DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Fink, D. Hill, J. O'Hara
2004-11-30
Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.
A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.
Hocraffer, Amy; Nam, Chang S
2017-01-01
A meta-analysis was conducted to systematically evaluate the current state of research on human-system interfaces for users controlling semi-autonomous swarms composed of groups of drones or unmanned aerial vehicles (UAVs). UAV swarms pose several human factors challenges, such as high cognitive demands, non-intuitive behavior, and serious consequences for errors. This article presents findings from a meta-analysis of 27 UAV swarm management papers focused on the human-system interface and human factors concerns, providing an overview of the advantages, challenges, and limitations of current UAV management interfaces, as well as information on how these interfaces are currently evaluated. In general allowing user and mission-specific customization to user interfaces and raising the swarm's level of autonomy to reduce operator cognitive workload are beneficial and improve situation awareness (SA). It is clear more research is needed in this rapidly evolving field. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1990-01-01
An advanced human-system interface is being developed for evolutionary Space Station Freedom as part of the NASA Office of Space Station (OSS) Advanced Development Program. The human-system interface is based on body-pointed display and control devices. The project will identify and document the design accommodations ('hooks and scars') required to support virtual workstations and telepresence interfaces, and prototype interface systems will be built, evaluated, and refined. The project is a joint enterprise of Marquette University, Astronautics Corporation of America (ACA), and NASA's ARC. The project team is working with NASA's JSC and McDonnell Douglas Astronautics Company (the Work Package contractor) to ensure that the project is consistent with space station user requirements and program constraints. Documentation describing design accommodations and tradeoffs will be provided to OSS, JSC, and McDonnell Douglas, and prototype interface devices will be delivered to ARC and JSC. ACA intends to commercialize derivatives of the interface for use with computer systems developed for scientific visualization and system simulation.
Sitting in the Pilot's Seat; Optimizing Human-Systems Interfaces for Unmanned Aerial Vehicles
NASA Technical Reports Server (NTRS)
Queen, Steven M.; Sanner, Kurt Gregory
2011-01-01
One of the pilot-machine interfaces (the forward viewing camera display) for an Unmanned Aerial Vehicle called the DROID (Dryden Remotely Operated Integrated Drone) will be analyzed for optimization. The goal is to create a visual display for the pilot that as closely resembles an out-the-window view as possible. There are currently no standard guidelines for designing pilot-machine interfaces for UAVs. Typically, UAV camera views have a narrow field, which limits the situational awareness (SA) of the pilot. Also, at this time, pilot-UAV interfaces often use displays that have a diagonal length of around 20". Using a small display may result in a distorted and disproportional view for UAV pilots. Making use of a larger display and a camera lens with a wider field of view may minimize the occurrences of pilot error associated with the inability to see "out the window" as in a manned airplane. It is predicted that the pilot will have a less distorted view of the DROID s surroundings, quicker response times and more stable vehicle control. If the experimental results validate this concept, other UAV pilot-machine interfaces will be improved with this design methodology.
Constellation Program Human-System Integration Requirements. Revision E, Nov. 19, 2010
NASA Technical Reports Server (NTRS)
Dory, Jonathan
2010-01-01
The Human-Systems Integration Requirements (HSIR) in this document drive the design of space vehicles, their systems, and equipment with which humans interface in the Constellation Program (CxP). These requirements ensure that the design of Constellation (Cx) systems is centered on the needs, capabilities, and limitations of the human. The HSIR provides requirements to ensure proper integration of human-to-system interfaces. These requirements apply to all mission phases, including pre-launch, ascent, Earth orbit, trans-lunar flight, lunar orbit, lunar landing, lunar ascent, Earth return, Earth entry, Earth landing, post-landing, and recovery. The Constellation Program must meet NASA's Agency-level human rating requirements, which are intended to ensure crew survival without permanent disability. The HSIR provides a key mechanism for achieving human rating of Constellation systems.
Human-centered systems : the next challenge in transportation
DOT National Transportation Integrated Search
1999-06-01
The "human-centered systems" approach focuses on human capabili : ties and limitations with respect to human/system interfaces, opera : tions, and system integration. The goal is to design transportation : systems that facilitate task completion, so ...
An intelligent control and virtual display system for evolutionary space station workstation design
NASA Technical Reports Server (NTRS)
Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.
1992-01-01
Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.
Human Integration Design Processes (HIDP)
NASA Technical Reports Server (NTRS)
Boyer, Jennifer
2014-01-01
The purpose of the Human Integration Design Processes (HIDP) document is to provide human-systems integration design processes, including methodologies and best practices that NASA has used to meet human systems and human rating requirements for developing crewed spacecraft. HIDP content is framed around human-centered design methodologies and processes in support of human-system integration requirements and human rating. NASA-STD-3001, Space Flight Human-System Standard, is a two-volume set of National Aeronautics and Space Administration (NASA) Agency-level standards established by the Office of the Chief Health and Medical Officer, directed at minimizing health and performance risks for flight crews in human space flight programs. Volume 1 of NASA-STD-3001, Crew Health, sets standards for fitness for duty, space flight permissible exposure limits, permissible outcome limits, levels of medical care, medical diagnosis, intervention, treatment and care, and countermeasures. Volume 2 of NASASTD- 3001, Human Factors, Habitability, and Environmental Health, focuses on human physical and cognitive capabilities and limitations and defines standards for spacecraft (including orbiters, habitats, and suits), internal environments, facilities, payloads, and related equipment, hardware, and software with which the crew interfaces during space operations. The NASA Procedural Requirements (NPR) 8705.2B, Human-Rating Requirements for Space Systems, specifies the Agency's human-rating processes, procedures, and requirements. The HIDP was written to share NASA's knowledge of processes directed toward achieving human certification of a spacecraft through implementation of human-systems integration requirements. Although the HIDP speaks directly to implementation of NASA-STD-3001 and NPR 8705.2B requirements, the human-centered design, evaluation, and design processes described in this document can be applied to any set of human-systems requirements and are independent of reference missions. The HIDP is a reference document that is intended to be used during the development of crewed space systems and operations to guide human-systems development process activities.
Human-system interfaces for space cognitive awareness
NASA Astrophysics Data System (ADS)
Ianni, J.
Space situational awareness is a human activity. We have advanced sensors and automation capabilities but these continue to be tools for humans to use. The reality is, however, that humans cannot take full advantage of the power of these tools due to time constraints, cognitive limitations, poor tool integration, poor human-system interfaces, and other reasons. Some excellent tools may never be used in operations and, even if they were, they may not be well suited to provide a cohesive and comprehensive picture. Recognizing this, the Air Force Research Laboratory (AFRL) is applying cognitive science principles to increase the knowledge derived from existing tools and creating new capabilities to help space analysts and decision makers. At the center of this research is Sensemaking Support Environment technology. The concept is to create cognitive-friendly computer environments that connect critical and creative thinking for holistic decision making. AFRL is also investigating new visualization technologies for multi-sensor exploitation and space weather, human-to-human collaboration technologies, and other technology that will be discussed in this paper.
Human-system Interfaces to Automatic Systems: Review Guidance and Technical Basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
OHara, J.M.; Higgins, J.C.
Automation has become ubiquitous in modern complex systems and commercial nuclear power plants are no exception. Beyond the control of plant functions and systems, automation is applied to a wide range of additional functions including monitoring and detection, situation assessment, response planning, response implementation, and interface management. Automation has become a 'team player' supporting plant personnel in nearly all aspects of plant operation. In light of the increasing use and importance of automation in new and future plants, guidance is needed to enable the NRC staff to conduct safety reviews of the human factors engineering (HFE) aspects of modern automation.more » The objective of the research described in this report was to develop guidance for reviewing the operator's interface with automation. We first developed a characterization of the important HFE aspects of automation based on how it is implemented in current systems. The characterization included five dimensions: Level of automation, function of automation, modes of automation, flexibility of allocation, and reliability of automation. Next, we reviewed literature pertaining to the effects of these aspects of automation on human performance and the design of human-system interfaces (HSIs) for automation. Then, we used the technical basis established by the literature to develop design review guidance. The guidance is divided into the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, we identified insights into the automaton design process, operator training, and operations.« less
2014-04-30
performance is to create a computational system to mimic human game-play patterns. The objective of this study is to see to what extent we can...estimates as a function of task load. We conducted a pair of studies towards’ this end. In a first study , described in detail in Appendix D...could inform a system as to the relative workload of a user. In a second study , described in detail in Appendix E, participants were exposed to a 40
2011-03-01
Humansystems® Warfighter Integrated Physical Ergonomics Tool Development Page 14 e) Forces: Griffon seat design assessments include questions of vibration...the suitability of alternative designs . Humansystems® Warfighter Integrated Physical Ergonomics Tool Development Page 5 e) Performance Measures...configurations to assess Humansystems® Warfighter Integrated Physical Ergonomics Tool Development Page 8 design and acquisition decisions, and more
Functional Mobility Testing: A Novel Method to Establish Human System Interface Design Requirements
NASA Technical Reports Server (NTRS)
England, Scott A.; Benson, Elizabeth A.; Rajulu, Sudhakar
2008-01-01
Across all fields of human-system interface design it is vital to posses a sound methodology dictating the constraints on the system based on the capabilities of the human user. These limitations may be based on strength, mobility, dexterity, cognitive ability, etc. and combinations thereof. Data collected in an isolated environment to determine, for example, maximal strength or maximal range of motion would indeed be adequate for establishing not-to-exceed type design limitations, however these restraints on the system may be excessive over what is basally needed. Resources may potentially be saved by having a technique to determine the minimum measurements a system must accommodate. This paper specifically deals with the creation of a novel methodology for establishing mobility requirements for a new generation of space suit design concepts. Historically, the Space Shuttle and the International Space Station vehicle and space hardware design requirements documents such as the Man-Systems Integration Standards and International Space Station Flight Crew Integration Standard explicitly stated that the designers should strive to provide the maximum joint range of motion capabilities exhibited by a minimally clothed human subject. In the course of developing the Human-Systems Integration Requirements (HSIR) for the new space exploration initiative (Constellation), an effort was made to redefine the mobility requirements in the interest of safety and cost. Systems designed for manned space exploration can receive compounded gains from simplified designs that are both initially less expensive to produce and lighter, thereby, cheaper to launch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovesdi, C.; Joe, J.
The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is developing a scientific basis through targeted research and development (R&D) to support the U.S. nuclear power plant (NPP) fleet in extending their existing licensing period and ensuring their long-term reliability, productivity, safety, and security. Over the last several years, human factors engineering (HFE) professionals at the Idaho National Laboratory (INL) have supported the LWRS Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway across several U.S. commercial NPPs in analog-to-digital migrations (i.e., turbine control systems) and digital-to-digital migrations (i.e., Safety Parameter Display System). These effortsmore » have included in-depth human factors evaluation of proposed human-system interface (HSI) design concepts against established U.S. Nuclear Regulatory Commission (NRC) design guidelines from NUREG-0700, Rev 2 to inform subsequent HSI design prior to transitioning into Verification and Validation. This paper discusses some of the overarching design issues observed from these past HFE evaluations. In addition, this work presents some observed challenges such as common tradeoffs utilities are likely to face when introducing new HSI technologies into NPP hybrid control rooms. The primary purpose of this work is to distill these observed design issues into general HSI design guidance that industry can use in early stages of HSI design.« less
Evaluation of an Integrated Multi-Task Machine Learning System with Humans in the Loop
2007-01-01
machine learning components natural language processing, and optimization...was examined with a test explicitly developed to measure the impact of integrated machine learning when used by a human user in a real world setting...study revealed that integrated machine learning does produce a positive impact on overall performance. This paper also discusses how specific machine learning components contributed to human-system
Ubiquitous Wireless Smart Sensing and Control
NASA Technical Reports Server (NTRS)
Wagner, Raymond
2013-01-01
Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.
Ubiquitous Wireless Smart Sensing and Control. Pumps and Pipes JSC: Uniquely Houston
NASA Technical Reports Server (NTRS)
Wagner, Raymond
2013-01-01
Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools).Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.
Tool for Human-Systems Integration Assessment: HSI Scorecard
NASA Technical Reports Server (NTRS)
Whitmore, Nihriban; Sandor, Aniko; McGuire, Kerry M.; Berdich, Debbie
2009-01-01
This paper describes the development and rationale for a human-systems integration (HSI) scorecard that can be used in reviews of vehicle specification and design. This tool can be used to assess whether specific HSI related criteria have been met as part of a project milestone or critical event, such as technical reviews, crew station reviews, mockup evaluations, or even review of major plans or processes. Examples of HSI related criteria include Human Performance Capabilities, Health Management, Human System Interfaces, Anthropometry and Biomechanics, and Natural and Induced Environments. The tool is not intended to evaluate requirements compliance and verification, but to review how well the human related systems have been considered for the specific event and to identify gaps and vulnerabilities from an HSI perspective. The scorecard offers common basis, and criteria for discussions among system managers, evaluators, and design engineers. Furthermore, the scorecard items highlight the main areas of system development that need to be followed during system lifecycle. The ratings provide a repeatable quantitative measure to what has been often seen as only subjective commentary. Thus, the scorecard is anticipated to be a useful HSI tool to communicate review results to the institutional and the project office management.
NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Holden, Kritina L.
2005-01-01
The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovesdi, C.; Joe, J.; Boring, R.
The primary objective of the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to sustain operation of the existing commercial nuclear power plants (NPPs) through a multi-pathway approach in conducting research and development (R&D). The Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway conducts targeted R&D to address aging and reliability concerns with legacy instrumentation and control (I&C) and other information systems in existing U.S. NPPs. Control room modernization is an important part following this pathway, and human factors experts at Idaho National Laboratory (INL) have been involved in conducting R&D to supportmore » migration of new digital main control room (MCR) technologies from legacy analog and legacy digital I&C. This paper describes a human factors engineering (HFE) process that supports human-system interface (HSI) design in MCR modernization activities, particularly with migration of old digital to new digital I&C. The process described in this work is an expansion from the LWRS Report INL/EXT-16-38576, and is a requirements-driven approach that aligns with NUREG-0711 requirements. The work described builds upon the existing literature by adding more detail around key tasks and decisions to make when transitioning from HSI Design into Verification and Validation (V&V). The overall objective of this process is to inform HSI design and elicit specific, measurable, and achievable human factors criteria for new digital technologies. Upon following this process, utilities should have greater confidence with transitioning from HSI design into V&V.« less
Multimodal Neuroelectric Interface Development
NASA Technical Reports Server (NTRS)
Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Totah, Joseph (Technical Monitor)
2001-01-01
This project aims to improve performance of NASA missions by developing multimodal neuroelectric technologies for augmented human-system interaction. Neuroelectric technologies will add completely new modes of interaction that operate in parallel with keyboards, speech, or other manual controls, thereby increasing the bandwidth of human-system interaction. We recently demonstrated the feasibility of real-time electromyographic (EMG) pattern recognition for a direct neuroelectric human-computer interface. We recorded EMG signals from an elastic sleeve with dry electrodes, while a human subject performed a range of discrete gestures. A machine-teaming algorithm was trained to recognize the EMG patterns associated with the gestures and map them to control signals. Successful applications now include piloting two Class 4 aircraft simulations (F-15 and 757) and entering data with a "virtual" numeric keyboard. Current research focuses on on-line adaptation of EMG sensing and processing and recognition of continuous gestures. We are also extending this on-line pattern recognition methodology to electroencephalographic (EEG) signals. This will allow us to bypass muscle activity and draw control signals directly from the human brain. Our system can reliably detect P-rhythm (a periodic EEG signal from motor cortex in the 10 Hz range) with a lightweight headset containing saline-soaked sponge electrodes. The data show that EEG p-rhythm can be modulated by real and imaginary motions. Current research focuses on using biofeedback to train of human subjects to modulate EEG rhythms on demand, and to examine interactions of EEG-based control with EMG-based and manual control. Viewgraphs on these neuroelectric technologies are also included.
Understanding Challenges in the Front Lines of Home Health Care: A Human-Systems Approach
Beer, Jenay M.; McBride, Sara E.; Mitzner, Tracy L.; Rogers, Wendy A.
2014-01-01
A human-systems perspective is a fruitful approach to understanding home health care because it emphasizes major individual components of the system – persons, equipment/technology, tasks, and environments –as well as the interaction between these components. The goal of this research was to apply a human-system perspective to consider the capabilities and limitations of the persons, in relation to the demands of the tasks and equipment/technology in home health care. Identification of challenges and mismatches between the person(s) capabilities and the demands of providing care provide guidance for human factors interventions. A qualitative study was conducted with 8 home health Certified Nursing Assistants and 8 home health Registered Nurses interviewed about challenges they encounter in their jobs. A systematic categorization of the challenges the care providers reported was conducted and human factors recommendations were proposed in response, to improve home health. The challenges inform a human-systems model of home health care. PMID:24958610
NASA Technical Reports Server (NTRS)
Stroud, Kenneth; Pickett, Lynn; Tillman, Barry
2008-01-01
This poster presentation reviews the Human Integration Design Handbook (HIDH). It provides guidance and data to aid vehicle / habitat designers in human-system integration It also aids requirements writers in development of human-system integration requirements from SFHSS Standards
Human Engineering of Space Vehicle Displays and Controls
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko
2010-01-01
Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.
NASA Technical Reports Server (NTRS)
Torosyan, David
2012-01-01
Just as important as the engineering that goes into building a robot is the method of interaction, or how human users will use the machine. As part of the Human-System Interactions group (Conductor) at JPL, I explored using a web interface to interact with ATHLETE, a prototype lunar rover. I investigated the usefulness of HTML 5 and Javascript as a telemetry viewer as well as the feasibility of having a rover communicate with a web server. To test my ideas I built a mobile-compatible website and designed primarily for an Android tablet. The website took input from ATHLETE engineers, and upon its completion I conducted a user test to assess its effectiveness.
NASA Space Flight Human-System Standard Human Factors, Habitability, and Environmental Health
NASA Technical Reports Server (NTRS)
Holubec, Keith; Connolly, Janis
2010-01-01
This slide presentation reviews the history, and development of NASA-STD-3001, NASA Space Flight Human-System Standard Human Factors, Habitability, and Environmental Health, and the related Human Integration Design Handbook. Currently being developed from NASA-STD-3000, this project standard currently in review will be available in two volumes, (i.e., Volume 1 -- VCrew Health and Volume 2 -- Human Factors, Habitability, and Environmental Health) and the handbook will be both available as a pdf file and as a interactive website.
HFE safety reviews of advanced nuclear power plant control rooms
NASA Technical Reports Server (NTRS)
Ohara, John
1994-01-01
Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.
Findings of the Test and Evaluation Proof of Concept Trial at the NCOT Facility
2002-04-01
Submitted by: M. L . Matthews, R. D. G. Webb, A. R. Keeble Humansystems Incorporated® 111 Farquhar Street, 2nd Floor Guelph, Ontario N1H 3N4 Project...Report DRDC- Toronto No. CR-2002-056 Q\\ l Humansystems Incorporated April2002 NCOT: Proof of Concept P517839.PDF [Page: 4 of 39] ~· ©HER MAJESTY THE...QUEEN IN RIGHT OF CANADA (2002) as represented by the Minister of National Defense ©SA MAJESTE LA REINE EN DROIT DUE CANADA (2002) Defense Nationale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovesdi, C.; Spielman, Z.; LeBlanc, K.
An important element of human factors engineering (HFE) pertains to measurement and evaluation (M&E). The role of HFE-M&E should be integrated throughout the entire control room modernization (CRM) process and be used for human-system performance evaluation and diagnostic purposes with resolving potential human engineering deficiencies (HEDs) and other human machine interface (HMI) design issues. NUREG-0711 describes how HFE in CRM should employ a hierarchical set of measures, particularly during integrated system validation (ISV), including plant performance, personnel task performance, situation awareness, cognitive workload, and anthropometric/ physiological factors. Historically, subjective measures have been primarily used since they are easier to collectmore » and do not require specialized equipment. However, there are pitfalls with relying solely on subjective measures in M&E such that negatively impact reliability, sensitivity, and objectivity. As part of comprehensively capturing a diverse set of measures that strengthen findings and inferences made of the benefits from emerging technologies like advanced displays, this paper discusses the value of using eye tracking as an objective method that can be used in M&E. A brief description of eye tracking technology and relevant eye tracking measures is provided. Additionally, technical considerations and the unique challenges with using eye tracking in full-scaled simulations are addressed. Finally, this paper shares preliminary findings regarding the use of a wearable eye tracking system in a full-scale simulator study. These findings should help guide future full-scale simulator studies using eye tracking as a methodology to evaluate human-system performance.« less
NASA-STD-3001, Space Flight Human-System Standard and the Human Integration Design Handbook
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Boyer, Jennifer; Holubec, Keith
2012-01-01
NASA-STD-3001 Space Flight Human-System Standard Volume 1, Crew Health, Volume 2, Human Factors, Habitability and Environmental Health, and the Human Integration Design Handbook (HIDH) have replaced the Man-Systems Integration Standards (MSIS), NASA-STD-3000. For decades, NASA-STD-3000 was a significant contribution to human spaceflight programs and to human-systems integration. However, with research program and project results being realized, advances in technology, and the availability of new information in a variety of topic areas, the time had arrived to update this extensive suite of standards and design information. NASA-STD-3001, Volume 2 contains the Agency level standards from the human and environmental factors disciplines that ensure human spaceflight operations are performed safely, efficiently, and effectively. The HIDH is organized in the same sequence and serves as the companion document to NASA-STD-3001, Volume 2, providing a compendium of human spaceflight history and knowledge. The HIDH is intended to aid interpretation of NASA-STD-3001, Volume 2 standards and to provide guidance for requirement writers and vehicle and habitat designers. Keywords Human Factors, Standards, Environmental Factors, NASA
Natural interaction for unmanned systems
NASA Astrophysics Data System (ADS)
Taylor, Glenn; Purman, Ben; Schermerhorn, Paul; Garcia-Sampedro, Guillermo; Lanting, Matt; Quist, Michael; Kawatsu, Chris
2015-05-01
Military unmanned systems today are typically controlled by two methods: tele-operation or menu-based, search-andclick interfaces. Both approaches require the operator's constant vigilance: tele-operation requires constant input to drive the vehicle inch by inch; a menu-based interface requires eyes on the screen in order to search through alternatives and select the right menu item. In both cases, operators spend most of their time and attention driving and minding the unmanned systems rather than on being a warfighter. With these approaches, the platform and interface become more of a burden than a benefit. The availability of inexpensive sensor systems in products such as Microsoft Kinect™ or Nintendo Wii™ has resulted in new ways of interacting with computing systems, but new sensors alone are not enough. Developing useful and usable human-system interfaces requires understanding users and interaction in context: not just what new sensors afford in terms of interaction, but how users want to interact with these systems, for what purpose, and how sensors might enable those interactions. Additionally, the system needs to reliably make sense of the user's inputs in context, translate that interpretation into commands for the unmanned system, and give feedback to the user. In this paper, we describe an example natural interface for unmanned systems, called the Smart Interaction Device (SID), which enables natural two-way interaction with unmanned systems including the use of speech, sketch, and gestures. We present a few example applications SID to different types of unmanned systems and different kinds of interactions.
A method to select human-system interfaces for nuclear power plants
Hugo, Jacques Victor; Gertman, David Ira
2015-10-19
The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced human–system interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive processmore » for integration of end user devices with instrumentation and control (I&C) and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. Furthermore, it also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans.« less
Addressing the human factors issues associated with control room modifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Hara, J.; Stubler, W.; Kramer, J.
1998-03-01
Advanced human-system interface (HSI) technology is being integrated into existing nuclear plants as part of plant modifications and upgrades. The result of this trend is that hybrid HSIs are created, i.e., HSIs containing a mixture of conventional (analog) and advanced (digital) technology. The purpose of the present research is to define the potential effects of hybrid HSIs on personnel performance and plant safety and to develop human factors guidance for safety reviews of them where necessary. In support of this objective, human factors issues associated with hybrid HSIs were identified. The issues were evaluated for their potential significance to plantmore » safety, i.e., their human performance concerns have the potential to compromise plant safety. The issues were then prioritized and a subset was selected for design review guidance development.« less
Karwowski, Waldemar
2012-12-01
In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2011-01-01
As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.
Methodologies and Methods for User Behavioral Research.
ERIC Educational Resources Information Center
Wang, Peiling
1999-01-01
Discusses methodological issues in empirical studies of information-related behavior in six specific research areas: information needs and uses; information seeking; relevance judgment; online searching (including online public access catalog, online database, and the Web); human-system interactions; and reference transactions. (Contains 191…
Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callan, J.R.; Gwynne, J.W. III; Kelly, T.T.
1995-05-01
A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task.more » The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses.« less
NASA Technical Reports Server (NTRS)
Goodman, Allen; Shively, R. Joy (Technical Monitor)
1997-01-01
MIDAS, Man-machine Integration Design and Analysis System, is a unique combination of software tools aimed at reducing design cycle time, supporting quantitative predictions of human-system effectiveness and improving the design of crew stations and their associated operating procedures. This project is supported jointly by the US Army and NASA.
Human Factors and Technical Considerations for a Computerized Operator Support System Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne
2015-09-01
A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Departmentmore » of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.« less
2006-10-31
Articles: Danks , D. "Psychological Theories of Categorization as Probabilistic Graphical Models," Journal of Mathematical Psychology, submitted. Kyburg...and when there is no set of competent and authorized humans available to make the decisions themselves. Ultimately, it is a matter of expected utility
Literature Review: Cognitive Effects of Thermal Strain
2005-02-08
001/TOR Call up No. 7879 -05 On behalf of DEPARTMENT OF NATIONAL DEFENCE Defence Research and Development Canada – Toronto 1133 Sheppard...opérations de lutte contre l’incendie ou les opérations militaires. Humansystems® Incorporated Thermal Strain Literature Review Page vi Table of... VI LIST OF TABLES AND FIGURES
2005-06-30
others. Erikson (1968) has described the first stage of psychosocial development (occurring at about 1 to 2 years of age) as requiring resolution of...relationship are critical, particularly at the early stages (before distrust develops ). Humansystems...7747-20 On behalf of DEPARTMENT OF NATIONAL DEFENCE as represented by Defence Research and Development Canada Toronto 1133 Sheppard Avenue West
Human-System Integration Scorecard Update to VB.Net
NASA Technical Reports Server (NTRS)
Sanders, Blaze D.
2009-01-01
The purpose of this project was to create Human-System Integration (HSI) scorecard software, which could be utilized to validate that human factors have been considered early in hardware/system specifications and design. The HSI scorecard is partially based upon the revised Human Rating Requirements (HRR) intended for NASA's Constellation program. This software scorecard will allow for quick appraisal of HSI factors, by using visual aids to highlight low and rapidly changing scores. This project consisted of creating a user-friendly Visual Basic program that could be easily distributed and updated, to and by fellow colleagues. Updating the Microsoft Word version of the HSI scorecard to a computer application will allow for the addition of useful features, improved easy of use, and decreased completion time for user. One significant addition is the ability to create Microsoft Excel graphs automatically from scorecard data, to allow for clear presentation of problematic areas. The purpose of this paper is to describe the rational and benefits of creating the HSI scorecard software, the problems and goals of project, and future work that could be done.
Functional Mobility Testing: A Novel Method to Create Suit Design Requirements
NASA Technical Reports Server (NTRS)
England, Scott A.; Benson, Elizabeth A.; Rajulu, Sudhakar L.
2008-01-01
This study was performed to aide in the creation of design requirements for the next generation of space suits that more accurately describe the level of mobility necessary for a suited crewmember through the use of an innovative methodology utilizing functional mobility. A novel method was utilized involving the collection of kinematic data while 20 subjects (10 male, 10 female) performed pertinent functional tasks that will be required of a suited crewmember during various phases of a lunar mission. These tasks were selected based on relevance and criticality from a larger list of tasks that may be carried out by the crew. Kinematic data was processed through Vicon BodyBuilder software to calculate joint angles for the ankle, knee, hip, torso, shoulder, elbow, and wrist. Maximum functional mobility was consistently lower than maximum isolated mobility. This study suggests that conventional methods for establishing design requirements for human-systems interfaces based on maximal isolated joint capabilities may overestimate the required mobility. Additionally, this method provides a valuable means of evaluating systems created from these requirements by comparing the mobility available in a new spacesuit, or the mobility required to use a new piece of hardware, to this newly established database of functional mobility.
Derivation of Boundary Manikins: A Principal Component Analysis
NASA Technical Reports Server (NTRS)
Young, Karen; Margerum, Sarah; Barr, Abbe; Ferrer, Mike A.; Rajulu, Sudhakar
2008-01-01
When designing any human-system interface, it is critical to provide realistic anthropometry to properly represent how a person fits within a given space. This study aimed to identify a minimum number of boundary manikins or representative models of subjects anthropometry from a target population, which would realistically represent the population. The boundary manikin anthropometry was derived using, Principal Component Analysis (PCA). PCA is a statistical approach to reduce a multi-dimensional dataset using eigenvectors and eigenvalues. The measurements used in the PCA were identified as those measurements critical for suit and cockpit design. The PCA yielded a total of 26 manikins per gender, as well as their anthropometry from the target population. Reduction techniques were implemented to reduce this number further with a final result of 20 female and 22 male subjects. The anthropometry of the boundary manikins was then be used to create 3D digital models (to be discussed in subsequent papers) intended for use by designers to test components of their space suit design, to verify that the requirements specified in the Human Systems Integration Requirements (HSIR) document are met. The end-goal is to allow for designers to generate suits which accommodate the diverse anthropometry of the user population.
An introduction to the COLIN optimization interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, William Eugene
2003-03-01
We describe COLIN, a Common Optimization Library INterface for C++. COLIN provides C++ template classes that define a generic interface for both optimization problems and optimization solvers. COLIN is specifically designed to facilitate the development of hybrid optimizers, for which one optimizer calls another to solve an optimization subproblem. We illustrate the capabilities of COLIN with an example of a memetic genetic programming solver.
2006-09-01
Control Force Agility Shared Situational Awareness Attentional Demand Interoperability Network Based Operations Effect Based Operations Speed of...Command Self Synchronization Reach Back Reach Forward Information Superiority Increased Mission Effectiveness Humansystems® Team Modelling...communication effectiveness and Distributed Mission Training (DMT) effectiveness . The NASA Ames Centre - Distributed Research Facilities platform could
NASA Technical Reports Server (NTRS)
Ambrose, Robert O.
2007-01-01
Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and power modules over long distances, pre-positioning them for the arrival of crew on a subsequent lander. Surface Handling 1. Offload surface system payloads from the lander, breaking launch restraints and power/data connections. Payloads may be offloaded to a wheeled vehicle for transport. 2. Deploy payloads from a wheeled vehicle at a field site, placing the payloads in their final use site on the ground or mating them with existing surface systems. 3. Support regolith collection, site preparation, berm construction, or other civil engineering tasks using tools and implements attached to rovers. Human-Systems Interaction 1. Provide a safe command and control interface for suited EVA to ride on and drive the vehicles, making sure that the systems are also safe for working near dismounted crew. 2. Provide an effective control system for IV crew to tele-operate vehicles, cranes and other equipment from inside the surface habitats with evolving independence from Earth. .. Provide a supervisory system that allows machines to be commanded from the ground, working across the Earth-Lunar time delays on the order of 5-10 seconds (round trip) to support operations when crew are not resident on the surface. Technology Development Needs 1. Surface vehicles that can dock, align and mate with outpost equipment such as landers, habitats and fluid/power interfaces. 2. Long life motors, drive trains, seals, motor electronics, sensors, processors, cable harnesses, and dash board displays. 3. Active suspension control, localization, high speed obstacle avoidance, and safety systems for operating near dismounted crew. 4. High specific energy and specific power batteries that are safe, rechargeable, and long lived.
Sociotechnical attributes of safe and unsafe work systems.
Kleiner, Brian M; Hettinger, Lawrence J; DeJoy, David M; Huang, Yuang-Hsiang; Love, Peter E D
2015-01-01
Theoretical and practical approaches to safety based on sociotechnical systems principles place heavy emphasis on the intersections between social-organisational and technical-work process factors. Within this perspective, work system design emphasises factors such as the joint optimisation of social and technical processes, a focus on reliable human-system performance and safety metrics as design and analysis criteria, the maintenance of a realistic and consistent set of safety objectives and policies, and regular access to the expertise and input of workers. We discuss three current approaches to the analysis and design of complex sociotechnical systems: human-systems integration, macroergonomics and safety climate. Each approach emphasises key sociotechnical systems themes, and each prescribes a more holistic perspective on work systems than do traditional theories and methods. We contrast these perspectives with historical precedents such as system safety and traditional human factors and ergonomics, and describe potential future directions for their application in research and practice. The identification of factors that can reliably distinguish between safe and unsafe work systems is an important concern for ergonomists and other safety professionals. This paper presents a variety of sociotechnical systems perspectives on intersections between social--organisational and technology--work process factors as they impact work system analysis, design and operation.
NASA Technical Reports Server (NTRS)
Corker, Kevin M.; Smith, Barry R.
1993-01-01
The process of designing crew stations for large-scale, complex automated systems is made difficult because of the flexibility of roles that the crew can assume, and by the rapid rate at which system designs become fixed. Modern cockpit automation frequently involves multiple layers of control and display technology in which human operators must exercise equipment in augmented, supervisory, and fully automated control modes. In this context, we maintain that effective human-centered design is dependent on adequate models of human/system performance in which representations of the equipment, the human operator(s), and the mission tasks are available to designers for manipulation and modification. The joint Army-NASA Aircrew/Aircraft Integration (A3I) Program, with its attendant Man-machine Integration Design and Analysis System (MIDAS), was initiated to meet this challenge. MIDAS provides designers with a test bed for analyzing human-system integration in an environment in which both cognitive human function and 'intelligent' machine function are described in similar terms. This distributed object-oriented simulation system, its architecture and assumptions, and our experiences from its application in advanced aviation crew stations are described.
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Sheridan, Tom; Poage, james L.; Martin, Lynne Hazel; Jobe, Kimberly K.
2010-01-01
This report identifies key human-performance-related issues associated with Next Generation Air Transportation System (NextGen) research in the NASA NextGen-Airspace Project. Four Research Focus Areas (RFAs) in the NextGen-Airspace Project - namely Separation Assurance (SA), Airspace Super Density Operations (ASDO), Traffic Flow Management (TFM), and Dynamic Airspace Configuration (DAC) - were examined closely. In the course of the research, it was determined that the identified human performance issues needed to be analyzed in the context of NextGen operations rather than through basic human factors research. The main gaps in human factors research in NextGen were found in the need for accurate identification of key human-systems related issues within the context of specific NextGen concepts and better design of the operational requirements for those concepts. By focusing on human-system related issues for individual concepts, key human performance issues for the four RFAs were identified and described in this report. In addition, mixed equipage airspace with components of two RFAs were characterized to illustrate potential human performance issues that arise from the integration of multiple concepts.
NASA Technical Reports Server (NTRS)
Edwards, Tamsyn; Lee, Paul
2017-01-01
One of the most fundamental changes to the air traffic management system in NextGen is the concept of trajectory based operations (TBO). With the introduction of such change, system safety and resilience is a critical concern, in particular, the ability of systems to gracefully degrade. In order to design graceful degradation into a TBO envrionment, knowledge of the potential causes of degradation, and appropriate solutions, is required. In addition, previous research has predominantly explored the technological contribution to graceful degradation, frequently neglecting to consider the role of the human operator, specifically, air traffic controllers (ATCOs). This is out of step with real-world operations, and potentially limits an ecologically valid understanding of achieving graceful degradation in an air traffic control (ATC) environment. The following literature review aims to identify and summarize the literature to date on the potential causes of degradation in ATC and the solutions that may be applied within a TBO context, with a specific focus on the contribution of the air traffic controller. A framework of graceful degradation, developed from the literature, is presented. It is argued that in order to achieve graceful degradation within TBO, a human-system integration approach must be applied.
2016-07-27
make risk-informed decisions during serious games . Statistical models of intra- game performance were developed to determine whether behaviors in...specific facets of the gameplay workflow were predictive of analytical performance and games outcomes. A study of over seventy instrumented teams revealed...more accurate game decisions. 2 Keywords: Humatics · Serious Games · Human-System Interaction · Instrumentation · Teamwork · Communication Analysis
Personnel Selection Influences on Remotely-Piloted Aircraft Human-System Integration
2015-01-30
measured by current selection methods (for a summary, see 9, 33). In the Williams , Carretta, Kirkendall, Barron, Stewart, and Rose study (33), Air...other characteristics. See Williams et al. (33) for the complete list of SAOCs. Williams et al. (33) made several recommendations regarding RPA...exaggerate their positive qualities and minimize those they consider negative when confronted with personality testing. Williams and King (32) compared
2007-03-01
place Sold in pairs Sizes: S/M (16") or L/ XL (19") Color: Black Humansystems® Incorporated Enhanced PPE Options Page A-32 Lower Limb...Equipment Check Anthropometry / Joint Obstruction Assessments / Range of Motion 20 m Sprint / Agility Run / 20 m Shuttle Run (Beep Test) Vehicle
Updating Human Factors Engineering Guidelines for Conducting Safety Reviews of Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
O, J.M.; Higgins, J.; Stephen Fleger - NRC
The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodicmore » update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. This paper describes the role of HFE guidelines in the safety review process and the content of the key HFE guidelines used. Then we will present the methodology used to develop HFE guidance and update these documents, and describe the current status of the update program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
OHara J. M.; Higgins, J.; Fleger, S.
The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodicmore » update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. NUREG-0711 is the first document to be addressed. We present the methodology used to update NUREG-0711 and summarize the main changes made. Finally, we discuss the current status of the update program and the future plans.« less
Human Habitation in a Lunar Electric Rover During a 14-Day Field Trial
NASA Technical Reports Server (NTRS)
Litaker, Harry, Jr.; Thompson, Shelby; Howard, Robert, Jr.
2010-01-01
Various military and commercial entities, as well as the National Aeronautics and Space Administration (NASA), have conducted space cabin confinement studies. However, after an extensive literature search, only one study was found using a simulated lunar rover (LUNEX II), under laboratory conditions, with a crew of two for an eighteen day lunar mission. Forty-three years later, NASA human factors engineers conducted a similar study using the Lunar Electric Rover (LER) in a dynamic real-world lunar simulation at the Black Point Lava Flow in Arizona. The objective of the study was to obtain human-in-the-loop performance data on the vehicle s interior volume with respect to human-system interfaces, crew accommodations, and habitation over a 14-day mission. Though part of a larger study including 212 overall operational elements, this paper will discuss only the performance of fifty different daily habitational elements within the confines of the vehicle carried out by two male subjects. Objective timing data and subjective questionnaire data were collected. Results indicate, much like the LUNEX II study, the LER field study suggest that a crew of two was able to maintain a satisfactory performance of tasks throughout the 14-day field trail within a relative small vehicle volume.
Tsai, Tzung-Cheng; Hsu, Yeh-Liang; Ma, An-I; King, Trevor; Wu, Chang-Huei
2007-08-01
"Telepresence" is an interesting field that includes virtual reality implementations with human-system interfaces, communication technologies, and robotics. This paper describes the development of a telepresence robot called Telepresence Robot for Interpersonal Communication (TRIC) for the purpose of interpersonal communication with the elderly in a home environment. The main aim behind TRIC's development is to allow elderly populations to remain in their home environments, while loved ones and caregivers are able to maintain a higher level of communication and monitoring than via traditional methods. TRIC aims to be a low-cost, lightweight robot, which can be easily implemented in the home environment. Under this goal, decisions on the design elements included are discussed. In particular, the implementation of key autonomous behaviors in TRIC to increase the user's capability of projection of self and operation of the telepresence robot, in addition to increasing the interactive capability of the participant as a dialogist are emphasized. The technical development and integration of the modules in TRIC, as well as human factors considerations are then described. Preliminary functional tests show that new users were able to effectively navigate TRIC and easily locate visual targets. Finally the future developments of TRIC, especially the possibility of using TRIC for home tele-health monitoring and tele-homecare visits are discussed.
NASA Astrophysics Data System (ADS)
Tan, Ting; Yan, Zhimiao; Lei, Hong
2017-07-01
Galloping-based piezoelectric energy harvesters scavenge small-scale wind energy and convert it into electrical energy. For piezoelectric energy harvesting with the same vibrational source (galloping) but different (alternating-current (AC) and direct-current (DC)) interfaces, general analytical solutions of the electromechanical coupled distributed parameter model are proposed. Galloping is theoretically proven to appear when the linear aerodynamic negative damping overcomes the electrical damping and mechanical damping. The harvested power is demonstrated as being done by the electrical damping force. Via tuning the load resistance to its optimal value for optimal or maximal electrical damping, the harvested power of the given structure with the AC/DC interface is maximized. The optimal load resistances and the corresponding performances of such two systems are compared. The optimal electrical damping are the same but with different optimal load resistances for the systems with the AC and DC interfaces. At small wind speeds where the optimal electrical damping can be realized by only tuning the load resistance, the performances of such two energy harvesting systems, including the minimal onset speeds to galloping, maximal harvested powers and corresponding tip displacements are almost the same. Smaller maximal electrical damping with larger optimal load resistance is found for the harvester with the DC interface when compared to those for the harvester with the AC interface. At large wind speeds when the maximal electrical damping rather than the optimal electrical damping can be reached by tuning the load resistance alone, the harvester with the AC interface circuit is recommended for a higher maximal harvested power with a smaller tip displacement. This study provides a method using the general electrical damping to connect and compare the performances of piezoelectric energy harvesters with same excitation source but different interfaces.
Trust in Culturally Diverse Teams
2008-09-01
Humansystems® Incorporated 111 Farquhar St., Guelph, ON N1H 3N4 Project Manager : Barbara D. Adams, Ph.D. (519) 836 5911 PWGSC Contract...on trust in teams and on the management of trust violations within these teams. Reserve force military personnel (n = 106) were recruited to...cultural diversity on trust in teams and on the management of trust violations within these teams. CF reserve force personnel (n = 106) were
Where's the emotion? How sport psychology can inform research on emotion in human factors.
Eccles, David W; Ward, Paul; Woodman, Tim; Janelle, Christopher M; Le Scanff, Christine; Ehrlinger, Joyce; Castanier, Carole; Coombes, Stephen A
2011-04-01
The aim of this study was to demonstrate how research on emotion in sport psychology might inform the field of human factors. Human factors historically has paid little attention to the role of emotion within the research on human-system relations. The theories, methods, and practices related to research on emotion within sport psychology might be informative for human factors because fundamentally, sport psychology and human factors are applied fields concerned with enhancing performance in complex, real-world domains. Reviews of three areas of theory and research on emotion in sport psychology are presented, and the relevancy of each area for human factors is proposed: (a) emotional preparation and regulation for performance, (b) an emotional trait explanation for risk taking in sport, and (c) the link between emotion and motor behavior. Finally, there are suggestions for how to continue cross-talk between human factors and sport psychology about research on emotion and related topics in the future. The relevance of theory and research on emotion in sport psychology for human factors is demonstrated. The human factors field and, in particular, research on human-system relations may benefit from a consideration of theory and research on emotion in sport psychology. Theories, methods, and practices from sport psychology might be applied usefully to human factors.
Personnel Selection Influences on Remotely Piloted Aircraft Human-System Integration.
Carretta, Thomas R; King, Raymond E
2015-08-01
Human-system integration (HSI) is a complex process used to design and develop systems that integrate human capabilities and limitations in an effective and affordable manner. Effective HSI incorporates several domains, including manpower, personnel and training, human factors, environment, safety, occupational health, habitability, survivability, logistics, intelligence, mobility, and command and control. To achieve effective HSI, the relationships among these domains must be considered. Although this integrated approach is well documented, there are many instances where it is not followed. Human factors engineers typically focus on system design with little attention to the skills, abilities, and other characteristics needed by human operators. When problems with fielded systems occur, additional training of personnel is developed and conducted. Personnel selection is seldom considered during the HSI process. Complex systems such as aviation require careful selection of the individuals who will interact with the system. Personnel selection is a two-stage process involving select-in and select-out procedures. Select-in procedures determine which candidates have the aptitude to profit from training and represent the best investment. Select-out procedures focus on medical qualification and determine who should not enter training for medical reasons. The current paper discusses the role of personnel selection in the HSI process in the context of remotely piloted aircraft systems.
The Use of Behavior Models for Predicting Complex Operations
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2010-01-01
Modeling and simulation (M&S) plays an important role when complex human-system notions are being proposed, developed and tested within the system design process. National Aeronautics and Space Administration (NASA) as an agency uses many different types of M&S approaches for predicting human-system interactions, especially when it is early in the development phase of a conceptual design. NASA Ames Research Center possesses a number of M&S capabilities ranging from airflow, flight path models, aircraft models, scheduling models, human performance models (HPMs), and bioinformatics models among a host of other kinds of M&S capabilities that are used for predicting whether the proposed designs will benefit the specific mission criteria. The Man-Machine Integration Design and Analysis System (MIDAS) is a NASA ARC HPM software tool that integrates many models of human behavior with environment models, equipment models, and procedural / task models. The challenge to model comprehensibility is heightened as the number of models that are integrated and the requisite fidelity of the procedural sets are increased. Model transparency is needed for some of the more complex HPMs to maintain comprehensibility of the integrated model performance. This will be exemplified in a recent MIDAS v5 application model and plans for future model refinements will be presented.
Quantifying Trust, Distrust, and Suspicion in Human-System Interactions
2015-10-26
devices which require subjects to lie in restricted positions ( fMRI ), or to drink hazardous materials (PET), EEG and fNIRS can non-invasively measure... fMRI . Since fNIRS and fMRI both measure elements of the Blood Oxygen Level Dependent (BOLD) signal. Researchers have recently explored the...response inhibition load, verbal working memory load, and spatial working memory load [1, 7]. We have also successfully localized brain regions such as
2016-06-01
ARL-TR-7698 ● JUNE 2016 US Army Research Laboratory Human -Systems Integration (HSI) and the Network Integration Evaluations...ARL-TR-7698 ● JUNE 2016 US Army Research Laboratory Human -Systems Integration (HSI) and the Network Integration Evaluations (NIEs), Part 3...Mitigating Cognitive Load in Network-Enabled Mission Command by John K Hawley Human Research and Engineering Directorate, ARL Michael W
The Role of Mental Models in Dynamic Decision-Making
2009-03-01
Humansystems® Incorporated 111 Farquhar St., Guelph, ON N1H 3N4 Project Manager : Lisa A. Rehak PWGSC Contract No.: W7711-078110/001/TOR Call...simulate the processes that people use to manage complex systems. These analogies, moreover, represent one way to help people to form more accurate...make complex decisions. Control theory’s primary emphasis is on the role of feedback while managing a complex system. What is common to all of these
The flight robotics laboratory
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.
1988-01-01
The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2017-01-01
Human space exploration has never been more exciting than it is today. Human presence to outer worlds is becoming a reality as humans are leveraging much of our prior knowledge to the new mission of going to Mars. Exploring the solar system at greater distances from Earth than ever before will possess some unique challenges, which can be overcome thanks to the advances in modeling and simulation technologies. The National Aeronautics and Space Administration (NASA) is at the forefront of exploring our solar system. NASA's Human Research Program (HRP) focuses on discovering the best methods and technologies that support safe and productive human space travel in the extreme and harsh space environment. HRP uses various methods and approaches to answer questions about the impact of long duration missions on the human in space including: gravitys impact on the human body, isolation and confinement on the human, hostile environments impact on the human, space radiation, and how the distance is likely to impact the human. Predictive models are included in the HRP research portfolio as these models provide valuable insights into human-system operations. This paper will provide an overview of NASA's HRP and will present a number of projects that have used modeling and simulation to provide insights into human-system issues (e.g. automation, habitat design, schedules) in anticipation of space exploration.
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2016-01-01
Human space exploration has never been more exciting than it is today. Human presence to outer worlds is becoming a reality as humans are leveraging much of our prior knowledge to the new mission of going to Mars. Exploring the solar system at greater distances from Earth than ever before will possess some unique challenges, which can be overcome thanks to the advances in modeling and simulation technologies. The National Aeronautics and Space Administration (NASA) is at the forefront of exploring our solar system. NASA's Human Research Program (HRP) focuses on discovering the best methods and technologies that support safe and productive human space travel in the extreme and harsh space environment. HRP uses various methods and approaches to answer questions about the impact of long duration missions on the human in space including: gravity's impact on the human body, isolation and confinement on the human, hostile environments impact on the human, space radiation, and how the distance is likely to impact the human. Predictive models are included in the HRP research portfolio as these models provide valuable insights into human-system operations. This paper will provide an overview of NASA's HRP and will present a number of projects that have used modeling and simulation to provide insights into human-system issues (e.g. automation, habitat design, schedules) in anticipation of space exploration.
Investigating accident causation through information network modelling.
Griffin, T G C; Young, M S; Stanton, N A
2010-02-01
Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction.
Creating and optimizing interfaces for electric-field and photon-induced charge transfer.
Park, Byoungnam; Whitham, Kevin; Cho, Jiung; Reichmanis, Elsa
2012-11-27
We create and optimize a structurally well-defined electron donor-acceptor planar heterojunction interface in which electric-field and/or photon-induced charge transfer occurs. Electric-field-induced charge transfer in the dark and exciton dissociation at a pentacene/PCBM interface were probed by in situ thickness-dependent threshold voltage shift measurements in field-effect transistor devices during the formation of the interface. Electric-field-induced charge transfer at the interface in the dark is correlated with development of the pentacene accumulation layer close to PCBM, that is, including interface area, and dielectric relaxation time in PCBM. Further, we demonstrate an in situ test structure that allows probing of both exciton diffusion length and charge transport properties, crucial for optimizing optoelectronic devices. Competition between the optical absorption length and the exciton diffusion length in pentacene governs exciton dissociation at the interface. Charge transfer mechanisms in the dark and under illumination are detailed.
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Hamilton, Doug; Jones, Jeffrey A.; Alexander, David
2009-01-01
There are currently several physiological monitoring requirements for EVA in the Human-Systems Interface Requirements (HSIR) document. There are questions as to whether the capability to monitor heart rhythm in the lunar surface space suit is a necessary capability for lunar surface operations. Similarly, there are questions as to whether the capability to monitor heart rhythm during a cabin depressurization scenario in the launch/landing space suit is necessary. This presentation seeks to inform space medicine personnel of recommendations made by an expert panel of cardiovascular medicine specialists regarding in-suit ECG heart rhythm monitoring requirements during lunar surface operations. After a review of demographic information and clinical cases and panel discussion, the panel recommended that ECG monitoring capability as a clinical tool was not essential in the lunar space suit; ECG monitoring was not essential in the launch/landing space suit for contingency scenarios; the current hear rate monitoring capability requirement for both launch/landing and lunar space suits should be maintained; lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG for IVA medical assessments; and, exercise stress testing for astronaut selection and retention should be changed from the current 85% maximum heart rate limit to maximal, exhaustive 'symptom-limited' testing to maximize diagnostic utility as a screening tool for evaluating the functional capacity of astronauts and their cardiovascular health.
2010-08-01
students conducting the data capture and data entry, an analytical method known as the Task Load Index ( NASA TLX Version 2.0) was used. This method was...published by the NASA Ames Research Center in December 2003. The entire report can be found at: http://humansystems.arc.nasa.gov/groups/ TLX The...completion of each task in the survey process, surveyors were required to complete a NASA TLX form to report their assessment of the workload for
Behavioral Health and Performance (BHP) Work-Rest Cycles
NASA Technical Reports Server (NTRS)
Leveton, Lauren B.; Whitmire, Alexandra
2011-01-01
BHP Program Element Goal: Identify, characterize, and prevent or reduce behavioral health and performance risks associated with space travel, exploration and return to terrestrial life. BHP Requirements: a) Characterize and assess risks (e.g., likelihood and consequences). b) Develop tools and technologies to prevent, monitor, and treat adverse outcomes. c) Inform standards. d) Develop technologies to: 1) reduce risks and human systems resource requirements (e.g., crew time, mass, volume, power) and 2) ensure effective human-system integration across exploration mission.
2007-04-01
communication from the gunner who is able to offer enhanced visual information about the entity (e.g., insignia, type of weaponry) or radio contact may...1999 (Fuzzy Logic); Clemen & Winkler, in press (Bayes Theorem); Sentz & Ferson, 2002 (Dempster-Shafer)). Humansystems® Combat Identification...incidents when other units get lost and appear in unexpected locations. The formation radios for additional information from the operations officer
Overview and Software Architecture of the Copernicus Trajectory Design and Optimization System
NASA Technical Reports Server (NTRS)
Williams, Jacob; Senent, Juan S.; Ocampo, Cesar; Mathur, Ravi; Davis, Elizabeth C.
2010-01-01
The Copernicus Trajectory Design and Optimization System represents an innovative and comprehensive approach to on-orbit mission design, trajectory analysis and optimization. Copernicus integrates state of the art algorithms in optimization, interactive visualization, spacecraft state propagation, and data input-output interfaces, allowing the analyst to design spacecraft missions to all possible Solar System destinations. All of these features are incorporated within a single architecture that can be used interactively via a comprehensive GUI interface, or passively via external interfaces that execute batch processes. This paper describes the Copernicus software architecture together with the challenges associated with its implementation. Additionally, future development and planned new capabilities are discussed. Key words: Copernicus, Spacecraft Trajectory Optimization Software.
NASA-STD 3001 and the Human Integration Design Handbook (HIDH): Evolution of NASA-STD-3000
NASA Technical Reports Server (NTRS)
Pickett, Lynn; Connolly, Janis; Arch, M.; Tillman, Barry; Russo, Dane
2007-01-01
The Habitability & Environmental Factors and Space Medicine Divisions have developed the Space Flight Human System Standard (SFHSS) (NASA-STD-3001) to replace NASA-STD-3000 as a new NASA standard for all human spaceflight programs. The SFHSS is composed of 2 volumes. Volume 1, Crew Health, contains medical levels of care, permissible exposure limits, and fitness for duty criteria, and permissible outcome limits as a means of defining successful operating criteria for the human system. Volume 2, Habitability and Environmental Health, contains environmental, habitability and human factors standards. Development of the Human Integration Design Handbook (HIDH), a companion to the standard, is currently under construction and entails the update and revision of NASA-STD-3000 data. This new handbook will, in the fashion of NASA STD-3000, assist engineers and designers in appropriately applying habitability, environmental and human factors principles to spacecraft design. Organized in a chapter-module-element structure, the HIDH will provide the guidance for the development of requirements, design considerations, lessons learned, example solutions, background research, and assist in the identification of gaps and research needs in the disciplines. Subject matter experts have been and continue to be solicited to participate in the update of the chapters. The purpose is to build the HIDH with the best and latest data, and provide a broad representation from experts in industry, academia, the military and the space program. The handbook and the two standards volumes work together in a unique way to achieve the required level of human-system interface. All new NASA programs will be required to meet Volumes 1 and 2. Volume 2 presents human interface goals in broad, non-verifiable standards. Volume 2 also requires that each new development program prepare a set of program-specific human factors requirements. These program-specific human and environmental factors requirements must be verifiable and tailored to assure the new system meets the Volume 2 standards. Programs will use the HIDH to write their verifiable program-specific requirements.
Design of optimal buffer layers for CuInGaSe2 thin-film solar cells(Conference Presentation)
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo; Varley, Joel B.; He, Xiaoqing; Rockett, Angus A.; Bailey, Jeff; Zapalac, Geordie H.; Mackie, Neil; Poplavskyy, Dmitry; Bayman, Atiye
2016-09-01
Optimizing the buffer layer in manufactured thin-film PV is essential to maximize device efficiency. Here, we describe a combined synthesis, characterization, and theory effort to design optimal buffers based on the (Cd,Zn)(O,S) alloy system for CIGS devices. Optimization of buffer composition and absorber/buffer interface properties in light of several competing requirements for maximum device efficiency were performed, along with process variations to control the film and interface quality. The most relevant buffer properties controlling performance include band gap, conduction band offset with absorber, dopability, interface quality, and film crystallinity. Control of an all-PVD deposition process enabled variation of buffer composition, crystallinity, doping, and quality of the absorber/buffer interface. Analytical electron microscopy was used to characterize the film composition and morphology, while hybrid density functional theory was used to predict optimal compositions and growth parameters based on computed material properties. Process variations were developed to produce layers with controlled crystallinity, varying from amorphous to fully epitaxial, depending primarily on oxygen content. Elemental intermixing between buffer and absorber, particularly involving Cd and Cu, also is controlled and significantly affects device performance. Secondary phase formation at the interface is observed for some conditions and may be detrimental depending on the morphology. Theoretical calculations suggest optimal composition ranges for the buffer based on a suite of computed properties and drive process optimizations connected with observed film properties. Prepared by LLNL under Contract DE-AC52-07NA27344.
2007-05-01
RESULTS .............................................................................92 TABLE 17: RATINGS OF THE THERMAL COMFORT ON A 7 POINT SCALE...98. In addition to the body mapping of thermal discomfort, participants also rated thermal comfort acceptability for hot spots, ventilation and...overall comfort. Additionally each participant completed a thermal comfort Humansystems® Counter IED Page 91 questionnaire that examined ventilation
People and computers--some recent highlights.
Shackel, B
2000-12-01
This paper aims to review selectively a fair proportion of the literature on human-computer interaction (HCI) over the three years since Shackel (J. Am. Soc. Inform. Sci. 48 (11) (1997) 970-986). After a brief note of history I discuss traditional input, output and workplace aspects, the web and 'E-topics', web-related aspects, virtual reality, safety-critical systems, and the need to move from HCI to human-system integration (HSI). Finally I suggest, and consider briefly, some future possibilities and issues including web consequences, embedded ubiquitous computing, and 'back to systems ergonomics?'.
Moral and Ethical Decision Making in Canadian Forces Operations
2006-01-01
Adams, and Jessica A. Sartori Humansystems® Incorporated 111 Farquhar St., 2nd floor Guelph, ON N1H 3N4 Project Manager : Dr. Barbara D. Adams...facteurs (et les nombreux autres facteurs décrits dans le présent rapport) permettra de faire avancer les connaissances concernant la prise de décision...Dans l’ensemble, cette analyse laisse à penser que la prise de décision morale et éthique ne peut pas être considérée comme un moment précis dans le
CF Procedures and Practices Involving Information Aggregation
2007-03-01
courants de doctrine ont été étudiés : la planification opérationnelle, le renseignement interarmées, la gestion des risques , les opérations...Aggregation Humansystems® Incorporated Résume L’efficacité opérationnelle des Forces canadiennes (FC) est tributaire de leur capacité de prendre des ...décisions opportunes et éclairées. La connaissance de toutes les variables à tenir compte dans la décision peut améliorer la démarche décisionnelle, mais
Human-rating Automated and Robotic Systems - (How HAL Can Work Safely with Astronauts)
NASA Technical Reports Server (NTRS)
Baroff, Lynn; Dischinger, Charlie; Fitts, David
2009-01-01
Long duration human space missions, as planned in the Vision for Space Exploration, will not be possible without applying unprecedented levels of automation to support the human endeavors. The automated and robotic systems must carry the load of routine housekeeping for the new generation of explorers, as well as assist their exploration science and engineering work with new precision. Fortunately, the state of automated and robotic systems is sophisticated and sturdy enough to do this work - but the systems themselves have never been human-rated as all other NASA physical systems used in human space flight have. Our intent in this paper is to provide perspective on requirements and architecture for the interfaces and interactions between human beings and the astonishing array of automated systems; and the approach we believe necessary to create human-rated systems and implement them in the space program. We will explain our proposed standard structure for automation and robotic systems, and the process by which we will develop and implement that standard as an addition to NASA s Human Rating requirements. Our work here is based on real experience with both human system and robotic system designs; for surface operations as well as for in-flight monitoring and control; and on the necessities we have discovered for human-systems integration in NASA's Constellation program. We hope this will be an invitation to dialog and to consideration of a new issue facing new generations of explorers and their outfitters.
HFE Process Guidance and Standards for potential application to updating NRC guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques Hugo; J. J. Persensky
2012-07-01
The U.S. Nuclear Regulatory Commission (NRC) reviews and evaluates the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed tomore » the periodic update and improvement of these guidance documents to ensure that they remain state-of-the-art design evaluation tools. Thus, the NRC has initiated a project with BNL to update the NRC guidance to remain current with recent research on human performance, advances in HFE methods and tools, and new technology. INL supported Brookhaven National Lab (BNL) to update the detailed HFE review criteria contained in NUREG-0711 and NUREG-0700 based on (1) feedback obtained from end users, (2) the results of NRC research and development efforts supporting the NRC staff’s HFE safety reviews, and (3) other material the project staff identify as applicable to the update effort. INL submitted comments on development plans and sections of NUREGs 0800, 0711, and 0700. The contractor prepared the report attached here as the deliverable for this work.« less
The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and Parameter Estimation (UA/SA/PE API) tool development, here fore referred to as the Calibration, Optimization, and Sensitivity and Uncertainty Algorithms API (COSU-API), was initially d...
Design Optimization Toolkit: Users' Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro
The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended to solve complex design optimization problems. DOTk software package provides a range of solution methods that are suited for gradient/nongradient-based optimization, large scale constrained optimization, and topology optimization. DOTk was design to have a flexible user interface to allow easy access to DOTk solution methods from external engineering software packages. This inherent flexibility makes DOTk barely intrusive to other engineering software packages. As part of this inherent flexibility, DOTk software package provides an easy-to-use MATLAB interface that enables users to call DOTk solution methods directly from the MATLABmore » command window.« less
Interfacing Computer Aided Parallelization and Performance Analysis
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)
2003-01-01
When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.
Optimizing the Usability of Brain-Computer Interfaces.
Zhang, Yin; Chase, Steve M
2018-05-01
Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques Hugo; Ronald Boring; Lew Hanes
2013-09-01
The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operatormore » performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to serve as a template for other utilities’ projects for control room modernization.« less
Modeling and design optimization of adhesion between surfaces at the microscale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylves, Kevin T.
2008-08-01
This research applies design optimization techniques to structures in adhesive contact where the dominant adhesive mechanism is the van der Waals force. Interface finite elements are developed for domains discretized by beam elements, quadrilateral elements or triangular shell elements. Example analysis problems comparing finite element results to analytical solutions are presented. These examples are then optimized, where the objective is matching a force-displacement relationship and the optimization variables are the interface element energy of adhesion or the width of beam elements in the structure. Several parameter studies are conducted and discussed.
Architecting Systems for Human Space Flight
NASA Technical Reports Server (NTRS)
Wocken, Gerald
2002-01-01
Human-system interactions have been largely overlooked in the traditional systems engineering process. Awareness of human factors (HF) has increased in the past few years, but the involvement of HF specialists is still often too little and too late. In systems involving long-duration human space flight, it is essential that the human component be properly considered in the initial architectural definition phase, as well as throughout the system design process. HF analysis must include not only the strengths and limitations of humans in general, but the variability between individuals and within an individual over time, and the dynamics of group interactions.
Defining Medical Levels of Care for Exploration Missions
NASA Technical Reports Server (NTRS)
Hailey, M.; Reyes, D.; Urbina, M.; Rubin, D.; Antonsen, E.
2017-01-01
NASA medical care standards establish requirements for providing health and medical programs for crewmembers during all phases of a mission. These requirements are intended to prevent or mitigate negative health consequences of long-duration spaceflight, thereby optimizing crew health and performance over the course of the mission. Current standards are documented in the two volumes of the NASA-STD-3001 Space Flight Human-System Standard document, established by the Office of the Chief Health and Medical Officer. Its purpose is to provide uniform technical standards for the design, selection, and application of medical hardware, software, processes, procedures, practices, and methods for human-rated systems. NASA-STD-3001 Vol. 1 identifies five levels of care for human spaceflight. These levels of care are accompanied by several components that illustrate the type of medical care expected for each. The Exploration Medical Capability (ExMC) of the Human Research Program has expanded the context of these provided levels of care and components. This supplemental information includes definitions for each component of care and example actions that describe the type of capabilities that coincide with the definition. This interpretation is necessary in order to fully and systematically define the capabilities required for each level of care in order to define the medical requirements and plan for infrastructure needed for medical systems of future exploration missions, such as one to Mars.
Human Factors Guidelines for UAS in the National Airspace System
NASA Technical Reports Server (NTRS)
Hobbs, Alan; Shively, R. Jay
2013-01-01
The ground control stations (GCS) of some UAS have been characterized by less-than-adequate human-system interfaces. In some cases this may reflect a failure to apply an existing regulation or human factors standard. In other cases, the problem may indicate a lack of suitable guidance material. NASA is leading a community effort to develop recommendations for human factors guidelines for GCS to support routine beyond-line-of-sight UAS operations in the national airspace system (NAS). In contrast to regulations, guidelines are not mandatory requirements. However, by encapsulating solutions to identified problems or areas of risk, guidelines can provide assistance to system developers, users and regulatory agencies. To be effective, guidelines must be relevant to a wide range of systems, must not be overly prescriptive, and must not impose premature standardization on evolving technologies. By assuming that a pilot will be responsible for each UAS operating in the NAS, and that the aircraft will be required to operate in a manner comparable to conventionally piloted aircraft, it is possible to identify a generic set of pilot tasks and the information, control and communication requirements needed to support these tasks. Areas where guidelines will be useful can then be identified, utilizing information from simulations, operational experience and the human factors literature. In developing guidelines, we recognize that existing regulatory and guidance material will, at times, provide adequate coverage of an area. In other cases suitable guidelines may be found in existing military or industry human factors standards. In cases where appropriate existing standards cannot be identified, original guidelines will be proposed.
Optimizing energy functions for protein-protein interface design.
Sharabi, Oz; Yanover, Chen; Dekel, Ayelet; Shifman, Julia M
2011-01-15
Protein design methods have been originally developed for the design of monomeric proteins. When applied to the more challenging task of protein–protein complex design, these methods yield suboptimal results. In particular, they often fail to recapitulate favorable hydrogen bonds and electrostatic interactions across the interface. In this work, we aim to improve the energy function of the protein design program ORBIT to better account for binding interactions between proteins. By using the advanced machine learning framework of conditional random fields, we optimize the relative importance of all the terms in the energy function, attempting to reproduce the native side-chain conformations in protein–protein interfaces. We evaluate the performance of several optimized energy functions, each describes the van der Waals interactions using a different potential. In comparison with the original energy function, our best energy function (a) incorporates a much “softer” repulsive van der Waals potential, suitable for the discrete rotameric representation of amino acid side chains; (b) does not penalize burial of polar atoms, reflecting the frequent occurrence of polar buried residues in protein–protein interfaces; and (c) significantly up-weights the electrostatic term, attesting to the high importance of these interactions for protein–protein complex formation. Using this energy function considerably improves side chain placement accuracy for interface residues in a large test set of protein–protein complexes. Moreover, the optimized energy function recovers the native sequences of protein–protein interface at a higher rate than the default function and performs substantially better in predicting changes in free energy of binding due to mutations.
Encoder-Decoder Optimization for Brain-Computer Interfaces
Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam
2015-01-01
Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919
Encoder-decoder optimization for brain-computer interfaces.
Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam
2015-06-01
Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.
Human Centered Hardware Modeling and Collaboration
NASA Technical Reports Server (NTRS)
Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena
2013-01-01
In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.
2015-03-01
release; distribution is unlimited. NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the...endorsement or approval of the use thereof. Destroy this report when it is no longer needed. Do not return it to the originator. ARL‐TR...Approved for public release; distribution is unlimited. ii REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704‐0188 Public reporting burden for
Thakore, Vaibhav; Molnar, Peter; Hickman, James J.
2014-01-01
Extracellular neuroelectronic interfacing is an emerging field with important applications in the fields of neural prosthetics, biological computation and biosensors. Traditionally, neuron-electrode interfaces have been modeled as linear point or area contact equivalent circuits but it is now being increasingly realized that such models cannot explain the shapes and magnitudes of the observed extracellular signals. Here, results were compared and contrasted from an unprecedented optimization based study of the point contact models for an extracellular ‘on-cell’ neuron-patch electrode and a planar neuron-microelectrode interface. Concurrent electrophysiological recordings from a single neuron simultaneously interfaced to three distinct electrodes (intracellular, ‘on-cell’ patch and planar microelectrode) allowed novel insights into the mechanism of signal transduction at the neuron-electrode interface. After a systematic isolation of the nonlinear neuronal contribution to the extracellular signal, a consistent underestimation of the simulated supra-threshold extracellular signals compared to the experimentally recorded signals was observed. This conclusively demonstrated that the dynamics of the interfacial medium contribute nonlinearly to the process of signal transduction at the neuron-electrode interface. Further, an examination of the optimized model parameters for the experimental extracellular recordings from sub- and supra-threshold stimulations of the neuron-electrode junctions revealed that ionic transport at the ‘on-cell’ neuron-patch electrode is dominated by diffusion whereas at the neuron-microelectrode interface the electric double layer (EDL) effects dominate. Based on this study, the limitations of the equivalent circuit models in their failure to account for the nonlinear EDL and ionic electrodiffusion effects occurring during signal transduction at the neuron-electrode interfaces are discussed. PMID:22695342
Deng, Li; Wang, Guohua; Yu, Suihuai
2016-01-01
In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.
Deng, Li; Wang, Guohua; Yu, Suihuai
2016-01-01
In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745
Dakota Graphical User Interface v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman-Hill, Ernest; Glickman, Matthew; Gibson, Marcus
Graphical analysis environment for Sandia’s Dakota software for optimization and uncertainty quantification. The Dakota GUI is an interactive graphical analysis environment for creating, running, and interpreting Dakota optimization and uncertainty quantification studies. It includes problem (Dakota study) set-up, option specification, simulation interfacing, analysis execution, and results visualization. Through the use of wizards, templates, and views, Dakota GUI helps uses navigate Dakota’s complex capability landscape.
Thermal interface material characterization for cryogenic electronic packaging solutions
NASA Astrophysics Data System (ADS)
Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.
2017-12-01
As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.
NASA Astrophysics Data System (ADS)
Lai, Billy; Li, Qiang; Lau, Kei May
2018-02-01
InAs/GaSb nanoridge heterostructures were grown on V-grooved (0 0 1) Si by metal organic chemical vapor deposition. Combining the aspect ratio trapping process and a low temperature GaAs buffer, we demonstrated high quality GaSb nanoridge templates for InAs/GaSb heterostructure growth. Two different interfaces, a transitional GaAsSb and an InSb-like interface, were investigated when growing these heterostructures. A 500 °C growth temperature in conjunction with a GaAsSb interface was determined to produce the optimal interface, properly compensating for the tensile strain accumulated when growing InAs on GaSb. Without the need for a complicated switching sequence, this GaAsSb-like interface utilized at the optimized temperature is the initial step towards InAs/GaSb type II superlattice and other device structures integrated onto Si.
Optimization of a Thermodynamic Model Using a Dakota Toolbox Interface
NASA Astrophysics Data System (ADS)
Cyrus, J.; Jafarov, E. E.; Schaefer, K. M.; Wang, K.; Clow, G. D.; Piper, M.; Overeem, I.
2016-12-01
Scientific modeling of the Earth physical processes is an important driver of modern science. The behavior of these scientific models is governed by a set of input parameters. It is crucial to choose accurate input parameters that will also preserve the corresponding physics being simulated in the model. In order to effectively simulate real world processes the models output data must be close to the observed measurements. To achieve this optimal simulation, input parameters are tuned until we have minimized the objective function, which is the error between the simulation model outputs and the observed measurements. We developed an auxiliary package, which serves as a python interface between the user and DAKOTA. The package makes it easy for the user to conduct parameter space explorations, parameter optimizations, as well as sensitivity analysis while tracking and storing results in a database. The ability to perform these analyses via a Python library also allows the users to combine analysis techniques, for example finding an approximate equilibrium with optimization then immediately explore the space around it. We used the interface to calibrate input parameters for the heat flow model, which is commonly used in permafrost science. We performed optimization on the first three layers of the permafrost model, each with two thermal conductivity coefficients input parameters. Results of parameter space explorations indicate that the objective function not always has a unique minimal value. We found that gradient-based optimization works the best for the objective functions with one minimum. Otherwise, we employ more advanced Dakota methods such as genetic optimization and mesh based convergence in order to find the optimal input parameters. We were able to recover 6 initially unknown thermal conductivity parameters within 2% accuracy of their known values. Our initial tests indicate that the developed interface for the Dakota toolbox could be used to perform analysis and optimization on a `black box' scientific model more efficiently than using just Dakota.
Translator for Optimizing Fluid-Handling Components
NASA Technical Reports Server (NTRS)
Landon, Mark; Perry, Ernest
2007-01-01
A software interface has been devised to facilitate optimization of the shapes of valves, elbows, fittings, and other components used to handle fluids under extreme conditions. This software interface translates data files generated by PLOT3D (a NASA grid-based plotting-and- data-display program) and by computational fluid dynamics (CFD) software into a format in which the files can be read by Sculptor, which is a shape-deformation- and-optimization program. Sculptor enables the user to interactively, smoothly, and arbitrarily deform the surfaces and volumes in two- and three-dimensional CFD models. Sculptor also includes design-optimization algorithms that can be used in conjunction with the arbitrary-shape-deformation components to perform automatic shape optimization. In the optimization process, the output of the CFD software is used as feedback while the optimizer strives to satisfy design criteria that could include, for example, improved values of pressure loss, velocity, flow quality, mass flow, etc.
A numerical study on optimising the cryosurgical process for effective tumour necrosis
NASA Astrophysics Data System (ADS)
Ramajayam, K. K.; Kumar, A.; Sarangi, S. K.; Thirugnanam, A.
2017-05-01
This study presents the concept of improving the efficacy of cryosurgery using a low thermal conductivity liquid around the interface of a tumour. In the same context, perfluorohexane, a low thermal conductivity liquid has been used for the insulation of tumour. In the presence of a perfluorohexane layer, results demonstrate that the lethal front and the freezing front do not cross the tumour boundary. The results of numerical modelling indicate that there is an optimal thickness of the perfluorohexane layer which enables a perfect insulation to the tumour. Further, the contour plot presents that the optimal thickness of the perfluorohexane layer is 1 mm. The results also suggest that the lethal front reaches the tumour boundary at 100 s when perfluorohexane is used as an insulation at the tumour boundary. It is seen that a change in the thermal conductivity of the insulation at the tumour interface affects the lethal front propagation drastically. Among perfluorohexane, octafluoropropane and water, this study reveals perfluorohexane as the best substitute for the formation of the insulating layer at the tumour interface. The lower thermal conductivity of perfluorohexane provides a good barrier to the healthy tissue surrounding the tumour (as seen from the comparison of gap, i.e. the distance between the lethal front and the tumour interface). Furthermore, the calculation of gap indicates the most optimal configuration for cooling the tumour (termed as the optimal offset). In conclusion, the results presented in the study help in optimising the layer thickness at the tumour interface, the identification of an appropriate substance for making the layer and the use of gap to evaluate the most optimal configuration for freezing the tumours effectively.
Exploring the potential of 3D Zernike descriptors and SVM for protein-protein interface prediction.
Daberdaku, Sebastian; Ferrari, Carlo
2018-02-06
The correct determination of protein-protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein-Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction task, and that optimality strongly depends on the class of proteins whose interface we want to characterise. We postulate that different protein classes should be treated separately and that it is necessary to identify an optimal set of features for each protein class.
Power optimization of ultrasonic friction-modulation tactile interfaces.
Wiertlewski, Michael; Colgate, J Edward
2015-01-01
Ultrasonic friction-modulation devices provide rich tactile sensation on flat surfaces and have the potential to restore tangibility to touchscreens. To date, their adoption into consumer electronics has been in part limited by relatively high power consumption, incompatible with the requirements of battery-powered devices. This paper introduces a method that optimizes the energy efficiency and performance of this class of devices. It considers optimal energy transfer to the impedance provided by the finger interacting with the surface. Constitutive equations are determined from the mode shape of the interface and the piezoelectric coupling of the actuator. The optimization procedure employs a lumped parameter model to simplify the treatment of the problem. Examples and an experimental study show the evolution of the optimal design as a function of the impedance of the finger.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.
1996-01-01
A user's guide for the computer program OPTCOMP2 is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in unidirectional metal matrix composites subjected to combined thermomechanical axisymmetric loading by altering the processing history, as well as through the microstructural design of interfacial fiber coatings. The user specifies the initial architecture of the composite and the load history, with the constituent materials being elastic, plastic, viscoplastic, or as defined by the 'user-defined' constitutive model, in addition to the objective function and constraints, through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the inelastic response of a fiber/interface layer(s)/matrix concentric cylinder model where the interface layers can be either homogeneous or heterogeneous. The response of heterogeneous layers is modeled using Aboudi's three-dimensional method of cells micromechanics model. The commercial optimization package DOT is used for the nonlinear optimization problem. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.
Wang, Zhiliang; Zong, Xu; Gao, Yuying; Han, Jingfeng; Xu, Zhiqiang; Li, Zheng; Ding, Chunmei; Wang, Shengyang; Li, Can
2017-09-13
Photoelectrochemical water splitting provides an attractive way to store solar energy in molecular hydrogen as a kind of sustainable fuel. To achieve high solar conversion efficiency, the most stringent criteria are effective charge separation and injection in electrodes. Herein, efficient photoelectrochemical water oxidation is realized by optimizing charge separation and surface charge transfer of GaN:ZnO photoanode. The charge separation can be greatly improved through modified moisture-assisted nitridation and HCl acid treatment, by which the interfaces in GaN:ZnO solid solution particles are optimized and recombination centers existing at the interfaces are depressed in GaN:ZnO photoanode. Moreover, a multimetal phosphide of NiCoFeP was employed as water oxidation cocatalyst to improve the charge injection at the photoanode/electrolyte interface. Consequently, it significantly decreases the overpotential and brings the photocurrent to a benchmark of 3.9 mA cm -2 at 1.23 V vs RHE and a solar conversion efficiency over 1% was obtained.
Fast Numerical Methods for the Design of Layered Photonic Structures with Rough Interfaces
NASA Technical Reports Server (NTRS)
Komarevskiy, Nikolay; Braginsky, Leonid; Shklover, Valery; Hafner, Christian; Lawson, John
2011-01-01
Modified boundary conditions (MBC) and a multilayer approach (MA) are proposed as fast and efficient numerical methods for the design of 1D photonic structures with rough interfaces. These methods are applicable for the structures, composed of materials with arbitrary permittivity tensor. MBC and MA are numerically validated on different types of interface roughness and permittivities of the constituent materials. The proposed methods can be combined with the 4x4 scattering matrix method as a field solver and an evolutionary strategy as an optimizer. The resulted optimization procedure is fast, accurate, numerically stable and can be used to design structures for various applications.
NREL, Mercedes-Benz Optimizing Refueling Experience for Fuel Cell Electric
optimize the customer refueling experience for fuel cell electric vehicles. Photo of a Mercedes-Benz B fueling protocols, with an eye toward optimizing the refueling station's customer interface, making the
Materials and optimized designs for human-machine interfaces via epidermal electronics.
Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A
2013-12-17
Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Li; Su, Pengyu; Yao, Huizhen; Wang, Jun; Fu, Wuyou; Liu, Xizhe; Yang, Haibin
2018-06-01
Doping, interface optimization and recrystallization are effective approaches for fabricating high performance perovskite solar cells (PSCs). In our work, simple CsBr treatment is introduced to improve the performance of TiO2 nanorods-based PSCs. Both Cs+ and Br- are doped into CH3NH3PbI3 simultaneously, as well as optimizes the interface between perovskite and hole-transporting material (HTM). In addition, the perovskite grains are recrystallized through this method. Finally, a power conversion efficiency (PCE) of 16.02% with 0.72 in fill factor (FF) and 1.08 in open circuit voltage (VOC) is obtained through CsBr treatment, which is 19.91% higher than that of untreated devices (13.36% with 0.65 in FF and 1.02 in VOC). Furthermore, the power output maintains ∼14% after 3500 h under the humidity within 15% at room temperature.
DTS: Building custom, intelligent schedulers
NASA Technical Reports Server (NTRS)
Hansson, Othar; Mayer, Andrew
1994-01-01
DTS is a decision-theoretic scheduler, built on top of a flexible toolkit -- this paper focuses on how the toolkit might be reused in future NASA mission schedulers. The toolkit includes a user-customizable scheduling interface, and a 'Just-For-You' optimization engine. The customizable interface is built on two metaphors: objects and dynamic graphs. Objects help to structure problem specifications and related data, while dynamic graphs simplify the specification of graphical schedule editors (such as Gantt charts). The interface can be used with any 'back-end' scheduler, through dynamically-loaded code, interprocess communication, or a shared database. The 'Just-For-You' optimization engine includes user-specific utility functions, automatically compiled heuristic evaluations, and a postprocessing facility for enforcing scheduling policies. The optimization engine is based on BPS, the Bayesian Problem-Solver (1,2), which introduced a similar approach to solving single-agent and adversarial graph search problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xinfeng; Prior, Phil; Chen, Guang-Pei
Purpose: The integration of MRI with a linear accelerator (MR-linac) offers great potential for high-precision delivery of radiation therapy (RT). However, the electron deflection resulting from the presence of a transverse magnetic field (TMF) can affect the dose distribution, particularly the electron return effect (ERE) at tissue interfaces. The purpose of the study is to investigate the dose effects of ERE at air-tissue and lung-tissue interfaces during intensity-modulated radiation therapy (IMRT) planning. Methods: IMRT and volumetric modulated arc therapy (VMAT) plans for representative pancreas, lung, breast, and head and neck (HN) cases were generated following commonly used clinical dose volumemore » (DV) criteria. In each case, three types of plans were generated: (1) the original plan generated without a TMF; (2) the reconstructed plan generated by recalculating the original plan with the presence of a TMF of 1.5 T (no optimization); and (3) the optimized plan generated by a full optimization with TMF = 1.5 T. These plans were compared using a variety of DV parameters, including V{sub 100%}, D{sub 95%}, DHI [dose heterogeneity index: (D{sub 20%}–D{sub 80%})/D{sub prescription}], D{sub max}, and D{sub 1cc} in OARs (organs at risk) and tissue interface. All the optimizations and calculations in this work were performed on static data. Results: The dose recalculation under TMF showed the presence of the 1.5 T TMF can slightly reduce V{sub 100%} and D{sub 95%} for PTV, with the differences being less than 4% for all but one lung case studied. The TMF results in considerable increases in D{sub max} and D{sub 1cc} on the skin in all cases, mostly between 10% and 35%. The changes in D{sub max} and D{sub 1cc} on air cavity walls are dependent upon site, geometry, and size, with changes ranging up to 15%. The VMAT plans lead to much smaller dose effects from ERE compared to fixed-beam IMRT in pancreas case. When the TMF is considered in the plan optimization, the dose effects of the TMF at tissue interfaces (e.g., air-cavity wall, lung-tissue interfaces, skin) are significantly reduced in most cases. Conclusions: The doses on tissue interfaces can be significantly changed by the presence of a TMF during MR-guided RT when the magnetic field is not included in plan optimization. These changes can be substantially reduced or even eliminated during VMAT/IMRT optimization that specifically considers the TMF, without deteriorating overall plan quality.« less
Habitability and Human Factors Contributions to Human Space Flight
NASA Technical Reports Server (NTRS)
Sumaya, Jennifer Boyer
2011-01-01
This slide presentation reviews the work of the Habitability and Human Factors Branch in support of human space flight in two main areas: Applied support to major space programs, and Space research. The field of Human Factors applies knowledge of human characteristics for the design of safer, more effective, and more efficient systems. This work is in several areas of the human space program: (1) Human-System Integration (HSI), (2) Orion Crew Exploration Vehicle, (3) Extravehicular Activity (EVA), (4) Lunar Surface Systems, (5) International Space Station (ISS), and (6) Human Research Program (HRP). After detailing the work done in these areas, the facilities that are available for human factors work are shown.
Commercial Crew Vehicle Ascent Abort Simulation and Analysis
NASA Technical Reports Server (NTRS)
Gnam, Christopher
2017-01-01
SpaceX and Boeing have been selected to develop and operate crew vehicles to transport astronauts to and from the International Space Station. Their design work is to be analyzed to ensure that they are meeting all of the safety and operational requirements put forth by NASA. Throughout my time here, I worked familiarized myself with the SpaceX Dragon Abort system, as well as the NASA Human-Systems Integration Requirements (HSIR). This included understanding the different abort scenarios, and how each one could potentially impact the astronaut crew. In addition, I familiarized myself with the simulation developed my NASA to test and analyze the Guidance Navigation and Control (GN&C) systems developed by SpaceX and Boeing.
A hybrid nonlinear programming method for design optimization
NASA Technical Reports Server (NTRS)
Rajan, S. D.
1986-01-01
Solutions to engineering design problems formulated as nonlinear programming (NLP) problems usually require the use of more than one optimization technique. Moreover, the interaction between the user (analysis/synthesis) program and the NLP system can lead to interface, scaling, or convergence problems. An NLP solution system is presented that seeks to solve these problems by providing a programming system to ease the user-system interface. A simple set of rules is used to select an optimization technique or to switch from one technique to another in an attempt to detect, diagnose, and solve some potential problems. Numerical examples involving finite element based optimal design of space trusses and rotor bearing systems are used to illustrate the applicability of the proposed methodology.
Human factors evaluation of teletherapy: Function and task analysis. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaye, R.D.; Henriksen, K.; Jones, R.
1995-07-01
As a treatment methodology, teletherapy selectively destroys cancerous and other tissue by exposure to an external beam of ionizing radiation. Sources of radiation are either a radioactive isotope, typically Cobalt-60 (Co-60), or a linear accelerator. Records maintained by the NRC have identified instances of teletherapy misadministration where the delivered radiation dose has differed from the radiation prescription (e.g., instances where fractions were delivered to the wrong patient, to the wrong body part, or were too great or too little with respect to the defined treatment volume). Both human error and machine malfunction have led to misadministrations. Effective and safe treatmentmore » requires a concern for precision and consistency of human-human and human-machine interactions throughout the course of therapy. The present study is the first part of a series of human factors evaluations for identifying the root causes that lead to human error in the teletherapy environment. The human factors evaluations included: (1) a function and task analysis of teletherapy activities, (2) an evaluation of the human-system interfaces, (3) an evaluation of procedures used by teletherapy staff, (4) an evaluation of the training and qualifications of treatment staff (excluding the oncologists), (5) an evaluation of organizational practices and policies, and (6) an identification of problems and alternative approaches for NRC and industry attention. The present report addresses the function and task analysis of teletherapy activities and provides the foundation for the conduct of the subsequent evaluations. The report includes sections on background, methodology, a description of the function and task analysis, and use of the task analysis findings for the subsequent tasks. The function and task analysis data base also is included.« less
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Hamilton, D.; Jones, J. A.; Alexander, D.
2008-01-01
Currently there are several physiological monitoring requirements for Extravehicular Activity (EVA) in the Human-Systems Interface Requirements (HSIR) document, including continuous heart rhythm monitoring. However, it is not known whether heart rhythm monitoring in the lunar surface space suit is a necessary capability for lunar surface operations or in launch/landing suit the event of a cabin depressurization enroute to or from the moon. Methods: Current US astronaut corps demographic information was provided to an expert panel of cardiovascular medicine experts, including specialists in electrophysiology, exercise physiology, interventional cardiology and arrhythmia. This information included averages for male/female age, body mass index (BMI), blood pressure, cholesterol, inflammatory markers, echocardiogram, ranges for coronary artery calcium (CAC) scores for long duration astronauts, and ranges for heart rate (HR) and metabolic (MET) rates obtained during microgravity and lunar EVA. Results: The panel determined that no uncontrolled hazard was likely to occur in the suit during lunar surface or contingency microgravity ops that would require ECG monitoring in the highly screened US astronaut population. However having the capability for rhythm monitoring inside the vehicle (IVA) was considered critical to manage an astronaut in distress. Discussion: Heart rate (HR) monitoring alone allows effective monitoring of astronaut health and function. Consequently, electrocardiographic (ECG) monitoring capability as a clinical tool is not essential in the lunar or launch/landing space suit. However, the panel considered that rhythm monitoring could be useful in certain clinical situations, it was not considered required for safe operations. Also, lunar vehicles should be required to have ECG monitoring capability with a minimum of 5-lead ECG (derived 12- lead) for IVA medical assessments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Hara, J.M.; W. Gunther, G. Martinez-Guridi
New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines,more » empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugo, Jacques
The software application is called "HFE-Trace". This is an integrated method and tool for the management of Human Factors Engineering analyses and related data. Its primary purpose is to support the coherent and consistent application of the nuclear industry's best practices for human factors engineering work. The software is a custom Microsoft® Access® application. The application is used (in conjunction with other tools such as spreadsheets, checklists and normal documents where necessary) to collect data on the design of a new nuclear power plant from subject matter experts and other sources. This information is then used to identify potential systemmore » and functional breakdowns of the intended power plant design. This information is expanded by developing extensive descriptions of all functions, as well as system performance parameters, operating limits and constraints, and operational conditions. Once these have been verified, the human factors elements are added to each function, including intended operator role, function allocation considerations, prohibited actions, primary task categories, and primary work station. In addition, the application includes a computational method to assess a number of factors such as system and process complexity, workload, environmental conditions, procedures, regulations, etc.) that may shape operator performance. This is a unique methodology based upon principles described in NUREG/CR-3331 ("A methodology for allocating nuclear power plant control functions to human or automatic control") and it results in a semi-quantified allocation of functions to three or more levels of automation for a conceptual automation system. The aggregate of all this information is then linked to the Task Analysis section of the application where the existing information on all operator functions is transformed into task information and ultimately into design requirements for Human-System Interfaces and Control Rooms. This final step includes assessment of methods to prevent potential operator errors.« less
NASA Technical Reports Server (NTRS)
Baron, S.; Levison, W. H.
1977-01-01
Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.
Simulation of the human-telerobot interface on the Space Station
NASA Technical Reports Server (NTRS)
Stuart, Mark A.; Smith, Randy L.
1993-01-01
Many issues remain unresolved concerning the components of the human-telerobot interface presented in this work. It is critical that these components be optimally designed and arranged to ensure, not only that the overall system's goals are met, but but that the intended end-user has been optimally accommodated. With sufficient testing and evaluation throughout the development cycle, the selection of the components to use in the final telerobotic system can promote efficient, error-free performance. It is recommended that whole-system simulation with full-scale mockups be used to help design the human-telerobot interface. It is contended that the use of simulation can facilitate this design and evaluation process.
Interface Design Optimization by an Improved Operating Model for College Students
ERIC Educational Resources Information Center
Ko, Ya-Chuan; Lo, Chi-Hung; Hsiao, Shih-Wen
2017-01-01
A method was proposed in this study for assessing the interface operating efficiency of a remote control. The operating efficiency of a product interface can be determined by the proposed approach in which the related dimensions of human palms were measured. The reachable range (blue zone) and the most comfortable range (green zone) were…
Multidisciplinary design optimization - An emerging new engineering discipline
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1993-01-01
A definition of the multidisciplinary design optimization (MDO) is introduced, and functionality and relationship of the MDO conceptual components are examined. The latter include design-oriented analysis, approximation concepts, mathematical system modeling, design space search, an optimization procedure, and a humane interface.
Optimizing real-time Web-based user interfaces for observatories
NASA Astrophysics Data System (ADS)
Gibson, J. Duane; Pickering, Timothy E.; Porter, Dallan; Schaller, Skip
2008-08-01
In using common HTML/Ajax approaches for web-based data presentation and telescope control user interfaces at the MMT Observatory (MMTO), we rapidly were confronted with web browser performance issues. Much of the operational data at the MMTO is highly dynamic and is constantly changing during normal operations. Status of telescope subsystems must be displayed with minimal latency to telescope operators and other users. A major motivation of migrating toward web-based applications at the MMTO is to provide easy access to current and past observatory subsystem data for a wide variety of users on their favorite operating system through a familiar interface, their web browser. Performance issues, especially for user interfaces that control telescope subsystems, led to investigations of more efficient use of HTML/Ajax and web server technologies as well as other web-based technologies, such as Java and Flash/Flex. The results presented here focus on techniques for optimizing HTML/Ajax web applications with near real-time data display. This study indicates that direct modification of the contents or "nodeValue" attribute of text nodes is the most efficient method of updating data values displayed on a web page. Other optimization techniques are discussed for web-based applications that display highly dynamic data.
Tack coat optimization for HMA overlays laboratory testing.
DOT National Transportation Integrated Search
2008-09-01
Interface bonding between hot-mix asphalt (HMA) overlays and Portland cement concrete (PCC) pavements can be one of the most : significant factors affecting overlay service life. Various factors may affect the bonding condition at the interface, incl...
Further Development, Support and Enhancement of CONDUIT
NASA Technical Reports Server (NTRS)
Veronica, Moldoveanu; Levine, William S.
1999-01-01
From the first airplanes steered by handles, wheels, and pedals to today's advanced aircraft, there has been a century of revolutionary inventions, all of them contributing to flight quality. The stability and controllability of aircraft as they appear to a pilot are called flying or handling qualities. Many years after the first airplanes flew, flying qualities were identified and ranked from desirable to unsatisfactory. Later on engineers developed design methods to satisfy these practical criteria. CONDUIT, which stands for Control Designer's Unified Interface, is a modern software package that provides a methodology for optimization of flight control systems in order to improve the flying qualities. CONDUIT is dependent on an the optimization engine called CONSOL-OPTCAD (C-O). C-O performs multicriterion parametric optimization. C-O was successfully tested on a variety of control problems. The optimization-based computational system, C-O, requires a particular control system description as a MATLAB file and possesses the ability to modify the vector of design parameters in an attempt to satisfy performance objectives and constraints specified by the designer, in a C-type file. After the first optimization attempts on the UH-60A control system, an early interface system, named GIFCORCODE (Graphical Interface for CONSOL-OPTCAD for Rotorcraft Controller Design) was created.
Real Time Optimal Control of Supercapacitor Operation for Frequency Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yusheng; Panwar, Mayank; Mohanpurkar, Manish
2016-07-01
Supercapacitors are gaining wider applications in power systems due to fast dynamic response. Utilizing supercapacitors by means of power electronics interfaces for power compensation is a proven effective technique. For applications such as requency restoration if the cost of supercapacitors maintenance as well as the energy loss on the power electronics interfaces are addressed. It is infeasible to use traditional optimization control methods to mitigate the impacts of frequent cycling. This paper proposes a Front End Controller (FEC) using Generalized Predictive Control featuring real time receding optimization. The optimization constraints are based on cost and thermal management to enhance tomore » the utilization efficiency of supercapacitors. A rigorous mathematical derivation is conducted and test results acquired from Digital Real Time Simulator are provided to demonstrate effectiveness.« less
Optimizing the NASA Technical Report Server
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Maa, Ming-Hokng
1996-01-01
The NASA Technical Report Server (NTRS), a World Wide Web report distribution NASA technical publications service, is modified for performance enhancement, greater protocol support, and human interface optimization. Results include: Parallel database queries, significantly decreasing user access times by an average factor of 2.3; access from clients behind firewalls and/ or proxies which truncate excessively long Uniform Resource Locators (URLs); access to non-Wide Area Information Server (WAIS) databases and compatibility with the 239-50.3 protocol; and a streamlined user interface.
Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.
Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G
2016-08-01
Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.
Component-based integration of chemistry and optimization software.
Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L
2004-11-15
Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.
How to Develop a User Interface That Your Real Users Will Love
ERIC Educational Resources Information Center
Phillips, Donald
2012-01-01
A "user interface" is the part of an interactive system that bridges the user and the underlying functionality of the system. But people sometimes forget that the best interfaces will provide a platform to optimize the users' interactions so that they support and extend the users' activities in effective, useful, and usable ways. To look at it…
ERIC Educational Resources Information Center
McMillin, Bill; Gibson, Sally; MacDonald, Jean
2016-01-01
Animated maps of the library stacks were integrated into the catalog interface at Pratt Institute and into the EBSCO Discovery Service interface at Illinois State University. The mapping feature was developed for optimal automation of the update process to enable a range of library personnel to update maps and call-number ranges. The development…
M-Adapting Low Order Mimetic Finite Differences for Dielectric Interface Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGregor, Duncan A.; Gyrya, Vitaliy; Manzini, Gianmarco
2016-03-07
We consider a problem of reducing numerical dispersion for electromagnetic wave in the domain with two materials separated by a at interface in 2D with a factor of two di erence in wave speed. The computational mesh in the homogeneous parts of the domain away from the interface consists of square elements. Here the method construction is based on m-adaptation construction in homogeneous domain that leads to fourth-order numerical dispersion (vs. second order in non-optimized method). The size of the elements in two domains also di ers by a factor of two, so as to preserve the same value ofmore » Courant number in each. Near the interface where two meshes merge the mesh with larger elements consists of degenerate pentagons. We demonstrate that prior to m-adaptation the accuracy of the method falls from second to rst due to breaking of symmetry in the mesh. Next we develop m-adaptation framework for the interface region and devise an optimization criteria. We prove that for the interface problem m-adaptation cannot produce increase in method accuracy. This is in contrast to homogeneous medium where m-adaptation can increase accuracy by two orders.« less
Zhang, Yufeng; Lin, Nanying; Li, Yaping; Wang, Xiaodan; Wang, Huiqiong; Kang, Junyong; Wilks, Regan; Bär, Marcus; Mu, Rui
2016-03-15
ZnO/SiC heterojunctions show great potential for various optoelectronic applications (e.g., ultraviolet light emitting diodes, photodetectors, and solar cells). However, the lack of a detailed understanding of the ZnO/SiC interface prevents an efficient and rapid optimization of these devices. Here, intrinsic (but inherently n-type) ZnO were deposited via molecular beam epitaxy on n-type 6H-SiC single crystalline substrates. The chemical and electronic structure of the ZnO/SiC interfaces were characterized by ultraviolet/x-ray photoelectron spectroscopy and x-ray excited Auger electron spectroscopy. In contrast to the ZnO/SiC interface prepared by radio frequency magnetron sputtering, no willemite-like zinc silicate interface species is present at the MBE-ZnO/SiC interface. Furthermore, the valence band offset at the abrupt ZnO/SiC interface is experimentally determined to be (1.2 ± 0.3) eV, suggesting a conduction band offset of approximately 0.8 eV, thus explaining the reported excellent rectifying characteristics of isotype ZnO/SiC heterojunctions. These insights lead to a better comprehension of the ZnO/SiC interface and show that the choice of deposition route might offer a powerful means to tailor the chemical and electronic structures of the ZnO/SiC interface, which can eventually be utilized to optimize related devices.
Zhang, Yufeng; Lin, Nanying; Li, Yaping; Wang, Xiaodan; Wang, Huiqiong; Kang, Junyong; Wilks, Regan; Bär, Marcus; Mu, Rui
2016-01-01
ZnO/SiC heterojunctions show great potential for various optoelectronic applications (e.g., ultraviolet light emitting diodes, photodetectors, and solar cells). However, the lack of a detailed understanding of the ZnO/SiC interface prevents an efficient and rapid optimization of these devices. Here, intrinsic (but inherently n-type) ZnO were deposited via molecular beam epitaxy on n–type 6H-SiC single crystalline substrates. The chemical and electronic structure of the ZnO/SiC interfaces were characterized by ultraviolet/x-ray photoelectron spectroscopy and x-ray excited Auger electron spectroscopy. In contrast to the ZnO/SiC interface prepared by radio frequency magnetron sputtering, no willemite-like zinc silicate interface species is present at the MBE-ZnO/SiC interface. Furthermore, the valence band offset at the abrupt ZnO/SiC interface is experimentally determined to be (1.2 ± 0.3) eV, suggesting a conduction band offset of approximately 0.8 eV, thus explaining the reported excellent rectifying characteristics of isotype ZnO/SiC heterojunctions. These insights lead to a better comprehension of the ZnO/SiC interface and show that the choice of deposition route might offer a powerful means to tailor the chemical and electronic structures of the ZnO/SiC interface, which can eventually be utilized to optimize related devices. PMID:26976240
Remote Control and Monitoring of VLBI Experiments by Smartphones
NASA Astrophysics Data System (ADS)
Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.
2012-12-01
For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.
Multifunctional microcontrollable interface module
NASA Astrophysics Data System (ADS)
Spitzer, Mark B.; Zavracky, Paul M.; Rensing, Noa M.; Crawford, J.; Hockman, Angela H.; Aquilino, P. D.; Girolamo, Henry J.
2001-08-01
This paper reports the development of a complete eyeglass- mounted computer interface system including display, camera and audio subsystems. The display system provides an SVGA image with a 20 degree horizontal field of view. The camera system has been optimized for face recognition and provides a 19 degree horizontal field of view. A microphone and built-in pre-amp optimized for voice recognition and a speaker on an articulated arm are included for audio. An important feature of the system is a high degree of adjustability and reconfigurability. The system has been developed for testing by the Military Police, in a complete system comprising the eyeglass-mounted interface, a wearable computer, and an RF link. Details of the design, construction, and performance of the eyeglass-based system are discussed.
Method for determining optimal supercell representation of interfaces
NASA Astrophysics Data System (ADS)
Stradi, Daniele; Jelver, Line; Smidstrup, Søren; Stokbro, Kurt
2017-05-01
The geometry and structure of an interface ultimately determines the behavior of devices at the nanoscale. We present a generic method to determine the possible lattice matches between two arbitrary surfaces and to calculate the strain of the corresponding matched interface. We apply this method to explore two relevant classes of interfaces for which accurate structural measurements of the interface are available: (i) the interface between pentacene crystals and the (1 1 1) surface of gold, and (ii) the interface between the semiconductor indium-arsenide and aluminum. For both systems, we demonstrate that the presented method predicts interface geometries in good agreement with those measured experimentally, which present nontrivial matching characteristics and would be difficult to guess without relying on automated structure-searching methods.
Classifying EEG for Brain-Computer Interface: Learning Optimal Filters for Dynamical System Features
Song, Le; Epps, Julien
2007-01-01
Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer interfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit synchronization features from the dynamical system for classification. Herein, we also propose a new framework for learning optimal filters automatically from the data, by employing a Fisher ratio criterion. Experimental evaluations comparing the proposed dynamical system features with the CSP and the AR features reveal their competitive performance during classification. Results also show the benefits of employing the spatial and the temporal filters optimized using the proposed learning approach. PMID:18364986
Interface design for CMOS-integrated Electrochemical Impedance Spectroscopy (EIS) biosensors.
Manickam, Arun; Johnson, Christopher Andrew; Kavusi, Sam; Hassibi, Arjang
2012-10-29
Electrochemical Impedance Spectroscopy (EIS) is a powerful electrochemical technique to detect biomolecules. EIS has the potential of carrying out label-free and real-time detection, and in addition, can be easily implemented using electronic integrated circuits (ICs) that are built through standard semiconductor fabrication processes. This paper focuses on the various design and optimization aspects of EIS ICs, particularly the bio-to-semiconductor interface design. We discuss, in detail, considerations such as the choice of the electrode surface in view of IC manufacturing, surface linkers, and development of optimal bio-molecular detection protocols. We also report experimental results, using both macro- and micro-electrodes to demonstrate the design trade-offs and ultimately validate our optimization procedures.
NASA Astrophysics Data System (ADS)
Huo, Jin-Rong; Li, Lu; Cheng, Hai-Xia; Wang, Xiao-Xu; Zhang, Guo-Hua; Qian, Ping
2018-03-01
The interface structure, electronic and optical properties of Au-ZnO are studied using the first-principles calculation based on density functional theory (DFT). Given the interfacial distance, bonding configurations and terminated surface, we built the optimal interface structure and calculated the electronic and optical properties of the interface. The total density of states, partial electronic density of states, electric charge density and atomic populations (Mulliken) are also displayed. The results show that the electrons converge at O atoms at the interface, leading to a stronger binding of interfaces and thereby affecting the optical properties of interface structures. In addition, we present the binding energies of different interface structures. When the interface structure of Au-ZnO gets changed, furthermore, varying optical properties are exhibited.
Interfacial Micromechanics in Fibrous Composites: Design, Evaluation, and Models
Lei, Zhenkun; Li, Xuan; Qin, Fuyong; Qiu, Wei
2014-01-01
Recent advances of interfacial micromechanics in fiber reinforced composites using micro-Raman spectroscopy are given. The faced mechanical problems for interface design in fibrous composites are elaborated from three optimization ways: material, interface, and computation. Some reasons are depicted that the interfacial evaluation methods are difficult to guarantee the integrity, repeatability, and consistency. Micro-Raman study on the fiber interface failure behavior and the main interface mechanical problems in fibrous composites are summarized, including interfacial stress transfer, strength criterion of interface debonding and failure, fiber bridging, frictional slip, slip transition, and friction reloading. The theoretical models of above interface mechanical problems are given. PMID:24977189
Protein docking by the interface structure similarity: how much structure is needed?
Sinha, Rohita; Kundrotas, Petras J; Vakser, Ilya A
2012-01-01
The increasing availability of co-crystallized protein-protein complexes provides an opportunity to use template-based modeling for protein-protein docking. Structure alignment techniques are useful in detection of remote target-template similarities. The size of the structure involved in the alignment is important for the success in modeling. This paper describes a systematic large-scale study to find the optimal definition/size of the interfaces for the structure alignment-based docking applications. The results showed that structural areas corresponding to the cutoff values <12 Å across the interface inadequately represent structural details of the interfaces. With the increase of the cutoff beyond 12 Å, the success rate for the benchmark set of 99 protein complexes, did not increase significantly for higher accuracy models, and decreased for lower-accuracy models. The 12 Å cutoff was optimal in our interface alignment-based docking, and a likely best choice for the large-scale (e.g., on the scale of the entire genome) applications to protein interaction networks. The results provide guidelines for the docking approaches, including high-throughput applications to modeled structures.
Reconstruction of phonon relaxation times from systems featuring interfaces with unknown properties
NASA Astrophysics Data System (ADS)
Forghani, Mojtaba; Hadjiconstantinou, Nicolas G.
2018-05-01
We present a method for reconstructing the phonon relaxation-time function τω=τ (ω ) (including polarization) and associated phonon free-path distribution from thermal spectroscopy data for systems featuring interfaces with unknown properties. Our method does not rely on the effective thermal-conductivity approximation or a particular physical model of the interface behavior. The reconstruction is formulated as an optimization problem in which the relaxation times are determined as functions of frequency by minimizing the discrepancy between the experimentally measured temperature profiles and solutions of the Boltzmann transport equation for the same system. Interface properties such as transmissivities are included as unknowns in the optimization; however, because for the thermal spectroscopy problems considered here the reconstruction is not very sensitive to the interface properties, the transmissivities are only approximately reconstructed and can be considered as byproducts of the calculation whose primary objective is the accurate determination of the relaxation times. The proposed method is validated using synthetic experimental data obtained from Monte Carlo solutions of the Boltzmann transport equation. The method is shown to remain robust in the presence of uncertainty (noise) in the measurement.
A flexible, interactive software tool for fitting the parameters of neuronal models.
Friedrich, Péter; Vella, Michael; Gulyás, Attila I; Freund, Tamás F; Káli, Szabolcs
2014-01-01
The construction of biologically relevant neuronal models as well as model-based analysis of experimental data often requires the simultaneous fitting of multiple model parameters, so that the behavior of the model in a certain paradigm matches (as closely as possible) the corresponding output of a real neuron according to some predefined criterion. Although the task of model optimization is often computationally hard, and the quality of the results depends heavily on technical issues such as the appropriate choice (and implementation) of cost functions and optimization algorithms, no existing program provides access to the best available methods while also guiding the user through the process effectively. Our software, called Optimizer, implements a modular and extensible framework for the optimization of neuronal models, and also features a graphical interface which makes it easy for even non-expert users to handle many commonly occurring scenarios. Meanwhile, educated users can extend the capabilities of the program and customize it according to their needs with relatively little effort. Optimizer has been developed in Python, takes advantage of open-source Python modules for nonlinear optimization, and interfaces directly with the NEURON simulator to run the models. Other simulators are supported through an external interface. We have tested the program on several different types of problems of varying complexity, using different model classes. As targets, we used simulated traces from the same or a more complex model class, as well as experimental data. We successfully used Optimizer to determine passive parameters and conductance densities in compartmental models, and to fit simple (adaptive exponential integrate-and-fire) neuronal models to complex biological data. Our detailed comparisons show that Optimizer can handle a wider range of problems, and delivers equally good or better performance than any other existing neuronal model fitting tool.
A flexible, interactive software tool for fitting the parameters of neuronal models
Friedrich, Péter; Vella, Michael; Gulyás, Attila I.; Freund, Tamás F.; Káli, Szabolcs
2014-01-01
The construction of biologically relevant neuronal models as well as model-based analysis of experimental data often requires the simultaneous fitting of multiple model parameters, so that the behavior of the model in a certain paradigm matches (as closely as possible) the corresponding output of a real neuron according to some predefined criterion. Although the task of model optimization is often computationally hard, and the quality of the results depends heavily on technical issues such as the appropriate choice (and implementation) of cost functions and optimization algorithms, no existing program provides access to the best available methods while also guiding the user through the process effectively. Our software, called Optimizer, implements a modular and extensible framework for the optimization of neuronal models, and also features a graphical interface which makes it easy for even non-expert users to handle many commonly occurring scenarios. Meanwhile, educated users can extend the capabilities of the program and customize it according to their needs with relatively little effort. Optimizer has been developed in Python, takes advantage of open-source Python modules for nonlinear optimization, and interfaces directly with the NEURON simulator to run the models. Other simulators are supported through an external interface. We have tested the program on several different types of problems of varying complexity, using different model classes. As targets, we used simulated traces from the same or a more complex model class, as well as experimental data. We successfully used Optimizer to determine passive parameters and conductance densities in compartmental models, and to fit simple (adaptive exponential integrate-and-fire) neuronal models to complex biological data. Our detailed comparisons show that Optimizer can handle a wider range of problems, and delivers equally good or better performance than any other existing neuronal model fitting tool. PMID:25071540
Bipolar electrode selection for a motor imagery based brain computer interface
NASA Astrophysics Data System (ADS)
Lou, Bin; Hong, Bo; Gao, Xiaorong; Gao, Shangkai
2008-09-01
A motor imagery based brain-computer interface (BCI) provides a non-muscular communication channel that enables people with paralysis to control external devices using their motor imagination. Reducing the number of electrodes is critical to improving the portability and practicability of the BCI system. A novel method is proposed to reduce the number of electrodes to a total of four by finding the optimal positions of two bipolar electrodes. Independent component analysis (ICA) is applied to find the source components of mu and alpha rhythms, and optimal electrodes are chosen by comparing the projection weights of sources on each channel. The results of eight subjects demonstrate the better classification performance of the optimal layout compared with traditional layouts, and the stability of this optimal layout over a one week interval was further verified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Simonetto, Andrea
This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall,more » the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.« less
Basic research needs and opportunities on interfaces in solar materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czanderna, A. W.; Gottschall, R. J.
1981-04-01
The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)
McCafferty, Sean J; Schwiegerling, Jim T
2015-04-01
Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface. The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate. The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus. The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens. The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.
Probe interface design consideration. [for interplanetary spacecraft missions
NASA Technical Reports Server (NTRS)
Casani, E. K.
1974-01-01
Interface design between a probe and a spacecraft requires not only technical considerations but also management planning and mission analysis interactions. Two further aspects of importance are the flyby versus the probe trade-off, and the relay link design and data handling optimization.
NASA Technical Reports Server (NTRS)
Lucas, S. H.; Scotti, S. J.
1989-01-01
The nonlinear mathematical programming method (formal optimization) has had many applications in engineering design. A figure illustrates the use of optimization techniques in the design process. The design process begins with the design problem, such as the classic example of the two-bar truss designed for minimum weight as seen in the leftmost part of the figure. If formal optimization is to be applied, the design problem must be recast in the form of an optimization problem consisting of an objective function, design variables, and constraint function relations. The middle part of the figure shows the two-bar truss design posed as an optimization problem. The total truss weight is the objective function, the tube diameter and truss height are design variables, with stress and Euler buckling considered as constraint function relations. Lastly, the designer develops or obtains analysis software containing a mathematical model of the object being optimized, and then interfaces the analysis routine with existing optimization software such as CONMIN, ADS, or NPSOL. This final state of software development can be both tedious and error-prone. The Sizing and Optimization Language (SOL), a special-purpose computer language whose goal is to make the software implementation phase of optimum design easier and less error-prone, is presented.
Bejagam, Karteek K; Singh, Samrendra; Deshmukh, Sanket A
2018-05-05
New Lennard-Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all-atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10 -11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene-water interface with one OH bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air-water interface, graphene-water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air-water and graphene-water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Compound scale-up at the discovery-development interface.
Nikitenko, Antonia A
2006-11-01
As a result of an economically challenging environment within the pharmaceutical industry, pharmaceutical companies and their departments must increase productivity and cut costs to stay in line with the market. Discovery-led departments such as the medicinal chemistry and lead optimization groups focus on synthesizing large varieties of compounds in minimal amounts, while the chemical development groups must then deliver a few chosen leads employing an optimized synthesis method and using multi-kilogram quantities of material. A research group at the discovery-development interface has the task of medium-scale synthesis which is important in the lead selection stage. The primary objective of this group is the initial scale-up of promising leads for extensive physicochemical and biological testing. The challenge of the interface group involves overcoming synthetic issues within the rigid, accelerated timelines.
Informedia at TRECVID 2003: Analyzing and Searching Broadcast News Video
2004-11-03
browsing interface to browse the top-ranked shots according to the different classifiers. Color and texture based image search engines were also...different classifiers. Color and texture based image search engines were also optimized better performance. This “new” interface was evaluated as
2011-09-01
optimized building blocks such as a parallelized tri-diagonal linear solver (used in the “implicit finite differences ” and split-step Pade PE models...and Ding Lee. “A finite - difference treatment of interface conditions for the parabolic wave equation: The horizontal interface.” The Journal of the...Acoustical Society of America, 71(4):855, 1982. 3. Ding Lee and Suzanne T. McDaniel. “A finite - difference treatment of interface conditions for
Grand-Guillaume Perrenoud, Alexandre; Veuthey, Jean-Luc; Guillarme, Davy
2014-04-25
The recent market release of a new generation of supercritical fluid chromatography (SFC) instruments compatible with state-of-the-art columns packed with sub-2μm particles (UHPSFC) has contributed to the reemergence of interest in this technology at the analytical scale. However, to ensure performance competitiveness of this technique with modern analytical standards, a robust hyphenation of UHPSFC to mass spectrometry (MS) is mandatory. UHPSFC-MS hyphenation interface should be able to manage the compressibility of the SFC mobile phase and to preserve as much as possible the chromatographic separation integrity. Although several interfaces can be envisioned, each will have noticeable effects on chromatographic fidelity, flexibility and user-friendliness. In the present study, various interface configurations were evaluated in terms of their impact on chromatographic efficiency and MS detection sensitivity. An interface including a splitter and a make-up solvent inlet was found to be the best compromise and exhibited good detection sensitivity while maintaining more than 75% of the chromatographic efficiency. This interface was also the most versatile in terms of applicable analytical conditions. In addition, an accurate model of the fluidics behavior of this interface was created for a better understanding of the influence of chromatographic settings on its mode of operation. In the second part, the most influential experimental factors affecting MS detection sensitivity were identified and optimized using a design-of-experiment approach. The application of low capillary voltage and high desolvation temperature and drying gas flow rate were required for optimal ESI ionization and nebulization processes. The detection sensitivity achieved using the maximized UHPSFC-ESI-MS/MS conditions for a mixture of basic pharmaceutical compounds showed 4- to 10-fold improvements in peak intensity compared to the best performance achieved by UHPLC-ESI-MS/MS with the same MS detector. Copyright © 2014 Elsevier B.V. All rights reserved.
DAKOTA Design Analysis Kit for Optimization and Terascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.
2010-02-24
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less
Design optimization of GaAs betavoltaic batteries
NASA Astrophysics Data System (ADS)
Chen, Haiyanag; Jiang, Lan; Chen, Xuyuan
2011-06-01
GaAs junctions are designed and fabricated for betavoltaic batteries. The design is optimized according to the characteristics of GaAs interface states and the diffusion length in the depletion region of GaAs carriers. Under an illumination of 10 mCi cm-2 63Ni, the open circuit voltage of the optimized batteries is about ~0.3 V. It is found that the GaAs interface states induce depletion layers on P-type GaAs surfaces. The depletion layer along the P+PN+ junction edge isolates the perimeter surface from the bulk junction, which tends to significantly reduce the battery dark current and leads to a high open circuit voltage. The short circuit current density of the optimized junction is about 28 nA cm-2, which indicates a carrier diffusion length of less than 1 µm. The overall results show that multi-layer P+PN+ junctions are the preferred structures for GaAs betavoltaic battery design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xinfeng; Prior, Phillip; Chen, Guangpei
Purpose: The purpose of the study is to investigate the dose effects of electron-return-effect (ERE) at air-tissue and lung-tissue interfaces under a 1.5T transverse-magnetic-field (TMF). Methods: IMRT and VMAT plans for representative pancreas, lung, breast and head & neck (H&N) cases were generated following clinical dose volume (DV) criteria. The air-cavity walls, as well as the lung wall, were delineated to examine the ERE. In each case, the original plan generated without TMF is compared with the reconstructed plan (generated by recalculating the original plan with the presence of TMF) and the optimized plan (generated by a full optimization withmore » TMF), using a variety of DV parameters, including V100%, D95% and dose heterogeneity index for PTV, Dmax, and D1cc for OARs (organs at risk) and tissue interface. Results: The dose recalculation under TMF showed the presence of the 1.5 T TMF can slightly reduce V100% and D95% for PTV, with the differences being less than 4% for all but lung case studied. The TMF results in considerable increases in Dmax and D1cc on the skin in all cases, mostly between 10-35%. The changes in Dmax and D1cc on air cavity walls are dependent upon site, geometry, and size, with changes ranging up to 15%. In general, the VMAT plans lead to much smaller dose effects from ERE compared to fixed-beam IMRT. When the TMF is considered in the plan optimization, the dose effects of the TMF at tissue interfaces are significantly reduced in most cases. Conclusion: The doses on tissue interfaces can be significantly changed by the presence of a 1.5T TMF during MR-guided RT when the TMF is not included in plan optimization. These changes can be substantially reduced or even removed during VMAT/IMRT optimization that specifically considers the TMF, without deteriorating overall plan quality.« less
Interface or bulk scattering in the semiclassical theory for spin valves
NASA Astrophysics Data System (ADS)
Wang, L.; McMahon, W. J.; Liu, B.; Wu, Y. H.; Chong, C. T.
2004-06-01
By taking into account spin asymmetries of the interface transmissions and the bulk mean free paths, we have treated pure interface, non-pure interface, bulk, and interface plus bulk scattering within the semiclassical Boltzmann theory. First, the optimizations of NOL (nano-oxide-layers) insertions in bottom, synthetic, and dual spin valves and the variations of the giant magnetoresistance (GMR) with the thickness of the free layer have been examined. For non-pure interface, bulk, and interface plus bulk scattering, qualitative trends of GMR versus NOL positions in spin valves are similar to each other. For pure interface scattering, there is no optimized NOL insertion positions and the blocking effect of the NOL inserted in the spacer remains effective as other three kinds of scattering. The GMR ratio for bulk scattering simply approaches zero when the free layer thickness becomes short; in contrast, for interface scattering or interface plus bulk scattering, the GMR ratio is nonzero at zero thickness of the free layer. Second, the relationships between GMR and specular and diffusive scattering have been explored. As far as specular reflection is concerned, our results imply that for a realistic bottom spin filter spin valve, Ta/NiFe/IrMn/CoFe/Cu/CoFe/Cu/Ta, roughness of the surfaces of Ta and the interfaces of Ta/NiFe, NiFe/IrMn, pinned layer/spacer, and spacer/free layer may lead to large GMR. We also find that the enhancement of GMR due to surface specular reflection is only a pure interface effect. The dependences of GMR on the specular transmissions roughly follow square relations. The trends of GMR against the spin-down diffusive scattering depend on the values of the spin-up transmission. Finally, impurity scattering was investigated and our semiclassical results are in qualitative agreement with the experiments and the quantum theory.
Arabnejad Khanoki, Sajad; Pasini, Damiano
2012-03-01
Revision surgeries of total hip arthroplasty are often caused by a deficient structural compatibility of the implant. Two main culprits, among others, are bone-implant interface instability and bone resorption. To address these issues, in this paper we propose a novel type of implant, which, in contrast to current hip replacement implants made of either a fully solid or a foam material, consists of a lattice microstructure with nonhomogeneous distribution of material properties. A methodology based on multiscale mechanics and design optimization is introduced to synthesize a graded cellular implant that can minimize concurrently bone resorption and implant interface failure. The procedure is applied to the design of a 2D left implanted femur with optimized gradients of relative density. To assess the manufacturability of the graded cellular microstructure, a proof-of-concept is fabricated by using rapid prototyping. The results from the analysis are used to compare the optimized cellular implant with a fully dense titanium implant and a homogeneous foam implant with a relative density of 50%. The bone resorption and the maximum value of interface stress of the cellular implant are found to be over 70% and 50% less than the titanium implant while being 53% and 65% less than the foam implant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar; McCulloch, Richard Chet James
In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less
Kumar, Sameer; Heidelberger, Philip; Chen, Dong; Hines, Michael
2010-04-19
We explore the multisend interface as a data mover interface to optimize applications with neighborhood collective communication operations. One of the limitations of the current MPI 2.1 standard is that the vector collective calls require counts and displacements (zero and nonzero bytes) to be specified for all the processors in the communicator. Further, all the collective calls in MPI 2.1 are blocking and do not permit overlap of communication with computation. We present the record replay persistent optimization to the multisend interface that minimizes the processor overhead of initiating the collective. We present four different case studies with the multisend API on Blue Gene/P (i) 3D-FFT, (ii) 4D nearest neighbor exchange as used in Quantum Chromodynamics, (iii) NAMD and (iv) neural network simulator NEURON. Performance results show 1.9× speedup with 32(3) 3D-FFTs, 1.9× speedup for 4D nearest neighbor exchange with the 2(4) problem, 1.6× speedup in NAMD and almost 3× speedup in NEURON with 256K cells and 1k connections/cell.
Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; ...
2017-02-21
The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. Here, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by constructionmore » captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. This approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.« less
A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
An, Na; Yu, Xijun; Chen, Huanzhen; Huang, Chaobao; Liu, Zhongyan
2017-01-01
The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart type finite element space is used on non-interface elements and the piecewise linear Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface elements. The piecewise linear functions satisfying the interface jump conditions are uniquely determined by the integral averages on the edges as degrees of freedom. The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. The solvability of the method is proved and the optimal error estimates in the energy norm are obtained. Numerical experiments are presented to confirm our theoretical analysis and show that the newly developed PIFE method has optimal-order convergence in the [Formula: see text] norm as well. In addition, numerical examples also indicate that this method is valid for both the isotropic and the anisotropic elliptic interface problems.
NASA Astrophysics Data System (ADS)
Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; Kronik, Leeor; Neaton, Jeffrey B.
2017-03-01
The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. In this work, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by construction captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. Our approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.
Microfluidic PMMA interfaces for rectangular glass capillaries
NASA Astrophysics Data System (ADS)
Evander, Mikael; Tenje, Maria
2014-02-01
We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, F.; Banks, J. W.; Henshaw, W. D.
We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in a implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems togethermore » with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the- ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized- Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif- fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. Lastly, the CHAMP scheme is also developed for general curvilinear grids and CHT ex- amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.« less
Air-ground information transfer in the National Airspace System
NASA Technical Reports Server (NTRS)
Lee, Alfred T.; Lozito, Sandra
1989-01-01
This paper reviews NASA's Aviation Safety Reporting System incident data for a two-year period in order to identify the frequency of air-ground information transfer errors and the factors associated with their occurrence. Of the more than 14,000 primary reports received during the 1985 and 1986 reporting period, one out of four reports concerned problems of information transfer between aircraft and ATC. Approximately half of these errors were associated directly or indirectly with aircraft deviations from assigned heading or altitude. The majority of incidents cited some human-system problem such as workload, cockpit distractions, etc., as the primary contributing factor. Improvements in air-ground information transfer using existing and future (e.g., data link) technology are proposed centering on the development and application of user-centered information management principles.
2007-02-01
on/off control), trending and trend reports, load shedding/load manage- ment, remote setpoint adjustment, initial diagnosis of a service call and...building-specific operational data such as on/off scheduling com- mands, setpoints , and outside air temperature. With help from several other agencies and...interface for monitoring 3. Provide one interface for device/system management/configuration 4. ( Optimally ) provide one interface for device
2007-02-01
on/off control), trending and trend reports, load shedding/load manage- ment, remote setpoint adjustment, initial diagnosis of a service call and...building-specific operational data such as on/off scheduling com- mands, setpoints , and outside air temperature. With help from several other agencies and...interface for monitoring 3. Provide one interface for device/system management/configuration 4. ( Optimally ) provide one interface for device
Schindler, Christina E M; de Vries, Sjoerd J; Zacharias, Martin
2015-02-01
Protein-protein interactions are abundant in the cell but to date structural data for a large number of complexes is lacking. Computational docking methods can complement experiments by providing structural models of complexes based on structures of the individual partners. A major caveat for docking success is accounting for protein flexibility. Especially, interface residues undergo significant conformational changes upon binding. This limits the performance of docking methods that keep partner structures rigid or allow limited flexibility. A new docking refinement approach, iATTRACT, has been developed which combines simultaneous full interface flexibility and rigid body optimizations during docking energy minimization. It employs an atomistic molecular mechanics force field for intermolecular interface interactions and a structure-based force field for intramolecular contributions. The approach was systematically evaluated on a large protein-protein docking benchmark, starting from an enriched decoy set of rigidly docked protein-protein complexes deviating by up to 15 Å from the native structure at the interface. Large improvements in sampling and slight but significant improvements in scoring/discrimination of near native docking solutions were observed. Complexes with initial deviations at the interface of up to 5.5 Å were refined to significantly better agreement with the native structure. Improvements in the fraction of native contacts were especially favorable, yielding increases of up to 70%. © 2014 Wiley Periodicals, Inc.
Developing A Web-based User Interface for Semantic Information Retrieval
NASA Technical Reports Server (NTRS)
Berrios, Daniel C.; Keller, Richard M.
2003-01-01
While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.
Understanding and Creating Accessible Touch Screen Interactions for Blind People
ERIC Educational Resources Information Center
Kane, Shaun K.
2011-01-01
Using touch screens presents a number of usability and accessibility challenges for blind people. Most touch screen-based user interfaces are optimized for visual interaction, and are therefore difficult or impossible to use without vision. This dissertation presents an approach to redesigning gesture-based user interfaces to enable blind people…
ERIC Educational Resources Information Center
Barclay, Elizabeth J.; Renshaw, Carl E.; Taylor, Holly A.; Bilge, A. Reyan
2011-01-01
Creating effective computer-based learning exercises requires an understanding of optimal user interface designs for improving higher order cognitive skills. Using an online volcanic crisis simulation previously shown to improve decision making skill, we find that a user interface using a graphical presentation of the volcano monitoring data…
Models of information exchange between radio interfaces of Wi-Fi group of standards
NASA Astrophysics Data System (ADS)
Litvinskaya, O. S.
2018-05-01
This paper offers models of information exchange between radio interfaces of the Wi-Fi group of standards by the example of a real facility management system for the oil and gas industry. Interaction between the MU-MIMO and MIMO technologies is analyzed. An optimal variant of information exchange is proposed.
NASA Astrophysics Data System (ADS)
Nadimpalli, Venkata K.; Nagy, Peter B.
2018-04-01
Ultrasonic Additive Manufacturing (UAM) is a solid-state layer by layer manufacturing process that utilizes vibration induced plastic deformation to form a metallurgical bond between a thin layer and an existing base structure. Due to the vibration based bonding mechanism, the quality of components at each layer depends on the geometry of the structure. In-situ monitoring during and between UAM manufacturing steps offers the potential for closed-loop control to optimize process parameters and to repair existing defects. One interface that is most prone to delamination is the base/build interface and often UAM component height and quality are limited by failure at the base/build interface. Low manufacturing temperatures and favorable orientation of typical interface defects in UAM make ultrasonic NDE an attractive candidate for online monitoring. Two approaches for in-situ NDE are discussed and the design of the monitoring system optimized so that the quality of UAM components is not affected by the addition of the NDE setup. Preliminary results from in-situ ultrasonic NDE indicate the potential to be utilized for online qualification, closed-loop control and offline certification of UAM components.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.
1994-01-01
A user's guide for the computer program OPTCOMP is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in uni-directional metal matrix composites subjected to combined thermo-mechanical axisymmetric loading using compensating or compliant layers at the fiber/matrix interface. The user specifies the architecture and the initial material parameters of the interfacial region, which can be either elastic or elastoplastic, and defines the design variables, together with the objective function, the associated constraints and the loading history through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the elastoplastic response of an arbitrarily layered multiple concentric cylinder model that is coupled to the commercial optimization package DOT. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.
Human-Automation Allocations for Current Robotic Space Operations
NASA Technical Reports Server (NTRS)
Marquez, Jessica J.; Chang, Mai L.; Beard, Bettina L.; Kim, Yun Kyung; Karasinski, John A.
2018-01-01
Within the Human Research Program, one risk delineates the uncertainty surrounding crew working with automation and robotics in spaceflight. The Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is concerned with the detrimental effects on crew performance due to ineffective user interfaces, system designs and/or functional task allocation, potentially compromising mission success and safety. Risk arises because we have limited experience with complex automation and robotics. One key gap within HARI, is the gap related to functional allocation. The gap states: We need to evaluate, develop, and validate methods and guidelines for identifying human-automation/robot task information needs, function allocation, and team composition for future long duration, long distance space missions. Allocations determine the human-system performance as it identifies the functions and performance levels required by the automation/robotic system, and in turn, what work the crew is expected to perform and the necessary human performance requirements. Allocations must take into account each of the human, automation, and robotic systems capabilities and limitations. Some functions may be intuitively assigned to the human versus the robot, but to optimize efficiency and effectiveness, purposeful role assignments will be required. The role of automation and robotics will significantly change in future exploration missions, particularly as crew becomes more autonomous from ground controllers. Thus, we must understand the suitability of existing function allocation methods within NASA as well as the existing allocations established by the few robotic systems that are operational in spaceflight. In order to evaluate future methods of robotic allocations, we must first benchmark the allocations and allocation methods that have been used. We will present 1) documentation of human-automation-robotic allocations in existing, operational spaceflight systems; and 2) To gather existing lessons learned and best practices in these role assignments, from spaceflight operational experience of crew and ground teams that may be used to guide development for future systems. NASA and other space agencies have operational spaceflight experience with two key Human-Automation-Robotic (HAR) systems: heavy lift robotic arms and planetary robotic explorers. Additionally, NASA has invested in high-fidelity rover systems that can carry crew, building beyond Apollo's lunar rover. The heavy lift robotic arms reviewed are: Space Station Remote Manipulator System (SSRMS), Japanese Remote Manipulator System (JEMRMS), and the European Robotic Arm (ERA, designed but not deployed in space). The robotic rover systems reviewed are: Mars Exploration Rovers, Mars Science Laboratory rover, and the high-fidelity K10 rovers. Much of the design and operational feedback for these systems have been communicated to flight controllers and robotic design teams. As part of the mitigating the HARI risk for future human spaceflight operations, we must document function allocations between robots and humans that have worked well in practice.
NASA Technical Reports Server (NTRS)
Houbec, Keith; Tillman, Barry; Connolly, Janis
2010-01-01
For decades, Space Life Sciences and NASA as an Agency have considered NASA-STD-3000, Man-Systems Integration Standards, a significant contribution to human spaceflight programs and to human-systems integration in general. The document has been referenced in numerous design standards both within NASA and by organizations throughout the world. With research program and project results being realized, advances in technology and new information in a variety of topic areas now available, the time arrived to update this extensive suite of requirements and design information. During the past several years, a multi-NASA center effort has been underway to write the update to NASA-STD-3000 with standards and design guidance that would be applicable to all future human spaceflight programs. NASA-STD-3001 - Volumes 1 and 2 - and the Human Integration Design Handbook (HIDH) were created. Volume 1, Crew Health, establishes NASA s spaceflight crew health standards for the pre-flight, in-flight, and post-flight phases of human spaceflight. Volume 2, Human Factors, Habitability and Environmental Health, focuses on the requirements of human-system integration and how the human crew interacts with other systems, and how the human and the system function together to accomplish the tasks for mission success. The HIDH is a compendium of human spaceflight history and knowledge, and provides useful background information and research findings. And as the HIDH is a stand-alone companion to the Standards, the maintenance of the document has been streamlined. This unique and flexible approach ensures that the content is current and addresses the fundamental advances of human performance and human capabilities and constraints research. Current work focuses on the development of new sections of Volume 2 and collecting updates to the HIDH. The new sections in development expand the scope of the standard and address mission operations and support operations. This effort is again collaboration with representatives from the Johnson Space Center Missions Operations and Space Life Sciences Directorates and the Engineering Directorate from Kennedy Space Center as well as discipline experts from across the Agency.
Effect of alignment perturbations in a trans-tibial prosthesis user: A pilot study.
Courtney, Anna; Orendurff, Michael S; Buis, Arjan
2016-04-01
A recurring complication in trans-tibial prosthetic limb users is "poor socket fit" with painful residuum-socket interfaces, a consequence of excess pressure. This is due to both poor socket fit and poor socket alignment; however, the interaction of these factors has not been quantified. Through evaluation of kinetic data this study aimed to articulate an interaction uniting socket design, alignment and interface pressures. The results will help to refine future studies and will hopefully help determine whether sockets can be designed, fitted and aligned to maximize mobility whilst minimizing injurious forces. Interface pressures were recorded throughout ambulation in one user with "optimal (reference) alignment" followed by 5 malalignments in a patellar tendon-bearing and a hydrocast socket. Marked differences in pressure distribution were discovered when equating the patellar tendon-bearing against the hydrocast socket and when comparing interface pressures from reference with offset alignment. Patellar tendon-bearing sockets were found to be more sensitive to alignment perturbations than hydrocast sockets. A complex interaction was found, with the most prominent finding demonstrating the requisite for attainment of optimal alignment: a translational alignment error of 10 mm can increase maximum peak pressures by 227% (mean 17.5%). Refinements for future trials are described and the necessity for future research into socket design, alignment and interface pressures has been estabilished.
Wu, Xiaohan; Chu, Yingli; Liu, Rui; Katz, Howard E; Huang, Jia
2017-12-01
Polymer dielectrics in organic field-effect transistors (OFETs) are essential to provide the devices with overall flexibility, stretchability, and printability and simultaneously introduce charge interaction on the interface with organic semiconductors (OSCs). The interfacial effect between various polymer dielectrics and OSCs significantly and intricately influences device performance. However, understanding of this effect is limited because the interface is buried and the interfacial charge interaction is difficult to stimulate and characterize. Here, this challenge is overcome by utilizing illumination to stimulate the interfacial effect in various OFETs and to characterize the responses of the effect by measuring photoinduced changes of the OFETs performances. This systemic investigation reveals the mechanism of the intricate interfacial effect in detail, and mathematically explains how the photosensitive OFETs characteristics are determined by parameters including polar group of the polymer dielectric and the OSC side chain. By utilizing this mechanism, performance of organic electronics can be precisely controlled and optimized. OFETs with strong interfacial effect can also show a signal additivity caused by repeated light pulses, which is applicable for photostimulated synapse emulator. Therefore, this work enlightens a detailed understanding on the interface effect and provides novel strategies for optimizing OFET photosensory performances.
Yandell, Matthew B; Quinlivan, Brendan T; Popov, Dmitry; Walsh, Conor; Zelik, Karl E
2017-05-18
Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power. Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power). We provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics. Our findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.
An implementation and evaluation of the MPI 3.0 one-sided communication interface
Dinan, James S.; Balaji, Pavan; Buntinas, Darius T.; ...
2016-01-09
The Q1 Message Passing Interface (MPI) 3.0 standard includes a significant revision to MPI’s remote memory access (RMA) interface, which provides support for one-sided communication. MPI-3 RMA is expected to greatly enhance the usability and performance ofMPI RMA.We present the first complete implementation of MPI-3 RMA and document implementation techniques and performance optimization opportunities enabled by the new interface. Our implementation targets messaging-based networks and is publicly available in the latest release of the MPICH MPI implementation. Here using this implementation, we explore the performance impact of new MPI-3 functionality and semantics. Results indicate that the MPI-3 RMA interface providesmore » significant advantages over the MPI-2 interface by enabling increased communication concurrency through relaxed semantics in the interface and additional routines that provide new window types, synchronization modes, and atomic operations.« less
An implementation and evaluation of the MPI 3.0 one-sided communication interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinan, James S.; Balaji, Pavan; Buntinas, Darius T.
The Q1 Message Passing Interface (MPI) 3.0 standard includes a significant revision to MPI’s remote memory access (RMA) interface, which provides support for one-sided communication. MPI-3 RMA is expected to greatly enhance the usability and performance ofMPI RMA.We present the first complete implementation of MPI-3 RMA and document implementation techniques and performance optimization opportunities enabled by the new interface. Our implementation targets messaging-based networks and is publicly available in the latest release of the MPICH MPI implementation. Here using this implementation, we explore the performance impact of new MPI-3 functionality and semantics. Results indicate that the MPI-3 RMA interface providesmore » significant advantages over the MPI-2 interface by enabling increased communication concurrency through relaxed semantics in the interface and additional routines that provide new window types, synchronization modes, and atomic operations.« less
Allocating fuel breaks to optimally protect structures in the wildland-urban interface
Avi Bar-Massada; Volker C. Radeloff; Susan I. Stewart
2011-01-01
Wildland fire is a major concern in the wildland-urban interface (WUI), where human structures intermingle with wildland vegetation. Reducing wildfire risk in the WUI is more complicated than in wildland areas, owing to interactions between spatial patterns of housing and wildland fuels. Fuel treatments are commonly applied in wildlands surrounding WUI communities....
NASA Technical Reports Server (NTRS)
Foyle, David C.; Goodman, Allen; Hooley, Becky L.
2003-01-01
An overview is provided of the Human Performance Modeling (HPM) element within the NASA Aviation Safety Program (AvSP). Two separate model development tracks for performance modeling of real-world aviation environments are described: the first focuses on the advancement of cognitive modeling tools for system design, while the second centers on a prescriptive engineering model of activity tracking for error detection and analysis. A progressive implementation strategy for both tracks is discussed in which increasingly more complex, safety-relevant applications are undertaken to extend the state-of-the-art, as well as to reveal potential human-system vulnerabilities in the aviation domain. Of particular interest is the ability to predict the precursors to error and to assess potential mitigation strategies associated with the operational use of future flight deck technologies.
Unifying Human Centered Design and Systems Engineering for Human Systems Integration
NASA Technical Reports Server (NTRS)
Boy, Guy A.; McGovernNarkevicius, Jennifer
2013-01-01
Despite the holistic approach of systems engineering (SE), systems still fail, and sometimes spectacularly. Requirements, solutions and the world constantly evolve and are very difficult to keep current. SE requires more flexibility and new approaches to SE have to be developed to include creativity as an integral part and where the functions of people and technology are appropriately allocated within our highly interconnected complex organizations. Instead of disregarding complexity because it is too difficult to handle, we should take advantage of it, discovering behavioral attractors and the emerging properties that it generates. Human-centered design (HCD) provides the creativity factor that SE lacks. It promotes modeling and simulation from the early stages of design and throughout the life cycle of a product. Unifying HCD and SE will shape appropriate human-systems integration (HSI) and produce successful systems.
Application of Strength Requirements to Complex Loading Scenarios
NASA Technical Reports Server (NTRS)
England, Scott; Rajulu, Sudhakar
2016-01-01
NASA's endeavors in human spaceflight rely on extensive volumes of human-systems integration requirements to ensure mission success. These requirements protect for space hardware accommodation for the full range of potential crewmembers, but cannot cover every possible action and contingency in detail. This study was undertaken in response to questions from various strength requirement users who were unclear how to apply idealized strength requirements that did not map well to the complex loading scenarios that crewmembers would encounter. Three of the most commonly occurring questions from stakeholders were selected to be investigated with human testing and human modeling. Preliminary findings indicate deviation from nominal postures can affect strength requirement compliance positively or negatively, depending on the nature of the deviation. Human modeling offers some avenues for quickly addressing requirement verification questions, but is limited by the fidelity of the model and environment.
Non-random walk diffusion enhances the sink strength of semicoherent interfaces
Vattré, A.; Jourdan, T.; Ding, H.; ...
2016-01-29
Clean, safe and economical nuclear energy requires new materials capable of withstanding severe radiation damage. One strategy of imparting radiation resistance to solids is to incorporate into them a high density of solid-phase interfaces capable of absorbing and annihilating radiation-induced defects. Here we show that elastic interactions between point defects and semicoherent interfaces lead to a marked enhancement in interface sink strength. Our conclusions stem from simulations that integrate first principles, object kinetic Monte Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased thermodynamic driving forces, but rather to reduced defect migrationmore » barriers, which induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly sensitive to the detailed character of interfacial stresses, suggesting that ‘super-sink’ interfaces may be designed by optimizing interface stress fields. Lastly, such interfaces may be used to create materials with unprecedented resistance to radiation-induced damage.« less
A stable and accurate partitioned algorithm for conjugate heat transfer
NASA Astrophysics Data System (ADS)
Meng, F.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.
2017-09-01
We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in an implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems together with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode theory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized-Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and diffusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. The CHAMP scheme is also developed for general curvilinear grids and CHT examples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.
A stable and accurate partitioned algorithm for conjugate heat transfer
Meng, F.; Banks, J. W.; Henshaw, W. D.; ...
2017-04-25
We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in a implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems togethermore » with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the- ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized- Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif- fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. Lastly, the CHAMP scheme is also developed for general curvilinear grids and CHT ex- amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.« less
Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, I., E-mail: isabelle.abraham@cea.fr; Abraham, R., E-mail: romain.abraham@univ-orleans.fr; Bergounioux, M., E-mail: maitine.bergounioux@univ-orleans.fr
2017-02-15
In this article, we focus on tomographic reconstruction. The problem is to determine the shape of the interior interface using a tomographic approach while very few X-ray radiographs are performed. We use a multi-marginal optimal transport approach. Preliminary numerical results are presented.
CEASAW: A User-Friendly Computer Environment Analysis for the Sawmill Owner
Guillermo Mendoza; William Sprouse; Philip A. Araman; William G. Luppold
1991-01-01
Improved spreadsheet software capabilities have brought optimization to users with little or no background in mathematical programming. Better interface capabilities of spreadsheet models now make it possible to combine optimization models with a spreadsheet system. Sawmill production and inventory systems possess many features that make them suitable application...
Ultralow-Carbon Nanotube-Toughened Epoxy: The Critical Role of a Double-Layer Interface.
Liu, Jingwei; Chen, Chao; Feng, Yuezhan; Liao, Yonggui; Ye, Yunsheng; Xie, Xiaolin; Mai, Yiu-Wing
2018-01-10
Understanding the chemistry and structure of interfaces within epoxy resins is important for studying the mechanical properties of nanofiller-filled nanocomposites as well as for developing high-performance polymer nanocomposites. Despite the intensive efforts to construct nanofiller/matrix interfaces, few studies have demonstrated an enhanced stress-transferring efficiency while avoiding unfavorable deformation due to undesirable interface fractures. Here, we report an optimized method to prepare epoxy-based nanocomposites whose interfaces are chemically modulated by poly(glycidyl methacrylate)-block-poly(hexyl methacrylate) (PGMA-b-PHMA)-functionalized multiwalled carbon nanotubes (bc@fMWNTs) and also offer a fundamental explanation of crack growth behavior and the toughening mechanism of the resulting nanocomposites. The presence of block copolymers on the surface of the MWNT results in a promising double-layered interface, in which (1) the outer-layered PGMA segment provides good dispersion in and strong interface bonding with the epoxy matrix, which enhances load transfer efficiency and debonding stress, and (2) the interlayered rubbery PHMA segment around the MWNT provides the maximum removable space for nanotubes as well as triggering cavitation while promoting local plastic matrix deformation, for example, shear banding to dissipate fracture energy. An outstanding toughening effect is achieved with only a 0.05 wt % carbon nanotube loading with the bc@fMWNT, that is, needing only a 20-times lower loading to obtain improvements in fracture toughness comparable to epoxy-based nanocomposites. The enhancements of their corresponding ultimate mode-I fracture toughnesses and fracture energies are 4 times higher than those of pristine MWNT-filled epoxy. These results demonstrate that a MWNT/epoxy interface could be optimized by changing the component structure of grafted modifiers, thereby facilitating the transfer of both mechanical load and energy dissipation across the nanofiller/matrix interface. This work provides a new route for the rational design and development of polymer nanocomposites with exceptional mechanical performance.
GeMS: an advanced software package for designing synthetic genes.
Jayaraj, Sebastian; Reid, Ralph; Santi, Daniel V
2005-01-01
A user-friendly, advanced software package for gene design is described. The software comprises an integrated suite of programs-also provided as stand-alone tools-that automatically performs the following tasks in gene design: restriction site prediction, codon optimization for any expression host, restriction site inclusion and exclusion, separation of long sequences into synthesizable fragments, T(m) and stem-loop determinations, optimal oligonucleotide component design and design verification/error-checking. The output is a complete design report and a list of optimized oligonucleotides to be prepared for subsequent gene synthesis. The user interface accommodates both inexperienced and experienced users. For inexperienced users, explanatory notes are provided such that detailed instructions are not necessary; for experienced users, a streamlined interface is provided without such notes. The software has been extensively tested in the design and successful synthesis of over 400 kb of genes, many of which exceeded 5 kb in length.
Dai, Shengfa; Wei, Qingguo
2017-01-01
Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.
Self-collimating photonic crystal polarization beam splitter.
Zabelin, V; Dunbar, L A; Le Thomas, N; Houdré, R; Kotlyar, M V; O'Faolain, L; Krauss, T F
2007-03-01
We present theoretical and experimental results of a polarization splitter device that consists of a photonic crystal (PhC) slab, which exhibits a large reflection coefficient for TE and a high transmission coefficient for TM polarization. The slab is embedded in a PhC tile operating in the self-collimation mode. Embedding the polarization-discriminating slab in a PhC with identical lattice symmetry suppresses the in-plane diffraction losses at the PhC-non-PhC interface. The optimization of the PhC-non-PhC interface is thereby decoupled from the optimization of the polarizing function. Transmissions as high as 35% for TM- and 30% for TE-polarized light are reported.
Radiograph and passive data analysis using mixed variable optimization
Temple, Brian A.; Armstrong, Jerawan C.; Buescher, Kevin L.; Favorite, Jeffrey A.
2015-06-02
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography analysis. For example, certain embodiments perform radiographic analysis using mixed variable computation techniques. One exemplary system comprises a radiation source, a two-dimensional detector for detecting radiation transmitted through a object between the radiation source and detector, and a computer. In this embodiment, the computer is configured to input the radiographic image data from the two-dimensional detector and to determine one or more materials that form the object by using an iterative analysis technique that selects the one or more materials from hierarchically arranged solution spaces of discrete material possibilities and selects the layer interfaces from the optimization of the continuous interface data.
Shape optimization using a NURBS-based interface-enriched generalized FEM
Najafi, Ahmad R.; Safdari, Masoud; Tortorelli, Daniel A.; ...
2016-11-26
This study presents a gradient-based shape optimization over a fixed mesh using a non-uniform rational B-splines-based interface-enriched generalized finite element method, applicable to multi-material structures. In the proposed method, non-uniform rational B-splines are used to parameterize the design geometry precisely and compactly by a small number of design variables. An analytical shape sensitivity analysis is developed to compute derivatives of the objective and constraint functions with respect to the design variables. Subtle but important new terms involve the sensitivity of shape functions and their spatial derivatives. As a result, verification and illustrative problems are solved to demonstrate the precision andmore » capability of the method.« less
Integrating Human Factors into Crew Exploration Vehicle Design
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Baggerman, Susan; Campbell, paul
2007-01-01
With NASA's new Vision for Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, and an iterative prototype/test/redesign process. Addressing human-system interface issues early on can be very cost effective even cost reducing when performed early in the design and development cycle. To achieve this goal within Crew Exploration Vehicle (CEV) Project Office, human engineering (HE) team is formed. Key tasks are to apply HE requirements and guidelines to hardware/software, and provide HE design, analysis and evaluation of crew interfaces. Initial activities included many practice-orientated evaluations using low-fidelity CEV mock-ups. What follows is a description of such evaluations that focused on a HE requirement regarding Net Habitable Volume (NHV). NHV is defined as the total remaining pressurized volume available to on-orbit crew after accounting for the loss of volume due to deployed hardware and structural inefficiencies which decrease functional volume. The goal of the NHV evaluations was to develop requirements providing sufficient CEV NHV for crewmembers to live and perform tasks in support of mission goals. Efforts included development of a standard NHV calculation method using computer models and physical mockups, and crew/ stakeholder evaluations. Nine stakeholders and ten crewmembers participated in the unsuited evaluations. Six crewmembers also participated in a suited evaluation. The mock-up was outfitted with volumetric representation of sub-systems such as seats, and stowage bags. Thirteen scenarios were developed to represent mission/crew tasks and considered to be primary volume drivers (e.g., suit donning) for the CEV. Unsuited evaluations included a structured walkthrough of these tasks. Suited evaluations included timed donning of the existing launch and entry suit to simulate a contingency scenario followed by doffing/ stowing of the suits. All mockup evaluations were videotaped. Structured questionnaires were used to document user interface issues and volume impacts of layout configuration. Computer model and physical measures of the NHV agreed within 1 percent. This included measurement of the gross habitable volume, subtraction of intrusive volumes, and other non-habitable spaces. Calculation method developed was validated as a standard means of measuring NHV, and was recommended as a verification method for the NHV requirements. Evaluations confirmed that there was adequate volume for unsuited scenarios and suit donning/ doffing activity. Seats, suit design stowage and waste hygiene system noted to be critical volume drivers. The low-fidelity mock-up evaluations along with human modeling analysis generated discussions that will lead to high-level systems requirements and human-centered design decisions. This approach allowed HE requirements and operational concepts to evolve in parallel with engineering system concepts and design requirements. As the CEV design matures, these evaluations will continue and help with design decisions, and assessment, verification and validation of HE requirements.
Mayer, Thomas; Borsdorf, Helko
2016-02-15
We optimized an atmospheric pressure ion funnel (APIF) including different interface options (pinhole, capillary, and nozzle) regarding a maximal ion transmission. Previous computer simulations consider the ion funnel itself and do not include the geometry of the following components which can considerably influence the ion transmission into the vacuum stage. Initially, a three-dimensional computer-aided design (CAD) model of our setup was created using Autodesk Inventor. This model was imported to the Autodesk Simulation CFD program where the computational fluid dynamics (CFD) were calculated. The flow field was transferred to SIMION 8.1. Investigations of ion trajectories were carried out using the SDS (statistical diffusion simulation) tool of SIMION, which allowed us to evaluate the flow regime, pressure, and temperature values that we obtained. The simulation-based optimization of different interfaces between an atmospheric pressure ion funnel and the first vacuum stage of a mass spectrometer require the consideration of fluid dynamics. The use of a Venturi nozzle ensures the highest level of transmission efficiency in comparison to capillaries or pinholes. However, the application of radiofrequency (RF) voltage and an appropriate direct current (DC) field leads to process optimization and maximum ion transfer. The nozzle does not hinder the transfer of small ions. Our high-resolution SIMION model (0.01 mm grid unit(-1) ) under consideration of fluid dynamics is generally suitable for predicting the ion transmission through an atmospheric-vacuum system for mass spectrometry and enables the optimization of operational parameters. A Venturi nozzle inserted between the ion funnel and the mass spectrometer permits maximal ion transmission. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Machine learning techniques for energy optimization in mobile embedded systems
NASA Astrophysics Data System (ADS)
Donohoo, Brad Kyoshi
Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.
The role of charge transfer in the energy level alignment at the pentacene/C60 interface.
Beltrán, J; Flores, F; Ortega, J
2014-03-07
Understanding the mechanism of energy level alignment at organic-organic interfaces is a crucial line of research to optimize applications in organic electronics. We address this problem for the C60-pentacene interface by performing local-orbital Density Functional Theory (DFT) calculations, including the effect of the charging energies on the energy gap of both organic materials. The results are analyzed within the induced density of interface states (IDIS) model. We find that the induced interface potential is in the range of 0.06-0.10 eV, in good agreement with the experimental evidence, and that such potential is mainly induced by the small, but non-negligible, charge transfer between the two compounds and the multipolar contribution associated with pentacene. We also suggest that an appropriate external intercompound potential could create an insulator-metal transition at the interface.
Tailoring Heterovalent Interface Formation with Light
Park, Kwangwook; Alberi, Kirstin
2017-08-17
Integrating different semiconductor materials into an epitaxial device structure offers additional degrees of freedom to select for optimal material properties in each layer. However, interface between materials with different valences (i.e. III-V, II-VI and IV semiconductors) can be difficult to form with high quality. Using ZnSe/GaAs as a model system, we explore the use of UV illumination during heterovalent interface growth by molecular beam epitaxy as a way to modify the interface properties. We find that UV illumination alters the mixture of chemical bonds at the interface, permitting the formation of Ga-Se bonds that help to passivate the underlying GaAsmore » layer. Illumination also helps to reduce defects in the ZnSe epilayer. Furthermore, these results suggest that moderate UV illumination during growth may be used as a way to improve the optical properties of both the GaAs and ZnSe layers on either side of the interface.« less
Interfaces of high-efficiency kesterite Cu2ZnSnS(e)4 thin film solar cells
NASA Astrophysics Data System (ADS)
Gao, Shoushuai; Jiang, Zhenwu; Wu, Li; Ao, Jianping; Zeng, Yu; Sun, Yun; Zhang, Yi
2018-01-01
Cu2ZnSnS(e)4 (CZTS(e)) solar cells have attracted much attention due to the elemental abundance and the non-toxicity. However, the record efficiency of 12.6% for Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is much lower than that of Cu(In,Ga)Se2 (CIGS) solar cells. One crucial reason is the recombination at interfaces. In recent years, large amount investigations have been done to analyze the interfacial problems and improve the interfacial properties via a variety of methods. This paper gives a review of progresses on interfaces of CZTS(e) solar cells, including: (1) the band alignment optimization at buffer/CZTS(e) interface, (2) tailoring the thickness of MoS(e)2 interfacial layers between CZTS(e) absorber and Mo back contact, (3) the passivation of rear interface, (4) the passivation of front interface, and (5) the etching of secondary phases.
Zhang, Yi; Monsen, Karen A; Adam, Terrence J; Pieczkiewicz, David S; Daman, Megan; Melton, Genevieve B
2011-01-01
Time and motion (T&M) studies provide an objective method to measure the expenditure of time by clinicians. While some instruments for T&M studies have been designed to evaluate health information technology (HIT), these instruments have not been designed for nursing workflow. We took an existing open source HIT T&M study application designed to evaluate physicians in the ambulatory setting and rationally adapted it through empiric observations to record nursing activities in the inpatient setting and linked this instrument to an existing interface terminology, the Omaha System. Nursing activities involved several dimensions and could include multiple activities occurring simultaneously, requiring significant instrument redesign. 94% of the activities from the study instrument mapped adequately to the Omaha System. T&M study instruments require customization in design optimize them for different environments, such as inpatient nursing, to enable optimal data collection. Interface terminologies show promise as a framework for recording and analyzing T&M study data. PMID:22195228
Modeling and simulation of the debonding process of composite solid propellants
NASA Astrophysics Data System (ADS)
Feng, Tao; Xu, Jin-sheng; Han, Long; Chen, Xiong
2017-07-01
In order to study the damage evolution law of composite solid propellants, the molecular dynamics particle filled algorithm was used to establish the mesoscopic structure model of HTPB(Hydroxyl-terminated polybutadiene) propellants. The cohesive element method was employed for the adhesion interface between AP(Ammonium perchlorate) particle and HTPB matrix and the bilinear cohesive zone model was used to describe the mechanical response of the interface elements. The inversion analysis method based on Hooke-Jeeves optimization algorithm was employed to identify the parameters of cohesive zone model(CZM) of the particle/binder interface. Then, the optimized parameters were applied to the commercial finite element software ABAQUS to simulate the damage evolution process for AP particle and HTPB matrix, including the initiation, development, gathering and macroscopic crack. Finally, the stress-strain simulation curve was compared with the experiment curves. The result shows that the bilinear cohesive zone model can accurately describe the debonding and fracture process between the AP particles and HTPB matrix under the uniaxial tension loading.
Direct discontinuous Galerkin method and its variations for second order elliptic equations
Huang, Hongying; Chen, Zheng; Li, Jin; ...
2016-08-23
In this study, we study direct discontinuous Galerkin method (Liu and Yan in SIAM J Numer Anal 47(1):475–698, 2009) and its variations (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010; Vidden and Yan in J Comput Math 31(6):638–662, 2013; Yan in J Sci Comput 54(2–3):663–683, 2013) for 2nd order elliptic problems. A priori error estimate under energy norm is established for all four methods. Optimal error estimate under L 2 norm is obtained for DDG method with interface correction (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010) and symmetric DDG method (Vidden and Yan in J Comput Mathmore » 31(6):638–662, 2013). A series of numerical examples are carried out to illustrate the accuracy and capability of the schemes. Numerically we obtain optimal (k+1)th order convergence for DDG method with interface correction and symmetric DDG method on nonuniform and unstructured triangular meshes. An interface problem with discontinuous diffusion coefficients is investigated and optimal (k+1)th order accuracy is obtained. Peak solutions with sharp transitions are captured well. Highly oscillatory wave solutions of Helmholz equation are well resolved.« less
NASA Astrophysics Data System (ADS)
Abdillah, T.; Dai, R.; Setiawan, E.
2018-02-01
This study aims to develop the application of Web Services technology with RestFul Protocol to optimize the information presentation on mining potential. This study used User Interface Design approach for the information accuracy and relevance as well as the Web Service for the reliability in presenting the information. The results show that: the information accuracy and relevance regarding mining potential can be seen from the achievement of User Interface implementation in the application that is based on the following rules: The consideration of the appropriate colours and objects, the easiness of using the navigation, and users’ interaction with the applications that employs symbols and languages understood by the users; the information accuracy and relevance related to mining potential can be observed by the information presented by using charts and Tool Tip Text to help the users understand the provided chart/figure; the reliability of the information presentation is evident by the results of Web Services testing in Figure 4.5.6. This study finds out that User Interface Design and Web Services approaches (for the access of different Platform apps) are able to optimize the presentation. The results of this study can be used as a reference for software developers and Provincial Government of Gorontalo.
Direct discontinuous Galerkin method and its variations for second order elliptic equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hongying; Chen, Zheng; Li, Jin
In this study, we study direct discontinuous Galerkin method (Liu and Yan in SIAM J Numer Anal 47(1):475–698, 2009) and its variations (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010; Vidden and Yan in J Comput Math 31(6):638–662, 2013; Yan in J Sci Comput 54(2–3):663–683, 2013) for 2nd order elliptic problems. A priori error estimate under energy norm is established for all four methods. Optimal error estimate under L 2 norm is obtained for DDG method with interface correction (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010) and symmetric DDG method (Vidden and Yan in J Comput Mathmore » 31(6):638–662, 2013). A series of numerical examples are carried out to illustrate the accuracy and capability of the schemes. Numerically we obtain optimal (k+1)th order convergence for DDG method with interface correction and symmetric DDG method on nonuniform and unstructured triangular meshes. An interface problem with discontinuous diffusion coefficients is investigated and optimal (k+1)th order accuracy is obtained. Peak solutions with sharp transitions are captured well. Highly oscillatory wave solutions of Helmholz equation are well resolved.« less
NASA Astrophysics Data System (ADS)
Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu
2018-04-01
We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.
Optimal parameters for arterial repair using light-activated surgical adhesives.
Soller, Eric C; Hoffman, Grant T; McNally-Heintzelman, Karen M
2003-01-01
The clinical acceptance of laser-tissue repair techniques is dependent on the reproducibility of viable repairs. Reproducibility is dependent on two factors: (i) the choice of materials to be used as the adhesive; and (ii) obtaining temperatures high enough to cause protein denaturation at the vital tissue interface without causing excessive thermal damage to the surrounding tissue. The use of a polymer scaffold as a carrier for the protein solder provides for uniform application of the solder to the tissue, thus allowing for pre-selection of optimal laser parameters. The scaffold also facilitates precise tissue alignment and ease of clinical application. In addition, the scaffold can be doped with various pharmaceuticals such as hemostatic and thrombogenic agents to aid wound healing. An ex vivo study was performed to correlate solder and tissue temperature with the tensile strength of arterial repairs formed using scaffold-enhanced light-activated surgical adhesives. Previous studies by our group using solid protein solder without the scaffold indicate that a solder/tissue, interface temperature of 65 degrees C is optimal. Using this parameter as a benchmark, laser irradiance was varied and temperatures were recorded at the surface and at the tissue interface of scaffold-enhanced protein solder using an infrared temperature monitoring system, designed by the researchers, and a type-K thermocouple, respectively.
A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori
2005-07-01
The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less
A Framework to Design and Optimize Chemical Flooding Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori
2006-08-31
The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less
A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori
2004-11-01
The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less
DOT National Transportation Integrated Search
2000-02-01
This training manual describes the fuzzy logic ramp metering algorithm in detail, as implemented system-wide in the greater Seattle area. The method of defining the inputs to the controller and optimizing the performance of the algorithm is explained...
A novel task-oriented optimal design for P300-based brain-computer interfaces.
Zhou, Zongtan; Yin, Erwei; Liu, Yang; Jiang, Jun; Hu, Dewen
2014-10-01
Objective. The number of items of a P300-based brain-computer interface (BCI) should be adjustable in accordance with the requirements of the specific tasks. To address this issue, we propose a novel task-oriented optimal approach aimed at increasing the performance of general P300 BCIs with different numbers of items. Approach. First, we proposed a stimulus presentation with variable dimensions (VD) paradigm as a generalization of the conventional single-character (SC) and row-column (RC) stimulus paradigms. Furthermore, an embedding design approach was employed for any given number of items. Finally, based on the score-P model of each subject, the VD flash pattern was selected by a linear interpolation approach for a certain task. Main results. The results indicate that the optimal BCI design consistently outperforms the conventional approaches, i.e., the SC and RC paradigms. Specifically, there is significant improvement in the practical information transfer rate for a large number of items. Significance. The results suggest that the proposed optimal approach would provide useful guidance in the practical design of general P300-based BCIs.
A novel task-oriented optimal design for P300-based brain-computer interfaces
NASA Astrophysics Data System (ADS)
Zhou, Zongtan; Yin, Erwei; Liu, Yang; Jiang, Jun; Hu, Dewen
2014-10-01
Objective. The number of items of a P300-based brain-computer interface (BCI) should be adjustable in accordance with the requirements of the specific tasks. To address this issue, we propose a novel task-oriented optimal approach aimed at increasing the performance of general P300 BCIs with different numbers of items. Approach. First, we proposed a stimulus presentation with variable dimensions (VD) paradigm as a generalization of the conventional single-character (SC) and row-column (RC) stimulus paradigms. Furthermore, an embedding design approach was employed for any given number of items. Finally, based on the score-P model of each subject, the VD flash pattern was selected by a linear interpolation approach for a certain task. Main results. The results indicate that the optimal BCI design consistently outperforms the conventional approaches, i.e., the SC and RC paradigms. Specifically, there is significant improvement in the practical information transfer rate for a large number of items. Significance. The results suggest that the proposed optimal approach would provide useful guidance in the practical design of general P300-based BCIs.
Zheng, Shijian; Carpenter, John S.; McCabe, Rodney J.; ...
2014-02-27
Nanostructured metals achieve extraordinary strength but suffer from low thermal stability, both a consequence of a high fraction of interfaces. Overcoming this tradeoff relies on making the interfaces themselves thermally stable. In this paper, we show that the atomic structures of bi-metal interfaces in macroscale nanomaterials suitable for engineering structures can be significantly altered via changing the severe plastic deformation (SPD) processing pathway. Two types of interfaces are formed, both exhibiting a regular atomic structure and providing for excellent thermal stability, up to more than half the melting temperature of one of the constituents. Most importantly, the thermal stability ofmore » one is found to be significantly better than the other, indicating the exciting potential to control and optimize macroscale robustness via atomic-scale bimetal interface tuning. As a result, we demonstrate an innovative way to engineer pristine bimetal interfaces for a new class of simultaneously strong and thermally stable materials.« less
Structural optimization of dental restorations using the principle of adaptive growth.
Couegnat, Guillaume; Fok, Siu L; Cooper, Jonathan E; Qualtrough, Alison J E
2006-01-01
In a restored tooth, the stresses that occur at the tooth-restoration interface during loading could become large enough to fracture the tooth and/or restoration and it has been estimated that 92% of fractured teeth have been previously restored. The tooth preparation process for a dental restoration is a classical optimization problem: tooth reduction must be minimized to preserve tooth tissue whilst stress levels must be kept low to avoid fracture of the restored unit. The objective of the present study was to derive alternative optimized designs for a second upper premolar cavity preparation by means of structural shape optimization based on the finite element method and biological adaptive growth. Three models of cavity preparations were investigated: an inlay design for preparation of a premolar tooth, an undercut cavity design and an onlay preparation. Three restorative materials and several tooth/restoration contact conditions were utilized to replicate the in vitro situation as closely as possible. The optimization process was run for each cavity geometry. Mathematical shape optimization based on biological adaptive growth process was successfully applied to tooth preparations for dental restorations. Significant reduction in stress levels at the tooth-restoration interface where bonding is imperfect was achieved using optimized cavity or restoration shapes. In the best case, the maximum stress value was reduced by more than 50%. Shape optimization techniques can provide an efficient and effective means of reducing the stresses in restored teeth and hence has the potential of prolonging their service lives. The technique can easily be adopted for optimizing other dental restorations.
Saha, Rajarshi; Muthuswamy, Jit
2007-06-01
We had earlier demonstrated the use of polysilicon microelectrodes for recording electrical activity from single neurons in vivo. Good machinability and compatibility with CMOS processing further make polysilicon an attractive interface material between biological environments on one hand and MEMS technology and digital circuits on the other hand. In this study, we focus on optimizing the polysilicon thin films for (a) electrical recording and (b) stimulation of single neurons by minimizing its electrochemical impedance spectra and maximizing its charge storage/injection capacity respectively. The structure-property relationships in ion-implanted (phosphorus) LPCVD polysilicon thin films under different annealing and doping conditions were carefully assessed during this optimization process. A 2D model of the polysilicon thin film consisting of 4 grains and 3 grain boundaries was constructed and the effect of grain size and grain boundaries on dc resistivity was simulated using device simulator ATLAS. Optimal processing conditions and doping concentrations resulted in a 10-fold decrease in electrochemical impedance from 1.1 kOmega to 0.1 kOmega at 1 kHz (area of polysilicon interface = 4.8 mm(2)). Subsequent characterizations showed that evolution of secondary grains within the polysilicon thin films at optimal doping and annealing conditions (10(21)/cm(3) of phosphorus and annealed at 1200 degrees C) was responsible for decreasing the impedance. Cyclic voltammetry studies demonstrated that charge storage properties of low doped (10(15)/cm(3)) thin films was 111.4 microC/cm(2) in phosphate buffered saline which compares well with platinum wires (approximately 50 microC/cm(2)) and the double-layered capacitance (C(dl)) could be sustained between -1 to 1 V before breakdown and hydrolysis. We conclude that polysilicon can be optimized for recording and stimulating single neurons and can be a valuable interface material between neurons and CMOS or MEMS devices.
Virtual optical interfaces for the transportation industry
NASA Astrophysics Data System (ADS)
Hejmadi, Vic; Kress, Bernard
2010-04-01
We present a novel implementation of virtual optical interfaces for the transportation industry (automotive and avionics). This new implementation includes two functionalities in a single device; projection of a virtual interface and sensing of the position of the fingers on top of the virtual interface. Both functionalities are produced by diffraction of laser light. The device we are developing include both functionalities in a compact package which has no optical elements to align since all of them are pre-aligned on a single glass wafer through optical lithography. The package contains a CMOS sensor which diffractive objective lens is optimized for the projected interface color as well as for the IR finger position sensor based on structured illumination. Two versions are proposed: a version which senses the 2d position of the hand and a version which senses the hand position in 3d.
NASA Astrophysics Data System (ADS)
Kano, Masayuki; Miyazaki, Shin'ichi; Ishikawa, Yoichi; Hiyoshi, Yoshihisa; Ito, Kosuke; Hirahara, Kazuro
2015-10-01
Data assimilation is a technique that optimizes the parameters used in a numerical model with a constraint of model dynamics achieving the better fit to observations. Optimized parameters can be utilized for the subsequent prediction with a numerical model and predicted physical variables are presumably closer to observations that will be available in the future, at least, comparing to those obtained without the optimization through data assimilation. In this work, an adjoint data assimilation system is developed for optimizing a relatively large number of spatially inhomogeneous frictional parameters during the afterslip period in which the physical constraints are a quasi-dynamic equation of motion and a laboratory derived rate and state dependent friction law that describe the temporal evolution of slip velocity at subduction zones. The observed variable is estimated slip velocity on the plate interface. Before applying this method to the real data assimilation for the afterslip of the 2003 Tokachi-oki earthquake, a synthetic data assimilation experiment is conducted to examine the feasibility of optimizing the frictional parameters in the afterslip area. It is confirmed that the current system is capable of optimizing the frictional parameters A-B, A and L by adopting the physical constraint based on a numerical model if observations capture the acceleration and decaying phases of slip on the plate interface. On the other hand, it is unlikely to constrain the frictional parameters in the region where the amplitude of afterslip is less than 1.0 cm d-1. Next, real data assimilation for the 2003 Tokachi-oki earthquake is conducted to incorporate slip velocity data inferred from time dependent inversion of Global Navigation Satellite System time-series. The optimized values of A-B, A and L are O(10 kPa), O(102 kPa) and O(10 mm), respectively. The optimized frictional parameters yield the better fit to the observations and the better prediction skill of slip velocity afterwards. Also, further experiment shows the importance of employing a fine-mesh model. It will contribute to the further understanding of the frictional properties on plate interfaces and lead to the forecasting system that provides useful information on the possibility of consequent earthquakes.
NASA Technical Reports Server (NTRS)
Chu, Rose W.; Mitchell, Christine M.
1993-01-01
In supervisory control systems such as satellite ground control, there is a need for human-centered automation where the focus is to understand and enhance the human-system interaction experience in the complex task environment. Operator support in the form of off-line intelligent tutoring and on-line intelligent aiding is one approach towards this effort. The tutor/aid paradigm is proposed here as a design approach that integrates the two aspects of operator support in one system for technically oriented adults in complex domains. This paper also presents GT-VITA, a proof-of-concept graphical, interactive, intelligent tutoring system that is a first attempt to illustrate the tutoring aspect of the tutor/aid paradigm in the domain of satellite ground control. Evaluation on GT-VITA is conducted with NASA personnel with very positive results. GT-VITA is presented being fielded as it is at Goddard Space Flight Center.
Design, Development, Testing, and Evaluation: Human Factors Engineering
NASA Technical Reports Server (NTRS)
Adelstein, Bernard; Hobbs, Alan; OHara, John; Null, Cynthia
2006-01-01
While human-system interaction occurs in all phases of system development and operation, this chapter on Human Factors in the DDT&E for Reliable Spacecraft Systems is restricted to the elements that involve "direct contact" with spacecraft systems. Such interactions will encompass all phases of human activity during the design, fabrication, testing, operation, and maintenance phases of the spacecraft lifespan. This section will therefore consider practices that would accommodate and promote effective, safe, reliable, and robust human interaction with spacecraft systems. By restricting this chapter to what the team terms "direct contact" with the spacecraft, "remote" factors not directly involved in the development and operation of the vehicle, such as management and organizational issues, have been purposely excluded. However, the design of vehicle elements that enable and promote ground control activities such as monitoring, feedback, correction and reversal (override) of on-board human and automation process are considered as per NPR8705.2A, Section 3.3.
Integrating surgical robots into the next medical toolkit.
Lai, Fuji; Entin, Eileen
2006-01-01
Surgical robots hold much promise for revolutionizing the field of surgery and improving surgical care. However, despite the potential advantages they offer, there are multiple barriers to adoption and integration into practice that may prevent these systems from realizing their full potential benefit. This study elucidated some of the most salient considerations that need to be addressed for integration of new technologies such as robotic systems into the operating room of the future as it evolves into a complex system of systems. We conducted in-depth interviews with operating room team members and other stakeholders to identify potential barriers in areas of workflow, teamwork, training, clinical acceptance, and human-system interaction. The findings of this study will inform an approach for the design and integration of robotics and related computer-assisted technologies into the next medical toolkit for "computer-enhanced surgery" to improve patient safety and healthcare quality.
Adaptive smart simulator for characterization and MPPT construction of PV array
NASA Astrophysics Data System (ADS)
Ouada, Mehdi; Meridjet, Mohamed Salah; Dib, Djalel
2016-07-01
Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and has a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.
NASA Astrophysics Data System (ADS)
Thangavel, Soundararaj
Discontinuities in Structures are inevitable. One such discontinuity in a plate and cylindrical shell is presence of a hole / holes. In Plates they are used for mounting bolts where as in Cylinder / Pressure Vessel, they provide provision for mounting Nozzles / Instruments. Location of these holes plays a primary role in minimizing the stress acting with out any external reinforcement. In this Thesis work, Location Parameters are optimized for the presence of one or more holes in a plate and cylindrical shell interfacing ANSYS and MATLAB with boundary constraints based on the geometry. Contour plots are generated for understanding stress distribution and analytical solutions are also discussed for some of the classical problems.
Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K
2008-01-01
A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.
Final report: Compiled MPI. Cost-Effective Exascale Application Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gropp, William Douglas
2015-12-21
This is the final report on Compiled MPI: Cost-Effective Exascale Application Development, and summarizes the results under this project. The project investigated runtime enviroments that improve the performance of MPI (Message-Passing Interface) programs; work at Illinois in the last period of this project looked at optimizing data access optimizations expressed with MPI datatypes.
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.
2014-01-01
MADS (Minimization Assistant for Dynamical Systems) is a trajectory optimization code in which a user-specified performance measure is directly minimized, subject to constraints placed on a low-order discretization of user-supplied plant ordinary differential equations. This document describes the mathematical formulation of the set of trajectory optimization problems for which MADS is suitable, and describes the user interface. Usage examples are provided.
Benyamini, Miri; Zacksenhouse, Miriam
2015-01-01
Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.
Benyamini, Miri; Zacksenhouse, Miriam
2015-01-01
Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal. PMID:26042002
Design of a backlighting structure for very large-area luminaries
NASA Astrophysics Data System (ADS)
Carraro, L.; Mäyrä, A.; Simonetta, M.; Benetti, G.; Tramonte, A.; Benedetti, M.; Randone, E. M.; Ylisaukko-Oja, A.; Keränen, K.; Facchinetti, T.; Giuliani, G.
2017-02-01
A novel approach for RGB semiconductor LED-based backlighting system is developed to satisfy the requirements of the Project LUMENTILE funded by the European Commission, whose scope is to develop a luminous electronic tile that is foreseen to be manufactured in millions of square meters each year. This unconventionally large-area surface of uniform, high-brightness illumination requires a specific optical design to keep a low production cost, while maintaining high optical extraction efficiency and a reduced thickness of the structure, as imposed by architectural design constraints. The proposed solution is based on a light-guiding layer to be illuminated by LEDs in edge configuration, or in a planar arrangement. The light guiding slab is finished with a reflective top interface and a diffusive or reflective bottom interface/layer. Patterning is used for both the top interface (punctual removal of reflection and generation of a light scattering centers) and for the bottom layer (using dark/bright printed pattern). Computer-based optimization algorithms based on ray-tracing are used to find optimal solutions in terms of uniformity of illumination of the top surface and overall light extraction efficiency. Through a closed-loop optimization process, that assesses the illumination uniformity of the top surface, the algorithm generates the desired optimized top and bottom patterns, depending on the number of LED sources used, their geometry, and the thickness of the guiding layer. Specific low-cost technologies to realize the patterning are discussed, with the goal of keeping the production cost of these very large-area luminaries below the value of 100$/sqm.
Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system
Wood, Brandon C.; Stavila, Vitalie; Poonyayant, Natchapol; ...
2017-01-20
Internal interfaces in the Li 3N/[LiNH 2 + 2LiH] solid-state hydrogen storage system alter the hydrogenation and dehydrogenation reaction pathways upon nanosizing, suppressing undesirable intermediate phases to dramatically improve kinetics and reversibility. Finally, the key role of solid interfaces in determining thermodynamics and kinetics suggests a new paradigm for optimizing complex hydrides for solid-state hydrogen storage by engineering internal microstructure.
Optimizing Observations of Sea Ice Thickness and Snow Depth in the Arctic
2015-09-30
Region Research and Engineering Laboratory (CRREL), Naval Research Laboratory (NRL) and National Aeronautics and Space Administration ( NASA ) in...and results from this focused effort with data collected during related national and international activities (e.g. other NASA IceBridge sea ice...surface elevation of the snow or ice/air interface, and radar altimetry measurements of the snow/ice interface, taken by NASA IceBridge and NRL
Synergistic interface behavior of strontium adsorption using mixed microorganisms.
Hu, Wenyuan; Dong, Faqin; Yang, Guangmin; Peng, Xin; Huang, Xiaojun; Liu, Mingxue; Zhang, Jing
2017-08-10
The proper handling of low-level radioactive waste is crucial to promote the sustainable development of nuclear power. Research into the mechanism for interactions between bacterium and radionuclides is the starting point for achieving successful remediation of radionuclides with microorganisms. Using Sr(II) as a simulation radionuclide and the mixed microorganisms of Saccharomyces cerevisiae and Bacillus subtilis as the biological adsorbent, this study investigates behavior at the interface between Sr(II) and the microorganisms as well as the mechanisms governing that behavior. The results show that the optimal ratio of mixed microorganisms is S. cerevisiae 2.0 g L -1 to B. subtilis 0.05 g L -1 , and the optimal pH is about 6.3. Sr(II) biosorption onto the mixed microorganisms is spontaneous and endothermic in nature. The kinetics and the equilibrium isotherm data of the biosorption process can be described with pseudo-second-order equation and the Langmuir isotherm equation, respectively. The key interaction between the biological adsorbent and Sr(II) involves shared electronic pairs arising from chemical reactions via bond complexation or electronic exchange, and spectral and energy spectrum analysis show that functional groups (e.g., hydroxyl, carboxyl, amino, amide) at the interface between the radionuclide and the mixed microorganisms are the main active sites of the interface reactions.
Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis.
Sun, Yingjun; Liang, Yanxia; Luo, Mingchuan; Lv, Fan; Qin, Yingnan; Wang, Lei; Xu, Chuan; Fu, Engang; Guo, Shaojun
2018-01-01
Nanostructured Pt is the most efficient single-metal catalyst for fuel cell technology. Great efforts have been devoted to optimizing the Pt-based alloy nanocrystals with desired structure, composition, and shape for boosting the electrocatalytic activity. However, these well-known controls still show the limited ability in maximizing the Pt utilization efficiency for achieving more efficient fuel cell catalysis. Herein, a new strategy for maximizing the fuel cell catalysis by controlling/tuning the defects and interfaces of PtPb nanoplates using ion irradiation technique is reported. The defects and interfaces on PtPb nanoplates, controlled by the fluence of incident C + ions, make them exhibit the volcano-like electrocatalytic activity for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and oxygen reduction reaction (ORR) as a function of ion irradiation fluence. The optimized PtPb nanoplates with the mixed structure of dislocations, subgrain boundaries, and small amorphous domains are the most active for MOR, EOR, and ORR. They can also maintain high catalytic stability in acid solution. This work highlights the impact and significance of inducing/controlling the defects and interfaces on Pt-based nanocrystals toward maximizing the catalytic performance by advanced ion irradiation strategy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Abid, Najmul; Mirkhalaf, Mohammad; Barthelat, Francois
2018-03-01
Natural materials such as nacre, collagen, and spider silk are composed of staggered stiff and strong inclusions in a softer matrix. This type of hybrid microstructure results in remarkable combinations of stiffness, strength, and toughness and it now inspires novel classes of high-performance composites. However, the analytical and numerical approaches used to predict and optimize the mechanics of staggered composites often neglect statistical variations and inhomogeneities, which may have significant impacts on modulus, strength, and toughness. Here we present an analysis of localization using small representative volume elements (RVEs) and large scale statistical volume elements (SVEs) based on the discrete element method (DEM). DEM is an efficient numerical method which enabled the evaluation of more than 10,000 microstructures in this study, each including about 5,000 inclusions. The models explore the combined effects of statistics, inclusion arrangement, and interface properties. We find that statistical variations have a negative effect on all properties, in particular on the ductility and energy absorption because randomness precipitates the localization of deformations. However, the results also show that the negative effects of random microstructures can be offset by interfaces with large strain at failure accompanied by strain hardening. More specifically, this quantitative study reveals an optimal range of interface properties where the interfaces are the most effective at delaying localization. These findings show how carefully designed interfaces in bioinspired staggered composites can offset the negative effects of microstructural randomness, which is inherent to most current fabrication methods.
A three-dimensional topology optimization model for tooth-root morphology.
Seitz, K-F; Grabe, J; Köhne, T
2018-02-01
To obtain the root of a lower incisor through structural optimization, we used two methods: optimization with Solid Isotropic Material with Penalization (SIMP) and Soft-Kill Option (SKO). The optimization was carried out in combination with a finite element analysis in Abaqus/Standard. The model geometry was based on cone-beam tomography scans of 10 adult males with healthy bone-tooth interface. Our results demonstrate that the optimization method using SIMP for minimum compliance could not adequately predict the actual root shape. The SKO method, however, provided optimization results that were comparable to the natural root form and is therefore suitable to set up the basic topology of a dental root.
Optimized Algorithms for Prediction Within Robotic Tele-Operative Interfaces
NASA Technical Reports Server (NTRS)
Martin, Rodney A.; Wheeler, Kevin R.; Allan, Mark B.; SunSpiral, Vytas
2010-01-01
Robonaut, the humanoid robot developed at the Dexterous Robotics Labo ratory at NASA Johnson Space Center serves as a testbed for human-rob ot collaboration research and development efforts. One of the recent efforts investigates how adjustable autonomy can provide for a safe a nd more effective completion of manipulation-based tasks. A predictiv e algorithm developed in previous work was deployed as part of a soft ware interface that can be used for long-distance tele-operation. In this work, Hidden Markov Models (HMM?s) were trained on data recorded during tele-operation of basic tasks. In this paper we provide the d etails of this algorithm, how to improve upon the methods via optimization, and also present viable alternatives to the original algorithmi c approach. We show that all of the algorithms presented can be optim ized to meet the specifications of the metrics shown as being useful for measuring the performance of the predictive methods. 1
A genetic algorithm approach in interface and surface structure optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jian
The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the materialmore » structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.« less
A comparison of optimal MIMO linear and nonlinear models for brain machine interfaces
NASA Astrophysics Data System (ADS)
Kim, S.-P.; Sanchez, J. C.; Rao, Y. N.; Erdogmus, D.; Carmena, J. M.; Lebedev, M. A.; Nicolelis, M. A. L.; Principe, J. C.
2006-06-01
The field of brain-machine interfaces requires the estimation of a mapping from spike trains collected in motor cortex areas to the hand kinematics of the behaving animal. This paper presents a systematic investigation of several linear (Wiener filter, LMS adaptive filters, gamma filter, subspace Wiener filters) and nonlinear models (time-delay neural network and local linear switching models) applied to datasets from two experiments in monkeys performing motor tasks (reaching for food and target hitting). Ensembles of 100-200 cortical neurons were simultaneously recorded in these experiments, and even larger neuronal samples are anticipated in the future. Due to the large size of the models (thousands of parameters), the major issue studied was the generalization performance. Every parameter of the models (not only the weights) was selected optimally using signal processing and machine learning techniques. The models were also compared statistically with respect to the Wiener filter as the baseline. Each of the optimization procedures produced improvements over that baseline for either one of the two datasets or both.
NASA Astrophysics Data System (ADS)
Liu, Xianguo; Yu, Jieyi; Cui, Caiyun; Sun, Yuping; Li, Xiaolong; Li, Zhenxing
2018-07-01
At present, microwave absorbers are prepared by dispersing absorbing nanomaterials in a binder, which can lead to the aggregation of nanomaterials in the binder and further affect the optimization of the absorption performances. Hybrid micro/nano-scale structures are beneficial for buffering agglomeration phenomena and the construction of multiple interfaces. Here, Ni@C nanocapsules are conjugated onto flower-like BiOI microspheres, forming micro/nano-scale hybrid composites. The multiple interfaces between BiOI microspheres and Ni@C nanocapsules can bring enhanced dielectric loss and increased attenuation constant, resulting in the enhancement of absorption capacity (the optimal reflection loss reaches ‑61.35 dB), increased width of the effective absorption band (the maximum effective bandwidth, f Emax , is 5.86 GHz) and the reduction of absorption thickness (the thickness corresponding to f Emax is 1.7 mm). This study highlights a simple idea for the optimization of electromagnetic absorbing performance, which is of great significance in the development of microwave absorbers.
A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces.
Kim, S-P; Sanchez, J C; Rao, Y N; Erdogmus, D; Carmena, J M; Lebedev, M A; Nicolelis, M A L; Principe, J C
2006-06-01
The field of brain-machine interfaces requires the estimation of a mapping from spike trains collected in motor cortex areas to the hand kinematics of the behaving animal. This paper presents a systematic investigation of several linear (Wiener filter, LMS adaptive filters, gamma filter, subspace Wiener filters) and nonlinear models (time-delay neural network and local linear switching models) applied to datasets from two experiments in monkeys performing motor tasks (reaching for food and target hitting). Ensembles of 100-200 cortical neurons were simultaneously recorded in these experiments, and even larger neuronal samples are anticipated in the future. Due to the large size of the models (thousands of parameters), the major issue studied was the generalization performance. Every parameter of the models (not only the weights) was selected optimally using signal processing and machine learning techniques. The models were also compared statistically with respect to the Wiener filter as the baseline. Each of the optimization procedures produced improvements over that baseline for either one of the two datasets or both.
A Domain Decomposition Parallelization of the Fast Marching Method
NASA Technical Reports Server (NTRS)
Herrmann, M.
2003-01-01
In this paper, the first domain decomposition parallelization of the Fast Marching Method for level sets has been presented. Parallel speedup has been demonstrated in both the optimal and non-optimal domain decomposition case. The parallel performance of the proposed method is strongly dependent on load balancing separately the number of nodes on each side of the interface. A load imbalance of nodes on either side of the domain leads to an increase in communication and rollback operations. Furthermore, the amount of inter-domain communication can be reduced by aligning the inter-domain boundaries with the interface normal vectors. In the case of optimal load balancing and aligned inter-domain boundaries, the proposed parallel FMM algorithm is highly efficient, reaching efficiency factors of up to 0.98. Future work will focus on the extension of the proposed parallel algorithm to higher order accuracy. Also, to further enhance parallel performance, the coupling of the domain decomposition parallelization to the G(sub 0)-based parallelization will be investigated.
Towards tunable and multifunctional interfaces: Multicomponent amorphous alloys and bilayer stacks
NASA Astrophysics Data System (ADS)
Kast, Matthew G.
Controlling the electronic structure and requisite charge transfer at and across interfaces is a grand challenge of materials science. Despite decades of research and numerous successes in the fields microelectronics and photovoltaics much work remains to be done. In many applications, whether they be in microelectronics, photovoltaics or display technology there is a demand for multiple functions at a single interface. Historically, existent materials were either discarded as an option due to known properties or tested with some application based figure of merit in mind. Following this, the quality of the material and/or the preparation of the surface/interface to which the material would be deposited was optimized. As the microelectronics and photovoltaics industries have matured, continued progress (faster, lower power transistors and more efficient, cheaper, abundant solar cells) will require new materials (possibly not previously existent) that are fundamentally better for their application than their highly optimized existent counter parts. The manifestation of this has been seen in the microelectronics field with introduction of hafnium silicates to replace silica (which had previously been monumentally successful) as the gate dielectrics for the most advanced transistors. Continued progress in efficient, cheap, abundant photovoltaics will require similar advances. Advances will be needed in the area of new abundant absorbers that can be deposited cheaply which result in materials with high efficiencies. In addition, selective contacts capable of extracting charge from efficient absorbers with low ohmic losses and low recombination rates will be needed. Presented here are two approaches to the multifunctional interface problem, first the use of amorphous alloys that open up the accessible composition space of thin films significantly and second the use of bilayers that loosen the requirements of a single film at an interface.
Charge transfer mechanism for the formation of metallic states at the KTaO3/SrTiO3 interface
NASA Astrophysics Data System (ADS)
Nazir, S.; Singh, N.; Schwingenschlögl, U.
2011-03-01
The electronic and optical properties of the KTaO3/SrTiO3 heterointerface are analyzed by the full-potential linearized augmented plane-wave approach of density functional theory. Optimization of the atomic positions points at subordinate changes in the crystal structure and chemical bonding near the interface, which is due to a minimal lattice mismatch. The creation of metallic interface states thus is not affected by structural relaxation but can be explained by charge transfer between transition metal and oxygen atoms. It is to be expected that a charge transfer is likewise important for related interfaces such as LaAlO3/SrTiO3. The KTaO3/SrTiO3 system is ideal for disentangling the complex behavior of metallic interface states, since almost no structural relaxation takes place.
The Galley Parallel File System
NASA Technical Reports Server (NTRS)
Nieuwejaar, Nils; Kotz, David
1996-01-01
Most current multiprocessor file systems are designed to use multiple disks in parallel, using the high aggregate bandwidth to meet the growing I/0 requirements of parallel scientific applications. Many multiprocessor file systems provide applications with a conventional Unix-like interface, allowing the application to access multiple disks transparently. This interface conceals the parallelism within the file system, increasing the ease of programmability, but making it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. In addition to providing an insufficient interface, most current multiprocessor file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic scientific multiprocessor workloads. We discuss Galley's file structure and application interface, as well as the performance advantages offered by that interface.
Electrolyte Structure near Electrode Interfaces in Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo; Ong, Mitchell; Verners, Osvalds; van Duin, Adri; Draeger, Erik; Pask, John
2014-03-01
The performance of lithium-ion secondary batteries (LIBs) is strongly tied to electrochemistry and ionic transport near the electrode-electrolyte interface. Changes in ion solvation near the interface affect ion conductivity and also are associated with the formation and evolution of solid-electrolyte interphase (SEI) layers, which impede transport but also passivate the interface. Thus, understanding these effects is critical to optimizing battery performance. Here we present molecular dynamics (MD) simulations of typical organic liquid LIB electrolytes in contact with graphite electrodes to understand differences in molecular structure and solvation near the interface compared to the bulk electrolyte. Results for different graphite terminations are presented. We compare the results of density-functional based MD to the empirical reactive forcefield ReaxFF and the non-reactive, non-polarizable COMPASS forcefield. Notable differences in the predictive power of each of these techniques are discussed. Prepared by LLNL under Contract DE-AC52-07NA27344.
1986-03-04
satisfied, but the availability of the machinery will entice developments to appear over the next few years. TABULATION AND DISPLAY To gain access to...independent, identicallyof the optimal predictor and the mean square distributed random variables with mean 0 and difference between the optimal forecast... optimal forecast (the conditional mean of YT+, given qute approximation to a2 1 j For the% Yl ~ ~ ~ ~ ~ ~ ~ . ... ,FT) thehtm-[ ]# rn-1 Y1...;,YT) and
Contingency Contractor Optimization Phase 3 Sustainment Cost by JCA Implementation Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durfee, Justin David; Frazier, Christopher Rawls; Arguello, Bryan
This document provides implementation guidance for implementing personnel group FTE costs by JCA Tier 1 or 2 categories in the Contingency Contractor Optimization Tool – Engineering Prototype (CCOT-P). CCOT-P currently only allows FTE costs by personnel group to differ by mission. Changes will need to be made to the user interface inputs pages and the database
Mobile Tactical HF/VHF/EW System for Ground Forces
1989-09-01
presen- tation of what I have learned . I would like to thank my advisor, Professor Robert Partelow, and co-advisor, Commander James R. Powell, for the...analyze newly developed systems to determine how the man- machine interfaces of such systems can best be designed for optimal use by the operators. B...terminals and other controls. If factors like luminance ratio, reflectance, glare illuminance are allowed for good man- machine interface then an effective
Adaptive smart simulator for characterization and MPPT construction of PV array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouada, Mehdi, E-mail: mehdi.ouada@univ-annaba.org; Meridjet, Mohamed Salah; Dib, Djalel
2016-07-25
Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and hasmore » a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.« less
Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization
NASA Astrophysics Data System (ADS)
Blanchet, David; Fontaine, Bruno
2017-09-01
The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.
Toward High-Performance Communications Interfaces for Science Problem Solving
NASA Astrophysics Data System (ADS)
Oviatt, Sharon L.; Cohen, Adrienne O.
2010-12-01
From a theoretical viewpoint, educational interfaces that facilitate communicative actions involving representations central to a domain can maximize students' effort associated with constructing new schemas. In addition, interfaces that minimize working memory demands due to the interface per se, for example by mimicking existing non-digital work practice, can preserve students' attentional focus on their learning task. In this research, we asked the question: What type of interface input capabilities provide best support for science problem solving in both low- and high- performing students? High school students' ability to solve a diverse range of biology problems was compared over longitudinal sessions while they used: (1) hardcopy paper and pencil (2) a digital paper and pen interface (3) pen tablet interface, and (4) graphical tablet interface. Post-test evaluations revealed that time to solve problems, meta-cognitive control, solution correctness, and memory all were significantly enhanced when using the digital pen and paper interface, compared with tablet interfaces. The tangible pen and paper interface also was the only alternative that significantly facilitated skill acquisition in low-performing students. Paradoxically, all students nonetheless believed that the tablet interfaces provided best support for their performance, revealing a lack of self-awareness about how to use computational tools to best advantage. Implications are discussed for how pen interfaces can be optimized for future educational purposes, and for establishing technology fluency curricula to improve students' awareness of the impact of digital tools on their performance.
Park, Gi Soon; Chu, Van Ben; Kim, Byoung Woo; Kim, Dong-Wook; Oh, Hyung-Suk; Hwang, Yun Jeong; Min, Byoung Koun
2018-03-28
An optimization of band alignment at the p-n junction interface is realized on alcohol-based solution-processed Cu(In,Ga)(S,Se) 2 (CIGS) thin film solar cells, achieving a power-conversion-efficiency (PCE) of 14.4%. To obtain a CIGS thin film suitable for interface engineering, we designed a novel "3-step chalcogenization process" for Cu 2- x Se-derived grain growth and a double band gap grading structure. Considering S-rich surface of the CIGS thin film, an alternative ternary (Cd,Zn)S buffer layer is adopted to build favorable "spike" type conduction band alignment instead of "cliff" type. Suppression of interface recombination is elucidated by comparing recombination activation energies using a dark J- V- T analysis.
The Operator Guide: An Ambient Persuasive Interface in the Factory
NASA Astrophysics Data System (ADS)
Meschtscherjakov, Alexander; Reitberger, Wolfgang; Pöhr, Florian; Tscheligi, Manfred
In this paper we introduce the context of a semiconductor factory as a promising area for the application of innovative interaction approaches. In order to increase efficiency ambient persuasive interfaces, which influence the operators' behaviour to perform in an optimized way, could constitute a potential strategy. We present insights gained from qualitative studies conducted in a specific semiconductor factory and provide a description of typical work processes and already deployed interfaces in this context. These findings informed the design of a prototype of an ambient persuasive interface within this realm - the "Operator Guide". Its overall aim is to improve work efficiency, while still maintaining a minimal error rate. We provide a detailed description of the Operator Guide along with an outlook of the next steps within a user-centered design approach.
Relating Linear and Volumetric Variables Through Body Scanning to Improve Human Interfaces in Space
NASA Technical Reports Server (NTRS)
Margerum, Sarah E.; Ferrer, Mike A.; Young, Karen S.; Rajulu, Sudhakar
2010-01-01
Designing space suits and vehicles for the diverse human population present unique challenges for the methods of traditional anthropometry. Space suits are bulky and allow the operator to shift position within the suit and inhibit the ability to identify body landmarks. Limited suit sizing options also cause variability in fit and performance between similarly sized individuals. Space vehicles are restrictive in volume in both the fit and the ability to collect data. NASA's Anthropometric and Biomechanics Facility (ABF) has utilized 3D scanning to shift from traditional linear anthropometry to explore and examine volumetric capabilities to provide anthropometric solutions for design. Overall, the key goals are to improve the human-system performance and develop new processes to aid in the design and evaluation of space systems. Four case studies are presented that illustrate the shift from purely linear analyses to an augmented volumetric toolset to predict and analyze the human within the space suit and vehicle. The first case study involves the calculation of maximal head volume to estimate total free volume in the helmet for proper air exchange. Traditional linear measurements resulted in an inaccurate representation of the head shape, yet limited data exists for the determination of a large head volume. Steps were first taken to identify and classify a maximum head volume and the resulting comparisons to the estimate are presented in this paper. This study illustrates the gap between linear components of anthropometry and the need for overall volume metrics in order to provide solutions. A second case study examines the overlay of the space suit scans and components onto scanned individuals to quantify fit and clearance to aid in sizing the suit to the individual. Restrictions in space suit size availability present unique challenges to optimally fit the individual within a limited sizing range while maintaining performance. Quantification of the clearance and fit between similarly sized individuals is critical in providing a greater understanding of the human body's function within the suit. The third case study presented in this paper explores the development of a conformal seat pan using scanning techniques, and details the challenges of volumetric analyses that were overcome in order to develop a universal seat pan that can be utilized across the entire user population. The final case study explores expanding volumetric capabilities through generation of boundary manikins. Boundary manikins are representative individuals from the population of interest that represent the extremes of the population spectrum. The ABF developed a technique to take three-dimensional scans of individuals and manipulate the scans to reflect the boundary manikins' anthropometry. In essence, this process generates a representative three-dimensional scan of an individual from anthropometry, using another individual's scanned image. The results from this process can be used in design process modeling and initial suit sizing work as a three dimensional, realistic example of individuals from the population, maintaining the variability between and correlation to the relevant dimensions of interest.
Optimality of general lattice transformations with applications to the Bain strain in steel
NASA Astrophysics Data System (ADS)
Koumatos, K.; Muehlemann, A.
2016-04-01
This article provides a rigorous proof of a conjecture by E. C. Bain in 1924 on the optimality of the so-called Bain strain based on a criterion of least atomic movement. A general framework that explores several such optimality criteria is introduced and employed to show the existence of optimal transformations between any two Bravais lattices. A precise algorithm and a graphical user interface to determine this optimal transformation is provided. Apart from the Bain conjecture concerning the transformation from face-centred cubic to body-centred cubic, applications include the face-centred cubic to body-centred tetragonal transition as well as the transformation between two triclinic phases of terephthalic acid.
Optimality of general lattice transformations with applications to the Bain strain in steel
Koumatos, K.
2016-01-01
This article provides a rigorous proof of a conjecture by E. C. Bain in 1924 on the optimality of the so-called Bain strain based on a criterion of least atomic movement. A general framework that explores several such optimality criteria is introduced and employed to show the existence of optimal transformations between any two Bravais lattices. A precise algorithm and a graphical user interface to determine this optimal transformation is provided. Apart from the Bain conjecture concerning the transformation from face-centred cubic to body-centred cubic, applications include the face-centred cubic to body-centred tetragonal transition as well as the transformation between two triclinic phases of terephthalic acid. PMID:27274692
Studies on dispersive stabilization of porous media flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daripa, Prabir, E-mail: prabir.daripa@math.tamu.edu; Gin, Craig
Motivated by a need to improve the performance of chemical enhanced oil recovery (EOR) processes, we investigate dispersive effects on the linear stability of three-layer porous media flow models of EOR for two different types of interfaces: permeable and impermeable interfaces. Results presented are relevant for the design of smarter interfaces in the available parameter space of capillary number, Peclet number, longitudinal and transverse dispersion, and the viscous profile of the middle layer. The stabilization capacity of each of these two interfaces is explored numerically and conditions for complete dispersive stabilization are identified for each of these two types ofmore » interfaces. Key results obtained are (i) three-layer porous media flows with permeable interfaces can be almost completely stabilized by diffusion if the optimal viscous profile is chosen, (ii) flows with impermeable interfaces can also be almost completely stabilized for short time, but become more unstable at later times because diffusion flattens out the basic viscous profile, (iii) diffusion stabilizes short waves more than long waves which leads to a “turning point” Peclet number at which short and long waves have the same growth rate, and (iv) mechanical dispersion further stabilizes flows with permeable interfaces but in some cases has a destabilizing effect for flows with impermeable interfaces, which is a surprising result. These results are then used to give a comparison of the two types of interfaces. It is found that for most values of the flow parameters, permeable interfaces suppress flow instability more than impermeable interfaces.« less
2014-11-01
Paradigm ............................................................................19 3.4 Collaborative BCI for Improving Overall Performance...interfaces ( BCIs ) provide the biggest improvement in performance? Can we demonstrate clear advantages with BCIs ? 2 2. Simulator Development and...stimuli in real time. Fig. 18 ROC curves for each subject after the combination of 2 trials 3.4 Collaborative BCI for Improving Overall
Optimization of Microelectronic Devices for Sensor Applications
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
2000-01-01
The NASA/JPL goal to reduce payload in future space missions while increasing mission capability demands miniaturization of active and passive sensors, analytical instruments and communication systems among others. Currently, typical system requirements include the detection of particular spectral lines, associated data processing, and communication of the acquired data to other systems. Advances in lithography and deposition methods result in more advanced devices for space application, while the sub-micron resolution currently available opens a vast design space. Though an experimental exploration of this widening design space-searching for optimized performance by repeated fabrication efforts-is unfeasible, it does motivate the development of reliable software design tools. These tools necessitate models based on fundamental physics and mathematics of the device to accurately model effects such as diffraction and scattering in opto-electronic devices, or bandstructure and scattering in heterostructure devices. The software tools must have convenient turn-around times and interfaces that allow effective usage. The first issue is addressed by the application of high-performance computers and the second by the development of graphical user interfaces driven by properly developed data structures. These tools can then be integrated into an optimization environment, and with the available memory capacity and computational speed of high performance parallel platforms, simulation of optimized components can proceed. In this paper, specific applications of the electromagnetic modeling of infrared filtering, as well as heterostructure device design will be presented using genetic algorithm global optimization methods.
Shark: SQL and Analytics with Cost-Based Query Optimization on Coarse-Grained Distributed Memory
2014-01-13
RDBMS and contains a database (often MySQL or Derby) with a namespace for tables, table metadata and partition information. Table data is stored in an...serialization/deserialization) Java interface implementations with corresponding object inspectors. The Hive driver controls the processing of queries, coordinat...native API, RDD operations are invoked through a functional interface similar to DryadLINQ [32] in Scala, Java or Python. For example, the Scala code for
Binding free energy analysis of protein-protein docking model structures by evERdock.
Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio
2018-03-14
To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.
Binding free energy analysis of protein-protein docking model structures by evERdock
NASA Astrophysics Data System (ADS)
Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio
2018-03-01
To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.
Treatment of geometric singularities in implicit solvent models
NASA Astrophysics Data System (ADS)
Yu, Sining; Geng, Weihua; Wei, G. W.
2007-06-01
Geometric singularities, such as cusps and self-intersecting surfaces, are major obstacles to the accuracy, convergence, and stability of the numerical solution of the Poisson-Boltzmann (PB) equation. In earlier work, an interface technique based PB solver was developed using the matched interface and boundary (MIB) method, which explicitly enforces the flux jump condition at the solvent-solute interfaces and leads to highly accurate biomolecular electrostatics in continuum electric environments. However, such a PB solver, denoted as MIBPB-I, cannot maintain the designed second order convergence whenever there are geometric singularities, such as cusps and self-intersecting surfaces. Moreover, the matrix of the MIBPB-I is not optimally symmetrical, resulting in the convergence difficulty. The present work presents a new interface method based PB solver, denoted as MIBPB-II, to address the aforementioned problems. The present MIBPB-II solver is systematical and robust in treating geometric singularities and delivers second order convergence for arbitrarily complex molecular surfaces of proteins. A new procedure is introduced to make the MIBPB-II matrix optimally symmetrical and diagonally dominant. The MIBPB-II solver is extensively validated by the molecular surfaces of few-atom systems and a set of 24 proteins. Converged electrostatic potentials and solvation free energies are obtained at a coarse grid spacing of 0.5Å and are considerably more accurate than those obtained by the PBEQ and the APBS at finer grid spacings.
NASA Astrophysics Data System (ADS)
Li, Fangsen; Ding, Hao; Tang, Chenjia; Peng, Junping; Zhang, Qinghua; Zhang, Wenhao; Zhou, Guanyu; Zhang, Ding; Song, Can-Li; He, Ke; Ji, Shuaihua; Chen, Xi; Gu, Lin; Wang, Lili; Ma, Xu-Cun; Xue, Qi-Kun
2015-06-01
Recently discovered high-temperature superconductivity in single-unit-cell (UC) FeSe films on SrTi O3 (STO) substrate has stimulated tremendous research interest, both experimental and theoretical. Whether this scenario could be extended to other superconductors is vital in both identifying the enhanced superconductivity mechanism and further raising the critical transition temperature (Tc). Here we successfully prepared single-UC FeT e1 -xS ex(0.1 ≤x ≤0.6 ) films on STO substrates by molecular beam epitaxy and observed U -shaped superconducting gaps (Δ ) up to ˜16.5 meV , nearly ten times the gap value (Δ ˜1.7 meV ) of the optimally doped bulk FeT e0 .6S e0 .4 single crystal (Tc˜14.5 K ). No superconducting gap has been observed on the second UC and thicker FeT e1 -xS ex films at 5.7 K, indicating the important role of the interface. This interface-enhanced high-temperature superconductivity is further confirmed by ex situ transport measurements, which revealed an onset superconducting transition temperature above 40 K, nearly two times higher than that of the optimally doped bulk FeT e0 .6S e0 .4 single crystal. This work demonstrates that interface engineering is a feasible way to discover alternative superconductors with higher Tc.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Hashizume, Tamotsu; Hasegawa, Hideki
1999-02-01
In order to understand and optimize a novel oxide-free InP passivation process using a silicon surface quantum well, a detailed in situ X-ray photoelectron spectroscopy (XPS) and ultrahigh vacuum (UHV) contactless capacitance-voltage (C-V) study of the interface was carried out. Calculation of quantum levels in the silicon quantum well was performed on the basis of the band lineup of the strained Si3N4/Si/InP interface and the result indicated that the interface should become free of gap states when the silicon layer thickness is below 5 Å. Experimentally, such a delicate Si3N4/Si/InP structure was realized by partial nitridation of a molecular beam epitaxially (MBE) grown pseudomorphic silicon layer using an electron cyclotron resonance (ECR) N2 plasma. The progress of nitridation was investigated in detail by angle-resolved XPS. A newly developed UHV contactless C-V method realized in situ characterization of surface electronic properties of InP at each processing step for passivation. It was found that the interface state density decreased substantially into the 1010 cm-2 eV-1 range by optimizing the nitridation process of the silicon layer. It was concluded that both the surface bond termination and state removal by quantum confinement are responsible for the NSS reduction.
Multi-Disciplinary Analysis and Optimization Frameworks
NASA Technical Reports Server (NTRS)
Naiman, Cynthia Gutierrez
2009-01-01
Since July 2008, the Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed one major milestone, Define Architecture & Interfaces for Next Generation Open Source MDAO Framework Milestone (9/30/08), and is completing the Generation 1 Framework validation milestone, which is due December 2008. Included in the presentation are: details of progress on developing the Open MDAO framework, modeling and testing the Generation 1 Framework, progress toward establishing partnerships with external parties, and discussion of additional potential collaborations
Multidisciplinary Analysis and Optimization Generation 1 and Next Steps
NASA Technical Reports Server (NTRS)
Naiman, Cynthia Gutierrez
2008-01-01
The Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed three major milestones during Fiscal Year (FY)08: "Requirements Definition" Milestone (1/31/08); "GEN 1 Integrated Multi-disciplinary Toolset" (Annual Performance Goal) (6/30/08); and "Define Architecture & Interfaces for Next Generation Open Source MDAO Framework" Milestone (9/30/08). Details of all three milestones are explained including documentation available, potential partner collaborations, and next steps in FY09.
Optimization-based interactive segmentation interface for multiregion problems
Baxter, John S. H.; Rajchl, Martin; Peters, Terry M.; Chen, Elvis C. S.
2016-01-01
Abstract. Interactive segmentation is becoming of increasing interest to the medical imaging community in that it combines the positive aspects of both manual and automated segmentation. However, general-purpose tools have been lacking in terms of segmenting multiple regions simultaneously with a high degree of coupling between groups of labels. Hierarchical max-flow segmentation has taken advantage of this coupling for individual applications, but until recently, these algorithms were constrained to a particular hierarchy and could not be considered general-purpose. In a generalized form, the hierarchy for any given segmentation problem is specified in run-time, allowing different hierarchies to be quickly explored. We present an interactive segmentation interface, which uses generalized hierarchical max-flow for optimization-based multiregion segmentation guided by user-defined seeds. Applications in cardiac and neonatal brain segmentation are given as example applications of its generality. PMID:27335892
NASA Technical Reports Server (NTRS)
Rogers, James L.; Feyock, Stefan; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
The purpose of this research effort is to investigate the benefits that might be derived from applying artificial intelligence tools in the area of conceptual design. Therefore, the emphasis is on the artificial intelligence aspects of conceptual design rather than structural and optimization aspects. A prototype knowledge-based system, called STRUTEX, was developed to initially configure a structure to support point loads in two dimensions. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user by integrating a knowledge base interface and inference engine, a data base interface, and graphics while keeping the knowledge base and data base files separate. The system writes a file which can be input into a structural synthesis system, which combines structural analysis and optimization.
Optimizing atomic force microscopy for characterization of diamond-protein interfaces
NASA Astrophysics Data System (ADS)
Rezek, Bohuslav; Ukraintsev, Egor; Kromka, Alexander
2011-12-01
Atomic force microscopy (AFM) in contact mode and tapping mode is employed for high resolution studies of soft organic molecules (fetal bovine serum proteins) on hard inorganic diamond substrates in solution and air. Various effects in morphology and phase measurements related to the cantilever spring constant, amplitude of tip oscillations, surface approach, tip shape and condition are demonstrated and discussed based on the proposed schematic models. We show that both diamond and proteins can be mechanically modified by Si AFM cantilever. We propose how to choose suitable cantilever type, optimize scanning parameters, recognize and minimize various artifacts, and obtain reliable AFM data both in solution and in air to reveal microscopic characteristics of protein-diamond interfaces. We also suggest that monocrystalline diamond is well defined substrate that can be applicable for fundamental studies of molecules on surfaces in general.
Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov
2015-08-01
Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.
NASA Astrophysics Data System (ADS)
Zhenghui, Zhao
2018-04-01
Based on the context of increasingly serious aging problem in China, the psychological characteristics of elders in using public self-service facilities and the development status and the future trend of public self-service ticketing service. The approach is analysing physiological and psychological characteristics, education level of the elderly and studying its characteristics of consumer psychology and regional cultural characteristics profoundly before conducting comprehensive analysis and research in combination with the interface features of public self-service ticketing machine. The interface design will be more personalized, intelligent, regional and international. Strategies of caring for the elderly in the regional public self-service facility interface design innovation develops the concept of taking care of the elderly in the entire region as an indispensable people-benefiting optimization system in the modern social services.
Organizational Factors and the Cancer Screening Process
Zapka, Jane; Edwards, Heather; Taplin, Stephen H.
2010-01-01
Cancer screening is a process of care consisting of several steps and interfaces. This article reviews what is known about the association between organizational factors and cancer screening rates and examines how organizational strategies can address the steps and interfaces of cancer screening in the context of both intraorganizational and interorganizational processes. We reviewed 79 studies assessing the relationship between organizational factors and cancer screening. Screening rates are largely driven by strategies to 1) limit the number of interfaces across organizational boundaries; 2) recruit patients, promote referrals, and facilitate appointment scheduling; and 3) promote continuous patient care. Optimal screening rates can be achieved when health-care organizations tailor strategies to the steps and interfaces in the cancer screening process that are most critical for their organizations, the providers who work within them, and the patients they serve. PMID:20386053
Organizational factors and the cancer screening process.
Anhang Price, Rebecca; Zapka, Jane; Edwards, Heather; Taplin, Stephen H
2010-01-01
Cancer screening is a process of care consisting of several steps and interfaces. This article reviews what is known about the association between organizational factors and cancer screening rates and examines how organizational strategies can address the steps and interfaces of cancer screening in the context of both intraorganizational and interorganizational processes. We reviewed 79 studies assessing the relationship between organizational factors and cancer screening. Screening rates are largely driven by strategies to 1) limit the number of interfaces across organizational boundaries; 2) recruit patients, promote referrals, and facilitate appointment scheduling; and 3) promote continuous patient care. Optimal screening rates can be achieved when health-care organizations tailor strategies to the steps and interfaces in the cancer screening process that are most critical for their organizations, the providers who work within them, and the patients they serve.
The Galley Parallel File System
NASA Technical Reports Server (NTRS)
Nieuwejaar, Nils; Kotz, David
1996-01-01
As the I/O needs of parallel scientific applications increase, file systems for multiprocessors are being designed to provide applications with parallel access to multiple disks. Many parallel file systems present applications with a conventional Unix-like interface that allows the application to access multiple disks transparently. The interface conceals the parallelism within the file system, which increases the ease of programmability, but makes it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. Furthermore, most current parallel file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic parallel workloads. We discuss Galley's file structure and application interface, as well as an application that has been implemented using that interface.
Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime
NASA Astrophysics Data System (ADS)
Carpenter, Lewis G.; Rogers, Helen L.; Cooper, Peter A.; Holmes, Christopher; Gates, James C.; Smith, Peter G. R.
2013-11-01
The efficient production of high-quality facets for low-loss coupling is a significant production issue in integrated optics, usually requiring time consuming and manually intensive lapping and polishing steps, which add considerably to device fabrication costs. The development of precision dicing saws with diamond impregnated blades has allowed optical grade surfaces to be machined in crystalline materials such as lithium niobate and garnets. In this report we investigate the optimization of dicing machine parameters to obtain optical quality surfaces in a silica-on-silicon planar device demonstrating high optical quality in a commercially important glassy material. We achieve a surface roughness of 4.9 nm (Sa) using the optimized dicing conditions. By machining a groove across a waveguide, using the optimized dicing parameters, a grating based loss measurement technique is used to measure precisely the average free space interface loss per facet caused by scattering as a consequence of surface roughness. The average interface loss per facet was calculated to be: -0.63 dB and -0.76 dB for the TE and TM polarizations, respectively.
NASA Astrophysics Data System (ADS)
Panigrahi, Asisa Kumar; Hemanth Kumar, C.; Bonam, Satish; Ghosh, Tamal; Rama Krishna Vanjari, Siva; Govind Singh, Shiv
2018-02-01
Enhanced Cu diffusion, Cu surface passivation, and smooth surface at the bonding interface are the key essentials for high quality Cu-Cu bonding. Previously, we have demonstrated optimized 3 nm thin Manganin metal-alloy passivation from oxidation and also helps to reduce the surface roughness to about 0.8 nm which substantially led to high quality Cu-Cu bonding. In this paper, we demonstrated an ultra fine-pitch (<25 µm) Cu-Cu bonding using an optimized Manganin metal-alloy passivation. This engineered surface passivation approach led to high quality bonding at sub 200 °C temperature and 0.4 MPa. Very low specific contact resistance of 1.4 × 10-7 Ω cm2 and the defect free bonded interface is clear indication of high quality bonding for future multilayer integrations. Furthermore, electrical characterization of the bonded structure was performed under various robust conditions as per International Technology Roadmap for Semiconductors (ITRS Roadmap) in order to satisfy the stability of the bonded structure.
Light trapping in thin-film solar cells with randomly rough and hybrid textures.
Kowalczewski, Piotr; Liscidini, Marco; Andreani, Lucio Claudio
2013-09-09
We study light-trapping in thin-film silicon solar cells with rough interfaces. We consider solar cells made of different materials (c-Si and μc-Si) to investigate the role of size and nature (direct/indirect) of the energy band gap in light trapping. By means of rigorous calculations we demonstrate that the Lambertian Limit of absorption can be obtained in a structure with an optimized rough interface. We gain insight into the light trapping mechanisms by analysing the optical properties of rough interfaces in terms of Angular Intensity Distribution (AID) and haze. Finally, we show the benefits of merging ordered and disordered photonic structures for light trapping by studying a hybrid interface, which is a combination of a rough interface and a diffraction grating. This approach gives a significant absorption enhancement for a roughness with a modest size of spatial features, assuring good electrical properties of the interface. All the structures presented in this work are compatible with present-day technologies, giving recent progress in fabrication of thin monocrystalline silicon films and nanoimprint lithography.
Ultrasound guided electrical impedance tomography for 2D free-interface reconstruction
NASA Astrophysics Data System (ADS)
Liang, Guanghui; Ren, Shangjie; Dong, Feng
2017-07-01
The free-interface detection problem is normally seen in industrial or biological processes. Electrical impedance tomography (EIT) is a non-invasive technique with advantages of high-speed and low cost, and is a promising solution for free-interface detection problems. However, due to the ill-posed and nonlinear characteristics, the spatial resolution of EIT is low. To deal with the issue, an ultrasound guided EIT is proposed to directly reconstruct the geometric configuration of the target free-interface. In the method, the position of the central point of the target interface is measured by a pair of ultrasound transducers mounted at the opposite side of the objective domain, and then the position measurement is used as the prior information for guiding the EIT-based free-interface reconstruction. During the process, a constrained least squares framework is used to fuse the information from different measurement modalities, and the Lagrange multiplier-based Levenberg-Marquardt method is adopted to provide the iterative solution of the constraint optimization problem. The numerical results show that the proposed ultrasound guided EIT method for the free-interface reconstruction is more accurate than the single modality method, especially when the number of valid electrodes is limited.
Thyra Abstract Interface Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Roscoe A.
2005-09-01
Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilities to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Codemore » also currently exists for testing objects and providing composite objects such as product vectors.« less
Impedance spectroscopy of tripolar concentric ring electrodes with Ten20 and TD246 pastes.
Nasrollaholhosseini, Seyed Hadi; Herrera, Daniel Salazar; Besio, Walter G
2017-07-01
Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper, we measured the impedance on both tripolar concentric ring electrodes and standard cup electrodes by electrochemical impedance spectroscopy (EIS) using both Ten20 and TD246 electrode paste. Furthermore, we applied the model to prove that the model can predict the performance of the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.
2007-04-01
optimization methodology we introduce. State-of-the-art protein - protein docking approaches start by identifying conformations with good surface /chemical com...side-chains on the interface ). The protein - protein docking literature (e.g., [8] and the references therein) is predominantly treating the docking...mations by various measures of surface complementarity which can be efficiently computed using fast Fourier correlation tech- niques (FFTs). However, when
NASA Astrophysics Data System (ADS)
Ni, Yong; Song, Zhaoqiang; Jiang, Hongyuan; Yu, Shu-Hong; He, Linghui
2015-08-01
How nacreous nanocomposites with optimal combinations of stiffness, strength and toughness depend on constituent property and microstructure parameters is studied using a nonlinear shear-lag model. We show that the interfacial elasto-plasticity and the overlapping length between bricks dependent on the brick size and brick staggering mode significantly affect the nonuniformity of the shear stress, the stress-transfer efficiency and thus the failure path. There are two characteristic lengths at which the strength and toughness are optimized respectively. Simultaneous optimization of the strength and toughness is achieved by matching these lengths as close as possible in the nacreous nanocomposite with regularly staggered brick-and-mortar (BM) structure where simultaneous uniform failures of the brick and interface occur. In the randomly staggered BM structure, as the overlapping length is distributed, the nacreous nanocomposite turns the simultaneous uniform failure into progressive interface or brick failure with moderate decrease of the strength and toughness. Specifically there is a parametric range at which the strength and toughness are insensitive to the brick staggering randomness. The obtained results propose a parametric selection guideline based on the length matching for rational design of nacreous nanocomposites. Such guideline explains why nacre is strong and tough while most artificial nacreous nanocomposites aere not.
Marchiori, G; Lopomo, N; Boi, M; Berni, M; Bianchi, M; Gambardella, A; Visani, A; Russo, A; Marcacci, M
2016-01-01
Realizing hard ceramic coatings on the plastic component of a joint prosthesis can be strategic for the mechanical preservation of the whole implant and to extend its lifetime. Recently, thanks to the Plasma Pulsed Deposition (PPD) method, zirconia coatings on ultra-high molecular weight polyethylene (UHMWPE) substrates resulted in a feasible outcome. Focusing on both the highly specific requirements defined by the biomedical application and the effective possibilities given by the deposition method in the perspectives of technological transfer, it is mandatory to optimize the coating in terms of load bearing capacity. The main goal of this study was to identify through Finite Element Analysis (FEA) the optimal coating thickness that would be able to minimize UHMWPE strain, possible insurgence of cracks within the coating and stresses at coating-substrate interface. Simulations of nanoindentation and microindentation tests were specifically carried out. FEA findings demonstrated that, in general, thickening the zirconia coating strongly reduced the strains in the UHMWPE substrate, although the 1 μm thickness value was identified as critical for the presence of high stresses within the coating and at the interface with the substrate. Therefore, the optimal thickness resulted to be highly dependent on the specific loading condition and final applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Band alignment and charge transfer in rutile-TiO2/CH3NH3PbI3-xClx interfaces.
Nemnes, G A; Goehry, C; Mitran, T L; Nicolaev, Adela; Ion, L; Antohe, S; Plugaru, N; Manolescu, A
2015-11-11
Rutile-TiO2/hybrid halide perovskite CH3NH3PbI3-xClx interfaces are investigated by ab initio density functional theory calculations. The role of chlorine in achieving enhanced solar cell power conversion efficiencies is in the focus of recent studies, which point to increased carrier mobilities, reduced recombination rates, a driven morphology evolution of the perovskite layer and improved carrier transport across the interface. As it was recently established that chlorine is preferentially localized in the vicinity of the interface and not in the bulk of the perovskite layer, we analyze the changes introduced in the electronic properties by varying the chlorine concentration near the interface. In particular, we discuss the effects introduced in the electronic band structure and show the role of chlorine in the enhanced electron injection into the rutile-TiO2 layer. Taking into account these implications, we discuss the conditions for optimizing the solar cell efficiency in terms of interfacial chlorine concentration.
Simulation of the human-telerobot interface
NASA Technical Reports Server (NTRS)
Stuart, Mark A.; Smith, Randy L.
1988-01-01
A part of NASA's Space Station will be a Flight Telerobotic Servicer (FTS) used to help assemble, service, and maintain the Space Station. Since the human operator will be required to control the FTS, the design of the human-telerobot interface must be optimized from a human factors perspective. Simulation has been used as an aid in the development of complex systems. Simulation has been especially useful when it has been applied to the development of complex systems. Simulation should ensure that the hardware and software components of the human-telerobot interface have been designed and selected so that the operator's capabilities and limitations have been accommodated for since this is a complex system where few direct comparisons to existent systems can be made. Three broad areas of the human-telerobot interface where simulation can be of assistance are described. The use of simulation not only can result in a well-designed human-telerobot interface, but also can be used to ensure that components have been selected to best meet system's goals, and for operator training.
Temperature dependent transport characteristics of graphene/n-Si diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parui, S.; Ruiter, R.; Zomer, P. J.
2014-12-28
Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10{sup −10} A) and rectification of more than 10{sup 6}. We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for themore » CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Güttler.« less
Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi
2017-08-04
A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental setup for evaluating an adaptive user interface for teleoperation control
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.
2017-05-01
A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.
Directing energy transport in organic photovoltaic cells using interfacial exciton gates.
Menke, S Matthew; Mullenbach, Tyler K; Holmes, Russell J
2015-04-28
Exciton transport in organic semiconductors is a critical, mediating process in many optoelectronic devices. Often, the diffusive and subdiffusive nature of excitons in these systems can limit device performance, motivating the development of strategies to direct exciton transport. In this work, directed exciton transport is achieved with the incorporation of exciton permeable interfaces. These interfaces introduce a symmetry-breaking imbalance in exciton energy transfer, leading to directed motion. Despite their obvious utility for enhanced exciton harvesting in organic photovoltaic cells (OPVs), the emergent properties of these interfaces are as yet uncharacterized. Here, directed exciton transport is conclusively demonstrated in both dilute donor and energy-cascade OPVs where judicious optimization of the interface allows exciton transport to the donor-acceptor heterojunction to occur considerably faster than when relying on simple diffusion. Generalized systems incorporating multiple exciton permeable interfaces are also explored, demonstrating the ability to further harness this phenomenon and expeditiously direct exciton motion, overcoming the diffusive limit.
[Interface interconnection and data integration in implementing of digital operating room].
Feng, Jingyi; Chen, Hua; Liu, Jiquan
2011-10-01
The digital operating-room, with highly integrated clinical information, is very important for rescuing lives of patients and improving quality of operations. Since equipments in domestic operating-rooms have diversified interface and nonstandard communication protocols, designing and implementing an integrated data sharing program for different kinds of diagnosing, monitoring, and treatment equipments become a key point in construction of digital operating room. This paper addresses interface interconnection and data integration for commonly used clinical equipments from aspects of hardware interface, interface connection and communication protocol, and offers a solution for interconnection and integration of clinical equipments in heterogeneous environment. Based on the solution, a case of an optimal digital operating-room is presented in this paper. Comparing with the international solution for digital operating-room, the solution proposed in this paper is more economical and effective. And finally, this paper provides a proposal for the platform construction of digital perating-room as well as a viewpoint for standardization of domestic clinical equipments.
NASA Technical Reports Server (NTRS)
Colbourne, Jason
1999-01-01
This report details the development and use of CONDUIT (Control Designer's Unified Interface). CONDUIT is a design tool created at Ames Research Center for the purpose of evaluating and optimizing aircraft control systems against handling qualities. Three detailed design problems addressing the RASCAL UH-60A Black Hawk are included in this report to show the application of CONDUIT to helicopter control system design.
Interfacing a quantum dot with a spontaneous parametric down-conversion source
NASA Astrophysics Data System (ADS)
Huber, Tobias; Prilmüller, Maximilian; Sehner, Michael; Solomon, Glenn S.; Predojević, Ana; Weihs, Gregor
2017-09-01
Quantum networks require interfacing stationary and flying qubits. These flying qubits are usually nonclassical states of light. Here we consider two of the leading source technologies for nonclassical light, spontaneous parametric down-conversion and single semiconductor quantum dots. Down-conversion delivers high-grade entangled photon pairs, whereas quantum dots excel at producing single photons. We report on an experiment that joins these two technologies and investigates the conditions under which optimal interference between these dissimilar light sources may be achieved.
Speech-Enabled Interfaces for Travel Information Systems with Large Grammars
NASA Astrophysics Data System (ADS)
Zhao, Baoli; Allen, Tony; Bargiela, Andrzej
This paper introduces three grammar-segmentation methods capable of handling the large grammar issues associated with producing a real-time speech-enabled VXML bus travel application for London. Large grammars tend to produce relatively slow recognition interfaces and this work shows how this limitation can be successfully addressed. Comparative experimental results show that the novel last-word recognition based grammar segmentation method described here achieves an optimal balance between recognition rate, speed of processing and naturalness of interaction.
Interfacing laboratory instruments to multiuser, virtual memory computers
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Stang, David B.; Roth, Don J.
1989-01-01
Incentives, problems and solutions associated with interfacing laboratory equipment with multiuser, virtual memory computers are presented. The major difficulty concerns how to utilize these computers effectively in a medium sized research group. This entails optimization of hardware interconnections and software to facilitate multiple instrument control, data acquisition and processing. The architecture of the system that was devised, and associated programming and subroutines are described. An example program involving computer controlled hardware for ultrasonic scan imaging is provided to illustrate the operational features.
Optimal fractal tree-like microchannel networks with slip for laminar-flow-modified Murray's law.
Jing, Dalei; Song, Shiyu; Pan, Yunlu; Wang, Xiaoming
2018-01-01
The fractal tree-like branched network is an effective channel design structure to reduce the hydraulic resistance as compared with the conventional parallel channel network. In order for a laminar flow to achieve minimum hydraulic resistance, it is believed that the optimal fractal tree-like channel network obeys the well-accepted Murray's law of β m = N -1/3 (β m is the optimal diameter ratio between the daughter channel and the parent channel and N is the branching number at every level), which is obtained under the assumption of no-slip conditions at the channel wall-liquid interface. However, at the microscale, the no-slip condition is not always reasonable; the slip condition should indeed be considered at some solid-liquid interfaces for the optimal design of the fractal tree-like channel network. The present work reinvestigates Murray's law for laminar flow in a fractal tree-like microchannel network considering slip condition. It is found that the slip increases the complexity of the optimal design of the fractal tree-like microchannel network to achieve the minimum hydraulic resistance. The optimal diameter ratio to achieve minimum hydraulic resistance is not only dependent on the branching number, as stated by Murray's law, but also dependent on the slip length, the level number, the length ratio between the daughter channel and the parent channel, and the diameter of the channel. The optimal diameter ratio decreases with the increasing slip length, the increasing level number and the increasing length ratio between the daughter channel and the parent channel, and decreases with decreasing channel diameter. These complicated relations were found to become relaxed and simplified to Murray's law when the ratio between the slip length and the diameter of the channel is small enough.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep
The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less
Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep; ...
2017-04-24
The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less
Tonet, Oliver; Marinelli, Martina; Citi, Luca; Rossini, Paolo Maria; Rossini, Luca; Megali, Giuseppe; Dario, Paolo
2008-01-15
Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications.
ELSI: A unified software interface for Kohn–Sham electronic structure solvers
Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto; ...
2017-09-15
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less
Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yufan; Yao, Juan; Ding, Yuanzhao
In situ liquid secondary ion mass spectrometry (SIMS) enabled by system for analysis at the liquid vacuum interface (SALVI) has proven to be a promising new tool to provide molecular information at solid–liquid and liquid–vacuum interfaces. However, the initial data showed that useful signals in positive ion spectra are too weak to be meaningful in most cases. In addition, it is difficult to obtain strong negative molecular ion signals when m/z>200. These two drawbacks have been the biggest obstacle towards practical use of this new analytical approach. In this study, we report that strong and reliable positive and negative molecularmore » signals are achievable after optimizing the SIMS experimental conditions. Four model systems, including a 1,8-diazabicycloundec-7-ene (DBU)-base switchable ionic liquid, a live Shewanella oneidensis biofilm, a hydrated mammalian epithelia cell, and an electrolyte popularly used in Li ion batteries were studied. A signal enhancement of about two orders of magnitude was obtained in comparison with non-optimized conditions. Therefore, molecular ion signal intensity has become very acceptable to use for in situ liquid SIMS to study solid–liquid and liquid–vacuum interfaces.« less
ELSI: A unified software interface for Kohn-Sham electronic structure solvers
NASA Astrophysics Data System (ADS)
Yu, Victor Wen-zhe; Corsetti, Fabiano; García, Alberto; Huhn, William P.; Jacquelin, Mathias; Jia, Weile; Lange, Björn; Lin, Lin; Lu, Jianfeng; Mi, Wenhui; Seifitokaldani, Ali; Vázquez-Mayagoitia, Álvaro; Yang, Chao; Yang, Haizhao; Blum, Volker
2018-01-01
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.
Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs.
Krepkovich, Eileen T; Perreault, Eric J
2008-01-01
This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.
Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis.
Zhou, Yufan; Yao, Juan; Ding, Yuanzhao; Yu, Jiachao; Hua, Xin; Evans, James E; Yu, Xiaofei; Lao, David B; Heldebrant, David J; Nune, Satish K; Cao, Bin; Bowden, Mark E; Yu, Xiao-Ying; Wang, Xue-Lin; Zhu, Zihua
2016-12-01
In situ liquid secondary ion mass spectrometry (SIMS) enabled by system for analysis at the liquid vacuum interface (SALVI) has proven to be a promising new tool to provide molecular information at solid-liquid and liquid-vacuum interfaces. However, the initial data showed that useful signals in positive ion spectra are too weak to be meaningful in most cases. In addition, it is difficult to obtain strong negative molecular ion signals when m/z>200. These two drawbacks have been the biggest obstacle towards practical use of this new analytical approach. In this study, we report that strong and reliable positive and negative molecular signals are achievable after optimizing the SIMS experimental conditions. Four model systems, including a 1,8-diazabicycloundec-7-ene (DBU)-base switchable ionic liquid, a live Shewanella oneidensis biofilm, a hydrated mammalian epithelia cell, and an electrolyte popularly used in Li ion batteries were studied. A signal enhancement of about two orders of magnitude was obtained in comparison with non-optimized conditions. Therefore, molecular ion signal intensity has become very acceptable for use of in situ liquid SIMS to study solid-liquid and liquid-vacuum interfaces. Graphical Abstract ᅟ.
Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Huan, Yahuan; Li, Yong; Zhang, Ruxiao; Zhang, Yue
2018-06-06
The major restraint for the commercialization of the high-performance hybrid metal halide perovskite solar cells is the long-term stability, especially at the infirm interface between the perovskite film and organic charge-transfer layer. Recently, engineering the interface between the perovskite and spiro-OMeTAD becomes an effective strategy to simultaneously improve the efficiency and stability in the perovskite solar cells. In this work, we demonstrated that introducing an interfacial polystyrene layer between the perovskite film and spiro-OMeTAD layer can effectively improve the perovskite solar cells photovoltaic performance. The inserted polystyrene layer can passivate the interface traps and defects effectively and decrease the nonradiative recombination, leading to enhanced photoluminescence intensity and carrier lifetime, without compromising the carrier extraction and transfer. Under the optimized condition, the perovskite solar cells with the polystyrene layer achieve an enhanced average power efficiency of about 19.61% (20.46% of the best efficiency) from about 17.63% with negligible current density-voltage hysteresis. Moreover, the optimized perovskite solar cells with the hydrophobic polystyrene layer can maintain about 85% initial efficiency after 2 months storage in open air conditions without encapsulation.
Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu
2018-05-01
Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.
ELSI: A unified software interface for Kohn–Sham electronic structure solvers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto
Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less
Alppay, Cem; Bayazit, Nigan
2015-11-01
In this paper, we study the arrangement of displays in flight instrument panels of multi-purpose civil helicopters following a user-centered design method based on ergonomics principles. Our methodology can also be described as a user-interface arrangement methodology based on user opinions and preferences. This study can be outlined as gathering user-centered data using two different research methods and then analyzing and integrating the collected data to come up with an optimal instrument panel design. An interview with helicopter pilots formed the first step of our research. In that interview, pilots were asked to provide a quantitative evaluation of basic interface arrangement principles. In the second phase of the research, a paper prototyping study was conducted with same pilots. The final phase of the study entailed synthesizing the findings from interviews and observational studies to formulate an optimal flight instrument arrangement methodology. The primary results that we present in our paper are the methodology that we developed and three new interface arrangement concepts, namely relationship of inseparability, integrated value and locational value. An optimum instrument panel arrangement is also proposed by the researchers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naca, Christine L.; Rempel, David M.; Imada, Andy S.
Organizations are constantly responding to new technologies that require an appropriate response to remain competitive. Depending on the nature of the technologic changes, incremental changes may be adequate. However, at some point, the technical demands may be disruptive because the organization is unable to respond adequately. In this case study of a biotechnology production facility, rapidly changing customer and technological demands created a crisis manifested in rising employee injuries and production interruptions. The crisis was ultimately addressed through a comprehensive redesign of human-system relationships. Key ingredients included: a management willing to examine the entire production system, a multidisciplinary team coordinatingmore » efforts towards a common goal, engagement of staff at all levels of the organization, and the creation of feedback channels to better guide the actions of supervisors and managers. The methods used in this successful case study, involving a macroergonomics approach, can be applied to any private or public enterprise.« less
NASA Astrophysics Data System (ADS)
Jung-Woon Yoo, John
2016-06-01
Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.
Study of SiO{sub 2}/4H-SiC interface nitridation by post-oxidation annealing in pure nitrogen gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanthaphan, Atthawut, E-mail: chanthaphan@asf.mls.eng.osaka-u.ac.jp; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi
An alternative and effective method to perform interface nitridation for 4H-SiC metal-oxide-semiconductor (MOS) devices was developed. We found that the high-temperature post-oxidation annealing (POA) in N{sub 2} ambient was beneficial to incorporate a sufficient amount of nitrogen atoms directly into thermal SiO{sub 2}/SiC interfaces. Although N{sub 2}-POA was ineffective for samples with thick thermal oxide layers, interface nitridation using N{sub 2}-POA was achieved under certain conditions, i.e., thin SiO{sub 2} layers (< 15 nm) and high annealing temperatures (>1350°C). Electrical characterizations of SiC-MOS capacitors treated with high-temperature N{sub 2}-POA revealed the same evidence of slow trap passivation and fast trapmore » generation that occurred in NO-treated devices fabricated with the optimized nitridation conditions.« less
NASA Astrophysics Data System (ADS)
Fathy, Naglaa; Ramadan, Mohamed
2018-05-01
The influence of volume ratio of liquid to Solid and low pouring temperature on interface structure of cast Babbitt-steel bimetal composite was evaluated for static casting technique. At low pouring temperature of 380 °C, Babbitt microstructures are improved to be finer and more globular. On the other side pouring the Babbitt at low pouring temperature of 380 °C increases the chance of present higher unbonded area percent. Increasing the volume ratio of liquid to solid decreases the Sn-Pb interface thicknesses and increases the bonded interface area. In order to optimize the production of Babbitt-steel bimetal composite at low pouring temperature, the volume ratio of liquid Babbitt to solid steel shell should be higher value that could be more than 5 depending on the extrapolation of current data presented.
Characteristic optimization of 1.55-μm InGaAsP/InP high-power diode laser
NASA Astrophysics Data System (ADS)
Ke, Qing; Tan, Shaoyang; Zhai, Teng; Zhang, Ruikang; Lu, Dan; Ji, Chen
2014-11-01
A comprehensive design optimization of 1.55-μm high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (IQE) while maintaing a low internal loss of the device as well. The P-doping profile and separate confinement heterostructure (SCH) layer band gap are optimized respectively with commercial software Crosslight. Analysis of lasers with different p-doping profiles shows that, although heavy doping in P-cladding layer increases the internal loss of the device, it ensures a high IQE because higher energy barrier at the SCH/P-cladding interface as a result of heavy doping helps reduce the carrier leakage from the waveguide to the InP-cladding layer. The band gap of the SCH layer are also optimized for high slope efficiency. Smaller band gap helps reduce the vertical carrier leakage from the waveguide to the P-cladding layer, but the corresponding higher carrier concentration in SCH layer will cause some radiative recombination, thus influencing the IQE. And as the injection current increases, the carrier concentration increases faster with smaller band gap, therefore, the output power saturates sooner. An optimized band gap in SCH layer of approximately 1.127eV and heavy doping up to 1e18/cm3 at the SCH/P-cladding interface are identified for our high power laser design, and we achieved a high IQE of 94% and internal loss of 2.99/cm for our design.
Optimization of SSVEP brain responses with application to eight-command Brain-Computer Interface.
Bakardjian, Hovagim; Tanaka, Toshihisa; Cichocki, Andrzej
2010-01-18
This study pursues the optimization of the brain responses to small reversing patterns in a Steady-State Visual Evoked Potentials (SSVEP) paradigm, which could be used to maximize the efficiency of applications such as Brain-Computer Interfaces (BCI). We investigated the SSVEP frequency response for 32 frequencies (5-84 Hz), and the time dynamics of the brain response at 8, 14 and 28 Hz, to aid the definition of the optimal neurophysiological parameters and to outline the onset-delay and other limitations of SSVEP stimuli in applications such as our previously described four-command BCI system. Our results showed that the 5.6-15.3 Hz pattern reversal stimulation evoked the strongest responses, peaking at 12 Hz, and exhibiting weaker local maxima at 28 and 42 Hz. After stimulation onset, the long-term SSVEP response was highly non-stationary and the dynamics, including the first peak, was frequency-dependent. The evaluation of the performance of a frequency-optimized eight-command BCI system with dynamic neurofeedback showed a mean success rate of 98%, and a time delay of 3.4s. Robust BCI performance was achieved by all subjects even when using numerous small patterns clustered very close to each other and moving rapidly in 2D space. These results emphasize the need for SSVEP applications to optimize not only the analysis algorithms but also the stimuli in order to maximize the brain responses they rely on. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Simulation of Biomolecular Nanomechanical Systems
2006-10-01
optimization of doping concentration and minimizing the interface traps. Surface Immobilization of Receptors For biomolecular binding experiments...Biosensors,” Langmuir, Vol. 21, pp. 1956-1961 (2005). 13. M. Yue, Multiplexed Label-Free Bioassays Using Nanomechanics and Nanofluidics , PhD Thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.
This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to complymore » with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.« less
A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution.
Jha, Ramesh K; Bingen, Jeremy M; Johnson, Christopher W; Kern, Theresa L; Khanna, Payal; Trettel, Daniel S; Strauss, Charlie E M; Beckham, Gregg T; Dale, Taraka
2018-06-01
Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. Here we demonstrate the optimization of an Escherichia coli- based biosensor in a robust microbial strain for the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators.
A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Ramesh K.; Bingen, Jeremy M.; Johnson, Christopher W.
Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. In this study, we demonstrate the optimization of an Escherichia coli-based biosensor in a robust microbial strain formore » the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators.« less
Density-based penalty parameter optimization on C-SVM.
Liu, Yun; Lian, Jie; Bartolacci, Michael R; Zeng, Qing-An
2014-01-01
The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change of the SVM interface as the result of an error system outlier, C-SVM was implemented to decrease the influences of the system's outliers. Traditional C-SVM holds a uniform parameter C for both positive and negative instances; however, according to the different number proportions and the data distribution, positive and negative instances should be set with different weights for the penalty parameter of the error terms. Therefore, in this paper, we propose density-based penalty parameter optimization of C-SVM. The experiential results indicated that our proposed algorithm has outstanding performance with respect to both precision and recall.
Pointing Device Performance in Steering Tasks.
Senanayake, Ransalu; Goonetilleke, Ravindra S
2016-06-01
Use of touch-screen-based interactions is growing rapidly. Hence, knowing the maneuvering efficacy of touch screens relative to other pointing devices is of great importance in the context of graphical user interfaces. Movement time, accuracy, and user preferences of four pointing device settings were evaluated on a computer with 14 participants aged 20.1 ± 3.13 years. It was found that, depending on the difficulty of the task, the optimal settings differ for ballistic and visual control tasks. With a touch screen, resting the arm increased movement time for steering tasks. When both performance and comfort are considered, whether to use a mouse or a touch screen for person-computer interaction depends on the steering difficulty. Hence, a input device should be chosen based on the application, and should be optimized to match the graphical user interface. © The Author(s) 2016.
ROCOPT: A user friendly interactive code to optimize rocket structural components
NASA Technical Reports Server (NTRS)
Rule, William K.
1989-01-01
ROCOPT is a user-friendly, graphically-interfaced, microcomputer-based computer program (IBM compatible) that optimizes rocket components by minimizing the structural weight. The rocket components considered are ring stiffened truncated cones and cylinders. The applied loading is static, and can consist of any combination of internal or external pressure, axial force, bending moment, and torque. Stress margins are calculated by means of simple closed form strength of material type equations. Stability margins are determined by approximate, orthotropic-shell, closed-form equations. A modified form of Powell's method, in conjunction with a modified form of the external penalty method, is used to determine the minimum weight of the structure subject to stress and stability margin constraints, as well as user input constraints on the structural dimensions. The graphical interface guides the user through the required data prompts, explains program options and graphically displays results for easy interpretation.
A three-axis force sensor for dual finger haptic interfaces.
Fontana, Marco; Marcheschi, Simone; Salsedo, Fabio; Bergamasco, Massimo
2012-10-10
In this work we present the design process, the characterization and testing of a novel three-axis mechanical force sensor. This sensor is optimized for use in closed-loop force control of haptic devices with three degrees of freedom. In particular the sensor has been conceived for integration with a dual finger haptic interface that aims at simulating forces that occur during grasping and surface exploration. The sensing spring structure has been purposely designed in order to match force and layout specifications for the application. In this paper the design of the sensor is presented, starting from an analytic model that describes the characteristic matrix of the sensor. A procedure for designing an optimal overload protection mechanism is proposed. In the last part of the paper the authors describe the experimental characterization and the integrated test on a haptic hand exoskeleton showing the improvements in the controller performances provided by the inclusion of the force sensor.
A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution
Jha, Ramesh K.; Bingen, Jeremy M.; Johnson, Christopher W.; ...
2018-06-01
Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. In this study, we demonstrate the optimization of an Escherichia coli-based biosensor in a robust microbial strain formore » the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators.« less
Optimized nanoporous materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, Paul V.; Langham, Mary Elizabeth; Jacobs, Benjamin W.
2009-09-01
Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired bymore » these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.« less
Stochastic Optimization for an Analytical Model of Saltwater Intrusion in Coastal Aquifers
Stratis, Paris N.; Karatzas, George P.; Papadopoulou, Elena P.; Zakynthinaki, Maria S.; Saridakis, Yiannis G.
2016-01-01
The present study implements a stochastic optimization technique to optimally manage freshwater pumping from coastal aquifers. Our simulations utilize the well-known sharp interface model for saltwater intrusion in coastal aquifers together with its known analytical solution. The objective is to maximize the total volume of freshwater pumped by the wells from the aquifer while, at the same time, protecting the aquifer from saltwater intrusion. In the direction of dealing with this problem in real time, the ALOPEX stochastic optimization method is used, to optimize the pumping rates of the wells, coupled with a penalty-based strategy that keeps the saltwater front at a safe distance from the wells. Several numerical optimization results, that simulate a known real aquifer case, are presented. The results explore the computational performance of the chosen stochastic optimization method as well as its abilities to manage freshwater pumping in real aquifer environments. PMID:27689362
An Optimization Framework for Dynamic Hybrid Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis
A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problemmore » takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.« less
Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.
2003-01-01
The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.
Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan
2015-08-01
Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.
Light-Sharing Interface for dMiCE Detectors Using Sub-Surface Laser Engraving
Hunter, William C. J.; Miyaoka, Robert S.; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K.
2015-01-01
We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of a crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for each crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mm3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Silicon photomultiplier arrays. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout while obtaining energy resolutions on the order of 10%. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern. PMID:25914421
Light-Sharing Interface for dMiCE Detectors using Sub-Surface Laser Engraving.
Hunter, William C J; Miyaoka, Robert S; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K
2013-10-01
We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of this crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for a crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mmˆ3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Geiger-Müller avalanche photodiodes from Hamamatsu. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions events. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern.
Light-Sharing Interface for dMiCE Detectors using Sub-Surface Laser Engraving
Hunter, William C.J.; Miyaoka, Robert S.; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K.
2014-01-01
We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of this crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for a crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mmˆ3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Geiger-Müller avalanche photodiodes from Hamamatsu. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions events. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern. PMID:25506194
Light-Sharing Interface for dMiCE Detectors Using Sub-Surface Laser Engraving.
Hunter, William C J; Miyaoka, Robert S; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K
2015-02-06
We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of a crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for each crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mm 3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Silicon photomultiplier arrays. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout while obtaining energy resolutions on the order of 10%. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern.
pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface.
Kisley, Lydia; Poongavanam, Mohan-Vivekanandan; Kourentzi, Katerina; Willson, Richard C; Landes, Christy F
2016-02-01
pH is a common mobile phase variable used to control protein separations due to the tunable nature of amino acid and adsorbent charge. Like other column variables such as column density and ligand loading density, pH is usually optimized empirically. Single-molecule spectroscopy extracts molecular-scale data to provide a framework for mechanistic optimization of pH. The adsorption and diffusion of a model globular protein, α-lactalbumin, was studied by single-molecule microscopy at a silica-aqueous interface analogous to aqueous normal phase and hydrophilic interaction chromatography and capillary electrophoresis interfaces at varied pH. Electrostatic repulsion resulting in free diffusion was observed at pH above the isoelectric point of the protein. In contrast, at low pH strong adsorption and surface diffusion with either no (D ∼ 0.01 μm(2) /s) or translational (D ∼ 0.3 μm(2) /s) motion was observed where the protein likely interacted with the surface through electrostatic, hydrophobic, and hydrogen bonding forces. The fraction of proteins immobilized could be increased by lowering the pH. These results show that retention of proteins at the silica interface cannot be viewed solely as an adsorption/desorption process and that the type of surface diffusion, which ultimately leads to ensemble chromatographic separations, can be controlled by tuning long-range electrostatic and short-range hydrophobic and hydrogen bonding forces with pH. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immersed Boundary Methods for Optimization of Strongly Coupled Fluid-Structure Systems
NASA Astrophysics Data System (ADS)
Jenkins, Nicholas J.
Conventional methods for design of tightly coupled multidisciplinary systems, such as fluid-structure interaction (FSI) problems, traditionally rely on manual revisions informed by a loosely coupled linearized analysis. These approaches are both inaccurate for a multitude of applications, and they require an intimate understanding of the assumptions and limitations of the procedure in order to soundly optimize the design. Computational optimization, in particular topology optimization, has been shown to yield remarkable results for problems in solid mechanics using density interpolations schemes. In the context of FSI, however, well defined boundaries play a key role in both the design problem and the mechanical model. Density methods neither accurately represent the material boundary, nor provide a suitable platform to apply appropriate interface conditions. This thesis presents a new framework for shape and topology optimization of FSI problems that uses for the design problem the Level Set method (LSM) to describe the geometry evolution in the optimization process. The Extended Finite Element method (XFEM) is combined with a fictitiously deforming fluid domain (stationary arbitrary Lagrangian-Eulerian method) to predict the FSI response. The novelty of the proposed approach lies in the fact that the XFEM explicitly captures the material boundary defined by the level set iso-surface. Moreover, the XFEM provides a means to discretize the governing equations, and weak immersed boundary conditions are applied with Nitsche's Method to couple the fields. The flow is predicted by the incompressible Navier-Stokes equations, and a finite-deformation solid model is developed and tested for both hyperelastic and linear elastic problems. Transient and stationary numerical examples are presented to validate the FSI model and numerical solver approach. Pertaining to the optimization of FSI problems, the parameters of the discretized level set function are defined as explicit functions of the optimization variables, and the parameteric optimization problem is solved by nonlinear programming methods. The gradients of the objective and constrains are computed by the adjoint method for the global monolithic fluid-solid system. Two types of design problems are explored for optimization of the fluid-structure response: 1) the internal structural topology is varied, preserving the fluid-solid interface geometry, and 2) the fluid-solid interface is manipulated directly, which leads to simultaneously configuring both internal structural topology and outer mold shape. The numerical results show that the LSM-XFEM approach is well suited for designing practical applications, while at the same time reducing the requirement on highly refined mesh resolution compared to traditional density methods. However, these results also emphasize the need for a more robust embedded boundary condition framework. Further, the LSM can exhibit greater dependence on initial design seeding, and can impede design convergence. In particular for the strongly coupled FSI analysis developed here, the thinning and eventual removal of structural members can cause jumps in the evolution of the optimization functions.
Nuclear fuel management optimization using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-07-01
The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less
NASA Technical Reports Server (NTRS)
Carpenter, Michele; Jackson, Kimberly; Cohanim, Babak; Duda, Kevin R.; Rize, Jared; Dopart, Celena; Hoffman, Jeffrey; Curiel, Pedro; Studak, Joseph; Ponica, Dina;
2013-01-01
Looking ahead to the human exploration of Mars, NASA is planning for exploration of near-Earth asteroids and the Martian moons. Performing tasks near the surface of such low-gravity objects will likely require the use of an updated version of the Manned Maneuvering Unit (MMU) since the surface gravity is not high enough to allow astronauts to walk, or have sufficient resistance to counter reaction forces and torques during movements. The extravehicular activity (EVA) Jetpack device currently under development is based on the Simplified Aid for EVA Rescue (SAFER) unit and has maneuvering capabilities to assist EVA astronauts with their tasks. This maneuvering unit has gas thrusters for attitude control and translation. When EVA astronauts are performing tasks that require ne motor control such as sample collection and equipment placement, the current control system will re thrusters to compensate for the resulting changes in center-of-mass location and moments of inertia, adversely affecting task performance. The proposed design of a next-generation maneuvering and stability system incorporates control concepts optimized to support astronaut tasks and adds control-moment gyroscopes (CMGs) to the current Jetpack system. This design aims to reduce fuel consumption, as well as improve task performance for astronauts by providing a sti er work platform. The high-level control architecture for an EVA maneuvering system using both thrusters and CMGs considers an initial assessment of tasks to be performed by an astronaut and an evaluation of the corresponding human-system dynamics. For a scenario in which the astronaut orbits an asteroid, simulation results from the current EVA maneuvering system are compared to those from a simulation of the same system augmented with CMGs, demonstrating that the forces and torques on an astronaut can be significantly reduced with the new control system actuation while conserving onboard fuel.
A versatile multi-objective FLUKA optimization using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Vlachoudis, Vasilis; Antoniucci, Guido Arnau; Mathot, Serge; Kozlowska, Wioletta Sandra; Vretenar, Maurizio
2017-09-01
Quite often Monte Carlo simulation studies require a multi phase-space optimization, a complicated task, heavily relying on the operator experience and judgment. Examples of such calculations are shielding calculations with stringent conditions in the cost, in residual dose, material properties and space available, or in the medical field optimizing the dose delivered to a patient under a hadron treatment. The present paper describes our implementation inside flair[1] the advanced user interface of FLUKA[2,3] of a multi-objective Genetic Algorithm[Erreur ! Source du renvoi introuvable.] to facilitate the search for the optimum solution.
Satellite image collection optimization
NASA Astrophysics Data System (ADS)
Martin, William
2002-09-01
Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.
A programing system for research and applications in structural optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.
1981-01-01
The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of constraints and design variables. Features shown in numerical examples include: variability of structural layout and overall shape geometry, static strength and stiffness constraints, local buckling failure, and vibration constraints.
NASA Astrophysics Data System (ADS)
Chen, Ying; Yuan, Jianghong; Zhang, Yingchao; Huang, Yonggang; Feng, Xue
2017-10-01
The interfacial failure of integrated circuit (IC) chips integrated on flexible substrates under bending deformation has been studied theoretically and experimentally. A compressive buckling test is used to impose the bending deformation onto the interface between the IC chip and the flexible substrate quantitatively, after which the failed interface is investigated using scanning electron microscopy. A theoretical model is established based on the beam theory and a bi-layer interface model, from which an analytical expression of the critical curvature in relation to the interfacial failure is obtained. The relationships between the critical curvature, the material, and the geometric parameters of the device are discussed in detail, providing guidance for future optimization flexible circuits based on IC chips.
Self-assembly of a surfactin nanolayer at solid-liquid and air-liquid interfaces.
Onaizi, Sagheer A; Nasser, M S; Al-Lagtah, Nasir M A
2016-05-01
Surfactin, a sustainable and environmentally friendly surface active agent, is used as a model to study the adsorption of biosurfactants at hydrophobic and hydrophilic solid-liquid interfaces as well as the air-liquid interface. Surfactin adsorption was monitored as a function of time and concentration using surface plasmon resonance (SPR) technique in the case of the solid-liquid interfaces or the drop shape analysis (DSA) technique in the case of the air-liquid interface. The results obtained in this study showed that surfactin adsorption at the "hard" hydrophobic (functionalized with octadecanethiol) solid-liquid and the "soft" air-liquid interface were 1.12 ± 0.01 mg m(-2) (area per molecule of 157 ± 2 Å(2)) and 1.11 ± 0.05 mg m(-2) (area per molecule of 159 ± 7 Å(2)), respectively, demonstrating the negligible effect of the interface "hardness" on surfactin adsorption. The adsorption of surfactin at the hydrophilic (functionalized with β-mercaptoethanol) solid-liquid interface was about threefold lower than its adsorption at the hydrophobic-liquid interfaces, revealing the importance of hydrophobic interaction in surfactin adsorption process. The affinity constant of surfactin for the investigated interfaces follows the following order: air > octadecanethiol > β-mercaptoethanol. Biosurfactants, such as surfactin, are expected to replace the conventional fossil-based surfactants in several applications, and therefore the current study is a contribution towards the fundamental understanding of biosurfactant behavior, on a molecular level, at hydrophobic and hydrophilic solid-liquid interfaces in addition to the air-liquid interface. Such understanding might aid further optimization of the utilization of surfactin in a number of industrial applications such as enhanced oil recovery, bioremediation, and detergency.
Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico
2008-11-14
In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.
Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P
2016-02-09
The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.
A Robust Camera-Based Interface for Mobile Entertainment
Roig-Maimó, Maria Francesca; Manresa-Yee, Cristina; Varona, Javier
2016-01-01
Camera-based interfaces in mobile devices are starting to be used in games and apps, but few works have evaluated them in terms of usability or user perception. Due to the changing nature of mobile contexts, this evaluation requires extensive studies to consider the full spectrum of potential users and contexts. However, previous works usually evaluate these interfaces in controlled environments such as laboratory conditions, therefore, the findings cannot be generalized to real users and real contexts. In this work, we present a robust camera-based interface for mobile entertainment. The interface detects and tracks the user’s head by processing the frames provided by the mobile device’s front camera, and its position is then used to interact with the mobile apps. First, we evaluate the interface as a pointing device to study its accuracy, and different factors to configure such as the gain or the device’s orientation, as well as the optimal target size for the interface. Second, we present an in the wild study to evaluate the usage and the user’s perception when playing a game controlled by head motion. Finally, the game is published in an application store to make it available to a large number of potential users and contexts and we register usage data. Results show the feasibility of using this robust camera-based interface for mobile entertainment in different contexts and by different people. PMID:26907288
Interface Shape and Convection During Solidification and Melting of Succinonitrile
NASA Technical Reports Server (NTRS)
Degroh, Henry C., III; Lindstrom, Tiffany
1994-01-01
An experimental study was conducted of the crystal growth of succinonitrile during solidification, melting, and no-growth conditions using a horizontal Bridgman furnace and square glass ampoule. For use as input boundary conditions to numerical codes, thermal profiles on the outside of the ampoule at five locations around its periphery were measured along the ampoule's length. Temperatures inside the ampoule were also measured. The shapes of the s/l interface in various two dimensional planes were quantitatively determined. Though interfaces were nondendritic and noncellular, they were not flat, but were highly curved and symmetric in only one unique longitudinal y-z plane (at x=O). The shapes of the interface were dominated by the primary longitudinal flow cell characteristic of shallow cavity flow in horizontal Bridgman; this flow cell was driven by the imposed furnace temperature gradient and caused a 'radical' thermal gradient such that the upper half of the ampoule was hotter than the bottom half. We believe that due to the strong convection, the release of latent heat does not significantly influence the thermal conditions near the interface. We hope that the interface shape and thermal data presented in this paper can be used to optimize crystal growth processes and validate numerical models.
Interface Engineering for Atomic Layer Deposited Alumina Gate Dielectric on SiGe Substrates.
Zhang, Liangliang; Guo, Yuzheng; Hassan, Vinayak Vishwanath; Tang, Kechao; Foad, Majeed A; Woicik, Joseph C; Pianetta, Piero; Robertson, John; McIntyre, Paul C
2016-07-27
Optimization of the interface between high-k dielectrics and SiGe substrates is a challenging topic due to the complexity arising from the coexistence of Si and Ge interfacial oxides. Defective high-k/SiGe interfaces limit future applications of SiGe as a channel material for electronic devices. In this paper, we identify the surface layer structure of as-received SiGe and Al2O3/SiGe structures based on soft and hard X-ray photoelectron spectroscopy. As-received SiGe substrates have native SiOx/GeOx surface layers, where the GeOx-rich layer is beneath a SiOx-rich surface. Silicon oxide regrows on the SiGe surface during Al2O3 atomic layer deposition, and both SiOx and GeOx regrow during forming gas anneal in the presence of a Pt gate metal. The resulting mixed SiOx-GeOx interface layer causes large interface trap densities (Dit) due to distorted Ge-O bonds across the interface. In contrast, we observe that oxygen-scavenging Al top gates decompose the underlying SiOx/GeOx, in a selective fashion, leaving an ultrathin SiOx interfacial layer that exhibits dramatically reduced Dit.
Transfer of control system interface solutions from other domains to the thermal power industry.
Bligård, L-O; Andersson, J; Osvalder, A-L
2012-01-01
In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain.
NASA Astrophysics Data System (ADS)
Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali
As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.
Inspecting the microstructure of electrically active defects at the Ge/GeOx interface
NASA Astrophysics Data System (ADS)
Fanciulli, Marco; Baldovino, Silvia; Molle, Alessandro
2012-02-01
High mobility substrates are important key elements in the development of advanced devices targeting a vast range of functionalities. Among them, Ge showed promising properties promoting it as valid candidate to replace Si in CMOS technology. However, the electrical quality of the Ge/oxide interface is still a problematic issue, in particular for the observed inversion of the n-type Ge surface, attributed to the presence of dangling bonds inducing a severe band bending [1]. In this scenario, the identification of electrically active defects present at the Ge/oxide interface and the capability to passivate or anneal them becomes a mandatory issue aiming at an electrically optimized interface. We report on the application of highly sensitive electrically detected magnetic resonance (EDMR) techniques in the investigation of defects at the interface between Ge and GeO2 (or GeOx), including Ge dangling bonds and defects in the oxide [2]. In particular we will investigate how different surface orientations, e.g. the (001) against the (111) Ge surface, impacts the microstructure of the interface defects. [1] P. Tsipas and A. Dimoulas, Appl. Phys. Lett. 94, 012114 (2009) [2] S. Baldovino, A. Molle, and M. Fanciulli, Appl. Phys. Lett. 96, 222110 (2010)
MuSim, a Graphical User Interface for Multiple Simulation Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Thomas; Cummings, Mary Anne; Johnson, Rolland
2016-06-01
MuSim is a new user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parametrized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer (with a slider to vary the transparency of solids), allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline, MAD-X,more » and MCNP; more coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today's standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today's technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals.« less
Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R.
2013-01-01
Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation on 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54 ± 0.75 mm prior to refinement vs. 1.11 ± 0.43 mm post-refinement, p ≪ 0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction per case was about 2 min. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the OSF framework. The two reported segmentation refinement tools were optimized for lung segmentation and might need some adaptation for other application domains. PMID:23415254
Schneider, Bradley B.; Covey, Thomas R.; Coy, Stephen L.; Krylov, Evgeny V.
2010-01-01
Ion filters based on planar DMS can be integrated with the inlet configuration of most mass spectrometers, and are able to enhance the quality of mass analysis and quantitative accuracy by reducing chemical noise, and by pre-separating ions of similar mass. This paper is the first in a series of three papers describing the optimization of DMS / MS instrumentation. In this paper the important physical parameters of a planar DMS-MS interface including analyzer geometry, analyzer coupling to a mass spectrometer, and transport gas flow control are considered. The goal is to optimize ion transmission and transport efficiency, provide optimal and adjustable resolution, and produce stable operation under conditions of high sample contamination. We discuss the principles of DMS separations and highlight the theoretical underpinnings. The main differences between planar and cylindrical geometries are presented, including a discussion of the advantages and disadvantages of RF ion focusing. In addition, we present a description of optimization of the frequency and amplitude of the DMS fields for resolution and ion transmission, and a discussion of the influence and importance of ion residence time in DMS. We have constructed a mass spectrometer interface for planar geometries that takes advantage of atmospheric pressure gas dynamic principles, rather than ion focusing, to minimize ion losses from diffusion in the analyzer and to maximize total ion transport into the mass spectrometer. A variety of experimental results has been obtained that illustrate the performance of this type of interface, including tests of resistance to high contamination levels, and the separation of stereoisomers. In a subsequent publication the control of the chemical interactions that drive the separation process of a DMS / MS system will be considered. In a third publication we describe novel electronics designed to provide the high voltages asymmetric waveform fields (SV) required for these devices as well as the effects of different waveforms. PMID:21278836
2013-01-22
hydrofluoric acid in the hydro- thermal synthesis of MIL-101 MOF, and employed an optimized TMAOH/Cr(NO3)3/TPA/H2O (0.25/1/1/280) alkaline medium.41 MOF...identical to those of as-synthesized, parent MIL-101. This demonstrates that the framework integrity of MIL-101 was retained after both thermal water...Materials & Interfaces Research Article dx.doi.org/10.1021/am302359b | ACS Appl. Mater. Interfaces 2013, 5, 1269−12781272 of most zeolites or silicas
Enhancing the Gaming Experience Using 3D Spatial User Interface Technologies.
Kulshreshth, Arun; Pfeil, Kevin; LaViola, Joseph J
2017-01-01
Three-dimensional (3D) spatial user interface technologies have the potential to make games more immersive and engaging and thus provide a better user experience. Although technologies such as stereoscopic 3D display, head tracking, and gesture-based control are available for games, it is still unclear how their use affects gameplay and if there are any user performance benefits. The authors have conducted several experiments on these technologies in game environments to understand how they affect gameplay and how we can use them to optimize the gameplay experience.
Simulation optimizing of n-type HIT solar cells with AFORS-HET
NASA Astrophysics Data System (ADS)
Yao, Yao; Xiao, Shaoqing; Zhang, Xiumei; Gu, Xiaofeng
2017-07-01
This paper presents a study of heterojunction with intrinsic thin layer (HIT) solar cells based on n-type silicon substrates by a simulation software AFORS-HET. We have studied the influence of thickness, band gap of intrinsic layer and defect densities of every interface. Details in mechanisms are elaborated as well. The results show that the optimized efficiency reaches more than 23% which may give proper suggestions to practical preparation for HIT solar cells industry.
Applications of Sharp Interface Method for Flow Dynamics, Scattering and Control Problems
2012-07-30
Reynolds number, Advances in Applied Mathematics and Mechanics, to appear. 17. K. Ito and K. Kunisch, Optimal Control of Parabolic Variational ...provides more precise and detailed sensitivity of the solution and describes the dynamical change due to the variation in the Reynolds number. The immersed... Inequalities , Journal de Math. Pures et Appl, 93 (2010), no. 4, 329-360. 18. K. Ito and K. Kunisch, Semi-smooth Newton Methods for Time-Optimal Control for a
Optimization of Transmon Qubit Fabrication
NASA Astrophysics Data System (ADS)
Chang, Josephine; Rothwell, Mary; Keefe, George; IBM Quantum Computing Group Team
2013-03-01
Rapid advances in the field of superconducting transmon qubits have refined our understanding of the role that substrate and interfaces play in qubit decoherence. Here, we review strategies for enhancing coherence times in both 2D and 3D transmon qubits through substrate design, structural improvements, and process optimization. Results correlating processing techniques to decoherence times are presented, and some novel structures are proposed for further consideration. We acknowledge support from IARPA under contract W911NF-10-1-0324
Evangelista, Daniela; Zuccaro, Antonio; Lančinskas, Algirdas; Žilinskas, Julius; Guarracino, Mario R
2016-02-17
The cost per patient of next generation sequencing for detection of rare mutations may be significantly reduced using pooled experiments. Recently, some techniques have been proposed for the planning of pooled experiments and for the optimal allocation of patients into pools. However, the lack of a user friendly resource for planning the design of pooled experiments forces the scientists to do frequent, complex and long computations. OPENDoRM is a powerful collection of novel mathematical algorithms usable via an intuitive graphical user interface. It enables researchers to speed up the planning of their routine experiments, as well as, to support scientists without specific bioinformatics expertises. Users can automatically carry out analysis in terms of costs associated with the optimal allocation of patients in pools. They are also able to choose between three distinct pooling mathematical methods, each of which also suggests the optimal configuration for the submitted experiment. Importantly, in order to keep track of the performed experiments, users can save and export the results of their experiments in standard tabular and charts contents. OPENDoRM is a freely available web-oriented application for the planning of pooled NGS experiments, available at: http://www-labgtp.na.icar.cnr.it/OPENDoRM. Its easy and intuitive graphical user interface enables researchers to plan theirs experiments using novel algorithms, and to interactively visualize the results.
Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej
2015-11-30
Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.
DyNAVacS: an integrative tool for optimized DNA vaccine design.
Harish, Nagarajan; Gupta, Rekha; Agarwal, Parul; Scaria, Vinod; Pillai, Beena
2006-07-01
DNA vaccines have slowly emerged as keystones in preventive immunology due to their versatility in inducing both cell-mediated as well as humoral immune responses. The design of an efficient DNA vaccine, involves choice of a suitable expression vector, ensuring optimal expression by codon optimization, engineering CpG motifs for enhancing immune responses and providing additional sequence signals for efficient translation. DyNAVacS is a web-based tool created for rapid and easy design of DNA vaccines. It follows a step-wise design flow, which guides the user through the various sequential steps in the design of the vaccine. Further, it allows restriction enzyme mapping, design of primers spanning user specified sequences and provides information regarding the vectors currently used for generation of DNA vaccines. The web version uses Apache HTTP server. The interface was written in HTML and utilizes the Common Gateway Interface scripts written in PERL for functionality. DyNAVacS is an integrated tool consisting of user-friendly programs, which require minimal information from the user. The software is available free of cost, as a web based application at URL: http://miracle.igib.res.in/dynavac/.
CONSOLE: A CAD tandem for optimization-based design interacting with user-supplied simulators
NASA Technical Reports Server (NTRS)
Fan, Michael K. H.; Wang, Li-Sheng; Koninckx, Jan; Tits, Andre L.
1989-01-01
CONSOLE employs a recently developed design methodology (International Journal of Control 43:1693-1721) which provides the designer with a congenial environment to express his problem as a multiple ojective constrained optimization problem and allows him to refine his characterization of optimality when a suboptimal design is approached. To this end, in CONSOLE, the designed formulates the design problem using a high-level language and performs design task and explores tradeoff through a few short and clearly defined commands. The range of problems that can be solved efficiently using a CAD tools depends very much on the ability of this tool to be interfaced with user-supplied simulators. For instance, when designing a control system one makes use of the characteristics of the plant, and therefore, a model of the plant under study has to be made available to the CAD tool. CONSOLE allows for an easy interfacing of almost any simulator the user has available. To date CONSOLE has already been used successfully in many applications, including the design of controllers for a flexible arm and for a robotic manipulator and the solution of a parameter selection problem for a neural network.
Integration of Microdialysis Sampling and Microchip Electrophoresis with Electrochemical Detection
Mecker, Laura C.; Martin, R. Scott
2009-01-01
Here we describe the fabrication, optimization, and application of a microfluidic device that integrates microdialysis (MD) sampling, microchip electrophoresis (ME), and electrochemical detection (EC). The manner in which the chip is produced is reproducible and enables the fixed alignment of the MD/ME and ME/EC interfaces. Poly(dimethylsiloxane) (PDMS) -based valves were used for the discrete injection of sample from the hydrodynamic MD dialysate stream into a separation channel for analysis with ME. To enable the integration of ME with EC detection, a palladium decoupler was used to isolate the high voltages associated with electrophoresis from micron-sized carbon ink detection electrodes. Optimization of the ME/EC interface was needed to allow the use of biologically appropriate perfusate buffers containing high salt content. This optimization included changes in the fabrication procedure, increases in the decoupler surface area, and a programmed voltage shutoff. The ability of the MD/ME/EC system to sample a biological system was demonstrated by using a linear probe to monitor the stimulated release of dopamine from a confluent layer of PC 12 cells. To our knowledge, this is the first report of a microchip-based system that couples microdialysis sampling with microchip electrophoresis and electrochemical detection. PMID:19551945
Visualization tool for human-machine interface designers
NASA Astrophysics Data System (ADS)
Prevost, Michael P.; Banda, Carolyn P.
1991-06-01
As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.
Optical systems integrated modeling
NASA Technical Reports Server (NTRS)
Shannon, Robert R.; Laskin, Robert A.; Brewer, SI; Burrows, Chris; Epps, Harlan; Illingworth, Garth; Korsch, Dietrich; Levine, B. Martin; Mahajan, Vini; Rimmer, Chuck
1992-01-01
An integrated modeling capability that provides the tools by which entire optical systems and instruments can be simulated and optimized is a key technology development, applicable to all mission classes, especially astrophysics. Many of the future missions require optical systems that are physically much larger than anything flown before and yet must retain the characteristic sub-micron diffraction limited wavefront accuracy of their smaller precursors. It is no longer feasible to follow the path of 'cut and test' development; the sheer scale of these systems precludes many of the older techniques that rely upon ground evaluation of full size engineering units. The ability to accurately model (by computer) and optimize the entire flight system's integrated structural, thermal, and dynamic characteristics is essential. Two distinct integrated modeling capabilities are required. These are an initial design capability and a detailed design and optimization system. The content of an initial design package is shown. It would be a modular, workstation based code which allows preliminary integrated system analysis and trade studies to be carried out quickly by a single engineer or a small design team. A simple concept for a detailed design and optimization system is shown. This is a linkage of interface architecture that allows efficient interchange of information between existing large specialized optical, control, thermal, and structural design codes. The computing environment would be a network of large mainframe machines and its users would be project level design teams. More advanced concepts for detailed design systems would support interaction between modules and automated optimization of the entire system. Technology assessment and development plans for integrated package for initial design, interface development for detailed optimization, validation, and modeling research are presented.
Shape optimization of tibial prosthesis components
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Mraz, P. J.; Davy, D. T.
1993-01-01
NASA technology and optimal design methodologies originally developed for the optimization of composite structures (engine blades) are adapted and applied to the optimization of orthopaedic knee implants. A method is developed enabling the shape tailoring of the tibial components of a total knee replacement implant for optimal interaction within the environment of the tibia. The shape of the implant components are optimized such that the stresses in the bone are favorably controlled to minimize bone degradation, to improve the mechanical integrity of the implant/interface/bone system, and to prevent failures of the implant components. A pilot tailoring system is developed and the feasibility of the concept is demonstrated and evaluated. The methodology and evolution of the existing aerospace technology from which this pilot optimization code was developed is also presented and discussed. Both symmetric and unsymmetric in-plane loading conditions are investigated. The results of the optimization process indicate a trend toward wider and tapered posts as well as thicker backing trays. Unique component geometries were obtained for the different load cases.
Impedance analysis of PbS colloidal quantum dot solar cells with different ZnO nanowire lengths
NASA Astrophysics Data System (ADS)
Fukuda, Takeshi; Takahashi, Akihiro; Wang, Haibin; Takahira, Kazuya; Kubo, Takaya; Segawa, Hiroshi
2018-03-01
The photoconversion efficiency of colloidal quantum dot (QD) solar cells has been markedly improved by optimizing the surface passivation and device structure, and details of device physics are now under investigation. In this study, we investigated the resistance and capacitance components at the ZnO/PbS-QD interface and inside a PbS-QD layer by measuring the impedance spectrum while the interface area was controlled by changing the ZnO nanowire length. By evaluating the dependence of optical intensity and DC bias voltage on the ZnO nanowire length, only the capacitance was observed to be influenced by the interface area, and this indicates that photoinduced carriers are generated at the surface of PbS-QD. In addition, since the capacitance is proportional to the surface area of the QD, the interface area can be evaluated from the capacitance. Finally, photovoltaic performance was observed to increase with increasing ZnO nanowire length owing to the large interface area, and this result is in good agreement with the capacitance measurement.
Support of surgical process modeling by using adaptable software user interfaces
NASA Astrophysics Data System (ADS)
Neumuth, T.; Kaschek, B.; Czygan, M.; Goldstein, D.; Strauß, G.; Meixensberger, J.; Burgert, O.
2010-03-01
Surgical Process Modeling (SPM) is a powerful method for acquiring data about the evolution of surgical procedures. Surgical Process Models are used in a variety of use cases including evaluation studies, requirements analysis and procedure optimization, surgical education, and workflow management scheme design. This work proposes the use of adaptive, situation-aware user interfaces for observation support software for SPM. We developed a method to support the modeling of the observer by using an ontological knowledge base. This is used to drive the graphical user interface for the observer to restrict the search space of terminology depending on the current situation. In the evaluation study it is shown, that the workload of the observer was decreased significantly by using adaptive user interfaces. 54 SPM observation protocols were analyzed by using the NASA Task Load Index and it was shown that the use of the adaptive user interface disburdens the observer significantly in workload criteria effort, mental demand and temporal demand, helping him to concentrate on his essential task of modeling the Surgical Process.
NASA Astrophysics Data System (ADS)
Shipman, Joshua; Riggs, Brian; Luo, Sijun; Adireddy, Shiva; Chrisey, Douglas
Energy storage is a green energy technology, however it must be cost effective and scalable to meet future energy demands. Polymer-nanoparticle composites are low cost and potentially offer high energy storage. This is based on the high breakdown strength of polymers and the high dielectric constant of ceramic nanoparticles, but the incoherent nature of the interface between the two components prevents the realization of their combined full potential. We have created inkjet printable nanoparticle-polymer composites that have mitigated many of these interface effects, guided by first principle modelling of the interface. We detail density functional theory modelling of the interface and how it has guided our use in in specific surface functionalizations and other inorganic layers. We have validated our approach by using finite element analysis of the interface. By choosing the correct surface functionalization we are able to create dipole traps which further increase the breakdown strength of our composites. Our nano-scale understanding has allowed us to create the highest energy density composites currently available (>40 J/cm3).
Spatial issues in user interface design from a graphic design perspective
NASA Technical Reports Server (NTRS)
Marcus, Aaron
1989-01-01
The user interface of a computer system is a visual display that provides information about the status of operations on data within the computer and control options to the user that enable adjustments to these operations. From the very beginning of computer technology the user interface was a spatial display, although its spatial features were not necessarily complex or explicitly recognized by the users. All text and nonverbal signs appeared in a virtual space generally thought of as a single flat plane of symbols. Current technology of high performance workstations permits any element of the display to appear as dynamic, multicolor, 3-D signs in a virtual 3-D space. The complexity of appearance and the user's interaction with the display provide significant challenges to the graphic designer of current and future user interfaces. In particular, spatial depiction provides many opportunities for effective communication of objects, structures, processes, navigation, selection, and manipulation. Issues are presented that are relevant to the graphic designer seeking to optimize the user interface's spatial attributes for effective visual communication.
Seasonal GPR Signal Changes in Two Contrasting Soils in the Shale Hills Catchment
NASA Astrophysics Data System (ADS)
Lin, H.; Zhang, J.; Doolittle, J. A.
2011-12-01
Repeated GPR surveys in different seasons, combined with real-time soil water monitoring, provide a useful methodology to reveal subsurface hydrologic processes and their underlying mechanisms in different soils and hillslopes. This was demonstrated in the Shale Hills Critical Zone Observatory using two contrasting soils over several dry and wet seasons. Our results showed that 1) the radar reflection in the BC-C horizon interface in the deep Rushtown soil became clearer as soil became wetter, which was linked to lateral flow above this horizon interface that increased the contrast, and 2) the reflection in the soil-bedrock interface and the weathered-unweathered rock interface in the shallow Weikert soil become intermittent as soil became wetter, which was attributed to non-uniform distribution of water in bedrock fractures that created locally strong contrast, leading to point scatter of GPR reflection. This study shows the optimal time for using GPR to detect soil horizon interfaces, the value of nondestructive mapping of soil-rock moisture distribution patterns, and the possibility of identifying preferential flow pathways in the subsurface.
Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface.
Williamson, M J; Tromp, R M; Vereecken, P M; Hull, R; Ross, F M
2003-08-01
Dynamic processes at the solid-liquid interface are of key importance across broad areas of science and technology. Electrochemical deposition of copper, for example, is used for metallization in integrated circuits, and a detailed understanding of nucleation, growth and coalescence is essential in optimizing the final microstructure. Our understanding of processes at the solid-vapour interface has advanced tremendously over the past decade due to the routine availability of real-time, high-resolution imaging techniques yielding data that can be compared quantitatively with theory. However, the difficulty of studying the solid-liquid interface leaves our understanding of processes there less complete. Here we analyse dynamic observations--recorded in situ using a novel transmission electron microscopy technique--of the nucleation and growth of nanoscale copper clusters during electrodeposition. We follow in real time the evolution of individual clusters, and compare their development with simulations incorporating the basic physics of electrodeposition during the early stages of growth. The experimental technique developed here is applicable to a broad range of dynamic phenomena at the solid-liquid interface.
Structural impact detection with vibro-haptic interfaces
NASA Astrophysics Data System (ADS)
Jung, Hwee-Kwon; Park, Gyuhae; Todd, Michael D.
2016-07-01
This paper presents a new sensing paradigm for structural impact detection using vibro-haptic interfaces. The goal of this study is to allow humans to ‘feel’ structural responses (impact, shape changes, and damage) and eventually determine health conditions of a structure. The target applications for this study are aerospace structures, in particular, airplane wings. Both hardware and software components are developed to realize the vibro-haptic-based impact detection system. First, L-shape piezoelectric sensor arrays are deployed to measure the acoustic emission data generated by impacts on a wing. Unique haptic signals are then generated by processing the measured acoustic emission data. These haptic signals are wirelessly transmitted to human arms, and with vibro-haptic interface, human pilots could identify impact location, intensity and possibility of subsequent damage initiation. With the haptic interface, the experimental results demonstrate that human could correctly identify such events, while reducing false indications on structural conditions by capitalizing on human’s classification capability. Several important aspects of this study, including development of haptic interfaces, design of optimal human training strategies, and extension of the haptic capability into structural impact detection are summarized in this paper.
Tack coat optimization for HMA overlays : accelerated pavement test report.
DOT National Transportation Integrated Search
2009-02-01
Interface bonding between hot-mix asphalt (HMA) overlays and Portland cement concrete (PCC) pavements is one : of the most significant factors affecting overlay service life. This study was performed to quantify the effects of HMA type, : tack coat t...
PcapDB: Search Optimized Packet Capture, Version 0.1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, Paul; Steinfadt, Shannon
PcapDB is a packet capture system designed to optimize the captured data for fast search in the typical (network incident response) use case. The technology involved in this software has been submitted via the IDEAS system and has been filed as a provisional patent. It includes the following primary components: capture: The capture component utilizes existing capture libraries to retrieve packets from network interfaces. Once retrieved the packets are passed to additional threads for sorting into flows and indexing. The sorted flows and indexes are passed to other threads so that they can be written to disk. These components aremore » written in the C programming language. search: The search components provide a means to find relevant flows and the associated packets. A search query is parsed and represented as a search tree. Various search commands, written in C, are then used resolve this tree into a set of search results. The tree generation and search execution management components are written in python. interface: The PcapDB web interface is written in Python on the Django framework. It provides a series of pages, API's, and asynchronous tasks that allow the user to manage the capture system, perform searches, and retrieve results. Web page components are written in HTML,CSS and Javascript.« less
Optimal design method to minimize users' thinking mapping load in human-machine interactions.
Huang, Yanqun; Li, Xu; Zhang, Jie
2015-01-01
The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.
Optimization of the Bridgman crystal growth process
NASA Astrophysics Data System (ADS)
Margulies, M.; Witomski, P.; Duffar, T.
2004-05-01
A numerical optimization method of the vertical Bridgman growth configuration is presented and developed. It permits to optimize the furnace temperature field and the pulling rate versus time in order to decrease the radial thermal gradients in the sample. Some constraints are also included in order to insure physically realistic results. The model includes the two classical non-linearities associated to crystal growth processes, the radiative thermal exchange and the release of latent heat at the solid-liquid interface. The mathematical analysis and development of the problem is shortly described. On some examples, it is shown that the method works in a satisfactory way; however the results are dependent on the numerical parameters. Improvements of the optimization model, on the physical and numerical point of view, are suggested.
Distributed Energy Resources Customer Adoption Model - Graphical User Interface, Version 2.1.8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewald, Friedrich; Stadler, Michael; Cardoso, Goncalo F
The DER-CAM Graphical User Interface has been redesigned to consist of a dynamic tree structure on the left side of the application window to allow users to quickly navigate between different data categories and views. Views can either be tables with model parameters and input data, the optimization results, or a graphical interface to draw circuit topology and visualize investment results. The model parameters and input data consist of tables where values are assigned to specific keys. The aggregation of all model parameters and input data amounts to the data required to build a DER-CAM model, and is passed tomore » the GAMS solver when users initiate the DER-CAM optimization process. Passing data to the GAMS solver relies on the use of a Java server that handles DER-CAM requests, queuing, and results delivery. This component of the DER-CAM GUI can be deployed either locally or remotely, and constitutes an intermediate step between the user data input and manipulation, and the execution of a DER-CAM optimization in the GAMS engine. The results view shows the results of the DER-CAM optimization and distinguishes between a single and a multi-objective process. The single optimization runs the DER-CAM optimization once and presents the results as a combination of summary charts and hourly dispatch profiles. The multi-objective optimization process consists of a sequence of runs initiated by the GUI, including: 1) CO2 minimization, 2) cost minimization, 3) a user defined number of points in-between objectives 1) and 2). The multi-objective results view includes both access to the detailed results of each point generated by the process as well as the generation of a Pareto Frontier graph to illustrate the trade-off between objectives. DER-CAM GUI 2.1.8 also introduces the ability to graphically generate circuit topologies, enabling support to DER-CAM 5.0.0. This feature consists of: 1) The drawing area, where users can manually create nodes and define their properties (e.g. point of common coupling, slack bus, load) and connect them through edges representing either power lines, transformers, or heat pipes, all with user defined characteristics (e.g., length, ampacity, inductance, or heat loss); 2) The tables, which display the user-defined topology in the final numerical form that will be passed to the DER-CAM optimization. Finally, the DER-CAM GUI is also deployed with a database schema that allows users to provide different energy load profiles, solar irradiance profiles, and tariff data, that can be stored locally and later used in any DER-CAM model. However, no real data will be delivered with this version.« less
The atomic simulation environment-a Python library for working with atoms.
Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob; Castelli, Ivano E; Christensen, Rune; Dułak, Marcin; Friis, Jesper; Groves, Michael N; Hammer, Bjørk; Hargus, Cory; Hermes, Eric D; Jennings, Paul C; Bjerre Jensen, Peter; Kermode, James; Kitchin, John R; Leonhard Kolsbjerg, Esben; Kubal, Joseph; Kaasbjerg, Kristen; Lysgaard, Steen; Bergmann Maronsson, Jón; Maxson, Tristan; Olsen, Thomas; Pastewka, Lars; Peterson, Andrew; Rostgaard, Carsten; Schiøtz, Jakob; Schütt, Ole; Strange, Mikkel; Thygesen, Kristian S; Vegge, Tejs; Vilhelmsen, Lasse; Walter, Michael; Zeng, Zhenhua; Jacobsen, Karsten W
2017-07-12
The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple 'for-loop' construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.
The atomic simulation environment—a Python library for working with atoms
NASA Astrophysics Data System (ADS)
Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob; Castelli, Ivano E.; Christensen, Rune; Dułak, Marcin; Friis, Jesper; Groves, Michael N.; Hammer, Bjørk; Hargus, Cory; Hermes, Eric D.; Jennings, Paul C.; Bjerre Jensen, Peter; Kermode, James; Kitchin, John R.; Leonhard Kolsbjerg, Esben; Kubal, Joseph; Kaasbjerg, Kristen; Lysgaard, Steen; Bergmann Maronsson, Jón; Maxson, Tristan; Olsen, Thomas; Pastewka, Lars; Peterson, Andrew; Rostgaard, Carsten; Schiøtz, Jakob; Schütt, Ole; Strange, Mikkel; Thygesen, Kristian S.; Vegge, Tejs; Vilhelmsen, Lasse; Walter, Michael; Zeng, Zhenhua; Jacobsen, Karsten W.
2017-07-01
The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple ‘for-loop’ construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.
Ibrahim, Yehia; Tang, Keqi; Tolmachev, Aleksey V.; Shvartsburg, Alexandre A.
2006-01-01
We report on a new electrodynamic ion funnel that operates at a pressure of 30 Torr with no loss of ion transmission. The enhanced performance compared to previous ion funnel designs optimized for pressures of <5 Torr was achieved by reducing the ion funnel capacitance and increasing the RF drive frequency (1.7 MHz) and amplitude (100-170 V peak-to-peak). No degradation of ion transmission was observed for pressures from 2 - 30 Torr. The ability to operate at higher pressure enabled a new tandem ion funnel mass spectrometer (MS) interface design that can accommodate a greater gas load. When combined with a multicapillary inlet, the interface provided more efficient introduction of ions, resulting in a significant enhancement in MS sensitivity and detection limits. PMID:16839773
Interface Superconductivity in Cuprates Defies Fermi-Liquid Description
Radović, Zoran; Vanević, Mihajlo; Wu, Jie; ...
2016-07-26
La 2-xSr xCuO 4/La 2CuO 4 bilayers show interface superconductivity that originates from accumulation and depletion of mobile charge carriers across the interface. Surprisingly, the doping level can be varied broadly (within the interval 0.15 < x < 0.47) without affecting the transition temperature, which stays essentially constant and equal to that in optimally doped material, T c ≈ 40 K. Here we argue that this finding implies that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. Lastly, we discuss possible physical scenarios that can give doping-independent chemical potential in themore » pseudogap regime: electronic phase separation, formation of charge-density waves, strong Coulomb interactions, or self-trapping of mobile charge carriers.« less
NASA Astrophysics Data System (ADS)
Pagliarone, C. E.; Uttaro, S.; Cappelli, L.; Fallone, M.; Kartal, S.
2017-02-01
CAT, Cryogenic Analysis Tools is a software package developed using LabVIEW and ROOT environments to analyze the performances of large size cryostats, where many parameters, input, and control variables need to be acquired and studied at the same time. The present paper describes how CAT works and which are the main improvements achieved in the new version: CAT 2. New Graphical User Interfaces have been developed in order to make the use of the full package more user-friendly as well as a process of resource optimization has been carried out. The offline analysis of the full cryostat performances is available both trough ROOT line command interface band also by using the new graphical interfaces.
An Optimization-based Atomistic-to-Continuum Coupling Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Derek; Bochev, Pavel B.; Luskin, Mitchell
2014-08-21
In this paper, we present a new optimization-based method for atomistic-to-continuum (AtC) coupling. The main idea is to cast the latter as a constrained optimization problem with virtual Dirichlet controls on the interfaces between the atomistic and continuum subdomains. The optimization objective is to minimize the error between the atomistic and continuum solutions on the overlap between the two subdomains, while the atomistic and continuum force balance equations provide the constraints. Separation, rather then blending of the atomistic and continuum problems, and their subsequent use as constraints in the optimization problem distinguishes our approach from the existing AtC formulations. Finally,more » we present and analyze the method in the context of a one-dimensional chain of atoms modeled using a linearized two-body potential with next-nearest neighbor interactions.« less
Neuroprosthetic Decoder Training as Imitation Learning.
Merel, Josh; Carlson, David; Paninski, Liam; Cunningham, John P
2016-05-01
Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.
NASA Astrophysics Data System (ADS)
Arab Bafrani, Hamidreza; Ebrahimi, Mahdi; Bagheri Shouraki, Saeed; Moshfegh, Alireza Z.
2018-01-01
Memristor devices have attracted tremendous interest due to different applications ranging from nonvolatile data storage to neuromorphic computing units. Exploring the role of surface roughness of the bottom electrode (BE)/active layer interface provides useful guidelines for the optimization of the memristor switching performance. This study focuses on the effect of surface roughness of the BE electrode on the switching characteristics of Au/TiO2/Au three-layer memristor devices. An optimized wet-etching treatment condition was found to modify the surface roughness of the Au BE where the measurement results indicate that the roughness of the Au BE is affected by both duration time and solution concentrations of the wet-etching process. Then we fabricated arrays of TiO2-based nanostructured memristors sandwiched between two sets of cross-bar Au electrode lines (junction area 900 μm2). The results revealed a reduction in the working voltages in current-voltage characteristic of the device performance when increasing the surface roughness at the Au(BE)/TiO2 active layer interface. The set voltage of the device (Vset) significantly decreased from 2.26-1.93 V when we increased the interface roughness from 4.2-13.1 nm. The present work provides information for better understanding the switching mechanism of titanium-dioxide-based devices, and it can be inferred that enhancing the roughness of the Au BE/TiO2 active layer interface leads to a localized non-uniform electric field distribution that plays a vital role in reducing the energy consumption of the device.
NASA Astrophysics Data System (ADS)
Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Pandiyarasan, V.; Ikeda, H.; Therese, H. A.
2018-05-01
Perpendicular Magnetic Anisotropy (PMA) was realized in as-deposited Mo(10)/Co2FeAl0.5Si0.5(CFAS)(3)/MgO(0.5)/Mo multilayer stacks with large perpendicular magnetic anisotropy energy (Keff). PMA of this multilayer is found to be strongly dependent on the thickness of the individual CFAS (tCFAS), Mo (tMo) and MgO (tMgO) layers and annealing temperatures. The interactions at the Mo/CFAS/MgO interfaces are critical to induce PMA and are tuned by the interfacial oxidation. The major contribution to PMA is due to iron oxide at the CFAS/MgO interface. X-ray diffraction (XRD) and infrared spectroscopic (FT-IR) studies further ascertain this. However, an adequate oxidation of MgO and the formation of (0 2 4) and (0 1 8) planes of α-Fe2O3 at the optimal Mo buffer layer thickness is mainly inducing PMA in Mo/CFAS/MgO/Mo stack. Microstructural changes in the films are observed by atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) demonstrates the oxidation of CFAS/MgO interface and the formation of Fe-O bonds confirming that the real origin of PMA in Mo/CFAS/MgO is due to hybridization of Fe (3dz2) and O (2pz) orbitals and the resulted spin-orbit interaction at their interface. The half-metallic nature CFAS with Mo layer exhibiting PMA can be a potential candidate as p-MTJs electrodes for the new generation spintronic devices.
NANOCI-Nanotechnology Based Cochlear Implant With Gapless Interface to Auditory Neurons.
Senn, Pascal; Roccio, Marta; Hahnewald, Stefan; Frick, Claudia; Kwiatkowska, Monika; Ishikawa, Masaaki; Bako, Peter; Li, Hao; Edin, Fredrik; Liu, Wei; Rask-Andersen, Helge; Pyykkö, Ilmari; Zou, Jing; Mannerström, Marika; Keppner, Herbert; Homsy, Alexandra; Laux, Edith; Llera, Miguel; Lellouche, Jean-Paul; Ostrovsky, Stella; Banin, Ehud; Gedanken, Aharon; Perkas, Nina; Wank, Ute; Wiesmüller, Karl-Heinz; Mistrík, Pavel; Benav, Heval; Garnham, Carolyn; Jolly, Claude; Gander, Filippo; Ulrich, Peter; Müller, Marcus; Löwenheim, Hubert
2017-09-01
: Cochlear implants (CI) restore functional hearing in the majority of deaf patients. Despite the tremendous success of these devices, some limitations remain. The bottleneck for optimal electrical stimulation with CI is caused by the anatomical gap between the electrode array and the auditory neurons in the inner ear. As a consequence, current devices are limited through 1) low frequency resolution, hence sub-optimal sound quality and 2), large stimulation currents, hence high energy consumption (responsible for significant battery costs and for impeding the development of fully implantable systems). A recently completed, multinational and interdisciplinary project called NANOCI aimed at overcoming current limitations by creating a gapless interface between auditory nerve fibers and the cochlear implant electrode array. This ambitious goal was achieved in vivo by neurotrophin-induced attraction of neurites through an intracochlear gel-nanomatrix onto a modified nanoCI electrode array located in the scala tympani of deafened guinea pigs. Functionally, the gapless interface led to lower stimulation thresholds and a larger dynamic range in vivo, and to reduced stimulation energy requirement (up to fivefold) in an in vitro model using auditory neurons cultured on multi-electrode arrays. In conclusion, the NANOCI project yielded proof of concept that a gapless interface between auditory neurons and cochlear implant electrode arrays is feasible. These findings may be of relevance for the development of future CI systems with better sound quality and performance and lower energy consumption. The present overview/review paper summarizes the NANOCI project history and highlights achievements of the individual work packages.
Folliet, Nicolas; Roiland, Claire; Bégu, Sylvie; Aubert, Anne; Mineva, Tzonka; Goursot, Annick; Selvaraj, Kaliaperumal; Duma, Luminita; Tielens, Frederik; Mauri, Francesco; Laurent, Guillaume; Bonhomme, Christian; Gervais, Christel; Babonneau, Florence; Azaïs, Thierry
2011-10-26
In the context of nanomedicine, liposils (liposomes and silica) have a strong potential for drug storage and release schemes: such materials combine the intrinsic properties of liposome (encapsulation) and silica (increased rigidity, protective coating, pH degradability). In this work, an original approach combining solid state NMR, molecular dynamics, first principles geometry optimization, and NMR parameters calculation allows the building of a precise representation of the organic/inorganic interface in liposils. {(1)H-(29)Si}(1)H and {(1)H-(31)P}(1)H Double Cross-Polarization (CP) MAS NMR experiments were implemented in order to explore the proton chemical environments around the silica and the phospholipids, respectively. Using VASP (Vienna Ab Initio Simulation Package), DFT calculations including molecular dynamics, and geometry optimization lead to the determination of energetically favorable configurations of a DPPC (dipalmitoylphosphatidylcholine) headgroup adsorbed onto a hydroxylated silica surface that corresponds to a realistic model of an amorphous silica slab. These data combined with first principles NMR parameters calculations by GIPAW (Gauge Included Projected Augmented Wave) show that the phosphate moieties are not directly interacting with silanols. The stabilization of the interface is achieved through the presence of water molecules located in-between the head groups of the phospholipids and the silica surface forming an interfacial H-bonded water layer. A detailed study of the (31)P chemical shift anisotropy (CSA) parameters allows us to interpret the local dynamics of DPPC in liposils. Finally, the VASP/solid state NMR/GIPAW combined approach can be extended to a large variety of organic-inorganic hybrid interfaces.
Glanville, Julie M; Duffy, Steven; McCool, Rachael; Varley, Danielle
2014-07-01
Since 2005, International Committee of Medical Journal Editors (ICMJE) member journals have required that clinical trials be registered in publicly available trials registers before they are considered for publication. The research explores whether it is adequate, when searching to inform systematic reviews, to search for relevant clinical trials using only public trials registers and to identify the optimal search approaches in trials registers. A search was conducted in ClinicalTrials.gov and the International Clinical Trials Registry Platform (ICTRP) for research studies that had been included in eight systematic reviews. Four search approaches (highly sensitive, sensitive, precise, and highly precise) were performed using the basic and advanced interfaces in both resources. On average, 84% of studies were not listed in either resource. The largest number of included studies was retrieved in ClinicalTrials.gov and ICTRP when a sensitive search approach was used in the basic interface. The use of the advanced interface maintained or improved sensitivity in 16 of 19 strategies for Clinicaltrials.gov and 8 of 18 for ICTRP. No single search approach was sensitive enough to identify all studies included in the 6 reviews. Trials registers cannot yet be relied upon as the sole means to locate trials for systematic reviews. Trials registers lag behind the major bibliographic databases in terms of their search interfaces. For systematic reviews, trials registers and major bibliographic databases should be searched. Trials registers should be searched using sensitive approaches, and both the registers consulted in this study should be searched.
NASA Astrophysics Data System (ADS)
Klein, Christopher R.; Kubánek, Petr; Butler, Nathaniel R.; Fox, Ori D.; Kutyrev, Alexander S.; Rapchun, David A.; Bloom, Joshua S.; Farah, Alejandro; Gehrels, Neil; Georgiev, Leonid; González, J. Jesús; Lee, William H.; Lotkin, Gennadiy N.; Moseley, Samuel H.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Richer, Michael G.; Robinson, Frederick D.; Román-Zúñiga, Carlos; Samuel, Mathew V.; Sparr, Leroy M.; Tucker, Corey; Watson, Alan M.
2012-07-01
The Reionization And Transients InfraRed (RATIR) camera has been built for rapid Gamma-Ray Burst (GRB) followup and will provide quasi-simultaneous imaging in ugriZY JH. The optical component uses two 2048 × 2048 pixel Finger Lakes Imaging ProLine detectors, one optimized for the SDSS u, g, and r bands and one optimized for the SDSS i band. The infrared portion incorporates two 2048 × 2048 pixel Teledyne HgCdTe HAWAII-2RG detectors, one with a 1.7-micron cutoff and one with a 2.5-micron cutoff. The infrared detectors are controlled by Teledyne's SIDECAR (System for Image Digitization Enhancement Control And Retrieval) ASICs (Application Specific Integrated Circuits). While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 (JWST ASIC Drive Electronics) interface card and IDE (Integrated Development Environment). Here we present a summary of the software developed to interface the RATIR detectors with Remote Telescope System, 2nd Version (RTS2) software. RTS2 is an integrated open source package for remote observatory control under the Linux operating system and will autonomously coordinate observatory dome, telescope pointing, detector, filter wheel, focus stage, and dewar vacuum compressor operations. Where necessary we have developed custom interfaces between RTS2 and RATIR hardware, most notably for cryogenic focus stage motor drivers and temperature controllers. All detector and hardware interface software developed for RATIR is freely available and open source as part of the RTS2 distribution.
Moderate temperature control technology for a lunar base
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.; Sridhar, K. R.; Gottmann, Matthias
1993-01-01
A parametric analysis is performed to compare different heat pump based thermal control systems for a Lunar Base. Rankine cycle and absorption cycle heat pumps are compared and optimized for a 100 kW cooling load. Variables include the use or lack of an interface heat exchanger, and different operating fluids. Optimization of system mass to radiator rejection temperature is performed. The results indicate a relatively small sensitivity of Rankine cycle system mass to these variables, with optimized system masses of about 6000 kg for the 100 kW thermal load. It is quantitaively demonstrated that absorption based systems are not mass competitive with Rankine systems.
New Software Developments for Quality Mesh Generation and Optimization from Biomedical Imaging Data
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2013-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. PMID:24252469
A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes
NASA Astrophysics Data System (ADS)
Lundquist, Tomas; Malan, Arnaud; Nordström, Jan
2018-06-01
We develop a general interface procedure to couple both structured and unstructured parts of a hybrid mesh in a non-collocated, multi-block fashion. The target is to gain optimal computational efficiency in fluid dynamics simulations involving complex geometries. While guaranteeing stability, the proposed procedure is optimized for accuracy and requires minimal algorithmic modifications to already existing schemes. Initial numerical investigations confirm considerable efficiency gains compared to non-hybrid calculations of up to an order of magnitude.
Optimizing nursing human resource planning in British Columbia.
Lavieri, Mariel S; Puterman, Martin L
2009-06-01
This paper describes a linear programming hierarchical planning model that determines the optimal number of nurses to train, promote to management and recruit over a 20 year planning horizon to achieve specified workforce levels. Age dynamics and attrition rates of the nursing workforce are key model components. The model was developed to help policy makers plan a sustainable nursing workforce for British Columbia, Canada. An easy to use interface and considerable flexibility makes it ideal for scenario and "What-If?" analyses.
A Machine Learning and Optimization Toolkit for the Swarm
2014-11-17
Machine Learning and Op0miza0on Toolkit for the Swarm Ilge Akkaya, Shuhei Emoto...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A Machine Learning and Optimization Toolkit for the Swarm 5a. CONTRACT NUMBER... machine learning methodologies by providing the right interfaces between machine learning tools and
2015-12-01
induced (non)stoichiometry on the structure, dielectric response, and thermal conductivity of SrTiO3 thin films. Chemistry of Materials. 2012;24:331...must be below a few percent. The external sources of loss, such as conductor interface losses and various losses that inevitably arise from device...epitaxy • Excellent control of film stoichiometry and thickness • Large area uniformity and potential for complex structure coating • Optimized
DAKOTA JAGUAR 3.0 user's manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Bauman, Lara E; Chan, Ethan
2013-05-01
JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary to use JAGUAR.
1997-09-01
and Ronen 1987], capital budget- ing [Brown, Clemence, Teufert, and Wood 1991], and global supply chain manage- ment [ Arntzen , Brown, Harrison, and...crew-pairing opti- mization at American Airlines," Interfaces, Vol. 21, No. 1 Oanuary- February), pp. 62-74. Arntzen , B. C.; Brown, G. G.; Harrison, T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Ethan
2011-06-01
JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the technical background necessary for a developer to understand JAGUAR.
Multifunctional Materials and Structures Gordon Research Conference
2016-03-08
accelerating transport or dynamic chemical changes in strong, stiff materials, optimizing interfaces between hard and soft materials, multi-physics...Forms; Discuss Future Site and Scheduling Preferences; Election of the Next Vice Chair 7:30 pm - 9:30 pm Actuation and Morphing Discussion Leader
A dominant conformational role for amino acid diversity in minimalist protein–protein interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbreth, Ryan N.; Esaki, Kaori; Koide, Akiko
Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed “monobodies.” One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose-binding protein. The YSX monobodymore » bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution X-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces.« less
A Dominant Conformational Role for Amino Acid Diversity in Minimalist Protein-Protein Interfaces
Gilbreth, Ryan N.; Esaki, Kaori; Koide, Akiko; Sidhu, Sachdev S.; Koide, Shohei
2008-01-01
Recent studies have shown that highly simplified interaction surfaces consisting of combinations of just two amino acids, Tyr and Ser, exhibit high affinity and specificity. The high functional levels of such minimalist interfaces might thus indicate small contributions of greater amino acid diversity seen in natural interfaces. Toward addressing this issue, we have produced a pair of binding proteins built on the fibronectin type III scaffold, termed “monobodies”. One monobody contains the Tyr/Ser binary-code interface (termed YS) and the other contains an expanded amino acid diversity interface (YSX), but both bind to an identical target, maltose binding protein (MBP). The YSX monobody bound with higher affinity, a slower off rate and a more favorable enthalpic contribution than the YS monobody. High-resolution x-ray crystal structures revealed that both proteins bound to an essentially identical epitope, providing a unique opportunity to directly investigate the role of amino acid diversity in a protein interaction interface. Surprisingly, Tyr still dominates the YSX paratope and the additional amino acid types are primarily used to conformationally optimize contacts made by tyrosines. Scanning mutagenesis showed that while all contacting Tyr side-chains are essential in the YS monobody, the YSX interface was more tolerant to mutations. These results suggest that the conformational, not chemical, diversity of additional types of amino acids provided higher functionality and evolutionary robustness, supporting the dominant role of Tyr and the importance of conformational diversity in forming protein interaction interfaces. PMID:18602117
Band-Bending of Ga-Polar GaN Interfaced with Al2O3 through Ultraviolet/Ozone Treatment.
Kim, Kwangeun; Ryu, Jae Ha; Kim, Jisoo; Cho, Sang June; Liu, Dong; Park, Jeongpil; Lee, In-Kyu; Moody, Baxter; Zhou, Weidong; Albrecht, John; Ma, Zhenqiang
2017-05-24
Understanding the band bending at the interface of GaN/dielectric under different surface treatment conditions is critically important for device design, device performance, and device reliability. The effects of ultraviolet/ozone (UV/O 3 ) treatment of the GaN surface on the energy band bending of atomic-layer-deposition (ALD) Al 2 O 3 coated Ga-polar GaN were studied. The UV/O 3 treatment and post-ALD anneal can be used to effectively vary the band bending, the valence band offset, conduction band offset, and the interface dipole at the Al 2 O 3 /GaN interfaces. The UV/O 3 treatment increases the surface energy of the Ga-polar GaN, improves the uniformity of Al 2 O 3 deposition, and changes the amount of trapped charges in the ALD layer. The positively charged surface states formed by the UV/O 3 treatment-induced surface factors externally screen the effect of polarization charges in the GaN, in effect, determining the eventual energy band bending at the Al 2 O 3 /GaN interfaces. An optimal UV/O 3 treatment condition also exists for realizing the "best" interface conditions. The study of UV/O 3 treatment effect on the band alignments at the dielectric/III-nitride interfaces will be valuable for applications of transistors, light-emitting diodes, and photovoltaics.
NASA Astrophysics Data System (ADS)
Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.
2006-12-01
order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.
ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites.
Konc, Janez; Miller, Benjamin T; Štular, Tanja; Lešnik, Samo; Woodcock, H Lee; Brooks, Bernard R; Janežič, Dušanka
2015-11-23
Proteins often exist only as apo structures (unligated) in the Protein Data Bank, with their corresponding holo structures (with ligands) unavailable. However, apoproteins may not represent the amino-acid residue arrangement upon ligand binding well, which is especially problematic for molecular docking. We developed the ProBiS-CHARMMing web interface by connecting the ProBiS ( http://probis.cmm.ki.si ) and CHARMMing ( http://www.charmming.org ) web servers into one functional unit that enables prediction of protein-ligand complexes and allows for their geometry optimization and interaction energy calculation. The ProBiS web server predicts ligands (small compounds, proteins, nucleic acids, and single-atom ligands) that may bind to a query protein. This is achieved by comparing its surface structure against a nonredundant database of protein structures and finding those that have binding sites similar to that of the query protein. Existing ligands found in the similar binding sites are then transposed to the query according to predictions from ProBiS. The CHARMMing web server enables, among other things, minimization and potential energy calculation for a wide variety of biomolecular systems, and it is used here to optimize the geometry of the predicted protein-ligand complex structures using the CHARMM force field and to calculate their interaction energies with the corresponding query proteins. We show how ProBiS-CHARMMing can be used to predict ligands and their poses for a particular binding site, and minimize the predicted protein-ligand complexes to obtain representations of holoproteins. The ProBiS-CHARMMing web interface is freely available for academic users at http://probis.nih.gov.
NASA Technical Reports Server (NTRS)
Ables, Brett
2014-01-01
Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile mission scope.
Miniature flowing atmospheric-pressure afterglow ion source for facile interfacing of CE with MS.
Jecklin, Matthias C; Schmid, Stefan; Urban, Pawel L; Amantonico, Andrea; Zenobi, Renato
2010-10-01
Here, we present a miniaturized version of the flowing atmospheric-pressure afterglow (miniFAPA) ion source and use it for sheathless coupling of CE with MS. The simple design of the CE-miniFAPA-MS interface makes it easy to separate the electric potentials used for CE and for ionization. A pneumatically assisted nebulization of the CE effluent transfers the analytes from the liquid phase into the gas phase before they are ionized by interacting with reactive species produced by the FAPA. An important advantage of this interface is its high stability during operation: optimization of five different parameters indicated that the interface is not sensitive to minor deviations from the optimum values. Other advantages include ease of construction and maintenance, as well as relatively low cost. Samples with complex matrices, such as yeast extract, soil extract and urine, spiked with the test compounds, were successfully analyzed using the CE-miniFAPA-MS setup.
Studies on interface curvature during vertical Bridgman growth of InP in a flat-bottom container
NASA Astrophysics Data System (ADS)
Rudolph, P.; Matsumoto, F.; Fukuda, T.
1996-01-01
A simplified numerical simulation of the dynamic behaviour of the solid-liquid interface curvature during modified vertical Bridgman growth of 2 inch InP single crystals, in a flat-bottom container, with a seed of the same diameter is presented. The results agree with striation patterns observed by transmission X-ray topography. A nearly flat interface with slightly constant concavity has been ascertained in the front half of the grown ingots. It can be assumed that such a steady interface morphology is one of the basic requirements for the observed twin-free and reduced dislocation growth in this region. In an attempt to optimize the shape of the melting point isotherm in the last-to-freeze part of the crystals, the axial temperature gradient, the seed length, the growth velocity, the melt temperature and the conditions of heat transfer (different ambient atmospheres and plugs) as well as the temperature profile in the top region above the encapsulant have been varied in the model.
Soft, Conformal Bioelectronics for a Wireless Human-Wheelchair Interface
Mishra, Saswat; Norton, James J. S.; Lee, Yongkuk; Lee, Dong Sup; Agee, Nicolas; Chen, Yanfei; Chun, Youngjae; Yeo, Woon-Hong
2017-01-01
There are more than 3 million people in the world whose mobility relies on wheelchairs. Recent advancement on engineering technology enables more intuitive, easy-to-use rehabilitation systems. A human-machine interface that uses non-invasive, electrophysiological signals can allow a systematic interaction between human and devices; for example, eye movement-based wheelchair control. However, the existing machine-interface platforms are obtrusive, uncomfortable, and often cause skin irritations as they require a metal electrode affixed to the skin with a gel and acrylic pad. Here, we introduce a bioelectronic system that makes dry, conformal contact to the skin. The mechanically comfortable sensor records high-fidelity electrooculograms, comparable to the conventional gel electrode. Quantitative signal analysis and infrared thermographs show the advantages of the soft biosensor for an ergonomic human-machine interface. A classification algorithm with an optimized set of features shows the accuracy of 94% with five eye movements. A Bluetooth-enabled system incorporating the soft bioelectronics demonstrates a precise, hands-free control of a robotic wheelchair via electrooculograms. PMID:28152485
Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero
2018-05-16
Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.
Interfaces detection after corneal refractive surgery by low coherence optical interferometry
Verrier, I.; Veillas, C.; Lépine, T.; Nguyen, F.; Thuret, G.; Gain, P.
2010-01-01
The detection of refractive corneal surgery by LASIK, during the storage of corneas in Eye Banks will become a challenge when the numerous operated patients will arrive at the age of cornea donation. The subtle changes of corneal structure and refraction are highly suspected to negatively influence clinical results in recipients of such corneas. In order to detect LASIK cornea interfaces we developed a low coherence interferometry technique using a broadband continuum source. Real time signal recording, without moving any optical elements and without need of a Fourier Transform operation, combined with good measurement resolution is the main asset of this interferometer. The associated numerical processing is based on a method initially used in astronomy and offers an optimal correlation signal without the necessity to image the whole cornea that is time consuming. The detection of corneal interfaces - both outer and inner surface and the buried interface corresponding to the surgical wound – is then achieved directly by the innovative combination of interferometry and this original numerical process. PMID:21258562
Zhang, Yumin; Zhao, Jianhong; Zhang, Jin; Jiang, Xixi; Zhu, Zhongqi; Liu, Qingju
2018-05-09
A printing process for the fabrication of perovskite solar cells (PSCs) exhibits promising future application in the photovoltaic industry due to its low-cost and eco-friendly preparation. In mesoscopic carbon-based PSCs, however, compared to conventional ones, the hole-transport-layer-free PSCs often lead to inefficient hole extraction. Here, we used liquid metal (LM, Galinstan) as an interface modifier material in combination with a carbon electrode. Considering the high conductivity and room-temperature fluidity, it is found that LMs are superior in improving hole extraction and, more importantly, LMs tend to be reserved at the interface between ZrO 2 and carbon for enhancing the contact property. Correspondingly, the carrier transfer resistance was decreased at the carbon/perovskite interface. As optimized content, the triple mesoscopic PSCs based on mixed-cation perovskite with a power conversion efficiency of 13.51% was achieved, involving a 26% increase compared to those without LMs. This work opens new techniques for LMs in optoelectronics and printing.
Growing LaAlO{sub 3}/SrTiO{sub 3} interfaces by sputter deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dildar, I. M.; Neklyudova, M.; Xu, Q.
Sputter deposition of oxide materials in a high-pressure oxygen atmosphere is a well-known technique to produce thin films of perovskite oxides in particular. Also interfaces can be fabricated, which we demonstrated recently by growing LaAlO{sub 3} on SrTiO{sub 3} substrates and showing that the interface showed the same high degree of epitaxy and atomic order as is made by pulsed laser deposition. However, the high pressure sputtering of oxides is not trivial and number of parameters are needed to be optimized for epitaxial growth. Here we elaborate on the earlier work to show that only a relatively small parameter windowmore » exists with respect to oxygen pressure, growth temperature, radiofrequency power supply and target to substrate distance. In particular the sensitivity to oxygen pressure makes it more difficult to vary the oxygen stoichiometry at the interface, yielding it insulating rather than conducting.« less
A Prototype Visualization of Real-time River Drainage Network Response to Rainfall
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2011-12-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.
A Web-based Data Intensive Visualization of Real-time River Drainage Network Response to Rainfall
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2012-04-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.
Emitter/absorber interface of CdTe solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Tao; Kanevce, Ana; Sites, James R.
The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV /= 0.4 eV), however, can impede electron transport and leadmore » to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted to yield higher voltages and would therefore be better candidates for the CdTe-cell emitter.« less
Optimization of Monte Carlo dose calculations: The interface problem
NASA Astrophysics Data System (ADS)
Soudentas, Edward
1998-05-01
High energy photon beams are widely used for radiation treatment of deep-seated tumors. The human body contains many types of interfaces between dissimilar materials that affect dose distribution in radiation therapy. Experimentally, significant radiation dose perturbations has been observed at such interfaces. The EGS4 Monte Carlo code was used to calculate dose perturbations at boundaries between dissimilar materials (such as bone/water) for 60Co and 6 MeV linear accelerator beams using a UNIX workstation. A simple test of the reliability of a random number generator was also developed. A systematic study of the adjustable parameters in EGS4 was performed in order to minimize calculational artifacts at boundaries. Calculations of dose perturbations at boundaries between different materials showed that there is a 12% increase in dose at water/bone interface, and a 44% increase in dose at water/copper interface. with the increase mainly due to electrons produced in water and backscattered from the high atomic number material. The dependence of the dose increase on the atomic number was also investigated. The clinically important case of using two parallel opposed beams for radiation therapy was investigated where increased doses at boundaries has been observed. The Monte Carlo calculations can provide accurate dosimetry data under conditions of electronic non-equilibrium at tissue interfaces.
Deng, Feng; Zhang, Lei; Zhang, Yi; Song, Jin-lin; Fan, Yuboa
2007-07-01
To compare and analyze the stress distribution at the micro-implant-bone interface based on the different micro-implant-bone conditioned under orthodontic load, and to optimize the design of micro implant's neck. An adult skull with all tooth was scanned by spiral CT, and the data were imported into computer for three-dimensional reconstruction with software Mimics 9.0. The three dimensional finite element models of three micro-implant-bone interfaces(initial stability, full osseointegration and fibrous integration) were analyzed by finite element analysis software ABAQUS6.5. The primary stress distributions of different micro-implant-bone conditions were evaluated when 2N force was loaded. Then the diameter less than 1.5 mm of the micro implant's neck was added with 0.2 mm, to compare the stress distribution of the modified micro-implant-bone interface with traditional type. The stress mostly concentrated on the neck of micro implant and the full osseointegration interface in all models showed the lowest strain level. Compared with the traditional type, the increasing diameter neck of the micro implant obviously decreased the stress level in all the three conditions. The micro-implant-bone interface and the diameter of micro implant's neck both are the important influence factors to the stress distribution of micro implant.
Krutchinsky, Andrew N.; Padovan, Júlio C.; Cohen, Herbert; Chait, Brian T.
2015-01-01
We have discovered that an electrode containing a conical channel with a small angular divergence can transmit into the vacuum almost 100% of an electrospray ion current produced at atmospheric pressure. Our first implementation of such a conical duct, which we term “ConDuct”, uses a conductive plastic pipette tip containing a ≈1.6° divergent channel at its entrance. We observed that the beam formed by the ConDuct electrode has a very low divergence (< 1°) and persisted for long distances in vacuum. Intrigued by these properties, we incorporated this electrode into a novel atmosphere-to-vacuum ion transmission interface, and devised a technique for evaluating its performance relative to commercial reference interfaces that contain heated metal capillaries. We determined that our new interface transmits at least 400 times more ions than the commercial Thermo LCQ DECA XP atmosphere-to-vacuum interface and 2–3 times more than the commercial interface in the Thermo Velos Orbitrap and the Q Exactive mass spectrometers. We conclude that it might be possible to optimize the properties of the transmitted ions further by manufacturing ConDuct inlet electrodes from metal rather than conductive plastic and by determining the optimum angle of channel divergence and channel length. PMID:25588722
MATLAB/Simulink Pulse-Echo Ultrasound System Simulator Based on Experimentally Validated Models.
Kim, Taehoon; Shin, Sangmin; Lee, Hyongmin; Lee, Hyunsook; Kim, Heewon; Shin, Eunhee; Kim, Suhwan
2016-02-01
A flexible clinical ultrasound system must operate with different transducers, which have characteristic impulse responses and widely varying impedances. The impulse response determines the shape of the high-voltage pulse that is transmitted and the specifications of the front-end electronics that receive the echo; the impedance determines the specification of the matching network through which the transducer is connected. System-level optimization of these subsystems requires accurate modeling of pulse-echo (two-way) response, which in turn demands a unified simulation of the ultrasonics and electronics. In this paper, this is realized by combining MATLAB/Simulink models of the high-voltage transmitter, the transmission interface, the acoustic subsystem which includes wave propagation and reflection, the receiving interface, and the front-end receiver. To demonstrate the effectiveness of our simulator, the models are experimentally validated by comparing the simulation results with the measured data from a commercial ultrasound system. This simulator could be used to quickly provide system-level feedback for an optimized tuning of electronic design parameters.
Route Advising in a Dynamic Environment - A High-Tech Approach
NASA Astrophysics Data System (ADS)
Firdhous, M. F. M.; Basnayake, D. L.; Kodithuwakku, K. H. L.; Hatthalla, N. K.; Charlin, N. W.; Bandara, P. M. R. I. K.
Finding the optimal path between two locations in the Colombo city is not a straight forward task, because of the complex road system and the huge traffic jams etc. This paper presents a system to find the optimal driving direction between two locations within the Colombo city, considering road rules (one way, two ways or fully closed in both directions). The system contains three main modules - core module, web module and mobile module, additionally there are two user interfaces one for normal users and the other for administrative users. Both these interfaces can be accessed using a web browser or a GPRS enabled mobile phone. The system is developed based on the Geographic Information System (GIS) technology. GIS is considered as the best option to integrate hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information. The core of the system is MapServer (MS4W) used along with the other supporting technologies such as PostGIS, PostgreSQL, pgRouting, ASP.NET and C#.
Visualization for Hyper-Heuristics. Front-End Graphical User Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroenung, Lauren
Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. While such automated design has great advantages, it can often be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address thesemore » issues of usability by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics to support practitioners, as well as scientific visualization of the produced automated designs. My contributions to this project are exhibited in the user-facing portion of the developed system and the detailed scientific visualizations created from back-end data.« less
Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces
Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.
2013-01-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657
A Three-Axis Force Sensor for Dual Finger Haptic Interfaces
Fontana, Marco; Marcheschi, Simone; Salsedo, Fabio; Bergamasco, Massimo
2012-01-01
In this work we present the design process, the characterization and testing of a novel three-axis mechanical force sensor. This sensor is optimized for use in closed-loop force control of haptic devices with three degrees of freedom. In particular the sensor has been conceived for integration with a dual finger haptic interface that aims at simulating forces that occur during grasping and surface exploration. The sensing spring structure has been purposely designed in order to match force and layout specifications for the application. In this paper the design of the sensor is presented, starting from an analytic model that describes the characteristic matrix of the sensor. A procedure for designing an optimal overload protection mechanism is proposed. In the last part of the paper the authors describe the experimental characterization and the integrated test on a haptic hand exoskeleton showing the improvements in the controller performances provided by the inclusion of the force sensor. PMID:23202012
Toward a model-based predictive controller design in brain-computer interfaces.
Kamrunnahar, M; Dias, N S; Schiff, S J
2011-05-01
A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.
Zeng, Wenjin; Liu, Xingming; Guo, Xiangru; Niu, Qiaoli; Yi, Jianpeng; Xia, Ruidong; Min, Yong
2017-03-24
This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK) solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.
Owoseni, Olasehinde; Zhang, Yueheng; Su, Yang; He, Jibao; McPherson, Gary L; Bose, Arijit; John, Vijay T
2015-12-29
The carbonization of hydrophilic particle surfaces provides an effective route for tuning particle wettability in the preparation of particle-stabilized emulsions. The wettability of naturally occurring halloysite clay nanotubes (HNT) is successfully tuned by the selective carbonization of the negatively charged external HNT surface. The positively charge chitosan biopolymer binds to the negatively charged external HNT surface by electrostatic attraction and hydrogen bonding, yielding carbonized halloysite nanotubes (CHNT) on pyrolysis in an inert atmosphere. Relative to the native HNT, the oil emulsification ability of the CHNT at intermediate levels of carbonization is significantly enhanced due to the thermodynamically more favorable attachment of the particles at the oil-water interface. Cryogenic scanning electron microscopy (cryo-SEM) imaging reveals that networks of CHNT attach to the oil-water interface with the particles in a side-on orientation. The concepts advanced here can be extended to other inorganic solids and carbon sources for the optimal design of particle-stabilized emulsions.
Nguyen, Huu-Dat; Assumma, Luca; Judeinstein, Patrick; Mercier, Regis; Porcar, Lionel; Jestin, Jacques; Iojoiu, Cristina; Lyonnard, Sandrine
2017-01-18
Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.
NASA Astrophysics Data System (ADS)
Descoeudres, A.; Barraud, L.; Bartlome, R.; Choong, G.; De Wolf, Stefaan; Zicarelli, F.; Ballif, C.
2010-11-01
In silicon heterojunction solar cells, thin amorphous silicon layers passivate the crystalline silicon wafer surfaces. By using in situ diagnostics during plasma-enhanced chemical vapor deposition (PECVD), the authors report how the passivation quality of such layers directly relate to the plasma conditions. Good interface passivation is obtained from highly depleted silane plasmas. Based upon this finding, layers deposited in a large-area very high frequency (40.68 MHz) PECVD reactor were optimized for heterojunction solar cells, yielding aperture efficiencies up to 20.3% on 4 cm2 cells.
The Motivation-Cognition Interface in Learning and Decision-Making.
Maddox, W Todd; Markman, Arthur B
2010-04-01
In this article we discuss how incentive motivations and task demands affect performance. We present a three-factor framework that suggests that performance is determined from the interaction of global incentives, local incentives, and the psychological processes needed to achieve optimal task performance. We review work that examines the implications of the motivation-cognition interface in classification, choice and on phenomena such as stereotype threat and performance pressure. We show that under some conditions stereotype threat and pressure accentuate performance. We discuss the implications of this work for neuropsychological assessment, and outline a number of challenges for future research.
Specifications for a Federal Information Processing Standard Data Dictionary System
NASA Technical Reports Server (NTRS)
Goldfine, A.
1984-01-01
The development of a software specification that Federal agencies may use in evaluating and selecting data dictionary systems (DDS) is discussed. To supply the flexibility needed by widely different applications and environments in the Federal Government, the Federal Information Processing Standard (FIPS) specifies a core DDS together with an optimal set of modules. The focus and status of the development project are described. Functional specifications for the FIPS DDS are examined for the dictionary, the dictionary schema, and the dictionary processing system. The DDS user interfaces and DDS software interfaces are discussed as well as dictionary administration.
NASA Astrophysics Data System (ADS)
Sanan, P.; Tackley, P. J.; Gerya, T.; Kaus, B. J. P.; May, D.
2017-12-01
StagBL is an open-source parallel solver and discretization library for geodynamic simulation,encapsulating and optimizing operations essential to staggered-grid finite volume Stokes flow solvers.It provides a parallel staggered-grid abstraction with a high-level interface in C and Fortran.On top of this abstraction, tools are available to define boundary conditions and interact with particle systems.Tools and examples to efficiently solve Stokes systems defined on the grid are provided in small (direct solver), medium (simple preconditioners), and large (block factorization and multigrid) model regimes.By working directly with leading application codes (StagYY, I3ELVIS, and LaMEM) and providing an API and examples to integrate with others, StagBL aims to become a community tool supplying scalable, portable, reproducible performance toward novel science in regional- and planet-scale geodynamics and planetary science.By implementing kernels used by many research groups beneath a uniform abstraction layer, the library will enable optimization for modern hardware, thus reducing community barriers to large- or extreme-scale parallel simulation on modern architectures. In particular, the library will include CPU-, Manycore-, and GPU-optimized variants of matrix-free operators and multigrid components.The common layer provides a framework upon which to introduce innovative new tools.StagBL will leverage p4est to provide distributed adaptive meshes, and incorporate a multigrid convergence analysis tool.These options, in addition to a wealth of solver options provided by an interface to PETSc, will make the most modern solution techniques available from a common interface. StagBL in turn provides a PETSc interface, DMStag, to its central staggered grid abstraction.We present public version 0.5 of StagBL, including preliminary integration with application codes and demonstrations with its own demonstration application, StagBLDemo. Central to StagBL is the notion of an uninterrupted pipeline from toy/teaching codes to high-performance, extreme-scale solves. StagBLDemo replicates the functionality of an advanced MATLAB-style regional geodynamics code, thus providing users with a concrete procedure to exceed the performance and scalability limitations of smaller-scale tools.
Computational Modeling of Radiation Phenomenon in SiC for Nuclear Applications
NASA Astrophysics Data System (ADS)
Ko, Hyunseok
Silicon carbide (SiC) material has been investigated for promising nuclear materials owing to its superior thermo-mechanical properties, and low neutron cross-section. While the interest in SiC has been increasing, the lack of fundamental understanding in many radiation phenomena is an important issue. More specifically, these phenomena in SiC include the fission gas transport, radiation induced defects and its evolution, radiation effects on the mechanical stability, matrix brittleness of SiC composites, and low thermal conductivities of SiC composites. To better design SiC and SiC composite materials for various nuclear applications, understanding each phenomenon and its significance under specific reactor conditions is important. In this thesis, we used various modeling approaches to understand the fundamental radiation phenomena in SiC for nuclear applications in three aspects: (a) fission product diffusion through SiC, (b) optimization of thermodynamic stable self-interstitial atom clusters, (c) interface effect in SiC composite and their change upon radiation. In (a) fission product transport work, we proposed that Ag/Cs diffusion in high energy grain boundaries may be the upper boundary in unirradiated SiC at relevant temperature, and radiation enhanced diffusion is responsible for fast diffusion measured in post-irradiated fuel particles. For (b) the self-interstitial cluster work, thermodynamically stable clusters are identified as a function of cluster size, shape, and compositions using a genetic algorithm. We found that there are compositional and configurational transitions for stable clusters as the cluster size increases. For (c) the interface effect in SiC composite, we investigated recently proposed interface, which is CNT reinforced SiC composite. The analytical model suggests that CNT/SiC composites have attractive mechanical and thermal properties, and these fortify the argument that SiC composites are good candidate materials for the cladding. We used grand canonical monte carlo to optimize the interface, as a part of the stepping stone for further study using the interface.
NASA Astrophysics Data System (ADS)
Künneth, Christopher; Materlik, Robin; Kersch, Alfred
2017-05-01
Size effects from surface or interface energy play a pivotal role in stabilizing the ferroelectric phase in recently discovered thin film Zirconia-Hafnia. However, sufficient quantitative understanding has been lacking due to the interference with the stabilizing effect from dopants. For the important class of undoped Hf1-xZrxO2, a phase stability model based on free energy from Density functional theory (DFT) and surface energy values adapted to the sparse experimental and theoretical data has been successful to describe key properties of the available thin film data. Since surfaces and interfaces are prone to interference, the predictive capability of the model is surprising and directs to a hitherto undetected, underlying reason. New experimental data hint on the existence of an interlayer on the grain surface fixed in the tetragonal phase possibly shielding from external influence. To explore the consequences of such a mechanism, we develop an interface free energy model to include the fixed interlayer, generalize the grain model to include a grain radius distribution, calculate average polarization and permittivity, and compare the model with available experimental data. Since values for interface energies are sparse or uncertain, we obtain its values from minimizing the least square difference between predicted key parameters to experimental data in a global optimization. Since the detailed values for DFT energies depend on the chosen method, we repeat the search for different computed data sets and come out with quantitatively different but qualitatively consistent values for interface energies. The resulting values are physically very reasonable and the model is able to give qualitative prediction. On the other hand, the optimization reveals that the model is not able to fully capture the experimental data. We discuss possible physical effects and directions of research to possibly close this gap.
Optimization of Materials and Interfaces for Spintronic Devices
NASA Astrophysics Data System (ADS)
Clark, Billy
In recent years' Spintronic devices have drawn a significant amount of research attention. This interest comes in large part from their ability to enable interesting and new technology such as Spin Torque Transfer Random Access Memory or improve existing technology such as High Signal Read Heads for Hard Disk Drives. For the former we worked on optimizing and improving magnetic tunnel junctions by optimizing their thermal stability by using Ta insertion layers in the free layer. We further tried to simplify the design of the MTJ stack by attempting to replace the Co/Pd multilayer with CoPd alloy. In this dissertation, we detail its development and examine the switching characteristics. Lastly we look at a highly spin polarized material, Fe2MnGe, for optimizing Hard Drive Disk read heads.
User-customized brain computer interfaces using Bayesian optimization
NASA Astrophysics Data System (ADS)
Bashashati, Hossein; Ward, Rabab K.; Bashashati, Ali
2016-04-01
Objective. The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject’s brain characteristics. Approach. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. Main Results. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Significance. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.
Bio-inspired ``jigsaw''-like interlocking sutures: Modeling, optimization, 3D printing and testing
NASA Astrophysics Data System (ADS)
Malik, I. A.; Mirkhalaf, M.; Barthelat, F.
2017-05-01
Structural biological materials such as bone, teeth or mollusk shells draw their remarkable performance from a sophisticated interplay of architectures and weak interfaces. Pushed to the extreme, this concept leads to sutured materials, which contain thin lines with complex geometries. Sutured materials are prominent in nature, and have recently served as bioinspiration for toughened ceramics and glasses. Sutures can generate large deformations, toughness and damping in otherwise all brittle systems and materials. In this study we examine the design and optimization of sutures with a jigsaw puzzle-like geometry, focusing on the non-linear traction behavior generated by the frictional pullout of the jigsaw tabs. We present analytical models which accurately predict the entire pullout response. Pullout strength and energy absorption increase with higher interlocking angles and for higher coefficients of friction, but the associated high stresses in the solid may fracture the tabs. Systematic optimization reveals a counter-intuitive result: the best pullout performance is achieved with interfaces with low coefficient of friction and high interlocking angle. We finally use 3D printing and mechanical testing to verify the accuracy of the models and of the optimization. The models and guidelines we present here can be extended to other types of geometries and sutured materials subjected to other loading/boundary conditions. The nonlinear responses of sutures are particularly attractive to augment the properties and functionalities of inherently brittle materials such as ceramics and glasses.
Multidisciplinary aerospace design optimization: Survey of recent developments
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.
1995-01-01
The increasing complexity of engineering systems has sparked increasing interest in multidisciplinary optimization (MDO). This paper presents a survey of recent publications in the field of aerospace where interest in MDO has been particularly intense. The two main challenges of MDO are computational expense and organizational complexity. Accordingly the survey is focussed on various ways different researchers use to deal with these challenges. The survey is organized by a breakdown of MDO into its conceptual components. Accordingly, the survey includes sections on Mathematical Modeling, Design-oriented Analysis, Approximation Concepts, Optimization Procedures, System Sensitivity, and Human Interface. With the authors' main expertise being in the structures area, the bulk of the references focus on the interaction of the structures discipline with other disciplines. In particular, two sections at the end focus on two such interactions that have recently been pursued with a particular vigor: Simultaneous Optimization of Structures and Aerodynamics, and Simultaneous Optimization of Structures Combined With Active Control.
Crew interface analysis: Selected articles on space human factors research, 1987 - 1991
NASA Technical Reports Server (NTRS)
Bagian, Tandi (Compiler)
1993-01-01
As part of the Flight Crew Support Division at NASA, the Crew Interface Analysis Section is dedicated to the study of human factors in the manned space program. It assumes a specialized role that focuses on answering operational questions pertaining to NASA's Space Shuttle and Space Station Freedom Programs. One of the section's key contributions is to provide knowledge and information about human capabilities and limitations that promote optimal spacecraft and habitat design and use to enhance crew safety and productivity. The section provides human factors engineering for the ongoing missions as well as proposed missions that aim to put human settlements on the Moon and Mars. Research providing solutions to operational issues is the primary objective of the Crew Interface Analysis Section. The studies represent such subdisciplines as ergonomics, space habitability, man-computer interaction, and remote operator interaction.
Mirador: A Simple, Fast Search Interface for Remote Sensing Data
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Strub, Richard; Seiler, Edward; Joshi, Talak; MacHarrie, Peter
2008-01-01
A major challenge for remote sensing science researchers is searching and acquiring relevant data files for their research projects based on content, space and time constraints. Several structured query (SQ) and hierarchical navigation (HN) search interfaces have been develop ed to satisfy this requirement, yet the dominant search engines in th e general domain are based on free-text search. The Goddard Earth Sci ences Data and Information Services Center has developed a free-text search interface named Mirador that supports space-time queries, inc luding a gazetteer and geophysical event gazetteer. In order to compe nsate for a slightly reduced search precision relative to SQ and HN t echniques, Mirador uses several search optimizations to return result s quickly. The quick response enables a more iterative search strateg y than is available with many SQ and HN techniques.
Total systems design analysis of high performance structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1993-01-01
Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.
General-purpose interface bus for multiuser, multitasking computer system
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Roth, Don J.; Stang, David B.
1990-01-01
The architecture of a multiuser, multitasking, virtual-memory computer system intended for the use by a medium-size research group is described. There are three central processing units (CPU) in the configuration, each with 16 MB memory, and two 474 MB hard disks attached. CPU 1 is designed for data analysis and contains an array processor for fast-Fourier transformations. In addition, CPU 1 shares display images viewed with the image processor. CPU 2 is designed for image analysis and display. CPU 3 is designed for data acquisition and contains 8 GPIB channels and an analog-to-digital conversion input/output interface with 16 channels. Up to 9 users can access the third CPU simultaneously for data acquisition. Focus is placed on the optimization of hardware interfaces and software, facilitating instrument control, data acquisition, and processing.
Dual interface gratings design for absorption enhancement in thin crystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Zhang, Jinqiannan; Yu, Zhongyuan; Liu, Yumin; Chai, Hongyu; Hao, Jing; Ye, Han
2017-09-01
We numerically study and analyze the light absorption enhancement in thin crystalline silicon solar cell with dual interface gratings. The structure combines the front dielectric nanowalls and the sinusoidal plasmonic grating at back reflector. We show that having specific interfaces with well-chosen period, fill factor and height can allow more efficient dielectric and plasmonic modes coupling into active layer and can improve the solar cell performance. For 1 μm active layer case, the optimal result for the proposed structure achieves short-circuit current of 23.6 mA/cm2, which performs over 50% better than flat solar cell structure, the short-circuit current of which is 15.5 mA/cm2. In addition, the active layer thickness and angular analysis show that the proposed structure maintains its advantage over flat structure.
Ci4SeR--curation interface for semantic resources--evaluation with adverse drug reactions.
Souvignet, Julien; Asfari, Hadyl; Declerck, Gunnar; Lardon, Jérémy; Trombert-Paviot, Béatrice; Jaulent, Marie-Christine; Bousquet, Cédric
2014-01-01
Evaluation and validation have become a crucial problem for the development of semantic resources. We developed Ci4SeR, a Graphical User Interface to optimize the curation work (not taking into account structural aspects), suitable for any type of resource with lightweight description logic. We tested it on OntoADR, an ontology of adverse drug reactions. A single curator has reviewed 326 terms (1020 axioms) in an estimated time of 120 hours (2.71 concepts and 8.5 axioms reviewed per hour) and added 1874 new axioms (15.6 axioms per hour). Compared with previous manual endeavours, the interface allows increasing the speed-rate of reviewed concepts by 68% and axiom addition by 486%. A wider use of Ci4SeR would help semantic resources curation and improve completeness of knowledge modelling.
Generic worklist handler for workflow-enabled products
NASA Astrophysics Data System (ADS)
Schmidt, Joachim; Meetz, Kirsten; Wendler, Thomas
1999-07-01
Workflow management (WfM) is an emerging field of medical information technology. It appears as a promising key technology to model, optimize and automate processes, for the sake of improved efficiency, reduced costs and improved patient care. The Application of WfM concepts requires the standardization of architectures and interfaces. A component of central interest proposed in this report is a generic work list handler: A standardized interface between a workflow enactment service and application system. Application systems with embedded work list handlers will be called 'Workflow Enabled Application Systems'. In this paper we discus functional requirements of work list handlers, as well as their integration into workflow architectures and interfaces. To lay the foundation for this specification, basic workflow terminology, the fundamentals of workflow management and - later in the paper - the available standards as defined by the Workflow Management Coalition are briefly reviewed.
Local Time-Dependent Charging in a Perovskite Solar Cell.
Bergmann, Victor W; Guo, Yunlong; Tanaka, Hideyuki; Hermes, Ilka M; Li, Dan; Klasen, Alexander; Bretschneider, Simon A; Nakamura, Eiichi; Berger, Rüdiger; Weber, Stefan A L
2016-08-03
Efficient charge extraction within solar cells explicitly depends on the optimization of the internal interfaces. Potential barriers, unbalanced charge extraction, and interfacial trap states can prevent cells from reaching high power conversion efficiencies. In the case of perovskite solar cells, slow processes happening on time scales of seconds cause hysteresis in the current-voltage characteristics. In this work, we localized and investigated these slow processes using frequency-modulation Kelvin probe force microscopy (FM-KPFM) on cross sections of planar methylammonium lead iodide (MAPI) perovskite solar cells. FM-KPFM can map the charge density distribution and its dynamics at internal interfaces. Upon illumination, space charge layers formed at the interfaces of the selective contacts with the MAPI layer within several seconds. We observed distinct differences in the charging dynamics at the interfaces of MAPI with adjacent layers. Our results indicate that more than one process is involved in hysteresis. This finding is in agreement with recent simulation studies claiming that a combination of ion migration and interfacial trap states causes the hysteresis in perovskite solar cells. Such differences in the charging rates at different interfaces cannot be separated by conventional device measurements.
[Development of an ophthalmological clinical information system for inpatient eye clinics].
Kortüm, K U; Müller, M; Babenko, A; Kampik, A; Kreutzer, T C
2015-12-01
In times of increased digitalization in healthcare, departments of ophthalmology are faced with the challenge of introducing electronic clinical health records (EHR); however, specialized software for ophthalmology is not available with most major EHR sytems. The aim of this project was to create specific ophthalmological user interfaces for large inpatient eye care providers within a hospitalwide EHR. Additionally the integration of ophthalmic imaging systems, scheduling and surgical documentation should be achieved. The existing EHR i.s.h.med (Siemens, Germany) was modified using advanced business application programming (ABAP) language to create specific ophthalmological user interfaces for reproduction and moreover optimization of the clinical workflow. A user interface for documentation of ambulatory patients with eight tabs was designed. From June 2013 to October 2014 a total of 61,551 patient contact details were documented. For surgical documentation a separate user interface was set up. Digital clinical orders for documentation of registration and scheduling of operations user interfaces were also set up. A direct integration of ophthalmic imaging modalities could be established. An ophthalmologist-orientated EHR for outpatient and surgical documentation for inpatient clinics was created and successfully implemented. By incorporation of imaging procedures the foundation of future smart/big data analyses was created.
Open architecture CMM motion controller
NASA Astrophysics Data System (ADS)
Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John
2001-12-01
Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.
A new weak Galerkin finite element method for elliptic interface problems
Mu, Lin; Wang, Junping; Ye, Xiu; ...
2016-08-26
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
A new weak Galerkin finite element method for elliptic interface problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Riley E.; Mangan, Niall M.; Li, Jian V.
The development of new thin-film photovoltaic (PV) absorbers is often hindered by the search for an optimal heterojunction contact; an unoptimized contact may be mistaken for poor quality of the underlying absorber, making it difficult to assess the reasons for poor performance. Therefore, quantifying the loss in device efficiency and open-circuit voltage (VOC) as a result of the interface is a critical step in evaluating a new material. In the present work, we fabricate thin-film PV devices using cuprous oxide (Cu2O), with several different n-type heterojunction contacts. Their current-voltage characteristics are measured over a range of temperatures and illumination intensitiesmore » (JVTi). We quantify the loss in VOC due to the interface and determine the effective energy gap at the interface. The effective interface gap measured by JVTi matches the gap measured by X-ray photoelectron spectroscopy, albeit with higher energy resolution and an order of magnitude faster. We discuss potential artifacts in JVTi measurements and areas where analytical models are insufficient. Applying JVTi to complete devices, rather than incomplete material stacks, suggests that it can be a quick, accurate method to assess the loss due to unoptimized interface band offsets in thin-film PV devices.« less
Nano-inspired smart interfaces: fluidic interactivity and its impact on heat transfer
NASA Astrophysics Data System (ADS)
Kim, Beom Seok; Lee, Byoung In; Lee, Namkyu; Choi, Geehong; Gemming, Thomas; Cho, Hyung Hee
2017-03-01
Interface-inspired convection is a key heat transfer scheme for hot spot cooling and thermal energy transfer. An unavoidable trade-off of the convective heat transfer is pressure loss caused by fluidic resistance on an interface. To overcome this limitation, we uncover that nano-inspired interfaces can trigger a peculiar fluidic interactivity, which can pursue all the two sides of the coin: heat transfer and fluidic friction. We demonstrate the validity of a quasi-fin effect of Si-based nanostructures based on conductive capability of heat dissipation valid under the interactivity with fluidic viscous sublayer. The exclusive fluid-interface friction is achieved when the height of the nanostructures is much less than the thickness of the viscous sublayers in the turbulent regime. The strategic nanostructures show an enhancement of heat transfer coefficients in the wall jet region by more than 21% without any significant macroscale pressure loss under single-phase impinging jet. Nanostructures guaranteeing fluid access via an equivalent vacancy larger than the diffusive path length of viscid flow lead to local heat transfer enhancement of more than 13% at a stagnation point. Functional nanostructures will give shape to possible breakthroughs in heat transfer and its optimization can be pursued for engineered systems.
NASA Astrophysics Data System (ADS)
Chan, Yuet Ching; Yu, Jerry; Ho, Derek
2018-06-01
Nanointerfaces have attracted intensive research effort for advanced electronics due to their unique and tunable semiconducting properties made possible by metal-contacted oxide structures at the nanoscale. Although much work has been on the adjustment of fabrication parameters to achieve high-quality interfaces, little work has experimentally obtained the various correlations between material parameters and Schottky barrier electronic properties to accurately probe the underlying phenomenon. In this work, we investigate the control of Pt-ZnO nanograin interfaces properties by thermal annealing. Specifically, we quantitatively analyze the correlation between material parameters (such as surface morphology, crystallographic structure, and stoichiometry) and Schottky diode parameters (Schottky barrier height, ideality factor, and contact resistance). Results revealed strong dependencies of Schottky barrier characteristics on oxygen vacancies, surface roughness, grain density, d-spacing, and crystallite size. I-V-T data shows that annealing at 600 °C produces a nanograin based interface with the most rectifying diode characteristics. These dependencies, which have not been previously reported holistically, highlight the close relationship between material properties and Schottky barrier characteristics, and are instrumental for the performance optimization of nanostructured metal-semiconductor interfaces in advanced electronic devices.
The connection characteristics of flux pinned docking interface
NASA Astrophysics Data System (ADS)
Zhang, Mingliang; Han, Yanjun; Guo, Xing; Zhao, Cunbao; Deng, Feiyue
2017-03-01
This paper presents the mechanism and potential advantages of flux pinned docking interface mainly composed of a high temperature superconductor and an electromagnet. In order to readily assess the connection characteristics of flux pinned docking interface, the force between a high temperature superconductor and an electromagnet needs to be investigated. Based on the magnetic dipole method and the Ampere law method, the force between two current coils can be compared, which shows that the Ampere law method has the higher calculated accuracy. Based on the improved frozen image model and the Ampere law method, the force between high temperature superconductor bulk and permanent magnet can be calculated, which is validated experimentally. Moreover, the force between high temperature superconductor and electromagnet applied to flux pinned docking interface is able to be predicted and analyzed. The connection stiffness between high temperature superconductor and permanent magnet can be calculated based on the improved frozen image model and Hooke's law. The relationship between the connection stiffness and field cooling height is analyzed. Furthermore, the connection stiffness of the flux pinned docking interface is predicted and optimized, and its effective working range is defined and analyzed in case of some different parameters.
Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert
2017-01-27
A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fractionmore » or index function, is provided. Results show that the low-order level set works equally well as the actual level set for mesh smoothing. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Lastly, dynamic cases with moving interfaces show the new method is capable of maintaining a desired resolution near the interface with an acceptable number of relaxation iterations per time step, which demonstrates the method's potential to be used as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods.« less
Zhou, Bangyan; Wu, Xiaopei; Lv, Zhao; Zhang, Lei; Guo, Xiaojin
2016-01-01
Independent component analysis (ICA) as a promising spatial filtering method can separate motor-related independent components (MRICs) from the multichannel electroencephalogram (EEG) signals. However, the unpredictable burst interferences may significantly degrade the performance of ICA-based brain-computer interface (BCI) system. In this study, we proposed a new algorithm frame to address this issue by combining the single-trial-based ICA filter with zero-training classifier. We developed a two-round data selection method to identify automatically the badly corrupted EEG trials in the training set. The "high quality" training trials were utilized to optimize the ICA filter. In addition, we proposed an accuracy-matrix method to locate the artifact data segments within a single trial and investigated which types of artifacts can influence the performance of the ICA-based MIBCIs. Twenty-six EEG datasets of three-class motor imagery were used to validate the proposed methods, and the classification accuracies were compared with that obtained by frequently used common spatial pattern (CSP) spatial filtering algorithm. The experimental results demonstrated that the proposed optimizing strategy could effectively improve the stability, practicality and classification performance of ICA-based MIBCI. The study revealed that rational use of ICA method may be crucial in building a practical ICA-based MIBCI system.
Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates
NASA Technical Reports Server (NTRS)
Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.
2006-01-01
Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.
Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying
2014-10-07
In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.
Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates
NASA Astrophysics Data System (ADS)
Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.
2006-04-01
Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.
CMAQ modeling in the nitrogen inventory study in the Nooksack-Abbotsford-Sumas Transboundary Region
Optimizing nitrogen (N) use for food production while minimizing the release of N and co-pollutants to the environment is an important challenge. The Nooksack-Abbotsford-Sumas Transboundary (NAS) Region, spanning a portion of the western interface of British Columbia, Washington...
Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices
2006-08-15
approximations to the metric, and space mapping wherein low-accuracy (coarse mesh) solutions can potentially be used more effectively in an...interface and algorithm development. • Work on space - mapping or related methods for utilizing models of varying levels of approximation within an
HAL/S-FC compiler system functional specification
NASA Technical Reports Server (NTRS)
1974-01-01
Compiler organization is discussed, including overall compiler structure, internal data transfer, compiler development, and code optimization. The user, system, and SDL interfaces are described, along with compiler system requirements. Run-time software support package and restrictions and dependencies are also considered of the HAL/S-FC system.
lee, Lee-Peng; Tidor, Bruce
2001-01-01
Theoretical and experimental studies have shown that the large desolvation penalty required for polar and charged groups frequently precludes their involvement in electrostatic interactions that contribute strongly to net stability in the folding or binding of proteins in aqueous solution near room temperature. We have previously developed a theoretical framework for computing optimized electrostatic interactions and illustrated use of the algorithm with simplified geometries. Given a receptor and model assumptions, the method computes the ligand-charge distribution that provides the most favorable balance of desolvation and interaction effects on binding. In this paper the method has been extended to treat complexes using actual molecular shapes. The barnase-barstar protein complex was investigated with barnase treated as a target receptor. The atomic point charges of barstar were varied to optimize the electrostatic binding free energy. Barnase and natural barstar form a tight complex (Kd ∼ 10−14 M) with many charged and polar groups near the interface that make this a particularly relevant system for investigating the role of electrostatic effects on binding. The results show that sets of barstar charges (resulting from optimization with different constraints) can be found that give rise to relatively large predicted improvements in electrostatic binding free energy. Principles for enhancing the effect of electrostatic interactions in molecular binding in aqueous environments are discussed in light of the optima. Our findings suggest that, in general, the enhancements in electrostatic binding free energy resulting from modification of polar and charged groups can be substantial. Moreover, a recently proposed definition of electrostatic complementarity is shown to be a useful tool for examining binding interfaces. Finally, calculational results suggest that wild-type barstar is closer to being affinity optimized than is barnase for their mutual binding, consistent with the known roles of these proteins. PMID:11266622
Combining Simulation Tools for End-to-End Trajectory Optimization
NASA Technical Reports Server (NTRS)
Whitley, Ryan; Gutkowski, Jeffrey; Craig, Scott; Dawn, Tim; Williams, Jacobs; Stein, William B.; Litton, Daniel; Lugo, Rafael; Qu, Min
2015-01-01
Trajectory simulations with advanced optimization algorithms are invaluable tools in the process of designing spacecraft. Due to the need for complex models, simulations are often highly tailored to the needs of the particular program or mission. NASA's Orion and SLS programs are no exception. While independent analyses are valuable to assess individual spacecraft capabilities, a complete end-to-end trajectory from launch to splashdown maximizes potential performance and ensures a continuous solution. In order to obtain end-to-end capability, Orion's in-space tool (Copernicus) was made to interface directly with the SLS's ascent tool (POST2) and a new tool to optimize the full problem by operating both simulations simultaneously was born.
New software developments for quality mesh generation and optimization from biomedical imaging data.
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2014-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Assessment of the State-of-the-Art of System-Wide Safety and Assurance Technologies
NASA Technical Reports Server (NTRS)
Roychoudhury, Indranil; Reveley, Mary S.; Phojanamongkolkij, Nipa; Leone, Karen M.
2017-01-01
Since its initiation, the System-wide Safety Assurance Technologies (SSAT) Project has been focused on developing multidisciplinary tools and techniques that are verified and validated to ensure prevention of loss of property and life in NextGen and enable proactive risk management through predictive methods. To this end, four technical challenges have been listed to help realize the goals of SSAT, namely (i) assurance of flight critical systems, (ii) discovery of precursors to safety incidents, (iii) assuring safe human-systems integration, and (iv) prognostic algorithm design for safety assurance. The objective of this report is to provide an extensive survey of SSAT-related research accomplishments by researchers within and outside NASA to get an understanding of what the state-of-the-art is for technologies enabling each of the four technical challenges. We hope that this report will serve as a good resource for anyone interested in gaining an understanding of the SSAT technical challenges, and also be useful in the future for project planning and resource allocation for related research.
Culture Representation in Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Gertman; Julie Marble; Steven Novack
Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991)more » cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.« less
Multiagent Work Practice Simulation: Progress and Challenges
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Shaffe, Michael G. (Technical Monitor)
2001-01-01
Modeling and simulating complex human-system interactions requires going beyond formal procedures and information flows to analyze how people interact with each other. Such work practices include conversations, modes of communication, informal assistance, impromptu meetings, workarounds, and so on. To make these social processes visible, we have developed a multiagent simulation tool, called Brahms, for modeling the activities of people belonging to multiple groups, situated in a physical environment (geographic regions, buildings, transport vehicles, etc.) consisting of tools, documents, and a computer system. We are finding many useful applications of Brahms for system requirements analysis, instruction, implementing software agents, and as a workbench for relating cognitive and social theories of human behavior. Many challenges remain for representing work practices, including modeling: memory over multiple days, scheduled activities combining physical objects, groups, and locations on a timeline (such as a Space Shuttle mission), habitat vehicles with trajectories (such as the Shuttle), agent movement in 3D space (e.g., inside the International Space Station), agent posture and line of sight, coupled movements (such as carrying objects), and learning (mimicry, forming habits, detecting repetition, etc.).
Multiagent Work Practice Simulation: Progress and Challenges
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten
2002-01-01
Modeling and simulating complex human-system interactions requires going beyond formal procedures and information flows to analyze how people interact with each other. Such work practices include conversations, modes of communication, informal assistance, impromptu meetings, workarounds, and so on. To make these social processes visible, we have developed a multiagent simulation tool, called Brahms, for modeling the activities of people belonging to multiple groups, situated in a physical environment (geographic regions, buildings, transport vehicles, etc.) consisting of tools, documents, and computer systems. We are finding many useful applications of Brahms for system requirements analysis, instruction, implementing software agents, and as a workbench for relating cognitive and social theories of human behavior. Many challenges remain for representing work practices, including modeling: memory over multiple days, scheduled activities combining physical objects, groups, and locations on a timeline (such as a Space Shuttle mission), habitat vehicles with trajectories (such as the Shuttle), agent movement in 3d space (e.g., inside the International Space Station), agent posture and line of sight, coupled movements (such as carrying objects), and learning (mimicry, forming habits, detecting repetition, etc.).
Simulation approach for optimization of ZnO/c-WSe{}_{2} heterojunction solar cells
NASA Astrophysics Data System (ADS)
Huang, Shihua; Li, Qiannan; Chi, Dan; Meng, Xiuqing; He, Lü
2017-04-01
Taking into account defect density in WSe{}2, interface recombination between ZnO and WSe{}2, we presented a simulation study of ZnO/crystalline WSe{}2 heterojunction (HJ) solar cell using wxAMPS simulation software. The optimal conversion efficiency 39.07% for n-ZnO/p-c-WSe{}2 HJ solar cell can be realized without considering the impact of defects. High defect density (> 1.0× {10}11 cm{}-2) in c-WSe{}2 and large trap cross-section (> 1.0 × 10{}-10 cm{}2) have serious impact on solar cell efficiency. A thin p-WSe{}2 layer is intentionally inserted between ZnO layer and c-WSe{}2 to investigate the effect of the interface recombination. The interface properties are very crucial to the performance of ZnO/c-WSe{}2HJ solar cell. The affinity of ZnO value range between 3.7-4.5 eV gives the best conversion efficiency. Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.
2015-12-01
In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology. The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network. The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols. Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design.
Evaluation of DICOM viewer software for workflow integration in clinical trials
NASA Astrophysics Data System (ADS)
Haak, Daniel; Page, Charles E.; Kabino, Klaus; Deserno, Thomas M.
2015-03-01
The digital imaging and communications in medicine (DICOM) protocol is nowadays the leading standard for capture, exchange and storage of image data in medical applications. A broad range of commercial, free, and open source software tools supporting a variety of DICOM functionality exists. However, different from patient's care in hospital, DICOM has not yet arrived in electronic data capture systems (EDCS) for clinical trials. Due to missing integration, even just the visualization of patient's image data in electronic case report forms (eCRFs) is impossible. Four increasing levels for integration of DICOM components into EDCS are conceivable, raising functionality but also demands on interfaces with each level. Hence, in this paper, a comprehensive evaluation of 27 DICOM viewer software projects is performed, investigating viewing functionality as well as interfaces for integration. Concerning general, integration, and viewing requirements the survey involves the criteria (i) license, (ii) support, (iii) platform, (iv) interfaces, (v) two-dimensional (2D) and (vi) three-dimensional (3D) image viewing functionality. Optimal viewers are suggested for applications in clinical trials for 3D imaging, hospital communication, and workflow. Focusing on open source solutions, the viewers ImageJ and MicroView are superior for 3D visualization, whereas GingkoCADx is advantageous for hospital integration. Concerning workflow optimization in multi-centered clinical trials, we suggest the open source viewer Weasis. Covering most use cases, an EDCS and PACS interconnection with Weasis is suggested.
NASA Astrophysics Data System (ADS)
Nguyen, Tran Phu; Chuang, Hsiao-Tsun; Chen, Jyh-Chen; Hu, Chieh
2018-02-01
In this study, the effect of the power history on the shape of a sapphire crystal and the thermal stress during the Kyropoulos process are numerically investigated. The simulation results show that the thermal stress is strongly dependent on the power history. The thermal stress distributions in the crystal for all growth stages produced with different power histories are also studied. The results show that high von Mises stress regions are found close to the seed of the crystal, the highly curved crystal surface and the crystal-melt interface. The maximum thermal stress, which occurs at the crystal-melt interface, increases significantly in value as the crystal expands at the crown. After this, there is reduction in the maximum thermal stress as the crystal lengthens. There is a remarkable enhancement in the maximum von Mises stress when the crystal-melt interface is close to the bottom of the crucible. There are two obvious peaks in the maximum Von Mises stress, at the end of the crown stage and in the final stage, when cracking defects can form. To alleviate this problem, different power histories are considered in order to optimize the process to produce the lowest thermal stress in the crystal. The optimal power history is found to produce a significant reduction in the thermal stress in the crown stage.
Analysis of different image-based biofeedback models for improving cycling performances
NASA Astrophysics Data System (ADS)
Bibbo, D.; Conforto, S.; Bernabucci, I.; Carli, M.; Schmid, M.; D'Alessio, T.
2012-03-01
Sport practice can take advantage from the quantitative assessment of task execution, which is strictly connected to the implementation of optimized training procedures. To this aim, it is interesting to explore the effectiveness of biofeedback training techniques. This implies a complete chain for information extraction containing instrumented devices, processing algorithms and graphical user interfaces (GUIs) to extract valuable information (i.e. kinematics, dynamics, and electrophysiology) to be presented in real-time to the athlete. In cycling, performance indexes displayed in a simple and perceivable way can help the cyclist optimize the pedaling. To this purpose, in this study four different GUIs have been designed and used in order to understand if and how a graphical biofeedback can influence the cycling performance. In particular, information related to the mechanical efficiency of pedaling is represented in each of the designed interfaces and then displayed to the user. This index is real-time calculated on the basis of the force signals exerted on the pedals during cycling. Instrumented pedals for bikes, already designed and implemented in our laboratory, have been used to measure those force components. A group of subjects underwent an experimental protocol and pedaled with (the interfaces have been used in a randomized order) and without graphical biofeedback. Preliminary results show how the effective perception of the biofeedback influences the motor performance.
Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces
Hochberg, Leigh R.; Donoghue, John P.; Brown, Emery N.
2015-01-01
Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID:25265627
Neuroprosthetic Decoder Training as Imitation Learning
Merel, Josh; Paninski, Liam; Cunningham, John P.
2016-01-01
Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user’s intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user’s intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector. PMID:27191387
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.
Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V
2016-01-01
Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.
User Interface Design in Medical Distributed Web Applications.
Serban, Alexandru; Crisan-Vida, Mihaela; Mada, Leonard; Stoicu-Tivadar, Lacramioara
2016-01-01
User interfaces are important to facilitate easy learning and operating with an IT application especially in the medical world. An easy to use interface has to be simple and to customize the user needs and mode of operation. The technology in the background is an important tool to accomplish this. The present work aims to creating a web interface using specific technology (HTML table design combined with CSS3) to provide an optimized responsive interface for a complex web application. In the first phase, the current icMED web medical application layout is analyzed, and its structure is designed using specific tools, on source files. In the second phase, a new graphic adaptable interface to different mobile terminals is proposed, (using HTML table design (TD) and CSS3 method) that uses no source files, just lines of code for layout design, improving the interaction in terms of speed and simplicity. For a complex medical software application a new prototype layout was designed and developed using HTML tables. The method uses a CSS code with only CSS classes applied to one or multiple HTML table elements, instead of CSS styles that can be applied to just one DIV tag at once. The technique has the advantage of a simplified CSS code, and a better adaptability to different media resolutions compared to DIV-CSS style method. The presented work is a proof that adaptive web interfaces can be developed just using and combining different types of design methods and technologies, using HTML table design, resulting in a simpler to learn and use interface, suitable for healthcare services.
Bai, Lijie; Ye, Fan; Li, Luna; Lu, Jingjing; Zhong, Shuxian; Bai, Song
2017-10-01
Integration of plasmonic metal and cocatalyst with semiconductor is a promising approach to simultaneously optimize the generation, transfer, and consumption of photoinduced charge carriers for high-performance photocatalysis. The photocatalytic activities of the designed hybrid structures are greatly determined by the efficiencies of charge transfer across the interfaces between different components. In this paper, interface design of Ag-BiOCl-PdO x hybrid photocatalysts is demonstrated based on the choice of suitable BiOCl facets in depositing plasmonic Ag and PdO x cocatalyst, respectively. It is found that the selective deposition of Ag and PdO x on BiOCl(110) planes realizes the superior photocatalytic activity in O 2 evolution compared with the samples with other Ag and PdO x deposition locations. The reason was the superior hole transfer abilities of Ag-(110)BiOCl and BiOCl(110)-PdO x interfaces in comparison with those of Ag-(001)BiOCl and BiOCl(001)-PdO x interfaces. Two effects are proposed to contribute to this enhancement: (1) stronger electronic coupling at the BiOCl(110)-based interfaces resulted from the thinner contact barrier layer and (2) the shortest average hole diffuse distance realized by Ag and PdO x on BiOCl(110) planes. This work represents a step toward the interface design of high-performance photocatalyst through facet engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interface Magnetoelectric Coupling in Co/Pb(Zr,Ti)O3.
Vlašín, Ondřej; Jarrier, Romain; Arras, Rémi; Calmels, Lionel; Warot-Fonrose, Bénédicte; Marcelot, Cécile; Jamet, Matthieu; Ohresser, Philippe; Scheurer, Fabrice; Hertel, Riccardo; Herranz, Gervasi; Cherifi-Hertel, Salia
2016-03-23
Magnetoelectric coupling at multiferroic interfaces is a promising route toward the nonvolatile electric-field control of magnetization. Here, we use optical measurements to study the static and dynamic variations of the interface magnetization induced by an electric field in Co/PbZr0.2Ti0.8O3 (Co/PZT) bilayers at room temperature. The measurements allow us to identify different coupling mechanisms. We further investigate the local electronic and magnetic structure of the interface by means of transmission electron microscopy, soft X-ray magnetic circular dichroism, and density functional theory to corroborate the coupling mechanism. The measurements demonstrate a mixed linear and quadratic optical response to the electric field, which results from a magneto-electro-optical effect. We propose a decomposition method of the optical signal to discriminate between different components involved in the electric field-induced polarization rotation of the reflected light. This allows us to extract a signal that we can ascribe to interface magnetoelectric coupling. The associated surface magnetization exhibits a clear hysteretic variation of odd symmetry with respect to the electric field and nonzero remanence. The interface coupling is remarkably stable over a wide frequency range (1-50 kHz), and the application of a bias magnetic field is not necessary for the coupling to occur. These results show the potential of exploiting interface coupling with the prospect of optimizing the performance of magnetoelectric memory devices in terms of stability, as well as fast and dissipationless operation.
Mehler, Bruce; Kidd, David; Reimer, Bryan; Reagan, Ian; Dobres, Jonathan; McCartt, Anne
2016-03-01
One purpose of integrating voice interfaces into embedded vehicle systems is to reduce drivers' visual and manual distractions with 'infotainment' technologies. However, there is scant research on actual benefits in production vehicles or how different interface designs affect attentional demands. Driving performance, visual engagement, and indices of workload (heart rate, skin conductance, subjective ratings) were assessed in 80 drivers randomly assigned to drive a 2013 Chevrolet Equinox or Volvo XC60. The Chevrolet MyLink system allowed completing tasks with one voice command, while the Volvo Sensus required multiple commands to navigate the menu structure. When calling a phone contact, both voice systems reduced visual demand relative to the visual-manual interfaces, with reductions for drivers in the Equinox being greater. The Equinox 'one-shot' voice command showed advantages during contact calling but had significantly higher error rates than Sensus during destination address entry. For both secondary tasks, neither voice interface entirely eliminated visual demand. Practitioner Summary: The findings reinforce the observation that most, if not all, automotive auditory-vocal interfaces are multi-modal interfaces in which the full range of potential demands (auditory, vocal, visual, manipulative, cognitive, tactile, etc.) need to be considered in developing optimal implementations and evaluating drivers' interaction with the systems. Social Media: In-vehicle voice-interfaces can reduce visual demand but do not eliminate it and all types of demand need to be taken into account in a comprehensive evaluation.
Mehler, Bruce; Kidd, David; Reimer, Bryan; Reagan, Ian; Dobres, Jonathan; McCartt, Anne
2016-01-01
Abstract One purpose of integrating voice interfaces into embedded vehicle systems is to reduce drivers’ visual and manual distractions with ‘infotainment’ technologies. However, there is scant research on actual benefits in production vehicles or how different interface designs affect attentional demands. Driving performance, visual engagement, and indices of workload (heart rate, skin conductance, subjective ratings) were assessed in 80 drivers randomly assigned to drive a 2013 Chevrolet Equinox or Volvo XC60. The Chevrolet MyLink system allowed completing tasks with one voice command, while the Volvo Sensus required multiple commands to navigate the menu structure. When calling a phone contact, both voice systems reduced visual demand relative to the visual–manual interfaces, with reductions for drivers in the Equinox being greater. The Equinox ‘one-shot’ voice command showed advantages during contact calling but had significantly higher error rates than Sensus during destination address entry. For both secondary tasks, neither voice interface entirely eliminated visual demand. Practitioner Summary: The findings reinforce the observation that most, if not all, automotive auditory–vocal interfaces are multi-modal interfaces in which the full range of potential demands (auditory, vocal, visual, manipulative, cognitive, tactile, etc.) need to be considered in developing optimal implementations and evaluating drivers’ interaction with the systems. Social Media: In-vehicle voice-interfaces can reduce visual demand but do not eliminate it and all types of demand need to be taken into account in a comprehensive evaluation. PMID:26269281
Optimizing the patient transport function at Mayo Clinic.
Kuchera, Dustin; Rohleder, Thomas R
2011-01-01
In this article, we report on the implementation of a computerized scheduling tool to optimize staffing for patient transport at the Mayo Clinic. The tool was developed and implemented in Microsoft Excel and Visual Basic for Applications and includes an easy-to-use interface. The tool allows transport management to consider the trade-offs between patient waiting time and staffing levels. While improved staffing efficiency was a desire of the project, it was important that patient service quality was also maintained. The results show that staffing could be reduced while maintaining historical patient service levels.
Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks
Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo
2012-01-01
Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190
User's manual for the Macintosh version of PASCO
NASA Technical Reports Server (NTRS)
Lucas, S. H.; Davis, Randall C.
1991-01-01
A user's manual for Macintosh PASCO is presented. Macintosh PASCO is an Apple Macintosh version of PASCO, an existing computer code for structural analysis and optimization of longitudinally stiffened composite panels. PASCO combines a rigorous buckling analysis program with a nonlinear mathematical optimization routine to minimize panel mass. Macintosh PASCO accepts the same input as mainframe versions of PASCO. As output, Macintosh PASCO produces a text file and mode shape plots in the form of Apple Macintosh PICT files. Only the user interface for Macintosh is discussed here.
Patient-Specific B-Cell Antibody Factories to Treat Metastatic Disease
2012-08-01
clinical interface training and education to assure optimal sample viability and lack of the unique immortalization virus, Epstein Barr Virus (EBV). All... Disease Kevin Claffey University of Connecticut Farmington, CT 06032 8 claffey@nso2.uchc.edu 3 Table of Contents INTRODUCTION 4 BODY 4-5 TASK 1
Real-Time Geospatial Data Viewer (RETIGO)
This is a web-based method that allows the users to upload their air monitoring data and explore the data on graphical interface. The method is optimized for mobile monitoring data sets, showing the data on a map, on a time series, and referenced to a hypothesized line and/or poi...