using a wide range of CdS sensitizing cycles. The maximum energy conversion efficiency was increased by about 77% compared with a similar cell with HS-free photoelectrode. The reason was considered to be the longer path length of the incident light inside the photoanode and greater light absorption. A ZnS blocking layer was overcoated on the surface of the bilayer photoanode with optimized thickness. The number of CdS sensitization cycles was also changed around the optimized value to obtain the best QDSC performance. The number of ZnS deposition cycles was also altered in a wide range for optimization of the photovoltaic performance. It was shown that the maximum efficiency was increased by about 55% compared with a similar QDSC with ZnS-free bilayer photoanode. The final improvement was carried out by applying methanol-based Cd precursor solution in the SILAR deposition process. The best photoanodes from the previous stages were selected and used in this sensitizing process. Besides, nanocrystalline TiO2 sublayers with different thicknesses were applied for further optimization. The results revealed that maximum power conversion efficiency of 3.7% was achieved as a result of such improvement, for a QDSC with optimized double-layer photoanode including TiO2 HSs and NCs and ZnS blocking layer.
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2010-01-01
Electrochemistry and ion transport in a planar array of mechanically-driven, droplet-based ion sources are investigated using an approximate time scale analysis and in-depth computational simulations. The ion source is modeled as a controlled-current electrolytic cell, in which the piezoelectric transducer electrode, which mechanically drives the charged droplet generation using ultrasonic atomization, also acts as the oxidizing/corroding anode (positive mode). The interplay between advective and diffusive ion transport of electrochemically generated ions is analyzed as a function of the transducer duty cycle and electrode location. A time scale analysis of the relative importance of advective vs. diffusive ion transport provides valuable insight into optimality, from the ionization prospective, of alternative design and operation modes of the ion source operation. A computational model based on the solution of time-averaged, quasi-steady advection-diffusion equations for electroactive species transport is used to substantiate the conclusions of the time scale analysis. The results show that electrochemical ion generation at the piezoelectric transducer electrodes located at the back-side of the ion source reservoir results in poor ionization efficiency due to insufficient time for the charged analyte to diffuse away from the electrode surface to the ejection location, especially at near 100% duty cycle operation. Reducing the duty cycle of droplet/analyte ejection increases the analyte residence time and, in turn, improves ionization efficiency, but at an expense of the reduced device throughput. For applications where this is undesirable, i.e., multiplexed and disposable device configurations, an alternative electrode location is incorporated. By moving the charging electrode to the nozzle surface, the diffusion length scale is greatly reduced, drastically improving ionization efficiency. The ionization efficiency of all operating conditions considered is expressed as a function of the dimensionless Peclet number, which defines the relative effect of advection as compared to diffusion. This analysis is general enough to elucidate an important role of electrochemistry in ionization efficiency of any arrayed ion sources, be they mechanically-driven or electrosprays, and is vital for determining optimal design and operation conditions. PMID:20607111
Soltani, Mohammad; Vargas-Garcia, Cesar A.; Antunes, Duarte; Singh, Abhyudai
2016-01-01
Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable to the cell-cycle length, randomness in cell-division times generates additional intercellular variability in protein levels. Moreover, as many mRNA/protein species are expressed at low-copy numbers, errors incurred in partitioning of molecules between two daughter cells are significant. We derive analytical formulas for the total noise in protein levels when the cell-cycle duration follows a general class of probability distributions. Using a novel hybrid approach the total noise is decomposed into components arising from i) stochastic expression; ii) partitioning errors at the time of cell division and iii) random cell-division events. These formulas reveal that random cell-division times not only generate additional extrinsic noise, but also critically affect the mean protein copy numbers and intrinsic noise components. Counter intuitively, in some parameter regimes, noise in protein levels can decrease as cell-division times become more stochastic. Computations are extended to consider genome duplication, where transcription rate is increased at a random point in the cell cycle. We systematically investigate how the timing of genome duplication influences different protein noise components. Intriguingly, results show that noise contribution from stochastic expression is minimized at an optimal genome-duplication time. Our theoretical results motivate new experimental methods for decomposing protein noise levels from synchronized and asynchronized single-cell expression data. Characterizing the contributions of individual noise mechanisms will lead to precise estimates of gene expression parameters and techniques for altering stochasticity to change phenotype of individual cells. PMID:27536771
Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle
Osorio, Julian D.; Hovsapian, Rob; Ordonez, Juan C.
2016-01-01
Here, the dynamic behavior of a concentrated solar power (CSP) supercritical CO 2 cycle is studied under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, a heat exchanger, a recuperator, and multi-stage compression-expansion subsystems with intercoolers and reheaters between compressors and turbines respectively. Energy models for each component of the system are developed in order to optimize operating and design parameters such as mass flow rate, intermediate pressures and the effective area of the recuperator to lead to maximum efficiency. Our results show that the parametric optimization leads themore » system to a process efficiency of about 21 % and a maximum power output close to 1.5 MW. The thermal energy storage allows the system to operate for several hours after sunset. This operating time is approximately increased from 220 to 480 minutes after optimization. The hot and cold thermal energy storage also lessens the temperature fluctuations by providing smooth changes of temperatures at the turbines and compressors inlets. Our results indicate that concentrated solar systems using supercritical CO 2 could be a viable alternative to satisfying energy needs in desert areas with scarce water and fossil fuel resources.« less
Lean methodology improves efficiency in outpatient academic uro-oncology clinics.
Skeldon, Sean C; Simmons, Andrea; Hersey, Karen; Finelli, Antonio; Jewett, Michael A; Zlotta, Alexandre R; Fleshner, Neil E
2014-05-01
To determine if lean methodology, an industrial engineering tool developed to optimize manufacturing efficiency, can successfully be applied to improve efficiencies and quality of care in a hospital-based high-volume uro-oncology clinic. Before the lean initiative, baseline data were collected on patient volumes, wait times, cycle times (patient arrival to discharge), nursing assessment time, patient teaching, and physician ergonomics (via spaghetti diagram). Value stream analysis and a rapid improvement event were carried out, and significant changes were made to patient check-in, work areas, and nursing face time. Follow-up data were obtained at 30, 60, and 90 days. The Student t test was used for analysis to compare performance metrics with baseline. The median cycle time before the lean initiative was 46 minutes. This remained stable at 46 minutes at 30 days but improved to 35 minutes at 60 days and 41 minutes at 90 days. Shorter wait times allowed for increased nursing and physician face time. The average length of the physician assessment increased from 7.5 minutes at baseline to 10.6 minutes at 90 days. The average proportion of value-added time compared with the entire clinic visit increased from 30.6% at baseline to 66.3% at 90 days. Using lean methodology, we were able to shorten the patient cycle time and the time to initial assessment as well as integrate both an initial registered nurse assessment and registered nurse teaching to each visit. Lean methodology can effectively be applied to improve efficiency and patient care in an academic outpatient uro-oncology clinic setting. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Beheshti, M.; Zabihiazadboni, M.; Ismail, M. C.; Kakooei, S.; Shahrestani, S.
2018-03-01
Optimal conditions to increase life time of casting parts have been investigated by applying various cycles of heat treatment and shot peening on Hadfield steel surface. Metallographic and SEM microstructure examinations were used to determine the effects of shot peen, austenitizing time and temperature simultaneously. The results showed that with increasing austenitizing time and temperature of casting sample, carbides resolved in austenite phase and by further increase of austenitizing temperature and time, the austenite grain size becomes larger. Metallographic images illustrated that shot peening on Hadfield steel surface; Austenite - Martensite transformation has not occurred, but its matrix hardened through twining formation process.
NASA Astrophysics Data System (ADS)
Protim Das, Partha; Gupta, P.; Das, S.; Pradhan, B. B.; Chakraborty, S.
2018-01-01
Maraging steel (MDN 300) find its application in many industries as it exhibits high hardness which are very difficult to machine material. Electro discharge machining (EDM) is an extensively popular machining process which can be used in machining of such materials. Optimization of response parameters are essential for effective machining of these materials. Past researchers have already used Taguchi for obtaining the optimal responses of EDM process for this material with responses such as material removal rate (MRR), tool wear rate (TWR), relative wear ratio (RWR), and surface roughness (SR) considering discharge current, pulse on time, pulse off time, arc gap, and duty cycle as process parameters. In this paper, grey relation analysis (GRA) with fuzzy logic is applied to this multi objective optimization problem to check the responses by an implementation of the derived parametric setting. It was found that the parametric setting derived by the proposed method results in better a response than those reported by the past researchers. Obtained results are also verified using the technique for order of preference by similarity to ideal solution (TOPSIS). The predicted result also shows that there is a significant improvement in comparison to the results of past researchers.
NASA Astrophysics Data System (ADS)
Alaboina, Pankaj K.; Cho, Jong-Soo; Cho, Sung-Jin
2017-10-01
The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si-Fe-Mn nanomaterial alloy (Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high ( 2 mg cm-2) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes. In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering (electrode densification from 0.39 to 0.48 g cm-3) showed enhanced cycling stability with a high capacity retention of 100% over 100 cycles. [Figure not available: see fulltext.
Conception preliminaire de disques de turbine axiale pour moteurs d'aeronefs
NASA Astrophysics Data System (ADS)
Ouellet, Yannick
The preliminary design phase of a turbine rotor has an important impact on the architecture of a new engine definition, as it sets the technical orientation right from start and provides a good estimate of product performance, weight and cost. In addition, the execution speed at this preliminary phase has become critical into capturing business opportunities. Improving upfront accuracy also alleviates downstream detailed design work and therefore reduces overall product development cycle time. This preliminary phase contains elements slowing down its process, including low interoperability of currently used systems, incompatibility of software and ineffective management of data. In order to overcome these barriers, we have developed the first module of a new Design and Analysis (D&A) platform for the rotor disc. This complete platform ensures integration of different tools processing in batch mode, and is driven from a single graphical user interface. The platform developed has been linked with different optimization methods (algorithms, configuration) in order to automate the disc design and propose best practices for rotor structural optimization. This methodology allowed reduction in design cycle time and improvement of performance. It was applied on two reference P&WC axial discs. The platform's architecture was also used in the development of reference charts to better understand disc performance within given design space. Four high pressure rotor discs of P&WC turbofan and turboprop engines were used to generate the technical charts and understand the effect of various parameters. The new tools supporting disc D&A, combined with the optimization process and reference charts, has proven to be profitable in terms of component performance and engineering effort inputs.
Grigorov, Boyan; Rabilloud, Jessica; Lawrence, Philip; Gerlier, Denis
2011-01-01
Background Measles virus (MV) is a member of the Paramyxoviridae family and an important human pathogen causing strong immunosuppression in affected individuals and a considerable number of deaths worldwide. Currently, measles is a re-emerging disease in developed countries. MV is usually quantified in infectious units as determined by limiting dilution and counting of plaque forming unit either directly (PFU method) or indirectly from random distribution in microwells (TCID50 method). Both methods are time-consuming (up to several days), cumbersome and, in the case of the PFU assay, possibly operator dependent. Methods/Findings A rapid, optimized, accurate, and reliable technique for titration of measles virus was developed based on the detection of virus infected cells by flow cytometry, single round of infection and titer calculation according to the Poisson's law. The kinetics follow up of the number of infected cells after infection with serial dilutions of a virus allowed estimation of the duration of the replication cycle, and consequently, the optimal infection time. The assay was set up to quantify measles virus, vesicular stomatitis virus (VSV), and human immunodeficiency virus type 1 (HIV-1) using antibody labeling of viral glycoprotein, virus encoded fluorescent reporter protein and an inducible fluorescent-reporter cell line, respectively. Conclusion Overall, performing the assay takes only 24–30 hours for MV strains, 12 hours for VSV, and 52 hours for HIV-1. The step-by-step procedure we have set up can be, in principle, applicable to accurately quantify any virus including lentiviral vectors, provided that a virus encoded gene product can be detected by flow cytometry. PMID:21915289
NASA Astrophysics Data System (ADS)
Mahata, Gour Chandra
2015-09-01
In practice, the supplier often offers the retailers a trade credit period and the retailer in turn provides a trade credit period to her/his customer to stimulate sales and reduce inventory. From the retailer's perspective, granting trade credit not only increases sales and revenue but also increases opportunity cost (i.e., the capital opportunity loss during credit period) and default risk (i.e., the percentage that the customer will not be able to pay off his/her debt obligations). Hence, how to determine credit period is increasingly recognized as an important strategy to increase retailer's profitability. Also, the selling items such as fruits, fresh fishes, gasoline, photographic films, pharmaceuticals and volatile liquids deteriorate continuously due to evaporation, obsolescence and spoilage. In this paper, we propose an economic order quantity model for the retailer where (1) the supplier provides an up-stream trade credit and the retailer also offers a down-stream trade credit, (2) the retailer's down-stream trade credit to the buyer not only increases sales and revenue but also opportunity cost and default risk, and (3) the selling items are perishable. Under these conditions, we model the retailer's inventory system as a profit maximization problem to determine the retailer's optimal replenishment decisions under the supply chain management. We then show that the retailer's optimal credit period and cycle time not only exist but also are unique. We deduce some previously published results of other researchers as special cases. Finally, we use some numerical examples to illustrate the theoretical results.
Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization
NASA Astrophysics Data System (ADS)
Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa
2018-05-01
In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.
Thermodynamic Analysis and Optimization of a High Temperature Triple Absorption Heat Transformer
Khamooshi, Mehrdad; Yari, Mortaza; Egelioglu, Fuat; Salati, Hana
2014-01-01
First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers' efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle. PMID:25136702
Kılıç, Fahrettin; Kayadibi, Yasemin; Kocael, Pinar; Velidedeoglu, Mehmet; Bas, Ahmet; Bakan, Selim; Aydogan, Fatih; Karatas, Adem; Yılmaz, Mehmet Halit
2015-06-01
Shear-wave elastography (SWE) presents quantitative data that thought to represent intrinsic features of the target tissue. Factors affecting the metabolism of the breast parenchyma as well as age, menstrual cycle, hormone levels, pregnancy and lactation, pre-compression artifact during the examination could affect these elastic intrinsic features. Aim of our study is to determine variation of fibroadenoma elasticity during the menstrual cycle (MC) by means of real-time shear-wave elastography (SWE) and identify the optimal time for SWE evaluation. Thirty volunteers (aged 20-40 years) who had biopsy-proven fibroadenoma greater than 1cm in diameter, with regular menstrual cycle and without contraceptive medication underwent SWE (ShearWave on Aixplorer, France) once weekly during MC. Statistical data were processed by using the software Statistical Package for the Social Sciences (SPSS) 19.0. A repeated measures analysis of variance was used for each lesion where the repeated factor was the elastographic measurements (premenstrual, menstrual and postmenstrual). Pillai's trace test was used. Pairwise correlation was calculated using Bonferroni correction. Values of p<0.05 were considered statistically significant. The mean elasticity value of fibroadenomas in mid-cycle was 28.49 ± 12.92 kPa, with the highest value obtained in the third week corresponding to the premenstrual stage (32.98 ± 13.35 kPa) and the lowest value obtained in the first week corresponding to the postmenstrual stage (25.39 ± 10.21 kPa). Differences between the elasticity values of fibroadenomas in premenstrual and postmenstrual periods were statistically significant (p<0.001). There were no significant differences in lesion size between the different phases of the menstrual cycle (p>0.05). In this study, we found that there is significant difference between the elasticity values of fibroadenomas on premenstrual and postmenstrual period. We propose that one week after menstruation would be appropriate time to perform breast SWE. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Dong, Zhixin; Zhang, Ruibo; Ji, Dongsheng; ...
2016-02-04
Carbon-based anodes are the key limiting factor in increasing the volumetric capacity of lithium-ion batteries. Tin-based composites are one alternative approach. Nanosized Sn–Fe–C anode materials are mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The optimum synthesis conditions are found to be 1:0.25:10 for initial ratio of SnO, Ti, and graphite with a total grinding time of 8 h. This optimized composite shows excellent extended cycling at the C/10 rate, delivering a first charge capacity as high as 740 mAh g –1 and 60% of which still remained after 170 cycles. The calculated volumetric capacity significantlymore » exceeds that of carbon. In conclusion, it also exhibits excellent rate capability, delivering volumetric capacity higher than 1.6 Ah cc –1 over 140 cycles at the 1 C rate.« less
Chekov, Iu F
2009-01-01
The author describes a zeolite system for carbon dioxide removal integrated into a closed air regeneration cycle aboard spacecraft. The continuous operation of a double-adsorbent regeneration system with pCO2-dependable productivity is maintained through programmable setting of adsorption (desorption) semicycle time. The optimal system regulation curve is presented within the space of statistical performance family obtained in quasi-steady operating modes with controlled parameters of the recurrent adsorption-desorption cycle. The automatically changing system productivity ensures continuous intake of concentrated CO2. Control of the adsorption-desorption process is based on calculation of the differential adsorption (desorption) heat from gradient of adsorbent and test inert substance temperatures. The adaptive algorithm of digital control is implemented through the standard spacecraft interface with the board computer system and programmable microprocessor-based controllers.
2013-01-01
Pt nanodots have been grown on Al2O3 film via atomic layer deposition (ALD) using (MeCp)Pt(Me)3 and O2 precursors. Influence of the substrate temperature, pulse time of (MeCp)Pt(Me)3, and deposition cycles on ALD Pt has been studied comprehensively by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Therefore, Pt nanodots with a high density of approximately 2 × 1012 cm-2 have been achieved under optimized conditions: 300°C substrate temperature, 1 s pulse time of (MeCp)Pt(Me)3, and 70 deposition cycles. Further, metal-oxide-semiconductor capacitors with Pt nanodots embedded in ALD Al2O3 dielectric have been fabricated and characterized electrically, indicating noticeable electron trapping capacity, efficient programmable and erasable characteristics, and good charge retention. PMID:23413837
Circadian physiology of metabolism.
Panda, Satchidananda
2016-11-25
A majority of mammalian genes exhibit daily fluctuations in expression levels, making circadian expression rhythms the largest known regulatory network in normal physiology. Cell-autonomous circadian clocks interact with daily light-dark and feeding-fasting cycles to generate approximately 24-hour oscillations in the function of thousands of genes. Circadian expression of secreted molecules and signaling components transmits timing information between cells and tissues. Such intra- and intercellular daily rhythms optimize physiology both by managing energy use and by temporally segregating incompatible processes. Experimental animal models and epidemiological data indicate that chronic circadian rhythm disruption increases the risk of metabolic diseases. Conversely, time-restricted feeding, which imposes daily cycles of feeding and fasting without caloric reduction, sustains robust diurnal rhythms and can alleviate metabolic diseases. These findings highlight an integrative role of circadian rhythms in physiology and offer a new perspective for treating chronic diseases in which metabolic disruption is a hallmark. Copyright © 2016, American Association for the Advancement of Science.
Life cycle costing with a discount rate
NASA Technical Reports Server (NTRS)
Posner, E. C.
1978-01-01
This article studies life cycle costing for a capability needed for the indefinite future, and specifically investigates the dependence of optimal policies on the discount rate chosen. The two costs considered are reprocurement cost and maintenance and operations (M and O) cost. The procurement price is assumed known, and the M and O costs are assumed to be a known function, in fact, a non-decreasing function, of the time since last reprocurement. The problem is to choose the optimum reprocurement time so as to minimize the quotient of the total cost over a reprocurement period divided by the period. Or one could assume a discount rate and try to minimize the total discounted costs into the indefinite future. It is shown that the optimum policy in the presence of a small discount rate hardly depends on the discount rate at all, and leads to essentially the same policy as in the case in which discounting is not considered.
NASA Astrophysics Data System (ADS)
Sánchez, H. T.; Estrems, M.; Franco, P.; Faura, F.
2009-11-01
In recent years, the market of heat exchangers is increasingly demanding new products in short cycle time, which means that both the design and manufacturing stages must be extremely reduced. The design stage can be reduced by means of CAD-based parametric design techniques. The methodology presented in this proceeding is based on the optimized control of geometric parameters of a service chamber of a heat exchanger by means of the Application Programming Interface (API) provided by the Solidworks CAD package. Using this implementation, a set of different design configurations of the service chamber made of stainless steel AISI 316 are studied by means of the FE method. As a result of this study, a set of knowledge rules based on the fatigue behaviour are constructed and integrated into the design optimization process.
Electromagnetic Simulations for Aerospace Application Final Report CRADA No. TC-0376-92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madsen, N.; Meredith, S.
Electromagnetic (EM) simulation tools play an important role in the design cycle, allowing optimization of a design before it is fabricated for testing. The purpose of this cooperative project was to provide Lockheed with state-of-the-art electromagnetic (EM) simulation software that will enable the optimal design of the next generation of low-observable (LO) military aircraft through the VHF regime. More particularly, the project was principally code development and validation, its goal to produce a 3-D, conforming grid,time-domain (TD) EM simulation tool, consisting of a mesh generator, a DS13D-based simulation kernel, and an RCS postprocessor, which was useful in the optimization ofmore » LO aircraft, both for full-aircraft simulations run on a massively parallel computer and for small scale problems run on a UNIX workstation.« less
NASA Astrophysics Data System (ADS)
Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah
2015-09-01
Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.
Water cycle algorithm: A detailed standard code
NASA Astrophysics Data System (ADS)
Sadollah, Ali; Eskandar, Hadi; Lee, Ho Min; Yoo, Do Guen; Kim, Joong Hoon
Inspired by the observation of the water cycle process and movements of rivers and streams toward the sea, a population-based metaheuristic algorithm, the water cycle algorithm (WCA) has recently been proposed. Lately, an increasing number of WCA applications have appeared and the WCA has been utilized in different optimization fields. This paper provides detailed open source code for the WCA, of which the performance and efficiency has been demonstrated for solving optimization problems. The WCA has an interesting and simple concept and this paper aims to use its source code to provide a step-by-step explanation of the process it follows.
Eskinazi, Ilan; Fregly, Benjamin J
2018-04-01
Concurrent estimation of muscle activations, joint contact forces, and joint kinematics by means of gradient-based optimization of musculoskeletal models is hindered by computationally expensive and non-smooth joint contact and muscle wrapping algorithms. We present a framework that simultaneously speeds up computation and removes sources of non-smoothness from muscle force optimizations using a combination of parallelization and surrogate modeling, with special emphasis on a novel method for modeling joint contact as a surrogate model of a static analysis. The approach allows one to efficiently introduce elastic joint contact models within static and dynamic optimizations of human motion. We demonstrate the approach by performing two optimizations, one static and one dynamic, using a pelvis-leg musculoskeletal model undergoing a gait cycle. We observed convergence on the order of seconds for a static optimization time frame and on the order of minutes for an entire dynamic optimization. The presented framework may facilitate model-based efforts to predict how planned surgical or rehabilitation interventions will affect post-treatment joint and muscle function. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.
Optimal GENCO bidding strategy
NASA Astrophysics Data System (ADS)
Gao, Feng
Electricity industries worldwide are undergoing a period of profound upheaval. The conventional vertically integrated mechanism is being replaced by a competitive market environment. Generation companies have incentives to apply novel technologies to lower production costs, for example: Combined Cycle units. Economic dispatch with Combined Cycle units becomes a non-convex optimization problem, which is difficult if not impossible to solve by conventional methods. Several techniques are proposed here: Mixed Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. Evolutionary Algorithms share a common mechanism, stochastic searching per generation. The stochastic property makes evolutionary algorithms robust and adaptive enough to solve a non-convex optimization problem. This research implements GA, EP, and PS algorithms for economic dispatch with Combined Cycle units, and makes a comparison with classical Mixed Integer Linear Programming. The electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models. This research identifies a proper SFE model, which can be applied to a multiple period situation. The equilibrium condition using discrete time optimal control is then developed for fuel resource constraints. Finally, the research discusses the issues of multiple equilibria and mixed strategies, which are caused by the transmission network. Additionally, an advantage of the proposed model for merchant transmission planning is discussed. A market simulator is a valuable training and evaluation tool to assist sellers, buyers, and regulators to understand market performance and make better decisions. A traditional optimization model may not be enough to consider the distributed, large-scale, and complex energy market. This research compares the performance and searching paths of different artificial life techniques such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm (PS), and look for a proper method to emulate Generation Companies' (GENCOs) bidding strategies. After deregulation, GENCOs face risk and uncertainty associated with the fast-changing market environment. A profit-based bidding decision support system is critical for GENCOs to keep a competitive position in the new environment. Most past research do not pay special attention to the piecewise staircase characteristic of generator offer curves. This research proposes an optimal bidding strategy based on Parametric Linear Programming. The proposed algorithm is able to handle actual piecewise staircase energy offer curves. The proposed method is then extended to incorporate incomplete information based on Decision Analysis. Finally, the author develops an optimal bidding tool (GenBidding) and applies it to the RTS96 test system.
A technique for integrating engine cycle and aircraft configuration optimization
NASA Technical Reports Server (NTRS)
Geiselhart, Karl A.
1994-01-01
A method for conceptual aircraft design that incorporates the optimization of major engine design variables for a variety of cycle types was developed. The methodology should improve the lengthy screening process currently involved in selecting an appropriate engine cycle for a given application or mission. The new capability will allow environmental concerns such as airport noise and emissions to be addressed early in the design process. The ability to rapidly perform optimization and parametric variations using both engine cycle and aircraft design variables, and to see the impact on the aircraft, should provide insight and guidance for more detailed studies. A brief description of the aircraft performance and mission analysis program and the engine cycle analysis program that were used is given. A new method of predicting propulsion system weight and dimensions using thermodynamic cycle data, preliminary design, and semi-empirical techniques is introduced. Propulsion system performance and weights data generated by the program are compared with industry data and data generated using well established codes. The ability of the optimization techniques to locate an optimum is demonstrated and some of the problems that had to be solved to accomplish this are illustrated. Results from the application of the program to the analysis of three supersonic transport concepts installed with mixed flow turbofans are presented. The results from the application to a Mach 2.4, 5000 n.mi. transport indicate that the optimum bypass ratio is near 0.45 with less than 1 percent variation in minimum gross weight for bypass ratios ranging from 0.3 to 0.6. In the final application of the program, a low sonic boom fix a takeoff gross weight concept that would fly at Mach 2.0 overwater and at Mach 1.6 overland is compared with a baseline concept of the same takeoff gross weight that would fly Mach 2.4 overwater and subsonically overland. The results indicate that for the design mission, the low boom concept has a 5 percent total range penalty relative to the baseline. Additional cycles were optimized for various design overland distances and the effect of flying off-design overland distances is illustrated.
Data inversion immune to cycle-skipping using AWI
NASA Astrophysics Data System (ADS)
Guasch, L.; Warner, M.; Umpleby, A.; Yao, G.; Morgan, J. V.
2014-12-01
Over the last decade, 3D Full Waveform Inversion (FWI) has become a standard model-building tool in exploration seismology, especially in oil and gas applications -thanks to the high quality (spatial density of sources and receivers) datasets acquired by the industry. FWI provides superior quantitative images than its travel-time counterparts (travel-time based inversion methods) because it aims to match all the information in the observations instead of a severely restricted subset of them, namely picked arrivals.The downside is that the solution space explored by FWI has a high number of local minima, and since the solution is restricted to local optimization methods (due to the objective function evaluation cost), the success of the inversion is subject to starting within the basin of attraction of the global minimum.Local minima can exist for a wide variety of reasons, and it seems unlikely that a formulation of the problem that can eliminate all of them -by defining the optimization problem in a form that results in a monotonic objective function- exist. However, a significant amount of local minima are created by the definition of data misfit. In its standard formulation FWI compares observed data (field data) with predicted data (generated with a synthetic model) by subtracting one from the other, and the objective function is defined as some norm of this difference. The combination of this criteria and the fact that seismic data is oscillatory produces the well-known phenomenon of cycle-skipping, where model updates try to match nearest cycles from one dataset to the other.In order to avoid cycle-skipping we propose a different comparison between observed and predicted data, based on Wiener filters, which exploits the fact that the "identity" Wiener filter is a spike at zero lag. This gives rise to a new objective function without cycle-skipped related local minima, and therefore suppress the need of accurate starting models or low frequencies in the data. This new technique, called Adaptive Waveform Inversion (AWI) appears always superior to conventional FWI.
Optimal timing of influenza vaccination during 3-week cytotoxic chemotherapy cycles.
Keam, Bhumsuk; Kim, Min-Kyung; Choi, Yunhee; Choi, Su-Jin; Choe, Pyoeng Gyun; Lee, Kyung-Hun; Kim, Tae Min; Kim, Tae-Yong; Oh, Do-Youn; Kim, Dong-Wan; Im, Seock-Ah; Kim, Nam-Joong; Heo, Dae Seog; Park, Wan Beom; Oh, Myoung-Don
2017-03-01
Cytopenia occurs frequently during cytotoxic chemotherapy. Little is known about the optimal timing of influenza vaccination for patients receiving chemotherapy. This study compared the immunogenicity of an influenza vaccine administered concurrently with chemotherapy (day 1) and within the cytopenic period (day 11) during 3-week cytotoxic chemotherapy cycles. Adult patients with solid cancer undergoing scheduled 3-week cytotoxic chemotherapy were randomly assigned to receive the 2014-2015 seasonal influenza vaccine on day 1 or 11 during the chemotherapy cycle. Patients were stratified by their age (<60 and ≥60 years) and previous influenza vaccination status. Antibody responses to influenza vaccine strains H1N1, H3N2, and B were measured before and 21 to 28 days after vaccination with a hemagglutination inhibition antibody assay. Ninety-seven patients were randomized into a day 1 group (n = 43) or a day 11 group (n = 54). Eighty-three patients were included in the final analysis. The mean age was 54 (± 11) years. Cancer types included breast (61%) and lung cancer (30%). Baseline characteristics were not significantly different between the groups. Seroprotection rates after vaccination were also not significantly different for the day 1 and 11 groups (strain H1N1, 67% vs 75% [P = .403]; strain H3N2, 77% vs 80% [P = .772]; strain B, 21% vs 27% [P = .472]). Seroconversion rates and postvaccination geometric mean titers were also similar for the groups. Vaccine-related adverse events were more common in the day 11 group (13% vs. 32%; P = .040). The antibody responses to influenza vaccination on days 1 and 11 during a 3-week cytotoxic chemotherapy cycle were comparable. Influenza vaccination can be performed concurrently with cytotoxic chemotherapy or during the cytopenic period. Cancer 2017;123:841-48. © 2016 American Cancer Society. © 2016 American Cancer Society.
Niu, Longjian; Tao, Yan-Bin; Chen, Mao-Sheng; Fu, Qiantang; Li, Chaoqiong; Dong, Yuling; Wang, Xiulan; He, Huiying; Xu, Zeng-Fu
2015-01-01
Real-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt), BestKeeper, geNorm, and NormFinder) were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE), actin (ACT) and phospholipase A22 (PLA) were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13), cyclophilin (CYC) and elongation factor-1alpha (EF1α) were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII) were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi. PMID:26047338
Externalities in a life cycle model with endogenous survival☆
Kuhn, Michael; Wrzaczek, Stefan; Prskawetz, Alexia; Feichtinger, Gustav
2011-01-01
We study socially vs individually optimal life cycle allocations of consumption and health, when individual health care curbs own mortality but also has a spillover effect on other persons’ survival. Such spillovers arise, for instance, when health care activity at aggregate level triggers improvements in treatment through learning-by-doing (positive externality) or a deterioration in the quality of care through congestion (negative externality). We combine an age-structured optimal control model at population level with a conventional life cycle model to derive the social and private value of life. We then examine how individual incentives deviate from social incentives and how they can be aligned by way of a transfer scheme. The age-patterns of socially and individually optimal health expenditures and the transfer rate are derived. Numerical analysis illustrates the working of our model. PMID:28298810
NASA Technical Reports Server (NTRS)
Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.
1993-01-01
Topics addressed are: (1) cryogenic tankage; (2) launch vehicle TPS/insulation; (3) durable passive thermal control devices and/or coatings; (4) development and characterization of processing methods to reduce anisotropy of material properties in Al-Li; (5) durable thermal protection system (TPS); (6) unpressurized Al-Li structures (interstages, thrust structures); (7) near net shape sections; (8) pressurized structures; (9) welding and joining; (10) micrometeoroid and debris hypervelocity shields; (11) state-of-the-art shell buckling structure optimizer program to serve as a rapid design tool; (12) test philosophy; (13) reduced load cycle time; (14) structural analysis methods; (15) optimization of structural criteria; and (16) develop an engineering approach to properly trade material and structural concepts selection, fabrication, facilities, and cost.
Long-term energy capture and the effects of optimizing wind turbine operating strategies
NASA Technical Reports Server (NTRS)
Miller, A. H.; Formica, W. J.
1982-01-01
Methods of increasing energy capture without affecting the turbine design were investigated. The emphasis was on optimizing the wind turbine operating strategy. The operating strategy embodies the startup and shutdown algorithm as well as the algorithm for determining when to yaw (rotate) the axis of the turbine more directly into the wind. Using data collected at a number of sites, the time-dependent simulation of a MOD-2 wind turbine using various, site-dependent operating strategies provided evidence that site-specific fine tuning can produce significant increases in long-term energy capture as well as reduce the number of start-stop cycles and yawing maneuvers, which may result in reduced fatigue and subsequent maintenance.
NASA Astrophysics Data System (ADS)
Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; McGaw, Mike; Munafo, Paul M.
1993-02-01
Topics addressed are: (1) cryogenic tankage; (2) launch vehicle TPS/insulation; (3) durable passive thermal control devices and/or coatings; (4) development and characterization of processing methods to reduce anisotropy of material properties in Al-Li; (5) durable thermal protection system (TPS); (6) unpressurized Al-Li structures (interstages, thrust structures); (7) near net shape sections; (8) pressurized structures; (9) welding and joining; (10) micrometeoroid and debris hypervelocity shields; (11) state-of-the-art shell buckling structure optimizer program to serve as a rapid design tool; (12) test philosophy; (13) reduced load cycle time; (14) structural analysis methods; (15) optimization of structural criteria; and (16) develop an engineering approach to properly trade material and structural concepts selection, fabrication, facilities, and cost.
Optimal design of gas adsorption refrigerators for cryogenic cooling
NASA Technical Reports Server (NTRS)
Chan, C. K.
1983-01-01
The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.
Tsang, Chehong; Shehata, Medhat H.; Lotfy, Abdurrahmaan
2016-01-01
The lack of a standard test method for evaluating the resistance of pervious concrete to cycles of freezing and thawing in the presence of deicing salts is the motive behind this study. Different sample size and geometry, cycle duration, and level of submersion in brine solutions were investigated to achieve an optimized test method. The optimized test method was able to produce different levels of damage when different types of deicing salts were used. The optimized duration of one cycle was found to be 24 h with twelve hours of freezing at −18 °C and twelve hours of thawing at +21 °C, with the bottom 10 mm of the sample submerged in the brine solution. Cylinder samples with a diameter of 100 mm and height of 150 mm were used and found to produce similar results to 150 mm-cubes. Based on the obtained results a mass loss of 3%–5% is proposed as a failure criterion of cylindrical samples. For the materials and within the cycles of freezing/thawing investigated here, the deicers that caused the most damage were NaCl, CaCl2 and urea, followed by MgCl2, potassium acetate, sodium acetate and calcium-magnesium acetate. More testing is needed to validate the effects of different deicers under long term exposures and different temperature ranges. PMID:28773998
NASA Astrophysics Data System (ADS)
Joshi, D. M.
2017-09-01
Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.
NASA Astrophysics Data System (ADS)
Foster, Richard W.
1989-07-01
The application of rocket-based combined cycle (RBCC) engines to booster-stage propulsion, in combination with all-rocket second stages in orbital-ascent missions, has been studied since the mid-1960s; attention is presently given to the case of the 'ejector scramjet' RBCC configuration's application to SSTO vehicles. While total mass delivered to initial orbit is optimized at Mach 20, payload delivery capability to initial orbit optimizes at Mach 17, primarily due to the reduction of hydrogen fuel tankage structure, insulation, and thermal protection system weights.
Peak capacity analysis of coal power in China based on full-life cycle cost model optimization
NASA Astrophysics Data System (ADS)
Yan, Xiaoqing; Zhang, Jinfang; Huang, Xinting
2018-02-01
13th five-year and the next period are critical for the energy and power reform of China. In order to ease the excessive power supply, policies have been introduced by National Energy Board especially toward coal power capacity control. Therefore the rational construction scale and scientific development timing for coal power are of great importance and paid more and more attentions. In this study, the comprehensive influence of coal power reduction policies is analyzed from diverse point of views. Full-life cycle cost model of coal power is established to fully reflect the external and internal cost. Then this model is introduced in an improved power planning optimization theory. The power planning and diverse scenarios production simulation shows that, in order to meet the power, electricity and peak balance of power system, China’s coal power peak capacity is within 1.15 ∼ 1.2 billion kilowatts before or after 2025. The research result is expected to be helpful to the power industry in 14th and 15th five-year periods, promoting the efficiency and safety of power system.
Soil Carbon Cycling - More than Changes in Soil Organic Carbon Stocks
NASA Astrophysics Data System (ADS)
Lorenz, K.
2015-12-01
Discussions about soil carbon (C) sequestration generally focus on changes in soil organic carbon (SOC) stocks. Global SOC mass in the top 1 m was estimated at about 1325 Pg C, and at about 3000 Pg C when deeper soil layers were included. However, both inorganically and organically bound carbon forms are found in soil but estimates on global soil inorganic carbon (SIC) mass are even more uncertain than those for SOC. Globally, about 947 Pg SIC may be stored in the top 1 m, and especially in arid and semi-arid regions SIC stocks can be many times great than SOC stocks. Both SIC and SOC stocks are vulnerable to management practices, and stocks may be enhanced, for example, by optimizing net primary production (NPP) by fertilization and irrigation (especially optimizing belowground NPP for enhancing SOC stocks), adding organic matter (including black C for enhancing SOC stocks), and reducing soil disturbance. Thus, studies on soil C stocks, fluxes, and vulnerability must look at both SIC and SOC stocks in soil profiles to address large scale soil C cycling.
Temporal organization as a therapeutic target
Wirz-Justice, Anna
2012-01-01
Biological functions occur at many different frequencies, and each has its healthy and pathological ranges, patterns, and properties. Physiology, biochemistry, and behavior are not only organized at the morphological level in cells and organs, but separated or coordinated in time for minimal interference and optimal function. One of the most important temporal frameworks is that of the 24-hour day-night cycle, and its change in day length with season. Robust circadian rhythms are important for mental and physical well-being. Though rhythms have been long neglected as irrelevant (in spite of the high prevalence of sleep disorders in nearly every psychiatric illness), we now have tools to document rhythm disruption and, through better understanding of underlying molecular and physiological mechanisms, to develop therapeutic applications. Light as the major synchronizing agent of the biological clock is becoming a treatment option not only for winter depression but other, nonseasonal forms, as well as an adjunct in optimizing sleep-wake cycles, daytime alertness, cognition, and mood in many neuropsychiatric illnesses. Melatonin is the signal of darkness and promotes sleep onset. Manipulation of sleep (wake therapy, phase advance) has yielded the most rapid, nonpharmacological antidepressant effect known, and combinations (with light, medication) provide long-lasting response. Thus, by analogy, new molecules to augment synchronization or mimic changes occuring during night-time wakefulness may yield novel treatments. This issue on biological rhythms contains articles on a variety of different frequencies not included in the usual definition of chronobiology, but which open up interesting approaches to time and illness. PMID:23393412
The optimization air separation plants for combined cycle MHD-power plant applications
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Springmann, H.; Greenberg, R.
1980-01-01
Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.
Onboard Run-Time Goal Selection for Autonomous Operations
NASA Technical Reports Server (NTRS)
Rabideau, Gregg; Chien, Steve; McLaren, David
2010-01-01
We describe an efficient, online goal selection algorithm for use onboard spacecraft and its use for selecting goals at runtime. Our focus is on the re-planning that must be performed in a timely manner on the embedded system where computational resources are limited. In particular, our algorithm generates near optimal solutions to problems with fully specified goal requests that oversubscribe available resources but have no temporal flexibility. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. This enables shorter response cycles and greater autonomy for the system under control.
Universal optimal working cycles of molecular motors.
Efremov, Artem; Wang, Zhisong
2011-04-07
Molecular motors capable of directional track-walking or rotation are abundant in living cells, and inspire the emerging field of artificial nanomotors. Some biomotors can convert 90% of free energy from chemical fuels into usable mechanical work, and the same motors still maintain a speed sufficient for cellular functions. This study exposed a new regime of universal optimization that amounts to a thermodynamically best working regime for molecular motors but is unfamiliar in macroscopic engines. For the ideal case of zero energy dissipation, the universally optimized working cycle for molecular motors is infinitely slow like Carnot cycle for heat engines. But when a small amount of energy dissipation reduces energy efficiency linearly from 100%, the speed is recovered exponentially due to Boltzmann's law. Experimental data on a major biomotor (kinesin) suggest that the regime of universal optimization has been largely approached in living cells, underpinning the extreme efficiency-speed trade-off in biomotors. The universal optimization and its practical approachability are unique thermodynamic advantages of molecular systems over macroscopic engines in facilitating motor functions. The findings have important implications for the natural evolution of biomotors as well as the development of artificial counterparts.
The COMPASS Tokamak Plasma Control Software Performance
NASA Astrophysics Data System (ADS)
Valcarcel, Daniel F.; Neto, André; Carvalho, Ivo S.; Carvalho, Bernardo B.; Fernandes, Horácio; Sousa, Jorge; Janky, Filip; Havlicek, Josef; Beno, Radek; Horacek, Jan; Hron, Martin; Panek, Radomir
2011-08-01
The COMPASS tokamak has began operation at the IPP Prague in December 2008. A new control system has been built using an ATCA-based real-time system developed at IST Lisbon. The control software is implemented on top of the MARTe real-time framework attaining control cycles as short as 50 μs, with a jitter of less than 1 μs. The controlled parameters, important for the plasma performance, are the plasma current, position of the plasma current center, boundary shape and horizontal and vertical velocities. These are divided in two control cycles: slow at 500 μs and fast at 50 μs. The project has two phases. First, the software implements a digital controller, similar to the analog one used during the COMPASS-D operation in Culham. In the slow cycle, the plasma current and position are measured and controlled with PID and feedforward controllers, respectively, the shaping magnetic field is preprogrammed. The vertical instability and horizontal equilibrium are controlled with the faster 50-μs cycle PID controllers. The second phase will implement a plasma-shape reconstruction algorithm and controller, aiming at optimized plasma performance. The system was designed to be as modular as possible by breaking the functional requirements of the control system into several independent and specialized modules. This splitting enabled tuning the execution of each system part and to use the modules in a variety of applications with different time constraints. This paper presents the design and overall performance of the COMPASS control software.
Gieseler, Henning; Kramer, Tony; Pikal, Michael J
2007-12-01
This report provides, for the first time, a summary of experiments using SMART Freeze Dryer technology during a 9 month testing period. A minimum ice sublimation area of about 300 cm(2) for the laboratory freeze dryer, with a chamber volume 107.5 L, was found consistent with data obtained during previous experiments with a smaller freeze dryer (52 L). Good reproducibility was found for cycle design with different type of excipients, formulations, and vials used. SMART primary drying end point estimates were accurate in the majority of the experiments, but showed an over prediction of primary cycle time when the product did not fully achieve steady state conditions before the first MTM measurement was performed. Product resistance data for 5% sucrose mixtures at varying fill depths were very reproducible. Product temperature determined by SMART was typically in good agreement with thermocouple data through about 50% of primary drying time, with significant deviations occurring near the end of primary drying, as expected, but showing a bias much earlier in primary drying for high solid content formulations (16.6% Pfizer product) and polyvinylpyrrolidone (40 kDa) likely due to water "re-adsorption" by the amorphous product during the MTM test. (c) 2007 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
1984-01-01
A solar pond electric power generation subsystem, an electric power transformer and switch yard, a large solar pond, a water treatment plant, and numerous storage and evaporation ponds. Because a solar pond stores thermal energy over a long period of time, plant operation at any point in time is dependent upon past operation and future perceived generation plans. This time or past history factor introduces a new dimension in the design process. The design optimization of a plant must go beyond examination of operational state points and consider the seasonal variations in solar, solar pond energy storage, and desired plant annual duty-cycle profile. Models or design tools will be required to optimize a plant design. These models should be developed in order to include a proper but not excessive level of detail. The model should be targeted to a specific objective and not conceived as a do everything analysis tool, i.e., system design and not gradient-zone stability.
How young water fractions can delineate travel time distributions in contrasting catchments
NASA Astrophysics Data System (ADS)
Lutz, Stefanie; Zink, Matthias; Merz, Ralf
2017-04-01
Travel time distributions (TTDs) are crucial descriptors of flow and transport processes in catchments. Tracking fluxes of environmental tracers such as stable water isotopes offers a practicable method to determine TTDs. The mean transit time (MTT) is the most commonly reported statistic of TTDs; however, MTT assessments are prone to large aggregation biases resulting from spatial heterogeneity and non-stationarity in real-world catchments. Recently, the young water fraction (Fyw) has been introduced as a more robust statistic that can be derived from seasonal tracer cycles. In this study, we aimed at improving the assessment of TTDs by using Fyw as additional information in lumped isotope models. First, we calculated Fyw from monthly δ18O-samples for 24 contrasting sub-catchments in a meso-scale catchment (3300 km2). Fyw ranged from 0.01 to 0.27 (mean= 0.11) and was not significantly correlated with catchment characteristics (e.g., mean slope, catchment area, and baseflow index) apart from the dominant soil type. Second, assuming gamma-shaped TTDs, we determined time-invariant TTDs for each sub-catchment by optimization of lumped isotope models using the convolution integral method. Whereas multiple optimization runs for the same sub-catchment showed a wide range of TTD parameters, the use of Fyw as additional information allowed constraining this range and thus improving the assessment of MTTs. Hence, the best model fit to observed isotope data might not be the desired solution, as the resulting TTD might define a young water fraction non-consistent with the tracer-cycle based Fyw. Given that the latter is a robust descriptor of fast-flow contribution, isotope models should instead aim at accurately describing both Fyw and the isotope time series in order to improve our understanding of flow and transport in catchments.
Optimization of ultrasound-assisted extraction (UAE) of phenolic compounds from olive cake.
Mojerlou, Zohreh; Elhamirad, Amirhhossein
2018-03-01
The use of ultrasound in ultrasound-assisted extraction (UAE) is one of the main applications of this technology in food industry. This study aimed to optimize UAE conditions for olive cake extract (OCE) through response surface methodology (RSM). The optimal UAE conditions were obtained with extraction temperature of 56 °C, extraction time of 3 min, duty cycle of 0.6 s, and solid to solvent ratio of 3.6%. At the optimum conditions, the total phenolic compounds (TPC) content and antioxidant activity (AA) were measured 4.04 mg/g and 68.9%, respectively. The linear term of temperature had the most effect on TPC content and AA of OCE prepared by UAE. Protocatechuic acid and cinnamic acid were characterized as the highest (19.5%) and lowest (1.6%) phenolic compound measured in OCE extracted by UAE. This research revealed that UAE is an effective method to extract phenolic compounds from olive cake. RSM successfully optimized UAE conditions for OCE.
[Collaborative application of BEPS at different time steps.
Lu, Wei; Fan, Wen Yi; Tian, Tian
2016-09-01
BEPSHourly is committed to simulate the ecological and physiological process of vegetation at hourly time steps, and is often applied to analyze the diurnal change of gross primary productivity (GPP), net primary productivity (NPP) at site scale because of its more complex model structure and time-consuming solving process. However, daily photosynthetic rate calculation in BEPSDaily model is simpler and less time-consuming, not involving many iterative processes. It is suitable for simulating the regional primary productivity and analyzing the spatial distribution of regional carbon sources and sinks. According to the characteristics and applicability of BEPSDaily and BEPSHourly models, this paper proposed a method of collaborative application of BEPS at daily and hourly time steps. Firstly, BEPSHourly was used to optimize the main photosynthetic parameters: the maximum rate of carboxylation (V c max ) and the maximum rate of photosynthetic electron transport (J max ) at site scale, and then the two optimized parameters were introduced into BEPSDaily model to estimate regional NPP at regional scale. The results showed that optimization of the main photosynthesis parameters based on the flux data could improve the simulate ability of the model. The primary productivity of different forest types in descending order was deciduous broad-leaved forest, mixed forest, coniferous forest in 2011. The collaborative application of carbon cycle models at different steps proposed in this study could effectively optimize the main photosynthesis parameters V c max and J max , simulate the monthly averaged diurnal GPP, NPP, calculate the regional NPP, and analyze the spatial distribution of regional carbon sources and sinks.
NASA Astrophysics Data System (ADS)
Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad
2017-08-01
Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.
NASA Astrophysics Data System (ADS)
Zhao, Jing-bo; Han, Bing-yuan; Bei, Shao-yi
2017-10-01
Range extender is the core component of E-REV, its start-stop control determines the operation modes of vehicle. This paper based on a certain type of E-REV, researched constant power control strategy of range extender in extended-range model, to target range as constraint condition, combined with different driving cycle conditions, by correcting battery SOC for range extender start-stop moment, optimized the control strategy of range extender, and established the vehicle and range extender start-stop control simulation model. Selected NEDC and UDDS conditions simulation results show that: under certain target mileage, the range extender running time reduced by 37.2% and 28.2% in the NEDC condition, and running time UDDS conditions were reduced by 40.6% and 33.5% in the UDDS condition, reached the purpose of meeting the vehicle mileage and reducing consumption and emission.
Optimizing Interactive Development of Data-Intensive Applications
Interlandi, Matteo; Tetali, Sai Deep; Gulzar, Muhammad Ali; Noor, Joseph; Condie, Tyson; Kim, Miryung; Millstein, Todd
2017-01-01
Modern Data-Intensive Scalable Computing (DISC) systems are designed to process data through batch jobs that execute programs (e.g., queries) compiled from a high-level language. These programs are often developed interactively by posing ad-hoc queries over the base data until a desired result is generated. We observe that there can be significant overlap in the structure of these queries used to derive the final program. Yet, each successive execution of a slightly modified query is performed anew, which can significantly increase the development cycle. Vega is an Apache Spark framework that we have implemented for optimizing a series of similar Spark programs, likely originating from a development or exploratory data analysis session. Spark developers (e.g., data scientists) can leverage Vega to significantly reduce the amount of time it takes to re-execute a modified Spark program, reducing the overall time to market for their Big Data applications. PMID:28405637
Mechanism of bandwidth improvement in passively cooled SMA position actuators
NASA Astrophysics Data System (ADS)
Gorbet, R. B.; Morris, K. A.; Chau, R. C. C.
2009-09-01
The heating of shape memory alloy (SMA) materials leads to a thermally driven phase change which can be used to do work. An SMA wire can be thermally cycled by controlling electric current through the wire, creating an electro-mechanical actuator. Such actuators are typically heated electrically and cooled through convection. The thermal time constants and lack of active cooling limit the operating frequencies. In this work, the bandwidth of a still-air-cooled SMA wire controlled with a PID controller is improved through optimization of the controller gains. Results confirm that optimization can improve the ability of the actuator to operate at a given frequency. Overshoot is observed in the optimal controllers at low frequencies. This is a result of hysteresis in the wire's contraction-temperature characteristic, since different input temperatures can achieve the same output value. The optimal controllers generate overshoot during heating, in order to cause the system to operate at a point on the hysteresis curve where faster cooling can be achieved. The optimization results in a controller which effectively takes advantage of the multi-valued nature of the hysteresis to improve performance.
Živković Semren, Tanja; Brčić Karačonji, Irena; Safner, Toni; Brajenović, Nataša; Tariba Lovaković, Blanka; Pizent, Alica
2018-01-01
Non-targeted metabolomics research of human volatile urinary metabolome can be used to identify potential biomarkers associated with the changes in metabolism related to various health disorders. To ensure reliable analysis of urinary volatile organic metabolites (VOMs) by gas chromatography-mass spectrometry (GC-MS), parameters affecting the headspace-solid phase microextraction (HS-SPME) procedure have been evaluated and optimized. The influence of incubation and extraction temperatures and times, coating fibre material and salt addition on SPME efficiency was investigated by multivariate optimization methods using reduced factorial and Doehlert matrix designs. The results showed optimum values for temperature to be 60°C, extraction time 50min, and incubation time 35min. The proposed conditions were applied to investigate urine samples' stability regarding different storage conditions and freeze-thaw processes. The sum of peak areas of urine samples stored at 4°C, -20°C, and -80°C up to six months showed a time dependent decrease over time although storage at -80°C resulted in a slight non-significant reduction comparing to the fresh sample. However, due to the volatile nature of the analysed compounds, more than two cycles of freezing/thawing of the sample stored for six months at -80°C should be avoided whenever possible. Copyright © 2017 Elsevier B.V. All rights reserved.
Origin and evolution of SINEs in eukaryotic genomes.
Kramerov, D A; Vassetzky, N S
2011-12-01
Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements.
NASA Astrophysics Data System (ADS)
Eskandari, M. A.; Mazraeshahi, H. K.; Ramesh, D.; Montazer, E.; Salami, E.; Romli, F. I.
2017-12-01
In this paper, a new method for the determination of optimum parameters of open-cycle liquid-propellant engine of launch vehicles is introduced. The parameters affecting the objective function, which is the ratio of specific impulse to gross mass of the launch vehicle, are chosen to achieve maximum specific impulse as well as minimum mass for the structure of engine, tanks, etc. The proposed algorithm uses constant integration of thrust with respect to time for launch vehicle with specific diameter and length to calculate the optimum working condition. The results by this novel algorithm are compared to those obtained from using Genetic Algorithm method and they are also validated against the results of existing launch vehicle.
NASA Astrophysics Data System (ADS)
Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.
2016-02-01
A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.
Water Cycle Missions for the Next Decade
NASA Astrophysics Data System (ADS)
Houser, P. R.
2013-12-01
The global water cycle describes the circulation of water as a vital and dynamic substance in its liquid, solid, and vapor phases as it moves through the atmosphere, oceans and land. Life in its many forms exists because of water, and modern civilization depends on learning how to live within the constraints imposed by the availability of water. The scientific challenge posed by the need to observe the global water cycle is to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The vision to address that challenge is a series of Earth observation missions that will measure the states, stocks, flows, and residence times of water on regional to global scales followed by a series of coordinated missions that will address the processes, on a global scale, that underlie variability and changes in water in all its three phases. The accompanying societal challenge is to foster the improved use of water data and information as a basis for enlightened management of water resources, to protect life and property from effects of extremes in the water cycle. A major change in thinking about water science that goes beyond its physics to include its role in ecosystems and society is also required. Better water-cycle observations, especially on the continental and global scales, will be essential. Water-cycle predictions need to be readily available globally to reduce loss of life and property caused by water-related natural hazards. Building on the 2007 Earth Science Decadal Survey, NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space , and the 2012 Chapman Conference on Remote Sensing of the Terrestrial Water Cycle, a workshop was held in April 2013 to gather wisdom and determine how to prepare for the next generation of water cycle missions in support of the second Earth Science Decadal Survey. This talk will present the outcomes of the workshop including the intersection between science questions, technology readiness and satellite design optimization. A series of next-generation water cycle mission working groups were proposed and white papers, designed to identify capacity gaps and inform NASA were developed. The workshop identified several visions for the next decade of water cycle satellite observations, and developed a roadmap and action plan for developing the foundation for these missions. Achieving this outcome will result in optimized community investments and better functionality of these future missions, and will help to foster broader range of scientists and professionals engaged in water cycle observation planning and development around the country, and the world.
Footitt, Steven; Ölçer-Footitt, Hülya; Hambidge, Angela J; Finch-Savage, William E
2017-08-01
Environmental signals drive seed dormancy cycling in the soil to synchronize germination with the optimal time of year, a process essential for species' fitness and survival. Previous correlation of transcription profiles in exhumed seeds with annual environmental signals revealed the coordination of dormancy-regulating mechanisms with the soil environment. Here, we developed a rapid and robust laboratory dormancy cycling simulation. The utility of this simulation was tested in two ways: firstly, using mutants in known dormancy-related genes [DELAY OF GERMINATION 1 (DOG1), MOTHER OF FLOWERING TIME (MFT), CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) and PHYTOCHROME A (PHYA)] and secondly, using further mutants, we test the hypothesis that components of the circadian clock are involved in coordination of the annual seed dormancy cycle. The rate of dormancy induction and relief differed in all lines tested. In the mutants, dog1-2 and mft2, dormancy induction was reduced but not absent. DOG1 is not absolutely required for dormancy. In cipk23 and phyA dormancy, induction was accelerated. Involvement of the clock in dormancy cycling was clear when mutants in the morning and evening loops of the clock were compared. Dormancy induction was faster when the morning loop was compromised and delayed when the evening loop was compromised. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.
2009-12-01
The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.
Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.
2014-01-01
Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045
Wahyuningsih, Hesty; K Cayami, Ferdy; Bahrudin, Udin; A Sobirin, Mochamad; Ep Mundhofir, Farmaditya; Mh Faradz, Sultana; Hisatome, Ichiro
2017-03-01
High resolution melting (HRM) is a post-PCR technique for variant screening and genotyping based on the different melting points of DNA fragments. The advantages of this technique are that it is fast, simple, and efficient and has a high output, particularly for screening of a large number of samples. APOA1 encodes apolipoprotein A1 (apoA1) which is a major component of high density lipoprotein cholesterol (HDL-C). This study aimed to obtain an optimal quantitative polymerase chain reaction (qPCR)-HRM condition for screening of APOA1 variance. Genomic DNA was isolated from a peripheral blood sample using the salting out method. APOA1 was amplified using the RotorGeneQ 5Plex HRM. The PCR product was visualized with the HRM amplification curve and confirmed using gel electrophoresis. The melting profile was confirmed by looking at the melting curve. Five sets of primers covering the translated region of APOA1 exons were designed with expected PCR product size of 100-400 bps. The amplified segments of DNA were amplicons 2, 3, 4A, 4B, and 4C. Amplicons 2, 3 and 4B were optimized at an annealing temperature of 60 °C at 40 PCR cycles. Amplicon 4A was optimized at an annealing temperature of 62 °C at 45 PCR cycles. Amplicon 4C was optimized at an annealing temperature of 63 °C at 50 PCR cycles. In addition to the suitable procedures of DNA isolation and quantification, primer design and an estimated PCR product size, the data of this study showed that appropriate annealing temperature and PCR cycles were important factors in optimization of HRM technique for variant screening in APOA1 .
Wahyuningsih, Hesty; K Cayami, Ferdy; Bahrudin, Udin; A Sobirin, Mochamad; EP Mundhofir, Farmaditya; MH Faradz, Sultana; Hisatome, Ichiro
2017-01-01
Background High resolution melting (HRM) is a post-PCR technique for variant screening and genotyping based on the different melting points of DNA fragments. The advantages of this technique are that it is fast, simple, and efficient and has a high output, particularly for screening of a large number of samples. APOA1 encodes apolipoprotein A1 (apoA1) which is a major component of high density lipoprotein cholesterol (HDL-C). This study aimed to obtain an optimal quantitative polymerase chain reaction (qPCR)-HRM condition for screening of APOA1 variance. Methods Genomic DNA was isolated from a peripheral blood sample using the salting out method. APOA1 was amplified using the RotorGeneQ 5Plex HRM. The PCR product was visualized with the HRM amplification curve and confirmed using gel electrophoresis. The melting profile was confirmed by looking at the melting curve. Results Five sets of primers covering the translated region of APOA1 exons were designed with expected PCR product size of 100–400 bps. The amplified segments of DNA were amplicons 2, 3, 4A, 4B, and 4C. Amplicons 2, 3 and 4B were optimized at an annealing temperature of 60 °C at 40 PCR cycles. Amplicon 4A was optimized at an annealing temperature of 62 °C at 45 PCR cycles. Amplicon 4C was optimized at an annealing temperature of 63 °C at 50 PCR cycles. Conclusion In addition to the suitable procedures of DNA isolation and quantification, primer design and an estimated PCR product size, the data of this study showed that appropriate annealing temperature and PCR cycles were important factors in optimization of HRM technique for variant screening in APOA1. PMID:28331418
Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Ali Syed, Junaid; Wang, Xiangyu; Meng, Xiangkang
2016-01-01
Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles). PMID:26883179
NASA Astrophysics Data System (ADS)
Azharuddin; Santarelli, Massimo
2016-09-01
Thermodynamic analysis of a closed cycle, solar powered Brayton gas turbine power plant with Concentrating Receiver system has been studied. A Brayton cycle is simpler than a Rankine cycle and has an advantage where the water is scarce. With the normal Brayton cycle a Concentrating Receiver System has been analysed which has a dependence on field density and optical system. This study presents a method of optimization of design parameter, such as the receiver working temperature and the heliostats density. This method aims at maximizing the overall efficiency of the three major subsystem that constitute the entire plant, namely, the heliostat field and the tower, the receiver and the power block. The results of the optimization process are shown and analysed.
Cycle-to-cycle IMEP fluctuations in a stoichiometrically-fueled S. I. engine at low speed and load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sztenderowicz, M.L.; Heywood, J.B.
1990-01-01
In a previous experimental investigation of the effects of residual gas nonuniformity on S.I. engine combustion variability, it was found that eliminating residual gas nonuniformity by skip firing has no detectable impact on the flame development process, but nonetheless caused IMEP fluctuations to drop by about half under very light load conditions. This paper reports that under further investigation, it has been determined that the observed IMEP fluctuations, particularly for optimally-phased cycles, are controlled by cyclic variations in the amount of fuel burning per cycle. Real-time sampling of the hydrocarbon concentration in the exhaust port has shown that the variationmore » in fuel burned per cycle is not primarily due to variations in combustion completeness, and must therefore be attributed to variations in the amount of fuel trapped within the cylinder prior to combustion. Several mechanisms for this variation were identified, all of which are plausible but none of which are likely to dominate: variations in fuel quantity left in the cylinder from the previous cycle; variations in the fluid dynamics of the intake process; fresh charge displacement due to variations in residual gas temperature; variations in leakage through valves; and fluctuations in crevice effects and blow-by.« less
Volodarsky-Perel, Alexander; Eldar-Geva, Talia; Holzer, Hananel E G; Schonberger, Oshrat; Reichman, Orna; Gal, Michael
2017-03-01
The optimal time to perform cryopreserved embryo transfer (CET) after a failed oocyte retrieval-embryo transfer (OR-ET) cycle is unknown. Similar clinical pregnancy rates were recently reported in immediate and delayed CET, performed after failed fresh OR-ET, in cycles with the gonadotrophin-releasing hormone (GnRH) antagonist protocol. This study compared outcomes of CET performed adjacently (<50 days, n = 67) and non-adjacently (≥50 to 120 days, n = 62) to the last OR-day of cycles with the GnRH agonist down-regulation protocol. Additional inclusion criteria were patients' age 20-38 years, the transfer of only 1-2 cryopreserved embryos, one treatment cycle per patient and artificial preparation for CET. Significantly higher implantation, clinical pregnancy and live birth rates were found in the non-adjacent group than in the adjacent group: 30.5% versus 11.3% (P = 0.001), 41.9% versus 17.9% (P = 0.003) and 32.3% versus 13.4% (P = 0.01), respectively. These results support the postponement of CET after a failed OR-ET for at least one menstrual cycle, when a preceding long GnRH-agonist protocol is used. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Glaeser, S S; Hunt, K E; Martin, M S; Finnegan, M; Brown, J L
2012-07-15
Evaluating ovarian cycle activity through longitudinal progestagen monitoring is important for optimizing breeding management of captive elephants and understanding impact of life events (births, deaths, and transfers) on reproductive function. This study summarized serum progestagen profiles for eight Asian mainland elephants (Elephas maximus indicus) and one Bornean elephant (E. maximus borneensis) at the Oregon Zoo over a 20-yr interval, and represents the longest longitudinal dataset evaluated to date. Estrous cycle characteristics were more varied than previously reported for this species, with an overall duration of 12 to 19 wk, luteal phase duration of 4 to 15 wk, and follicular phase duration of 2 to 12 wk. In general, there was more cycle variability across than within individual elephants. Compared with other elephants in the group, the Borneo female exhibited consistently longer cycle lengths, higher progestagen concentrations, and greater cycle variability; however, it is not known if this represents a subspecies or an individual difference. Cycle durations did not appear to change over time or with age, and the first pubertal cycle was similar to subsequent cycles. Variability in duration of the follicular phase was greater than that of the luteal phase. In addition, there was a significant negative relationship between luteal and follicular phase durations, suggesting a possible regulatory role of the follicular phase in maintaining a relatively consistent cycle duration within individuals. Overall, we found these elephants to be highly resilient in that major life events (births, deaths, and changes in herd structure) had minimal effect on cycle dynamics over time. In conclusion, the higher range in cycle phase characteristics is likely because of the larger number of elephants studied and longer duration of longitudinal monitoring, and may be more representative of the captive population as a whole. Furthermore, identification of significant interanimal variability suggests that understanding the complexities of herd reproductive characteristics could facilitate development of more effective institution-specific breeding management strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.
1980-01-01
The computational techniques are described which are utilized at Lewis Research Center to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. Cycle performance, and engine weight can be calculated along with costs and installation effects as opposed to fuel consumption alone. Almost any conceivable turbine engine cycle can be studied. These computer codes are: NNEP, WATE, LIFCYC, INSTAL, and POD DRG. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight and cost for representative types of aircraft and missions.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Gazda, Daniel; Lewis, John
2011-01-01
An EMU water processing kit (Airlock Coolant Loop Recovery -- A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. A conservative duty cycle and set of use parameters for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. Several initiatives were undertaken to optimize the duty cycle and use parameters of the hardware. Examination of post-flight samples and EMU Coolant Loop hardware provided invaluable information on the performance of the A/L CLR and has allowed for an optimization of the process. The intent of this paper is to detail the evolution of the A/L CLR hardware, efforts to optimize the duty cycle and use parameters, and the final recommendations for implementation in the post-Shuttle retirement era.
Efficiency improvements of offline metrology job creation
NASA Astrophysics Data System (ADS)
Zuniga, Victor J.; Carlson, Alan; Podlesny, John C.; Knutrud, Paul C.
1999-06-01
Progress of the first lot of a new design through the production line is watched very closely. All performance metrics, cycle-time, in-line measurement results and final electrical performance are critical. Rapid movement of this lot through the line has serious time-to-market implications. Having this material waiting at a metrology operation for an engineer to create a measurement job plan wastes valuable turnaround time. Further, efficient use of a metrology system is compromised by the time required to create and maintain these measurement job plans. Thus, having a method to develop metrology job plans prior to the actual running of the material through the manufacture area can significantly improve both cycle time and overall equipment efficiency. Motorola and Schlumberger have worked together to develop and test such a system. The Remote Job Generator (RJG) created job plans for new device sin a manufacturing process from an NT host or workstation, offline. This increases available system tim effort making production measurements, decreases turnaround time on job plan creation and editing, and improves consistency across job plans. Most importantly this allows job plans for new devices to be available before the first wafers of the device arrive at the tool for measurement. The software also includes a database manager which allows updates of existing job plans to incorporate measurement changes required by process changes or measurement optimization. This paper will review the result of productivity enhancements through the increased metrology utilization and decreased cycle time associated with the use of RJG. Finally, improvements in process control through better control of Job Plans across different devices and layers will be discussed.
Development of a high-speed real-time PCR system for rapid and precise nucleotide recognition
NASA Astrophysics Data System (ADS)
Terazono, Hideyuki; Takei, Hiroyuki; Hattori, Akihiro; Yasuda, Kenji
2010-04-01
Polymerase chain reaction (PCR) is a common method used to create copies of a specific target region of a DNA sequence and to produce large quantities of DNA. A few DNA molecules, which act as templates, are rapidly amplified by PCR into many billions of copies. PCR is a key technology in genome-based biological analysis, revolutionizing many life science fields such as medical diagnostics, food safety monitoring, and countermeasures against bioterrorism. Thus, many applications have been developed with the thermal cycling. For these PCR applications, one of the most important key factors is reduction in the data acquisition time. To reduce the acquisition time, it is necessary to decrease the temperature transition time between the high and low ends as much as possible. We have developed a novel rapid real-time PCR system based on rapid exchange of media maintained at different temperatures. This system consists of two thermal reservoirs and a reaction chamber for PCR observation. The temperature transition was achieved within 0.3 sec, and good thermal stability was achieved during thermal cycling with rapid exchange of circulating media. This system allows rigorous optimization of the temperatures required for each stage of the PCR processes. Resulting amplicons were confirmed by electrophoresis. Using the system, rapid DNA amplification was accomplished within 3.5 min, including initial heating and complete 50 PCR cycles. It clearly shows that the device could allow us faster temperature switching than the conventional conduction-based heating systems based on Peltier heating/cooling.
Tractable Goal Selection with Oversubscribed Resources
NASA Technical Reports Server (NTRS)
Rabideau, Gregg; Chien, Steve; McLaren, David
2009-01-01
We describe an efficient, online goal selection algorithm and its use for selecting goals at runtime. Our focus is on the re-planning that must be performed in a timely manner on the embedded system where computational resources are limited. In particular, our algorithm generates near optimal solutions to problems with fully specified goal requests that oversubscribe available resources but have no temporal flexibility. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. This enables shorter response cycles and greater autonomy for the system under control.
Assembly line performance and modeling
NASA Astrophysics Data System (ADS)
Rane, Arun B.; Sunnapwar, Vivek K.
2017-09-01
Automobile sector forms the backbone of manufacturing sector. Vehicle assembly line is important section in automobile plant where repetitive tasks are performed one after another at different workstations. In this thesis, a methodology is proposed to reduce cycle time and time loss due to important factors like equipment failure, shortage of inventory, absenteeism, set-up, material handling, rejection and fatigue to improve output within given cost constraints. Various relationships between these factors, corresponding cost and output are established by scientific approach. This methodology is validated in three different vehicle assembly plants. Proposed methodology may help practitioners to optimize the assembly line using lean techniques.
Mixed Polyanion Glass Cathodes: Mixed Alkali Effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kercher, A. K.; Chapel, A. S.; Kolopus, J. A.
2017-01-01
In lithium-ion batteries, mixed polyanion glass cathodes have demonstrated high capacities (200-500 mAh/g) by undergoing conversion and intercalation reactions. Mixed polyanion glasses typically have the same fundamental issues as other conversion cathodes, i.e.: large hysteresis, capacity fade, and 1st-cycle irreversible loss. A key advantage of glass cathodes is the ability to tailor their composition to optimize the desired physical properties and electrochemical performance. The strong dependence of glass physical properties (e.g., ionic diffusivity, electrical conductivity, and chemical durability) on the composition of alkali mixtures in a glass is well known and has been named the mixed alkali effect. The mixedmore » alkali effect on battery electrochemical properties is reported here for the first time. Depending on glass composition, the mixed alkali effect is shown to improve capacity retention during cycling (from 39% to 50% after 50 cycle test), to reduce the 1st-cycle irreversible loss (from 41% to 22%), and improve the high power (500 mA/g) capacity (from 50% to 67% of slow discharge capacity).« less
On cannabis, chloral hydrate, and career cycles of psychotropic drugs in medicine.
Snelders, Stephen; Kaplan, Charles; Pieters, Toine
2006-01-01
This article compares the careers of two psychotropic drugs in Western psychiatry, with a focus on the nineteenth century: Cannabis indica and chloral hydrate. They were used by doctors for similar indications, such as mania, delirium tremens, and what we would now call drug dependence. The two show similar career paths consisting of three phases: initial enthusiasm and therapeutic optimism; subsequent negative appraisal; and finally, limited use. These cycles, which we term "Seige cycles," are generally typical of the careers of psychotropic drugs in modern medicine. However, differences in the careers of both drugs are also established. The phases of chloral show relatively higher peaks and lower valleys than those of cannabis. Chloral is the first typically "modern" psychotropic drug; a synthetic, it was introduced in 1869 at a time of growing asylum populations, pharmaceutical interests, and high cultural expectations of scientific medicine. Cannabis indica, introduced in the 1840s, is typically a "premodern" drug steeped in the climate of cultural Romanticism. We conclude that the analytical concept of the Seige cycle is a useful tool for future research into drug careers in medicine.
NASA Astrophysics Data System (ADS)
Brown, C.; Gozani, T.; Shaw, T.; Stevenson, J.
2011-10-01
In the search for concealed special nuclear materials (SNM) there are a number of fission specific signatures that can be measured. These include prompt and delayed neutron and gamma ray signatures. Here the focus will be on the delayed gamma signature with the assumption that a pulsed electron linac with a constant peak current will be used to generate bremsstrahlung radiation and induce photofission in 235U. In this case, the signal to background ratio (S/B) will depend on the choice of linac frequency, pulse mode, and "active" background due to linac activation products. The linac frequency is simply the rate at which it produces short bursts of radiation, typically 2-4 μs in duration. There are two pulse modes, micro-pulsing, and macro-pulsing. In the micro-pulsing mode, the linac runs continuously at its set frequency and data is collected between bursts. In the macro-pulsing mode, the linac is turned on for a given length of time, on the order of seconds, and then turned off for a period of time typically equal to the length of time it was turned on. Counting takes place during the time the linac is off and stops when the linac is turned on for another cycle. The time dependence of the delayed gamma population can be approximated by the use of 5 time groups with half-lives of 0.29, 1.7, 13, 100, and 940 s, respectively. Each group has its own relative population, which together with its half-life determines what time frame the group contributes most to the measured signal. For example, a group with a short half-life will contribute more signal to a short cycle macro pulsed measurement than it would to a macro pulse measurement with a very long cycle. An analytical expression can be derived that calculates the maximum obtainable signal (delayed gamma photons per fission gamma ray) in either a micro- or macro-pulsed measurement. Using this information along with the observed active background present in a given situation (which can constrain the micro-pulsing parameters), the preferred mode of operation can be chosen to maximize S/B and the detection sensitivity. The principles and experimental application of the optimization process will be shown.
Theoretical Evaluation of the Maximum Work of Free-Piston Engine Generators
NASA Astrophysics Data System (ADS)
Kojima, Shinji
2017-01-01
Utilizing the adjoint equations that originate from the calculus of variations, we have calculated the maximum thermal efficiency that is theoretically attainable by free-piston engine generators considering the work loss due to friction and Joule heat. Based on the adjoint equations with seven dimensionless parameters, the trajectory of the piston, the histories of the electric current, the work done, and the two kinds of losses have been derived in analytic forms. Using these we have conducted parametric studies for the optimized Otto and Brayton cycles. The smallness of the pressure ratio of the Brayton cycle makes the net work done negative even when the duration of heat addition is optimized to give the maximum amount of heat addition. For the Otto cycle, the net work done is positive, and both types of losses relative to the gross work done become smaller with the larger compression ratio. Another remarkable feature of the optimized Brayton cycle is that the piston trajectory of the heat addition/disposal process is expressed by the same equation as that of an adiabatic process. The maximum thermal efficiency of any combination of isochoric and isobaric heat addition/disposal processes, such as the Sabathe cycle, may be deduced by applying the methods described here.
Nasri Nasrabadi, Mohammad Reza; Razavi, Seyed Hadi
2010-04-01
In this work, we applied statistical experimental design to a fed-batch process for optimization of tricarboxylic acid cycle (TCA) intermediates in order to achieve high-level production of canthaxanthin from Dietzia natronolimnaea HS-1 cultured in beet molasses. A fractional factorial design (screening test) was first conducted on five TCA cycle intermediates. Out of the five TCA cycle intermediates investigated via screening tests, alfaketoglutarate, oxaloacetate and succinate were selected based on their statistically significant (P<0.05) and positive effects on canthaxanthin production. These significant factors were optimized by means of response surface methodology (RSM) in order to achieve high-level production of canthaxanthin. The experimental results of the RSM were fitted with a second-order polynomial equation by means of a multiple regression technique to identify the relationship between canthaxanthin production and the three TCA cycle intermediates. By means of this statistical design under a fed-batch process, the optimum conditions required to achieve the highest level of canthaxanthin (13172 + or - 25 microg l(-1)) were determined as follows: alfaketoglutarate, 9.69 mM; oxaloacetate, 8.68 mM; succinate, 8.51 mM. Copyright 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutt, M.; Nuclear Engineering Division
2010-05-25
The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less
Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy
Mazo-Vargas, Anyimilehidi; Park, Heungwon; Aydin, Mert; Buchler, Nicolas E.
2014-01-01
Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15–20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression. PMID:25232010
Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ampomah, William; Balch, Robert; Will, Robert
This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less
Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty
Ampomah, William; Balch, Robert; Will, Robert; ...
2017-07-01
This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less
Users Guide to Direct Digital Control of Heating, Ventilating, and Air Conditioning Equipment,
1985-01-01
cycles, reset, load shedding, chiller optimization , VAV fan synchronization, and optimum start/stop. The prospective buyer of a DDC system should...in Fig- ure 4. Data on setpoints , reset schedules, and event timing, such as that presented in Figure 6, are often even more difficult to find. In con...control logic, setpoint and other data are readily available. Program logic, setpoint and schedule data, and other information stored in a DDC unit
Optimized plasma actuation on asymmetric vortex over a slender body
NASA Astrophysics Data System (ADS)
Long, Yuexiao; Li, Huaxing; Meng, Xuanshi; Hu, Haiyang
2018-01-01
Detailed particle-image-velocimetry and surface pressure measurements are conducted to study asymmetric vortex control over a slender body at high angles of attack by using a pair of optimized alternating current surface-dielectric-barrier discharge plasma actuators. The Reynolds number based on the base diameter of the model is ReD = 3.8 × 105. Steady and duty-cycle manipulations are employed. The results demonstrate the effectiveness of the optimized actuator with a thick Teflon barrier at a high free-stream speed. Perfect linear proportional control is also achieved under duty-cycle control with a reduced frequency of f+ = 0.17.
Honing process optimization algorithms
NASA Astrophysics Data System (ADS)
Kadyrov, Ramil R.; Charikov, Pavel N.; Pryanichnikova, Valeria V.
2018-03-01
This article considers the relevance of honing processes for creating high-quality mechanical engineering products. The features of the honing process are revealed and such important concepts as the task for optimization of honing operations, the optimal structure of the honing working cycles, stepped and stepless honing cycles, simulation of processing and its purpose are emphasized. It is noted that the reliability of the mathematical model determines the quality parameters of the honing process control. An algorithm for continuous control of the honing process is proposed. The process model reliably describes the machining of a workpiece in a sufficiently wide area and can be used to operate the CNC machine CC743.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, J; Deasy, J O
Purpose: Concurrent chemo-radiation therapy (CCRT) has become a more common cancer treatment option with a better tumor control rate for several tumor sites, including head and neck and lung cancer. In this work, possible optimal chemotherapy schedules were investigated by implementing chemotherapy cell-kill into a tumor response model of RT. Methods: The chemotherapy effect has been added into a published model (Jeong et al., PMB (2013) 58:4897), in which the tumor response to RT can be simulated with the effects of hypoxia and proliferation. Based on the two-compartment pharmacokinetic model, the temporal concentration of chemotherapy agent was estimated. Log cell-killmore » was assumed and the cell-kill constant was estimated from the observed increase in local control due to concurrent chemotherapy. For a simplified two cycle CCRT regime, several different starting times and intervals were simulated with conventional RT regime (2Gy/fx, 5fx/wk). The effectiveness of CCRT was evaluated in terms of reduction in radiation dose required for 50% of control to find the optimal chemotherapy schedule. Results: Assuming the typical slope of dose response curve (γ50=2), the observed 10% increase in local control rate was evaluated to be equivalent to an extra RT dose of about 4 Gy, from which the cell-kill rate of chemotherapy was derived to be about 0.35. Best response was obtained when chemotherapy was started at about 3 weeks after RT began. As the interval between two cycles decreases, the efficacy of chemotherapy increases with broader range of optimal starting times. Conclusion: The effect of chemotherapy has been implemented into the resource-conservation tumor response model to investigate CCRT. The results suggest that the concurrent chemotherapy might be more effective when delayed for about 3 weeks, due to lower tumor burden and a larger fraction of proliferating cells after reoxygenation.« less
Proposal for optimal placement platform of bikes using queueing networks.
Mizuno, Shinya; Iwamoto, Shogo; Seki, Mutsumi; Yamaki, Naokazu
2016-01-01
In recent social experiments, rental motorbikes and rental bicycles have been arranged at nodes, and environments where users can ride these bikes have been improved. When people borrow bikes, they return them to nearby nodes. Some experiments have been conducted using the models of Hamachari of Yokohama, the Niigata Rental Cycle, and Bicing. However, from these experiments, the effectiveness of distributing bikes was unclear, and many models were discontinued midway. Thus, we need to consider whether these models are effectively designed to represent the distribution system. Therefore, we construct a model to arrange the nodes for distributing bikes using a queueing network. To adopt realistic values for our model, we use the Google Maps application program interface. Thus, we can easily obtain values of distance and transit time between nodes in various places in the world. Moreover, we apply the distribution of a population to a gravity model and we compute the effective transition probability for this queueing network. If the arrangement of the nodes and number of bikes at each node is known, we can precisely design the system. We illustrate our system using convenience stores as nodes and optimize the node configuration. As a result, we can optimize simultaneously the number of nodes, node places, and number of bikes for each node, and we can construct a base for a rental cycle business to use our system.
Johnson, Paul; Howell, Sydney; Duck, Peter
2017-08-13
A mixed financial/physical partial differential equation (PDE) can optimize the joint earnings of a single wind power generator (WPG) and a generic energy storage device (ESD). Physically, the PDE includes constraints on the ESD's capacity, efficiency and maximum speeds of charge and discharge. There is a mean-reverting daily stochastic cycle for WPG power output. Physically, energy can only be produced or delivered at finite rates. All suppliers must commit hourly to a finite rate of delivery C , which is a continuous control variable that is changed hourly. Financially, we assume heavy 'system balancing' penalties in continuous time, for deviations of output rate from the commitment C Also, the electricity spot price follows a mean-reverting stochastic cycle with a strong evening peak, when system balancing penalties also peak. Hence the economic goal of the WPG plus ESD, at each decision point, is to maximize expected net present value (NPV) of all earnings (arbitrage) minus the NPV of all expected system balancing penalties, along all financially/physically feasible future paths through state space. Given the capital costs for the various combinations of the physical parameters, the design and operating rules for a WPG plus ESD in a finite market may be jointly optimizable.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Shen, Yuan-Chi; Chiang, Po-Hui; Luo, Hao-Lun; Chuang, Yao-Chi; Chen, Yen-Ta; Kang, Chih-Hsiung; Hsu, Chun-Chien; Lee, Wei-Ching; Cheng, Yuan-Tso
2016-09-01
To determine the optimal number of cycles of docetaxel for metastatic castration-resistant prostate cancer, we retrospectively collected 73 patients receiving varying numbers of docetaxel plus prednisolone and analyzed the clinical outcomes including overall survival, prostate-specific antigen (PSA) response, and adverse events. The study included 33 patients receiving ≤ 10 cycles of docetaxel and 40 patients receiving > 10 cycles. Patients receiving > 10 cycles were younger than those who received ≤ 10 cycles. There was no statistical significant difference in overall survival between the two groups (log-rank test, p = 0.75). Adverse effects were more common among patients receiving ≥ 10 cycles of treatment. A PSA flare-up was observed among six patients (8.2%); the median duration of the PSA surge was 3 weeks (range, 3-12 weeks). The overall survival rates in patients with PSA flare-up were comparable with the patients having PSA response. We concluded that at least four cycles of docetaxel should be administered in metastatic castration-resistant prostate cancer patients in order not to cease treatment prematurely from potentially beneficial chemotherapy. However, administering > 10 cycles does not result in any further improvement in survival and is associated with more adverse effects. Copyright © 2016. Published by Elsevier Taiwan.
McLernon, David J; Maheshwari, Abha; Lee, Amanda J; Bhattacharya, Siladitya
2016-03-01
What is the chance of a live birth following one or more linked complete cycles of IVF (including ICSI)? The chance of a live birth after three complete cycles of IVF was 42.3% for treatment commencing from 1999 to 2007. IVF success has generally been reported on the basis of live birth rates after a single episode of treatment resulting in the transfer of a fresh embryo. This fails to capture the real chance of having a baby after a number of complete cycles-each involving the replacement of fresh as well as frozen-thawed embryos. Population-based observational cohort study of 178 898 women between 1992 and 2007. Participants included all women who commenced IVF treatment at a licenced clinic in the UK as recorded in the Human Fertilisation and Embryology Authority (HFEA) national database. Exclusion criteria included women whose treatment involved donor insemination, egg donation, surrogacy and the transfer of more than three embryos. Cumulative rates of live birth, term (>37 weeks) singleton live birth, and multiple pregnancy were estimated for two time-periods, 1992-1998 and 1999-2007. Conservative estimates assumed that women who did not return for IVF would not have the outcome of interest while optimal estimates assumed that these women would have similar outcome rates to those who continued IVF. A total of 71 551 women commenced IVF treatment during 1992-1998 and an additional 107 347 during 1999-2007. After the third complete IVF cycle (defined as three fresh IVF treatments-including replacement of any surplus frozen-thawed embryos), the conservative CLBR in women who commenced IVF during 1992-1998 was 30.8% increasing to 42.3% during 1999-2007. The optimal CLBRs were 44.6 and 57.1%, respectively. After eight complete cycles the optimal CLBR was 82.4% in the latter time period. The conservative rate for multiple pregnancy per pregnant woman fell from 31.9% during the earlier time period to 26.2% during the latter. Linkage of all IVF treatments to individual women was conducted. However, it was not possible to identify with certainty in all cases the episode of ovarian stimulation which generated some of the frozen embryos. Cumulative live birth rates could not be calculated for women who started treatment beyond 2007 as follow-up data were incomplete in some of them. Following a change in legislation in 2008, linked data were only made available for research in women who gave formal consent for this purpose. BMI and ethnicity could not be reported: these demographics are not recorded in the HFEA database. Our results demonstrate, at a national level, the chances of live birth in couples undergoing a number of complete (fresh and frozen) IVF cycles. They reflect improvements in reproductive technology and a more conservative embryo transfer policy. Although most couples in the UK still do not receive three complete IVF cycles; assuming no barriers to continuation of IVF treatment, around 83% of women receiving IVF would achieve a live birth by the eighth complete cycle, similar to the natural live birth rate in a non-contraception practising population. Our results support the call from NICE to develop consistent IVF policies based on three complete cycles. This work was funded by a Chief Scientist Office Postdoctoral Training Fellowship in Health Services Research and Health of the Public Research (Ref PDF/12/06). The views expressed here are those of the authors and not necessarily those of the Chief Scientist Office. S.B. reports grants from Chief Scientist Office Scotland during the conduct of the study. His institution has received support from Pharmaceutical companies (for educational seminars), which is not related to the submitted work. D.J.M., A.M. and A.J.L. have no conflicts of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Event-driven time-optimal control for a class of discontinuous bioreactors.
Moreno, Jaime A; Betancur, Manuel J; Buitrón, Germán; Moreno-Andrade, Iván
2006-07-05
Discontinuous bioreactors may be further optimized for processing inhibitory substrates using a convenient fed-batch mode. To do so the filling rate must be controlled in such a way as to push the reaction rate to its maximum value, by increasing the substrate concentration just up to the point where inhibition begins. However, an exact optimal controller requires measuring several variables (e.g., substrate concentrations in the feed and in the tank) and also good model knowledge (e.g., yield and kinetic parameters), requirements rarely satisfied in real applications. An environmentally important case, that exemplifies all these handicaps, is toxicant wastewater treatment. There the lack of online practical pollutant sensors may allow unforeseen high shock loads to be fed to the bioreactor, causing biomass inhibition that slows down the treatment process and, in extreme cases, even renders the biological process useless. In this work an event-driven time-optimal control (ED-TOC) is proposed to circumvent these limitations. We show how to detect a "there is inhibition" event by using some computable function of the available measurements. This event drives the ED-TOC to stop the filling. Later, by detecting the symmetric event, "there is no inhibition," the ED-TOC may restart the filling. A fill-react cycling then maintains the process safely hovering near its maximum reaction rate, allowing a robust and practically time-optimal operation of the bioreactor. An experimental study case of a wastewater treatment process application is presented. There the dissolved oxygen concentration was used to detect the events needed to drive the controller. (c) 2006 Wiley Periodicals, Inc.
Model-based optimization of G-CSF treatment during cytotoxic chemotherapy.
Schirm, Sibylle; Engel, Christoph; Loibl, Sibylle; Loeffler, Markus; Scholz, Markus
2018-02-01
Although G-CSF is widely used to prevent or ameliorate leukopenia during cytotoxic chemotherapies, its optimal use is still under debate and depends on many therapy parameters such as dosing and timing of cytotoxic drugs and G-CSF, G-CSF pharmaceuticals used and individual risk factors of patients. We integrate available biological knowledge and clinical data regarding cell kinetics of bone marrow granulopoiesis, the cytotoxic effects of chemotherapy and pharmacokinetics and pharmacodynamics of G-CSF applications (filgrastim or pegfilgrastim) into a comprehensive model. The model explains leukocyte time courses of more than 70 therapy scenarios comprising 10 different cytotoxic drugs. It is applied to develop optimized G-CSF schedules for a variety of clinical scenarios. Clinical trial results showed validity of model predictions regarding alternative G-CSF schedules. We propose modifications of G-CSF treatment for the chemotherapies 'BEACOPP escalated' (Hodgkin's disease), 'ETC' (breast cancer), and risk-adapted schedules for 'CHOP-14' (aggressive non-Hodgkin's lymphoma in elderly patients). We conclude that we established a model of human granulopoiesis under chemotherapy which allows predictions of yet untested G-CSF schedules, comparisons between them, and optimization of filgrastim and pegfilgrastim treatment. As a general rule of thumb, G-CSF treatment should not be started too early and patients could profit from filgrastim treatment continued until the end of the chemotherapy cycle.
Morimoto, Akemi; Nagao, Shoji; Kogiku, Ai; Yamamoto, Kasumi; Miwa, Maiko; Wakahashi, Senn; Ichida, Kotaro; Sudo, Tamotsu; Yamaguchi, Satoshi; Fujiwara, Kiyoshi
2016-06-01
The purpose of this study is to investigate the clinical characteristics to determine the optimal timing of interval debulking surgery following neoadjuvant chemotherapy in patients with advanced epithelial ovarian cancer. We reviewed the charts of women with advanced epithelial ovarian cancer, fallopian tube cancer or primary peritoneal cancer who underwent interval debulking surgery following neoadjuvant chemotherapy at our cancer center from April 2006 to April 2014. There were 139 patients, including 91 with ovarian cancer [International Federation of Gynecology and Obstetrics (FIGO) Stage IIIc in 56 and IV in 35], two with fallopian tube cancers (FIGO Stage IV, both) and 46 with primary peritoneal cancer (FIGO Stage IIIc in 27 and IV in 19). After 3-6 cycles (median, 4 cycles) of platinum-based chemotherapy, interval debulking surgery was performed. Sixty-seven patients (48.2%) achieved complete resection of all macroscopic disease, while 72 did not. More patients with cancer antigen 125 levels ≤25.8 mg/dl at pre-interval debulking surgery achieved complete resection than those with higher cancer antigen 125 levels (84.7 vs. 21.3%; P< 0.0001). Patients with no ascites at pre-interval debulking surgery also achieved a higher complete resection rate (63.5 vs. 34.1%; P< 0.0001). Moreover, most patients (86.7%) with cancer antigen 125 levels ≤25.8 mg/dl and no ascites at pre-interval debulking surgery achieved complete resection. A low cancer antigen 125 level of ≤25.8 mg/dl and the absence of ascites at pre-interval debulking surgery are major predictive factors for complete resection during interval debulking surgery and present useful criteria to determine the optimal timing of interval debulking surgery. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Optimization-based Dynamic Human Walking Prediction
2007-01-01
9(1), 1997, p 10-17. 3. Chevallereau, C. and Aousin, Y. Optimal reference trajectories for walking and running of a biped robot. Robotica , v 19...28, 2001, Arlington, Virginia. 13. Mu, XP. and Wu, Q. Synthesis of a complete sagittal gait cycle for a five-link biped robot. Robotica , v 21...gait cycles of a biped robot. Robotica , v 21(2), 2003, p 199-210. 16. Sardain, P. and Bessonnet, G. Forces acting on a biped robot. Center of
Process modeling for carbon-phenolic nozzle materials
NASA Technical Reports Server (NTRS)
Letson, Mischell A.; Bunker, Robert C.; Remus, Walter M., III; Clinton, R. G.
1989-01-01
A thermochemical model based on the SINDA heat transfer program is developed for carbon-phenolic nozzle material processes. The model can be used to optimize cure cycles and to predict material properties based on the types of materials and the process by which these materials are used to make nozzle components. Chemical kinetic constants for Fiberite MX4926 were determined so that optimization of cure cycles for the current Space Shuttle Solid Rocket Motor nozzle rings can be determined.
Influence of crank length and crank width on maximal hand cycling power and cadence.
Krämer, Christian; Hilker, Lutz; Böhm, Harald
2009-07-01
The effect of different crank lengths and crank widths on maximal hand cycling power, cadence and handle speed were determined. Crank lengths and crank widths were adapted to anthropometric data of the participants as the ratio to forward reach (FR) and shoulder breadth (SB), respectively. 25 able-bodied subjects performed maximal inertial load hand cycle ergometry using crank lengths of 19, 22.5 and 26% of FR and 72, 85 and 98% of SB. Maximum power ranged from 754 (246) W for the crank geometry short wide (crank length x crank width) to 873 (293) W for the combination long middle. Every crank length differed significantly (P < 0.05) from each other, whereas no significant effect of crank width to maximum power output was revealed. Optimal cadence decreased significantly (P < 0.001) with increasing crank length from 124.8 (0.9) rpm for the short to 107.5 (1.6) rpm for the long cranks, whereas optimal handle speed increased significantly (P < 0.001) with increasing crank length from 1.81 (0.01) m/s for the short to 2.13 (0.03) m/s for the long cranks. Crank width did neither influence optimal cadence nor optimal handle speed significantly. From the results of this study, for maximum hand cycling power, a crank length to FR ratio of 26% for a crank width to SB ratio of 85% is recommended.
Solar High Temperature Water-Splitting Cycle with Quantum Boost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Robin; Davenport, Roger; Talbot, Jan
A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle formore » reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are proposed for future activities. Electrolysis membranes that permit higher temperatures and lower voltages are attainable. The oxygen half cycle will need further development and improvement.« less
On the Use of Parmetric-CAD Systems and Cartesian Methods for Aerodynamic Design
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.
2004-01-01
Automated, high-fidelity tools for aerodynamic design face critical issues in attempting to optimize real-life geometry arid in permitting radical design changes. Success in these areas promises not only significantly shorter design- cycle times, but also superior and unconventional designs. To address these issues, we investigate the use of a parmetric-CAD system in conjunction with an embedded-boundary Cartesian method. Our goal is to combine the modeling capabilities of feature-based CAD with the robustness and flexibility of component-based Cartesian volume-mesh generation for complex geometry problems. We present the development of an automated optimization frame-work with a focus on the deployment of such a CAD-based design approach in a heterogeneous parallel computing environment.
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Systems design and systems optimization studies are conducted which consider plant size, annual capacity factors, and startup time as variables. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.
Optimizing spacecraft design - optimization engine development : progress and plans
NASA Technical Reports Server (NTRS)
Cornford, Steven L.; Feather, Martin S.; Dunphy, Julia R; Salcedo, Jose; Menzies, Tim
2003-01-01
At JPL and NASA, a process has been developed to perform life cycle risk management. This process requires users to identify: goals and objectives to be achieved (and their relative priorities), the various risks to achieving those goals and objectives, and options for risk mitigation (prevention, detection ahead of time, and alleviation). Risks are broadly defined to include the risk of failing to design a system with adequate performance, compatibility and robustness in addition to more traditional implementation and operational risks. The options for mitigating these different kinds of risks can include architectural and design choices, technology plans and technology back-up options, test-bed and simulation options, engineering models and hardware/software development techniques and other more traditional risk reduction techniques.
NASA Astrophysics Data System (ADS)
Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.
2017-05-01
The objects of study are the gas turbine (GT) plant and combined cycle power plant (CCPP) with opportunity for injection between the stages of air compressor. The objective of this paper is technical and economy optimization calculations for these classes of plants with water interstage injection. The integrated development environment "System of machine building program" was a tool for creating the mathematic models for these classes of power plants. Optimization calculations with the criterion of minimum for specific capital investment as a function of the unit efficiency have been carried out. For a gas-turbine plant, the economic gain from water injection exists for entire range of power efficiency. For the combined cycle plant, the economic benefit was observed only for a certain range of plant's power efficiency.
Regular Cycles of Forward and Backward Signal Propagation in Prefrontal Cortex and in Consciousness
Werbos, Paul J.; Davis, Joshua J. J.
2016-01-01
This paper addresses two fundamental questions: (1) Is it possible to develop mathematical neural network models which can explain and replicate the way in which higher-order capabilities like intelligence, consciousness, optimization, and prediction emerge from the process of learning (Werbos, 1994, 2016a; National Science Foundation, 2008)? and (2) How can we use and test such models in a practical way, to track, to analyze and to model high-frequency (≥ 500 hz) many-channel data from recording the brain, just as econometrics sometimes uses models grounded in the theory of efficient markets to track real-world time-series data (Werbos, 1990)? This paper first reviews some of the prior work addressing question (1), and then reports new work performed in MATLAB analyzing spike-sorted and burst-sorted data on the prefrontal cortex from the Buzsaki lab (Fujisawa et al., 2008, 2015) which is consistent with a regular clock cycle of about 153.4 ms and with regular alternation between a forward pass of network calculations and a backwards pass, as in the general form of the backpropagation algorithm which one of us first developed in the period 1968–1974 (Werbos, 1994, 2006; Anderson and Rosenfeld, 1998). In business and finance, it is well known that adjustments for cycles of the year are essential to accurate prediction of time-series data (Box and Jenkins, 1970); in a similar way, methods for identifying and using regular clock cycles offer large new opportunities in neural time-series analysis. This paper demonstrates a few initial footprints on the large “continent” of this type of neural time-series analysis, and discusses a few of the many further possibilities opened up by this new approach to “decoding” the neural code (Heller et al., 1995). PMID:27965547
Regular Cycles of Forward and Backward Signal Propagation in Prefrontal Cortex and in Consciousness.
Werbos, Paul J; Davis, Joshua J J
2016-01-01
This paper addresses two fundamental questions: (1) Is it possible to develop mathematical neural network models which can explain and replicate the way in which higher-order capabilities like intelligence, consciousness, optimization, and prediction emerge from the process of learning (Werbos, 1994, 2016a; National Science Foundation, 2008)? and (2) How can we use and test such models in a practical way, to track, to analyze and to model high-frequency (≥ 500 hz) many-channel data from recording the brain, just as econometrics sometimes uses models grounded in the theory of efficient markets to track real-world time-series data (Werbos, 1990)? This paper first reviews some of the prior work addressing question (1), and then reports new work performed in MATLAB analyzing spike-sorted and burst-sorted data on the prefrontal cortex from the Buzsaki lab (Fujisawa et al., 2008, 2015) which is consistent with a regular clock cycle of about 153.4 ms and with regular alternation between a forward pass of network calculations and a backwards pass, as in the general form of the backpropagation algorithm which one of us first developed in the period 1968-1974 (Werbos, 1994, 2006; Anderson and Rosenfeld, 1998). In business and finance, it is well known that adjustments for cycles of the year are essential to accurate prediction of time-series data (Box and Jenkins, 1970); in a similar way, methods for identifying and using regular clock cycles offer large new opportunities in neural time-series analysis. This paper demonstrates a few initial footprints on the large "continent" of this type of neural time-series analysis, and discusses a few of the many further possibilities opened up by this new approach to "decoding" the neural code (Heller et al., 1995).
NASA Astrophysics Data System (ADS)
Morshed, Mohammad Sarwar; Kamal, Mostafa Mashnoon; Khan, Somaiya Islam
2016-07-01
Inventory has been a major concern in supply chain and numerous researches have been done lately on inventory control which brought forth a number of methods that efficiently manage inventory and related overheads by reducing cost of replenishment. This research is aimed towards providing a better replenishment policy in case of multi-product, single supplier situations for chemical raw materials of textile industries in Bangladesh. It is assumed that industries currently pursue individual replenishment system. The purpose is to find out the optimum ideal cycle time and individual replenishment cycle time of each product for replenishment that will cause lowest annual holding and ordering cost, and also find the optimum ordering quantity. In this paper indirect grouping strategy has been used. It is suggested that indirect grouping Strategy outperforms direct grouping strategy when major cost is high. An algorithm by Kaspi and Rosenblatt (1991) called RAND is exercised for its simplicity and ease of application. RAND provides an ideal cycle time (T) for replenishment and integer multiplier (ki) for individual items. Thus the replenishment cycle time for each product is found as T×ki. Firstly, based on data, a comparison between currently prevailing (individual) process and RAND is provided that uses the actual demands which presents 49% improvement in total cost of replenishment. Secondly, discrepancies in demand is corrected by using Holt's method. However, demands can only be forecasted one or two months into the future because of the demand pattern of the industry under consideration. Evidently, application of RAND with corrected demand display even greater improvement. The results of this study demonstrates that cost of replenishment can be significantly reduced by applying RAND algorithm and exponential smoothing models.
Data Assimilation Cycling for Weather Analysis
NASA Technical Reports Server (NTRS)
Tran, Nam; Li, Yongzuo; Fitzpatrick, Patrick
2008-01-01
This software package runs the atmospheric model MM5 in data assimilation cycling mode to produce an optimized weather analysis, including the ability to insert or adjust a hurricane vortex. The program runs MM5 through a cycle of short forecasts every three hours where the vortex is adjusted to match the observed hurricane location and storm intensity. This technique adjusts the surrounding environment so that the proper steering current and environmental shear are achieved. MM5cycle uses a Cressman analysis to blend observation into model fields to get a more accurate weather analysis. Quality control of observations is also done in every cycle to remove bad data that may contaminate the analysis. This technique can assimilate and propagate data in time from intermittent and infrequent observations while maintaining the atmospheric field in a dynamically balanced state. The software consists of a C-shell script (MM5cycle.driver) and three FORTRAN programs (splitMM5files.F, comRegrid.F, and insert_vortex.F), and are contained in the pre-processor component of MM5 called "Regridder." The model is first initialized with data from a global model such as the Global Forecast System (GFS), which also provides lateral boundary conditions. These data are separated into single-time files using splitMM5.F. The hurricane vortex is then bogussed in the correct location and with the correct wind field using insert_vortex.F. The modified initial and boundary conditions are then recombined into the model fields using comRegrid.F. The model then makes a three-hour forecast. The three-hour forecast data from MM5 now become the analysis for the next short forecast run, where the vortex will again be adjusted. The process repeats itself until the desired time of analysis is achieved. This code can also assimilate observations if desired.
Muscle optimization techniques impact the magnitude of calculated hip joint contact forces.
Wesseling, Mariska; Derikx, Loes C; de Groote, Friedl; Bartels, Ward; Meyer, Christophe; Verdonschot, Nico; Jonkers, Ilse
2015-03-01
In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization techniques, computed muscle control (CMC) and the physiological inverse approach (PIA). We investigated their subsequent effects on HCFs during gait and sit to stand and found that at the first peak in gait at 15-20% of the gait cycle, CMC calculated the highest HCFs (median 3.9 times peak GRF (pGRF)). When comparing calculated HCFs to experimental HCFs reported in literature, the former were up to 238% larger. Both static optimization techniques produced lower HCFs (median 3.0 and 3.1 pGRF), while PIA included muscle dynamics without an excessive increase in HCF (median 3.2 pGRF). The increased HCFs in CMC were potentially caused by higher muscle forces resulting from co-contraction of agonists and antagonists around the hip. Alternatively, these higher HCFs may be caused by the slightly poorer tracking of the net joint moment by the muscle moments calculated by CMC. We conclude that the use of different optimization techniques affects calculated HCFs, and static optimization approached experimental values best. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Osman, Ayat E.
Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a year. A Pareto-optimal frontier is also derived, which defines the minimum cost required to achieve any level of environmental emission or primary energy usage value or inversely the minimum environmental indicator and primary energy usage value that can be achieved and the cost required to achieve that value.
Chen, Pin-Chuan; Park, Daniel S.; You, Byoung-Hee; Kim, Namwon; Park, Taehyun; Soper, Steven A.; Nikitopoulos, Dimitris E.; Murphy, Michael C.
2010-01-01
Arrays of continuous flow thermal reactors were designed, configured, and fabricated in a 96-device (12 × 8) titer-plate format with overall dimensions of 120 mm × 96 mm, with each reactor confined to a 8 mm × 8 mm footprint. To demonstrate the potential, individual 20-cycle (740 nL) and 25-cycle (990 nL) reactors were used to perform the continuous flow polymerase chain reaction (CFPCR) for amplification of DNA fragments of different lengths. Since thermal isolation of the required temperature zones was essential for optimal biochemical reactions, three finite element models, executed with ANSYS (v. 11.0, Canonsburg, PA), were used to characterize the thermal performance and guide system design: (1) a single device to determine the dimensions of the thermal management structures; (2) a single CFPCR device within an 8 mm × 8 mm area to evaluate the integrity of the thermostatic zones; and (3) a single, straight microchannel representing a single loop of the spiral CFPCR device, accounting for all of the heat transfer modes, to determine whether the PCR cocktail was exposed to the proper temperature cycling. In prior work on larger footprint devices, simple grooves between temperature zones provided sufficient thermal resistance between zones. For the small footprint reactor array, 0.4 mm wide and 1.2 mm high fins were necessary within the groove to cool the PCR cocktail efficiently, with a temperature gradient of 15.8°C/mm, as it flowed from the denaturation zone to the renaturation zone. With temperature tolerance bands of ±2°C defined about the nominal temperatures, more than 72.5% of the microchannel length was located within the desired temperature bands. The residence time of the PCR cocktail in each temperature zone decreased and the transition times between zones increased at higher PCR cocktail flow velocities, leading to less time for the amplification reactions. Experiments demonstrated the performance of the CFPCR devices as a function of flow velocity, fragment length, and copy number. A 99 bp DNA fragment was successfully amplified at flow velocities from 1 mm/s to 3 mm/s, requiring from 8.16 minutes for 20 cycles (24.48 s/cycle) to 2.72 minutes for 20 cycles (8.16 s/cycle), respectively. Yield compared to the same amplification sequence performed using a bench top thermal cycler decreased nonlinearly from 73% (at 1 mm/s) to 13% (at 3 mm/s) with shorter residence time at the optimal temperatures for the reactions due to increased flow rate primarily responsible. Six different DNA fragments with lengths between 99 bp and 997 bp were successfully amplified at 1 mm/s. Repeatable, successful amplification of a 99 bp fragment was achieved with a minimum of 8000 copies of the DNA template. This is the first demonstration and characterization of continuous flow thermal reactors within the 8 mm × 8 mm footprint of a 96-well micro-titer plate and is the smallest continuous flow PCR to date. PMID:20871807
Intensification of ion exchange desorption of thiamine diphosphate by low-powered ultrasound.
Pinchukova, Natalia A; Voloshko, Alexander Y; Merko, Maria A; Bondarenko, Yana A; Chebanov, Valentin A
2018-03-01
The process of ultrasound-assisted ion-exchange desorption of cocarboxylase (thiamine diphosphate (TDP)) from a strong acidic cation resin was studied. Kinetics studies revealed that ultrasound accelerates TDP desorption by 3 times. The optimal desorption parameters, viz. US power input, sonication time, eluent/resin ratio and the eluent (ammonium acetate buffer) concentration were established which were 15mW/cm 3 , 20min, 1:1 and 1M, respectively. The resin stability studies showed that the optimal ultrasonic power was less by the order than the resin degradation threshold which ensures durable and efficient resin exploitation during production. The resin sorption capacity remained unchanged even after 20 cycles of TDP sorption, ultrasonic desorption and resin regeneration. The recovery ratio of TDP was shown to increase non-linearly with decreasing the resin saturation factor, which can be attributed to diffusion limitations occurring during desorption. The optimal resin loading corresponding to more than 90 per cent of TDP recovery was found to be at the level of 10 per cent of the maximal sorption capacity. The study revealed 4-5-fold increase in concentrations of the recovered solutions, which together with process times shortening should result in considerable energy saving in downstream operations on production scale. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1981-01-01
The objective of the study was to generate the system design of a performance-optimized, advanced LOX/hydrogen expander cycle space engine. The engine requirements are summarized, and the development and operational experience with the expander cycle RL10 engine were reviewed. The engine development program is outlined.
NASA Astrophysics Data System (ADS)
San-José, Luis A.; Sicilia, Joaquín; González-de-la-Rosa, Manuel; Febles-Acosta, Jaime
2018-07-01
In this article, a deterministic inventory model with a ramp-type demand depending on price and time is developed. The cumulative holding cost is assumed to be a nonlinear function of time. Shortages are allowed and are partially backlogged. Thus, the fraction of backlogged demand depends on the waiting time and on the stock-out period. The aim is to maximize the total profit per unit time. To do this, a procedure that determines the economic lot size, the optimal inventory cycle and the maximum profit is presented. The inventory system studied here extends diverse inventory models proposed in the literature. Finally, some numerical examples are provided to illustrate the theoretical results previously propounded.
Computer-aided design of antenna structures and components
NASA Technical Reports Server (NTRS)
Levy, R.
1976-01-01
This paper discusses computer-aided design procedures for antenna reflector structures and related components. The primary design aid is a computer program that establishes cross sectional sizes of the structural members by an optimality criterion. Alternative types of deflection-dependent objectives can be selected for designs subject to constraints on structure weight. The computer program has a special-purpose formulation to design structures of the type frequently used for antenna construction. These structures, in common with many in other areas of application, are represented by analytical models that employ only the three translational degrees of freedom at each node. The special-purpose construction of the program, however, permits coding and data management simplifications that provide advantages in problem size and execution speed. Size and speed are essentially governed by the requirements of structural analysis and are relatively unaffected by the added requirements of design. Computation times to execute several design/analysis cycles are comparable to the times required by general-purpose programs for a single analysis cycle. Examples in the paper illustrate effective design improvement for structures with several thousand degrees of freedom and within reasonable computing times.
The NEWS Water Cycle Climatology
NASA Astrophysics Data System (ADS)
Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T.; Olson, W. S.
2012-12-01
NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.
The NEWS Water Cycle Climatology
NASA Technical Reports Server (NTRS)
Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson
2012-01-01
NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.
NASA Astrophysics Data System (ADS)
Haack, Lukas; Peniche, Ricardo; Sommer, Lutz; Kather, Alfons
2017-06-01
At early project stages, the main CSP plant design parameters such as turbine capacity, solar field size, and thermal storage capacity are varied during the techno-economic optimization to determine most suitable plant configurations. In general, a typical meteorological year with at least hourly time resolution is used to analyze each plant configuration. Different software tools are available to simulate the annual energy yield. Software tools offering a thermodynamic modeling approach of the power block and the CSP thermal cycle, such as EBSILONProfessional®, allow a flexible definition of plant topologies. In EBSILON, the thermodynamic equilibrium for each time step is calculated iteratively (quasi steady state), which requires approximately 45 minutes to process one year with hourly time resolution. For better presentation of gradients, 10 min time resolution is recommended, which increases processing time by a factor of 5. Therefore, analyzing a large number of plant sensitivities, as required during the techno-economic optimization procedure, the detailed thermodynamic simulation approach becomes impracticable. Suntrace has developed an in-house CSP-Simulation tool (CSPsim), based on EBSILON and applying predictive models, to approximate the CSP plant performance for central receiver and parabolic trough technology. CSPsim significantly increases the speed of energy yield calculations by factor ≥ 35 and has automated the simulation run of all predefined design configurations in sequential order during the optimization procedure. To develop the predictive models, multiple linear regression techniques and Design of Experiment methods are applied. The annual energy yield and derived LCOE calculated by the predictive model deviates less than ±1.5 % from the thermodynamic simulation in EBSILON and effectively identifies the optimal range of main design parameters for further, more specific analysis.
[Design of medical devices management system supporting full life-cycle process management].
Su, Peng; Zhong, Jianping
2014-03-01
Based on the analysis of the present status of medical devices management, this paper optimized management process, developed a medical devices management system with Web technologies. With information technology to dynamic master the use of state of the entire life-cycle of medical devices. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, improved the delicacy management level of medical devices, optimized asset allocation, promoted positive operation of devices.
Air breathing engine/rocket trajectory optimization
NASA Technical Reports Server (NTRS)
Smith, V. K., III
1979-01-01
This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, C; Beddar, S; Wen, Z
Purpose: The purpose of this study is to develop a technique to obtain four-dimensional (4D) magnetic resonance (MR) images that are more representative of a patient’s typical breathing cycle by utilizing an extended acquisition time while minimizing the image artifacts. Methods: The 4D MR data were acquired with the balanced steady state free precession in two-dimensional sagittal plane of view. Each slice was acquired repeatedly for about 15 s, thereby obtaining multiple images at each of the 10 phases in the respiratory cycle. This improves the probability that at least one of the images were acquired at the desired phasemore » during a regular breathing cycle. To create optimal 4D MR images, an iterative approach was used to identify the set of images that yielded the highest slice-to-slice similarity. To assess the effectiveness of the approach, the data set was truncated into periods of 7 s (50 time points), 11 s (75 time points) and the full 15 s (100 time points). The 4D MR images were then sorted with data of the three different acquisition periods for comparison. Results: In general, the 4D MR images sorted using data from longer acquisition periods showed less mismatched artifacts. In addition, the normalized cross correlation (NCC) between slices of a 4D volume increases with increased acquisition period. The average NCC was 0.791 from the 7 s period, 0.794 from the 11 s period and 0.796 from the 15 s period. Conclusion: Our preliminary study showed that extending the acquisition time with the proposed sorting technique can improve image quality and reduce artifact presence in the 4D MR images. Data acquisition over two breathing cycles is a good trade-off between artifact reduction and scan time. This research was partially funded by the the Center for Radiation Oncology Research from UT MD Anderson Cancer Center.« less
Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra
2014-01-01
Cycling induced by Functional Electrical Stimulation (FES) training currently requires a manual setting of different parameters, which is a time-consuming and scarcely repeatable procedure. We proposed an automatic procedure for setting session-specific parameters optimized for hemiparetic patients. This procedure consisted of the identification of the stimulation strategy as the angular ranges during which FES drove the motion, the comparison between the identified strategy and the physiological muscular activation strategy, and the setting of the pulse amplitude and duration of each stimulated muscle. Preliminary trials on 10 healthy volunteers helped define the procedure. Feasibility tests on 8 hemiparetic patients (5 stroke, 3 traumatic brain injury) were performed. The procedure maximized the motor output within the tolerance constraint, identified a biomimetic strategy in 6 patients, and always lasted less than 5 minutes. Its reasonable duration and automatic nature make the procedure usable at the beginning of every training session, potentially enhancing the performance of FES-cycling training.
An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle
NASA Astrophysics Data System (ADS)
Gidden, Matthew J.
Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.
Singh, Anoop; Pant, Deepak; Korres, Nicholas E; Nizami, Abdul-Sattar; Prasad, Shiv; Murphy, Jerry D
2010-07-01
Progressive depletion of conventional fossil fuels with increasing energy consumption and greenhouse gas (GHG) emissions have led to a move towards renewable and sustainable energy sources. Lignocellulosic biomass is available in massive quantities and provides enormous potential for bioethanol production. However, to ascertain optimal biofuel strategies, it is necessary to take into account environmental impacts from cradle to grave. Life cycle assessment (LCA) techniques allow detailed analysis of material and energy fluxes on regional and global scales. This includes indirect inputs to the production process and associated wastes and emissions, and the downstream fate of products in the future. At the same time if not used properly, LCA can lead to incorrect and inappropriate actions on the part of industry and/or policy makers. This paper aims to list key issues for quantifying the use of resources and releases to the environment associated with the entire life cycle of lignocellulosic bioethanol production. Copyright 2009 Elsevier Ltd. All rights reserved.
Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles
NASA Astrophysics Data System (ADS)
Chacko, Salvio; Chung, Yongmann M.
2012-09-01
Time-dependent, thermal behaviour of a lithium-ion (Li-ion) polymer cell has been modelled for electric vehicle (EV) drive cycles with a view to developing an effective battery thermal management system. The fully coupled, three-dimensional transient electro-thermal model has been implemented based on a finite volume method. To support the numerical study, a high energy density Li-ion polymer pouch cell was tested in a climatic chamber for electric load cycles consisting of various charge and discharge rates, and a good agreement was found between the model predictions and the experimental data. The cell-level thermal behaviour under stressful conditions such as high power draw and high ambient temperature was predicted with the model. A significant temperature increase was observed in the stressful condition, corresponding to a repeated acceleration and deceleration, indicating that an effective battery thermal management system would be required to maintain the optimal cell performance and also to achieve a full battery lifesapn.
Development of Dermanyssus gallinae (Acari: Dermanyssidae) at different temperatures.
Tucci, E C; Prado, A P; Araújo, R P
2008-08-01
The development, viability, and life cycle parameters of Dermanyssus gallinae at five different temperatures (15, 20, 25, 30 and 35 degrees C), and at relative humidity 70-85% were evaluated. Life cycle duration was 690.75 h (28 days) at 15 degrees C, 263.12h (11 days) at 20 degrees C, 164.63 h (7 days) at 25 degrees C, 140.69 h (6 days) at 30 degrees C and 172.04 h (7 days) at 35 degrees C. The optimal development temperature for D. gallinae was 30 degrees C, with the greatest survival in all stages and the shortest development time. High mortality at 35 degrees C indicated that this temperature had adverse effects on development of D. gallinae, and that in field conditions D. gallinae populations may decrease or even disappear due to the negative impact of high temperature on development. There were no significant differences in the pre-oviposition period among the four temperatures 20-35 degrees C, indicating that temperature did not affect this part of the life cycle.
Origin and evolution of SINEs in eukaryotic genomes
Kramerov, D A; Vassetzky, N S
2011-01-01
Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements. PMID:21673742
High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets
NASA Astrophysics Data System (ADS)
Wei, Ji-Shi; Chen, Jie; Ding, Hui; Zhang, Peng; Wang, Yong-Gang; Xiong, Huan-Ming
2017-10-01
A series of polymer dots/graphene sheets composites with high densities are prepared and tested for supercapacitors. Polymer dots (PDs) are synthesized by one-step method at room temperature. They can effectively increase surface areas of the composites (almost 10 times), and the functional groups from PDs produce high pseudocapacitance, so that the samples exhibit high specific capacitances (e. g., 364.2 F cm-3 at 1 A g-1) and high cycling stability (e. g., more than 95% of the initial capacity retention over 10 000 cycles at different current densities). The optimal sample is employed to fabricate a symmetric supercapacitor, which exhibits an energy density up to 8 Wh L-1 and a power density up to 11 800 W L-1, respectively.
The Improvement Cycle: Analyzing Our Experience
NASA Technical Reports Server (NTRS)
Pajerski, Rose; Waligora, Sharon
1996-01-01
NASA's Software Engineering Laboratory (SEL), one of the earliest pioneers in the areas of software process improvement and measurement, has had a significant impact on the software business at NASA Goddard. At the heart of the SEL's improvement program is a belief that software products can be improved by optimizing the software engineering process used to develop them and a long-term improvement strategy that facilitates small incremental improvements that accumulate into significant gains. As a result of its efforts, the SEL has incrementally reduced development costs by 60%, decreased error rates by 85%, and reduced cycle time by 25%. In this paper, we analyze the SEL's experiences on three major improvement initiatives to better understand the cyclic nature of the improvement process and to understand why some improvements take much longer than others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Li-Jung; Pan, Horng-Bin; Wai, Chien M.
The ability to re-use amidoxime-based polymeric adsorbents is a critical component in reducing the overall cost of the technology to extract uranium from seawater. This report describes an evaluation of adsorbent reusability in multiple re-use (adsorption/stripping) cycles in real seawater exposures with potassium bicarbonate (KHCO3) elution using several amidoxime-based polymeric adsorbents. The KHCO3 elution technique achieved ~100% recovery of uranium adsorption capacity in the first re-use. Subsequent re-uses showed significant drops in adsorption capacity. After the 4th re-use with the ORNL AI8 adsorbent, the 56-day adsorption capacity dropped to 28% of its original capacity. FTIR spectra revealed that there wasmore » a conversion of the amidoxime ligands to carboxylate groups during extended seawater exposure, becoming more significant with longer the exposure time. Ca and Mg adsorption capacities also increased with each re-use cycle supporting the hypothesis that long term exposure resulted in converting amidoxime to carboxylate, enhancing the adsorption of Ca and Mg. Shorter seawater exposure (adsorption/stripping) cycles (28 vs. 42 days) had higher adsorption capacities after re-use, but the shorter exposure cycle time did not produce an overall better performance in terms of cumulative exposure time. Recovery of uranium capacity in re-uses may also vary across different adsorbent formulations. Through multiple re-use the adsorbent AI8 can harvest 10 g uranium/kg adsorbent in ~140 days, using a 28-day adsorption/stripping cycle, a performance much better than would be achieved with a single use of the adsorbent through very long-term exposure (saturation capacity = 7.4 g U/kg adsorbent). A time dependent seawater exposure model to evaluate the cost associated with reusing amidoxime-based adsorbents in real seawater exposures was developed. The cost to extract uranium from seawater ranged from $610-830/kg U was predicted. Model simulation suggests that a short seawater exposure cycle (< 15 days) is the optimal deployment period for lower uranium production cost in seawater uranium mining.« less
When the seasons don't fit: speedy molt as a routine carry-over cost of reproduction.
Dietz, Maurine W; Rogers, Ken G; Piersma, Theunis
2013-01-01
The failure of animals to fit all life-cycle stages into an annual cycle could reduce the chances of successful breeding. In some cases, non-optimal strategies will be adopted in order to maintain the life-cycle within the scope of one year. We studied trade-offs made by a High Arctic migrant shorebird, the red knot Calidris canutus islandica, between reproduction and wing feather molt carried out in the non-breeding period in the Dutch Wadden Sea. We compared primary molt duration between birds undertaking the full migratory and breeding schedule with birds that forego breeding because they are young or are maintained in captivity. Molt duration was ca. 71 days in breeding adults, which was achieved by an accelerated feather replacement strategy. Second-year birds and captive adults took ca. 22% and 27% longer, respectively. Second-year birds start molt in late June, more than four weeks before captive adults, and almost seven weeks before adults that return from breeding in late July-August. Adults finish molt in October when steeply increasing thermostatic costs and reductions in food availability occur. Primary molt duration was longer in female than in male knots (all ages), which was accordance with the somewhat larger body size of females. Since fast growth leads to lower quality feathers, the speedy wing molt shown by Arctic-breeding birds may represent a time constraint that is an unavoidable and routine cost of reproduction. So far it was hypothesized that only birds over 1 kg would have difficulty fitting molt within a year. Here we show that in birds an order of magnitude smaller, temporal imperatives may impose the adoption of non-optimal life-cycle routines in the entire actively breeding population.
Adaptability in linkage of soil carbon nutrient cycles - the SEAM model
NASA Astrophysics Data System (ADS)
Wutzler, Thomas; Zaehle, Sönke; Schrumpf, Marion; Ahrens, Bernhard; Reichstein, Markus
2017-04-01
In order to understand the coupling of carbon (C) and nitrogen (N) cycles, it is necessary to understand C and N-use efficiencies of microbial soil organic matter (SOM) decomposition. While important controls of those efficiencies by microbial community adaptations have been shown at the scale of a soil pore, an abstract simplified representation of community adaptations is needed at ecosystem scale. Therefore we developed the soil enzyme allocation model (SEAM), which takes a holistic, partly optimality based approach to describe C and N dynamics at the spatial scale of an ecosystem and time-scales of years and longer. We explicitly modelled community adaptation strategies of resource allocation to extracellular enzymes and enzyme limitations on SOM decomposition. Using SEAM, we explored whether alternative strategy-hypotheses can have strong effects on SOM and inorganic N cycling. Results from prototypical simulations and a calibration to observations of an intensive pasture site showed that the so-called revenue enzyme allocation strategy was most viable. This strategy accounts for microbial adaptations to both, stoichiometry and amount of different SOM resources, and supported the largest microbial biomass under a wide range of conditions. Predictions of the SEAM model were qualitatively similar to models explicitly representing competing microbial groups. With adaptive enzyme allocation under conditions of high C/N ratio of litter inputs, N in formerly locked in slowly degrading SOM pools was made accessible, whereas with high N inputs, N was sequestered in SOM and protected from leaching. The finding that adaptation in enzyme allocation changes C and N-use efficiencies of SOM decomposition implies that concepts of C-nutrient cycle interactions should take account for the effects of such adaptations. This can be done using a holistic optimality approach.
Optimal management of batteries in electric systems
Atcitty, Stanley; Butler, Paul C.; Corey, Garth P.; Symons, Philip C.
2002-01-01
An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.
NASA Astrophysics Data System (ADS)
Sawicki, Jean-Paul; Saint-Eve, Frédéric; Petit, Pierre; Aillerie, Michel
2017-02-01
This paper presents results of experiments aimed to verify a formula able to compute duty cycle in the case of pulse width modulation control for a DC-DC converter designed and realized in laboratory. This converter, called Magnetically Coupled Boost (MCB) is sized to step up only one photovoltaic module voltage to supply directly grid inverters. Duty cycle formula will be checked in a first time by identifying internal parameter, auto-transformer ratio, and in a second time by checking stability of operating point on the side of photovoltaic module. Thinking on nature of generator source and load connected to converter leads to imagine additional experiments to decide if auto-transformer ratio parameter could be used with fixed value or on the contrary with adaptive value. Effects of load variations on converter behavior or impact of possible shading on photovoltaic module are also mentioned, with aim to design robust control laws, in the case of parallel association, designed to compensate unwanted effects due to output voltage coupling.
NASA Astrophysics Data System (ADS)
Shah, Nita H.; Shah, Arpan D.
2014-04-01
The article analyzes economic order quantity for the retailer who has to handle imperfect quality of the product and the units are subject to deteriorate at a constant rate. To control deterioration of the units in inventory, the retailer has to deploy advanced preservation technology. Another challenge for the retailer is to have perfect quality product. This requires mandatory inspection during the production process. This model is developed with the condition of random fraction of defective items. It is assumed that after inspection, the screened defective items are sold at a discounted rate instantly. Demand is considered to be price-sensitive stock-dependent. The model is incorporating effect of inflation which is critical factor globally. The objective is to maximize profit of the retailer with respect to preservation technology investment, order quantity and cycle time. The numerical example is given to validate the proposed model. Sensitivity analysis is carried out to work out managerial issues.
Chocarro-Ruiz, Blanca; Herranz, Sonia; Fernández Gavela, Adrián; Sanchís, Josep; Farré, Marinella; Marco, M Pilar; Lechuga, Laura M
2018-05-26
An interferometric nanobiosensor for the specific and label-free detection of the pollutant Irgarol 1051 directly in seawater has been settled. Due to the low molecular weight of Irgarol pollutant and its expected low concentration in seawater, the sensor is based on a competitive inhibition immunoassay. Parameters as surface biofunctionalization, concentration of the selective antibody and regeneration conditions have been carefully evaluated. The optimized immunosensor shows a limit of detection of only 3 ng/L, well below the 16 ng/L set by the EU as the maximum allowable concentration in seawater. It can properly operate during 30 assay-regeneration cycles using the same sensor biosurface and with a time-to-result of only 20 min for each cycle. Moreover, the interferometric nanosensor is able to directly detect low concentrations of Irgarol 1051 in seawater without requiring sample pre-treatments and without showing any background signal due to sea matrix effect. Copyright © 2018 Elsevier B.V. All rights reserved.
Pacing Strategy in Short Cycling Time Trials.
de Jong, Jelle; van der Meijden, Linda; Hamby, Simone; Suckow, Samantha; Dodge, Christopher; de Koning, Jos J; Foster, Carl
2015-11-01
To reach top performance in cycling, optimizing distribution of energy resources is crucial. The purpose of this study was to investigate power output during 250-m, 500-m, and 1000-m cycling time trials and the characteristics of the adopted pacing strategy. Nine trained cyclists completed an incremental test and 3 time trials that they were instructed to finish as quickly as possible. Preceding the trials, peak power during short sprints (PP sprint) and gross efficiency (GE) were measured. During the trials, power output and oxygen consumption were measured to calculate the contribution of the aerobic and anaerobic energy sources. After the trial GE was measured again. Peak power during all trials (PPTT) was lower than PP sprint. In the 250-m trial the PPTT was higher in the 1000-m trial (P = .008). The subjects performed a significantly longer time at high intensity in the 250-m than in the 1000-m (P = .029). GE declined significantly during all trials (P < .01). Total anaerobically attributable work was less in the 250-m than in the 500-m (P = .015) and 1000-m (P < .01) trials. The overall pacing pattern in the 250-m trial appears to follow an all-out strategy, although peak power is still lower than the potential maximal power output. This suggests that a true all-out pattern of power output may not be used in fixed-distance events. The 500-m and 1000-m had a more conservative pacing pattern and anaerobic power output reached a constant magnitude.
Lücken, Leonhard; Yanchuk, Serhiy; Popovych, Oleksandr V.; Tass, Peter A.
2013-01-01
Several brain diseases are characterized by abnormal neuronal synchronization. Desynchronization of abnormal neural synchrony is theoretically compelling because of the complex dynamical mechanisms involved. We here present a novel type of coordinated reset (CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-populations sequentially, i.e., at times equidistantly distributed in a stimulation cycle. This uniform timing pattern seems to be intuitive and actually applies to the neural network models used for the study of CR so far. CR resets the population to an unstable cluster state from where it passes through a desynchronized transient, eventually resynchronizing if left unperturbed. In contrast, we show that the optimal stimulation times are non-uniform. Using the model of weakly pulse-coupled neurons with phase response curves, we provide an approach that enables to determine optimal stimulation timing patterns that substantially maximize the desynchronized transient time following the application of CR stimulation. This approach includes an optimization search for clusters in a low-dimensional pulse coupled map. As a consequence, model-specific non-uniformly spaced cluster states cause considerably longer desynchronization transients. Intriguingly, such a desynchronization boost with non-uniform CR stimulation can already be achieved by only slight modifications of the uniform CR timing pattern. Our results suggest that the non-uniformness of the stimulation times can be a medically valuable parameter in the calibration procedure for CR stimulation, where the latter has successfully been used in clinical and pre-clinical studies for the treatment of Parkinson's disease and tinnitus. PMID:23750134
Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation
NASA Astrophysics Data System (ADS)
Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim
2018-05-01
A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.
Response characteristic of high-speed on/off valve with double voltage driving circuit
NASA Astrophysics Data System (ADS)
Li, P. X.; Su, M.; Zhang, D. B.
2017-07-01
High-speed on/off valve, an important part of turbocharging system, its quick response has a direct impact on the turbocharger pressure cycle. The methods of improving the response characteristic of high speed on/off valve include increasing the magnetic force of armature and the voltage, decreasing the mass and current of coil. The less coil number of turns, the solenoid force is smaller. The special armature structure and the magnetic material will raise cost. In this paper a new scheme of double voltage driving circuit is investigated, in which the original driving circuit of high-speed on/off valve is replaced by double voltage driving circuit. The detailed theoretical analysis and simulations were carried out on the double voltage driving circuit, it showed that the switching time and delay time of the valve respectively are 3.3ms, 5.3ms, 1.9ms and 1.8ms. When it is driven by the double voltage driving circuit, the switching time and delay time of this valve are reduced, optimizing its response characteristic. By the comparison related factors (such as duty cycle or working frequency) about influences on response characteristic, the superior of double voltage driving circuit has been further confirmed.
NASA Astrophysics Data System (ADS)
Zhang, Jianqiang; Wang, Zhenguo; Li, Qinglian
2017-09-01
The efficiency calculation and cycle optimization were carried out for the Synergistic Air-Breathing Rocket Engine (SABRE) with deeply precooled combined cycle. A component-level model was developed for the engine, and exergy efficiency analysis based on the model was carried out. The methods to improve cycle efficiency have been proposed. The results indicate cycle efficiency of SABRE is between 29.7% and 41.7% along the flight trajectory, and most of the wasted exergy is occupied by the unburned hydrogen in exit gas. Exergy loss exists in each engine component, and the sum losses of main combustion chamber(CC), pre-burner(PB), precooler(PC) and 3# heat exchanger(HX3) are greater than 71.3% of the total loss. Equivalence ratio is the main influencing factor of cycle, and it can be regulated by adjusting parameters of helium loop. Increase the maximum helium outlet temperature of PC by 50 K, the total assumption of hydrogen will be saved by 4.8%, and the cycle efficiency is advanced by 3% averagely in the trajectory. Helium recirculation scheme introduces a helium recirculation loop to increase local helium flow rate of PC. It turns out the total assumption of hydrogen will be saved by 9%, that's about 1740 kg, and the cycle efficiency is advanced by 5.6% averagely.
NASA Astrophysics Data System (ADS)
Moghimi, Mahdi; Khosravian, Mohammadreza
2018-01-01
In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.
NASA Astrophysics Data System (ADS)
Moghimi, Mahdi; Khosravian, Mohammadreza
2018-06-01
In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.
Edge grouping combining boundary and region information.
Stahl, Joachim S; Wang, Song
2007-10-01
This paper introduces a new edge-grouping method to detect perceptually salient structures in noisy images. Specifically, we define a new grouping cost function in a ratio form, where the numerator measures the boundary proximity of the resulting structure and the denominator measures the area of the resulting structure. This area term introduces a preference towards detecting larger-size structures and, therefore, makes the resulting edge grouping more robust to image noise. To find the optimal edge grouping with the minimum grouping cost, we develop a special graph model with two different kinds of edges and then reduce the grouping problem to finding a special kind of cycle in this graph with a minimum cost in ratio form. This optimal cycle-finding problem can be solved in polynomial time by a previously developed graph algorithm. We implement this edge-grouping method, test it on both synthetic data and real images, and compare its performance against several available edge-grouping and edge-linking methods. Furthermore, we discuss several extensions of the proposed method, including the incorporation of the well-known grouping cues of continuity and intensity homogeneity, introducing a factor to balance the contributions from the boundary and region information, and the prevention of detecting self-intersecting boundaries.
Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2003-01-01
The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.
NASA Astrophysics Data System (ADS)
Demany, Laurent; Montandon, Gaspard; Semal, Catherine
2003-04-01
A listener's ability to compare two sounds separated by a silent time interval T is limited by a sum of ``sensory noise'' and ``memory noise.'' The present work was intended to test a model according to which these two components of internal noise are independent and, for a given sensory continuum, the memory noise depends only on T. In three experiments using brief sounds (<80 ms), pitch discrimination performances were measured in terms of d' as a function of T (0.1-4 s) and a physical parameter affecting the amount of sensory noise (pitch salience). As T increased, d' first increased rapidly and then declined more slowly. According to the tested model, the relative decline of d' beyond the optimal value of T should have been slower when pitch salience was low (large amount of sensory noise) than when pitch salience was high (small amount of sensory noise). However, this prediction was disproved in each of the three experiments. It was also found, when a ``roving'' procedure was used, that the optimal value of T was markedly shorter for very brief tone bursts (6 sine cycles) than for longer tone bursts (30 sine cycles).
PopED lite: An optimal design software for preclinical pharmacokinetic and pharmacodynamic studies.
Aoki, Yasunori; Sundqvist, Monika; Hooker, Andrew C; Gennemark, Peter
2016-04-01
Optimal experimental design approaches are seldom used in preclinical drug discovery. The objective is to develop an optimal design software tool specifically designed for preclinical applications in order to increase the efficiency of drug discovery in vivo studies. Several realistic experimental design case studies were collected and many preclinical experimental teams were consulted to determine the design goal of the software tool. The tool obtains an optimized experimental design by solving a constrained optimization problem, where each experimental design is evaluated using some function of the Fisher Information Matrix. The software was implemented in C++ using the Qt framework to assure a responsive user-software interaction through a rich graphical user interface, and at the same time, achieving the desired computational speed. In addition, a discrete global optimization algorithm was developed and implemented. The software design goals were simplicity, speed and intuition. Based on these design goals, we have developed the publicly available software PopED lite (http://www.bluetree.me/PopED_lite). Optimization computation was on average, over 14 test problems, 30 times faster in PopED lite compared to an already existing optimal design software tool. PopED lite is now used in real drug discovery projects and a few of these case studies are presented in this paper. PopED lite is designed to be simple, fast and intuitive. Simple, to give many users access to basic optimal design calculations. Fast, to fit a short design-execution cycle and allow interactive experimental design (test one design, discuss proposed design, test another design, etc). Intuitive, so that the input to and output from the software tool can easily be understood by users without knowledge of the theory of optimal design. In this way, PopED lite is highly useful in practice and complements existing tools. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Study, optimization, and design of a laser heat engine. [for satellite applications
NASA Technical Reports Server (NTRS)
Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.
1978-01-01
Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.
Vaishnavi, Kalthi; Bansal, Deepak; Trehan, Amita; Jain, Richa; Attri, Savita Verma
2018-05-16
A lack of access to methotrexate levels is common in low- and middle-income countries (LMIC), relevant for 80% of children with cancer worldwide. We evaluated whether high-dose methotrexate (HD-MTX) can be administered safely with extended hydration and leucovorin rescue, with monitoring of serum creatinine and urine pH. The prospective study was conducted at a single centre in Chandigarh, India in 2015. Patients with B-cell acute lymphoblastic leukemia (ALL) or with T-cell ALL or non-Hodgkin lymphoma (T-NHL) were administered 3 and 5 gm/m 2 of MTX (24 hr infusion), respectively. Six doses of leucovorin (15 mg/m 2 /dose), instead of recommended three (for optimally reduced levels) at standard timing (42 hr from start of HD-MTX) were administered. Hydration (125 ml/m 2 /hr) was continued for 72 hr, instead of the recommended 30 hr. Hydration fluid consisted of 0.45% sodium chloride, 5% dextrose, 7.5% sodium bicarbonate (50 mmol/l) and potassium chloride (20 mmol/l). Serum creatinine and urine pH were measured at baseline, 24 and 48 hr. The volume of hydration was increased (200 ml/m 2 /hr) for a serum creatinine > 1.25 times the baseline. The study included 100 cycles of HD-MTX in 53 patients: B-ALL 25 patients (51 cycles), T-ALL 16 patients (28 cycles), T-NHL 10 patients (18 cycles), and relapsed ALL 2 patients (3 cycles). The mean age was 6.8 ± 3.2 years. Patients were underweight in 15 (15%) cycles. Patients in 23% of cycles had a rise in creatinine to >1.25 times the baseline. Toxicities (NCI CTCAE v4.0) included mucositis (32%), diarrhoea (10%), and febrile neutropenia (9%). One patient died from dengue shock syndrome. It is safe to administer 3 or 5 gm/m 2 of MTX (24 hr infusion) without measuring MTX levels, with extended hydration, additional doses of leucovorin, and monitoring of serum creatinine and urine pH. © 2018 Wiley Periodicals, Inc.
Analysis of Availability of Longwall-Shearer Based On Its Working Cycle
NASA Astrophysics Data System (ADS)
Brodny, Jaroslaw; Tutak, Magdalena
2017-12-01
Effective use of any type of devices, particularly machines has very significant meaning for mining enterprises. High costs of their purchase and tenancy cause that these enterprises tend to the best use of own technical potential. However, characteristics of mining production causes that this process not always proceeds without interferences. Practical experiences show that determination of objective measure of utilization of machine in mining company is not simple. In the paper methodology allowing to solve this problem is presented. Longwall-shearer, as the most important machine between longwall mechanical complex. Also it was assumed that the most significant meaning for determination of effectiveness of longwall-shearer has its availability, i.e. its effective time of work related to standard time. Such an approach is conforming to OEE model. However, specification of mining branch causes that determined availability do not give actual state of longwall-shearer’s operation. Therefore, this availability was related to the operation cycle of longwall-shearer. In presented example a longwall-shearer works in unidirectional cycle of mining. It causes that in one direction longwall-shearer mines, moving with operating velocity, and in other direction it does not mine and moves with manoeuvre velocity. Such defined working cycle became a base for determinate availability of longwall-shearer. Using indications of industrial automatic system for each of working shift there were determined number of cycles of longwall-shearer and availability of each one. Accepted of such way of determination of availability of longwall-shearer enabled to perform accurate analysis of losses of its availability. These losses result from non-planned shutdowns of longwall-shearer. Thanks to performed analysis based on the operating cycle of longwall-shearer time of its standstill for particular phase of cycle were determined. Presented methodology of determination of longwall-shearer’s availability enables to obtain information which may be used for optimization of mining process. Knowledge of particular phases of longwall-shearer’s operation, in which reduced availability occurs, allows to direct the repairing actions exactly to these regions. Developed methodology and obtained results create great opportunities for practical application and improvement of effectiveness of underground exploitation.
Vaccaro, G; Pelaez, J I; Gil, J A
2016-07-01
Objective masticatory performance assessment using two-coloured specimens relies on image processing techniques; however, just a few approaches have been tested and no comparative studies are reported. The aim of this study was to present a selection procedure of the optimal image analysis method for masticatory performance assessment with a given two-coloured chewing gum. Dentate participants (n = 250; 25 ± 6·3 years) chewed red-white chewing gums for 3, 6, 9, 12, 15, 18, 21 and 25 cycles (2000 samples). Digitalised images of retrieved specimens were analysed using 122 image processing methods (IPMs) based on feature extraction algorithms (pixel values and histogram analysis). All IPMs were tested following the criteria of: normality of measurements (Kolmogorov-Smirnov), ability to detect differences among mixing states (anova corrected with post hoc Bonferroni) and moderate-to-high correlation with the number of cycles (Spearman's Rho). The optimal IPM was chosen using multiple criteria decision analysis (MCDA). Measurements provided by all IPMs proved to be normally distributed (P < 0·05), 116 proved sensible to mixing states (P < 0·05), and 35 showed moderate-to-high correlation with the number of cycles (|ρ| > 0·5; P < 0·05). The variance of the histogram of the Hue showed the highest correlation with the number of cycles (ρ = 0·792; P < 0·0001) and the highest MCDA score (optimal). The proposed procedure proved to be reliable and able to select the optimal approach among multiple IPMs. This experiment may be reproduced to identify the optimal approach for each case of locally available test foods. © 2016 John Wiley & Sons Ltd.
Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting
2015-12-01
To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.
Adjoint-Baed Optimal Control on the Pitch Angle of a Single-Bladed Vertical-Axis Wind Turbine
NASA Astrophysics Data System (ADS)
Tsai, Hsieh-Chen; Colonius, Tim
2017-11-01
Optimal control on the pitch angle of a NACA0018 single-bladed vertical-axis wind turbine (VAWT) is numerically investigated at a low Reynolds number of 1500. With fixed tip-speed ratio, the input power is minimized and mean tangential force is maximized over a specific time horizon. The immersed boundary method is used to simulate the two-dimensional, incompressible flow around a horizontal cross section of the VAWT. The problem is formulated as a PDE constrained optimization problem and an iterative solution is obtained using adjoint-based conjugate gradient methods. By the end of the longest control horizon examined, two controls end up with time-invariant pitch angles of about the same magnitude but with the opposite signs. The results show that both cases lead to a reduction in the input power but not necessarily an enhancement in the mean tangential force. These reductions in input power are due to the removal of a power-damaging phenomenon that occurs when a vortex pair is captured by the blade in the upwind-half region of a cycle. This project was supported by Caltech FLOWE center/Gordon and Betty Moore Foundation.
Goal Selection for Embedded Systems with Oversubscribed Resources
NASA Technical Reports Server (NTRS)
Rabideau, Gregg; Chien, Steve; McLaren, David
2010-01-01
We describe an efficient, online goal selection algorithm and its use for selecting goals at runtime. Our focus is on the re-planning that must be performed in a timely manner on the embedded system where computational resources are limited. In particular, our algorithm generates near optimal solutions to problems with fully specified goal requests that oversubscribe available resources but have no temporal flexibility. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. This enables shorter response cycles and greater autonomy for the system under control.
[Development of medical supplies management system].
Zhong, Jianping; Shen, Beijun; Zhu, Huili
2012-11-01
This paper adopts advanced information technology to manage medical supplies, in order to improve the medical supplies management level and reduce material cost. It develops a Medical Supplies Management System with B/S and C/S mixed structure, optimizing material management process, building large equipment performance evaluation model, providing interface solution with HIS, and realizing real-time information briefing of high value material's consumption. The medical materials are managed during its full life-cycle. The material consumption of the clinical departments is monitored real-timely. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, it realizes the final purpose of management yielding benefit.
Lin, Yi-Chung; Pandy, Marcus G
2017-07-05
The aim of this study was to perform full-body three-dimensional (3D) dynamic optimization simulations of human locomotion by driving a neuromusculoskeletal model toward in vivo measurements of body-segmental kinematics and ground reaction forces. Gait data were recorded from 5 healthy participants who walked at their preferred speeds and ran at 2m/s. Participant-specific data-tracking dynamic optimization solutions were generated for one stride cycle using direct collocation in tandem with an OpenSim-MATLAB interface. The body was represented as a 12-segment, 21-degree-of-freedom skeleton actuated by 66 muscle-tendon units. Foot-ground interaction was simulated using six contact spheres under each foot. The dynamic optimization problem was to find the set of muscle excitations needed to reproduce 3D measurements of body-segmental motions and ground reaction forces while minimizing the time integral of muscle activations squared. Direct collocation took on average 2.7±1.0h and 2.2±1.6h of CPU time, respectively, to solve the optimization problems for walking and running. Model-computed kinematics and foot-ground forces were in good agreement with corresponding experimental data while the calculated muscle excitation patterns were consistent with measured EMG activity. The results demonstrate the feasibility of implementing direct collocation on a detailed neuromusculoskeletal model with foot-ground contact to accurately and efficiently generate 3D data-tracking dynamic optimization simulations of human locomotion. The proposed method offers a viable tool for creating feasible initial guesses needed to perform predictive simulations of movement using dynamic optimization theory. The source code for implementing the model and computational algorithm may be downloaded at http://simtk.org/home/datatracking. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Minrui; Wu, Yanhui; Liu, Chuyao; Cai, Zhiping; Ma, Ming
2018-01-01
For Industrial Wireless Sensor Networks (IWSNs), sending data with timely style to the stink (or control center, CC) that is monitored by sensor nodes is a challenging issue. However, in order to save energy, wireless sensor networks based on a duty cycle are widely used in the industrial field, which can bring great delay to data transmission. We observe that if the duty cycle of a small number of nodes in the network is set to 1, the sleep delay caused by the duty cycle can be effectively reduced. Thus, in this paper, a novel Portion of Nodes with Larger Duty Cycle (PNLDC) scheme is proposed to reduce delay and optimize energy efficiency for IWSNs. In the PNLDC scheme, a portion of nodes are selected to set their duty cycle to 1, and the proportion of nodes with the duty cycle of 1 is determined according to the energy abundance of the area in which the node is located. The more the residual energy in the region, the greater the proportion of the selected nodes. Because there are a certain proportion of nodes with the duty cycle of 1 in the network, the PNLDC scheme can effectively reduce delay in IWSNs. The performance analysis and experimental results show that the proposed scheme significantly reduces the delay for forwarding data by 8.9~26.4% and delay for detection by 2.1~24.6% without reducing the network lifetime when compared with the fixed duty cycle method. Meanwhile, compared with the dynamic duty cycle strategy, the proposed scheme has certain advantages in terms of energy utilization and delay reduction. PMID:29757236
Wu, Minrui; Wu, Yanhui; Liu, Chuyao; Cai, Zhiping; Xiong, Neal N; Liu, Anfeng; Ma, Ming
2018-05-12
For Industrial Wireless Sensor Networks (IWSNs), sending data with timely style to the stink (or control center, CC) that is monitored by sensor nodes is a challenging issue. However, in order to save energy, wireless sensor networks based on a duty cycle are widely used in the industrial field, which can bring great delay to data transmission. We observe that if the duty cycle of a small number of nodes in the network is set to 1, the sleep delay caused by the duty cycle can be effectively reduced. Thus, in this paper, a novel Portion of Nodes with Larger Duty Cycle (PNLDC) scheme is proposed to reduce delay and optimize energy efficiency for IWSNs. In the PNLDC scheme, a portion of nodes are selected to set their duty cycle to 1, and the proportion of nodes with the duty cycle of 1 is determined according to the energy abundance of the area in which the node is located. The more the residual energy in the region, the greater the proportion of the selected nodes. Because there are a certain proportion of nodes with the duty cycle of 1 in the network, the PNLDC scheme can effectively reduce delay in IWSNs. The performance analysis and experimental results show that the proposed scheme significantly reduces the delay for forwarding data by 8.9~26.4% and delay for detection by 2.1~24.6% without reducing the network lifetime when compared with the fixed duty cycle method. Meanwhile, compared with the dynamic duty cycle strategy, the proposed scheme has certain advantages in terms of energy utilization and delay reduction.
Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads.
Banerjee, Suchetana; Banerjee, Anindita; Sarkar, Priyabrata
2018-04-16
Bioremediation of arsenic using green technology via microbial enzymes has attracted scientists due to its simplicity and cost effectiveness. Statistical optimization of arsenate bioremediation was conducted by the enzyme arsenate reductase extracted from arsenic tolerant bacterium Pseudomonas alcaligenes. Response surface methodology based on Box-Behnken design matrix was performed to determine the optimal operational conditions of a multivariable system and their interactive effects on the bioremediation process. The highest biosorptive activity of 96.2 µg gm -1 of beads was achieved under optimized conditions (pH = 7.0; As (V) concentration = 1000 ppb; time = 2 h). SEM analysis showed the morphological changes on the surface of enzyme immobilized gluteraldehyde crosslinked Ca-alginate beads. The immobilized enzyme retained its activity for 8 cycles. ANOVA with a high correlation coefficient (R 2 > 0.99) and lower "Prob > F"value (<0.0001) corroborated the second-order polynomial model for the biosorption process. This study on the adsorptive removal of As (V) by enzyme-loaded biosorbent revealed a possible way of its application in large scale treatment of As (V)-contaminated water bodies.
Optimal control of a hybrid rhythmic-discrete task: the bouncing ball revisited.
Ronsse, Renaud; Wei, Kunlin; Sternad, Dagmar
2010-05-01
Rhythmically bouncing a ball with a racket is a hybrid task that combines continuous rhythmic actuation of the racket with the control of discrete impact events between racket and ball. This study presents experimental data and a two-layered modeling framework that explicitly addresses the hybrid nature of control: a first discrete layer calculates the state to reach at impact and the second continuous layer smoothly drives the racket to this desired state, based on optimality principles. The testbed for this hybrid model is task performance at a range of increasingly slower tempos. When slowing the rhythm of the bouncing actions, the continuous cycles become separated into a sequence of discrete movements interspersed by dwell times and directed to achieve the desired impact. Analyses of human performance show increasing variability of performance measures with slower tempi, associated with a change in racket trajectories from approximately sinusoidal to less symmetrical velocity profiles. Matching results of model simulations give support to a hybrid control model based on optimality, and therefore suggest that optimality principles are applicable to the sensorimotor control of complex movements such as ball bouncing.
Dai, Xiao-Yan; Kong, Li-Min; Wang, Xiao-Ling; Zhu, Qing; Chen, Kai; Zhou, Tao
2018-07-01
Pectinase was immobilized onto sodium alginate/graphene oxide beads via amide bonds by using N,N'-dicyclohexylcarbodiimide/N-hydroxysuccinimide as the activating agent. The immobilized pectinase was characterized by Fourier transform infrared spectra and scanning electron microscopy analyses. Immobilization conditions were optimized by Box-Behnken design and the response surface method. The activity of the immobilized pectinase prepared under optimal conditions reached 1236.86 ± 40.21 U/g, with an enzyme activity recovery of 83.5%. The optimal pH of free pectinase was 4.5, while that of immobilized pectinase was shifted to 4.0. The optimal temperature of immobilized pectinase was increased to 60 °C, which was 10 °C higher than that of free form. Furthermore, the immobilized pectinase possessed a superior thermal stability and storage stability to those of free pectinase. Reusability studies indicated that the immobilized pectinase retained 73% of initial activity after six times cycles. Due to these good properties, such immobilized pectinase may find application in food industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sun, Jie; Li, Zhengdong; Pan, Shaoyou; Feng, Hao; Shao, Yu; Liu, Ningguo; Huang, Ping; Zou, Donghua; Chen, Yijiu
2018-05-01
The aim of the present study was to develop an improved method, using MADYMO multi-body simulation software combined with an optimization method and three-dimensional (3D) motion capture, for identifying the pre-impact conditions of a cyclist (walking or cycling) involved in a vehicle-bicycle accident. First, a 3D motion capture system was used to analyze coupled motions of a volunteer while walking and cycling. The motion capture results were used to define the posture of the human model during walking and cycling simulations. Then, cyclist, bicycle and vehicle models were developed. Pre-impact parameters of the models were treated as unknown design variables. Finally, a multi-objective genetic algorithm, the nondominated sorting genetic algorithm II, was used to find optimal solutions. The objective functions of the walk parameter were significantly lower than cycle parameter; thus, the cyclist was more likely to have been walking with the bicycle than riding the bicycle. In the most closely matched result found, all observed contact points matched and the injury parameters correlated well with the real injuries sustained by the cyclist. Based on the real accident reconstruction, the present study indicates that MADYMO multi-body simulation software, combined with an optimization method and 3D motion capture, can be used to identify the pre-impact conditions of a cyclist involved in a vehicle-bicycle accident. Copyright © 2018. Published by Elsevier Ltd.
Heiat, Mohammad; Ranjbar, Reza; Latifi, Ali Mohammad; Rasaee, Mohammad Javad; Farnoosh, Gholamreza
2017-07-01
Asymmetric PCR, a simple method to generate single-stranded DNA (ssDNA) aptamers in systematic evaluation of ligand by exponential enrichments rounds, is coupled with limitations. We investigated the essential strategies for optimization of conditions to perform a high-quality asymmetric PCR. Final concentrations of primers and template, the number of PCR cycles, and annealing temperature were selected as optimizing variables. The qualities of visualized PCR products were analyzed by ImageJ software. The highest proportion of interested DNA than unwanted products was considered as optimum conditions. Results revealed that the best values for primers ratio, final template concentration, annealing temperature, and PCR cycles were, respectively, 30:1, 1 ng/μL, 55 °C, and 20 cycles for the first and 50:1, 2 ng/μL, 59 °C, and 20 cycles for other rounds. No significant difference was found between optimized asymmetric PCR results in the rounds of two to eight (P > 0.05). The ssDNA quality in round 10 was significantly better than other rounds (P < 0.05). Generally, the ssDNA product with less dimers, double-stranded DNA (dsDNA), and smear are preferable. The dsDNA contamination is the worst, because it can act as antidote and inhibits aptameric performance. Therefore, to choose the best conditions, the lower amount of dsDNA is more important than other unwanted products. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
Cyclically optimized electrochemical processes
NASA Astrophysics Data System (ADS)
Ruedisueli, Robert Louis
It has been frequently observed in experiment and industry practice that electrochemical processes (deposition, dissolution, fuel cells) operated in an intermittent or cyclic (AC) mode show improvements in efficiency and/or quality and yield over their steady (DC) mode of operation. Whether rationally invoked by design or empirically tuned-in, the optimal operating frequency and duty cycle is dependent upon the dominant relaxation time constant for the process in question. The electrochemical relaxation time constant is a function of: double-layer and reaction intermediary pseudo-capacitances, ion (charge) transport via electrical migration (mobility), and diffusion across a concentration gradient to electrode surface reaction sites where charge transfer and species incorporation or elimination occurs. The rate determining step dominates the time constant for the reaction or process. Electrochemical impedance spectroscopy (EIS) and piezoelectric crystal electrode (PCE) response analysis have proven to be useful tools in the study and identification of reaction mechanisms. This work explains and demonstrates with the electro-deposition of copper the application of EIS and PCE measurement and analysis to the selection of an optimum cyclic operating schedule, an optimum driving frequency for efficient, sustained cyclic (pulsed) operation.
Lefmann, Kim; Klenø, Kaspar H; Birk, Jonas Okkels; Hansen, Britt R; Holm, Sonja L; Knudsen, Erik; Lieutenant, Klaus; von Moos, Lars; Sales, Morten; Willendrup, Peter K; Andersen, Ken H
2013-05-01
We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.
Qiao, Wenjun; Tang, Xiaoqi; Zheng, Shiqi; Xie, Yuanlong; Song, Bao
2016-09-01
In this paper, an adaptive two-degree-of-freedom (2Dof) proportional-integral (PI) controller is proposed for the speed control of permanent magnet synchronous motor (PMSM). Firstly, an enhanced just-in-time learning technique consisting of two novel searching engines is presented to identify the model of the speed control system in a real-time manner. Secondly, a general formula is given to predict the future speed reference which is unavailable at the interval of two bus-communication cycles. Thirdly, the fractional order generalized predictive control (FOGPC) is introduced to improve the control performance of the servo drive system. Based on the identified model parameters and predicted speed reference, the optimal control law of FOGPC is derived. Finally, the designed 2Dof PI controller is auto-tuned by matching with the optimal control law. Simulations and real-time experimental results on the servo drive system of PMSM are provided to illustrate the effectiveness of the proposed strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Operations research applications in nuclear energy
NASA Astrophysics Data System (ADS)
Johnson, Benjamin Lloyd
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
Mancebo Quintana, J M; Mancebo Quintana, S
2012-01-01
The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae.
NASA Astrophysics Data System (ADS)
Lima, R. S.; Nagy, D.; Marple, B. R.
2015-01-01
Different types of thermal spray systems, including HVOF (JP5000 and DJ2600-hybrid), APS (F4-MB and Axial III), and LPPS (Oerlikon Metco system) were employed to spray CoNiCrAlY bond coats (BCs) onto Inconel 625 substrates. The chemical composition of the BC powder was the same in all cases; however, the particle size distribution of the powder employed with each torch was that specifically recommended for the torch. For optimization purposes, these BCs were screened based on initial evaluations of roughness, porosity, residual stress, relative oxidation, and isothermal TGO growth. A single type of standard YSZ top coat was deposited via APS (F4MB) on all the optimized BCs. The TBCs were thermally cycled by employing a furnace cycle test (FCT) (1080 °C-1 h—followed by forced air cooling). Samples were submitted to 10, 100, 400, and 1400 cycles as well as being cycled to failure. The behavior of the microstructures, bond strength values (ASTM 633), and the TGO evolution of these TBCs, were investigated for the as-sprayed and thermally cycled samples. During FCT, the TBCs found to be both the best and poorest performing and had their BCs deposited via HVOF. The results showed that engineering low-oxidized BCs does not necessarily lead to an optimal TBC performance. Moreover, the bond strength values decrease significantly only when the TBC is about to fail (top coat spall off) and the as-sprayed bond strength values cannot be used as an indicator of TBC performance.
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Patnaik, Surya N.
2000-01-01
A preliminary aircraft engine design methodology is being developed that utilizes a cascade optimization strategy together with neural network and regression approximation methods. The cascade strategy employs different optimization algorithms in a specified sequence. The neural network and regression methods are used to approximate solutions obtained from the NASA Engine Performance Program (NEPP), which implements engine thermodynamic cycle and performance analysis models. The new methodology is proving to be more robust and computationally efficient than the conventional optimization approach of using a single optimization algorithm with direct reanalysis. The methodology has been demonstrated on a preliminary design problem for a novel subsonic turbofan engine concept that incorporates a wave rotor as a cycle-topping device. Computations of maximum thrust were obtained for a specific design point in the engine mission profile. The results (depicted in the figure) show a significant improvement in the maximum thrust obtained using the new methodology in comparison to benchmark solutions obtained using NEPP in a manual design mode.
cycle inventories Economic and environmentally extended input-output analysis Sustainable design and models for sustainable design and optimization of processes, supply chains and life cycles Interactions engineering design and assessment." Doctoral dissertation, The Ohio State University, 2015. Hanes
Optimal design of a magnetorheological damper used in smart prosthetic knees
NASA Astrophysics Data System (ADS)
Gao, Fei; Liu, Yan-Nan; Liao, Wei-Hsin
2017-03-01
In this paper, a magnetorheological (MR) damper is optimally designed for use in smart prosthetic knees. The objective of optimization is to minimize the total energy consumption during one gait cycle and weight of the MR damper. Firstly, a smart prosthetic knee employing a DC motor, MR damper and springs is developed based on the kinetics characteristics of human knee during walking. Then the function of the MR damper is analyzed. In the initial stance phase and swing phase, the MR damper is powered off (off-state). While during the late stance phase, the MR damper is powered on to work as a clutch (on-state). Based on the MR damper model as well as the prosthetic knee model, the instantaneous energy consumption of the MR damper is derived in the two working states. Then by integrating in one gait cycle, the total energy consumption is obtained. Particle swarm optimization algorithm is used to optimize the geometric dimensions of MR damper. Finally, a prototype of the optimized MR damper is fabricated and tested with comparison to simulation.
Multi-level adaptive finite element methods. 1: Variation problems
NASA Technical Reports Server (NTRS)
Brandt, A.
1979-01-01
A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.
Efficient protocols for Stirling heat engines at the micro-scale
NASA Astrophysics Data System (ADS)
Muratore-Ginanneschi, Paolo; Schwieger, Kay
2015-10-01
We investigate the thermodynamic efficiency of sub-micro-scale Stirling heat engines operating under the conditions described by overdamped stochastic thermodynamics. We show how to construct optimal protocols such that at maximum power the efficiency attains for constant isotropic mobility the universal law η=2 ηC/(4-ηC) , where ηC is the efficiency of an ideal Carnot cycle. We show that these protocols are specified by the solution of an optimal mass transport problem. Such solution can be determined explicitly using well-known Monge-Ampère-Kantorovich reconstruction algorithms. Furthermore, we show that the same law describes the efficiency of heat engines operating at maximum work over short time periods. Finally, we illustrate the straightforward extension of these results to cases when the mobility is anisotropic and temperature dependent.
Simulation Propulsion System and Trajectory Optimization
NASA Technical Reports Server (NTRS)
Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.
2017-01-01
A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Wu, Jieer
2011-08-01
Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.
An optimal tuning strategy for tidal turbines
2016-01-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870
An optimal tuning strategy for tidal turbines
NASA Astrophysics Data System (ADS)
Vennell, Ross
2016-11-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.
An optimal tuning strategy for tidal turbines.
Vennell, Ross
2016-11-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.
Giraudeau, Patrick; Guignard, Nadia; Hillion, Emilie; Baguet, Evelyne; Akoka, Serge
2007-03-12
Quantitative analysis by (1)H NMR is often hampered by heavily overlapping signals that may occur for complex mixtures, especially those containing similar compounds. Bidimensional homonuclear NMR spectroscopy can overcome this difficulty. A thorough review of acquisition and post-processing parameters was carried out to obtain accurate and precise, quantitative 2D J-resolved and DQF-COSY spectra in a much reduced time, thus limiting the spectrometer instabilities in the course of time. The number of t(1) increments was reduced as much as possible, and standard deviation was improved by optimization of spectral width, number of transients, phase cycling and apodization function. Localized polynomial baseline corrections were applied to the relevant chemical shift areas. Our method was applied to tropine-nortropine mixtures. Quantitative J-resolved spectra were obtained in less than 3 min and quantitative DQF-COSY spectra in 12 min, with an accuracy of 3% for J-spectroscopy and 2% for DQF-COSY, and a standard deviation smaller than 1%.
NASA Astrophysics Data System (ADS)
Petrila, S.; Brabie, G.; Chirita, B.
2016-08-01
The analysis performed on manufacturing flows within industrial enterprises producing hydrostatic components twos made on a number of factors that influence smooth running of production such: distance between pieces, waiting time from one surgery to another; time achievement of setups on CNC machines; tool changing in case of a large number of operators and manufacturing complexity of large files [2]. To optimize the manufacturing flow it was used the software Tecnomatix. This software represents a complete portfolio of manufacturing solutions digital manufactured by Siemens. It provides innovation by linking all production methods of a product from process design, process simulation, validation and ending the manufacturing process. Among its many capabilities to create a wide range of simulations, the program offers various demonstrations regarding the behavior manufacturing cycles. This program allows the simulation and optimization of production systems and processes in several areas such as: car suppliers, production of industrial equipment; electronics manufacturing, design and production of aerospace and defense parts.
Application of data cubes for improving detection of water cycle extreme events
NASA Astrophysics Data System (ADS)
Teng, W. L.; Albayrak, A.
2015-12-01
As part of an ongoing NASA-funded project to remove a longstanding barrier to accessing NASA data (i.e., accessing archived time-step array data as point-time series), for the hydrology and other point-time series-oriented communities, "data cubes" are created from which time series files (aka "data rods") are generated on-the-fly and made available as Web services from the Goddard Earth Sciences Data and Information Services Center (GES DISC). Data cubes are data as archived rearranged into spatio-temporal matrices, which allow for easy access to the data, both spatially and temporally. A data cube is a specific case of the general optimal strategy of reorganizing data to match the desired means of access. The gain from such reorganization is greater the larger the data set. As a use case for our project, we are leveraging existing software to explore the application of the data cubes concept to machine learning, for the purpose of detecting water cycle extreme (WCE) events, a specific case of anomaly detection, requiring time series data. We investigate the use of the sequential probability ratio test (SPRT) for anomaly detection and support vector machines (SVM) for anomaly classification. We show an example of detection of WCE events, using the Global Land Data Assimilation Systems (GLDAS) data set.
Highly Selective and Considerable Subcritical Butane Extraction to Separate Abamectin in Green Tea.
Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Pang, Huili; Qin, Guangyong
2017-06-01
We specially carried out the subcritical butane extraction to separate abamectin from tea leaves. Four parameters, such as extraction temperature, extraction time, number of extraction cycles, and solid-liquid ratio were studied and optimized through the response surface methodology with design matrix developed by Box-Behnken. Seventeen experiments with three various factors and three variable levels were employed to investigate the effect of these parameters on the extraction of abamectin. Besides, catechins, theanine, caffeine, and aroma components were determined by both high-performance liquid chromatography and gas chromatography-mass spectrometry to evaluate the tea quality before and after the extraction. The results showed that the extraction temperature was the uppermost parameter compared with others. The optimal extraction conditions selected as follows: extraction temperature, 42°C; number of extraction cycles and extraction time, 1 and 30 min, respectively; and solid-liquid ratio, 1:10. Based on the above study, the separation efficiency of abamectin was up to 93.95%. It is notable that there has a quite low loss rate, including the negligible damage of aroma components, the bits reduce of catechins within the range of 0.7%-13.1%, and a handful lessen of caffeine and theanine of 1.81% and 2.6%, respectively. The proposed method suggested subcritical butane possesses solubility for lipid-soluble pesticides, and since most of the pesticides are attached to the surfaces of tea, thus the as-applied method was successfully effective to separate abamectin because of the so practical and promising method.
Algorithm for cellular reprogramming.
Ronquist, Scott; Patterson, Geoff; Muir, Lindsey A; Lindsly, Stephen; Chen, Haiming; Brown, Markus; Wicha, Max S; Bloch, Anthony; Brockett, Roger; Rajapakse, Indika
2017-11-07
The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes. Copyright © 2017 the Author(s). Published by PNAS.
Dynamic Modeling of ALS Systems
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.