Soltwisch, Jens; Jaskolla, Thorsten W; Hillenkamp, Franz; Karas, Michael; Dreisewerd, Klaus
2012-08-07
The laser wavelength constitutes a key parameter in ultraviolet-matrix-assisted laser desorption ionization-mass spectrometry (UV-MALDI-MS). Optimal analytical results are only achieved at laser wavelengths that correspond to a high optical absorption of the matrix. In the presented work, the wavelength dependence and the contribution of matrix proton affinity to the MALDI process were investigated. A tunable dye laser was used to examine the wavelength range between 280 and 355 nm. The peptide and matrix ion signals recorded as a function of these irradiation parameters are displayed in the form of heat maps, a data representation that furnishes multidimensional data interpretation. Matrixes with a range of proton affinities from 809 to 866 kJ/mol were investigated. Among those selected are the standard matrixes 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA) as well as five halogen-substituted cinnamic acid derivatives, including the recently introduced 4-chloro-α-cyanocinnamic acid (ClCCA) and α-cyano-2,4-difluorocinnamic acid (DiFCCA) matrixes. With the exception of DHB, the highest analyte ion signals were obtained toward the red side of the peak optical absorption in the solid state. A stronger decline of the molecular analyte ion signals generated from the matrixes was consistently observed at the low wavelength side of the peak absorption. This effect is mainly the result of increased fragmentation of both analyte and matrix ions. Optimal use of multiply halogenated matrixes requires adjustment of the excitation wavelength to values below that of the standard MALDI lasers emitting at 355 (Nd:YAG) or 337 nm (N(2) laser). The combined data provide new insights into the UV-MALDI desorption/ionization processes and indicate ways to improve the analytical sensitivity.
Optimization of a Strontium Aluminate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bone, Alexandria N.
2017-08-01
Strontium aluminate with Eu 2+ and Dy 3+ has been at the forefront of emerging applications for storage phosphors since its discovery in 1996. In this study, the emission intensity and luminescence lifetime of SrAl 2O 4: Eu 2+, Dy 3+ were enhanced by partial substitution of Ca 2+ into Sr 2+ sites in the matrix.
Rancitelli, Davide; Grossi, Giovanni Battista; Herford, Alan Scott
2016-01-01
The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented. PMID:27022489
Maiorana, Carlo; Beretta, Mario; Rancitelli, Davide; Grossi, Giovanni Battista; Cicciù, Marco; Herford, Alan Scott
2016-01-01
The reconstruction of the atrophic alveolar ridges for implant placement is today a common procedure in dentistry daily practice. The surgical reconstruction provides for the optimization of the supporting bone for the implants and a restoration of the amount of keratinized gingiva for esthetic and functional reasons. In the past, tissue regeneration has been performed with autogenous bone and free gingival or connective tissue grafts. Nowadays, bone substitutes and specific collagen matrix allow for a complete restoration of the atrophic ridge without invasive harvesting procedures. A maxillary reconstruction of an atrophic ridge by means of tissue substitutes and its histological features are then presented.
Maximum parsimony, substitution model, and probability phylogenetic trees.
Weng, J F; Thomas, D A; Mareels, I
2011-01-01
The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.
The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies.
Borden, Mark; Attawia, Mohamed; Laurencin, Cato T
2002-09-05
A tissue engineering approach has been used to design three-dimensional synthetic matrices for bone repair. The osteoconductivity and degradation profile of a novel polymeric bone-graft substitute was evaluated in an in vitro setting. Using the copolymer poly(lactide-co-glycolide) [PLAGA], a sintering technique based on microsphere technology was used to fabricate three-dimensional porous scaffolds for bone regeneration. Osteoblasts and fibroblasts were seeded onto a 50:50 PLAGA scaffold. Morphologic evaluation through scanning electron microscopy demonstrated that both cell types attached and spread over the scaffold. Cells migrated through the matrix using cytoplasmic extensions to bridge the structure. Cross-sectional images indicated that cellular proliferation had penetrated into the matrix approximately 700 microm from the surface. Examination of the surfaces of cell/matrix constructs demonstrated that cellular proliferation had encompassed the pores of the matrix by 14 days of cell culture. With the aim of optimizing polymer composition and polymer molecular weight, a degradation study was conducted utilizing the matrix. The results demonstrate that degradation of the sintered matrix is dependent on molecular weight, copolymer ratio, and pore volume. From this data, it was determined that 75:25 PLAGA with an initial molecular weight of 100,000 has an optimal degradation profile. These studies show that the sintered microsphere matrix has an osteoconductive structure capable of functioning as a cellular scaffold with a degradation profile suitable for bone regeneration. Copyright 2002 Wiley Periodicals, Inc.
Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao
2014-03-01
Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt.
Coan, Heather B.; Youker, Robert T.
2017-01-01
Understanding how proteins mutate is critical to solving a host of biological problems. Mutations occur when an amino acid is substituted for another in a protein sequence. The set of likelihoods for amino acid substitutions is stored in a matrix and input to alignment algorithms. The quality of the resulting alignment is used to assess the similarity of two or more sequences and can vary according to assumptions modeled by the substitution matrix. Substitution strategies with minor parameter variations are often grouped together in families. For example, the BLOSUM and PAM matrix families are commonly used because they provide a standard, predefined way of modeling substitutions. However, researchers often do not know if a given matrix family or any individual matrix within a family is the most suitable. Furthermore, predefined matrix families may inaccurately reflect a particular hypothesis that a researcher wishes to model or otherwise result in unsatisfactory alignments. In these cases, the ability to compare the effects of one or more custom matrices may be needed. This laborious process is often performed manually because the ability to simultaneously load multiple matrices and then compare their effects on alignments is not readily available in current software tools. This paper presents SubVis, an interactive R package for loading and applying multiple substitution matrices to pairwise alignments. Users can simultaneously explore alignments resulting from multiple predefined and custom substitution matrices. SubVis utilizes several of the alignment functions found in R, a common language among protein scientists. Functions are tied together with the Shiny platform which allows the modification of input parameters. Information regarding alignment quality and individual amino acid substitutions is displayed with the JavaScript language which provides interactive visualizations for revealing both high-level and low-level alignment information. PMID:28674656
Elzayat, Ehab M; Abdel-Rahman, Ali A; Ahmed, Sayed M; Alanazi, Fars K; Habib, Walid A; Sakr, Adel
2017-11-01
Multiple response optimization is an efficient technique to develop sustained release formulation while decreasing the number of experiments based on trial and error approach. Diclofenac matrix tablets were optimized to achieve a release profile conforming to USP monograph, matching Voltaren ® SR and withstand formulation variables. The percent of drug released at predetermined multiple time points were the response variables in the design. Statistical models were obtained with relative contour diagrams being overlaid to predict process and formulation parameters expected to produce the target release profile. Tablets were prepared by wet granulation using mixture of equivalent quantities of Eudragit RL/RS at overall polymer concentration of 10-30%w/w and compressed at 5-15KN. Drug release from the optimized formulation E4 (15%w/w, 15KN) was similar to Voltaren, conformed to USP monograph and found to be stable. Substituting lactose with mannitol, reversing the ratio between lactose and microcrystalline cellulose or increasing drug load showed no significant difference in drug release. Using dextromethorphan hydrobromide as a model soluble drug showed burst release due to higher solubility and formation of micro cavities. A numerical optimization technique was employed to develop a stable consistent promising formulation for sustained delivery of diclofenac.
Magnetic Resonance Imaging of Human Tissue-Engineered Adipose Substitutes
Proulx, Maryse; Aubin, Kim; Lagueux, Jean; Audet, Pierre; Auger, Michèle
2015-01-01
Adipose tissue (AT) substitutes are being developed to answer the strong demand in reconstructive surgery. To facilitate the validation of their functional performance in vivo, and to avoid resorting to excessive number of animals, it is crucial at this stage to develop biomedical imaging methodologies, enabling the follow-up of reconstructed AT substitutes. Until now, biomedical imaging of AT substitutes has scarcely been reported in the literature. Therefore, the optimal parameters enabling good resolution, appropriate contrast, and graft delineation, as well as blood perfusion validation, must be studied and reported. In this study, human adipose substitutes produced from adipose-derived stem/stromal cells using the self-assembly approach of tissue engineering were implanted into athymic mice. The fate of the reconstructed AT substitutes implanted in vivo was successfully followed by magnetic resonance imaging (MRI), which is the imaging modality of choice for visualizing soft ATs. T1-weighted images allowed clear delineation of the grafts, followed by volume integration. The magnetic resonance (MR) signal of reconstructed AT was studied in vitro by proton nuclear magnetic resonance (1H-NMR). This confirmed the presence of a strong triglyceride peak of short longitudinal proton relaxation time (T1) values (200±53 ms) in reconstructed AT substitutes (total T1=813±76 ms), which establishes a clear signal difference between adjacent muscle, connective tissue, and native fat (total T1 ∼300 ms). Graft volume retention was followed up to 6 weeks after implantation, revealing a gradual resorption rate averaging at 44% of initial substitute's volume. In addition, vascular perfusion measured by dynamic contrast-enhanced-MRI confirmed the graft's vascularization postimplantation (14 and 21 days after grafting). Histological analysis of the grafted tissues revealed the persistence of numerous adipocytes without evidence of cysts or tissue necrosis. This study describes the in vivo grafting of human adipose substitutes devoid of exogenous matrix components, and for the first time, the optimal parameters necessary to achieve efficient MRI visualization of grafted tissue-engineered adipose substitutes. PMID:25549069
A System for Discovering Bioengineered Threats by Knowledge Base Driven Mining of Toxin Data
2004-08-01
RMSD cut - off and select a residue substitution matrix. The user is also allowed...in the sense that after super-positioning, the RMSD between the substructures is no more than the cut - off RMSD . * Residue substitutions are allowed...during super-positioning. Default RMSD cut - off and residue substitution matrix are provided. Users can specify their own RMSD cut - offs as well as
Oostendorp, Corien; Meyer, Sarah; Sobrio, Monia; van Arendonk, Joyce; Reichmann, Ernst; Daamen, Willeke F; van Kuppevelt, Toin H
2017-05-01
Treatment of full-thickness skin defects with split-thickness skin grafts is generally associated with contraction and scar formation and cellular skin substitutes have been developed to improve skin regeneration. The evaluation of cultured skin substitutes is generally based on qualitative parameters focusing on histology. In this study we focused on quantitative evaluation to provide a template for comparison of human bio-engineered skin substitutes between clinical and/or research centers, and to supplement histological data. We focused on extracellular matrix proteins since these components play an important role in skin regeneration. As a model we analyzed the human dermal substitute denovoDerm and the dermo-epidermal skin substitute denovoSkin. The quantification of the extracellular matrix proteins type III collagen and laminin 5 in tissue homogenates using western blotting analysis and ELISA was not successful. The same was true for assaying lysyl oxidase, an enzyme involved in crosslinking of matrix molecules. As an alternative, gene expression levels were measured using qPCR. Various RNA isolation procedures were probed. The gene expression profile for specific dermal and epidermal genes could be measured reliably and reproducibly. Differences caused by changes in the cell culture conditions could easily be detected. The number of cells in the skin substitutes was measured using the PicoGreen dsDNA assay, which was found highly quantitative and reproducible. The (dis) advantages of assays used for quantitative evaluation of skin substitutes are discussed. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Nonadiabatic quantum dynamics and laser control of Br2 in solid argon.
Accardi, A; Borowski, A; Kühn, O
2009-07-02
A five-dimensional reaction surface-vibronic coupling model is introduced to describe the B- to C-state predissociation dynamics of Br(2) occupying a double substitutional lattice site in a face-centered cubic argon crystal at low temperatures. The quantum dynamics driven by a Franck-Condon vertical excitation is investigated, revealing the role of matrix cage compression for efficient nonadiabatic transitions. Vibrational preexcitation of the Br(2) bond in the electronic ground state can be used to access a different regime of predissociation which does not require substantial matrix compression because the Franck-Condon window shifts into the energetic range of the B-C level crossing. Using optimal control theory, it is shown how vibrational preexcitation can be achieved via a pump-dump-type mechanism involving the repulsive C state.
Zheng, Xiangyuan; Luo, Lan; Zhou, Jie; Ruan, Xiaoling; Liu, Wenyuan; Zheng, Feng
2017-06-05
Acyl chlorides are important acylating agents in the synthesis of active pharmaceutical ingredients. Determining the residual acyl chlorides in drug substances is a challenge due to their high reactivity and the matrix interferences from drug substances and their related impurities. This paper describes a general derivatization HPLC method for the determination of aromatic and aliphatic acyl chlorides in lipophilic drug substances. Since most drug substances have weak absorptions in the visible range (above 380nm), the nitro-substituted anilines and nitro-substituted phenylhydrazines were selected as the derivatization reagents due to their weak basicity and red-shift of UV absorption spectra. The maximum wavelength and absorption intensity of nitro-substituted anilines decreased after derivatization with acyl chlorides, whereas the derivatization products of nitro-substituted phenylhydrazines showed the slight increases of maximum wavelength and absorbance intensity. Hence, 2-nitrophenylhydrazine was selected as the suitable derivatization reagent because the derivatives have the maximum UV wavelength absorbance at 395nm, which could largely minimize the matrix interferences. The optimization of the concentration of 2-nitrophenylhydrazine is important for the sensitivity and stability of derivatives. Other reaction conditions including reaction temperature, time and the influence of three competitive solvents (water, methanol and ethanol) on the reaction efficiency were also studied. After derivatization with 100μgmL -1 2-nitrophenylhydrazine at room temperature for 30min, the method was validated for high specificity and sensitivity with the detection limits in the range of 0.01-0.03μgmL -1 . The proposed method was applied as a generic method to determine the residual acyl chlorides in lipophilic drug substances. Copyright © 2017 Elsevier B.V. All rights reserved.
Methods of Technological Forecasting,
1977-05-01
Trend Extrapolation Progress Curve Analogy Trend Correlation Substitution Analysis or Substitution Growth Curves Envelope Curve Advances in the State of...the Art Technological Mapping Contextual Mapping Matrix Input-Output Analysis Mathematical Models Simulation Models Dynamic Modelling. CHAPTER IV...Generation Interaction between Needs and Possibilities Map of the Technological Future — (‘ross- Impact Matri x Discovery Matrix Morphological Analysis
Khrapko, Konstantin R [Moscow, RU; Khorlin, Alexandr A [Moscow, RU; Ivanov, Igor B [Moskovskaya, RU; Ershov, Gennady M [Moscow, RU; Lysov, Jury P [Moscow, RU; Florentiev, Vladimir L [Moscow, RU; Mirzabekov, Andrei D [Moscow, RU
1996-09-03
A method for sequencing DNA by hybridization that includes the following steps: forming an array of oligonucleotides at such concentrations that either ensure the same dissociation temperature for all fully complementary duplexes or allows hybridization and washing of such duplexes to be conducted at the same temperature; hybridizing said oligonucleotide array with labeled test DNA; washing in duplex dissociation conditions; identifying single-base substitutions in the test DNA by analyzing the distribution of the dissociation temperatures and reconstructing the DNA nucleotide sequence based on the above analysis. A device for carrying out the method comprises a solid substrate and a matrix rigidly bound to the substrate. The matrix contains the oligonucleotide array and consists of a multiplicity of gel portions. Each gel portion contains one oligonucleotide of desired length. The gel portions are separated from one another by interstices and have a thickness not exceeding 30 .mu.m.
FPGA-based protein sequence alignment : A review
NASA Astrophysics Data System (ADS)
Isa, Mohd. Nazrin Md.; Muhsen, Ku Noor Dhaniah Ku; Saiful Nurdin, Dayana; Ahmad, Muhammad Imran; Anuar Zainol Murad, Sohiful; Nizam Mohyar, Shaiful; Harun, Azizi; Hussin, Razaidi
2017-11-01
Sequence alignment have been optimized using several techniques in order to accelerate the computation time to obtain the optimal score by implementing DP-based algorithm into hardware such as FPGA-based platform. During hardware implementation, there will be performance challenges such as the frequent memory access and highly data dependent in computation process. Therefore, investigation in processing element (PE) configuration where involves more on memory access in load or access the data (substitution matrix, query sequence character) and the PE configuration time will be the main focus in this paper. There are various approaches to enhance the PE configuration performance that have been done in previous works such as by using serial configuration chain and parallel configuration chain i.e. the configuration data will be loaded into each PEs sequentially and simultaneously respectively. Some researchers have proven that the performance using parallel configuration chain has optimized both the configuration time and area.
NASA Astrophysics Data System (ADS)
Li, Fengfu; Carlsson, David; Lohmann, Chris; Suuronen, Erik; Vascotto, Sandy; Kobuch, Karin; Sheardown, Heather; Munger, Rejean; Nakamura, Masatsugu; Griffith, May
2003-12-01
Our objective was to determine whether key properties of extracellular matrix (ECM) macromolecules can be replicated within tissue-engineered biosynthetic matrices to influence cellular properties and behavior. To achieve this, hydrated collagen and N-isopropylacrylamide copolymer-based ECMs were fabricated and tested on a corneal model. The structural and immunological simplicity of the cornea and importance of its extensive innervation for optimal functioning makes it an ideal test model. In addition, corneal failure is a clinically significant problem. Matrices were therefore designed to have the optical clarity and the proper dimensions, curvature, and biomechanical properties for use as corneal tissue replacements in transplantation. In vitro studies demonstrated that grafting of the laminin adhesion pentapeptide motif, YIGSR, to the hydrogels promoted epithelial stratification and neurite in-growth. Implants into pigs' corneas demonstrated successful in vivo regeneration of host corneal epithelium, stroma, and nerves. In particular, functional nerves were observed to rapidly regenerate in implants. By comparison, nerve regeneration in allograft controls was too slow to be observed during the experimental period, consistent with the behavior of human cornea transplants. Other corneal substitutes have been produced and tested, but here we report an implantable matrix that performs as a physiologically functional tissue substitute and not simply as a prosthetic device. These biosynthetic ECM replacements should have applicability to many areas of tissue engineering and regenerative medicine, especially where nerve function is required. regenerative medicine | tissue engineering | cornea | implantation | innervation
The Investigation of Optimal Discrete Approximations for Real Time Flight Simulations
NASA Technical Reports Server (NTRS)
Parrish, E. A.; Mcvey, E. S.; Cook, G.; Henderson, K. C.
1976-01-01
The results are presented of an investigation of discrete approximations for real time flight simulation. Major topics discussed include: (1) consideration of the particular problem of approximation of continuous autopilots by digital autopilots; (2) use of Bode plots and synthesis of transfer functions by asymptotic fits in a warped frequency domain; (3) an investigation of the various substitution formulas, including the effects of nonlinearities; (4) use of pade approximation to the solution of the matrix exponential arising from the discrete state equations; and (5) an analytical integration of the state equation using interpolated input.
A simplified genetic design for mammalian enamel
Snead, ML; Zhu, D; Lei, YP; Luo, W; Bringas, P.; Sucov, H.; Rauth, RJ; Paine, ML; White, SN
2011-01-01
A biomimetic replacement for tooth enamel is urgently needed because dental caries is the most prevalent infectious disease to affect man. Here, design specifications for an enamel replacement material inspired by Nature are deployed for testing in an animal model. Using genetic engineering we created a simplified enamel protein matrix precursor where only one, rather than dozens of amelogenin isoforms, contributed to enamel formation. Enamel function and architecture were unaltered, but the balance between the competing materials properties of hardness and toughness was modulated. While the other amelogenin isoforms make a modest contribution to optimal biomechanical design, the enamel made with only one amelogenin isoform served as a functional substitute. Where enamel has been lost to caries or trauma a suitable biomimetic replacement material could be fabricated using only one amelogenin isoform, thereby simplifying the protein matrix parameters by one order of magnitude. PMID:21295848
Jongsutjarittam, Nisachon; Charoenrein, Sanguansri
2013-09-12
This study aimed to improve the freeze-thawed cake properties by10-20% waxy rice flour (WRF) substitution for wheat flour (WF). Viscosity of WRF-substituted batters was lower; consequently, trapped air was less uniformly distributed than WF batter. After five freeze-thaw cycles, firmness and enthalpy of melting retrograded amylopectin of WF- and WRF-substituted cakes increased and the matrix surrounding the air pores from SEM images was denser than in fresh-baked cakes. Sensory evaluation showed an increase in firmness and a decrease in firmness acceptability of freeze-thawed cakes. However, freeze-thawed cake with WRF substitution had significantly less firmness, less dense matrix and more acceptability than WF cake. This could have been due to a low amylose content of WRF and the spread of ruptured waxy rice starch granules around swollen wheat starch granules as observed by CLSM. Thus, WRF could be used for WF substitution to improve the firmness in freeze-thawed cake. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mishra, Vinod Kumar
2017-09-01
In this paper we develop an inventory model, to determine the optimal ordering quantities, for a set of two substitutable deteriorating items. In this inventory model the inventory level of both items depleted due to demands and deterioration and when an item is out of stock, its demands are partially fulfilled by the other item and all unsatisfied demand is lost. Each substituted item incurs a cost of substitution and the demands and deterioration is considered to be deterministic and constant. Items are order jointly in each ordering cycle, to take the advantages of joint replenishment. The problem is formulated and a solution procedure is developed to determine the optimal ordering quantities that minimize the total inventory cost. We provide an extensive numerical and sensitivity analysis to illustrate the effect of different parameter on the model. The key observation on the basis of numerical analysis, there is substantial improvement in the optimal total cost of the inventory model with substitution over without substitution.
A new molecular evolution model for limited insertion independent of substitution.
Lèbre, Sophie; Michel, Christian J
2013-10-01
We recently introduced a new molecular evolution model called the IDIS model for Insertion Deletion Independent of Substitution [13,14]. In the IDIS model, the three independent processes of substitution, insertion and deletion of residues have constant rates. In order to control the genome expansion during evolution, we generalize here the IDIS model by introducing an insertion rate which decreases when the sequence grows and tends to 0 for a maximum sequence length nmax. This new model, called LIIS for Limited Insertion Independent of Substitution, defines a matrix differential equation satisfied by a vector P(t) describing the sequence content in each residue at evolution time t. An analytical solution is obtained for any diagonalizable substitution matrix M. Thus, the LIIS model gives an expression of the sequence content vector P(t) in each residue under evolution time t as a function of the eigenvalues and the eigenvectors of matrix M, the residue insertion rate vector R, the total insertion rate r, the initial and maximum sequence lengths n0 and nmax, respectively, and the sequence content vector P(t0) at initial time t0. The derivation of the analytical solution is much more technical, compared to the IDIS model, as it involves Gauss hypergeometric functions. Several propositions of the LIIS model are derived: proof that the IDIS model is a particular case of the LIIS model when the maximum sequence length nmax tends to infinity, fixed point, time scale, time step and time inversion. Using a relation between the sequence length l and the evolution time t, an expression of the LIIS model as a function of the sequence length l=n(t) is obtained. Formulas for 'insertion only', i.e. when the substitution rates are all equal to 0, are derived at evolution time t and sequence length l. Analytical solutions of the LIIS model are explicitly derived, as a function of either evolution time t or sequence length l, for two classical substitution matrices: the 3-parameter symmetric substitution matrix [12] (LIIS-SYM3) and the HKY asymmetric substitution matrix[9] (LIIS-HKY). An evaluation of the LIIS model (precisely, LIIS-HKY) based on four statistical analyses of the GC content in complete genomes of four prokaryotic taxonomic groups, namely Chlamydiae, Crenarchaeota, Spirochaetes and Thermotogae, shows the expected improvement from the theory of the LIIS model compared to the IDIS model. Copyright © 2013 Elsevier Inc. All rights reserved.
Computing sparse derivatives and consecutive zeros problem
NASA Astrophysics Data System (ADS)
Chandra, B. V. Ravi; Hossain, Shahadat
2013-02-01
We describe a substitution based sparse Jacobian matrix determination method using algorithmic differentiation. Utilizing the a priori known sparsity pattern, a compression scheme is determined using graph coloring. The "compressed pattern" of the Jacobian matrix is then reordered into a form suitable for computation by substitution. We show that the column reordering of the compressed pattern matrix (so as to align the zero entries into consecutive locations in each row) can be viewed as a variant of traveling salesman problem. Preliminary computational results show that on the test problems the performance of nearest-neighbor type heuristic algorithms is highly encouraging.
Maiorana, Carlo; Beretta, Mario; Pivetti, Luca; Stoffella, Enrico; Grossi, Giovanni B.; Herford, Alan S.
2016-01-01
Background: The presence of keratinized tissue around dental implants is more than desirable either from a functional and aesthetic point of view, making soft tissue grafting a common practice in implant rehabilitation. Autogenous soft tissue grafting procedures are usually associated with high morbidity. Aim of this study was to assess the efficacy of a xenogeneic collagen matrix as a substitute for soft tissue grafting around dental implants. Methods: 15 consecutive patients underwent a vestibuloplasty and grafting, both in the mandible and the maxilla, with a collagen matrix. Results: The primary endpoint was to evaluate the resorption of the graft along with the re-epithelization grafted area. The percentage of the resorption was 44,4%, with a mean gain in vestibular height of 3 mm. Secondary endpoints evaluated the clinical appearance, the hemostatic effect and the post-operative pain. All subjects referred minimal pain with no bleeding. No adverse reaction nor infection were noted. Conclusion: This study showed that the used collagen matrix can find major interest in those patients who need a greater aesthetic outcome as the matrix has a perfect integration with the surrounding tissues. Furthermore it is strongly recommended for those patients who can bear little pain. Clinical Significance: Post-operative morbidity of autologous grafts is the biggest concern of this type of surgery. The possibility to use a soft tissue substitute is a great achievement as morbidity decreases and bigger areas can be treated in a single surgery. The present study showed the efficacy of a collagen matrix as this kind of substitute. PMID:27583050
The program LOPT for least-squares optimization of energy levels
NASA Astrophysics Data System (ADS)
Kramida, A. E.
2011-02-01
The article describes a program that solves the least-squares optimization problem for finding the energy levels of a quantum-mechanical system based on a set of measured energy separations or wavelengths of transitions between those energy levels, as well as determining the Ritz wavelengths of transitions and their uncertainties. The energy levels are determined by solving the matrix equation of the problem, and the uncertainties of the Ritz wavenumbers are determined from the covariance matrix of the problem. Program summaryProgram title: LOPT Catalogue identifier: AEHM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 254 No. of bytes in distributed program, including test data, etc.: 427 839 Distribution format: tar.gz Programming language: Perl v.5 Computer: PC, Mac, Unix workstations Operating system: MS Windows (XP, Vista, 7), Mac OS X, Linux, Unix (AIX) RAM: 3 Mwords or more Word size: 32 or 64 Classification: 2.2 Nature of problem: The least-squares energy-level optimization problem, i.e., finding a set of energy level values that best fits the given set of transition intervals. Solution method: The solution of the least-squares problem is found by solving the corresponding linear matrix equation, where the matrix is constructed using a new method with variable substitution. Restrictions: A practical limitation on the size of the problem N is imposed by the execution time, which scales as N and depends on the computer. Unusual features: Properly rounds the resulting data and formats the output in a format suitable for viewing with spreadsheet editing software. Estimates numerical errors resulting from the limited machine precision. Running time: 1 s for N=100, or 60 s for N=400 on a typical PC.
Conformations and charge distributions of diazocyclopropanes
NASA Astrophysics Data System (ADS)
Borges, Itamar, Jr.
Three diazo-substituted cyclopropane compounds, which have been suggested as new potential high energy compounds, were studied employing the B3LYP-DFT/6-31G(d,p) method. Geometries were optimized. Distributed multipole analysis, computed from the B3LYP-DFT/6-31G(d,p) density matrix, was used to describe the details of the molecular charge distribution of the three molecules. It was verified that electron withdrawing from the C ring atoms and charge build-up on the N atoms bonded to the ring increased with the number of diazo groups. These effects were related to increased sensitivity to impact and easiness of C bond N bond breaking in the three compounds.
NASA Astrophysics Data System (ADS)
Mohanraman, Rajeshkumar; Sankar, Raman; Chou, Fang-Cheng; Lee, Chih-Hao; Iizuka, Yoshiyuki; Muthuselvam, I. Panneer; Chen, Yang-Yuan
2014-09-01
We report a maximal figure of merit (ZT) value of 1.1 at 600 K was obtained for the sample of which x = 0.03, representing an enhancement greater than 20% compared with a pristine AgSbTe2 sample. This favorable thermoelectric performance originated from the optimal Sn2+ substitution for Sb3+ in AgSbTe2, which not only increased electrical conductivity but also led to a substantial reduction in thermal conductivity that was likely caused by an enhanced phonon-scattering mechanism through the combined effects of lattice defects and the presence of Ag2Te nanoprecipitates dispersed in the matrix.
A stochastic evolution model for residue Insertion-Deletion Independent from Substitution.
Lèbre, Sophie; Michel, Christian J
2010-12-01
We develop here a new class of stochastic models of gene evolution based on residue Insertion-Deletion Independent from Substitution (IDIS). Indeed, in contrast to all existing evolution models, insertions and deletions are modeled here by a concept in population dynamics. Therefore, they are not only independent from each other, but also independent from the substitution process. After a separate stochastic analysis of the substitution and the insertion-deletion processes, we obtain a matrix differential equation combining these two processes defining the IDIS model. By deriving a general solution, we give an analytical expression of the residue occurrence probability at evolution time t as a function of a substitution rate matrix, an insertion rate vector, a deletion rate and an initial residue probability vector. Various mathematical properties of the IDIS model in relation with time t are derived: time scale, time step, time inversion and sequence length. Particular expressions of the nucleotide occurrence probability at time t are given for classical substitution rate matrices in various biological contexts: equal insertion rate, insertion-deletion only and substitution only. All these expressions can be directly used for biological evolutionary applications. The IDIS model shows a strongly different stochastic behavior from the classical substitution only model when compared on a gene dataset. Indeed, by considering three processes of residue insertion, deletion and substitution independently from each other, it allows a more realistic representation of gene evolution and opens new directions and applications in this research field. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W., Jr.; Allamandola, L. J.
2004-01-01
The matrix-isolation technique has been employed to measure the mid-infrared spectra of phenazine (C12H8N2), a dual substituted Polycyclic Aromatic Nitrogen Heterocycle (PANH), in the neutral, cationic and anionic forms. The experimentally measured band frequencies and intensities are tabulated and compared with their calculated values as well as those of the non-substituted parent molecule, anthracene. The theoretical band positions and intensities were calculated using both the 3-31 G as well as the larger 6-3lG* Basis Sets. A comparison of the results can be found in the tables. The spectroscopic properties of phenazine and its cation are similar to those observed in mono-substituted PANHs, with one exception. The presence of a second nitrogen atom results in an additional enhancement of the cation's total integrated intensity, for the 1500-1000 cm(sup -1) (6.7 to 10 micron) region, over that observed for a mono-substituted PANH cation. The significance of this enhancement and the astrobiological implications of these results are discussed.
Ultrastructural localization of proteins involved in sea urchin biomineralization.
Ameye, L; Hermann, R; Killian, C; Wilt, F; Dubois, P
1999-09-01
Three skeletal tissues of the adult echinoid Paracentrotus lividus (the pedicellaria primordium, the test, and the tooth) were immunolabeled with three sera raised against the total mineralization organic matrix and two specific matrix proteins (SM30 and SM50) from the embryo of the echinoid Strongylocentrotus purpuratus. Two conventional chemical fixation protocols and two high-pressure freezing/freeze-substitution protocols were tested. One conventional protocol is recommended for its good preservation of the ultrastructure, and one high-pressure freezing/freeze-substitution protocol is recommended for its good retention of antigenicity. Immunolabeling was obtained in the three adult tissues. It was confined to the active skeleton-forming cells and to the structured organic matrix. The results indicate that the matrix proteins follow the classical routes of secretory protein assembly and export and suggest that SM30 and SM50 are a part of the tridimensional network formed by the organic matrix before the onset of mineralization. They show that the genetic program of part of skeletogenesis is conserved among different calcification models and developmental stages.
A Note on Parameters of Random Substitutions by γ-Diagonal Matrices
NASA Astrophysics Data System (ADS)
Kang, Ju-Sung
Random substitutions are very useful and practical method for privacy-preserving schemes. In this paper we obtain the exact relationship between the estimation errors and three parameters used in the random substitutions, namely the privacy assurance metric γ, the total number n of data records, and the size N of transition matrix. We also demonstrate some simulations concerning the theoretical result.
Neves, Lia M G; Parizotto, Nivaldo A; Cominetti, Marcia R; Bayat, Ardeshir
2018-04-24
The use of dermal substitutes to treat skin defects such as ulcers has shown promising results, suggesting a potential role for skin substitutes for treating acute and chronic wounds. One of the main drawbacks with the use of dermal substitutes is the length of time from engraftment to graft take, plus the risk of contamination and failure due to this prolonged integration. Therefore, the use of adjuvant energy-based therapeutic modalities to augment and accelerate the rate of biointegration by dermal substitute engraftments is a desirable outcome. The photobiomodulation (PBM) therapy modulates the repair process, by stimulating cellular proliferation and angiogenesis. Here, we evaluated the effect of PBM on a collagen-glycosaminoglycan flowable wound matrix (FWM) in an ex vivo human skin wound model. PBM resulted in accelerated rate of re-epithelialization and organization of matrix as seen by structural arrangement of collagen fibers, and a subsequent increased expression of alpha-smooth muscle actin (α-SMA) and vascular endothelial growth factor A (VEGF-A) leading to an overall improved healing process. The use of PBM promoted a beneficial effect on the rate of integration and healing of FWM. We therefore propose that the adjuvant use of PBM may have utility in enhancing engraftment and tissue repair and be of value in clinical practice. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Strategic Decision Matrix for Analyzing Food Service Operations at Air Force Bases
2006-12-01
substitute product can replace your product, for example high - fructose corn syrup can substitute for sugar. Substitutes may negatively affect...dining facility closed and receive BAS. Customers can be happy with customer service and the quality of the food (a high customer satisfaction level...Services squadron may achieve significant cost savings by pursuing the NAF MOA but must also weigh the dollar savings against the threat of high
Continuous twin screw granulation of controlled release formulations with various HPMC grades.
Vanhoorne, V; Janssens, L; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C
2016-09-25
HPMC is a popular matrix former to formulate tablets with extended drug release. Tablets with HPMC are preferentially produced by direct compression. However, granulation is often required prior to tableting to overcome poor flowability of the formulation. While continuous twin screw granulation has been extensively evaluated for granulation of immediate release formulations, twin screw granulation of controlled release formulations including the dissolution behavior of the formulations received little attention. Therefore, the influence of the HPMC grade (viscosity and substitution degree) and the particle size of theophylline on critical quality attributes of granules (continuously produced via twin screw granulation) and tablets was investigated in the current study. Formulations with 20 or 40% HPMC, 20% theophylline and lactose were granulated with water at fixed process parameters via twin screw granulation. The torque was influenced by the viscosity and substitution degree of HPMC, but was not a limiting factor for the granulation process. An optimal L/S ratio was selected for each formulation based on the granule size distribution. The granule size distributions were influenced by the substitution degree and concentration of HPMC and the particle size of theophylline. Raman and UV spectroscopic analysis on 8 sieve fractions of granules indicated an inhomogeneous distribution of theophylline over the size fractions. However, this phenomenon was not correlated with the hydration rate or viscosity of HPMC. Controlled release of theophylline could be obtained over 24h with release profiles close to zero-order. The release of theophylline could be tailored via selection of the substitution degree and viscosity of HPMC. Copyright © 2016 Elsevier B.V. All rights reserved.
Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation
Aid-Launais, R.; Sagardoy, T.; Siadous, R.; Bareille, R.; Rey, S.; Pechev, S.; Etienne, L.; Kalisky, J.; de Mones, E.; Letourneur, D.; Amedee Vilamitjana, J.
2017-01-01
Previous studies performed using polysaccharide-based matrices supplemented with hydroxyapatite (HA) particles showed their ability to form in subcutaneous and intramuscular sites a mineralized and osteoid tissue. Our objectives are to optimize the HA content in the matrix and to test the combination of HA with strontium (Sr-HA) to increase the matrix bioactivity. First, non-doped Sr-HA powders were combined to the matrix at three different ratios and were implanted subcutaneously for 2 and 4 weeks. Interestingly, matrices showed radiolucent properties before implantation. Quantitative analysis of micro-CT data evidenced a significant increase of mineralized tissue formed ectopically with time of implantation and allowed us to select the best ratio of HA to polysaccharides of 30% (w/w). Then, two Sr-substitution of 8% and 50% were incorporated in the HA powders (8Sr-HA and 50Sr-HA). Both Sr-HA were chemically characterized and dispersed in matrices. In vitro studies performed with human mesenchymal stem cells (MSCs) demonstrated the absence of cytotoxicity of the Sr-doped matrices whatever the amount of incorporated Sr. They also supported osteoblastic differentiation and activated the expression of one late osteoblastic marker involved in the mineralization process i.e. osteopontin. In vivo, subcutaneous implantation of these Sr-doped matrices induced osteoid tissue and blood vessels formation. PMID:28910401
Lee, Christine K; Mokhtari, Tara; Connolly, Ian D; Li, Gordon; Shuer, Lawrence M; Chang, Steven D; Steinberg, Gary K; Hayden Gephart, Melanie
2017-12-01
Posterior fossa decompression surgeries for Chiari malformations are susceptible to postoperative complications such as pseudomeningocele, external cerebrospinal fluid (CSF) leak, and meningitis. Various dural substitutes have been used to improve surgical outcomes. This study examined whether the collagen matrix dural substitute type correlated with the incidence of postoperative complications after posterior fossa decompression in adult patients with Chiari I malformations. A retrospective cohort study was conducted of 81 adult patients who underwent an elective decompressive surgery for treatment of symptomatic Chiari I malformations, with duraplasty involving a dural substitute derived from either bovine or porcine collagen matrix. Demographics and treatment characteristics were correlated with surgical outcomes. A total of 81 patients were included in the study. Compared with bovine dural substitute, porcine dural substitute was associated with a significantly higher risk of pseudomeningocele occurrence (odds ratio, 5.78; 95% confidence interval, 1.65-27.15; P = 0.01) and a higher overall complication rate (odds ratio, 3.70; 95% confidence interval, 1.23-12.71; P = 0.03) by univariate analysis. There was no significant difference in the rate of meningitis, repeat operations, or overall complication rate between the 2 dural substitutes. In addition, estimated blood loss was a significant risk factor for meningitis (P = 0.03). Multivariate analyses again showed that porcine dural substitute was associated with pseudomeningocele occurrence, although the association with higher overall complication rate did not reach significance. Dural substitutes generated from porcine collagen, compared with those from bovine collagen, were associated with a higher likelihood of pseudomeningocele development in adult patients undergoing Chiari I malformation decompression and duraplasty. Copyright © 2017 Elsevier Inc. All rights reserved.
Cyclic stretching of soft substrates induces spreading and growth
Cui, Yidan; Hameed, Feroz M.; Yang, Bo; Lee, Kyunghee; Pan, Catherine Qiurong; Park, Sungsu; Sheetz, Michael
2015-01-01
In the body, soft tissues often undergo cycles of stretching and relaxation that may affect cell behaviour without changing matrix rigidity. To determine whether transient forces can substitute for a rigid matrix, we stretched soft pillar arrays. Surprisingly, 1–5% cyclic stretching over a frequency range of 0.01–10 Hz caused spreading and stress fibre formation (optimum 0.1 Hz) that persisted after 4 h of stretching. Similarly, stretching increased cell growth rates on soft pillars comparative to rigid substrates. Of possible factors linked to fibroblast growth, MRTF-A (myocardin-related transcription factor-A) moved to the nucleus in 2 h of cyclic stretching and reversed on cessation; but YAP (Yes-associated protein) moved much later. Knockdown of either MRTF-A or YAP blocked stretch-dependent growth. Thus, we suggest that the repeated pulling from a soft matrix can substitute for a stiff matrix in stimulating spreading, stress fibre formation and growth. PMID:25704457
Steel Optimization and Substitution for 1980 Oldsmobile Omega X-Body Car.
DOT National Transportation Integrated Search
1981-07-01
This report studies the potential of weight reduction for a 1980 Oldsmobile Omega X-body four-door sedan through steel optimization and substitution of newer steels. The study shows that 74 pounds can be removed from this vehicle using current steel ...
Ghanaati, Shahram; Orth, Carina; Barbeck, Mike; Willershausen, Ines; Thimm, Benjamin W; Booms, Patrick; Stübinger, Stefan; Landes, Constantin; Sader, Robert Anton; Kirkpatrick, Charles James
2010-06-01
The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute.The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months. Already at day 10 after implantation, histomorphometrical analysis showed that the vascularization of the implantation bed reached its peak value compared to all other time points. Both vessel density and vascularization significantly decreased until day 90 after implantation. In this time period, the bone substitute underwent a significant degradation initiated by TRAP-positive and TRAP-negative multinucleated giant cells together with macrophages and lymphocytes. Although no specific tissue reaction could be related to the described silica degradation, the biomaterial was close to being fully degraded without a severe inflammatory response. These characteristics are advantageous for bone regeneration and remodeling processes.
NASA Astrophysics Data System (ADS)
Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi
2010-10-01
A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.
Photosensitized singlet oxygen luminescence from the protein matrix of Zn-substituted myoglobin.
Lepeshkevich, Sergei V; Parkhats, Marina V; Stasheuski, Alexander S; Britikov, Vladimir V; Jarnikova, Ekaterina S; Usanov, Sergey A; Dzhagarov, Boris M
2014-03-13
A nanosecond laser near-infrared spectrometer was used to study singlet oxygen ((1)O2) emission in a protein matrix. Myoglobin in which the intact heme is substituted by Zn-protoporphyrin IX (ZnPP) was employed. Every collision of ground state molecular oxygen with ZnPP in the excited triplet state results in (1)O2 generation within the protein matrix. The quantum yield of (1)O2 generation was found to be equal to 0.9 ± 0.1. On the average, six from every 10 (1)O2 molecules succeed in escaping from the protein matrix into the solvent. A kinetic model for (1)O2 generation within the protein matrix and for a subsequent (1)O2 deactivation was introduced and discussed. Rate constants for radiative and nonradiative (1)O2 deactivation within the protein were determined. The first-order radiative rate constant for (1)O2 deactivation within the protein was found to be 8.1 ± 1.3 times larger than the one in aqueous solutions, indicating the strong influence of the protein matrix on the radiative (1)O2 deactivation. Collisions of singlet oxygen with each protein amino acid and ZnPP were assumed to contribute independently to the observed radiative as well as nonradiative rate constants.
An Optimality Theoretic Account of Hungarian ESL Learners' Acquisition of /[epsilon]/ and /[ash]/
ERIC Educational Resources Information Center
Bunta, Ferenc; Major, Roy C.
2004-01-01
This paper provides an Optimality Theoretic account of how Hungarian learners of English acquire /[epsilon]/ and /[ash]/. It is hypothesized that as the learners' pronunciation becomes more nativelike, L1 transfer substitutions will diminish; non-transfer substitutions will be especially prevalent in the intermediate stages, and that all learners…
Biologic and synthetic skin substitutes: An overview
Halim, Ahmad Sukari; Khoo, Teng Lye; Mohd. Yussof, Shah Jumaat
2010-01-01
The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing. PMID:21321652
Computation of ancestry scores with mixed families and unrelated individuals.
Zhou, Yi-Hui; Marron, James S; Wright, Fred A
2018-03-01
The issue of robustness to family relationships in computing genotype ancestry scores such as eigenvector projections has received increased attention in genetic association, and is particularly challenging when sets of both unrelated individuals and closely related family members are included. The current standard is to compute loadings (left singular vectors) using unrelated individuals and to compute projected scores for remaining family members. However, projected ancestry scores from this approach suffer from shrinkage toward zero. We consider two main novel strategies: (i) matrix substitution based on decomposition of a target family-orthogonalized covariance matrix, and (ii) using family-averaged data to obtain loadings. We illustrate the performance via simulations, including resampling from 1000 Genomes Project data, and analysis of a cystic fibrosis dataset. The matrix substitution approach has similar performance to the current standard, but is simple and uses only a genotype covariance matrix, while the family-average method shows superior performance. Our approaches are accompanied by novel ancillary approaches that provide considerable insight, including individual-specific eigenvalue scree plots. © 2017 The Authors. Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
NASA Astrophysics Data System (ADS)
Pavan Kumar Naik, S.; Bai, V. Seshu
2017-02-01
In the present work, with the aim of improving the local flux pinning at the unit cell level in the YBa2Cu3O7-δ (YBCO) bulk superconductors, 20 wt% of nanoscale Sm2O3 and micron sized (Nd, Sm, Gd)2BaCuO5 secondary phase particles were added to YBCO and processed in oxygen controlled preform optimized infiltration growth process. Nano Dispersive Sol Casting method is employed to homogeneously distribute the nano Sm2O3 particles of 30-50 nm without any agglomeration in the precursor powder. Microstructural investigations on doped samples show the chemical fluctuations as annuli cores in the 211 phase particles. The introduction of mixed rare earth elements at Y-site resulted in compositional fluctuations in the superconducting matrix. The associated lattice mismatch defects have provided flux pinning up to large magnetic fields. Magnetic field dependence of current density (Jc(H)) at different temperatures revealed that the dominant pinning mechanism is caused by spatial variations of critical temperatures, due to the spatial fluctuations in the matrix composition. As the number of rare earth elements increased in the YBCO, the peak field position in the scaling of the normalized pinning force density (Fp/Fp max) significantly gets shifted towards the higher fields. The curves of Jc(H) and Fp/Fp max at different temperatures clearly indicate the LRE substitution for LRE' or Ba-sites for δTc pinning.
Optimized Projection Matrix for Compressive Sensing
NASA Astrophysics Data System (ADS)
Xu, Jianping; Pi, Yiming; Cao, Zongjie
2010-12-01
Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF) design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.
Quantification of various growth factors in different demineralized bone matrix preparations.
Wildemann, B; Kadow-Romacker, A; Haas, N P; Schmidmaier, G
2007-05-01
Besides autografts, allografts, and synthetic materials, demineralized bone matrix (DBM) is used for bone defect filling and treatment of non-unions. Different DBM formulations are introduced in clinic since years. However, little is known about the presents and quantities of growth factors in DBM. Aim of the present study was the quantification of eight growth factors important for bone healing in three different "off the shelf" DBM formulations, which are already in human use: DBX putty, Grafton DBM putty, and AlloMatrix putty. All three DBM formulations are produced from human donor tissue but they differ in the substitutes added. From each of the three products 10 different lots were analyzed. Protein was extracted from the samples with Guanidine HCL/EDTA method and human ELISA kits were used for growth factor quantification. Differences between the three different products were seen in total protein contend and the absolute growth factor values but also a large variability between the different lots was found. The order of the growth factors, however, is almost comparable between the materials. In the three investigated materials FGF basic and BMP-4 were not detectable in any analyzed sample. BMP-2 revealed the highest concentration extractable from the samples with approximately 3.6 microg/g tissue without a significant difference between the three DBM formulations. In DBX putty significantly more TGF-beta1 and FGFa were measurable compared to the two other DBMs. IGF-I revealed the significantly highest value in the AlloMatrix and PDGF in Grafton. No differences were accessed for VEGF. Due to the differences in the growth factor concentration between the individual samples, independently from the product formulation, further analyzes are required to optimize the clinical outcome of the used demineralized bone matrix. Copyright 2006 Wiley Periodicals, Inc.
What is the future of diabetic wound care?
Sweitzer, Sarah M; Fann, Stephen A; Borg, Thomas K; Baynes, John W; Yost, Michael J
2006-01-01
With diabetes affecting 5% to 10% of the US population, development of a more effective treatment for chronic diabetic wounds is imperative. Clinically, the current treatment in topical wound management includes debridement, topical antibiotics, and a state-of-the-art topical dressing. State-of-the-art dressings are a multi-layer system that can include a collagen cellulose substrate, neonatal foreskin fibroblasts, growth factor containing cream, and a silicone sheet covering for moisture control. Wound healing time can be up to 20 weeks. The future of diabetic wound healing lies in the development of more effective artificial "smart" matrix skin substitutes. This review article will highlight the need for novel smart matrix therapies. These smart matrices will release a multitude of growth factors, cytokines, and bioactive peptide fragments in a temporally and spatially specific, event-driven manner. This timed and focal release of cytokines, enzymes, and pharmacological agents should promote optimal tissue regeneration and repair of full-thickness wounds. Development of these kinds of therapies will require multidisciplinary translational research teams. This review article outlines how current advances in proteomics and genomics can be incorporated into a multidisciplinary translational research approach for developing novel smart matrix dressings for ulcer treatment. With the recognition that the research approach will require both time and money, the best treatment approach is the prevention of diabetic ulcers through better foot care, education, and glycemic control.
Robust linear discriminant analysis with distance based estimators
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina
2017-11-01
Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.
Mirazul Islam, M; Cėpla, Vytautas; He, Chaoliang; Edin, Joel; Rakickas, Tomas; Kobuch, Karin; Ruželė, Živilė; Bruce Jackson, W; Rafat, Mehrdad; Lohmann, Chris P; Valiokas, Ramūnas; Griffith, May
2015-01-01
The implant-host interface is a critical element in guiding tissue or organ regeneration. We previously developed hydrogels comprising interpenetrating networks of recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) as substitutes for the corneal extracellular matrix that promote endogenous regeneration of corneal tissue. To render them functional for clinical application, we have now optimized their composition and thereby enhanced their mechanical properties. We have demonstrated that such optimized RHCIII-MPC hydrogels are suitable for precision femtosecond laser cutting to produce complementing implants and host surgical beds for subsequent tissue welding. This avoids the tissue damage and inflammation associated with manual surgical techniques, thereby leading to more efficient healing. Although we previously demonstrated in clinical testing that RHCIII-based implants stimulated cornea regeneration in patients, the rate of epithelial cell coverage of the implants needs improvement, e.g. modification of the implant surface. We now show that our 500μm thick RHCIII-MPC constructs comprising over 85% water are suitable for microcontact printing with fibronectin. The resulting fibronectin micropatterns promote cell adhesion, unlike the bare RHCIII-MPC hydrogel. Interestingly, a pattern of 30μm wide fibronectin stripes enhanced cell attachment and showed the highest mitotic rates, an effect that potentially can be utilized for faster integration of the implant. We have therefore shown that laboratory-produced mimics of naturally occurring collagen and phospholipids can be fabricated into robust hydrogels that can be laser profiled and patterned to enhance their potential function as artificial substitutes of donor human corneas. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M
2015-05-01
During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue ingrowth and remodeling processes of the bone substitute. Extrinsic vessels contribute to faster vascularization and finally anastomose with intrinsic vasculature, allowing microvascular transplantation of the bone substitute after a shorter prevascularization time than using the intrinsic method only. It can be reasonably assumed that the usage of perforated chambers can significantly reduce the time until transplantation of bone constructs. Finally, this study paves the way for further preclinical testing for proof of the concept as a basis for early clinical applicability.
Interphase layer optimization for metal matrix composites with fabrication considerations
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, C. C.
1991-01-01
A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.
Majorization as a Tool for Optimizing a Class of Matrix Functions.
ERIC Educational Resources Information Center
Kiers, Henk A.
1990-01-01
General algorithms are presented that can be used for optimizing matrix trace functions subject to certain constraints on the parameters. The parameter set that minimizes the majorizing function also decreases the matrix trace function, providing a monotonically convergent algorithm for minimizing the matrix trace function iteratively. (SLD)
Aortic valve cell seeding into decellularized animal pericardium by perfusion-assisted bioreactor.
Amadeo, Francesco; Boschetti, Federica; Polvani, Gianluca; Banfi, Cristina; Pesce, Maurizio; Santoro, Rosaria
2018-04-27
Animal-derived pericardium is the elective tissue employed in manufacturing heart valve prostheses. The preparation of this tissue for biological valve production consists of fixation with aldehydes, which reduces, but not eliminates, the xenoantigens and the donor cellular material. As a consequence, especially in patients below 65-70 years of age, the employment of valve substitutes contaning pericardium is not indicated due to progressive calcification that causes tissue degeneration and recurrence of valve insufficiency. Decellularization with ionic or nonionic detergents has been proposed as an alternative procedure to prepare aldehyde- or xenoantigen-free pericardium for biological valve manufacturing. In the present contribution, we optimized a decellularization procedure that is permissive for seeding and culturing valve competent cells able to colonize and reconstitute a valve-like tissue. A high-efficiency cellularization was achieved by forcing cell penetration inside the pericardium matrix using a perfusion bioreactor. Because the decellularization procedure was found not to alter the collagen composition of the pericardial matrix and cells seeded in the tissue constructs consistently grew and acquired the phenotype of "quiescent" valve interstitial cells, our investigation sets a novel standard in pericardium application for tissue engineering of "living" valve implants. Copyright © 2018 John Wiley & Sons, Ltd.
Wang, Zhibing; Li, Na; Wang, Min; Wang, Yue; Du, Lin; Ji, Xiaofeng; Yu, Aimin; Zhang, Hanqi; Qiu, Fangping
2013-07-01
Nine nucleosides and nucleobases, including uracil, adenine, thymine, uridine, adenosine, thymidine, cytidine, guanosine, and cordycepin in natural Cordyceps sinensis, cultured Cordyceps mycelia, and Cordyceps fruiting bodies were extracted by matrix solid-phase dispersion (MSPD) and determined by HPLC. The experimental conditions for the MSPD extraction were optimized. Florisil was used as dispersant, petroleum ether as washing solvent, and methanol as elution solvent. The Florisil-to-sample ratio was selected to be 4:1 and no additional clean-up sorbent was needed. The calibration curves had good linear relationships (r > 0.9997). The LOD and LOQ were in the range of 12~79 and 41~265 ng/mL, respectively. The intra- and interday precision were lower than 8.3%. The recoveries were between 61.5 and 93.2%. The present method consumed less sample compared with ultrasonic extraction and heating reflux extraction (HRE). The extraction yields obtained by using the present method are much higher than those obtained by UE and comparable to those obtained by HRE. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Early matrix change of a nanostructured bone grafting substitute in the rat.
Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte
2009-11-01
A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.
Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao
2017-04-01
Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.
Marini, Joan C.; Forlino, Antonella; Cabral, Wayne A.; Barnes, Aileen M.; San Antonio, James D.; Milgrom, Sarah; Hyland, James C.; Körkkö, Jarmo; Prockop, Darwin J.; De Paepe, Anne; Coucke, Paul; Symoens, Sofie; Glorieux, Francis H.; Roughley, Peter J.; Lund, Alan M.; Kuurila-Svahn, Kaija; Hartikka, Heini; Cohn, Daniel H.; Krakow, Deborah; Mottes, Monica; Schwarze, Ulrike; Chen, Diana; Yang, Kathleen; Kuslich, Christine; Troendle, James; Dalgleish, Raymond; Byers, Peter H.
2014-01-01
Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proα1(I) and proα2(I) chains, respectively) that result in OI. Quantitative defects causing type I OI were not included. Of these 832 independent mutations, 682 result in substitution for glycine residues in the triple helical domain of the encoded protein and 150 alter splice sites. Distinct genotype–phenotype relationships emerge for each chain. One-third of the mutations that result in glycine substitutions in α1(I) are lethal, especially when the substituting residues are charged or have a branched side chain. Substitutions in the first 200 residues are nonlethal and have variable outcome thereafter, unrelated to folding or helix stability domains. Two exclusively lethal regions (helix positions 691–823 and 910–964) align with major ligand binding regions (MLBRs), suggesting crucial interactions of collagen monomers or fibrils with integrins, matrix metalloproteinases (MMPs), fibronectin, and cartilage oligomeric matrix protein (COMP). Mutations in COL1A2 are predominantly nonlethal (80%). Lethal substitutions are located in eight regularly spaced clusters along the chain, supporting a regional model. The lethal regions align with proteoglycan binding sites along the fibril, suggesting a role in fibril–matrix interactions. Recurrences at the same site in α2(I) are generally concordant for outcome, unlike α1(I). Splice site mutations comprise 20% of helical mutations identified in OI patients, and may lead to exon skipping, intron inclusion, or the activation of cryptic splice sites. Splice site mutations in COL1A1 are rarely lethal; they often lead to frameshifts and the mild type I phenotype. In α2(I), lethal exon skipping events are located in the carboxyl half of the chain. Our data on genotype–phenotype relationships indicate that the two collagen chains play very different roles in matrix integrity and that phenotype depends on intracellular and extracellular events. PMID:17078022
Goonesekere, Nalin Cw
2009-01-01
The large numbers of protein sequences generated by whole genome sequencing projects require rapid and accurate methods of annotation. The detection of homology through computational sequence analysis is a powerful tool in determining the complex evolutionary and functional relationships that exist between proteins. Homology search algorithms employ amino acid substitution matrices to detect similarity between proteins sequences. The substitution matrices in common use today are constructed using sequences aligned without reference to protein structure. Here we present amino acid substitution matrices constructed from the alignment of a large number of protein domain structures from the structural classification of proteins (SCOP) database. We show that when incorporated into the homology search algorithms BLAST and PSI-blast, the structure-based substitution matrices enhance the efficacy of detecting remote homologs.
Zimmermann, Karel; Gibrat, Jean-François
2010-01-04
Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.
Optimal joint management of a coastal aquifer and a substitute resource
NASA Astrophysics Data System (ADS)
Moreaux, M.; Reynaud, A.
2004-06-01
This article characterizes the optimal joint management of a coastal aquifer and a costly water substitute. For this purpose we use a mathematical representation of the aquifer that incorporates the displacement of the interface between the seawater and the freshwater of the aquifer. We identify the spatial cost externalities created by users on each other and we show that the optimal water supply depends on the location of users. Users located in the coastal zone exclusively use the costly substitute. Those located in the more upstream area are supplied from the aquifer. At the optimum their withdrawal must take into account the cost externalities they generate on users located downstream. Last, users located in a median zone use the aquifer with a surface transportation cost. We show that the optimum can be implemented in a decentralized economy through a very simple Pigouvian tax. Finally, the optimal and decentralized extraction policies are simulated on a very simple example.
Human urinary bladder regeneration through tissue engineering - an analysis of 131 clinical cases.
Pokrywczynska, Marta; Adamowicz, Jan; Sharma, Arun K; Drewa, Tomasz
2014-03-01
Replacement of urinary bladder tissue with functional equivalents remains one of the most challenging problems of reconstructive urology over the last several decades. The gold standard treatment for urinary diversion after radical cystectomy is the ileal conduit or neobladder; however, this technique is associated with numerous complications including electrolyte imbalances, mucus production, and the potential for malignant transformation. Tissue engineering techniques provide the impetus to construct functional bladder substitutes de novo. Within this review, we have thoroughly perused the literature utilizing PubMed in order to identify clinical studies involving bladder reconstruction utilizing tissue engineering methodologies. The idea of urinary bladder regeneration through tissue engineering dates back to the 1950s. Many natural and synthetic biomaterials such as plastic mold, gelatin sponge, Japanese paper, preserved dog bladder, lyophilized human dura, bovine pericardium, small intestinal submucosa, bladder acellular matrix, or composite of collagen and polyglycolic acid were used for urinary bladder regeneration with a wide range of outcomes. Recent progress in the tissue engineering field suggest that in vitro engineered bladder wall substitutes may have expanded clinical applicability in near future but preclinical investigations on large animal models with defective bladders are necessary to optimize the methods of bladder reconstruction by tissue engineering in humans.
Zhang, Wei; Liang, Yun-Ling; Hu, Zheng-Fa; Feng, Zu-Yong; Lun, Ma; Zhang, Xiu-ping; Sheng, Xia; Liu, Qian; Luo, Jie
2016-04-01
Gallium and Indium co-substituted Yb, Er:YAG was fabricated through the chemical co-precipitation method. The formation process and structure of the Ga3+ and In3+ substituted phosphor powders were characterized by the X-ray diffraction, thermo-gravimetry analyzer, infrared spectra, and X-ray photoelectron spectroscopy, and the effects of Ga3+ and In3+ concentration on the luminescence properties were investigated by spectrum. The results showed that the blue shift occurred after the substitution of Ga3+ and In3+ for Al3+ in matrix, and the intensity of emission spectrum was affected by the concentration of Ga3+ and In3+.
Combined micromechanical and fabrication process optimization for metal-matrix composites
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, C. C.
1991-01-01
A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, Christos C.
1990-01-01
A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.
Soares, Cristina M Dias; Alves, Rita C; Casal, Susana; Oliveira, M Beatriz P P; Fernandes, José Oliveira
2010-04-01
The present study describes the development and validation of a new method based on a matrix solid-phase dispersion (MSPD) sample preparation procedure followed by GC-MS for determination of acrylamide levels in coffee (ground coffee and brewed coffee) and coffee substitute samples. Samples were dispersed in C(18) sorbent and the mixture was further packed into a preconditioned custom-made ISOLUTE bilayered SPE column (C(18)/Multimode; 1 g + 1 g). Acrylamide was subsequently eluted with water, and then derivatized with bromine and quantified by GC-MS in SIM mode. The MSPD/GC-MS method presented a LOD of 5 microg/kg and a LOQ of 10 microg/kg. Intra and interday precisions ranged from 2% to 4% and 4% to 10%, respectively. To evaluate the performance of the method, 11 samples of ground and brewed coffee and coffee substitutes were simultaneously analyzed by the developed method and also by a previously validated method based in a liquid-extraction (LE) procedure, and the results were compared showing a high correlation between them.
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.
Bone substitutes and expanders in Spine Surgery: A review of their fusion efficacies
Millhouse, Paul W; Kepler, Christopher K; Radcliff, Kris E.; Fehlings, Michael G.; Janssen, Michael E.; Sasso, Rick C.; Benedict, James J.; Vaccaro, Alexander R
2016-01-01
Study Design A narrative review of literature. Objective This manuscript intends to provide a review of clinically relevant bone substitutes and bone expanders for spinal surgery in terms of efficacy and associated clinical outcomes, as reported in contemporary spine literature. Summary of Background Data Ever since the introduction of allograft as a substitute for autologous bone in spinal surgery, a sea of literature has surfaced, evaluating both established and newly emerging fusion alternatives. An understanding of the available fusion options and an organized evidence-based approach to their use in spine surgery is essential for achieving optimal results. Methods A Medline search of English language literature published through March 2016 discussing bone graft substitutes and fusion extenders was performed. All clinical studies reporting radiological and/or patient outcomes following the use of bone substitutes were reviewed under the broad categories of Allografts, Demineralized Bone Matrices (DBM), Ceramics, Bone Morphogenic proteins (BMPs), Autologous growth factors (AGFs), Stem cell products and Synthetic Peptides. These were further grouped depending on their application in lumbar and cervical spine surgeries, deformity correction or other miscellaneous procedures viz. trauma, infection or tumors; wherever data was forthcoming. Studies in animal populations and experimental in vitro studies were excluded. Primary endpoints were radiological fusion rates and successful clinical outcomes. Results A total of 181 clinical studies were found suitable to be included in the review. More than a third of the published articles (62 studies, 34.25%) focused on BMP. Ceramics (40 studies) and Allografts (39 studies) were the other two highly published groups of bone substitutes. Highest radiographic fusion rates were observed with BMPs, followed by allograft and DBM. There were no significant differences in the reported clinical outcomes across all classes of bone substitutes. Conclusions There is a clear publication bias in the literature, mostly favoring BMP. Based on the available data, BMP is however associated with the highest radiographic fusion rate. Allograft is also very well corroborated in the literature. The use of DBM as a bone expander to augment autograft is supported, especially in the lumbar spine. Ceramics are also utilized as bone graft extenders and results are generally supportive, although limited. The use of autologous growth factors is not substantiated at this time. Cell matrix or stem cell-based products and the synthetic peptides have inadequate data. More comparative studies are needed to evaluate the efficacy of bone graft substitutes overall. PMID:27909654
Continuum modeling of large lattice structures: Status and projections
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Mikulas, Martin M., Jr.
1988-01-01
The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.
Structural and magnetic behavior of (Ni, Cu) substituted Nd0.67Sr0.33MnO3 perovskite compounds
NASA Astrophysics Data System (ADS)
Arun, B.; Sudakshina, B.; Akshay, V. R.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.
2018-05-01
Structural and magnetic phase transition of Ni and Cu substituted Nd0.67Sr0.33MnO3 perovskite compounds have been investigated. The Rietveld refinement of X-ray powder diffraction patterns confirms that both compounds have crystallized into an orthorhombic structure with Pbnm space group same as that of Nd0.67Sr0.33MnO3 compound. X-ray absorption spectra studies completely ruled out the possibility of existence of any impurities. Both compounds do not obey the Curie-Weiss law indicates the presence of some ferromagnetic clusters within the paramagnetic matrix. Ni substituted compound shows a lower value of TC and Cu substituted compound shows a higher value of TC than that of the parent. Non-saturating tendency of magnetization is more prominently seen in the case of Cu substituted compound, indicating an increase in the AFM component.
Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same
Oda, Michael N [Benicia, CA; Forte, Trudy M [Berkeley, CA
2007-05-29
Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Chamis, C. C.; Morel, M.
1991-01-01
A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.
Regulation by magnesium of potato tuber mitochondrial respiratory activities.
Vicente, Joaquim A F; Madeira, Vítor M C; Vercesi, Anibal E
2004-12-01
Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and alpha-ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or alpha-ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of alpha-ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike alpha-ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.
Hao, Ge-Fei; Yang, Sheng-Gang; Huang, Wei; Wang, Le; Shen, Yan-Qing; Tu, Wen-Long; Li, Hui; Huang, Li-Shar; Wu, Jia-Wei; Berry, Edward A.; Yang, Guang-Fu
2015-01-01
Hit to lead (H2L) optimization is a key step for drug and agrochemical discovery. A critical challenge for H2L optimization is the low efficiency due to the lack of predictive method with high accuracy. We described a new computational method called Computational Substitution Optimization (CSO) that has allowed us to rapidly identify compounds with cytochrome bc1 complex inhibitory activity in the nanomolar and subnanomolar range. The comprehensively optimized candidate has proved to be a slow binding inhibitor of bc1 complex, ~73-fold more potent (Ki = 4.1 nM) than the best commercial fungicide azoxystrobin (AZ; Ki = 297.6 nM) and shows excellent in vivo fungicidal activity against downy mildew and powdery mildew disease. The excellent correlation between experimental and calculated binding free-energy shifts together with further crystallographic analysis confirmed the prediction accuracy of CSO method. To the best of our knowledge, CSO is a new computational approach to substitution-scanning mutagenesis of ligand and could be used as a general strategy of H2L optimisation in drug and agrochemical design.
Cavaliere, Chiara; Capriotti, Anna Laura; Ferraris, Francesca; Foglia, Patrizia; Samperi, Roberto; Ventura, Salvatore; Laganà, Aldo
2016-03-18
A multiresidue analytical method for the determination of 11 perfluorinated compounds and 22 endocrine-disrupting compounds (ECDs) including 13 natural and synthetic estrogens (free and conjugated forms), 2 alkylphenols, 1 plasticiser, 2 UV-filters, 1 antimicrobial, and 2 organophosphorus compounds in sediments has been developed. Ultrasound-assisted extraction followed by solid phase extraction (SPE) with graphitized carbon black (GCB) cartridge as clean-up step were used. The extraction process yield was optimized in terms of solvent composition. Then, a 3(2) experimental design was used to optimize solvent volume and sonication time by response surface methodology, which simplifies the optimization procedure. The final extract was analyzed by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. The optimized sample preparation method is simple and robust, and allows recovery of ECDs belonging to different classes in a complex matrix such as sediment. The use of GCB for SPE allowed to obtain with a single clean-up procedure excellent recoveries ranging between 75 and 110% (relative standard deviation <16%). The developed methodology has been successfully applied to the analysis of ECDs in sediments from different rivers and lakes of the Lazio Region (Italy). These analyses have shown the ubiquitous presence of chloro-substituted organophosphorus flame retardants and bisphenol A, while other analyzed compounds were occasionally found at concentration between the limit of detection and quantification. Copyright © 2016 Elsevier B.V. All rights reserved.
2013-01-01
Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Results Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. Conclusions This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting. PMID:23286366
Ghanaati, Shahram; Udeabor, Samuel E; Barbeck, Mike; Willershausen, Ines; Kuenzel, Oliver; Sader, Robert A; Kirkpatrick, C James
2013-01-04
Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix. Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points. This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.
Bolourchian, Noushin; Rangchian, Maryam; Foroutan, Seyed Mohsen
2012-07-01
The aim of this study was to design and optimize a prolonged release matrix formulation of pyridostigmine bromide, an effective drug in myasthenia gravis and poisoning with nerve gas, using hydrophilic - hydrophobic polymers via D-optimal experimental design. HPMC and carnauba wax as retarding agents as well as tricalcium phosphate were used in matrix formulation and considered as independent variables. Tablets were prepared by wet granulation technique and the percentage of drug released at 1 (Y(1)), 4 (Y(2)) and 8 (Y(3)) hours were considered as dependent variables (responses) in this investigation. These experimental responses were best fitted for the cubic, cubic and linear models, respectively. The optimal formulation obtained in this study, consisted of 12.8 % HPMC, 24.4 % carnauba wax and 26.7 % tricalcium phosphate, had a suitable prolonged release behavior followed by Higuchi model in which observed and predicted values were very close. The study revealed that D-optimal design could facilitate the optimization of prolonged release matrix tablet containing pyridostigmine bromide. Accelerated stability studies confirmed that the optimized formulation remains unchanged after exposing in stability conditions for six months.
Kolk, Andreas; Handschel, Jörg; Drescher, Wolf; Rothamel, Daniel; Kloss, Frank; Blessmann, Marco; Heiland, Max; Wolff, Klaus-Dietrich; Smeets, Ralf
2012-12-01
An autologous bone graft is still the ideal material for the repair of craniofacial defects, but its availability is limited and harvesting can be associated with complications. Bone replacement materials as an alternative have a long history of success. With increasing technological advances the spectrum of grafting materials has broadened to allografts, xenografts, and synthetic materials, providing material specific advantages. A large number of bone-graft substitutes are available including allograft bone preparations such as demineralized bone matrix and calcium-based materials. More and more replacement materials consist of one or more components: an osteoconductive matrix, which supports the ingrowth of new bone; and osteoinductive proteins, which sustain mitogenesis of undifferentiated cells; and osteogenic cells (osteoblasts or osteoblast precursors), which are capable of forming bone in the proper environment. All substitutes can either replace autologous bone or expand an existing amount of autologous bone graft. Because an understanding of the properties of each material enables individual treatment concepts this review presents an overview of the principles of bone replacement, the types of graft materials available, and considers future perspectives. Bone substitutes are undergoing a change from a simple replacement material to an individually created composite biomaterial with osteoinductive properties to enable enhanced defect bridging. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Nevins, Marc L; Camelo, Marcelo; Schupbach, Peter; Nevins, Myron; Kim, Soo-Woo; Kim, David M
2011-01-01
The objective of this study was to assess the osseous healing of buccal plate extraction socket defects. There were four cohorts: group A (mineral collagen bone substitute [MCBS] scaffold alone), group B (MCBS with recombinant human platelet-derived growth factor BB [rhPDGF-BB; 0.3 mg/mL]), group C (MCBS with enamel matrix derivative [EMD]), and group D (combination of EMD with bone ceramic). The primary outcome of bone quality was evaluated using light microscopy, backscatter scanning electron microscopy, and histomorphometrics. Reentry surgery provided an opportunity for clinical observation of the healed ridge morphology. Sixteen patients with buccal wall extraction socket defects were randomized into four treatment groups of equal size. Grafting was provided at the time of extraction with advancement of the buccal flap for primary closure. A trephine core biopsy of the implant site preparation was performed after 5 months for implant placement. Histologic examination identified new bone healing around the biomaterial scaffolds. Statistically significant differences in new bone formation were not observed among the treatment groups. There was a histomorphometric trend toward more new bone for the rhPDGF-BB-treated group (group B). This group had the most favorable ridge morphology for optimal implant placement.
Zhao, Na; Augsburger, L L
2006-01-01
The purpose of this study is to investigate factors influencing croscarmellose sodium functionality with special emphasis on developing a discriminating model tablet formulation to evaluate product brand-to-brand variability. The particle size distribution, water uptake, and swelling properties of five brands of croscarmellose sodium in either neutral water or 0.1 N HCl were studied. Differences were observed in all properties between brands. Media with acidic pH had a negative impact, but to different extents, on both the water uptake and swelling of all croscarmellose sodium brands due to the presence of carboxymethyl sodium substituents. A tablet matrix composed of lactose (75% w/w) and dicalcium phosphate (25% wt/wt) was used to compare the functional equivalency of the five brands of croscarmellose sodium. The tablet disintegration times were inversely proportional to the swelling ability of superdisintegrant in the testing medium regardless of medium temperature and disintegrant concentration. In conclusion; the particle size, total degree of substitution, and the ratio of basic to acidic substituents are important factors that should be considered during product optimization. The tablet matrix composed of lactose and dicalcium phosphate at a weight ratio of 3:1 can be used as a model formulation for product lot-to-lot consistency and product brand-to-brand comparison purposes.
Karamonová, Ludmila; Junková, Petra; Mihalová, Denisa; Javůrková, Barbora; Fukal, Ladislav; Rauch, Pavel; Blažková, Martina
2013-02-15
The bacterial genus Cronobacter was established quite recently, in 2008. Therefore, its systematic classification is still in progress as well as the risk assessment of Cronobacter strains. The possibility of rapid identification within the biogroup level has an essential epidemiological significance. We examined the potential of mass spectrometry to accomplish this task on species Cronobacter sakazakii comprising eight different biogroups. Members of all Cronobacter sakazakii biogroups were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) using intact cells. Analyses were performed on a Biflex IV MALDI-TOF mass spectrometer in the range of 2000 to 20 000 Da in linear mode with an accelerated voltage of 19 kV. Optimal conditions for a proper identification of biogroups, such as suitable cultivation media or growth time of bacteria, were investigated. The biomarker patterns characterizing each of the Cronobacter sakazakii biogroups were obtained. The established identification protocol was applied to ten previously non-identified strains and their biogroups were successfully determined. The presented work is the first report of successful and rapid bacterial biogroup taxonomy classification using MALDI-TOF-MS that could substitute demanding biochemical testing. Copyright © 2012 John Wiley & Sons, Ltd.
Zhao, Xian-En; Lv, Tao; Zhu, Shuyun; Qu, Fei; Chen, Guang; He, Yongrui; Wei, Na; Li, Guoliang; Xia, Lian; Sun, Zhiwei; Zhang, Shijuan; You, Jinmao; Liu, Shu; Liu, Zhiqiang; Sun, Jing; Liu, Shuying
2016-03-11
This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4'-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
Numerical study of a matrix-free trust-region SQP method for equality constrained optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinkenschloss, Matthias; Ridzal, Denis; Aguilo, Miguel Antonio
2011-12-01
This is a companion publication to the paper 'A Matrix-Free Trust-Region SQP Algorithm for Equality Constrained Optimization' [11]. In [11], we develop and analyze a trust-region sequential quadratic programming (SQP) method that supports the matrix-free (iterative, in-exact) solution of linear systems. In this report, we document the numerical behavior of the algorithm applied to a variety of equality constrained optimization problems, with constraints given by partial differential equations (PDEs).
Scarano, Antonio; Barros, Raquel R M; Iezzi, Giovanna; Piattelli, Adriano; Novaes, Arthur B
2009-02-01
The aim of this study was to evaluate clinically, histologically, and ultrastructurally the integration process of the acellular dermal matrix used to increase the band of keratinized tissue while achieving gingival inflammation control. Ten patients exhibiting a mucogingival problem with bands of keratinized tissue
[Development of hospital-substituting forms of medical care in the Samara region].
Galkin, R A; Pavlov, V V; Kuznetsov, S I
2000-01-01
Development of hospital-substituting forms of medical care in the Samara region is discussed, 13% of patients treated at hospitals were rendered medical care through hospital-substituting institutions, which resulted in economy of 137 million roubles. The authors make their suggestions on optimizing statistical forms of files and records to be used in registration of medical care at day-time hospitals.
Fushiki, Tadayoshi
2009-07-01
The correlation matrix is a fundamental statistic that is used in many fields. For example, GroupLens, a collaborative filtering system, uses the correlation between users for predictive purposes. Since the correlation is a natural similarity measure between users, the correlation matrix may be used in the Gram matrix in kernel methods. However, the estimated correlation matrix sometimes has a serious defect: although the correlation matrix is originally positive semidefinite, the estimated one may not be positive semidefinite when not all ratings are observed. To obtain a positive semidefinite correlation matrix, the nearest correlation matrix problem has recently been studied in the fields of numerical analysis and optimization. However, statistical properties are not explicitly used in such studies. To obtain a positive semidefinite correlation matrix, we assume the approximate model. By using the model, an estimate is obtained as the optimal point of an optimization problem formulated with information on the variances of the estimated correlation coefficients. The problem is solved by a convex quadratic semidefinite program. A penalized likelihood approach is also examined. The MovieLens data set is used to test our approach.
Maleimido substituted cyclotriphosphazene resins for fire and heat resistant composites
NASA Technical Reports Server (NTRS)
Kumar, D.; Fohlen, G. M.; Parker, J. A.
1983-01-01
A new class of fire- and heat-resistant matrix resins have been synthesized by the thermal polymerization of maleimido substituted phenoxycyclotriphosphazenes. The resins have exhibited a char yield of 82 percent at 800 C in nitrogen and 81 percent at 700 C in air. Graphite-fabric laminates based on a resin of this class have shown a limiting oxygen index of 100 percent even at 300 C. Details of the fabrication of the resins and the composites and testing procedures are discussed.
Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica
2012-05-30
The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.
SU-E-T-395: Multi-GPU-Based VMAT Treatment Plan Optimization Using a Column-Generation Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Z; Shi, F; Jia, X
Purpose: GPU has been employed to speed up VMAT optimizations from hours to minutes. However, its limited memory capacity makes it difficult to handle cases with a huge dose-deposition-coefficient (DDC) matrix, e.g. those with a large target size, multiple arcs, small beam angle intervals and/or small beamlet size. We propose multi-GPU-based VMAT optimization to solve this memory issue to make GPU-based VMAT more practical for clinical use. Methods: Our column-generation-based method generates apertures sequentially by iteratively searching for an optimal feasible aperture (referred as pricing problem, PP) and optimizing aperture intensities (referred as master problem, MP). The PP requires accessmore » to the large DDC matrix, which is implemented on a multi-GPU system. Each GPU stores a DDC sub-matrix corresponding to one fraction of beam angles and is only responsible for calculation related to those angles. Broadcast and parallel reduction schemes are adopted for inter-GPU data transfer. MP is a relatively small-scale problem and is implemented on one GPU. One headand- neck cancer case was used for test. Three different strategies for VMAT optimization on single GPU were also implemented for comparison: (S1) truncating DDC matrix to ignore its small value entries for optimization; (S2) transferring DDC matrix part by part to GPU during optimizations whenever needed; (S3) moving DDC matrix related calculation onto CPU. Results: Our multi-GPU-based implementation reaches a good plan within 1 minute. Although S1 was 10 seconds faster than our method, the obtained plan quality is worse. Both S2 and S3 handle the full DDC matrix and hence yield the same plan as in our method. However, the computation time is longer, namely 4 minutes and 30 minutes, respectively. Conclusion: Our multi-GPU-based VMAT optimization can effectively solve the limited memory issue with good plan quality and high efficiency, making GPUbased ultra-fast VMAT planning practical for real clinical use.« less
Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis
NASA Astrophysics Data System (ADS)
Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon
2016-08-01
Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10-20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules.
Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis
Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon
2016-01-01
Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10–20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules. PMID:27503340
Nondestructive Methods for Monitoring Cell Removal During Rat Liver Decellularization.
Geerts, Sharon; Ozer, Sinan; Jaramillo, Maria; Yarmush, Martin L; Uygun, Basak E
2016-07-01
Whole liver engineering holds the promise to create transplantable liver grafts that may serve as substitutes for donor organs, addressing the donor shortage in liver transplantation. While decellularization and recellularization of livers in animal models have been successfully achieved, scale up to human livers has been slow. There are a number of donor human livers that are discarded because they are not found suitable for transplantation, but are available for engineering liver grafts. These livers are rejected due to a variety of reasons, which in turn may affect the decellularization outcome. Hence, a one-size-fit-for all decellularization protocol may not result in scaffolds with consistent matrix quality, subsequently influencing downstream recellularization and transplantation outcomes. There is a need for a noninvasive monitoring method to evaluate the extent of cell removal, while ensuring preservation of matrix components during decellularization. In this study, we decellularized rat livers using a protocol previously established by our group, and we monitored decellularization through traditional destructive techniques, including evaluation of DNA, collagen, and glycosaminoglycan (GAG) content in decellularized scaffolds, as well as histology. In addition, we used computed tomography and perfusate analysis as alternative nondestructive decellularization monitoring methods. We found that DNA removal correlates well with the Hounsfield unit of the liver, and perfusate analysis revealed that significant amount of GAG is removed during perfusion with 0.1% sodium dodecyl sulfate. This allowed for optimization of our decellularization protocol leading to scaffolds that have significantly higher GAG content, while maintaining appropriate removal of cellular contents. The significance of this is the creation of a nondestructive monitoring strategy that can be used for optimization of decellularization protocols for individual human livers available for liver engineering.
Nondestructive Methods for Monitoring Cell Removal During Rat Liver Decellularization
Geerts, Sharon; Ozer, Sinan; Jaramillo, Maria; Yarmush, Martin L.
2016-01-01
Whole liver engineering holds the promise to create transplantable liver grafts that may serve as substitutes for donor organs, addressing the donor shortage in liver transplantation. While decellularization and recellularization of livers in animal models have been successfully achieved, scale up to human livers has been slow. There are a number of donor human livers that are discarded because they are not found suitable for transplantation, but are available for engineering liver grafts. These livers are rejected due to a variety of reasons, which in turn may affect the decellularization outcome. Hence, a one-size-fit-for all decellularization protocol may not result in scaffolds with consistent matrix quality, subsequently influencing downstream recellularization and transplantation outcomes. There is a need for a noninvasive monitoring method to evaluate the extent of cell removal, while ensuring preservation of matrix components during decellularization. In this study, we decellularized rat livers using a protocol previously established by our group, and we monitored decellularization through traditional destructive techniques, including evaluation of DNA, collagen, and glycosaminoglycan (GAG) content in decellularized scaffolds, as well as histology. In addition, we used computed tomography and perfusate analysis as alternative nondestructive decellularization monitoring methods. We found that DNA removal correlates well with the Hounsfield unit of the liver, and perfusate analysis revealed that significant amount of GAG is removed during perfusion with 0.1% sodium dodecyl sulfate. This allowed for optimization of our decellularization protocol leading to scaffolds that have significantly higher GAG content, while maintaining appropriate removal of cellular contents. The significance of this is the creation of a nondestructive monitoring strategy that can be used for optimization of decellularization protocols for individual human livers available for liver engineering. PMID:27169332
Halogen atom effect on the photophysical properties of substituted aza-BODIPY derivatives.
De Simone, B C; Mazzone, G; Pirillo, J; Russo, N; Sicilia, E
2017-01-18
The influence of halogen atom substitution (Br and I), in different amounts and positions in an aza-BODIPY skeleton, on the photophysical properties of some aza-BODIPY derivatives has been investigated by using density functional theory and its time-dependent extension. The heavy atom effect on excitation energies, singlet-triplet energy gaps and spin-orbit matrix elements has been considered. The maximum absorption within the therapeutic window has been confirmed for all the aza-BODIPY derivatives. The feasible intersystem spin crossing pathways for the population of the lowest triplet state, that will depend on the values of the spin-orbit matrix elements, the energy gap as well as the orbital composition of the involved states have been found to most likely involve the S 1 and T 1 or T 2 states. The outcomes of computations support the potential therapeutic use of these compounds as photosensitizers in photodynamic therapy.
Clinical experience with a novel bovine collagen dura mater substitute
Costa, Bruno Silva; Cavalcanti-Mendes, George de Albuquerque; de Abreu, Marcelo Sartori; de Sousa, Atos Alves
2010-01-01
Background: Dural substitutes are used to achieve a watertight closure in situations where adequate closure is not possible .This study was conducted to evaluate the efficacy and safety of use a new collagen matrix dural substitute ( Duradry, Tecnodry, Belo Horizonte MG) in repair or expansion of cranial and spinal dura-mater. Methods: 30 patients operated on between March and September 2008, were studied. Surgical logs were reviewed for sex, age, diagnosis, location of the graft, technique and presence of fistula or infection. The patients were followed-up for at least 3 months, and the presence of complications as cerebrospinal leakage, infection, aseptic meningitis, hydrocephalus, pseudomeningocele were analysed. Results: Only one patient presented with CSF fistula. No patients presented with wound infections, hydrocephalus, pseudomeningocele, meningitis, brain abscesses or signs of toxicity related to the material. Conclusions: The new dural substitute used in this study is effective and safe, and the initial results are similar to those of other dural substitutes reported in the literature. PMID:22028756
NASA Astrophysics Data System (ADS)
Mu, Tingkui; Bao, Donghao; Zhang, Chunmin; Chen, Zeyu; Song, Jionghui
2018-07-01
During the calibration of the system matrix of a Stokes polarimeter using reference polarization states (RPSs) and pseudo-inversion estimation method, the measurement intensities are usually noised by the signal-independent additive Gaussian noise or signal-dependent Poisson shot noise, the precision of the estimated system matrix is degraded. In this paper, we present a paradigm for selecting RPSs to improve the precision of the estimated system matrix in the presence of both types of noise. The analytical solution of the precision of the system matrix estimated with the RPSs are derived. Experimental measurements from a general Stokes polarimeter show that accurate system matrix is estimated with the optimal RPSs, which are generated using two rotating quarter-wave plates. The advantage of using optimal RPSs is a reduction in measurement time with high calibration precision.
Attitude determination using vector observations: A fast optimal matrix algorithm
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1993-01-01
The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.
Studies of mineralization in tissue culture: optimal conditions for cartilage calcification
NASA Technical Reports Server (NTRS)
Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.
1992-01-01
The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.
NASA Astrophysics Data System (ADS)
Ma, Qian; Xia, Houping; Xu, Qiang; Zhao, Lei
2018-05-01
A new method combining Tikhonov regularization and kernel matrix optimization by multi-wavelength incidence is proposed for retrieving particle size distribution (PSD) in an independent model with improved accuracy and stability. In comparison to individual regularization or multi-wavelength least squares, the proposed method exhibited better anti-noise capability, higher accuracy and stability. While standard regularization typically makes use of the unit matrix, it is not universal for different PSDs, particularly for Junge distributions. Thus, a suitable regularization matrix was chosen by numerical simulation, with the second-order differential matrix found to be appropriate for most PSD types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallis, G.A.; Rash, B.; Sweetman, W.A.
1994-02-01
Type X collagen is a homotrimeric, short-chain, nonfibrillar extracellular-matrix component that is specifically and transiently synthesized by hypertrophic chondrocytes at the site of endochondral ossification. The precise function of type X collagen is not known, but its specific pattern of expression suggests that mutations within the encoding gene (COL10A1) that alter the structure or synthesis of the protein may cause heritable forms of chondrodysplasia. The authors used the PCR and the SSCP techniques to analyze the coding and upstream promoter regions of the COL10A1 gene in a number of individuals with forms of chondrodysplasia. Using this approach, they identified twomore » individuals with metaphyseal chondrodysplasia type Schmid (MCDS) with SSCP changes in the region of the gene encoding the carboxyl-terminal domain. Sequence analysis demonstrated that the individuals were heterozygous for two unique single-base-pair transitions that led to the substitution of the highly conserved amino acid residue tyrosine at position 598 by aspartic acid in one person and of leucine at position 614 by proline in the other. The substitution at residue 598 segregated with the phenotype in a family of eight (five affected and three unaffected) related persons. The substitutions at residue 614 occurred in a sporadically affected individual but not in her unaffected mother and brother. Additional members of this family were not available for further study. These results suggest that certain amino acid substitutions within the carboxyl-terminal domain of the chains of the type X collagen molecule cause MCDS. These amino acid substitutions are likely to alter either chain recognition or assembly of the type X collagen molecule, thereby depleting the amount of normal type X collagen deposited in the extracellular matrix, with consequent aberrations in bone growth and development. 36 refs., 5 figs.« less
Petrovic, Aleksandra; Cvetkovic, Nebojsa; Ibric, Svetlana; Trajkovic, Svetlana; Djuric, Zorica; Popadic, Dragica; Popovic, Radmila
2009-12-01
Using mixture experimental design, the effect of carbomer (Carbopol((R)) 971P NF) and hydroxypropylmethylcellulose (Methocel((R)) K100M or Methocel((R)) K4M) combination on the release profile and on the mechanism of drug liberation from matrix tablet was investigated. The numerical optimization procedure was also applied to establish and obtain formulation with desired drug release. The amount of TP released, release rate and mechanism varied with carbomer ratio in total matrix and HPMC viscosity. Increasing carbomer fractions led to a decrease in drug release. Anomalous diffusion was found in all matrices containing carbomer, while Case - II transport was predominant for tablet based on HPMC only. The predicted and obtained profiles for optimized formulations showed similarity. Those results indicate that Simplex Lattice Mixture experimental design and numerical optimization procedure can be applied during development to obtain sustained release matrix formulation with desired release profile.
Taylor, Sandra L; Ruhaak, L Renee; Kelly, Karen; Weiss, Robert H; Kim, Kyoungmi
2017-03-01
With expanded access to, and decreased costs of, mass spectrometry, investigators are collecting and analyzing multiple biological matrices from the same subject such as serum, plasma, tissue and urine to enhance biomarker discoveries, understanding of disease processes and identification of therapeutic targets. Commonly, each biological matrix is analyzed separately, but multivariate methods such as MANOVAs that combine information from multiple biological matrices are potentially more powerful. However, mass spectrometric data typically contain large amounts of missing values, and imputation is often used to create complete data sets for analysis. The effects of imputation on multiple biological matrix analyses have not been studied. We investigated the effects of seven imputation methods (half minimum substitution, mean substitution, k-nearest neighbors, local least squares regression, Bayesian principal components analysis, singular value decomposition and random forest), on the within-subject correlation of compounds between biological matrices and its consequences on MANOVA results. Through analysis of three real omics data sets and simulation studies, we found the amount of missing data and imputation method to substantially change the between-matrix correlation structure. The magnitude of the correlations was generally reduced in imputed data sets, and this effect increased with the amount of missing data. Significant results from MANOVA testing also were substantially affected. In particular, the number of false positives increased with the level of missing data for all imputation methods. No one imputation method was universally the best, but the simple substitution methods (Half Minimum and Mean) consistently performed poorly. © The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
YU, GUANYING; YE, LAN; TAN, WEI; ZHU, XUGUO; LI, YAONAN; JIANG, DUYIN
2016-01-01
The extensive skin defects induced by severe burns are dangerous and can be fatal. Currently, the most common therapy is tangential excision to remove the necrotic or denatured areas of skin, followed by skin grafting. Xenogeneic dermal substitutes, such as porcine acellular dermal matrix (ADM), are typically used to cover the burn wounds, and may accelerate wound healing. It is assumed that burned skin that still maintains partial biological activity may be recycled to construct an autologous acellular dermal matrix, termed 'deep-degree burned dermal matrix (DDBDM)'. In theory, DDBDM may avoid the histoincompatibility issues associated with foreign or xenogeneic dermal matrices, and reduce therapy costs by making full use of discarded skin. In the present study, the collagens within prepared DDBDM were thickened, disorganized and partially fractured, however, they still maintained their reticular structure and tensile strength (P<0.01). Through microarray analysis of the cytokines present in ADM and DDBDM, it was determined that the DDBDM did not produce excessive levels of harmful burn toxins. Following 4 weeks of subcutaneous implantation, ADM and DDBDM were incompletely degraded and maintained good integrity. No significant inflammatory reaction or rejection were observed, which indicated that ADM and DDBDM have good histocompatibility. Therefore, DDBDM may be a useful material for the treatment of deep-degree burns. PMID:26846279
NASA Astrophysics Data System (ADS)
Stotesbury, Theresa E.
The research and development of synthetic blood substitutes is a reported need within the forensic community. This work contributes to the growing body of knowledge in bloodstain pattern analysis by offering a materials science approach to designing, producing and testing synthetic forensic blood substitutes. A key deliverable from this research is the creation of a robust silicon-based material using the solution-gelation technique that has been validated for controlled passive drip and spatter simulation. The work investigates the physical properties (viscosity, surface tension and density) of forensic blood substitute formulations and describes the similarity in the spreading dynamics of the optimized material to whole human blood. It then explores how blood and other fluids behave in impact simulation using high-speed video analysis and supports the use of the optimized material for spatter simulation. Finally, the work highlights the practical value of the material as an educational tool for both basic and advanced bloodstain experimentation and training.
Prospects for using carbon-carbon composites for EMI shielding
NASA Technical Reports Server (NTRS)
Gaier, James R.
1990-01-01
Since pyrolyzed carbon has a higher electrical conductivity than most polymers, carbon-carbon composites would be expected to have higher electromagnetic interference (EMI) shielding ability than polymeric resin composites. A rule of mixtures model of composite conductivity was used to calculate the effect on EMI shielding of substituting a pyrolyzed carbon matrix for a polymeric matrix. It was found that the improvements were small, no more than about 2 percent for the lowest conductivity fibers (ex-rayon) and less than 0.2 percent for the highest conductivity fibers (vapor grown carbon fibers). The structure of the rule of mixtures is such that the matrix conductivity would only be important in those cases where it is much higher than the fiber conductivity, as in metal matrix composites.
Performance evaluation of matrix gradient coils.
Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim
2016-02-01
In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.
Kim, Yoon Jae; Kim, Yoon Young
2010-10-01
This paper presents a numerical method for the optimization of the sequencing of solid panels, perforated panels and air gaps and their respective thickness for maximizing sound transmission loss and/or absorption. For the optimization, a method based on the topology optimization formulation is proposed. It is difficult to employ only the commonly-used material interpolation technique because the involved layers exhibit fundamentally different acoustic behavior. Thus, an optimization method formulation using a so-called unified transfer matrix is newly proposed. The key idea is to form elements of the transfer matrix such that interpolated elements by the layer design variables can be those of air, perforated and solid panel layers. The problem related to the interpolation is addressed and bench mark-type problems such as sound transmission or absorption maximization problems are solved to check the efficiency of the developed method.
Chiu, C H; Turle, R; Poole, G; Thibert, B; Brubaker, W W; Schantz, M M; Wise, S A
2001-02-01
Due to the limited number of environmental matrix certified reference materials (CRMs) with assigned values for natural levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), an interlaboratory study was undertaken by the National Institute of Standards and Technology (NIST) and Environment Canada to establish reference concentration values for selected PCDD/Fs in two well-characterized NIST Standard Reference Materials (SRMs): SRM 1649a (Urban Dust) and SRM 1944 (New York/New Jersey Waterway Sediment). Results from 14 laboratories were used to provide reference values for the seventeen 2, 3, 7, 8-substituted PCDD/F congeners, the totals for individual tetra- through hepta-substituted PCDD/F homologues, and the total amount of tetra- through hepta-substituted PCDD/Fs. The mass fractions for the individual 2, 3, 7, 8-substituted congeners range from approximately 0.01 microg/kg to 7 microg/kg dry mass.
Bijalwan, Vandana; Ali, Usman; Kesarwani, Atul Kumar; Yadav, Kamalendra; Mazumder, Koushik
2016-07-01
Hydroxycinnamic acid bound arabinoxylans (HCA-AXs) were extracted from brans of five Indian millet varieties and response surface methodology was used to optimize the extraction conditions. The optimal condition to obtain highest yield of millet HCA-AXs was determined as follows: time 61min, temperature 66°C, ratio of solvent to sample 12ml/g. Linkage analysis indicated that hydroxycinnamic acid bound arabinoxylan from kodo millet (KM-HCA-AX) contained comparatively low branched arabinoxylan consisting of 14.6% mono-substituted, 1.2% di-substituted and 41.2% un-substituted Xylp residues. The HPLC analysis of millet HCA-AXs showed significant variation in the content of three major bound hydroxycinnamic acids (caffeic, p-coumaric and ferulic acid). The antioxidant activity of millet HCA-AXs were evaluated using three in vitro assay methods (DPPH, FRAP and β-carotene linoleate emulsion assays) which suggested both phenolic acid composition and structural characteristics of arabinoxylans could be correlated to their antioxidant potential, the detailed structural analysis revealed that low substituted KM-HCA-AX exhibited relatively higher antioxidant activity compared to other medium and highly substituted HCA-AXs from finger (FM), proso (PM), barnyard (BM) and foxtail (FOXM) millet. Copyright © 2016. Published by Elsevier B.V.
Optimal Substitution of Cotton Burr and Linters in Thermoplastic Composites
USDA-ARS?s Scientific Manuscript database
A study was conducted to evaluate various substitutions of cotton burr and linters fractions of cotton gin waste (CGW) as a natural fiber source in ligno-cellulosic polymer composites (LCPC.) Samples were fabricated with approximately 50% natural fiber, 40% of high-density polyethylene (HDPE) powder...
de Souza, Sérgio Luís Scombatti; Novaes, Arthur Belém; Grisi, Daniela Corrêa; Taba, Mário; Grisi, Márcio Fernando de Moraes; de Andrade, Patrícia Freitas
2008-07-01
Different techniques have been proposed for the treatment of gingival recession. This study compared the clinical results of gingival recession treatment using a subepithelial connective tissue graft and an acellular dermal matrix allograft. Seven patients with bilateral Miller class I or II gingival recession were selected. Twenty-six recessions were treated and randomly assigned to the test group. In each case the contralateral recession was assigned to the control group. In the control group, a connective tissue graft in combination with a coronally positioned flap was used; in the test group, an acellular dermal matrix allograft was used as a substitute for palatal donor tissue. Probing depth, clinical attachment level, gingival recession, and width of keratinized tissue were measured two weeks prior to surgery and at six and 12 months post-surgery. There were no statistically significant differences between the groups in terms of recession reduction, clinical attachment gain, probing pocket depth, and increase in the width of the keratinized tissue after six or 12 months. There was no statistically significant increase in the width of keratinized tissue between six and 12 months for either group. Within the limitations of this study, it can be suggested that the acellular dermal matrix allograft may be a substitute for palatal donor tissue in root coverage procedures and that the time required for additional gain in the amount of keratinized tissue may be greater for the acellular dermal matrix than for the connective tissue procedures.
Rotundo, Roberto; Pini-Prato, Giovanpaolo
2012-08-01
The aim of this case report study was to demonstrate the use of a new collagen matrix as an alternative to the connective tissue graft for the treatment of multiple gingival recessions. Three women showing 11 maxillary gingival recessions were treated by means of the envelope flap technique associated with a novel collagen matrix as a substitute for the connective tissue graft. At 1 year, complete root coverage was achieved in 9 treated sites, with a mean keratinized tissue width of 3.1 mm, complete resolution of dental hypersensitivity, and a high level of esthetic satisfaction.
Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot
2012-01-01
The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:23960836
Bose, Anirbandeep; Wong, Tin Wui; Singh, Navjot
2013-04-01
The objective of this present investigation was to develop and formulate sustained release (SR) matrix tablets of Itopride HCl, by using different polymer combinations and fillers, to optimize by Central Composite Design response surface methodology for different drug release variables and to evaluate drug release pattern of the optimized product. Sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: hydroxy propyl methyl cellulose (HPMC) and polyvinyl pyrolidine (pvp) and lactose as fillers. Study of pre-compression and post-compression parameters facilitated the screening of a formulation with best characteristics that underwent here optimization study by response surface methodology (Central Composite Design). The optimized tablet was further subjected to scanning electron microscopy to reveal its release pattern. The in vitro study revealed that combining of HPMC K100M (24.65 MG) with pvp(20 mg)and use of LACTOSE as filler sustained the action more than 12 h. The developed sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.
A matrix equation solution by an optimization technique
NASA Technical Reports Server (NTRS)
Johnson, M. J.; Mittra, R.
1972-01-01
The computer solution of matrix equations is often difficult to accomplish due to an ill-conditioned matrix or high noise levels. Two methods of solution are compared for matrices of various degrees of ill-conditioning and for various noise levels in the right hand side vector. One method employs the usual Gaussian elimination. The other solves the equation by an optimization technique and employs a function minimization subroutine.
Random Matrix Approach for Primal-Dual Portfolio Optimization Problems
NASA Astrophysics Data System (ADS)
Tada, Daichi; Yamamoto, Hisashi; Shinzato, Takashi
2017-12-01
In this paper, we revisit the portfolio optimization problems of the minimization/maximization of investment risk under constraints of budget and investment concentration (primal problem) and the maximization/minimization of investment concentration under constraints of budget and investment risk (dual problem) for the case that the variances of the return rates of the assets are identical. We analyze both optimization problems by the Lagrange multiplier method and the random matrix approach. Thereafter, we compare the results obtained from our proposed approach with the results obtained in previous work. Moreover, we use numerical experiments to validate the results obtained from the replica approach and the random matrix approach as methods for analyzing both the primal and dual portfolio optimization problems.
Roux, C Z
2009-05-01
Short phylogenetic distances between taxa occur, for example, in studies on ribosomal RNA-genes with slow substitution rates. For consistently short distances, it is proved that in the completely singular limit of the covariance matrix ordinary least squares (OLS) estimates are minimum variance or best linear unbiased (BLU) estimates of phylogenetic tree branch lengths. Although OLS estimates are in this situation equal to generalized least squares (GLS) estimates, the GLS chi-square likelihood ratio test will be inapplicable as it is associated with zero degrees of freedom. Consequently, an OLS normal distribution test or an analogous bootstrap approach will provide optimal branch length tests of significance for consistently short phylogenetic distances. As the asymptotic covariances between branch lengths will be equal to zero, it follows that the product rule can be used in tree evaluation to calculate an approximate simultaneous confidence probability that all interior branches are positive.
Improving In Vitro Generated Cartilage-Carrier-Constructs by Optimizing Growth Factor Combination
Wiegandt, Katharina; Goepfert, Christiane; Pörtner, Ralf
2007-01-01
The presented study is focused on the generation of osteochondral implants for cartilage repair, which consist of bone substitutes covered with in vitro engineered cartilage. Re-differentiation of expanded porcine cells was performed in alginate gel followed by cartilage formation in high-density cell cultures. In this work, different combinations of growth factors for the stimulation of re-differentiation and cartilage formation have been tested to improve the quality of osteochondral implants. It has been demonstrated that supplementation of the medium with growth factors has significant effects on the properties of the matrix. The addition of the growth factors IGF-I (100 ng/mL) and TGF-β1 (10 ng/mL) during the alginate culture and the absence of any growth factors during the high-density cell culture led to significantly higher GAG to DNA ratios and Young’s Moduli of the constructs compared to other combinations. The histological sections showed homogenous tissue and intensive staining for collagen type II. PMID:19662133
Improved methodologies for the preparation of highly substituted pyridines.
Fernández Sainz, Yolanda; Raw, Steven A; Taylor, Richard J K
2005-11-25
[reaction: see text] Two separate strategies have been developed for the preparation of highly substituted pyridines from 1,2,4-triazines via the inverse-electron-demand Diels-Alder reaction: a microwave-promoted, solvent-free procedure and a tethered imine-enamine (TIE) approach. Both routes avoid the need for a discrete aromatization step and offer significant advantages over the classical methods, giving a wide variety of tri-, tetra-, and penta-substituted pyridines in high, optimized yields.
Ciraldo, Francesca E.; Goldmann, Wolfgang H.
2018-01-01
Since they were first developed in 2004, mesoporous bioactive glasses (MBGs) rapidly captured the interest of the scientific community thanks to their numerous beneficial properties. MBGs are synthesised by a combination of the sol–gel method with the chemistry of surfactants to obtain highly mesoporous (pore size from 5 to 20 nm) materials that, owing to their high surface area and ordered structure, are optimal candidates for controlled drug-delivery systems. In this work, we synthesised and characterised a silver-containing mesoporous bioactive glass (Ag-MBG). It was found that Ag-MBG is a suitable candidate for controlled drug delivery, showing a perfectly ordered mesoporous structure ideal for the loading of drugs together with optimal bioactivity, sustained release of silver from the matrix, and fast and strong bacterial inhibition against both Gram-positive and Gram-negative bacteria. Silver-doped mesoporous glass particles were used in three electrospinning-based techniques to produce PCL/Ag-MBG composite fibres, to coat bioactive glass scaffolds (via electrospraying), and for direct sol electrospinning. The results obtained in this study highlight the versatility and efficacy of Ag-substituted mesoporous bioactive glass and encourage further studies to characterize the biological response to Ag-MBG-based antibacterial controlled-delivery systems for tissue-engineering applications. PMID:29710768
Evaluation of kangaroo pericardium as an alternative substitute for reconstructive cardiac surgery.
Neethling, W M L; Cooper, S; Van Den Heever, J J; Hough, J; Hodge, A J
2002-06-01
Bioprosthetic materials (human, bovine and porcine) are used in various cardio-thoracic repair and replacement procedures because of excellent performance and low thrombogenicity. These bioprosthetic substitutes fail due to degeneration and calcification. This study examines the morphology, tensile properties and calcification potential of kangaroo pericardium in vitro and in vivo. Bovine (control tissue) and kangaroo pericardium, fixed in 0.625% buffered glutaraldehyde, were examined by light and scanning electron microscopy. A standard method was used for biaxial testing. Pericardial strips (10 x 5 mm) were implanted subcutaneously into male Wistar rats and retrieved after 4, 6 and 8 weeks and examined by Von Kossa's stain technique and atomic absorption spectrophotometry. Histology revealed serosa and fibrosa cell layers in both tissues. Electron microscopy showed a densely arranged collagen matrix in kangaroo pericardium. Kangaroo pericardium calcified significantly less than bovine pericardium at 4 weeks (0.80+/-0.28 versus 21.60+/-4.80 microg/mg) at 6 weeks (0.48+/-0.08 versus 32.80+/-14.4 microg/mg) and at 8 weeks (2.40+/-1.20 versus 30.40+/-17.20 microg/mg), respectively. Kangaroo pericardium has a densely arranged collagen matrix with a higher extensibility and significantly lower calcification potential. Therefore, kangaroo pericardium could be used as an alternative substitute in cardiac surgery because of its low calcification potential.
Fernandez de Grado, Gabriel; Keller, Laetitia; Idoux-Gillet, Ysia; Wagner, Quentin; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Bornert, Fabien; Offner, Damien
2018-01-01
Bone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes. All these substitutes are not suitable for every clinical use, and they have to be chosen selectively depending on their purpose. Thus, this review aims to highlight the principal characteristics of the most commonly used bone substitutes and to give some directions concerning their clinical use, as spine fusion, open-wedge tibial osteotomy, long bone fracture, oral and maxillofacial surgery, or periodontal treatments. However, the main limitations to bone substitutes use remain the management of large defects and the lack of vascularization in their central part, which is likely to appear following their utilization. In the field of bone tissue engineering, developing porous synthetic substitutes able to support a faster and a wider vascularization within their structure seems to be a promising way of research. PMID:29899969
Combining Correlation Matrices: Simulation Analysis of Improved Fixed-Effects Methods
ERIC Educational Resources Information Center
Hafdahl, Adam R.
2007-01-01
The originally proposed multivariate meta-analysis approach for correlation matrices--analyze Pearson correlations, with each study's observed correlations replacing their population counterparts in its conditional-covariance matrix--performs poorly. Two refinements are considered: Analyze Fisher Z-transformed correlations, and substitute better…
Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication
ERIC Educational Resources Information Center
Wolf, Michael Maclean
2009-01-01
Combinatorial scientific computing plays an important enabling role in computational science, particularly in high performance scientific computing. In this thesis, we will describe our work on optimizing matrix-vector multiplication using combinatorial techniques. Our research has focused on two different problems in combinatorial scientific…
Zhao, Xian-En; Yan, Ping; Wang, Renjun; Zhu, Shuyun; You, Jinmao; Bai, Yu; Liu, Huwei
2016-08-01
Quantitative analysis of cholesterol and its metabolic steroid hormones plays a vital role in diagnosing endocrine disorders and understanding disease progression, as well as in clinical medicine studies. Because of their extremely low abundance in body fluids, it remains a challenging task to develop a sensitive detection method. A hyphenated technique of dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) was proposed for cleansing, enrichment and sensitivity enhancement. 4'-Carboxy-substituted rosamine (CSR) was synthesized and used as derivatization reagent. An ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed for determination of cholesterol and its metabolic steroid hormones in the multiple reaction monitoring mode. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS were all optimized. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.08-0.15 pg mL(-1) ) were achieved. Through the combination of dual-UADLLME and MAD, a determination method for cholesterol and its metabolic steroid hormones in human plasma, serum and urine samples was developed and validated with high sensitivity, selectivity, accuracy and perfect matrix effect results. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Optimal Frequency-Domain System Realization with Weighting
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Maghami, Peiman G.
1999-01-01
Several approaches are presented to identify an experimental system model directly from frequency response data. The formulation uses a matrix-fraction description as the model structure. Frequency weighting such as exponential weighting is introduced to solve a weighted least-squares problem to obtain the coefficient matrices for the matrix-fraction description. A multi-variable state-space model can then be formed using the coefficient matrices of the matrix-fraction description. Three different approaches are introduced to fine-tune the model using nonlinear programming methods to minimize the desired cost function. The first method uses an eigenvalue assignment technique to reassign a subset of system poles to improve the identified model. The second method deals with the model in the real Schur or modal form, reassigns a subset of system poles, and adjusts the columns (rows) of the input (output) influence matrix using a nonlinear optimizer. The third method also optimizes a subset of poles, but the input and output influence matrices are refined at every optimization step through least-squares procedures.
A Robust Statistics Approach to Minimum Variance Portfolio Optimization
NASA Astrophysics Data System (ADS)
Yang, Liusha; Couillet, Romain; McKay, Matthew R.
2015-12-01
We study the design of portfolios under a minimum risk criterion. The performance of the optimized portfolio relies on the accuracy of the estimated covariance matrix of the portfolio asset returns. For large portfolios, the number of available market returns is often of similar order to the number of assets, so that the sample covariance matrix performs poorly as a covariance estimator. Additionally, financial market data often contain outliers which, if not correctly handled, may further corrupt the covariance estimation. We address these shortcomings by studying the performance of a hybrid covariance matrix estimator based on Tyler's robust M-estimator and on Ledoit-Wolf's shrinkage estimator while assuming samples with heavy-tailed distribution. Employing recent results from random matrix theory, we develop a consistent estimator of (a scaled version of) the realized portfolio risk, which is minimized by optimizing online the shrinkage intensity. Our portfolio optimization method is shown via simulations to outperform existing methods both for synthetic and real market data.
Investigation and Implementation of Matrix Permanent Algorithms for Identity Resolution
2014-12-01
calculation of the permanent of a matrix whose dimension is a function of target count [21]. However, the optimal approach for computing the permanent is...presently unclear. The primary objective of this project was to determine the optimal computing strategy(-ies) for the matrix permanent in tactical and...solving various combinatorial problems (see [16] for details and appli- cations to a wide variety of problems) and thus can be applied to compute a
Saravanan, Chandra; Shao, Yihan; Baer, Roi; Ross, Philip N; Head-Gordon, Martin
2003-04-15
A sparse matrix multiplication scheme with multiatom blocks is reported, a tool that can be very useful for developing linear-scaling methods with atom-centered basis functions. Compared to conventional element-by-element sparse matrix multiplication schemes, efficiency is gained by the use of the highly optimized basic linear algebra subroutines (BLAS). However, some sparsity is lost in the multiatom blocking scheme because these matrix blocks will in general contain negligible elements. As a result, an optimal block size that minimizes the CPU time by balancing these two effects is recovered. In calculations on linear alkanes, polyglycines, estane polymers, and water clusters the optimal block size is found to be between 40 and 100 basis functions, where about 55-75% of the machine peak performance was achieved on an IBM RS6000 workstation. In these calculations, the blocked sparse matrix multiplications can be 10 times faster than a standard element-by-element sparse matrix package. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 618-622, 2003
Active subspace: toward scalable low-rank learning.
Liu, Guangcan; Yan, Shuicheng
2012-12-01
We address the scalability issues in low-rank matrix learning problems. Usually these problems resort to solving nuclear norm regularized optimization problems (NNROPs), which often suffer from high computational complexities if based on existing solvers, especially in large-scale settings. Based on the fact that the optimal solution matrix to an NNROP is often low rank, we revisit the classic mechanism of low-rank matrix factorization, based on which we present an active subspace algorithm for efficiently solving NNROPs by transforming large-scale NNROPs into small-scale problems. The transformation is achieved by factorizing the large solution matrix into the product of a small orthonormal matrix (active subspace) and another small matrix. Although such a transformation generally leads to nonconvex problems, we show that a suboptimal solution can be found by the augmented Lagrange alternating direction method. For the robust PCA (RPCA) (Candès, Li, Ma, & Wright, 2009 ) problem, a typical example of NNROPs, theoretical results verify the suboptimality of the solution produced by our algorithm. For the general NNROPs, we empirically show that our algorithm significantly reduces the computational complexity without loss of optimality.
Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.
Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter
2016-11-05
The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Derong; Zhou, Wei; Zhao, Jingjing; Lan, Weijie; Chen, Rongming; Li, Yutong; Xing, Baoshan; Li, Zhuohao; Xiao, Mengshi; Wu, Zhijun; Li, Xindan; Chen, Rongna; Zhang, Xingwen; Chen, Hong; Zhang, Qing; Qin, Wen; Li, Suqing
2017-10-01
In this study, synthesis and physicochemical properties of starch acetate with low substitution under microwave were studied. A three-level-three-factorial Central Composite Design using Response Surface Methodology (RSM) was employed to optimize the reaction conditions. The optimal parameters are as follows: amount of acetic anhydride of 12%, radiation time of 11min, and microwave power of 100W. These optimal conditions predicted by RSM were confirmed that the degree of substitution (DS) of acetate starch is 0.0691mg/g and the physical and chemical properties of natural corn starch (NCS) and corn starch acetate (ACS) were further studied.The transparency, water separation, water absorption, expansion force, and solubility of ACS low substitution are better than NCS, while the NCS's hydrolysis percentage is higher than ACS, which indicate that the modified corn starch has better performance than native corn starch. The surface morphology of the corn starch acetate was examined by scanning electron microscope (SEM), which showed that it had a smooth surface and a spherical and polygonal shape. However, samples' shape is irregular. Crystal structure was observed by X-ray diffraction, and the ACS can determine the level of microwave technology that can destroy the extent of the crystal and amorphous regions. Fourier transform infrared (FTIR) spectroscopy shows that around 1750cm -1 carbonyl signal determines acetylation bonding successfully. Copyright © 2017 Elsevier B.V. All rights reserved.
Shi, Jiajia; Sun, Jie; Zhang, Wen; Liang, Hui; Shi, Qin; Li, Xiaoran; Chen, Yanyan; Zhuang, Yan; Dai, Jianwu
2016-10-07
The reconstruction of bone usually depends on substitute transplantation, which has drawbacks including the limited bone substitutes available, comorbidity, immune rejection, and limited endogenous bone regeneration. Here, we constructed a functionalized bone substitute by combining application of the demineralized bone matrix (DBM) and collagen-binding stromal-cell-derived factor-1α (CBD-SDF-1α). DBM was a poriferous and biodegradable bone substitute, derived from bovine bone and consisting mainly of collagen. CBD-SDF-1α could bind to collagen and be controllably released from the DBM to mobilize stem cells. In a rat femur defect model, CBD-SDF-1α-modified DBM scaffolds could efficiently mobilize CD34 + and c-kit + endogenous stem cells homing to the injured site at 3 days after implantation. According to the data from micro-CT, CBD-SDF-1α-modified DBM scaffolds could help the bone defects rejoin with mineralization accumulated and bone volume expanded. Interestingly, osteoprotegerin (OPG) and osteopontin (OPN) were highly expressed in CBD-SDF-1α group at an early time after implantation, while osteocalcin (OCN) was more expanded. H&E and Masson's trichrome staining showed that the CBD-SDF-1α-modified DBM scaffold group had more osteoblasts and that the bone defect rejoined earlier. The ultimate strength of the regenerated bone was investigated by three-point bending, showing that the CBD-SDF-1α group had superior strength. In conclusion, CBD-SDF-1α-modified DBM scaffolds could promote bone regeneration by recruiting endogenous stem cells.
Feng, Qiang; Chen, Yiran; Sun, Bo; Li, Songjie
2014-01-01
An optimization method for condition based maintenance (CBM) of aircraft fleet considering prognostics uncertainty is proposed. The CBM and dispatch process of aircraft fleet is analyzed first, and the alternative strategy sets for single aircraft are given. Then, the optimization problem of fleet CBM with lower maintenance cost and dispatch risk is translated to the combinatorial optimization problem of single aircraft strategy. Remain useful life (RUL) distribution of the key line replaceable Module (LRM) has been transformed into the failure probability of the aircraft and the fleet health status matrix is established. And the calculation method of the costs and risks for mission based on health status matrix and maintenance matrix is given. Further, an optimization method for fleet dispatch and CBM under acceptable risk is proposed based on an improved genetic algorithm. Finally, a fleet of 10 aircrafts is studied to verify the proposed method. The results shows that it could realize optimization and control of the aircraft fleet oriented to mission success.
Chen, Yiran; Sun, Bo; Li, Songjie
2014-01-01
An optimization method for condition based maintenance (CBM) of aircraft fleet considering prognostics uncertainty is proposed. The CBM and dispatch process of aircraft fleet is analyzed first, and the alternative strategy sets for single aircraft are given. Then, the optimization problem of fleet CBM with lower maintenance cost and dispatch risk is translated to the combinatorial optimization problem of single aircraft strategy. Remain useful life (RUL) distribution of the key line replaceable Module (LRM) has been transformed into the failure probability of the aircraft and the fleet health status matrix is established. And the calculation method of the costs and risks for mission based on health status matrix and maintenance matrix is given. Further, an optimization method for fleet dispatch and CBM under acceptable risk is proposed based on an improved genetic algorithm. Finally, a fleet of 10 aircrafts is studied to verify the proposed method. The results shows that it could realize optimization and control of the aircraft fleet oriented to mission success. PMID:24892046
Chronic sinusitis associated with the use of unrecognized bone substitute: a case report.
Beklen, Arzu; Pihakari, Antti; Rautemaa, Riina; Hietanen, Jarkko; Ali, Ahmed; Konttinen, Yrjö T
2008-05-01
Bone grafts are used for bone augmentation to ensure optimal implant placement. However, this procedure may sometimes cause sinusitis. The case of a 44-year-old woman with the diagnosis of recurrent and chronic sinusitis of her right maxillary sinus with a history of dental implant surgery is presented. After several attempts with normal standard sinusitis therapy, unrecognized bone substitute was removed from the sinus cavity, which finally led to resolution of the sinusitis. This case reiterates the importance of a careful examination, consultation, and second opinion for the selection of optimal treatment.
Optimal fabrication processes for unidirectional metal-matrix composites: A computational simulation
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Murthy, P. L. N.; Morel, M.
1990-01-01
A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with non-linear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Murthy, P. L. N.; Morel, M.
1990-01-01
A method is proposed for optimizing the fabrication process of unidirectional metal matrix composites. The temperature and pressure histories are optimized such that the residual microstresses of the composite at the end of the fabrication process are minimized and the material integrity throughout the process is ensured. The response of the composite during the fabrication is simulated based on a nonlinear micromechanics theory. The optimal fabrication problem is formulated and solved with nonlinear programming. Application cases regarding the optimization of the fabrication cool-down phases of unidirectional ultra-high modulus graphite/copper and silicon carbide/titanium composites are presented.
SU-E-T-503: IMRT Optimization Using Monte Carlo Dose Engine: The Effect of Statistical Uncertainty.
Tian, Z; Jia, X; Graves, Y; Uribe-Sanchez, A; Jiang, S
2012-06-01
With the development of ultra-fast GPU-based Monte Carlo (MC) dose engine, it becomes clinically realistic to compute the dose-deposition coefficients (DDC) for IMRT optimization using MC simulation. However, it is still time-consuming if we want to compute DDC with small statistical uncertainty. This work studies the effects of the statistical error in DDC matrix on IMRT optimization. The MC-computed DDC matrices are simulated here by adding statistical uncertainties at a desired level to the ones generated with a finite-size pencil beam algorithm. A statistical uncertainty model for MC dose calculation is employed. We adopt a penalty-based quadratic optimization model and gradient descent method to optimize fluence map and then recalculate the corresponding actual dose distribution using the noise-free DDC matrix. The impacts of DDC noise are assessed in terms of the deviation of the resulted dose distributions. We have also used a stochastic perturbation theory to theoretically estimate the statistical errors of dose distributions on a simplified optimization model. A head-and-neck case is used to investigate the perturbation to IMRT plan due to MC's statistical uncertainty. The relative errors of the final dose distributions of the optimized IMRT are found to be much smaller than those in the DDC matrix, which is consistent with our theoretical estimation. When history number is decreased from 108 to 106, the dose-volume-histograms are still very similar to the error-free DVHs while the error in DDC is about 3.8%. The results illustrate that the statistical errors in the DDC matrix have a relatively small effect on IMRT optimization in dose domain. This indicates we can use relatively small number of histories to obtain the DDC matrix with MC simulation within a reasonable amount of time, without considerably compromising the accuracy of the optimized treatment plan. This work is supported by Varian Medical Systems through a Master Research Agreement. © 2012 American Association of Physicists in Medicine.
ERIC Educational Resources Information Center
Beckman, Steven R.
2003-01-01
Describes a series of matrix choice games that illustrate for students the concepts of monopoly, shared monopoly, Cournot, Bertrand, and Stackelberg behavior given either perfect complements or perfect substitutes. Suggests that the use of the games also allows for student dialogue about international trade and price wars. (JEH)
Haik, Josef; Weissman, Oren; Hundeshagen, Gabriel; Farber, Nimrod; Harats, Moti; Rozenblatt, Shira M; Kamolz, Lars Peter; Winkler, Eyal; Zilinsky, Isaac
2012-07-01
Reconstruction of full-thickness defects may benefit from integration of dermal substitutes, which serve as a foundation for split-thickness skin grafts, thus enhancing short and long-term results. We present a series of 7 patients who were treated between 2010 and 2012 for complicated full-thickness defects by the second-generation collagen/elastin matrix Matriderm® covered by a split-thickness skin graft. The defects resulted from malignancy resection, trauma, and post-burn scar reconstruction. Overall graft take was excellent and no complications were noted regarding the dermal substitute. Graft quality was close to normal skin in terms of elasticity, pliability, texture, and color. Good contour and cushioning of defects in weight bearing areas was also achieved. Matriderm was found to be a useful adjunct to full-thickness defect reconstruction, especially in difficult areas where the desired result is a scar of the highest quality possible.
Azevedo, Viviane Machado; Borges, Soraia Vilela; Marconcini, José Manoel; Yoshida, Maria Irene; Neto, Alfredo Rodrigues Sena; Pereira, Tamara Coelho; Pereira, Camila Ferreira Gonçalves
2017-02-10
The aim of this study was to evaluate the effect of replacing corn starch by whey protein isolated (WPI) in biodegradable polymer blends developed by extrusion. X-ray diffraction showed the presence of a Vh-type crystalline arrangement. The films were homogeneous, indicating strong interfacial adhesion between the protein and the thermoplastic starch matrix (TPS) as observed in scanning electron microscopy. The addition of WPI on TPS matrix promoted an increase in the thermal stability of the materials. It was observed 58.5% decrease in the water vapor permeability. The effect of corn starch substitution by WPI on mechanical properties resulted in a more resistant and less flexible film when compared the TPS film. The addition of WPI caused greenish yellow color and less transparent films. The substitution of corn starch by WPI made it possible to obtain polymer blends with improved properties and represents an innovation for application as a packaging material. Copyright © 2016. Published by Elsevier Ltd.
Murata, Masashi; Okuda, Kazuhiro; Momose, Manabu; Kubo, Kentarou; Kuroyanagi, Yoshimitsu; Wolff, Larry F
2008-10-01
Cultured gingival dermal substitute (CGDS), composed of gingival fibroblasts and matrix and fabricated using tissue-engineering techniques, has been used for root coverage procedures. Fourteen sites from four patients with > or = 2 mm of Miller Class I or II facial gingival tissue recession were treated. The autologous CGDS sheet, prepared prior to surgical treatment, was grafted over the teeth with gingival recession and then covered with a coronally positioned flap. Vertical and horizontal recession was measured at baseline (prior to the surgical procedure) and 13 to 40 weeks (average: 30.7 +/- 9.6 weeks) after surgery. The average vertical and horizontal root coverage after surgery was 79.1% +/- 25.7% and 75.2% +/- 31.4%, respectively. Moreover, there was a significant increase of keratinized and attached gingival tissue at the final clinical evaluation compared with preoperative measurements (P < .05). These results demonstrate CGDS as a promising grafting material for use with root coverage procedures in periodontal therapy.
Sun, Yu; Tamarit, Daniel
2017-01-01
Abstract The major codon preference model suggests that codons read by tRNAs in high concentrations are preferentially utilized in highly expressed genes. However, the identity of the optimal codons differs between species although the forces driving such changes are poorly understood. We suggest that these questions can be tackled by placing codon usage studies in a phylogenetic framework and that bacterial genomes with extreme nucleotide composition biases provide informative model systems. Switches in the background substitution biases from GC to AT have occurred in Gardnerella vaginalis (GC = 32%), and from AT to GC in Lactobacillus delbrueckii (GC = 62%) and Lactobacillus fermentum (GC = 63%). We show that despite the large effects on codon usage patterns by these switches, all three species evolve under selection on synonymous sites. In G. vaginalis, the dramatic codon frequency changes coincide with shifts of optimal codons. In contrast, the optimal codons have not shifted in the two Lactobacillus genomes despite an increased fraction of GC-ending codons. We suggest that all three species are in different phases of an on-going shift of optimal codons, and attribute the difference to a stronger background substitution bias and/or longer time since the switch in G. vaginalis. We show that comparative and correlative methods for optimal codon identification yield conflicting results for genomes in flux and discuss possible reasons for the mispredictions. We conclude that switches in the direction of the background substitution biases can drive major shifts in codon preference patterns even under sustained selection on synonymous codon sites. PMID:27540085
Sivan, Unnikrishnan; Jayakumar, K; Krishnan, Lissy K
2016-10-01
Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Senda, Miki; Muto, Shinsuke; Horikoshi, Masami; Senda, Toshiya
2008-10-01
One of the most frequent problems in crystallization is poor quality of the crystals. In order to overcome this obstacle several methods have been utilized, including amino-acid substitutions of the target protein. Here, an example is presented of crystal-quality improvement by leucine-to-methionine substitutions. A variant protein with three amino-acid substitutions enabled improvement of the crystal quality of the histone chaperone SET/TAF-Ibeta/INHAT when combined with optimization of the cryoconditions. This procedure improved the resolution of the SET/TAF-Ibeta/INHAT crystals from around 5.5 to 2.3 A without changing the crystallization conditions.
Kotthoff, Matthias; Bücking, Mark
2018-01-01
Per- and polyfluoroalkyl substances (PFAS) represent a versatile group of ubiquitously occurring chemicals of increasing regulatory concern. The past years lead to an ever expanding portfolio of detected anthropogenic PFAS in numerous products encountered in daily life. Yet no clear picture of the full range of individual substance that comprise PFAS is available and this challenges analytical and engineering sciences. Authorities struggle to cope with uncertainties in managing risk of harm posed by PFAS. This is a result of an incomplete understanding of the range of compounds that they comprise in differing products. There are analytical uncertainties identifying PFAS and estimating the concentrations of the total PFAS load individual molecules remain unknown. There are four major trends from the chemical perspective that will shape PFAS research for the next decade. Mobility: A wide and dynamic distribution of short chain PFAS due to their high polarity, persistency and volatility.Substitution of regulated substances: The ban or restrictions of individual molecules will lead to a replacement with substitutes of similar concern.Increase in structural diversity of existing PFAS molecules: Introduction of e.g., hydrogens and chlorine atoms instead of fluorine, as well as branching and cross-linking lead to a high versatility of unknown target molecules.Unknown "Dark Matter": The amount, identity, formation pathways, and transformation dynamics of polymers and PFAS precursors are largely unknown. These directions require optimized analytical setups, especially multi-methods, and semi-specific tools to determine PFAS-sum parameters in any relevant matrix.
Kotthoff, Matthias; Bücking, Mark
2018-01-01
Per- and polyfluoroalkyl substances (PFAS) represent a versatile group of ubiquitously occurring chemicals of increasing regulatory concern. The past years lead to an ever expanding portfolio of detected anthropogenic PFAS in numerous products encountered in daily life. Yet no clear picture of the full range of individual substance that comprise PFAS is available and this challenges analytical and engineering sciences. Authorities struggle to cope with uncertainties in managing risk of harm posed by PFAS. This is a result of an incomplete understanding of the range of compounds that they comprise in differing products. There are analytical uncertainties identifying PFAS and estimating the concentrations of the total PFAS load individual molecules remain unknown. There are four major trends from the chemical perspective that will shape PFAS research for the next decade. Mobility: A wide and dynamic distribution of short chain PFAS due to their high polarity, persistency and volatility.Substitution of regulated substances: The ban or restrictions of individual molecules will lead to a replacement with substitutes of similar concern.Increase in structural diversity of existing PFAS molecules: Introduction of e.g., hydrogens and chlorine atoms instead of fluorine, as well as branching and cross-linking lead to a high versatility of unknown target molecules.Unknown “Dark Matter”: The amount, identity, formation pathways, and transformation dynamics of polymers and PFAS precursors are largely unknown. These directions require optimized analytical setups, especially multi-methods, and semi-specific tools to determine PFAS-sum parameters in any relevant matrix. PMID:29675408
USDA-ARS?s Scientific Manuscript database
A multi-spectral fluorescence imaging technique was used to detect defect cherry tomatoes. The fluorescence excitation and emission matrix was used to measure for defects, sound surface, and stem areas to determine the optimal fluorescence excitation and emission wavelengths for discrimination. Two-...
Pellegata, Alessandro F; Asnaghi, M Adelaide; Stefani, Ilaria; Maestroni, Anna; Maestroni, Silvia; Dominioni, Tommaso; Zonta, Sandro; Zerbini, Gianpaolo; Mantero, Sara
2013-01-01
Small caliber vessels substitutes still remain an unmet clinical need; few autologous substitutes are available, while synthetic grafts show insufficient patency in the long term. Decellularization is the complete removal of all cellular and nuclear matters from a tissue while leaving a preserved extracellular matrix representing a promising tool for the generation of acellular scaffolds for tissue engineering, already used for various tissues with positive outcomes. The aim of this work is to investigate the effect of a detergent-enzymatic decellularization protocol on swine arteries in terms of cell removal, extracellular matrix preservation, and mechanical properties. Furthermore, the effect of storage at -80°C on the mechanical properties of the tissue is evaluated. Swine arteries were harvested, frozen, and decellularized; histological analysis revealed complete cell removal and preserved extracellular matrix. Furthermore, the residual DNA content in decellularized tissues was far low compared to native one. Mechanical testings were performed on native, defrozen, and decellularized tissues; no statistically significant differences were reported for Young's modulus, ultimate stress, compliance, burst pressure, and suture retention strength, while ultimate strain and stress relaxation of decellularized vessels were significantly different from the native ones. Considering the overall results, the process was confirmed to be suitable for the generation of acellular scaffolds for vascular tissue engineering.
Noël, A; Santavicca, M; Stoll, I; L'Hoir, C; Staub, A; Murphy, G; Rio, M C; Basset, P
1995-09-29
Matrix metalloproteinases (matrixins) constitute a group of extracellular proteinases belonging to the metzincin superfamily. They are involved in both physiological and pathological tissue remodeling processes, including those associated with cancer progression. Stromelysin-3, which is expressed in most invasive human carcinomas, is a matrix metalloproteinase with unusual functional properties. In particular, its mature form does not cleave any of the major extracellular matrix components. To define critical structural determinants involved in controlling stromelysin-3 proteolytic activity, we have used site-directed mutagenesis. We show that the deletion of at least 175 C-terminal amino-acids is sufficient to endow mouse stromelysin-3 with activities against casein, laminin, and type IV collagen. In the case of the human enzyme, however, a further and single Ala-235-->Pro substitution is necessary to observe similar activities. Ala-235, which characterizes human stromelysin-3 among matrixins, is located immediately after the C terminus of the "Met-turn," which forms a hydrophobic basis for the catalytic zinc atom in the metzincin family. We conclude that human stromelysin-3 has gained specific functional properties during evolution by amino acid substitution in the catalytic zinc environment, and that it represents an attractive target for specific inhibitors that may be used to prevent cancer progression.
Boink, Mireille A.; Roffel, Sanne; Breetveld, Melanie; Thon, Maria; Haasjes, Michiel S.P.; Waaijman, Taco; Scheper, Rik J.; Blok, Chantal S.
2017-01-01
Abstract Skin and oral mucosa substitutes are a therapeutic option for closing hard‐to‐heal skin and oral wounds. Our aim was to develop bi‐layered skin and gingiva substitutes, from 3 mm diameter biopsies, cultured under identical conditions, which are compliant with current European regulations for advanced therapy medicinal products. We present in vitro mode of action methods to (i) determine viability: epithelial expansion, proliferation (Ki‐67), metabolic activity (MTT assay); (ii) characterize skin and gingiva substitutes: histology and immunohistochemistry; and (iii) determine potency: soluble wound healing mediator release (enzyme‐linked immunosorbent assay). Both skin and gingiva substitutes consist of metabolically active autologous reconstructed differentiated epithelium expanding from the original biopsy sheet on a fibroblast populated connective tissue matrix (donor dermis). Gingival epithelium expanded 1.7‐fold more than skin epithelium during the 3 week culture period. The percentage of proliferating Ki‐67‐positive cells located in the basal layer of the gingiva substitute was >1.5‐fold higher than in the skin substitute. Keratins 16 and 17, which are upregulated during normal wound healing, were expressed in both the skin and gingiva substitutes. Notably, the gingiva substitute secreted higher amounts of key cytokines involved in mitogenesis, motogenesis and chemotaxis (interleukin‐6 > 23‐fold, CXCL8 > 2.5‐fold) as well as higher amounts of the anti‐fibrotic growth factor, hepatocyte growth factor (>7‐fold), compared with the skin substitute. In conclusion, while addressing the viability, characterization and potency of the tissue substitutes, important intrinsic differences between skin and gingiva were discovered that may explain in part the superior quality of wound healing observed in the oral mucosa compared with skin. PMID:28388010
Value-added utilisation of recycled concrete in hot-mix asphalt.
Wong, Yiik Diew; Sun, Darren Delai; Lai, Dickson
2007-01-01
The feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.5% and 7.0% of grade Pen 60/70 bitumen, respectively. All three hybrid mixes satisfied the Marshall criteria of the Singapore Land Transport Authority (LTA) W3B wearing course specification. The hybrid mix with 6% concrete fillers gave comparable resilient modulus and creep resistance as the conventional W3B mix, while hybrid mixes with higher concrete substitutions achieved better performance. X-ray diffraction (XRD) showed the distinct presence of free lime in the heat-treated concrete, while the scanning electron microscope (SEM) provided an in-depth perspective of the concrete grains in the HMA matrix. The results suggest feasible use of waste concrete as partial aggregate substitution in HMA.
Colonization of bone matrices by cellular components
NASA Astrophysics Data System (ADS)
Shchelkunova, E. I.; Voropaeva, A. A.; Korel, A. V.; Mayer, D. A.; Podorognaya, V. T.; Kirilova, I. A.
2017-09-01
Practical surgery, traumatology, orthopedics, and oncology require bioengineered constructs suitable for replacement of large-area bone defects. Only rigid/elastic matrix containing recipient's bone cells capable of mitosis, differentiation, and synthesizing extracellular matrix that supports cell viability can comply with these requirements. Therefore, the development of the techniques to produce structural and functional substitutes, whose three-dimensional structure corresponds to the recipient's damaged tissues, is the main objective of tissue engineering. This is achieved by developing tissue-engineering constructs represented by cells placed on the matrices. Low effectiveness of carrier matrix colonization with cells and their uneven distribution is one of the major problems in cell culture on various matrixes. In vitro studies of the interactions between cells and material, as well as the development of new techniques for scaffold colonization by cellular components are required to solve this problem.
Near-optimal matrix recovery from random linear measurements.
Romanov, Elad; Gavish, Matan
2018-06-25
In matrix recovery from random linear measurements, one is interested in recovering an unknown M-by-N matrix [Formula: see text] from [Formula: see text] measurements [Formula: see text], where each [Formula: see text] is an M-by-N measurement matrix with i.i.d. random entries, [Formula: see text] We present a matrix recovery algorithm, based on approximate message passing, which iteratively applies an optimal singular-value shrinker-a nonconvex nonlinearity tailored specifically for matrix estimation. Our algorithm typically converges exponentially fast, offering a significant speedup over previously suggested matrix recovery algorithms, such as iterative solvers for nuclear norm minimization (NNM). It is well known that there is a recovery tradeoff between the information content of the object [Formula: see text] to be recovered (specifically, its matrix rank r) and the number of linear measurements n from which recovery is to be attempted. The precise tradeoff between r and n, beyond which recovery by a given algorithm becomes possible, traces the so-called phase transition curve of that algorithm in the [Formula: see text] plane. The phase transition curve of our algorithm is noticeably better than that of NNM. Interestingly, it is close to the information-theoretic lower bound for the minimal number of measurements needed for matrix recovery, making it not only state of the art in terms of convergence rate, but also near optimal in terms of the matrices it successfully recovers. Copyright © 2018 the Author(s). Published by PNAS.
Peng, Tao; Huang, Bingzhen; Sun, Yao; Lu, Yongbo; Bonewald, Lynda; Chen, Shuo; Butler, William T; Feng, Jerry Q; D'Souza, Rena N; Qin, Chunlin
2009-01-01
Dentin matrix protein 1 (DMP1) is present in the extracellular matrix (ECM) of dentin and bone as processed NH(2)- and COOH-terminal fragments, resulting from proteolytic cleavage at the NH(2) termini of 4 aspartic acid residues during rat DMP1 processing. One cleavage site residue, Asp(181) (corresponding to Asp(197) of mouse DMP1), and its flanking region are highly conserved across species. We speculate that cleavage at the NH(2) terminus of Asp(197) of mouse DMP1 represents an initial, first-step scission in the whole cascade of proteolytic processing. To test if Asp(197) is critical for initiating the proteolytic processing of mouse DMP1, we substituted Asp(197) with Ala(197) by mutating the corresponding nucleotides of mouse cDNA that encode this amino acid residue. This mutant DMP1 cDNA was cloned into a pcDNA3.1 vector. Data from transfection experiments indicated that this single substitution blocked the proteolytic processing of mouse DMP1 in HEK-293 cells, indicating that cleavage at the NH(2) terminus of Asp(197) is essential for exposing other cleavage sites for the conversion of DMP1 to its fragments. The NH(2)-terminal fragment of DMP1 occurs as a proteoglycan form (DMP1-PG) that contains a glycosaminoglycan (GAG) chain. Previously, we showed that a GAG chain is linked to Ser(74) in rat DMP1 (Ser(89) in mouse DMP1). To confirm that mouse DMP1-PG possesses a single GAG chain attached to Ser(89), we substituted Ser(89) by Gly(89). Data from transfection analysis indicated that this substitution completely prevented formation of the GAG-containing form, confirming that DMP1-PG contains a single GAG chain attached to Ser(89) in mouse DMP1. Copyright 2008 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Takasaki, Koichi
This paper presents a program for the multidisciplinary optimization and identification problem of the nonlinear model of large aerospace vehicle structures. The program constructs the global matrix of the dynamic system in the time direction by the p-version finite element method (pFEM), and the basic matrix for each pFEM node in the time direction is described by a sparse matrix similarly to the static finite element problem. The algorithm used by the program does not require the Hessian matrix of the objective function and so has low memory requirements. It also has a relatively low computational cost, and is suited to parallel computation. The program was integrated as a solver module of the multidisciplinary analysis system CUMuLOUS (Computational Utility for Multidisciplinary Large scale Optimization of Undense System) which is under development by the Aerospace Research and Development Directorate (ARD) of the Japan Aerospace Exploration Agency (JAXA).
Application of the Chinese steamed bun starter dough (CSB-SD) in breadmaking.
Keeratipibul, Suwimon; Luangsakul, Naphatrapi; Otsuka, Shinya; Sakai, Shigeru; Hatano, Yasushi; Tanasupawat, Somboon
2010-01-01
The application of Chinese steamed bun starter dough (CSB-SD) in breadmaking was investigated. The activation of CSB-SD to activate the growth of lactic acid bacteria (LAB) and to increase the number of yeast, prior to making bread, was conducted by mixing CSB-SD with wheat flour and water and then incubating for 24 h. Wheat flour was then substituted by this activated CSB-SD (aCSB-SD) at 10%, 30%, and 50% (w/w) to make bread. Dough and bread properties were studied comparing to the control (without aCSB-SD). From the farinograph results, a high aCSB-SD substitution level resulted in a less stability in dough with a higher degree of softening. Extensigraph results suggested that after aging, all the substituted dough yielded a greater resistance to extension with lower extensibility values than the control. Substitutions with 30% and 50% (w/w) aCSB-SD significantly increased the total CO(2) gas generation. Scanning electron microscopy SEM images of the 30% and 50% (w/w) substituted dough showed a well-developed gluten matrix. The 50% (w/w) substituted breads obtained a greater risen volume, finer crumb grain, and retained more softness after 5-d storage than the control. In addition, both the 30% and 50% (w/w) substituted breads showed a slightly increased mold stability, as compared to the 0% and 10% (w/w) substituted breads. © 2010 Institute of Food Technologists®
ERIC Educational Resources Information Center
Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie
2008-01-01
Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…
Antovska, Packa; Ugarkovic, Sonja; Petruševski, Gjorgji; Stefanova, Bosilka; Manchevska, Blagica; Petkovska, Rumenka; Makreski, Petre
2017-11-01
Development, experimental design and in vitro in vivo correlation (IVIVC) of controlled-release matrix formulation. Development of novel oral controlled delivery system for indapamide hemihydrate, optimization of the formulation by experimental design and evaluation regarding IVIVC on a pilot scale batch as a confirmation of a well-established formulation. In vitro dissolution profiles of controlled-release tablets of indapamide hemihydrate from four different matrices had been evaluated in comparison to the originator's product Natrilix (Servier) as a direction for further development and optimization of a hydroxyethylcellulose-based matrix controlled-release formulation. A central composite factorial design had been applied for the optimization of a chosen controlled-release tablet formulation. The controlled-release tablets with appropriate physical and technological properties had been obtained with a matrix: binder concentration variations in the range: 20-40w/w% for the matrix and 1-3w/w% for the binder. The experimental design had defined the design space for the formulation and was prerequisite for extraction of a particular formulation that would be a subject for transfer on pilot scale and IVIV correlation. The release model of the optimized formulation has shown best fit to the zero order kinetics depicted with the Hixson-Crowell erosion-dependent mechanism of release. Level A correlation was obtained.
Vignoletti, Fabio; Nunez, Javier; Sanz, Mariano
2014-04-01
To review the biological processes of wound healing following periodontal and periimplant plastic surgery when different technologies are used in a) the coverage of root and implant dehiscences, b) the augmentation of keratinized tissue (KT) and c) the augmentation of soft tissue volume. An electronic search from The National Library of Medicine (MEDLINE-PubMed) was performed: English articles with research focus in oral soft tissue regeneration, providing histological outcomes, either from animal experimental studies or human biopsy material were included. Barrier membranes, enamel matrix derivatives, growth factors, allogeneic and xenogeneic soft tissue substitutes have been used in soft tissue regeneration demonstrating different degrees of regeneration. In root coverage, these technologies were able to improve new attachment, although none has shown complete regeneration. In KT augmentation, tissue-engineered allogenic products and xenogeneic collagen matrixes demonstrated integration within the host connective tissue and promotion of keratinization. In soft tissue augmentation and peri-implant plastic surgery there are no histological data currently available. Soft tissue substitutes, growth differentiation factors demonstrated promising histological results in terms of soft tissue regeneration and keratinization, whereas there is a need for further studies to prove their added value in soft tissue augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng
2016-01-01
Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds. PMID:27075233
NASA Astrophysics Data System (ADS)
Huang, Baolin; Yuan, Yuan; Li, Tong; Ding, Sai; Zhang, Wenjing; Gu, Yuantong; Liu, Changsheng
2016-04-01
Biomaterial surface functionalized with bone morphogenetic protein-2 (BMP-2) is a promising approach to fabricating successful orthopedic implants/scaffolds. However, the bioactivity of BMP-2 on material surfaces is still far from satisfactory and the mechanism of related protein-surface interaction remains elusive. Based on the most widely used bone-implants/scaffolds material, hydroxyapatite (HAP), we developed a matrix of magnesium-substituted HAP (Mg-HAP, 2.2 at% substitution) to address these issues. Further, we investigated the adsorption dynamics, BMPRs-recruitment, and bioactivity of recombinant human BMP-2 (rhBMP-2) on the HAP and Mg-HAP surfaces. To elucidate the mechanism, molecular dynamic simulations were performed to calculate the preferred orientations, conformation changes, and cysteine-knot stabilities of adsorbed BMP-2 molecules. The results showed that rhBMP-2 on the Mg-HAP surface exhibited greater bioactivity, evidenced by more facilitated BMPRs-recognition and higher ALP activity than on the HAP surface. Moreover, molecular simulations indicated that BMP-2 favoured distinct side-on orientations on the HAP and Mg-HAP surfaces. Intriguingly, BMP-2 on the Mg-HAP surface largely preserved the active protein structure evidenced by more stable cysteine-knots than on the HAP surface. These findings explicitly clarify the mechanism of BMP-2-HAP/Mg-HAP interactions and highlight the promising application of Mg-HAP/BMP-2 matrixes in bone regeneration implants/scaffolds.
Joint Decisions on Production and Pricing with Strategic Consumers for Green Crowdfunding Products.
Chen, Yuting; Zhang, Rong; Liu, Bin
2017-09-20
Green crowdfunding is developing as a novel and popular transaction method, which can largely improve the efficiency of raising initial funds and selling innovative green products or services. In this paper, we explore the creator's joint decisions regarding green crowdfunding products of different quality levels that can sufficiently satisfy consumer preferences. Firstly, considering the characteristics of a green crowdfunding product, we present four pricing strategies when substitutes exist. Then we propose the optimal pricing strategies to maximize the total profit for the creator under different circumstances, facing strategic and myopic consumers. Finally, for the heterogeneity of consumer valuations, we compare the total profits of the four pricing strategies under different values of the substitution coefficient to obtain the optimal pricing and product strategies under the coexistence of strategic and myopic consumers. According to the result, we find that when the fraction of high-type consumers and the gap between high and low valuations is big, or when they are both small, traditional single pricing shows its benefit. However, when the green crowdfunding products are better than their substitute, a line of green products is more likely to be optimal.
Joint Decisions on Production and Pricing with Strategic Consumers for Green Crowdfunding Products
Chen, Yuting; Zhang, Rong
2017-01-01
Green crowdfunding is developing as a novel and popular transaction method, which can largely improve the efficiency of raising initial funds and selling innovative green products or services. In this paper, we explore the creator’s joint decisions regarding green crowdfunding products of different quality levels that can sufficiently satisfy consumer preferences. Firstly, considering the characteristics of a green crowdfunding product, we present four pricing strategies when substitutes exist. Then we propose the optimal pricing strategies to maximize the total profit for the creator under different circumstances, facing strategic and myopic consumers. Finally, for the heterogeneity of consumer valuations, we compare the total profits of the four pricing strategies under different values of the substitution coefficient to obtain the optimal pricing and product strategies under the coexistence of strategic and myopic consumers. According to the result, we find that when the fraction of high-type consumers and the gap between high and low valuations is big, or when they are both small, traditional single pricing shows its benefit. However, when the green crowdfunding products are better than their substitute, a line of green products is more likely to be optimal. PMID:28930198
NASA Astrophysics Data System (ADS)
Yamamoto, Takahiro; Fukuyama, Hidetoshi
2018-02-01
We have theoretically investigated the thermoelectric properties of impurity-doped one-dimensional semiconductors, focusing on nitrogen-substituted (N-substituted) carbon nanotubes (CNTs), using the Kubo formula combined with a self-consistent t-matrix approximation. N-substituted CNTs exhibit extremely high thermoelectric power factor (PF) values originating from a characteristic of one-dimensional materials where decrease in the carrier density increase both the electrical conductivity and the Seebeck coefficient in the low-N regime. The chemical potential dependence of the PF values of semiconducting CNTs has also been studied as a field-effect transistor and it turns out that the PF values show a noticeable maximum in the vicinity of the band edges. This result demonstrates that "band-edge engineering" will be crucial for solid development of high-performance thermoelectric materials.
Beaudoin Cloutier, Chanel; Goyer, Benjamin; Perron, Cindy; Guignard, Rina; Larouche, Danielle; Moulin, Véronique J; Germain, Lucie; Gauvin, Robert; Auger, François A
2017-04-01
As time to final coverage is the essence for better survival outcome in severely burned patients, we have continuously strived to reduce the duration for the preparation of our bilayered self-assembled skin substitutes (SASS). These SASS produced in vitro by the self-assembly approach have a structure and functionality very similar to native skin. Recently, we have shown that a decellularized dermal matrix preproduced by the self-assembly approach could be used as a template to further obtain self-assembled skin substitute using a decellularized dermal template (SASS-DM) in vitro. Thus, the production period with patient cells was then reduced to about 1 month. Herein, preclinical animal experiments have been performed to confirm the integration and evolution of such a graft and compare the maturation of SASS and SASS-DM in vivo. Both tissues, reconstructed from adult or newborn cells, were grafted on athymic mice. Green fluorescent protein-transfected keratinocytes were also used to follow grafted tissues weekly for 6 weeks using an in vivo imaging system (IVIS). Cell architecture and differentiation were studied with histological and immunofluorescence analyses at each time point. Graft integration, macroscopic evolution, histological analyses, and expression of skin differentiation markers were similar between both skin substitutes reconstructed from either newborn or adult cells, and IVIS observations confirmed the efficient engraftment of SASS-DM. In conclusion, our in vivo graft experiments on a mouse model demonstrated that the SASS-DM had equivalent macroscopic, histological, and differentiation evolution over a 6-week period, when compared with the SASS. The tissue-engineered SASS-DM could improve clinical availability and advantageously shorten the time necessary for the definitive wound coverage of severely burned patients.
Tisdale, Evgenia; Kennedy, Devin; Xu, Xiaodong; Wilkins, Charles
2014-01-15
The influence of the sample preparation parameters (the choice of the matrix, matrix:analyte ratio, salt:analyte ratio) was investigated and optimal conditions were established for the MALDI time-of-flight mass spectrometry analysis of the poly(styrene-co-pentafluorostyrene) copolymers. These were synthesized by atom transfer radical polymerization. Use of 2,5-dihydroxybenzoic acid as matrix resulted in spectra with consistently high ion yields for all matrix:analyte:salt ratios tested. The optimized MALDI procedure was successfully applied to the characterization of three copolymers obtained by varying the conditions of polymerization reaction. It was possible to establish the nature of the end groups, calculate molecular weight distributions, and determine the individual length distributions for styrene and pentafluorostyrene monomers, contained in the resulting copolymers. Based on the data obtained, it was concluded that individual styrene chain length distributions are more sensitive to the change in the composition of the catalyst (the addition of small amount of CuBr2) than is the pentafluorostyrene component distribution. Copyright © 2013 Elsevier B.V. All rights reserved.
Percutaneous fetoscopic closure of large open spina bifida using a bilaminar skin substitute.
Lapa Pedreira, Denise A; Acacio, Gregório L; Gonçalves, Rodrigo T; Sá, Renato Augusto M; Brandt, Reynaldo A; Chmait, Ramen; Kontopoulos, Eftichia; Quintero, Ruben A
2018-01-04
We have previously described our percutaneous fetoscopic technique for the treatment of open spina bifida (OSB). However, approximately 20-30% of OSB defects are too large to allow primary skin closure. We hereby describe a modification of our standard technique using a bilaminar skin substitute to allow closure of such large spinal defects. The aim of this study was to report our clinical experience with the use of a bilaminar skin substitute and a percutaneous fetoscopic technique for the prenatal closure of large spina bifida defects. Surgeries were performed between 24.0 and 28.9 gestational weeks under general anesthesia, using an entirely percutaneous fetoscopic approach with partial CO2 insufflation of the uterine cavity, as previously described. If there was enough skin to be sutured in the midline, only a biocellulose patch was placed over the placode. In cases where skin approximation was not possible, a bilaminar skin substitute (two layers: one silicone and one dermal matrix) was placed over the biocellulose. The surgical site was assessed at birth, and long-term follow-up was performed. Forty-seven consecutive fetuses underwent percutaneous fetoscopic OSB repair. Premature preterm rupture of membranes (PPROM) occurred in 38 (84%), and the mean gestational age at delivery was 32,8 + 2.5 weeks. A bilaminar skin substitute was required in 13 (29%), of which 5 was associated with myeloschisis. In all cases the skin substitute was found at the surgical site, at birth. In 3 (15%) of these cases, postnatal additional repair was needed. In the other 10 cases, the silicone layer detached spontaneously from the dermal matrix (average 25 days after birth), and the lesion healed by secondary-intention. Operating time was significantly longer in cases requiring the bilaminar skin substitute (additional 42 minutes). The subgroup with bilaminar skin substitute had similar PPROM rate and delivery gestational age compared to the one patch group. Complete reversal of hindbrain herniation occurred in 68% of the one patch and in 33% (p < 0.05) of the two patches group. In 4 cases there was no reversal and 3 of them were myeloschisis cases. Large OSB defects may be successfully treated in utero using a bilaminar skin substitute over a biocellulose patch through an entirely percutaneous approach. Although the operating time is longer, surgical outcomes are similar to cases closed primarily. Myeloschisis seems to have a worse prognosis then myelomeningocele cases. PPROM and preterm birth continue to be a challenge. Further experience is needed to assess the risks and benefits of this technique for management of large OSB defects. This article is protected by copyright. All rights reserved.
Optimal experimental designs for fMRI when the model matrix is uncertain.
Kao, Ming-Hung; Zhou, Lin
2017-07-15
This study concerns optimal designs for functional magnetic resonance imaging (fMRI) experiments when the model matrix of the statistical model depends on both the selected stimulus sequence (fMRI design), and the subject's uncertain feedback (e.g. answer) to each mental stimulus (e.g. question) presented to her/him. While practically important, this design issue is challenging. This mainly is because that the information matrix cannot be fully determined at the design stage, making it difficult to evaluate the quality of the selected designs. To tackle this challenging issue, we propose an easy-to-use optimality criterion for evaluating the quality of designs, and an efficient approach for obtaining designs optimizing this criterion. Compared with a previously proposed method, our approach requires a much less computing time to achieve designs with high statistical efficiencies. Copyright © 2017 Elsevier Inc. All rights reserved.
Dermal Matrices and Bioengineered Skin Substitutes: A Critical Review of Current Options
Hamdi, Moustapha; Abberton, Keren; Morrison, Wayne
2015-01-01
Background: Over recent decades, scientists and surgeons have collaborated to develop various bioengineered and synthetic products as an alternative to skin grafts. Despite the numerous articles and reviews written about dermal skin substitutes, there is no general consensus. Methods: This article reviews dermal skin scaffolds used in clinical applications and experimental settings. For scaffold evaluation, we focused on clinical and/or histological results, and conclusions are listed. Explanations for general trends were sought based on existing knowledge about tissue engineering principles and wound healing mechanisms. Results: Decellularized dermis seems to remain the best option with no other acellular scaffold being clinically proven to gain better results yet. In general, chemically cross-linked products were seen to be less effective in skin tissue engineering. Biocompatibility could be enhanced by preseeding substitutes with fibroblasts to allow some natural scaffold remodeling before product application. Conclusions: Skin substitutes are a useful tool in plastic and reconstructive surgery practices as an alternative to skin grafts. In the choice of substitute, the general plastic surgery principle of replacing like tissue with like tissue seems to be still standing, and products most resembling the natural dermal extracellular matrix should be preferred. PMID:25674365
Design of Robust Adaptive Unbalance Response Controllers for Rotors with Magnetic Bearings
NASA Technical Reports Server (NTRS)
Knospe, Carl R.; Tamer, Samir M.; Fedigan, Stephen J.
1996-01-01
Experimental results have recently demonstrated that an adaptive open loop control strategy can be highly effective in the suppression of unbalance induced vibration on rotors supported in active magnetic bearings. This algorithm, however, relies upon a predetermined gain matrix. Typically, this matrix is determined by an optimal control formulation resulting in the choice of the pseudo-inverse of the nominal influence coefficient matrix as the gain matrix. This solution may result in problems with stability and performance robustness since the estimated influence coefficient matrix is not equal to the actual influence coefficient matrix. Recently, analysis tools have been developed to examine the robustness of this control algorithm with respect to structured uncertainty. Herein, these tools are extended to produce a design procedure for determining the adaptive law's gain matrix. The resulting control algorithm has a guaranteed convergence rate and steady state performance in spite of the uncertainty in the rotor system. Several examples are presented which demonstrate the effectiveness of this approach and its advantages over the standard optimal control formulation.
Predicting the properties of the lead alloys from DFT calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buimaga-Iarinca, L., E-mail: luiza.iarinca@itim-cj.ro; Calborean, A.
2015-12-23
We provide qualitative results for the physical properties of the lead alloys at atomic scale by using DFT calculations. Our approach is based on the two assumptions: (i) the geometric structure of lead atoms provides a matrix where the alloying elements can take their positions in the structure as substitutions and (ii) there is a small probability of a direct interaction between the alloying elements, thus the interactions of each alloying element may be approximated by the interactions to the lead matrix. DFT calculations are used to investigate the interaction between several types of impurities and the lead matrix formore » low concentrations of the alloying element. We report results such as the enthalpy of formation, charge transfer and mechanical stress induced by the impurities in the lead matrix; these results can be used as qualitative guide in tuning the physico-chemical properties of the lead alloys.« less
Energetics of Sn 2+ isomorphic substitution into hydroxylapatite: First-principles predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weck, Philippe F.; Kim, Eunja
2016-11-04
In this study, the energetics of Sn 2+ substitution into the Ca 2+ sublattice of hydroxylapatite (HA), Ca 10(PO 4) 6(OH) 2, has been investigated within the framework of density functional theory. Calculations reveal that Sn 2+ incorporation via coupled substitutions at Ca(II) sites is energetically favourable up to a composition of Sn 6Ca 4(PO 4) 6(OH) 2, and further substitutions at Ca(I) sites proceed once full occupancy of Ca(II) sites by Sn 2+ is achieved. Compositions of Sn xCa 10–x(PO 4) 6(OH) 2 (x = 4–9) are predominant, with an optimal stoichiometry of Sn 8Ca 2(PO 4) 6(OH) 2,more » and Sn-substituted HA follows approximately Vegard's law across the entire composition range.« less
Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix
Hou, Junjie; Xie, Zhensheng; Xue, Peng; Cui, Ziyou; Chen, Xiulan; Li, Jing; Cai, Tanxi; Wu, Peng; Yang, Fuquan
2010-01-01
Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP) and diammonium hydrogen citrate (DAHC), and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1) by MALDI-TOF/TOF MS. PMID:20339515
Durner, Bernhard; Ehmann, Thomas; Matysik, Frank-Michael
2018-06-05
The adaption of an parallel-path poly(tetrafluoroethylene)(PTFE) ICP-nebulizer to an evaporative light scattering detector (ELSD) was realized. This was done by substituting the originally installed concentric glass nebulizer of the ELSD. The performance of both nebulizers was compared regarding nebulizer temperature, evaporator temperature, flow rate of nebulizing gas and flow rate of mobile phase of different solvents using caffeine and poly(dimethylsiloxane) (PDMS) as analytes. Both nebulizers showed similar performances but for the parallel-path PTFE nebulizer the performance was considerably better at low LC flow rates and the nebulizer lifetime was substantially increased. In general, for both nebulizers the highest sensitivity was obtained by applying the lowest possible evaporator temperature in combination with the highest possible nebulizer temperature at preferably low gas flow rates. Besides the optimization of detector parameters, response factors for various PDMS oligomers were determined and the dependency of the detector signal on molar mass of the analytes was studied. The significant improvement regarding long-term stability made the modified ELSD much more robust and saved time and money by reducing the maintenance efforts. Thus, especially in polymer HPLC, associated with a complex matrix situation, the PTFE-based parallel-path nebulizer exhibits attractive characteristics for analytical studies of polymers. Copyright © 2018. Published by Elsevier B.V.
Defects Induced Enhancement of Eu3+ Emission in Yttria ( Y2O3:Eu3+)
NASA Astrophysics Data System (ADS)
Jagannathan, R.; Kutty, T.; Kottaisamy, M.; Jeyagopal, P.
1994-11-01
Bixbyite type Y2O3:Eu3+ apart from being the efficient red phosphor extensively used in trichromatic fluorescent lamps, it is a typical system one can apply Jørgensen's refined electron spin pairing theory. This can be used to explain the enhancement in Eu3+ emission intensity observed with the aliovalent substitution in the yttria host matrix. Results based on these are explained qualitatively by considering a simple configurational coordinate model. Futhermore, an insight into the different types of defects induced with the aliovalent substitution in the yttria lattice has become possible with EPR probe.
Characterization of minimal sequences associated with self-similar interval exchange maps
NASA Astrophysics Data System (ADS)
Cobo, Milton; Gutiérrez-Romo, Rodolfo; Maass, Alejandro
2018-04-01
The construction of affine interval exchange maps (IEMs) with wandering intervals that are semi-conjugate to a given self-similar IEM is strongly related to the existence of the so-called minimal sequences associated with local potentials, which are certain elements of the substitution subshift arising from the given IEM. In this article, under the condition called unique representation property, we characterize such minimal sequences for potentials coming from non-real eigenvalues of the substitution matrix. We also give conditions on the slopes of the affine extensions of a self-similar IEM that determine whether it exhibits a wandering interval or not.
Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence.
Jiang, Hao; Ching, Wai-Ki; Qiu, Yushan; Cheng, Xiao-Qing
2017-12-14
Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity functions in applications do not produce positive semi-definite kernels. We propose projection method by constructing projection matrix on indefinite kernels. As a generalization of the spectrum method (denoising method and flipping method), the projection method shows better or comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data sets. Under the Bregman matrix divergence theory, we can find suggested optimal λ in projection method using unconstrained optimization in kernel learning. In this paper we focus on optimal λ determination, in the pursuit of precise optimal λ determination method in unconstrained optimization framework. We developed a perturbed von-Neumann divergence to measure kernel relationships. We compared optimal λ determination with Logdet Divergence and perturbed von-Neumann Divergence, aiming at finding better λ in projection method. Results on a number of real world data sets show that projection method with optimal λ by Logdet divergence demonstrate near optimal performance. And the perturbed von-Neumann Divergence can help determine a relatively better optimal projection method. Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This may provide a new way in kernel SVMs for varied objectives.
Human platelet lysate supports the formation of robust human periodontal ligament cell sheets.
Tian, Bei-Min; Wu, Rui-Xin; Bi, Chun-Sheng; He, Xiao-Tao; Yin, Yuan; Chen, Fa-Ming
2018-04-01
The use of stem cell-derived sheets has become increasingly common in a wide variety of biomedical applications. Although substantial evidence has demonstrated that human platelet lysate (PL) can be used for therapeutic cell expansion, either as a substitute for or as a supplement to xenogeneic fetal bovine serum (FBS), its impact on cell sheet production remains largely unexplored. In this study, we manufactured periodontal ligament stem cell (PDLSC) sheets in vitro by incubating PDLSCs in sheet-induction media supplemented with various ratios of PL and FBS, i.e. 10% PL without FBS, 7.5% PL + 2.5% FBS, 5% PL + 5% FBS, 2.5% PL + 7.5% FBS or 10% FBS without PL. Cultures with the addition of all the designed supplements led to successful cell sheet production. In addition, all the resultant cellular materials exhibited similar expression profiles of matrix-related genes and proteins, such as collagen I, fibronectin and integrin β1. Interestingly, the cell components within sheets generated by media containing both PL and FBS exhibited improved osteogenic potential. Following in vivo transplantation, all sheets supported significant new bone formation. Our data suggest that robust PDLSC sheets can be produced by applying PL as either an alternative or an adjuvant to FBS. Further examination of the relevant influences of human PL that benefit cell behaviour and matrix production will pave the way towards optimized and standardized conditions for cell sheet production. Copyright © 2017 John Wiley & Sons, Ltd.
Effects of self-healing microcapsules on bending performance in composite brake pads
NASA Astrophysics Data System (ADS)
Zhang, Li; Dong, Xiu-ping; Wang, Hui
2009-07-01
For the purpose of reducing self-weight, friction noise and cost, improving shock absorption, enhancing corrosion and wear resistance, brake pads made of composite materials with self-healing function are prepared to substitute metal ones by designing ingredients and applying optimized production technology. As self-healing capsules are chosen, new method with technology of self-healing microcapsules, dicyclpentadiene (DCPD) microcapsules coated with poly (urea-formaldehyde), is put forward in this paper. In the crack's extending process, the stress is concentrated at the crack end, where the microcapsule is designed to be located. When the stress goes through the microcapsules and causes them to break, the self-healing liquid runs out to fill the crack by the capillary and it will poly-react with catalyst in the composite. As a result, the crack is healed. In this paper, polymer matrix composite brake pads with 6 prescriptions are prepared and studied. Three-point bending tests are carried out according to standards in GB/T 3356-1999 and the elastic constants of these polymer matrix composites are obtained by experiments. In accordance with the law of the continuous fiber composite, elastic constants of the short-fiber composite can be calculated by proportions of each ingredient. Results show that the theoretical expected results and the experimental values are consistent. 0.3-1.2 % mass proportion of microcapsules has little effects on the composite's bending intensity and modulus of elasticity. These studies also show that self-healing microcapsules used in composite brake pads is feasible.
Briquez, Priscilla S; Lorentz, Kristen M; Larsson, Hans M; Frey, Peter; Hubbell, Jeffrey A
2017-08-01
Aprotinin is a broad-spectrum serine protease inhibitor used in the clinic as an anti-fibrinolytic agent in fibrin-based tissue sealants. However, upon re-exposure, some patients suffer from hypersensitivity immune reactions likely related to the bovine origin of aprotinin. Here, we aimed to develop a human-derived substitute to aprotinin. Based on sequence homology analyses, we identified the Kunitz-type protease inhibitor (KPI) domain of human amyloid-β A4 precursor protein as being a potential candidate. While KPI has a lower intrinsic anti-fibrinolytic activity than aprotinin, we reasoned that its efficacy is additionally limited by its fast release from fibrin material, just as aprotinin's is. Thus, we engineered KPI variants for controlled retention in fibrin biomaterials, using either covalent binding through incorporation of a substrate for the coagulation transglutaminase Factor XIIIa or through engineering of extracellular matrix protein super-affinity domains for sequestration into fibrin. We showed that both engineered KPI variants significantly slowed plasmin-mediated fibrinolysis in vitro, outperforming aprotinin. In vivo, our best engineered KPI variant (incorporating the transglutaminase substrate) extended fibrin matrix longevity by 50%, at a dose at which aprotinin did not show efficacy, thus qualifying it as a competitive substitute of aprotinin in fibrin sealants. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DOT National Transportation Integrated Search
1999-07-01
An attempt was made to design and construct a coarse matrix high binder (CMHB) mix. When the design of the CMHB mix was unsuccessful a coarse 19.0-mm Superpave mix was substituted. This report describes the attempted design of the CMHB mix, as well a...
USDA-ARS?s Scientific Manuscript database
Corn starch, corn flour, and corn stover biochar were evaluated as potential renewable substitutes for carbon black as filler in rubber composites using carboxylated styrene-butadiene as the rubber matrix. Previous work has shown that starch-based fillers have very good reinforcement properties at t...
Prucker, V; Bockstedte, M; Thoss, M; Coto, P B
2018-03-28
A single-particle density matrix approach is introduced to simulate the dynamics of heterogeneous electron transfer (ET) processes at interfaces. The characterization of the systems is based on a model Hamiltonian parametrized by electronic structure calculations and a partitioning method. The method is applied to investigate ET in a series of nitrile-substituted (poly)(p-phenylene)thiolate self-assembled monolayers adsorbed at the Au(111) surface. The results show a significant dependence of the ET on the orbital symmetry of the donor state and on the molecular and electronic structure of the spacer.
Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio
2015-01-01
Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses. PMID:26070163
Evidence-based alternatives for autogenous grafts around teeth: outcomes, attachment, and stability.
McGuire, Michael K
2014-06-01
Although the use of autogenous harvested tissues has proven to be the gold standard for soft tissue augmentation procedures involving root coverage or generation of keratinized tissue, harvest site morbidity and limited supply have prompted clinicians to seek graft alternatives. Using a hierarchy of evidence, the author reviews both clinical and patient-reported results for harvest graft substitutes and, considering his own research experience, reviews autogenous graft substitute outcomes, attachment, and stability over time. Overall, when the goal is keratinized-tissue generation, living cellular constructs and xenogeneic collagen matrices have provided acceptable clinical results, but with better esthetics and patient preference than autogenous free gingival grafts. For root coverage therapy, enamel matrix derivatives, platelet-derived growth factors, and xenogeneic collagen matrices have provided acceptable results with equivalent esthetics to autogenous connective tissue grafts, while also being preferred by patients. Longterm results for enamel matrix derivatives, platelet-derived growth factors, and xenogeneic collagen matrices indicate root coverage can be maintained over time. In the author's hands, xenogeneic collagen matrices have been the only harvest graft alternatives that can be used either covered or uncovered by soft tissue.
Harmsen, Tim; Klaasen, Sjoerd; van de Vrugt, Henri; te Riele, Hein
2018-01-01
Abstract Single-stranded oligodeoxyribonucleotide (ssODN)-mediated repair of CRISPR/Cas9-induced DNA double-strand breaks (DSB) can effectively be used to introduce small genomic alterations in a defined locus. Here, we reveal DNA mismatch repair (MMR) activity is crucial for efficient nucleotide substitution distal from the Cas9-induced DNA break when the substitution is instructed by the 3′ half of the ssODN. Furthermore, protecting the ssODN 3′ end with phosphorothioate linkages enhances MMR-dependent gene editing events. Our findings can be exploited to optimize efficiencies of nucleotide substitutions distal from the DSB and imply that oligonucleotide-mediated gene editing is effectuated by templated break repair. PMID:29447381
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Naghipour Ghezeljeh, Paria; Bednarcyk, Brett A.
2018-01-01
This document describes a recently developed analysis tool that enhances the resident capabilities of the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) and its application. MAC/GMC is a composite material and laminate analysis software package developed at NASA Glenn Research Center. The primary focus of the current effort is to provide a graphical user interface (GUI) capability that helps users optimize highly nonlinear viscoplastic constitutive law parameters by fitting experimentally observed/measured stress-strain responses under various thermo-mechanical conditions for braided composites. The tool has been developed utilizing the MATrix LABoratory (MATLAB) (The Mathworks, Inc., Natick, MA) programming language. Illustrative examples shown are for a specific braided composite system wherein the matrix viscoplastic behavior is represented by a constitutive law described by seven parameters. The tool is general enough to fit any number of experimentally observed stress-strain responses of the material. The number of parameters to be optimized, as well as the importance given to each stress-strain response, are user choice. Three different optimization algorithms are included: (1) Optimization based on gradient method, (2) Genetic algorithm (GA) based optimization and (3) Particle Swarm Optimization (PSO). The user can mix and match the three algorithms. For example, one can start optimization with either 2 or 3 and then use the optimized solution to further fine tune with approach 1. The secondary focus of this paper is to demonstrate the application of this tool to optimize/calibrate parameters for a nonlinear viscoplastic matrix to predict stress-strain curves (for constituent and composite levels) at different rates, temperatures and/or loading conditions utilizing the Generalized Method of Cells. After preliminary validation of the tool through comparison with experimental results, a detailed virtual parametric study is presented wherein the combined effects of temperature and loading rate on the predicted response of a braided composite is investigated.
Skoczinski, Pia; Volkenborn, Kristina; Fulton, Alexander; Bhadauriya, Anuseema; Nutschel, Christina; Gohlke, Holger; Knapp, Andreas; Jaeger, Karl-Erich
2017-09-25
Bacillus subtilis produces and secretes proteins in amounts of up to 20 g/l under optimal conditions. However, protein production can be challenging if transcription and cotranslational secretion are negatively affected, or the target protein is degraded by extracellular proteases. This study aims at elucidating the influence of a target protein on its own production by a systematic mutational analysis of the homologous B. subtilis model protein lipase A (LipA). We have covered the full natural diversity of single amino acid substitutions at 155 positions of LipA by site saturation mutagenesis excluding only highly conserved residues and qualitatively and quantitatively screened about 30,000 clones for extracellular LipA production. Identified variants with beneficial effects on production were sequenced and analyzed regarding B. subtilis growth behavior, extracellular lipase activity and amount as well as changes in lipase transcript levels. In total, 26 LipA variants were identified showing an up to twofold increase in either amount or activity of extracellular lipase. These variants harbor single amino acid or codon substitutions that did not substantially affect B. subtilis growth. Subsequent exemplary combination of beneficial single amino acid substitutions revealed an additive effect solely at the level of extracellular lipase amount; however, lipase amount and activity could not be increased simultaneously. Single amino acid and codon substitutions can affect LipA secretion and production by B. subtilis. Several codon-related effects were observed that either enhance lipA transcription or promote a more efficient folding of LipA. Single amino acid substitutions could improve LipA production by increasing its secretion or stability in the culture supernatant. Our findings indicate that optimization of the expression system is not sufficient for efficient protein production in B. subtilis. The sequence of the target protein should also be considered as an optimization target for successful protein production. Our results further suggest that variants with improved properties might be identified much faster and easier if mutagenesis is prioritized towards elements that contribute to enzymatic activity or structural integrity.
Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo
2015-12-01
Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.
Chapter 8: Pyrolysis Mechanisms of Lignin Model Compounds Using a Heated Micro-Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robichaud, David J.; Nimlos, Mark R.; Ellison, G. Barney
2015-10-03
Lignin is an important component of biomass, and the decomposition of its thermal deconstruction products is important in pyrolysis and gasification. In this chapter, we investigate the unimolecular pyrolysis chemistry through the use of singly and doubly substituted benzene molecules that are model compounds representative of lignin and its primary pyrolysis products. These model compounds are decomposed in a heated micro-reactor, and the products, including radicals and unstable intermediates, are measured using photoionization mass spectrometry and matrix isolation infrared spectroscopy. We show that the unimolecular chemistry can yield insight into the initial decomposition of these species. At pyrolysis and gasificationmore » severities, singly substituted benzenes typically undergo bond scission and elimination reactions to form radicals. Some require radical-driven chain reactions. For doubly substituted benzenes, proximity effects of the substituents can change the reaction pathways.« less
Beta-palmitate - a natural component of human milk in supplemental milk formulas.
Havlicekova, Zuzana; Jesenak, Milos; Banovcin, Peter; Kuchta, Milan
2016-03-17
The composition and function of human milk is unique and gives a basis for the development of modern artificial milk formulas that can provide an appropriate substitute for non-breastfed infants. Although human milk is not fully substitutable, modern milk formulas are attempting to mimic human milk and partially substitute its complex biological positive effects on infants. Besides the immunomodulatory factors from human milk, research has been focused on the composition and structure of human milk fat with a high content of β-palmitic acid (sn-2 palmitic acid, β-palmitate). According to the available studies, increasing the content of β-palmitate added to milk formulas promotes several beneficial physiological functions. β-palmitate positively influences fatty acid metabolism, increases calcium absorption, improves bone matrix quality and the stool consistency, and has a positive effect on the development of the intestinal microbiome.
How to Make a Heart Valve: From Embryonic Development to Bioengineering of Living Valve Substitutes
MacGrogan, Donal; Luxán, Guillermo; Driessen-Mol, Anita; Bouten, Carlijn; Baaijens, Frank; de la Pompa, José Luis
2014-01-01
Cardiac valve disease is a significant cause of ill health and death worldwide, and valve replacement remains one of the most common cardiac interventions in high-income economies. Despite major advances in surgical treatment, long-term therapy remains inadequate because none of the current valve substitutes have the potential for remodeling, regeneration, and growth of native structures. Valve development is coordinated by a complex interplay of signaling pathways and environmental cues that cause disease when perturbed. Cardiac valves develop from endocardial cushions that become populated by valve precursor mesenchyme formed by an epithelial–mesenchymal transition (EMT). The mesenchymal precursors, subsequently, undergo directed growth, characterized by cellular compartmentalization and layering of a structured extracellular matrix (ECM). Knowledge gained from research into the development of cardiac valves is driving exploration into valve biomechanics and tissue engineering directed at creating novel valve substitutes endowed with native form and function. PMID:25368013
One-dimensional magnetophotonic crystals with magnetooptical double layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berzhansky, V. N., E-mail: v.n.berzhansky@gmail.com; Shaposhnikov, A. N.; Prokopov, A. R.
2016-11-15
One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ{sub F} and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ{sub F} =–20.6°, Q = 8.1° atmore » a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ{sub F} =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.« less
NASA Astrophysics Data System (ADS)
Schaffrin, Burkhard
2008-02-01
In a linear Gauss-Markov model, the parameter estimates from BLUUE (Best Linear Uniformly Unbiased Estimate) are not robust against possible outliers in the observations. Moreover, by giving up the unbiasedness constraint, the mean squared error (MSE) risk may be further reduced, in particular when the problem is ill-posed. In this paper, the α-weighted S-homBLE (Best homogeneously Linear Estimate) is derived via formulas originally used for variance component estimation on the basis of the repro-BIQUUE (reproducing Best Invariant Quadratic Uniformly Unbiased Estimate) principle in a model with stochastic prior information. In the present model, however, such prior information is not included, which allows the comparison of the stochastic approach (α-weighted S-homBLE) with the well-established algebraic approach of Tykhonov-Phillips regularization, also known as R-HAPS (Hybrid APproximation Solution), whenever the inverse of the “substitute matrix” S exists and is chosen as the R matrix that defines the relative impact of the regularizing term on the final result.
Qi, Xiao-Hua; Zhang, Li-Wei; Zhang, Xin-Xiang
2008-08-01
A multitarget antibody immunoaffinity column was proposed for the purification and enrichment of nandrolone, testosterone, and methyltestosterone from urine. Nandrolone-3-site substituted antigen was designed and synthesized and the polyclonal antibody was prepared with immunizing rabbits. The stationary phase of the immunoaffinity column was synthesized by covalently bonding the antibodies specific to nandrolone, testosterone, and methyltestosterone onto CNBr-actived Sepharose 4B. The analytes of interest were extracted with a methanol/water mixture in one step. The immunoaffinity column showed high affinity and high selectivity to a class of structurally related compounds. The elution was then transferred to a micellar electrokinetic CE system with a running buffer of sodium borate and sodium cholate for separation and determination. Recoveries of the three steroids from complex matrix were 88-94% with RSD values less than 5.2%. Optimization of the immunoaffinity column purification was achieved and the feasibility of the technique for the analysis of steroid hormone was discussed. The results indicated that the combination of multi-immunoaffinity column and CE was an effective technique, which was rapid, simple, and sensitive for the assay of steroids.
Adhvaryu, Atanu; Erhan, Sevim Z; Perez, Joseph M
2004-10-20
Vegetable oils have significant potential as a base fluid and a substitute for mineral oil in grease formulation. Preparation of soybean oil-based lithium greases using a variety of fatty acids in the soap structure is discussed in this paper. Soy greases with lithium-fatty acid soap having C12-C18 chain lengths and different metal to fatty acid ratios were synthesized. Grease hardness was determined using a standard test method, and their oxidative stabilities were measured using pressurized differential scanning calorimetry. Results indicate that lithium soap composition, fatty acid types, and base oil content significantly affect grease hardness and oxidative stability. Lithium soaps prepared with short-chain fatty acids resulted in softer grease. Oxidative stability and other performance properties will deteriorate if oil is released from the grease matrix due to overloading of soap with base oil. Performance characteristics are largely dependent on the hardness and oxidative stability of grease used as industrial and automotive lubricant. Therefore, this paper discusses the preparation methods, optimization of soap components, and antioxidant additive for making soy-based grease. Copyright 2004 American Chemical Society
Numerical Procedures for Inlet/Diffuser/Nozzle Flows
NASA Technical Reports Server (NTRS)
Rubin, Stanley G.
1998-01-01
Two primitive variable, pressure based, flux-split, RNS/NS solution procedures for viscous flows are presented. Both methods are uniformly valid across the full Mach number range, Le., from the incompressible limit to high supersonic speeds. The first method is an 'optimized' version of a previously developed global pressure relaxation RNS procedure. Considerable reduction in the number of relatively expensive matrix inversion, and thereby in the computational time, has been achieved with this procedure. CPU times are reduced by a factor of 15 for predominantly elliptic flows (incompressible and low subsonic). The second method is a time-marching, 'linearized' convection RNS/NS procedure. The key to the efficiency of this procedure is the reduction to a single LU inversion at the inflow cross-plane. The remainder of the algorithm simply requires back-substitution with this LU and the corresponding residual vector at any cross-plane location. This method is not time-consistent, but has a convective-type CFL stability limitation. Both formulations are robust and provide accurate solutions for a variety of internal viscous flows to be provided herein.
Mayrand, Dominique; Fradette, Julie
2018-01-01
Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.
Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints
NASA Astrophysics Data System (ADS)
Krasovskii, A. A.; Lebedev, P. D.; Tarasyev, A. M.
2017-05-01
We consider a neoclassical (economic) growth model. A nonlinear Ramsey equation, modeling capital dynamics, in the case of Cobb-Douglas production function is reduced to the linear differential equation via a Bernoulli substitution. This considerably facilitates the search for a solution to the optimal growth problem with logarithmic preferences. The study deals with solving the corresponding infinite horizon optimal control problem. We consider a vector field of the Hamiltonian system in the Pontryagin maximum principle, taking into account control constraints. We prove the existence of two alternative steady states, depending on the constraints. A proposed algorithm for constructing growth trajectories combines methods of open-loop control and closed-loop regulatory control. For some levels of constraints and initial conditions, a closed-form solution is obtained. We also demonstrate the impact of technological change on the economic equilibrium dynamics. Results are supported by computer calculations.
Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang
2016-01-01
Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule. PMID:27991486
Optimization of the incident wavelength in Mueller matrix imaging of cervical collagen
NASA Astrophysics Data System (ADS)
Chue-Sang, Joseph; Ramella-Roman, Jessica C.
2018-03-01
Mueller matrix polarimetry (MMP) can be utilized to determine optical anisotropy in birefringent materials. Many factors must be optimized to improve the quality of information collected from MMP of biological samples. As part of a study of pre-term birth (PTB) that relied on measurement of the orientation and distribution of collagen in the cervix, an optimal wavelength for MMp to allow more accurate characterization of collagen in cervical tissue was sought. To this end, we developed a multispectral Mueller matrix polarimeter and conducted experiments on ex-vivo porcine cervix samples preserved in paraffin. The Mueller matrices obtained with this system were decomposed to generate orientation and retardation images. Initial findings indicate that wavelengths below 560 nm offer a more accurate characterization of collagen anisotropy in the porcine cervix.
The material from Lampung as coarse aggregate to substitute andesite for concrete-making
NASA Astrophysics Data System (ADS)
Amin, M.; Supriyatna, Y. I.; Sumardi, S.
2018-01-01
Andesite stone is usually used for split stone material in the concrete making. However, its availability is decreasing. Lampung province has natural resources that can be used for coarse aggregate materials to substitute andesite stone. These natural materials include limestone, feldspar stone, basalt, granite, and slags from iron processing waste. Therefore, a research on optimizing natural materials in Lampung to substitute andesite stone for concrete making is required. This research used laboratory experiment method. The research activities included making cubical object samples of 150 x 150 x 150 mm with material composition referring to a standard of K.200 and w/c 0.61. Concrete making by using varying types of aggregates (basalt, limestone, slag) and aggregate sizes (A = 5-15 mm, B = 15-25 mm, and 25-50 mm) was followed by compressive strength test. The results showed that the obtained optimal compressive strengths for basalt were 24.47 MPa for 50-150 mm aggregate sizes, 21.2 MPa for 15-25 mm aggregate sizes, and 20.7 MPa for 25-50 mm aggregate sizes. These results of basalt compressive strength values were higher than the same result for andesite (19.69 MPa for 50-150 mm aggregate sizes), slag (22.72 MPa for 50-150 mm aggregate sizes), and limestone (19.69 Mpa for 50-150 mm aggregate sizes). These results indicated that basalt, limestone, and slag aggregates were good enough to substitute andesite as materials for concrete making. Therefore, natural resources in Lampung can be optimized as construction materials in concrete making.
Regenerative Medicine and Restoration of Joint Function
2012-10-01
identify the parameters that generate anatomically shaped bone substitutes of optimal composition and structure with an articulating profile. 2) to develop...strengths. An in vivo study in rabbits to evaluate these materials are ongoing. Task 2. Optimization of SFF Rolling Compaction Parameters : The work is...ongoing related to optimizing SFF rolling compaction parameters to control the density of green samples. We have used CPP powders for these studies
Value-added utilisation of recycled concrete in hot-mix asphalt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Yiik Diew; Sun, Darren Delai; Lai, Dickson
2007-07-01
The feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.5% and 7.0% of grade Pen 60/70 bitumen, respectively. All three hybrid mixes satisfied the Marshall criteria of the Singapore Land Transport Authority (LTA) W3B wearing course specification. The hybrid mix with 6% concrete fillers gave comparable resilient modulus and creep resistance as the conventional W3B mix, whilemore » hybrid mixes with higher concrete substitutions achieved better performance. X-ray diffraction (XRD) showed the distinct presence of free lime in the heat-treated concrete, while the scanning electron microscope (SEM) provided an in-depth perspective of the concrete grains in the HMA matrix. The results suggest feasible use of waste concrete as partial aggregate substitution in HMA.« less
Spectroscopic and DFT Study of RhIII Chloro Complex Transformation in Alkaline Solutions.
Vasilchenko, Danila B; Berdyugin, Semen N; Korenev, Sergey V; O'Kennedy, Sean; Gerber, Wilhelmus J
2017-09-05
The hydrolysis of [RhCl 6 ] 3- in NaOH-water solutions was studied by spectrophotometric methods. The reaction proceeds via successive substitution of chloride with hydroxide to quantitatively form [Rh(OH) 6 ] 3- . Ligand substitution kinetics was studied in an aqueous 0.434-1.085 M NaOH matrix in the temperature range 5.5-15.3 °C. Transformation of [RhCl 6 ] 3- into [RhCl 5 (OH)] 3- was found to be the rate-determining step with activation parameters of ΔH † = 105 ± 4 kJ mol -1 and ΔS † = 59 ± 10 J K -1 mol -1 . The coordinated hydroxo ligand(s) induces rapid ligand substitution to form [Rh(OH) 6 ] 3- . By simulating ligand substitution as a dissociative mechanism, using density functional theory (DFT), we can now explain the relatively fast and slow kinetics of chloride substitution in basic and acidic matrices, respectively. Moreover, the DFT calculated activation energies corroborated experimental data that the kinetic stereochemical sequence of [RhCl 6 ] 3- hydrolysis in an acidic solution proceeds as [RhCl 6 ] 3- → [RhCl 5 (H 2 O)] 2- → cis-[RhCl 4 (H 2 O) 2 ] - . However, DFT calculations predict in a basic solution the trans route of substitution [RhCl 6 ] 3- → [RhCl 5 (OH)] 3- → trans-[RhCl 4 (OH) 2 ] 3- is kinetically favored.
X-ray crystal structure and properties of Phanta, a weakly fluorescent photochromic GFP-like protein
Paul, Craig Don; Traore, Daouda A. K.; Olsen, Seth; ...
2015-04-29
Phanta is a reversibly photoswitching chromoprotein (Φ F, 0.003), useful for pcFRET, that was isolated from a mutagenesis screen of the bright green fluorescent eCGP123 (Φ F, 0.8). We have investigated the contribution of substitutions at positions His193, Thr69 and Gln62, individually and in combination, to the optical properties of Phanta. Single amino acid substitutions at position 193 resulted in proteins with very low Φ F, indicating the importance of this position in controlling the fluorescence efficiency of the variant proteins. The substitution Thr69Val in Phanta was important for supressing the formation of a protonated chromophore species observed in somemore » His193 substituted variants, whereas the substitution Gln62Met did not significantly contribute to the useful optical properties of Phanta. X-ray crystal structures for Phanta (2.3 Å), eCGP123 T69V (2.0 Å) and eCGP123 H193Q (2.2 Å) in their non-photoswitched state were determined, revealing the presence of a cis-coplanar chromophore. We conclude that changes in the hydrogen-bonding network supporting the cis-chromophore, and its contacts with the surrounding protein matrix, are responsible for the low fluorescence emission of eCGP123 variants containing a His193 substitution.« less
Proof of concept of a new autologous skin substitute for the treatment of deep wounds in dogs.
Ramió-Lluch, L; Cerrato, S; Brazis, P; Rabanal, R M; Fondevila, D; Puigdemont, A
2017-12-01
Autologous skin grafts are effective for the repair of large skin wounds, but the availability of large amounts of skin is often limited. Through bioengineering, several autologous skin substitutes have been developed for use in human clinical practice. However, few skin substitutes are available for use in animals. The aim of this study was to develop and assess an engineered autologous skin substitute for the treatment of deep wounds in veterinary medicine. Canine keratinocytes and fibroblasts were isolated after double enzyme digestion from 8mm punch biopsies from four healthy Beagle dogs. Skin substitutes were constructed on a fibrin-based matrix and grafting capacity was assessed by xenografting in six athymic mice. Bioengineered autologous skin was assessed clinically in two dogs with large deep skin wounds. The canine skin construct was ready for use within 12-14days after the initial biopsy specimens were obtained. Grafting capacity in this model was confirmed by successful grafting of the construct in athymic mice. In both dogs, grafts were established and permanent epithelialisation occurred. Histological studies confirmed successful grafting. This full thickness skin substitute developed for the management of large skin defects in dogs appears to be a safe and useful tool for clinical veterinary practice. Further studies are needed to validate its efficacy for the treatment of deep wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kotthoff, Matthias; Bücking, Mark
2018-04-01
Per- and polyfluoroalkyl substances (PFAS) represent a versatile group of ubiquitously occurring chemicals of increasing regulatory concern. The past years lead to an ever expanding portfolio of detected anthropogenic PFAS in numerous products encountered in daily life. Yet no clear picture of the full range of individual substance that comprise PFAS is available and this challenges analytical and engineering sciences. Authorities struggle to cope with uncertainties in managing risk of harm posed by PFAS.This is a result of an incomplete understanding of the range of compounds that they comprise in differing products. There are analytical uncertainties identifying PFAS and estimating the concentrations of the total PFAS loadindividual molecules remain unknown. There are four major trends from the chemical perspective that will shape PFAS research for the next decade. 1.Mobility: A wide and dynamic distribution of short chain PFAS due to their high polarity, persistency and volatility. 2.Substitution of regulated substances: The ban or restrictions of individual molecules will lead to a replacement with substitutes of similar concern. 3.Increase in structural diversity of existing PFAS molecules: Introduction of e.g. hydrogens and chlorine atoms instead of fluorine, as well as branching and cross-linking lead to a high versatility of unknown target molecules. 4. Unknown “Dark Matter”: The amount, identity, formation pathways, and transformation dynamics of polymers and PFAS precursors are largely unknown. These directions require optimized analytical setups, especially multi-methods, and semi-specific tools to determine PFAS-sum parameters in any relevant matrix.
Martin, Richard A; Twyman, Helen L; Rees, Gregory J; Smith, Jodie M; Barney, Emma R; Smith, Mark E; Hanna, John V; Newport, Robert J
2012-09-21
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 < r (Å) < 3 region via the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.
1994-01-01
A user's guide for the computer program OPTCOMP is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in uni-directional metal matrix composites subjected to combined thermo-mechanical axisymmetric loading using compensating or compliant layers at the fiber/matrix interface. The user specifies the architecture and the initial material parameters of the interfacial region, which can be either elastic or elastoplastic, and defines the design variables, together with the objective function, the associated constraints and the loading history through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the elastoplastic response of an arbitrarily layered multiple concentric cylinder model that is coupled to the commercial optimization package DOT. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.
NASA Astrophysics Data System (ADS)
Roslund, Jonathan; Shir, Ofer M.; Bäck, Thomas; Rabitz, Herschel
2009-10-01
Optimization of quantum systems by closed-loop adaptive pulse shaping offers a rich domain for the development and application of specialized evolutionary algorithms. Derandomized evolution strategies (DESs) are presented here as a robust class of optimizers for experimental quantum control. The combination of stochastic and quasi-local search embodied by these algorithms is especially amenable to the inherent topology of quantum control landscapes. Implementation of DES in the laboratory results in efficiency gains of up to ˜9 times that of the standard genetic algorithm, and thus is a promising tool for optimization of unstable or fragile systems. The statistical learning upon which these algorithms are predicated also provide the means for obtaining a control problem’s Hessian matrix with no additional experimental overhead. The forced optimal covariance adaptive learning (FOCAL) method is introduced to enable retrieval of the Hessian matrix, which can reveal information about the landscape’s local structure and dynamic mechanism. Exploitation of such algorithms in quantum control experiments should enhance their efficiency and provide additional fundamental insights.
Levy, R A; Smith, D L
1989-01-01
The practice of therapeutic substitution, i.e., replacing one drug with another chemically different drug from the same therapeutic class, represents an important therapeutic modification with potential clinical significance far beyond that of generic substitution. Adverse consequences following therapeutic substitution of nonsteroidal antiinflammatory drugs (NSAID) is of special concern because of substantial differences among these agents in pharmacokinetic, pharmacological, and clinical properties. Therapeutic substitution of NSAID for ambulatory patients may result in compromised clinical outcome because (1) patient response is unpredictable and selection of the optimal agent must be tailored for each patient; (2) substantial differences exist in adverse reaction profiles; (3) drug interaction studies are lacking; and (4) selection of an agent must be individualized to ensure compliance with the dosing regimen. Cost savings achieved through therapeutic substitution of NSAID may be lost by additional overall treatment costs due to adverse reactions or suboptimal therapy. The occurrence of adverse or suboptimal effects in ambulatory patients is more likely if NSAID are substituted without full knowledge of the patient's medical history and clinical status. Communication between the pharmacy and prescribing physician regarding a patient's specific needs is essential for rational substitution among NSAID.
Gunjal, P. T.; Shinde, M. B.; Gharge, V. S.; Pimple, S. V.; Gurjar, M. K.; Shah, M. N.
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 32 full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet. PMID:26798171
Gunjal, P T; Shinde, M B; Gharge, V S; Pimple, S V; Gurjar, M K; Shah, M N
2015-01-01
The objective of this present investigation was to develop and formulate floating sustained release matrix tablets of s (-) atenolol, by using different polymer combinations and filler, to optimize by using surface response methodology for different drug release variables and to evaluate the drug release pattern of the optimized product. Floating sustained release matrix tablets of various combinations were prepared with cellulose-based polymers: Hydroxypropyl methylcellulose, sodium bicarbonate as a gas generating agent, polyvinyl pyrrolidone as a binder and lactose monohydrate as filler. The 3(2) full factorial design was employed to investigate the effect of formulation variables on different properties of tablets applicable to floating lag time, buoyancy time, % drug release in 1 and 6 h (D1 h,D6 h) and time required to 90% drug release (t90%). Significance of result was analyzed using analysis of non variance and P < 0.05 was considered statistically significant. S (-) atenolol floating sustained release matrix tablets followed the Higuchi drug release kinetics that indicates the release of drug follows anomalous (non-Fickian) diffusion mechanism. The developed floating sustained release matrix tablet of improved efficacy can perform therapeutically better than a conventional tablet.
Tambe, Suparna; Blott, Henning; Fülöp, Annabelle; Spang, Nils; Flottmann, Dirk; Bräse, Stefan; Hopf, Carsten; Junker, Hans-Dieter
2017-02-01
A key aspect for the further development of matrix-assisted laser desorption ionization (MALDI)-mass spectrometry (MS) is a better understanding of the working principles of MALDI matrices. To address this issue, a chemical compound library of 59 structurally related cinnamic acid derivatives was synthesized. Potential MALDI matrices were evaluated with sulfatides, a class of anionic lipids which are abundant in complex brain lipid mixtures. For each matrix relative mean S/N ratios of sulfatides were determined against 9-aminoacridine as a reference matrix using negative ion mass spectrometry with 355 and 337 nm laser systems. The comparison of matrix features with their corresponding relative mean S/N ratios for sulfatide detection identified correlations between matrix substitution patterns, their chemical functionality, and their MALDI-MS performance. Crystal structures of six selected matrices provided structural insight in hydrogen bond interactions in the solid state. Principal component analysis allowed the additional identification of correlation trends between structural and physical matrix properties like number of exchangeable protons at the head group, MW, logP, UV-Vis, and sulfatide detection sensitivity. Graphical abstract Design, synthesis and mass spectrometric evaluation of MALDI-MS matrix compound libraries allows the identification of matrix structure - MALDI-MS performance relationships using multivariate statistics as a tool.
Design and Optimization of Composite Gyroscope Momentum Wheel Rings
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2007-01-01
Stress analysis and preliminary design/optimization procedures are presented for gyroscope momentum wheel rings composed of metallic, metal matrix composite, and polymer matrix composite materials. The design of these components involves simultaneously minimizing both true part volume and mass, while maximizing angular momentum. The stress analysis results are combined with an anisotropic failure criterion to formulate a new sizing procedure that provides considerable insight into the design of gyroscope momentum wheel ring components. Results compare the performance of two optimized metallic designs, an optimized SiC/Ti composite design, and an optimized graphite/epoxy composite design. The graphite/epoxy design appears to be far superior to the competitors considered unless a much greater premium is placed on volume efficiency compared to mass efficiency.
NASA Technical Reports Server (NTRS)
Bakhshiyan, B. T.; Nazirov, R. R.; Elyasberg, P. E.
1980-01-01
The problem of selecting the optimal algorithm of filtration and the optimal composition of the measurements is examined assuming that the precise values of the mathematical expectancy and the matrix of covariation of errors are unknown. It is demonstrated that the optimal algorithm of filtration may be utilized for making some parameters more precise (for example, the parameters of the gravitational fields) after preliminary determination of the elements of the orbit by a simpler method of processing (for example, the method of least squares).
Measurement Matrix Design for Phase Retrieval Based on Mutual Information
NASA Astrophysics Data System (ADS)
Shlezinger, Nir; Dabora, Ron; Eldar, Yonina C.
2018-01-01
In phase retrieval problems, a signal of interest (SOI) is reconstructed based on the magnitude of a linear transformation of the SOI observed with additive noise. The linear transform is typically referred to as a measurement matrix. Many works on phase retrieval assume that the measurement matrix is a random Gaussian matrix, which, in the noiseless scenario with sufficiently many measurements, guarantees invertability of the transformation between the SOI and the observations, up to an inherent phase ambiguity. However, in many practical applications, the measurement matrix corresponds to an underlying physical setup, and is therefore deterministic, possibly with structural constraints. In this work we study the design of deterministic measurement matrices, based on maximizing the mutual information between the SOI and the observations. We characterize necessary conditions for the optimality of a measurement matrix, and analytically obtain the optimal matrix in the low signal-to-noise ratio regime. Practical methods for designing general measurement matrices and masked Fourier measurements are proposed. Simulation tests demonstrate the performance gain achieved by the proposed techniques compared to random Gaussian measurements for various phase recovery algorithms.
NASA Astrophysics Data System (ADS)
Chaillat, Stéphanie; Desiderio, Luca; Ciarlet, Patrick
2017-12-01
In this work, we study the accuracy and efficiency of hierarchical matrix (H-matrix) based fast methods for solving dense linear systems arising from the discretization of the 3D elastodynamic Green's tensors. It is well known in the literature that standard H-matrix based methods, although very efficient tools for asymptotically smooth kernels, are not optimal for oscillatory kernels. H2-matrix and directional approaches have been proposed to overcome this problem. However the implementation of such methods is much more involved than the standard H-matrix representation. The central questions we address are twofold. (i) What is the frequency-range in which the H-matrix format is an efficient representation for 3D elastodynamic problems? (ii) What can be expected of such an approach to model problems in mechanical engineering? We show that even though the method is not optimal (in the sense that more involved representations can lead to faster algorithms) an efficient solver can be easily developed. The capabilities of the method are illustrated on numerical examples using the Boundary Element Method.
Choi, Du Hyung; Lim, Jun Yeul; Shin, Sangmun; Choi, Won Jun; Jeong, Seong Hoon; Lee, Sangkil
2014-10-01
To investigate the effects of hydrophilic polymers on the matrix system, an experimental design method was developed to integrate response surface methodology and the time series modeling. Moreover, the relationships among polymers on the matrix system were studied with the evaluation of physical properties including water uptake, mass loss, diffusion, and gelling index. A mixture simplex lattice design was proposed while considering eight input control factors: Polyethylene glycol 6000 (x1 ), polyethylene oxide (PEO) N-10 (x2 ), PEO 301 (x3 ), PEO coagulant (x4 ), PEO 303 (x5 ), hydroxypropyl methylcellulose (HPMC) 100SR (x6 ), HPMC 4000SR (x7 ), and HPMC 10(5) SR (x8 ). With the modeling, optimal formulations were obtained depending on the four types of targets. The optimal formulations showed the four significant factors (x1 , x2 , x3 , and x8 ) and other four input factors (x4 , x5 , x6 , and x7 ) were not significant based on drug release profiles. Moreover, the optimization results were analyzed with estimated values, targets values, absolute biases, and relative biases based on observed times for the drug release rates with four different targets. The result showed that optimal solutions and target values had consistent patterns with small biases. On the basis of the physical properties of the optimal solutions, the type and ratio of the hydrophilic polymer and the relationships between polymers significantly influenced the physical properties of the system and drug release. This experimental design method is very useful in formulating a matrix system with optimal drug release. Moreover, it can distinctly confirm the relationships between excipients and the effects on the system with extensive and intensive evaluations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Four-body trajectory optimization
NASA Technical Reports Server (NTRS)
Pu, C. L.; Edelbaum, T. N.
1974-01-01
A comprehensive optimization program has been developed for computing fuel-optimal trajectories between the earth and a point in the sun-earth-moon system. It presents methods for generating fuel optimal two-impulse trajectories which may originate at the earth or a point in space and fuel optimal three-impulse trajectories between two points in space. The extrapolation of the state vector and the computation of the state transition matrix are accomplished by the Stumpff-Weiss method. The cost and constraint gradients are computed analytically in terms of the terminal state and the state transition matrix. The 4-body Lambert problem is solved by using the Newton-Raphson method. An accelerated gradient projection method is used to optimize a 2-impulse trajectory with terminal constraint. The Davidon's Variance Method is used both in the accelerated gradient projection method and the outer loop of a 3-impulse trajectory optimization problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Cheng; Tsuge, Masashi; Khriachtchev, Leonid, E-mail: leonid.khriachtchev@helsinki.fi
Experimental and theoretical studies of HXeI and HXeH molecules in Ar, Kr, and Xe matrices are presented. HXeI exhibits the H–Xe stretching bands at 1238.0 and 1239.0 cm{sup −1} in Ar and Kr matrices, respectively, that are blue-shifted from the HXeI band observed in a Xe matrix (1193 cm{sup −1}) by 45 and 46 cm{sup −1}. These shifts are larger than those observed previously for HXeCl (27 and 16 cm{sup −1}) and HXeBr (37 and 23 cm{sup −1}); thus, the matrix effect is stronger for less stable molecules. The results for HXeI are qualitatively different from all previous results onmore » noble-gas hydrides with respect to the frequency order between Ar and Kr matrices. For previously studied HXeCl, HXeBr, and HXeCCH, the H–Xe stretching frequency is reliably (by >10 cm{sup −1}) higher in an Ar matrix than in a Kr matrix. In contrast, the H–Xe stretching frequency of HXeI in an Ar matrix is slightly lower than that in a Kr matrix. HXeH absorbs in Ar and Kr matrices at 1203.2 and 1192.1 cm{sup −1} (the stronger band for a Kr matrix), respectively. These bands are blue-shifted from the stronger band of HXeH in a Xe matrix (1166 cm{sup −1}) by 37 and 26 cm{sup −1}, and this frequency order is the same as observed for HXeCl, HXeBr, and HXeCCH but different from HXeI. The present hybrid quantum-classical simulations successfully describe the main experimental findings. For HXeI in the 〈110〉 (double substitution) site, the order of the H–Xe stretching frequencies (ν(Xe) < ν(Ar) < ν(Kr)) is in accord with the experimental observations, and also the frequency shifts in Ar and Kr matrices from a Xe matrix are well predicted (30 and 34 cm{sup −1}). Both in the theory and experiment, the order of the H–Xe stretching frequencies differs from the case of HXeCl, which suggests the adequate theoretical description of the matrix effect. For HXeH in the 〈100〉 (single substitution) site, the order of the frequencies is ν(Xe) < ν(Kr) < ν(Ar), which also agrees with the experiments. The calculated frequency shifts for HXeH in Ar and Kr matrices with respect to a Xe matrix (36 and 23 cm{sup −1}) are in a good agreement with the experiments. The present calculations predict an increase of the H–Xe stretching frequencies in the noble-gas matrices with respect to vacuum.« less
Bioengineered vascular scaffolds: the state of the art.
Palumbo, Vincenzo D; Bruno, Antonio; Tomasello, Giovanni; Damiano, Giuseppe; Lo Monte, Attilio I
2014-07-31
To date, there is increasing clinical need for vascular substitutes due to accidents, malformations, and ischemic diseases. Over the years, many approaches have been developed to solve this problem, starting from autologous native vessels to artificial vascular grafts; unfortunately, none of these have provided the perfect vascular substitute. All have been burdened by various complications, including infection, thrombogenicity, calcification, foreign body reaction, lack of growth potential, late stenosis and occlusion from intimal hyperplasia, and pseudoaneurysm formation. In the last few years, vascular tissue engineering has emerged as one of the most promising approaches for producing mechanically competent vascular substitutes. Nanotechnologies have contributed their part, allowing extraordinarily biostable and biocompatible materials to be developed. Specifically, the use of electrospinning to manufacture conduits able to guarantee a stable flow of biological fluids and guide the formation of a new vessel has revolutionized the concept of the vascular substitute. The electrospinning technique allows extracellular matrix (ECM) to be mimicked with high fidelity, reproducing its porosity and complexity, and providing an environment suitable for cell growth. In the future, a better knowledge of ECM and the manufacture of new materials will allow us to "create" functional biological vessels - the base required to develop organ substitutes and eventually solve the problem of organ failure.
NASA Astrophysics Data System (ADS)
Quan, Naicheng; Zhang, Chunmin; Mu, Tingkui
2018-05-01
We address the optimal configuration of a partial Mueller matrix polarimeter used to determine the ellipsometric parameters in the presence of additive Gaussian noise and signal-dependent shot noise. The numerical results show that, for the PSG/PSA consisting of a variable retarder and a fixed polarizer, the detection process immune to these two types of noise can be optimally composed by 121.2° retardation with a pair of azimuths ±71.34° and a 144.48° retardation with a pair of azimuths ±31.56° for four Mueller matrix elements measurement. Compared with the existing configurations, the configuration presented in this paper can effectively decrease the measurement variance and thus statistically improve the measurement precision of the ellipsometric parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zhiming; Chen, Hui; Qu, Jianfei
Here, chlorinated benzothiadiazide based polymers with multiple chlorine atoms has been designed and synthesized for polymer solar cells with enhanced open circuit voltage up to 0.85 V. The chlorine substitution is found to significantly adjust the band gap of the polymers, and change polymer’s orientation from random morphology of chlorine free PBT4T-2OD, to mixed face-on packing of one chlorine substituted PCBT4T-2OD, and finally to edge-on of two chlorine substituted PCCBT4T-2OD. The optimized chlorinated polymer, PCBT4T-2OD with only one chlorine atom substituted on BT moiety, has been founded to achieve the highest power conversion efficiency up to 8.20% with PC 71BM,more » which is about 68% higher than that of its non-chlorine analogues.« less
Han, Lu; Xu, Zijian; Huang, Jianhua; Meng, Zong; Liu, Yuanfa; Wang, Xingguo
2011-12-14
A kind of low-calorie structured lipid (LCSL) was obtained by interesterification of tributyrin (TB) and methyl stearate (St-ME), catalyzed by a commercially immobilized 1,3-specific lipase, Lipozyme RM IM from Rhizomucor miehei . The condition optimization of the process was conducted by using response surface methodology (RSM). The optimal conditions for highest conversion of St-ME and lowest content LLL-TAG (SSS and SSP; S, stearic acid; P, palmitic acid) were determined to be a reaction time 6.52 h, a substrate molar ratio (St-ME:TB) of 1.77:1, and an enzyme amount of 10.34% at a reaction temperature of 65 °C; under these conditions, the actually measured conversion of St-ME and content of LLL-TAG were 78.47 and 4.89% respectively, in good agreement with predicted values. The target product under optimal conditions after short-range molecular distillation showed solid fat content (SFC) values similar to those of cocoa butter substitutes (CBS), cocoa butter equivalent (CBE), and cocoa butters (CB), indicating its application for inclusion with other fats as cocoa butter substitutes.
Density functional theory study of defects in unalloyed δ-Pu
Hernandez, S. C.; Freibert, F. J.; Wills, J. M.
2017-03-19
Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less
Optical amplification and stability of spiroquaterphenyl compounds and blends
NASA Astrophysics Data System (ADS)
Fuhrmann-Lieker, T.; Lambrecht, J.; Hoinka, N.; Kiurski, M.; Wiske, A.; Hagelstein, G.; Yurttagül, Y.; Abdel-Awwad, M.; Wilke, H.; Messow, F.; Hillmer, H.; Salbeck, J.
2015-02-01
In this contribution, we present a systematic investigation on a series of spiroquaterphenyl compounds optimised for solid state lasing in the near ultraviolet (UV). Amplified spontaneous emission (ASE) thresholds in the order of 1 μJ/cm^2 are obtained in neat (undiluted) films and blends, with emission peaks at 390±1 nm for unsubstituted and meta-substituted quaterphenyls and 400±4 nm for para-ether substituted quaterphenyls. Mixing with a transparent matrix retains a low threshold, shifts the emission to lower wavelengths and allows a better access to modes having their intensity maximum deeper in the film. Chemical design and blending allow an independent tuning of optical and processing properties such as the glass transition.
Density functional theory study of defects in unalloyed δ-Pu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, S. C.; Freibert, F. J.; Wills, J. M.
Using density functional theory, we explore in this paper various classical point and complex defects within the face-centered cubic unalloyed δ-plutonium matrix that are potentially induced from self-irradiation. For plutonium only defects, the most energetically stable defect is a distorted split-interstitial. Gallium, the δ-phase stabilizer, is thermodynamically stable as a substitutional defect, but becomes unstable when participating in a complex defect configuration. Finally, complex uranium defects may thermodynamically exist as uranium substitutional with neighboring plutonium interstitial and stabilization of uranium within the lattice is shown via partial density of states and charge density difference plots to be 5f hybridization betweenmore » uranium and plutonium.« less
NASA Astrophysics Data System (ADS)
Li, Qifan; Chen, Yajie; Harris, Vincent G.
2018-05-01
This letter reports an extended effective medium theory (EMT) including particle-size distribution functions to maximize the magnetic properties of magneto-dielectric composites. It is experimentally verified by Co-Ti substituted barium ferrite (BaCoxTixFe12-2xO19)/wax composites with specifically designed particle-size distributions. In the form of an integral equation, the extended EMT formula essentially takes the size-dependent parameters of magnetic particle fillers into account. It predicts the effective permeability of magneto-dielectric composites with various particle-size distributions, indicating an optimal distribution for a population of magnetic particles. The improvement of the optimized effective permeability is significant concerning magnetic particles whose properties are strongly size dependent.
Target detection in GPR data using joint low-rank and sparsity constraints
NASA Astrophysics Data System (ADS)
Bouzerdoum, Abdesselam; Tivive, Fok Hing Chi; Abeynayake, Canicious
2016-05-01
In ground penetrating radars, background clutter, which comprises the signals backscattered from the rough, uneven ground surface and the background noise, impairs the visualization of buried objects and subsurface inspections. In this paper, a clutter mitigation method is proposed for target detection. The removal of background clutter is formulated as a constrained optimization problem to obtain a low-rank matrix and a sparse matrix. The low-rank matrix captures the ground surface reflections and the background noise, whereas the sparse matrix contains the target reflections. An optimization method based on split-Bregman algorithm is developed to estimate these two matrices from the input GPR data. Evaluated on real radar data, the proposed method achieves promising results in removing the background clutter and enhancing the target signature.
Donoho, David L; Gavish, Matan; Montanari, Andrea
2013-05-21
Let X(0) be an unknown M by N matrix. In matrix recovery, one takes n < MN linear measurements y(1),…,y(n) of X(0), where y(i) = Tr(A(T)iX(0)) and each A(i) is an M by N matrix. A popular approach for matrix recovery is nuclear norm minimization (NNM): solving the convex optimization problem min ||X||*subject to y(i) =Tr(A(T)(i)X) for all 1 ≤ i ≤ n, where || · ||* denotes the nuclear norm, namely, the sum of singular values. Empirical work reveals a phase transition curve, stated in terms of the undersampling fraction δ(n,M,N) = n/(MN), rank fraction ρ=rank(X0)/min {M,N}, and aspect ratio β=M/N. Specifically when the measurement matrices Ai have independent standard Gaussian random entries, a curve δ*(ρ) = δ*(ρ;β) exists such that, if δ > δ*(ρ), NNM typically succeeds for large M,N, whereas if δ < δ*(ρ), it typically fails. An apparently quite different problem is matrix denoising in Gaussian noise, in which an unknown M by N matrix X(0) is to be estimated based on direct noisy measurements Y =X(0) + Z, where the matrix Z has independent and identically distributed Gaussian entries. A popular matrix denoising scheme solves the unconstrained optimization problem min|| Y-X||(2)(F)/2+λ||X||*. When optimally tuned, this scheme achieves the asymptotic minimax mean-squared error M(ρ;β) = lim(M,N → ∞)inf(λ)sup(rank(X) ≤ ρ · M)MSE(X,X(λ)), where M/N → . We report extensive experiments showing that the phase transition δ*(ρ) in the first problem, matrix recovery from Gaussian measurements, coincides with the minimax risk curve M(ρ)=M(ρ;β) in the second problem, matrix denoising in Gaussian noise: δ*(ρ)=M(ρ), for any rank fraction 0 < ρ < 1 (at each common aspect ratio β). Our experiments considered matrices belonging to two constraint classes: real M by N matrices, of various ranks and aspect ratios, and real symmetric positive-semidefinite N by N matrices, of various ranks.
A differentiable reformulation for E-optimal design of experiments in nonlinear dynamic biosystems.
Telen, Dries; Van Riet, Nick; Logist, Flip; Van Impe, Jan
2015-06-01
Informative experiments are highly valuable for estimating parameters in nonlinear dynamic bioprocesses. Techniques for optimal experiment design ensure the systematic design of such informative experiments. The E-criterion which can be used as objective function in optimal experiment design requires the maximization of the smallest eigenvalue of the Fisher information matrix. However, one problem with the minimal eigenvalue function is that it can be nondifferentiable. In addition, no closed form expression exists for the computation of eigenvalues of a matrix larger than a 4 by 4 one. As eigenvalues are normally computed with iterative methods, state-of-the-art optimal control solvers are not able to exploit automatic differentiation to compute the derivatives with respect to the decision variables. In the current paper a reformulation strategy from the field of convex optimization is suggested to circumvent these difficulties. This reformulation requires the inclusion of a matrix inequality constraint involving positive semidefiniteness. In this paper, this positive semidefiniteness constraint is imposed via Sylverster's criterion. As a result the maximization of the minimum eigenvalue function can be formulated in standard optimal control solvers through the addition of nonlinear constraints. The presented methodology is successfully illustrated with a case study from the field of predictive microbiology. Copyright © 2015. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.
1996-01-01
A user's guide for the computer program OPTCOMP2 is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in unidirectional metal matrix composites subjected to combined thermomechanical axisymmetric loading by altering the processing history, as well as through the microstructural design of interfacial fiber coatings. The user specifies the initial architecture of the composite and the load history, with the constituent materials being elastic, plastic, viscoplastic, or as defined by the 'user-defined' constitutive model, in addition to the objective function and constraints, through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the inelastic response of a fiber/interface layer(s)/matrix concentric cylinder model where the interface layers can be either homogeneous or heterogeneous. The response of heterogeneous layers is modeled using Aboudi's three-dimensional method of cells micromechanics model. The commercial optimization package DOT is used for the nonlinear optimization problem. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.
Three-dimensional biocompatible matrix for reconstructive surgery
NASA Astrophysics Data System (ADS)
Reshetov, I. V.; Starceva, O. I.; Istranov, A. L.; Vorona, B. N.; Lyundup, A. V.; Gulyaev, I. V.; Melnikov, D. V.; Shtansky, D. V.; Sheveyko, A. N.; Andreev, V. A.
2016-08-01
A study into the development of an original bioengineered structure for reconstruction of hollow organs is presented. The basis for the structure was the creation of a mesh matrix made from titanium nickelide (NiTi), which has sufficient elasticity and shape memory for the reconstruction of hollow tubular orgrans. In order to increase the cell adhesion on the surface of the matrix, the grid needed to be cleaned of impurities, for which we used an ionic cleaning method. Additional advantages also may enable the application of the bioactive component to grid surface. These features of the matrix may improve the biocompatibility properties of the composite material. In the first stage, a mesh structure was made from NiTi fibers. The properties of the resulting mesh matrix were studied. In the second stage, the degrees of adhesion and cell growth rates in the untreated matrix, the matrix after ionic cleaning and the matrix after ionic cleaning and the application of the bioactive component were compared. The results showed more significant biocompatibility of the titanium nickelide matrix after its ionic cleaning. The ionic cleaning ensures the removal of toxic contaminants, which are a consequence of the technological production process of the material and provide optimal adhesion properties for the fiber surface. The NiTi net matrix with TiCaPCON coating may be the optimal basis for making the hollow elastic organs.
Replacement of MDA with more oxidatively stable diamines in PMR-polyimides
NASA Technical Reports Server (NTRS)
Alston, W. B.
1985-01-01
Studies are performed to investigate the effect of substituting 4,4'-oxydianiline and 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane for the 4,4'-methylenedianiline in PMR polyimide matrix resin. Graphite fiber reinforced composites are fabricated from unsized Celion 6000 and PMR-polyimide matrix resins having formulated molecular weights in the range of 1500 to 2400. The composite processing characteristics are investigated and the initial room temperature and 316 C (600 F) composite mechanical properties are determined. Comparative 316 C composite weight losses and 316 C mechanical properties retention after prolonged 316 C air exposure are also determined.
Shin, Sangmun; Choi, Du Hyung; Truong, Nguyen Khoa Viet; Kim, Nam Ah; Chu, Kyung Rok; Jeong, Seong Hoon
2011-04-04
A new experimental design methodology was developed by integrating the response surface methodology and the time series modeling. The major purposes were to identify significant factors in determining swelling and release rate from matrix tablets and their relative factor levels for optimizing the experimental responses. Properties of tablet swelling and drug release were assessed with ten factors and two default factors, a hydrophilic model drug (terazosin) and magnesium stearate, and compared with target values. The selected input control factors were arranged in a mixture simplex lattice design with 21 experimental runs. The obtained optimal settings for gelation were PEO, LH-11, Syloid, and Pharmacoat with weight ratios of 215.33 (88.50%), 5.68 (2.33%), 19.27 (7.92%), and 3.04 (1.25%), respectively. The optimal settings for drug release were PEO and citric acid with weight ratios of 191.99 (78.91%) and 51.32 (21.09%), respectively. Based on the results of matrix swelling and drug release, the optimal solutions, target values, and validation experiment results over time were similar and showed consistent patterns with very small biases. The experimental design methodology could be a very promising experimental design method to obtain maximum information with limited time and resources. It could also be very useful in formulation studies by providing a systematic and reliable screening method to characterize significant factors in the sustained release matrix tablet. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Du, Jinglei
2018-06-01
A method of selecting appropriate singular values of the transmission matrix to improve the precision of incident wavefront retrieval in focusing light through scattering media is proposed. The optimal singular values selected by this method can reduce the degree of ill-conditionedness of the transmission matrix effectively, which indicates that the incident wavefront retrieved from the optimal set of singular values is more accurate than the incident wavefront retrieved from other sets of singular values. The validity of this method is verified by numerical simulation and actual measurements of the incident wavefront of coherent light through ground glass.
Optimization of the Brillouin operator on the KNL architecture
NASA Astrophysics Data System (ADS)
Dürr, Stephan
2018-03-01
Experiences with optimizing the matrix-times-vector application of the Brillouin operator on the Intel KNL processor are reported. Without adjustments to the memory layout, performance figures of 360 Gflop/s in single and 270 Gflop/s in double precision are observed. This is with Nc = 3 colors, Nv = 12 right-hand-sides, Nthr = 256 threads, on lattices of size 323 × 64, using exclusively OMP pragmas. Interestingly, the same routine performs quite well on Intel Core i7 architectures, too. Some observations on the much harderWilson fermion matrix-times-vector optimization problem are added.
Approximate dynamic programming for optimal stationary control with control-dependent noise.
Jiang, Yu; Jiang, Zhong-Ping
2011-12-01
This brief studies the stochastic optimal control problem via reinforcement learning and approximate/adaptive dynamic programming (ADP). A policy iteration algorithm is derived in the presence of both additive and multiplicative noise using Itô calculus. The expectation of the approximated cost matrix is guaranteed to converge to the solution of some algebraic Riccati equation that gives rise to the optimal cost value. Moreover, the covariance of the approximated cost matrix can be reduced by increasing the length of time interval between two consecutive iterations. Finally, a numerical example is given to illustrate the efficiency of the proposed ADP methodology.
A Higher Harmonic Optimal Controller to Optimise Rotorcraft Aeromechanical Behaviour
NASA Technical Reports Server (NTRS)
Leyland, Jane Anne
1996-01-01
Three methods to optimize rotorcraft aeromechanical behavior for those cases where the rotorcraft plant can be adequately represented by a linear model system matrix were identified and implemented in a stand-alone code. These methods determine the optimal control vector which minimizes the vibration metric subject to constraints at discrete time points, and differ from the commonly used non-optimal constraint penalty methods such as those employed by conventional controllers in that the constraints are handled as actual constraints to an optimization problem rather than as just additional terms in the performance index. The first method is to use a Non-linear Programming algorithm to solve the problem directly. The second method is to solve the full set of non-linear equations which define the necessary conditions for optimality. The third method is to solve each of the possible reduced sets of equations defining the necessary conditions for optimality when the constraints are pre-selected to be either active or inactive, and then to simply select the best solution. The effects of maneuvers and aeroelasticity on the systems matrix are modelled by using a pseudo-random pseudo-row-dependency scheme to define the systems matrix. Cases run to date indicate that the first method of solution is reliable, robust, and easiest to use, and that it was superior to the conventional controllers which were considered.
DFT study of the effect of substitution on the molecular structure of copper phthalocyanine
NASA Astrophysics Data System (ADS)
Kaur, Prabhjot; Sachdeva, Ritika; Singh, Sukhwinder; Saini, G. S. S.
2016-05-01
To study the effect of sulfonic acid group as substituent on the molecular structure of an organic compound copper Phthalocyanine, the optimized geometry, mulliken charges, energies and dipole momemts of copper phthalocyanine and copper phthalocyaninetetrasulfonic acid tetra sodium salt have been investigated using density functional theory. Also to predict the change in reactive sites after substitution, molecular electrostatic potential maps for both the molecules have been calculated.
Measurement configuration optimization for dynamic metrology using Stokes polarimetry
NASA Astrophysics Data System (ADS)
Liu, Jiamin; Zhang, Chuanwei; Zhong, Zhicheng; Gu, Honggang; Chen, Xiuguo; Jiang, Hao; Liu, Shiyuan
2018-05-01
As dynamic loading experiments such as a shock compression test are usually characterized by short duration, unrepeatability and high costs, high temporal resolution and precise accuracy of the measurements is required. Due to high temporal resolution up to a ten-nanosecond-scale, a Stokes polarimeter with six parallel channels has been developed to capture such instantaneous changes in optical properties in this paper. Since the measurement accuracy heavily depends on the configuration of the probing beam incident angle and the polarizer azimuth angle, it is important to select an optimal combination from the numerous options. In this paper, a systematic error propagation-based measurement configuration optimization method corresponding to the Stokes polarimeter was proposed. The maximal Frobenius norm of the combinatorial matrix of the configuration error propagating matrix and the intrinsic error propagating matrix is introduced to assess the measurement accuracy. The optimal configuration for thickness measurement of a SiO2 thin film deposited on a Si substrate has been achieved by minimizing the merit function. Simulation and experimental results show a good agreement between the optimal measurement configuration achieved experimentally using the polarimeter and the theoretical prediction. In particular, the experimental result shows that the relative error in the thickness measurement can be reduced from 6% to 1% by using the optimal polarizer azimuth angle when the incident angle is 45°. Furthermore, the optimal configuration for the dynamic metrology of a nickel foil under quasi-dynamic loading is investigated using the proposed optimization method.
NASA Astrophysics Data System (ADS)
Ambarsari, I.; Endrasari, R.; Oktaningrum, G. N.
2018-01-01
Cassava leaves are nutritious vegetable, but often regarded as an inferior commodity. One of the efforts increasing in the benefit of cassava leaves is through processing it into snack. In order to support the food diversification program and to reduce the dependence on imported commodities, the development of cassava leaves snack could be accompanied by optimizing the use of local materials to minimize the use of wheat flour. The aim of this assessment was to learn the effects of cassava and corn flour substitution on the physicochemical characteristics of cassava-leaves snack. The substitution of local flour (cassava and corn) on the snack production was carried on three levels at 15, 30, and 45%. A control treatment was using 100% wheat flour. The results showed that cassava and corn flour were potential to substitute wheat flour for making cassava-leaves snack. The substitution of cassava and corn flour as much as 45% was able to produce crispy products with a brighter color. The substitution of corn flour was resulting in snacks with the lower content of lipid than the other substitution snacks.
Selection of optimal sensors for predicting performance of polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Mao, Lei; Jackson, Lisa
2016-10-01
In this paper, sensor selection algorithms are investigated based on a sensitivity analysis, and the capability of optimal sensors in predicting PEM fuel cell performance is also studied using test data. The fuel cell model is developed for generating the sensitivity matrix relating sensor measurements and fuel cell health parameters. From the sensitivity matrix, two sensor selection approaches, including the largest gap method, and exhaustive brute force searching technique, are applied to find the optimal sensors providing reliable predictions. Based on the results, a sensor selection approach considering both sensor sensitivity and noise resistance is proposed to find the optimal sensor set with minimum size. Furthermore, the performance of the optimal sensor set is studied to predict fuel cell performance using test data from a PEM fuel cell system. Results demonstrate that with optimal sensors, the performance of PEM fuel cell can be predicted with good quality.
Wang, Jun-Sheng; Yang, Guang-Hong
2017-07-25
This paper studies the optimal output-feedback control problem for unknown linear discrete-time systems with stochastic measurement and process noise. A dithered Bellman equation with the innovation covariance matrix is constructed via the expectation operator given in the form of a finite summation. On this basis, an output-feedback-based approximate dynamic programming method is developed, where the terms depending on the innovation covariance matrix are available with the aid of the innovation covariance matrix identified beforehand. Therefore, by iterating the Bellman equation, the resulting value function can converge to the optimal one in the presence of the aforementioned noise, and the nearly optimal control laws are delivered. To show the effectiveness and the advantages of the proposed approach, a simulation example and a velocity control experiment on a dc machine are employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, Alexey N., E-mail: alexei@inorg.chem.msu.ru; N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninsky pr. 31, GSP-1, 119991 Moscow; Stroganova, Ekaterina A.
Using a high-temperature ampoule technique, a series of mixed nickel-iron-gallium metal-rich tellurides with layered structures, Ni{sub 3-x}Fe{sub x}GaTe{sub 2}, were prepared and characterized based on X-ray powder diffraction, energy-dispersive spectroscopy, and {sup 57}Fe Mössbauer spectroscopy data. These compounds may be regarded as a result of partial substitution of nickel by iron in the recently reported ternary Ni{sub 3-x}GaTe{sub 2} series, which are based on NiAs/Ni{sub 2}In type of structure. The compositional boundary for the substitution was found to be at x~1. According to the Mössbauer spectroscopy data, the substitution is not statistical, and iron atoms with the increase in xmore » tend to preferentially occupy those nickel positions that are partially vacant in the initial ternary compound. Magnetic measurements data for the Ni{sub 3-x}Fe{sub x}GaTe{sub 2} series show dramatic change in behavior from temperature-independent paramagnetic properties of the initial matrix to a low-temperature (~75 K) ferromagnetic ordering in the Ni{sub 2}FeGaTe{sub 2}. - Graphical abstract: Ordered substitution of nickel by iron in the Ni{sub 3−x}GaTe{sub 2} series leading to ferromagnetic ordering. - Highlights: • A series of Ni{sub 3−x}Fe{sub x}GaTe{sub 2} compounds were synthesized. • They adopt the NiAs/Ni{sub 2}In type of structure with ordered iron distribution. • The distribution of iron was studied using {sup 57}Fe Mössbauer spectroscopy. • An increase in iron content leads to the strong ferromagnetic coupling.« less
The Rigid Orthogonal Procrustes Rotation Problem
ERIC Educational Resources Information Center
ten Berge, Jos M. F.
2006-01-01
The problem of rotating a matrix orthogonally to a best least squares fit with another matrix of the same order has a closed-form solution based on a singular value decomposition. The optimal rotation matrix is not necessarily rigid, but may also involve a reflection. In some applications, only rigid rotations are permitted. Gower (1976) has…
Analysis of Nonlinear Dynamics by Square Matrix Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Li Hua
The nonlinear dynamics of a system with periodic structure can be analyzed using a square matrix. In this paper, we show that because the special property of the square matrix constructed for nonlinear dynamics, we can reduce the dimension of the matrix from the original large number for high order calculation to low dimension in the first step of the analysis. Then a stable Jordan decomposition is obtained with much lower dimension. The transformation to Jordan form provides an excellent action-angle approximation to the solution of the nonlinear dynamics, in good agreement with trajectories and tune obtained from tracking. Andmore » more importantly, the deviation from constancy of the new action-angle variable provides a measure of the stability of the phase space trajectories and their tunes. Thus the square matrix provides a novel method to optimize the nonlinear dynamic system. The method is illustrated by many examples of comparison between theory and numerical simulation. Finally, in particular, we show that the square matrix method can be used for optimization to reduce the nonlinearity of a system.« less
Managing simulation-based training: A framework for optimizing learning, cost, and time
NASA Astrophysics Data System (ADS)
Richmond, Noah Joseph
This study provides a management framework for optimizing training programs for learning, cost, and time when using simulation based training (SBT) and reality based training (RBT) as resources. Simulation is shown to be an effective means for implementing activity substitution as a way to reduce risk. The risk profile of 22 US Air Force vehicles are calculated, and the potential risk reduction is calculated under the assumption of perfect substitutability of RBT and SBT. Methods are subsequently developed to relax the assumption of perfect substitutability. The transfer effectiveness ratio (TER) concept is defined and modeled as a function of the quality of the simulator used, and the requirements of the activity trained. The Navy F/A-18 is then analyzed in a case study illustrating how learning can be maximized subject to constraints in cost and time, and also subject to the decision maker's preferences for the proportional and absolute use of simulation. Solution methods for optimizing multiple activities across shared resources are next provided. Finally, a simulation strategy including an operations planning program (OPP), an implementation program (IP), an acquisition program (AP), and a pedagogical research program (PRP) is detailed. The study provides the theoretical tools to understand how to leverage SBT, a case study demonstrating these tools' efficacy, and a set of policy recommendations to enable the US military to better utilize SBT in the future.
Optimal Consumption When Consumption Takes Time
ERIC Educational Resources Information Center
Miller, Norman C.
2009-01-01
A classic article by Gary Becker (1965) showed that when it takes time to consume, the first order conditions for optimal consumption require the marginal rate of substitution between any two goods to equal their relative full costs. These include the direct money price and the money value of the time needed to consume each good. This important…
A Framework Phylogeny of the American Oak Clade Based on Sequenced RAD Data
Hipp, Andrew L.; Eaton, Deren A. R.; Cavender-Bares, Jeannine; Fitzek, Elisabeth; Nipper, Rick; Manos, Paul S.
2014-01-01
Previous phylogenetic studies in oaks (Quercus, Fagaceae) have failed to resolve the backbone topology of the genus with strong support. Here, we utilize next-generation sequencing of restriction-site associated DNA (RAD-Seq) to resolve a framework phylogeny of a predominantly American clade of oaks whose crown age is estimated at 23–33 million years old. Using a recently developed analytical pipeline for RAD-Seq phylogenetics, we created a concatenated matrix of 1.40 E06 aligned nucleotides, constituting 27,727 sequence clusters. RAD-Seq data were readily combined across runs, with no difference in phylogenetic placement between technical replicates, which overlapped by only 43–64% in locus coverage. 17% (4,715) of the loci we analyzed could be mapped with high confidence to one or more expressed sequence tags in NCBI Genbank. A concatenated matrix of the loci that BLAST to at least one EST sequence provides approximately half as many variable or parsimony-informative characters as equal-sized datasets from the non-EST loci. The EST-associated matrix is more complete (fewer missing loci) and has slightly lower homoplasy than non-EST subsampled matrices of the same size, but there is no difference in phylogenetic support or relative attribution of base substitutions to internal versus terminal branches of the phylogeny. We introduce a partitioned RAD visualization method (implemented in the R package RADami; http://cran.r-project.org/web/packages/RADami) to investigate the possibility that suboptimal topologies supported by large numbers of loci—due, for example, to reticulate evolution or lineage sorting—are masked by the globally optimal tree. We find no evidence for strongly-supported alternative topologies in our study, suggesting that the phylogeny we recover is a robust estimate of large-scale phylogenetic patterns in the American oak clade. Our study is one of the first to demonstrate the utility of RAD-Seq data for inferring phylogeny in a 23–33 million year-old clade. PMID:24705617
Applying the J-optimal channelized quadratic observer to SPECT myocardial perfusion defect detection
NASA Astrophysics Data System (ADS)
Kupinski, Meredith K.; Clarkson, Eric; Ghaly, Michael; Frey, Eric C.
2016-03-01
To evaluate performance on a perfusion defect detection task from 540 image pairs of myocardial perfusion SPECT image data we apply the J-optimal channelized quadratic observer (J-CQO). We compare AUC values of the linear Hotelling observer and J-CQO when the defect location is fixed and when it occurs in one of two locations. As expected, when the location is fixed a single channels maximizes AUC; location variability requires multiple channels to maximize the AUC. The AUC is estimated from both the projection data and reconstructed images. J-CQO is quadratic since it uses the first- and second- order statistics of the image data from both classes. The linear data reduction by the channels is described by an L x M channel matrix and in prior work we introduced an iterative gradient-based method for calculating the channel matrix. The dimensionality reduction from M measurements to L channels yields better estimates of these sample statistics from smaller sample sizes, and since the channelized covariance matrix is L x L instead of M x M, the matrix inverse is easier to compute. The novelty of our approach is the use of Jeffrey's divergence (J) as the figure of merit (FOM) for optimizing the channel matrix. We previously showed that the J-optimal channels are also the optimum channels for the AUC and the Bhattacharyya distance when the channel outputs are Gaussian distributed with equal means. This work evaluates the use of J as a surrogate FOM (SFOM) for AUC when these statistical conditions are not satisfied.
Choi, Ji Suk; Kim, Jae Dong; Yoon, Hyun Soo
2013-01-01
The human placenta, a complex organ, which facilitates exchange between the fetus and the mother, contains abundant extracellular matrix (ECM) components and well-preserved endogenous growth factors. In this study, we designed a new dermal substitute from human placentas for full-thickness wound healing. Highly porous, decellularized ECM sheets were fabricated from human placentas via homogenization, centrifugation, chemical and enzymatic treatments, molding, and freeze-drying. The physical structure and biological composition of human placenta-derived ECM sheets dramatically supported the regeneration of full-thickness wound in vivo. At the early stage, the ECM sheet efficiently absorbed wound exudates and tightly attached to the wound surface. Four weeks after implantation, the wound was completely closed, epidermic cells were well arranged and the bilayer structure of the epidermis and dermis was restored. Moreover, hair follicles and microvessels were newly formed in the ECM sheet-implanted wounds. Overall, the ECM sheet produced a dermal substitute with similar cellular organization to that of normal skin. These results suggest that human placenta-derived ECM sheets provide a microenvironment favorable to the growth and differentiation of cells, and positive modulate the healing of full-thickness wounds. PMID:22891853
Rentsch, Barbe; Hofmann, Andre; Breier, Annette; Rentsch, Claudia; Scharnweber, Dieter
2009-10-01
The aim of this study was to evaluate an embroidered polycaprolactone-co-lactide (trade name PCL) scaffold for the application in bone tissue engineering. The surface of the PCL scaffolds was hydrolyzed with NaOH and coated with collagen I (coll I) and chondroitin sulfate (CS). It was investigated if a change of the surface properties and the application of coll I and CS could promote cell adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSC). The porosity (80%) and pore size (0.2-1 mm) of the scaffold could be controlled by embroidery technique and should be suitable for bone ingrowth. The treatment with NaOH made the polymer surface more hydrophilic (water contact angle dropped to 25%), enhanced the coll I adsorption (up to 15%) and the cell attachment (two times). The coll I coated scaffold improved cell attachment and proliferation (three times). CS, as part of the artificial matrix, could induce the osteogenic differentiation of hMSC without other differentiation additives. The investigated scaffolds could act not just as temporary matrix for cell migration, proliferation, and differentiation in bone tissue engineering but also have a great potential as bioartificial bone substitute.
2009-01-01
Background Cellular reactions to alloplastic bone substitute materials (BSM) are a subject of interest in basic research. In regenerative dentistry, these bone grafting materials are routinely combined with enamel matrix derivatives (EMD) in order to additionally enhance tissue regeneration. Materials and methods The aim of this study was to evaluate the proliferative activity of human osteogenic cells after incubation over a period of seven days with commercial BSM of various origin and chemical composition. Special focus was placed on the potential additional benefit of EMD on cellular proliferation. Results Except for PerioGlas®, osteogenic cell proliferation was significantly promoted by the investigated BSM. The application of EMD alone also resulted in significantly increased cellular proliferation. However, a combination of BSM and EMD resulted in only a moderate additional enhancement of osteogenic cell proliferation. Conclusion The application of most BSM, as well as the exclusive application of EMD demonstrated a positive impact on the proliferation of human osteogenic cells in vitro. In order to increase the benefit from substrate combination (BSM + EMD), further studies on the interactions between BSM and EMD are needed. PMID:19909545
[First year of life. Human milk and human milk substitutes].
Vásquez-Garibay, Edgar M
2016-09-01
The nutritional improvement of mothers and their children is one of the most cost-effective tools to achieve optimal human growth and development. The World Health Organization recommends offering «exclusive breastfeeding for the first six months, and then begin the introduction of safe and nutritious food while breastfeeding continues until the second year of life.» Since the second half of the 20th century to date extraordinary progress in the manufacturing and formulation of substitutes for human milk has been accomplished, these being partial or complete substitutes for human milk, whether or not suitable for this purpose. Whole (cow´s) milk is not an adequate substitute for human milk during the first six months of life because of its great nutritional disparity and excess solutes with potential deleterious effects in infants. Therefore, it is an ethical responsibility of health professional to educate and advise parents and caregivers on the proper and timely use of human milk substitutes available in our country.
Nanocomposite particles with improved microstructure for 3D culture systems and bone regeneration.
Cecoltan, Sergiu; Stancu, Izabela-Cristina; Drăguşin, Diana Maria; Serafim, Andrada; Lungu, Adriana; Ţucureanu, Cătălin; Caraş, Iuliana; Tofan, Vlad Constantin; Sălăgeanu, Aurora; Vasile, Eugeniu; Mallet, Romain; Chappard, Daniel; Coman, Cristin; Istodorescu, Mircea; Iovu, Horia
2017-08-31
Nano-apatite and gelatin-alginate hydrogel microparticles have been prepared by a one-step synthesis combined with electrostatic bead generation, for the reconstruction of bone defects. Based on the analysis of bone composition, architecture and embryonic intramembranous ossification, a bio-inspired fabrication has been developed. Accordingly, the mineral phase has been in situ synthesized, calcifying the hydrogel matrix while the latter was crosslinked, finally generating microparticles that can assemble into a bone defect to ensure interconnected pores. Although nano-apatite-biopolymer composites have been widely investigated, microstructural optimization to provide improved distribution and stability of the mineral is rarely achieved. The optimization of the developed method progressively resulted in two types of formulations (15P and 7.5P), with 15 and 7.5 (wt%) phosphate content in the initial precursor. The osteolytic potential was investigated using differentiated macrophages. A commercially available calcium phosphate bone graft substitute (Eurocer 400) was incorporated into the hydrogel, and the obtained composites were in vitro tested for comparison. The cytocompatibility of the microparticles was studied with mouse osteoblast-like cell line MC3T3-E1. Results indicated the best in vitro performance have been obtained for the sample loaded with 7.5P. Preliminary evaluation of biocompatibility into a critical size (3 mm) defect in rabbits showed that 7.5P nanocomposite is associated with newly formed bone in the proximity of the microparticles, after 28 days.
NASA Astrophysics Data System (ADS)
Pavan Kumar Naik, S.; Seshu Bai, V.
2017-01-01
Controlling the microstructure of superconductors by incorporating the flux pinning centers and reducing the macro-defects to improve high field performance is the topic of recent research. In continuation, the preform optimized infiltration growth (POIG) processed YBa2Cu3O7-δ (YBCO) system, Y-site substituted with three mixed RE (Nd, Sm, Gd) elements is investigated. 20 wt.% of (Nd, Sm, Gd)2BaCuO5 were mixed with Y2BaCuO5 and POIG processed in reduced oxygen atmosphere to obtain YNSG superconductor. No seed is employed for crystal growth; hence the processed samples are multi-grained. Microstructural and compositional investigations on YNSG revealed the presence of different phases in the matrix as well as in precipitates which are of the order of submicron to 4 μm. A large fraction of macro-defects (∼6% of porosity) was observed in the YNSG sample. For reducing the unwanted macro-defects and refine the non-superconducting precipitates, processed YNSG sample is pressed and resolidified (by infiltrating the liquid phases once again) in an argon atmosphere and the structural, microstructural, elemental and superconducting properties are compared with YNSG and undoped samples. Due to spatial scatter in superconducting critical temperatures, caused by the distribution of different REBCO unit cells in YBCO, superconducting transition curve is sharp in YNSG, whereas the resolidified sample showed the broad transition due to solidified liquid phases.
ORACLS: A system for linear-quadratic-Gaussian control law design
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1978-01-01
A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.
Drug functionalized microbial polysaccharide based nanofibers as transdermal substitute.
Vashisth, Priya; Srivastava, Amit Kumar; Nagar, Hemant; Raghuwanshi, Navdeep; Sharan, Shruti; Nikhil, Kumar; Pruthi, Parul A; Singh, Rajesh P; Roy, Partha; Pruthi, Vikas
2016-07-01
In order to promote the natural healing process, drug-functionalized nanofibrous transdermal substitute was fabricated using gellan as chief polymer and polyvinyl alcohol (PVA) as supporting polymer via electrospinning technique. These fabricated nanofibers physiochemically mimic the extracellular matrix (ECM) which supports the cell growth. For neo-tissue regeneration in a sterilized environment, amoxicillin (Amx) was entrapped within these nanofibers. Entrapment of Amx in the nanofibers was confirmed by FESEM, FTIR, XRD and TG analysis. In vitro cell culture studies revealed that the fabricated non-cytotoxic nanofibers promoted enhance cell adherence and proliferation of human keratinocytes. A preliminary in vivo study performed on rat model for full thickness skin excision wound demonstrated the prompt re-epithelialization in early phase and quicker collagen deposition in later phases of wound healing in case of Amx-functionalized gellan/PVA nanofibers. Data collectively confirmed the potential usage of gellan based electrospun nanofibers as transdermal substitute for faster skin restoration. Copyright © 2016 Elsevier Inc. All rights reserved.
Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes.
Morais, D S; Rodrigues, M A; Silva, T I; Lopes, M A; Santos, M; Santos, J D; Botelho, C M
2013-06-05
In this work three different hydrogels were developed to associate, as vehicles, with the synthetic bone substitute GR-HAP. One based on an alginate matrix (Alg); a second on a mixture of alginate and chitosan (Alg/Ch); and a third on alginate and hyaluronate (Alg/HA), using Ca(2+) ions as cross-linking agents. The hydrogels, as well as the respective injectable bone substitutes (IBSs), were fully characterized from the physical-chemical point of view. Weight change studies proved that all hydrogels were able to swell and degrade within 72 h at pH 7.4 and 4.0, being Alg/HA the hydrogel with the highest degradation rate (80%). Rheology studies demonstrated that all hydrogels are non-Newtonian viscoelastic fluids, and injectability tests showed that IBSs presented low maximum extrusion forces, as well as quite stable average forces. In conclusion, the studied hydrogels present the necessary features to be successfully used as vehicles of GR-HAP, particularly the hydrogel Alg/HA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution.
Ameye, L; Hermann, R; Dubois, P
2000-08-01
The improvements brought by high-pressure freezing/freeze substitution fixation methods to the ultrastructural preservation of echinoderm mineralized tissues are investigated in developing pedicellariae and teeth of the echinoid Paracentrotus lividus. Three freeze substitution (FS) protocols were tested: one in the presence of osmium tetroxide, one in the presence of uranyl acetate, and the last in the presence of gallic acid. FS in the presence of osmium tetroxide significantly improved cell ultrastructure preservation and should especially be used for ultrastructural studies involving vesicles and the Golgi apparatus. With all protocols, multivesicular bodies, suggested to contain Ca(2+), were evident for the first time in skeleton-forming cells. FS in the presence of gallic acid allowed us to confirm the structured and insoluble character of a part of the organic matrix of mineralization in the calcification sites of the tooth, an observation which modifies the current understanding of biomineralization control in echinoderms. Copyright 2000 Academic Press.
Edmunds, Michael; Raheem, Mohammed Abdul; Boutin, Rebecca; Tait, Katrina
2016-01-01
Summary Palladium-catalyzed ring-opening reactions of C1 substituted 7-oxanorbornadiene derivatives with aryl iodides were investigated. The optimal conditions for this reaction were found to be PdCl2(PPh3)2, ZnCl2, Et3N and Zn in THF. Both steric and electronic factors played a role in the outcome of the reaction as increasing the steric bulk on the bridgehead carbon decreased the yield. These reactions were found to be highly regioselective, giving only one of the two possible regioisomers in all cases. A diverse collection of novel, highly substituted biphenyl derivatives were obtained. PMID:26977182
Optimization of Aerospace Structure Subject to Damage Tolerance Criteria
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.
1999-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers. It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages. A common method for topology optimization is that of compliance minimization which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system. Sherrnan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this. SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.
Proton transfer bis-benzazole fluors and their use in scintillator detectors
Kauffman, Joel M.
1994-01-01
A novel class of proton transfer, bis-benzazole, fluorescent compounds, i.e., fluors, is disclosed. The novel fluors include substituted or unsubstituted 1,4-bis(2-benzazolyl)-2-hydroxybenzenes and 1,4-bis(2-benzazolyl)-2-amidobenzenes wherein the benzazolyl group may be benzoxazolyl, benzimidazolyl, benzothiazolyl, and the like. The benzazolyl groups may be substituted with one or more alkyl groups to improve solubility in organic matrix materials such as solvents, monomers, resins, polymers, and the like. The novel fluors may be used in the manufacture of fluorescent coatings, objects, scintillators, light sources and the like. The novel fluors are particularly useful for radiation-hard, solid scintillators for the detection and measurement of high energy particles and radiation.
Proton transfer bis-benzazole fluors and their use in scintillator detectors
Kauffman, J.M.
1994-03-29
A novel class of proton transfer, bis-benzazole, fluorescent compounds, i.e., fluors, is disclosed. The novel fluors include substituted or unsubstituted 1,4-bis(2-benzazolyl)-2-hydroxybenzenes and 1,4-bis(2-benzazolyl)-2-amidobenzenes wherein the benzazolyl group may be benzoxazolyl, benzimidazolyl, benzothiazolyl, and the like. The benzazolyl groups may be substituted with one or more alkyl groups to improve solubility in organic matrix materials such as solvents, monomers, resins, polymers, and the like. The novel fluors may be used in the manufacture of fluorescent coatings, objects, scintillators, light sources and the like. The novel fluors are particularly useful for radiation-hard, solid scintillators for the detection and measurement of high energy particles and radiation.
Seebeck Coefficient of Cation-Substituted Disulfides CuCr1-x Fe x S2 and Cu1-x Fe x CrS2
NASA Astrophysics Data System (ADS)
Korotaev, Evgeniy V.; Syrokvashin, Mikhail M.; Filatova, Irina Yu.; Pelmenev, Konstantin G.; Zvereva, Valentina V.; Peregudova, Natalya N.
2018-03-01
The effect of cation substitution on the Seebeck coefficient of CuCr1-x Fe x S2 (x = 0 to 0.30) and Cu1-x Fe x CrS2 (x = 0 to 0.03) in the temperature range of 100 K to 450 K has been investigated. Increasing iron concentration led to a metal-insulator transition which suppressed the thermoelectric power. However, for low iron concentration (x < 0.03), the Seebeck coefficient of CuCr1-x Fe x S2 and Cu1-x Fe x CrS2 exceeded the values for the undoped copper-chromium disulfide matrix CuCrS2 at temperature below 300 K.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.
1996-01-01
The objective of this work was the development of efficient, user-friendly computer codes for optimizing fabrication-induced residual stresses in metal matrix composites through the use of homogeneous and heterogeneous interfacial layer architectures and processing parameter variation. To satisfy this objective, three major computer codes have been developed and delivered to the NASA-Lewis Research Center, namely MCCM, OPTCOMP, and OPTCOMP2. MCCM is a general research-oriented code for investigating the effects of microstructural details, such as layered morphology of SCS-6 SiC fibers and multiple homogeneous interfacial layers, on the inelastic response of unidirectional metal matrix composites under axisymmetric thermomechanical loading. OPTCOMP and OPTCOMP2 combine the major analysis module resident in MCCM with a commercially-available optimization algorithm and are driven by user-friendly interfaces which facilitate input data construction and program execution. OPTCOMP enables the user to identify those dimensions, geometric arrangements and thermoelastoplastic properties of homogeneous interfacial layers that minimize thermal residual stresses for the specified set of constraints. OPTCOMP2 provides additional flexibility in the residual stress optimization through variation of the processing parameters (time, temperature, external pressure and axial load) as well as the microstructure of the interfacial region which is treated as a heterogeneous two-phase composite. Overviews of the capabilities of these codes are provided together with a summary of results that addresses the effects of various microstructural details of the fiber, interfacial layers and matrix region on the optimization of fabrication-induced residual stresses in metal matrix composites.
Limited-memory fast gradient descent method for graph regularized nonnegative matrix factorization.
Guan, Naiyang; Wei, Lei; Luo, Zhigang; Tao, Dacheng
2013-01-01
Graph regularized nonnegative matrix factorization (GNMF) decomposes a nonnegative data matrix X[Symbol:see text]R(m x n) to the product of two lower-rank nonnegative factor matrices, i.e.,W[Symbol:see text]R(m x r) and H[Symbol:see text]R(r x n) (r < min {m,n}) and aims to preserve the local geometric structure of the dataset by minimizing squared Euclidean distance or Kullback-Leibler (KL) divergence between X and WH. The multiplicative update rule (MUR) is usually applied to optimize GNMF, but it suffers from the drawback of slow-convergence because it intrinsically advances one step along the rescaled negative gradient direction with a non-optimal step size. Recently, a multiple step-sizes fast gradient descent (MFGD) method has been proposed for optimizing NMF which accelerates MUR by searching the optimal step-size along the rescaled negative gradient direction with Newton's method. However, the computational cost of MFGD is high because 1) the high-dimensional Hessian matrix is dense and costs too much memory; and 2) the Hessian inverse operator and its multiplication with gradient cost too much time. To overcome these deficiencies of MFGD, we propose an efficient limited-memory FGD (L-FGD) method for optimizing GNMF. In particular, we apply the limited-memory BFGS (L-BFGS) method to directly approximate the multiplication of the inverse Hessian and the gradient for searching the optimal step size in MFGD. The preliminary results on real-world datasets show that L-FGD is more efficient than both MFGD and MUR. To evaluate the effectiveness of L-FGD, we validate its clustering performance for optimizing KL-divergence based GNMF on two popular face image datasets including ORL and PIE and two text corpora including Reuters and TDT2. The experimental results confirm the effectiveness of L-FGD by comparing it with the representative GNMF solvers.
Han, Wuxiao; Zhang, Linlin; He, Haoxuan; Liu, Hongmin; Xing, Lili; Xue, Xinyu
2018-06-22
The development of multifunctional electronic-skin that establishes human-machine interfaces, enhances perception abilities or has other distinct biomedical applications is the key to the realization of artificial intelligence. In this paper, a new self-powered (battery-free) flexible vision electronic-skin has been realized from pixel-patterned matrix of piezo-photodetecting PVDF/Ppy film. The electronic-skin under applied deformation can actively output piezoelectric voltage, and the outputting signal can be significantly influenced by UV illumination. The piezoelectric output can act as both the photodetecting signal and electricity power. The reliability is demonstrated over 200 light on-off cycles. The sensing unit matrix of 6 × 6 pixels on the electronic-skin can realize image recognition through mapping multi-point UV stimuli. This self-powered vision electronic-skin that simply mimics human retina may have potential application in vision substitution.
NASA Astrophysics Data System (ADS)
Han, Wuxiao; Zhang, Linlin; He, Haoxuan; Liu, Hongmin; Xing, Lili; Xue, Xinyu
2018-06-01
The development of multifunctional electronic-skin that establishes human-machine interfaces, enhances perception abilities or has other distinct biomedical applications is the key to the realization of artificial intelligence. In this paper, a new self-powered (battery-free) flexible vision electronic-skin has been realized from pixel-patterned matrix of piezo-photodetecting PVDF/Ppy film. The electronic-skin under applied deformation can actively output piezoelectric voltage, and the outputting signal can be significantly influenced by UV illumination. The piezoelectric output can act as both the photodetecting signal and electricity power. The reliability is demonstrated over 200 light on–off cycles. The sensing unit matrix of 6 × 6 pixels on the electronic-skin can realize image recognition through mapping multi-point UV stimuli. This self-powered vision electronic-skin that simply mimics human retina may have potential application in vision substitution.
Safety and efficacy of use of demineralised bone matrix in orthopaedic and trauma surgery.
Dinopoulos, Haralampos T H; Giannoudis, Peter V
2006-11-01
Demineralised bone matrix (DBM) acts as an osteoconductive, and possibly as an osteoinductive, material. It is widely used in orthopaedic, neurosurgical, plastic and dental areas. More than 500,000 bone grafting procedures with DBM are performed annually in the US. It does not offer structural support, but it is well suited for filling bone defects and cavities. The osteoinductive nature of DBM is presumably attributed to the presence of matrix-associated bone morphogenetic proteins (BMPs) and growth factors, which are made available to the host environment by the demineralisation process. Clinical results have not been uniformly favourable; however, a variable clinical response is attributed partly to nonuniform processing methods found among numerous bone banks and commercial suppliers. DBMs remain reasonably safe and effective products. The ultimate safe bone-graft substitute, one that is osteoconductive, osteoinductive, osteogenic and mechanically strong, remains elusive.
Evaluation of silicon carbide fiber/titanium composites
NASA Technical Reports Server (NTRS)
Jech, R. W.; Signorelli, R. A.
1979-01-01
Izod impact, tensile, and modulus of elasticity were determined for silicon carbide fiber/titanium composites to evaluate their potential usefulness as substitutes for titanium alloys or stainless steel in stiffness critical applications for aircraft turbine engines. Variations in processing conditions and matrix ductility were examined to produce composites having good impact strength in both the as-fabricated condition and after air exposure at elevated temperature. The impact strengths of composites containing 36 volume percent silicon carbide (SiC) fiber in an unalloyed (A-40) titanium matrix were found to be equal to unreinforced titanium-6 aluminum-4 vanadium alloy; the tensile strengths of the composites were marginally better than the unreinforced unalloyed (A-70) matrix at elevated temperature, though not at room temperature. At room temperature the modulus of elasticity of the composites was 48 percent higher than titanium or its alloys and 40 percent higher than that of stainless steel.
[The applications of periodontal gingival surgery. Ⅱ: alternative materials].
Mao, Er-Jia
2018-04-01
The main purposes of periodontal graft surgery include achieving root coverage, improving the clinical attachment level and keratinized tissue, and advancing the procedure of periodontal plastic surgery. Autogenous graft, such as subepithelial connective tissue graft-based procedure, provide the best outcomes for mean and complete root coverage, as well as increase in keratinized tissue. However, a disadvantage of the procedure is in the location of the operation itself: the additional surgical site (palate). Therefore, clinicians are always looking for graft substitutes. This article will discuss the evidence supporting the use of 1) acellular dermal matrix (ADM); 2) xenogeneic collagen matrix (XCM); 3) recombinant human platelet-derived growth factor (rhPDGF); 4) enamel matrix derivative (EMD); 5) guided tissue regeneration (GTR); 6) living cellular construct (LCC), all of which are used in conjunction with coronally advanced flaps as alternatives to autogenous donor tissue. The decision tree for treatments of Miller recession-type defects are also discussed.
Vontzalidou, Argyro; Zoidis, Grigoris; Chaita, Eliza; Makropoulou, Maria; Aligiannis, Nektarios; Lambrinidis, George; Mikros, Emmanuel; Skaltsounis, Alexios-Leandros
2012-09-01
The synthesis, molecular modeling and biological evaluation of substituted deoxybenzoins and optimized dihydrostilbenes are reported. Preliminary structure-activity relationship data were elucidated and lead compounds suitable for further optimization were discovered. Dihydrostilbene 7 is a particularly potent inhibitor (IC(50)=8.44 μM, more potent than kojic acid). Copyright © 2012 Elsevier Ltd. All rights reserved.
Aguilar, I; Misztal, I; Legarra, A; Tsuruta, S
2011-12-01
Genomic evaluations can be calculated using a unified procedure that combines phenotypic, pedigree and genomic information. Implementation of such a procedure requires the inverse of the relationship matrix based on pedigree and genomic relationships. The objective of this study was to investigate efficient computing options to create relationship matrices based on genomic markers and pedigree information as well as their inverses. SNP maker information was simulated for a panel of 40 K SNPs, with the number of genotyped animals up to 30 000. Matrix multiplication in the computation of the genomic relationship was by a simple 'do' loop, by two optimized versions of the loop, and by a specific matrix multiplication subroutine. Inversion was by a generalized inverse algorithm and by a LAPACK subroutine. With the most efficient choices and parallel processing, creation of matrices for 30 000 animals would take a few hours. Matrices required to implement a unified approach can be computed efficiently. Optimizations can be either by modifications of existing code or by the use of efficient automatic optimizations provided by open source or third-party libraries. © 2011 Blackwell Verlag GmbH.
Efficient retrieval of landscape Hessian: Forced optimal covariance adaptive learning
NASA Astrophysics Data System (ADS)
Shir, Ofer M.; Roslund, Jonathan; Whitley, Darrell; Rabitz, Herschel
2014-06-01
Knowledge of the Hessian matrix at the landscape optimum of a controlled physical observable offers valuable information about the system robustness to control noise. The Hessian can also assist in physical landscape characterization, which is of particular interest in quantum system control experiments. The recently developed landscape theoretical analysis motivated the compilation of an automated method to learn the Hessian matrix about the global optimum without derivative measurements from noisy data. The current study introduces the forced optimal covariance adaptive learning (FOCAL) technique for this purpose. FOCAL relies on the covariance matrix adaptation evolution strategy (CMA-ES) that exploits covariance information amongst the control variables by means of principal component analysis. The FOCAL technique is designed to operate with experimental optimization, generally involving continuous high-dimensional search landscapes (≳30) with large Hessian condition numbers (≳104). This paper introduces the theoretical foundations of the inverse relationship between the covariance learned by the evolution strategy and the actual Hessian matrix of the landscape. FOCAL is presented and demonstrated to retrieve the Hessian matrix with high fidelity on both model landscapes and quantum control experiments, which are observed to possess nonseparable, nonquadratic search landscapes. The recovered Hessian forms were corroborated by physical knowledge of the systems. The implications of FOCAL extend beyond the investigated studies to potentially cover other physically motivated multivariate landscapes.
Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification.
Zhang, Jianguang; Jiang, Jianmin
2018-02-01
While existing logistic regression suffers from overfitting and often fails in considering structural information, we propose a novel matrix-based logistic regression to overcome the weakness. In the proposed method, 2D matrices are directly used to learn two groups of parameter vectors along each dimension without vectorization, which allows the proposed method to fully exploit the underlying structural information embedded inside the 2D matrices. Further, we add a joint [Formula: see text]-norm on two parameter matrices, which are organized by aligning each group of parameter vectors in columns. This added co-regularization term has two roles-enhancing the effect of regularization and optimizing the rank during the learning process. With our proposed fast iterative solution, we carried out extensive experiments. The results show that in comparison to both the traditional tensor-based methods and the vector-based regression methods, our proposed solution achieves better performance for matrix data classifications.
Engineering micropatterned surfaces to modulate the function of vascular stem cells.
Li, Jennifer; Wu, Michelle; Chu, Julia; Sochol, Ryan; Patel, Shyam
2014-02-21
Multipotent vascular stem cells have been implicated in vascular disease and in tissue remodeling post therapeutic intervention. Hyper-proliferation and calcified extracellular matrix deposition of VSC cause blood vessel narrowing and plaque hardening thereby increasing the risk of myocardial infarct. In this study, to optimize the surface design of vascular implants, we determined whether micropatterned polymer surfaces can modulate VSC differentiation and calcified matrix deposition. Undifferentiated rat VSC were cultured on microgrooved surfaces of varied groove widths, and on micropost surfaces. 10μm microgrooved surfaces elongated VSC and decreased cell proliferation. However, microgrooved surfaces did not attenuate calcified extracellular matrix deposition by VSC cultured in osteogenic media conditions. In contrast, VSC cultured on micropost surfaces assumed a dendritic morphology, were significantly less proliferative, and deposited minimal calcified extracellular matrix. These results have significant implications for optimizing the design of cardiovascular implant surfaces. Copyright © 2014 Elsevier Inc. All rights reserved.
Chin-Pampillo, Juan Salvador; Ruiz-Hidalgo, Karla; Masís-Mora, Mario; Carazo-Rojas, Elizabeth; Rodríguez-Rodríguez, Carlos E
2015-12-01
Pesticide biopurification systems contain a biologically active matrix (biomixture) responsible for the accelerated elimination of pesticides in wastewaters derived from pest control in crop fields. Biomixtures have been typically prepared using the volumetric composition 50:25:25 (lignocellulosic substrate/humic component/soil); nonetheless, formal composition optimization has not been performed so far. Carbofuran is an insecticide/nematicide of high toxicity widely employed in developing countries. Therefore, the composition of a highly efficient biomixture (composed of coconut fiber, compost, and soil, FCS) for the removal of carbofuran was optimized by means of a central composite design and response surface methodology. The volumetric content of soil and the ratio coconut fiber/compost were used as the design variables. The performance of the biomixture was assayed by considering the elimination of carbofuran, the mineralization of (14)C-carbofuran, and the residual toxicity of the matrix, as response variables. Based on the models, the optimal volumetric composition of the FCS biomixture consists of 45:13:42 (coconut fiber/compost/soil), which resulted in minimal residual toxicity and ∼99% carbofuran elimination after 3 days. This optimized biomixture considerably differs from the standard 50:25:25 composition, which remarks the importance of assessing the performance of newly developed biomixtures during the design of biopurification systems.
Study of optimal laser parameters for cutting QFN packages by Taguchi's matrix method
NASA Astrophysics Data System (ADS)
Li, Chen-Hao; Tsai, Ming-Jong; Yang, Ciann-Dong
2007-06-01
This paper reports the study of optimal laser parameters for cutting QFN (Quad Flat No-lead) packages by using a diode pumped solid-state laser system (DPSSL). The QFN cutting path includes two different materials, which are the encapsulated epoxy and a copper lead frame substrate. The Taguchi's experimental method with orthogonal array of L 9(3 4) is employed to obtain optimal combinatorial parameters. A quantified mechanism was proposed for examining the laser cutting quality of a QFN package. The influences of the various factors such as laser current, laser frequency, and cutting speed on the laser cutting quality is also examined. From the experimental results, the factors on the cutting quality in the order of decreasing significance are found to be (a) laser frequency, (b) cutting speed, and (c) laser driving current. The optimal parameters were obtained at the laser frequency of 2 kHz, the cutting speed of 2 mm/s, and the driving current of 29 A. Besides identifying this sequence of dominance, matrix experiment also determines the best level for each control factor. The verification experiment confirms that the application of laser cutting technology to QFN is very successfully by using the optimal laser parameters predicted from matrix experiments.
Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Nitrogen Heterocycles (PANHs)
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.; Biemesderfer, C. D.; Rosi, M.
2002-01-01
The mid-infrared spectra of the nitrogen-containing heterocyclic polycyclic aromatic compounds 1-azabenz[a]-anthracene; 2-azabenz[a]anthracene; 1-azachrysene; 2-azachrysene; 4-azachrysene; 2-azapyrene, and 7,8 benzoquinoline in their neutral and cation forms were investigated. The spectra of these species isolated in an argon matrix have been measured. Band frequencies and intensities were tabulated and these data compared with spectra computed using density functional theory at the B3LYP level. The overall agreement between experiment and theory is quite good, in keeping with earlier results on homonuclear polycyclic aromatic hydrocarbons. The differences between the spectral properties of nitrogen bearing aromatics and non-substituted, neutral polycyclic aromatic hydrocarbons will be discussed.
Excess Silica Substitution in Plagioclase Grains in the Pasamonte Eucrite
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Le, L.; Berger, E. L.
2017-01-01
Pasamonte is a clast-rich polymict basaltic breccia with O- and Cr-isotopic compositions that are resolved from those of most eucrites. It is dominated by two mafic clast types: (i) very-fine- to fine-grained, variolitic, subophitic and ophitic basalts, usually containing zoned pyroxenes; and (ii) fine- to medium grained hypidiomorphic-granular and allotriomorphic-granular microgabbros containing pyroxenes composed of augite lamellae in homogeneous pigeonite hosts. Minor clast types are fine-grained impact-melt, mafic-breccia and mafic-granular clasts; coarse matrix mineral fragments include pyroxene, plagioclase, silica, ferroan olivine and ilmenite. Our petrologic studies include determination of plagioclase compositions for the two major clast types and matrix grains, which we report here.
Vitreous Substitutes: The Present and the Future
Caprani, Simona Maria; Airaghi, Giulia; Bartalena, Luigi; Testa, Francesco; Mariotti, Cesare; Porta, Giovanni; Simonelli, Francesca
2014-01-01
Vitreoretinal surgery has advanced in numerous directions during recent years. The removal of the vitreous body is one of the main characteristics of this surgical procedure. Several molecules have been tested in the past to fill the vitreous cavity and to mimic its functions. We here review the currently available vitreous substitutes, focusing on their molecular properties and functions, together with their adverse effects. Afterwards we describe the characteristics of the ideal vitreous substitute. The challenges facing every ophthalmology researcher are to reach a long-term intraocular permanence of vitreous substitute with total inertness of the molecule injected and the control of inflammatory reactions. We report new polymers with gelification characteristics and smart hydrogels representing the future of vitreoretinal surgery. Finally, we describe the current studies on vitreous regeneration and cell cultures to create new intraocular gels with optimal biocompatibility and rheological properties. PMID:24877085
Hu, Zhiming; Chen, Hui; Qu, Jianfei; ...
2017-03-10
Here, chlorinated benzothiadiazide based polymers with multiple chlorine atoms has been designed and synthesized for polymer solar cells with enhanced open circuit voltage up to 0.85 V. The chlorine substitution is found to significantly adjust the band gap of the polymers, and change polymer’s orientation from random morphology of chlorine free PBT4T-2OD, to mixed face-on packing of one chlorine substituted PCBT4T-2OD, and finally to edge-on of two chlorine substituted PCCBT4T-2OD. The optimized chlorinated polymer, PCBT4T-2OD with only one chlorine atom substituted on BT moiety, has been founded to achieve the highest power conversion efficiency up to 8.20% with PC 71BM,more » which is about 68% higher than that of its non-chlorine analogues.« less
NASA Technical Reports Server (NTRS)
Boland, J. S., III
1973-01-01
The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.
Protein substitute dosage in PKU: how much do young patients need?
MacDonald, A; Chakrapani, A; Hendriksz, C; Daly, A; Davies, P; Asplin, D; Hall, K; Booth, I W
2006-07-01
The optimal dose of protein substitute has not been determined in children with phenylketonuria (PKU). To determine if a lower dose of protein substitute could achieve the same or better degree of blood phenylalanine control when compared to the dosage recommended by the UK MRC.(1) In a six week randomised, crossover study, two doses of protein substitute (Protocol A: 2 g/kg/day of protein equivalent; Protocol B: 1.2 g/kg/day protein equivalent) were compared in 25 children with well controlled PKU aged 2-10 years (median 6 years). Each dose of protein substitute was taken for 14 days, with a 14 day washout period in between. Twice daily blood samples (fasting pre-breakfast and evening, at standard times) for plasma phenylalanine were taken on day 8-14 of each protocol. The median usual dose of protein substitute was 2.2 g/kg/day (range 1.5-3.1 g/kg/day). When compared with control values, median plasma phenylalanine on the low dose of protein substitute increased at pre-breakfast by 301 mumol/l (95% CI 215 to 386) and in the evening by 337 micromol/l (95% CI 248 to 431). On the high dose of protein substitute, plasma phenylalanine concentrations remained unchanged when compared to control values. However, wide variability was seen between subjects. A higher dosage of protein substitute appeared to contribute to lower blood phenylalanine concentrations in PKU, but it did have a variable and individual impact and may have been influenced by the carbohydrate (+/- fat) content of the protein substitute.
2014-09-01
optimal diagonal loading which minimizes the MSE. The be- havior of optimal diagonal loading when the arrival process is composed of plane waves embedded...observation vectors. The examples of the ensemble correlation matrix corresponding to the input process consisting of a single or multiple plane waves...Y ∗ij is a complex-conjugate of Yij. This result is used in order to evaluate the expectations of different quadratic forms. The Poincare -Nash
The tongue display unit (TDU) for electrotactile spatiotemporal pattern presentation.
Kaczmarek, K A
2011-12-01
The Tongue Display Unit (TDU) is a 144-channel programmable pulse generator that delivers dc-balanced voltage pulses suitable for electrotactile (electrocutaneous) stimulation of the anterior-dorsal tongue, through a matrix of surface electrodes. This article reviews the theory of operation and a design overview of the TDU, as well as selected applications. These include sensory substitution, tactile information display and neurorehabilitation via induced neuroplasticity.
NASA Astrophysics Data System (ADS)
Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali
As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.
Determining the optimal model for role-substitution in NHS dental services in the United Kingdom.
Brocklehurst, Paul; Birch, Stephen; McDonald, Ruth; Tickle, Martin
2013-09-24
Role-substitution describes a model of dental care where Dental Care Professionals (DCPs) provide some of the clinical activity previously undertaken by General Dental Practitioners. This has the potential to increase technical efficiency, the capacity to care and reduce costs. Technical efficiency is defined as the production of the maximum amount of output from a given amount of input so that the service operates at the production frontier i.e. optimal level of productivity. Academic research into technical efficiency is becoming increasingly utilised in health care, although no studies have investigated the efficiency of NHS dentistry or role-substitution in high-street dental practices. The aim of this study is to examine the barriers and enablers that exist for role-substitution in general dental practices in the NHS and to determine the most technically efficient model for role-substitution. A screening questionnaire will be sent to DCPs to determine the type and location of role-substitutive models employed in NHS dental practices in the United Kingdom (UK). Semi-structured interviews will then be conducted with practice owners, DCPs and patients at selected sites identified by the questionnaire. Detail will be recorded about the organisational structure of the dental team, the number of NHS hours worked and the clinical activity undertaken. The interviews will continue until saturation and will record the views and attitudes of the members of the dental team. Final numbers of interviews will be determined by saturation.The second work-stream will examine the technical efficiency of the selected practices using Data Envelopment Analysis and Stochastic Frontier Modeling. The former is a non-parametric technique and is considered to be a highly flexible approach for applied health applications. The latter is parametric and is based on frontier regression models that estimate a conventional cost function. Maximising health for a given level and mix of resources is an ethical imperative for health service planners. This study will determine the technical efficiency of role-substitution and so address one of the key recommendations of the Independent Review of NHS dentistry in England.
Determining the optimal model for role-substitution in NHS dental services in the United Kingdom
2013-01-01
Background Role-substitution describes a model of dental care where Dental Care Professionals (DCPs) provide some of the clinical activity previously undertaken by General Dental Practitioners. This has the potential to increase technical efficiency, the capacity to care and reduce costs. Technical efficiency is defined as the production of the maximum amount of output from a given amount of input so that the service operates at the production frontier i.e. optimal level of productivity. Academic research into technical efficiency is becoming increasingly utilised in health care, although no studies have investigated the efficiency of NHS dentistry or role-substitution in high-street dental practices. The aim of this study is to examine the barriers and enablers that exist for role-substitution in general dental practices in the NHS and to determine the most technically efficient model for role-substitution. Methods/design A screening questionnaire will be sent to DCPs to determine the type and location of role-substitutive models employed in NHS dental practices in the United Kingdom (UK). Semi-structured interviews will then be conducted with practice owners, DCPs and patients at selected sites identified by the questionnaire. Detail will be recorded about the organisational structure of the dental team, the number of NHS hours worked and the clinical activity undertaken. The interviews will continue until saturation and will record the views and attitudes of the members of the dental team. Final numbers of interviews will be determined by saturation. The second work-stream will examine the technical efficiency of the selected practices using Data Envelopment Analysis and Stochastic Frontier Modeling. The former is a non-parametric technique and is considered to be a highly flexible approach for applied health applications. The latter is parametric and is based on frontier regression models that estimate a conventional cost function. Discussion Maximising health for a given level and mix of resources is an ethical imperative for health service planners. This study will determine the technical efficiency of role-substitution and so address one of the key recommendations of the Independent Review of NHS dentistry in England. PMID:24063247
Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke
2015-11-15
Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cerqueira, Mariana T; da Silva, Lucília P; Santos, Tírcia C; Pirraco, Rogério P; Correlo, Vitor M; Marques, Alexandra P; Reis, Rui L
2014-05-01
Split-thickness autografts still are the current gold standard to treat skin, upon severe injuries. Nonetheless, autografts are dependent on donor site availability and often associated to poor quality neoskin. The generation of dermal-epidermal substitutes by tissue engineering is seen as a promising strategy to overcome this problematic. However, solutions that can be safely and conveniently transplanted in one single surgical intervention are still very challenging as their production normally requires long culture time, and graft survival is many times compromised by delayed vascularization upon transplantation. This work intended to propose a strategy that circumvents the prolonged and laborious preparation period of skin substitutes and allows skin cells self-organization toward improved healing. Human dermal/epidermal cell fractions were entrapped directly from isolation within a gellan gum/hyaluronic acid (GG-HA) spongy-like hydrogel formed from an off-the-shelf dried polymeric network. Upon transplantation into full-thickness mice wounds, the proposed constructs accelerated the wound closure rate and re-epithelialization, as well as tissue neovascularization. A synergistic effect of the GG-HA matrix and the transplanted cells over those processes was demonstrated at early time points. Despite the human-derived and chimeric blood vessels found, the proposed matrix did not succeed in prolonging cells residence time and in sustaining the self-organization of transplanted human cells possibly due to primitive degradation. Despite this, the herein proposed approach open the opportunity to tackle wound healing at early stages contributing to re-epithelialization and neovascularization.
Cerqueira, Mariana T.; da Silva, Lucília P.; Santos, Tírcia C.; Pirraco, Rogério P.; Correlo, Vitor M.; Reis, Rui L.
2014-01-01
Split-thickness autografts still are the current gold standard to treat skin, upon severe injuries. Nonetheless, autografts are dependent on donor site availability and often associated to poor quality neoskin. The generation of dermal–epidermal substitutes by tissue engineering is seen as a promising strategy to overcome this problematic. However, solutions that can be safely and conveniently transplanted in one single surgical intervention are still very challenging as their production normally requires long culture time, and graft survival is many times compromised by delayed vascularization upon transplantation. This work intended to propose a strategy that circumvents the prolonged and laborious preparation period of skin substitutes and allows skin cells self-organization toward improved healing. Human dermal/epidermal cell fractions were entrapped directly from isolation within a gellan gum/hyaluronic acid (GG-HA) spongy-like hydrogel formed from an off-the-shelf dried polymeric network. Upon transplantation into full-thickness mice wounds, the proposed constructs accelerated the wound closure rate and re-epithelialization, as well as tissue neovascularization. A synergistic effect of the GG-HA matrix and the transplanted cells over those processes was demonstrated at early time points. Despite the human-derived and chimeric blood vessels found, the proposed matrix did not succeed in prolonging cells residence time and in sustaining the self-organization of transplanted human cells possibly due to primitive degradation. Despite this, the herein proposed approach open the opportunity to tackle wound healing at early stages contributing to re-epithelialization and neovascularization. PMID:24299468
NASA Astrophysics Data System (ADS)
Yang, Jia Sheng
2018-06-01
In this paper, we investigate a H∞ memory controller with input limitation minimization (HMCIM) for offshore jacket platforms stabilization. The main objective of this study is to reduce the control consumption as well as protect the actuator when satisfying the requirement of the system performance. First, we introduce a dynamic model of offshore platform with low order main modes based on mode reduction method in numerical analysis. Then, based on H∞ control theory and matrix inequality techniques, we develop a novel H∞ memory controller with input limitation. Furthermore, a non-convex optimization model to minimize input energy consumption is proposed. Since it is difficult to solve this non-convex optimization model by optimization algorithm, we use a relaxation method with matrix operations to transform this non-convex optimization model to be a convex optimization model. Thus, it could be solved by a standard convex optimization solver in MATLAB or CPLEX. Finally, several numerical examples are given to validate the proposed models and methods.
Convex Banding of the Covariance Matrix
Bien, Jacob; Bunea, Florentina; Xiao, Luo
2016-01-01
We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings. PMID:28042189
Engineering micropatterned surfaces to modulate the function of vascular stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jennifer; Wu, Michelle; Chu, Julia
2014-02-21
Highlights: • We examine vascular stem cell function on microgrooved and micropost patterned polymer substrates. • 10 μm microgrooved surfaces significantly lower VSC proliferation but do not modulate calcified matrix deposition. • Micropost surfaces significantly lower VSC proliferation and decrease calcified matrix deposition. - Abstract: Multipotent vascular stem cells have been implicated in vascular disease and in tissue remodeling post therapeutic intervention. Hyper-proliferation and calcified extracellular matrix deposition of VSC cause blood vessel narrowing and plaque hardening thereby increasing the risk of myocardial infarct. In this study, to optimize the surface design of vascular implants, we determined whether micropatterned polymermore » surfaces can modulate VSC differentiation and calcified matrix deposition. Undifferentiated rat VSC were cultured on microgrooved surfaces of varied groove widths, and on micropost surfaces. 10 μm microgrooved surfaces elongated VSC and decreased cell proliferation. However, microgrooved surfaces did not attenuate calcified extracellular matrix deposition by VSC cultured in osteogenic media conditions. In contrast, VSC cultured on micropost surfaces assumed a dendritic morphology, were significantly less proliferative, and deposited minimal calcified extracellular matrix. These results have significant implications for optimizing the design of cardiovascular implant surfaces.« less
Convex Banding of the Covariance Matrix.
Bien, Jacob; Bunea, Florentina; Xiao, Luo
2016-01-01
We introduce a new sparse estimator of the covariance matrix for high-dimensional models in which the variables have a known ordering. Our estimator, which is the solution to a convex optimization problem, is equivalently expressed as an estimator which tapers the sample covariance matrix by a Toeplitz, sparsely-banded, data-adaptive matrix. As a result of this adaptivity, the convex banding estimator enjoys theoretical optimality properties not attained by previous banding or tapered estimators. In particular, our convex banding estimator is minimax rate adaptive in Frobenius and operator norms, up to log factors, over commonly-studied classes of covariance matrices, and over more general classes. Furthermore, it correctly recovers the bandwidth when the true covariance is exactly banded. Our convex formulation admits a simple and efficient algorithm. Empirical studies demonstrate its practical effectiveness and illustrate that our exactly-banded estimator works well even when the true covariance matrix is only close to a banded matrix, confirming our theoretical results. Our method compares favorably with all existing methods, in terms of accuracy and speed. We illustrate the practical merits of the convex banding estimator by showing that it can be used to improve the performance of discriminant analysis for classifying sound recordings.
Mirastschijski, Ursula; Kerzel, Corinna; Schnabel, Reinhild; Strauss, Sarah; Breuing, Karl-Heinz
2013-10-01
Xenogenous dermal matrices are used for hernia repair and breast reconstruction. Full-thickness skin replacement is needed after burn or degloving injuries with exposure of tendons or bones. The authors used a human skin organ culture model to study whether porcine reconstructive tissue matrix (Strattice) is effective as a dermal tissue replacement. Skin cells or split-thickness skin grafts were seeded onto human deepidermized dermis, Strattice, and Matriderm. Cellular resurfacing and matrix infiltration were monitored by live fluorescence imaging, histology, and electron microscopy. Proliferation, apoptosis, cell differentiation, and adhesion were analyzed by immunohistochemistry. Epithelial resurfacing and vertical proliferation were reduced and delayed with both bioartificial matrices compared with deepidermized dermis; however, no differences in apoptosis, cell differentiation, or basement membrane formation were found. Vertical penetration was greatest on Matriderm, whereas no matrix infiltration was found on Strattice in the first 12 days. Uncompromised horizontal resurfacing was greatest with Strattice but was absent with Matriderm. Strattice showed no stimulatory effect on cellular inflammation. Matrix texture and surface properties governed cellular performance on tissues. Although dense dermal compaction delayed vertical cellular ingrowth for Strattice, it allowed uncompromised horizontal resurfacing. Dense dermal compaction may slow matrix decomposition and result in prolonged biomechanical stability of the graft. Reconstructive surgeons should choose the adequate matrix substitute depending on biomechanical requirements at the recipient site. Strattice may be suitable as a dermal replacement at recipient sites with high mechanical load requirements.
Effects of Zn on magnetic properties and pseudogap of optimally doped La 2-xSr xCuO 4
NASA Astrophysics Data System (ADS)
Islam, R. S.; Naqib, S. H.
2010-01-01
The effects of Zn substitution on the uniform ( q = 0) magnetic susceptibility, χ( T), of optimally doped ( x = 0.15) La 2-xSr xCu 1-yZn yO 4 sintered samples were investigated over a wide range of Zn contents ( y). Non-magnetic Zn was found to enhance χ( T) systematically and depress T c very effectively. We have extracted the characteristic pseudogap energy scale, ε g, from the analysis of χ( T) data. Unlike T c, ε g was found to be fairly insensitive to the level of Zn substitution. This supports the scenario where the pseudogap phenomenon has non-superconducting origin. We have also analyzed the Zn-induced Curie-like enhancement of the χ( T) data using different models and discussed the various possible implications.
Optimized alumina coagulants for water treatment
Nyman, May D [Albuquerque, NM; Stewart, Thomas A [Albuquerque, NM
2012-02-21
Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-07
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-21
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication
Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...
2015-01-01
The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less
Research on Ratio of Dosage of Drugs in Traditional Chinese Prescriptions by Data Mining.
Yu, Xing-Wen; Gong, Qing-Yue; Hu, Kong-Fa; Mao, Wen-Jing; Zhang, Wei-Ming
2017-01-01
Maximizing the effectiveness of prescriptions and minimizing adverse effects of drugs is a key component of the health care of patients. In the practice of traditional Chinese medicine (TCM), it is important to provide clinicians a reference for dosing of prescribed drugs. The traditional Cheng-Church biclustering algorithm (CC) is optimized and the data of TCM prescription dose is analyzed by using the optimization algorithm. Based on an analysis of 212 prescriptions related to TCM treatment of kidney diseases, the study generated 87 prescription dose quantum matrices and each sub-matrix represents the referential value of the doses of drugs in different recipes. The optimized CC algorithm can effectively eliminate the interference of zero in the original dose matrix of TCM prescriptions and avoid zero appearing in output sub-matrix. This results in the ability to effectively analyze the reference value of drugs in different prescriptions related to kidney diseases, so as to provide valuable reference for clinicians to use drugs rationally.
Optimization of gluten-free formulations for French-style breads.
Mezaize, S; Chevallier, S; Le Bail, A; de Lamballerie, M
2009-04-01
The formulation of gluten-free bread, which will be suitable for patients with coeliac disease, was optimized to provide bread similar to French bread. The effects of the presence of hydrocolloids and the substitution of the flour basis by flour or proteins from different sources were studied. The added ingredients were (1) hydrocolloids (carboxymethylcellulose [CMC], guar gum, hydroxypropylmethylcellulose [HPMC], and xanthan gum), and (2) substitutes (buckwheat flour, whole egg powder, and whey proteins). The bread quality parameters measured were specific volume, dry matter of bread, crust color, crumb hardness, and gas cell size distribution. Specific volume was increased by guar gum and HPMC. Breads with guar gum had color characteristics similar to French bread. Hardness decreased with the addition of hydrocolloids, especially HPMC and guar. Breads with guar gum had the most heterogeneous cell size distribution, and guar gum was therefore selected for further formulations. Bread prepared with buckwheat flour had improved quality: an increased specific volume, a softer texture, color characteristics, and gas-cell size distribution similar to French bread. Bread with 1.9% guar gum (w/w, total flour basis) and 5% buckwheat flour (of all flours and substitutes) mimicked French bread quality attributes.
Replica approach to mean-variance portfolio optimization
NASA Astrophysics Data System (ADS)
Varga-Haszonits, Istvan; Caccioli, Fabio; Kondor, Imre
2016-12-01
We consider the problem of mean-variance portfolio optimization for a generic covariance matrix subject to the budget constraint and the constraint for the expected return, with the application of the replica method borrowed from the statistical physics of disordered systems. We find that the replica symmetry of the solution does not need to be assumed, but emerges as the unique solution of the optimization problem. We also check the stability of this solution and find that the eigenvalues of the Hessian are positive for r = N/T < 1, where N is the dimension of the portfolio and T the length of the time series used to estimate the covariance matrix. At the critical point r = 1 a phase transition is taking place. The out of sample estimation error blows up at this point as 1/(1 - r), independently of the covariance matrix or the expected return, displaying the universality not only of the critical exponent, but also the critical point. As a conspicuous illustration of the dangers of in-sample estimates, the optimal in-sample variance is found to vanish at the critical point inversely proportional to the divergent estimation error.
Benavent, Llorenç; Baeza, Alejandro; Freckleton, Megan
2018-06-06
The use of readily available chiral trans -cyclohexanediamine-benzimidazole derivatives as bifunctional organocatalysts in the asymmetric electrophilic amination of unprotected 3-substituted oxindoles is presented. Different organocatalysts were evaluated; the most successful one contained a dimethylamino moiety ( 5 ). With this catalyst under optimized conditions, different oxindoles containing a wide variety of substituents at the 3-position were aminated in good yields and with good to excellent enantioselectivities using di- tert -butylazodicarboxylate as the aminating agent. The procedure proved to be also efficient for the amination of 3-substituted benzofuranones, although with moderate results. A bifunctional role of the catalyst, acting as Brønsted base and hydrogen bond donor, is proposed according to the experimental results observed.
Adam, Waldemar; Nikolaus, Achim; Sauer, Jürgen
1999-05-14
The photophysical data for the polycyclic, bridgehead-substituted derivatives 1-10 of the photoreluctant diazabicyclo[2.2.2]oct-2-ene (DBO) are presented. Substitution on the bridgehead positions with radical-stabilizing substituents enhances the photoreactivity (Phi(r)) and decreases the fluorescence quantum yields (Phi(f)) and lifetimes (tau) compared to the parent DBO. The annelated rings have no influence on the photoreactivity, except when steric interactions with an alpha substituent hinder the optimal radical-stabilizing conformation. The fused rings and some of the bridgehead substituents reduce the solvent-induced quenching of the singlet-excited azo chromophore by steric shielding of the azo group and, thus, increase the fluorescence quantum yields and lifetimes.
High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications
NASA Technical Reports Server (NTRS)
Raj, Sai V.; Bhatt, Ramkrishna
2013-01-01
The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.
Optimal development of matrix elasticity
Majkut, Stephanie; Idema, Timon; Swift, Joe; Krieger, Christine; Liu, Andrea; Discher, Dennis E.
2014-01-01
Summary In development and differentiation, morphological changes often accompany mechanical changes [1], but it is unclear if or when cells in embryos sense tissue elasticity. The earliest embryo is uniformly pliable while adult tissues vary widely in mechanics from soft brain and stiff heart to rigid bone [2], but the sensitivity of cells to microenvironment elasticity is debated [3]. Regenerative cardiology provides strong motivation because rigid post-infarct regions limit pumping by the adult heart [4]. Here we focus on embryonic heart and isolated cardiomyocytes, which both beat spontaneously. Tissue elasticity, Et, increases daily for heart to 1-2 kiloPascal by embryonic day-4 (E4), and although this is ∼10-fold softer than adult heart, the beating contractions of E4-cardiomyocytes prove optimal at ∼Et,E4 both in vivo and in vitro. Proteomics reveals daily increases in a small subset of proteins, namely collagen plus cardiac-specific excitation-contraction proteins. Rapid softening of the heart's matrix with collagenase or stiffening it with enzymatic crosslinking suppresses beating. Sparsely cultured E4-cardiomyocytes on collagen-coated gels likewise show maximal contraction on matrices with native E4 stiffness, highlighting cell-intrinsic mechanosensitivity. While an optimal elasticity for striation proves consistent with the mathematics of force-driven sarcomere registration, contraction wave-speed is linear in Et as theorized for Excitation-Contraction Coupled to Matrix Elasticity. Mechanosensitive stem cell cardiogenesis helps generalize tissue results, which demonstrate how myosin-II organization and contractile function is optimally matched to the load presented by matrix elasticity. PMID:24268417
Face verification with balanced thresholds.
Yan, Shuicheng; Xu, Dong; Tang, Xiaoou
2007-01-01
The process of face verification is guided by a pre-learned global threshold, which, however, is often inconsistent with class-specific optimal thresholds. It is, hence, beneficial to pursue a balance of the class-specific thresholds in the model-learning stage. In this paper, we present a new dimensionality reduction algorithm tailored to the verification task that ensures threshold balance. This is achieved by the following aspects. First, feasibility is guaranteed by employing an affine transformation matrix, instead of the conventional projection matrix, for dimensionality reduction, and, hence, we call the proposed algorithm threshold balanced transformation (TBT). Then, the affine transformation matrix, constrained as the product of an orthogonal matrix and a diagonal matrix, is optimized to improve the threshold balance and classification capability in an iterative manner. Unlike most algorithms for face verification which are directly transplanted from face identification literature, TBT is specifically designed for face verification and clarifies the intrinsic distinction between these two tasks. Experiments on three benchmark face databases demonstrate that TBT significantly outperforms the state-of-the-art subspace techniques for face verification.
Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression.
Gao, Guangwei; Yang, Jian; Jing, Xiaoyuan; Huang, Pu; Hua, Juliang; Yue, Dong
2016-01-01
In many real-world applications such as smart card solutions, law enforcement, surveillance and access control, the limited training sample size is the most fundamental problem. By making use of the low-rank structural information of the reconstructed error image, the so-called nuclear norm-based matrix regression has been demonstrated to be effective for robust face recognition with continuous occlusions. However, the recognition performance of nuclear norm-based matrix regression degrades greatly in the face of the small sample size problem. An alternative solution to tackle this problem is performing matrix regression on each patch and then integrating the outputs from all patches. However, it is difficult to set an optimal patch size across different databases. To fully utilize the complementary information from different patch scales for the final decision, we propose a multi-scale patch-based matrix regression scheme based on which the ensemble of multi-scale outputs can be achieved optimally. Extensive experiments on benchmark face databases validate the effectiveness and robustness of our method, which outperforms several state-of-the-art patch-based face recognition algorithms.
Unifying time evolution and optimization with matrix product states
NASA Astrophysics Data System (ADS)
Haegeman, Jutho; Lubich, Christian; Oseledets, Ivan; Vandereycken, Bart; Verstraete, Frank
2016-10-01
We show that the time-dependent variational principle provides a unifying framework for time-evolution methods and optimization methods in the context of matrix product states. In particular, we introduce a new integration scheme for studying time evolution, which can cope with arbitrary Hamiltonians, including those with long-range interactions. Rather than a Suzuki-Trotter splitting of the Hamiltonian, which is the idea behind the adaptive time-dependent density matrix renormalization group method or time-evolving block decimation, our method is based on splitting the projector onto the matrix product state tangent space as it appears in the Dirac-Frenkel time-dependent variational principle. We discuss how the resulting algorithm resembles the density matrix renormalization group (DMRG) algorithm for finding ground states so closely that it can be implemented by changing just a few lines of code and it inherits the same stability and efficiency. In particular, our method is compatible with any Hamiltonian for which ground-state DMRG can be implemented efficiently. In fact, DMRG is obtained as a special case of our scheme for imaginary time evolution with infinite time step.
Ubiquitination of specific mitochondrial matrix proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, Gilad; Ziv, Tamar; Braten, Ori
2016-06-17
Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinatedmore » proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.« less
Communication Optimal Parallel Multiplication of Sparse Random Matrices
2013-02-21
Definition 2.1), and (2) the algorithm is sparsity- independent, where the computation is statically partitioned to processors independent of the sparsity...struc- ture of the input matrices (see Definition 2.5). The second assumption applies to nearly all existing al- gorithms for general sparse matrix-matrix...where A and B are n× n ER(d) matrices: Definition 2.1 An ER(d) matrix is an adjacency matrix of an Erdős-Rényi graph with parameters n and d/n. That
Pittenauer, Ernst; Rehulka, Pavel; Winkler, Wolfgang; Allmaier, Günter
2015-07-01
A new type of low-mass substituted 4-oxazolin product ions of [M + H](+) precursor ions of aminophospholipids (glycerophosphatidylethanolamine, glycerophosphatidyl-N-methylethanolamine, glycerophosphatidyl-N,N-dimethylethanolamine, glycerophosphatidylserine) resulting from high-energy collision-induced dissociation (matrix-assisted laser desorption/ionization time-of-flight/reflectron time-of-flight mass spectrometry) and low-energy collision-induced dissociation (e.g., electrospray ionization quadrupole reflectron time-of-flight mass spectrometry) with accurate mass determination is described; these were previously misidentified as CHO-containing radical cationic product ions. The mechanism for the formation of these ions is proposed to be via rapid loss of water followed by cyclization to an 11-membered-ring transition state for the sn-1 fatty acid substituent and to a ten-membered-ring transition state for the sn-2 fatty acid substituent, and via final loss of monoacylglycerol phosphate, leading to substituted 4-oxazolin product ions. The minimum structural requirement for this interesting skeletal rearrangement fragmentation is an amino group linked to at least one hydrogen atom (i.e., ethanolamine, N-methylethanolamine, serine). Therefore, N,N-dimethylethanolamine derivates do not exhibit this type of fragmentation. The analytical value of these product ions is given by the fact that by post source decay and particularly high-energy collision-induced dissociation achieved via matrix-assisted laser desorption/ionization time-of-flight/reflectron time-of-flight mass spectrometry, the sn-2-related substituted 4-oxazolin product ion is always significantly more abundant than the sn-1-related one, which is quite helpful for detailed structural analysis of complex lipids. All other important product ions found are described in detail (following our previously published glycerophospholipid product ion nomenclature; Pittenauer and Allmaier, Int. J. Mass. Spectrom. 301:90-1012, 2011).
Microseed matrix screening for optimization in protein crystallization: what have we learned?
D'Arcy, Allan; Bergfors, Terese; Cowan-Jacob, Sandra W; Marsh, May
2014-09-01
Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems.
Microseed matrix screening for optimization in protein crystallization: what have we learned?
D’Arcy, Allan; Bergfors, Terese; Cowan-Jacob, Sandra W.; Marsh, May
2014-01-01
Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems. PMID:25195878
Redundant interferometric calibration as a complex optimization problem
NASA Astrophysics Data System (ADS)
Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.
2018-05-01
Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.
Armour, Alexis D; Fish, Joel S; Woodhouse, Kimberly A; Semple, John L
2006-03-01
Dermal substitutes derived from xenograft materials require elaborate processing at a considerable cost. Acellularized porcine dermis is a readily available material associated with minimal immunogenicity. The objective of this study was to evaluate acellularized pig dermis as a scaffold for human fibroblasts. In vitro methods were used to evaluate fibroblast adherence, proliferation, and migration on pig acellularized dermal matrix. Acellular human dermis was used as a control. Pig acellularized dermal matrix was found to be inferior to human acellularized dermal matrix as a scaffold for human fibroblasts. Significantly more samples of human acellularized dermal matrix (83 percent, n = 24; p < 0.05) demonstrated fibroblast infiltration below the cell-seeded surface than pig acellularized dermal matrix (31 percent, n = 49). Significantly more (p < 0.05) fibroblasts infiltrated below the surface of human acellularized dermal matrix (mean, 1072 +/- 80 cells per section; n = 16 samples) than pig acellularized dermal matrix (mean, 301 +/- 48 cells per section; n = 16 samples). Fibroblasts migrated significantly less (p < 0.05) distance from the cell-seeded pig acellularized dermal matrix surface than in the human acellularized dermal matrix (78.8 percent versus 38.3 percent cells within 150 mum from the surface, respectively; n = 5). Fibroblasts proliferated more rapidly (p < 0.05) on pig acellularized dermal matrix (n = 9) than on the human acellularized dermal matrix (7.4-fold increase in cell number versus 1.8-fold increase, respectively; n = 9 for human acellularized dermal matrix). There was no difference between the two materials with respect to fibroblast adherence (8120 versus 7436 average adherent cells per section, for pig and human acellularized dermal matrix, respectively; n = 20 in each group; p > 0.05). Preliminary findings suggest that substantial differences may exist between human fibroblast behavior in cell-matrix interactions of porcine and human acellularized dermis.
Tissue engineered constructs for peripheral nerve surgery
Johnson, P. J.; Wood, M. D.; Moore, A. M.; Mackinnon, S. E.
2013-01-01
Summary Background Tissue engineering has been defined as “an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ”. Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump. Methods A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal. Results Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons. Conclusions The field of tissue engineering should consider its challenge to not only meet the autograft “gold standard” but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft. PMID:24385980
Gao, Hongli; Zhu, Tiejun; Zhao, Xinbing; Deng, Yuan
2014-10-07
Mg2Si1-xSnx alloys are a prospective material for thermoelectric generators at moderate temperatures. The thermoelectric properties of Mg2Si0.5Sn0.5-based thermoelectric materials with only Zn substitution or Zn/Sb co-doping were investigated. Isoelectronic Zn substitution did not affect the carrier concentration, but improved the carrier mobility. Zn atoms incorporated into a Sb-doped Mg2Si0.5Sn0.5 matrix simultaneously boosted the power factor and suppressed the lattice thermal conductivity, leading to an enhancement of the thermoelectric figure of merit ZT of the resulting bulk materials. The interplay between the electron and phonon transport of Mg2Si0.5Sn0.49Sb0.01 substituted with Zn at Mg sites results in an enhancement of the ZT by 25% at ∼730 K, from ZT≈ 0.8 in Mg2Si0.5Sn0.49Sb0.01 to ZT≈ 1.0 in Mg1.98Zn0.02Si0.5Sn0.49Sb0.01. Solid solutions in the Mg2Si-Mg2Sn system appear to be more promising for thermoelectric applications.
Intermetallics as innovative CRM-free materials
NASA Astrophysics Data System (ADS)
Novák, Pavel; Jaworska, Lucyna; Cabibbo, Marcello
2018-03-01
Many of currently used technical materials cannot be imagined without the use of critical raw materials. They require chromium (e.g. in stainless and tool steels), tungsten and cobalt (tool materials, heat resistant alloys), niobium (steels and modern biomaterials). Therefore there is a need to find substitutes to help the European economy. A promising solution can be the application of intermetallics. These materials offer wide variety of interesting properties, such as high hardness and wear resistance or high chemical resistance. In this paper, the overview of possible substitute materials among intermetallics is presented. Intermetallics based on aluminides and silicides are shown as corrosion resistant materials, composites composed of ceramics in intermetallic matrix as possible tool materials. The manufacturing processes are being developed to minimize the disadvantages of these materials, mainly the room-temperature brittleness.
Leadership for the 1970s. A Matrix of Organizational Leadership Dimensions
1976-10-01
be carriud out. AN Drucker (1974) stated, the management 8cience intended to "substitute certainty for guesswork, knowledge for judgment, ’hard facts...requirements. But, as Drucker (1974) emphasized, besides determin- .ing goals and objectives, the effective manager decides what is needed to achieve these...is a functional one contributing significantly to effective management . Drucker (1974), however, offered a caveat to relying solely upon the
Trust Method for Multi-Agent Consensus
2012-03-22
irreducible10 and by Lemma 1, is also stochastic. And according to the Perron - Frobenius theorem, the fact that has an eigenvalue of 1 with a positive...if the limit lim→∞ exists. According to the Perron - Frobenius theorem, this limit exists for primitive matrices and according to Lemma 2, ...and > 0. Here, is known as the Perron matrix of graph with parameter . If we substitute the normalized Laplacian for in
Covariance Recovery from a Square Root Information Matrix for Data Association
2009-07-02
association is one of the core problems of simultaneous localization and mapping (SLAM), and it requires knowledge about the uncertainties of the...association is one of the core problems of simultaneous localization and mapping (SLAM), and it requires knowledge about the uncertainties of the...back-substitution as well as efficient access to marginal covariances, which is described next. 2.2. Recovering Marginal Covariances Knowledge of the
Lacome, Mathieu; Piscione, Julien; Hager, Jean-Philippe; Carling, Christopher
2016-09-01
To investigate the patterns and performance of substitutions in 18 international 15-a-side men's rugby union matches. A semiautomatic computerized time-motion system compiled 750 performance observations for 375 players (422 forwards, 328 backs). Running and technical-performance measures included total distance run, high-intensity running (>18.0 km/h), number of individual ball possessions and passes, percentage of passes completed, and number of attempted and percentage of successful tackles. A total of 184 substitutions (85.2%) were attributed to tactical and 32 (14.8%) to injury purposes respectively. The mean period for non-injury-purpose substitutions in backs (17.7%) occurred between 70 and 75 min, while forward substitutions peaked equally between 50-55 and 60-65 min (16.4%). Substitutes generally demonstrated improved running performance compared with both starter players who completed games and players whom they replaced (small differences, ES -0.2 to 0.5) in both forwards and backs over their entire time played. There was also a trend for better running performance in forward and back substitutes over their first 10 min of play compared with the final 10 min for replaced players (small to moderate differences, ES 0.3-0.6). Finally, running performance in both forward and back substitutes was generally lower (ES -0.1 to 0.3, unclear or small differences) over their entire 2nd-half time played compared with their first 10 min of play. The impact of substitutes on technical performance was generally considered unclear. This information provides practitioners with practical data relating to the physical and technical contributions of substitutions that subsequently could enable optimization of their impact on match play.
Protein substitute dosage in PKU: how much do young patients need?
MacDonald, A; Chakrapani, A; Hendriksz, C; Daly, A; Davies, P; Asplin, D; Hall, K; Booth, I W
2006-01-01
Background The optimal dose of protein substitute has not been determined in children with phenylketonuria (PKU). Aim To determine if a lower dose of protein substitute could achieve the same or better degree of blood phenylalanine control when compared to the dosage recommended by the UK MRC.1 Methods In a six week randomised, crossover study, two doses of protein substitute (Protocol A: 2 g/kg/day of protein equivalent; Protocol B: 1.2 g/kg/day protein equivalent) were compared in 25 children with well controlled PKU aged 2–10 years (median 6 years). Each dose of protein substitute was taken for 14 days, with a 14 day washout period in between. Twice daily blood samples (fasting pre‐breakfast and evening, at standard times) for plasma phenylalanine were taken on day 8–14 of each protocol. The median usual dose of protein substitute was 2.2 g/kg/day (range 1.5–3.1 g/kg/day). Results When compared with control values, median plasma phenylalanine on the low dose of protein substitute increased at pre‐breakfast by 301 μmol/l (95% CI 215 to 386) and in the evening by 337 μmol/l (95% CI 248 to 431). On the high dose of protein substitute, plasma phenylalanine concentrations remained unchanged when compared to control values. However, wide variability was seen between subjects. Conclusions A higher dosage of protein substitute appeared to contribute to lower blood phenylalanine concentrations in PKU, but it did have a variable and individual impact and may have been influenced by the carbohydrate (+/− fat) content of the protein substitute. PMID:16547085
Electronic Materials Based on Co0.5Zn0.5Fe2O4/Pb(Zr0.52Ti0.48)O3 Nanocomposites
NASA Astrophysics Data System (ADS)
Mandal, Avinandan; Das, Chapal Kumar
2013-01-01
The reduction of the radar cross-sectional area achieved in stealth technology has been a major challenge since the Second World War, being accomplished by covering the metallic surfaces of aircraft, ships, tanks, etc. with radar-absorbing materials. Nowadays, the development of lightweight microwave-absorbing materials with reduced thickness has a greater impact due to their excellent microwave-absorbing properties. In this study, the microwave-absorbing properties of nanocomposites based on Zn-substituted cobalt ferrite and lead zirconium titanate have been investigated in the X-band (8.2 GHz to 12.4 GHz) region. Zn-substituted cobalt ferrite (CZF) and lead zirconium titanate (PZT) nanoparticles were prepared by the coprecipitation and homogeneous precipitation method, respectively. Nanocomposites were developed by dispersing these nanoparticles with different compositions into an epoxy resin matrix. All the composite materials showed more than 90% microwave absorption in the X-band region. The nanocomposite containing CZF/PZT (3:1) with 2 mm thickness displayed maximum return loss of -47.87 dB at 12.23 GHz. The microwave absorbers based on epoxy resin polymeric matrix exhibited better absorbing properties when the dielectric contribution matched the magnetic contribution, and the loss mechanisms were mainly due to the dielectric loss.
Algebraic solution for the forward displacement analysis of the general 6-6 stewart mechanism
NASA Astrophysics Data System (ADS)
Wei, Feng; Wei, Shimin; Zhang, Ying; Liao, Qizheng
2016-01-01
The solution for the forward displacement analysis(FDA) of the general 6-6 Stewart mechanism(i.e., the connection points of the moving and fixed platforms are not restricted to lying in a plane) has been extensively studied, but the efficiency of the solution remains to be effectively addressed. To this end, an algebraic elimination method is proposed for the FDA of the general 6-6 Stewart mechanism. The kinematic constraint equations are built using conformal geometric algebra(CGA). The kinematic constraint equations are transformed by a substitution of variables into seven equations with seven unknown variables. According to the characteristic of anti-symmetric matrices, the aforementioned seven equations can be further transformed into seven equations with four unknown variables by a substitution of variables using the Gröbner basis. Its elimination weight is increased through changing the degree of one variable, and sixteen equations with four unknown variables can be obtained using the Gröbner basis. A 40th-degree univariate polynomial equation is derived by constructing a relatively small-sized 9´9 Sylvester resultant matrix. Finally, two numerical examples are employed to verify the proposed method. The results indicate that the proposed method can effectively improve the efficiency of solution and reduce the computational burden because of the small-sized resultant matrix.
Composition of Mineral Produced by Dental Mesenchymal Stem Cells
Volponi, A.A.; Gentleman, E.; Fatscher, R.; Pang, Y.W.Y.; Gentleman, M.M.; Sharpe, P.T.
2015-01-01
Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. PMID:26253190
Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.
2000-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system.. Shennan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this (Akgun et al., 1998b). SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.
Optimal Tikhonov Regularization in Finite-Frequency Tomography
NASA Astrophysics Data System (ADS)
Fang, Y.; Yao, Z.; Zhou, Y.
2017-12-01
The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.
Unrealistic phylogenetic trees may improve phylogenetic footprinting.
Nettling, Martin; Treutler, Hendrik; Cerquides, Jesus; Grosse, Ivo
2017-06-01
The computational investigation of DNA binding motifs from binding sites is one of the classic tasks in bioinformatics and a prerequisite for understanding gene regulation as a whole. Due to the development of sequencing technologies and the increasing number of available genomes, approaches based on phylogenetic footprinting become increasingly attractive. Phylogenetic footprinting requires phylogenetic trees with attached substitution probabilities for quantifying the evolution of binding sites, but these trees and substitution probabilities are typically not known and cannot be estimated easily. Here, we investigate the influence of phylogenetic trees with different substitution probabilities on the classification performance of phylogenetic footprinting using synthetic and real data. For synthetic data we find that the classification performance is highest when the substitution probability used for phylogenetic footprinting is similar to that used for data generation. For real data, however, we typically find that the classification performance of phylogenetic footprinting surprisingly increases with increasing substitution probabilities and is often highest for unrealistically high substitution probabilities close to one. This finding suggests that choosing realistic model assumptions might not always yield optimal predictions in general and that choosing unrealistically high substitution probabilities close to one might actually improve the classification performance of phylogenetic footprinting. The proposed PF is implemented in JAVA and can be downloaded from https://github.com/mgledi/PhyFoo. : martin.nettling@informatik.uni-halle.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Chang, S; Wong, K W; Zhang, W; Zhang, Y
1999-08-10
An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.
NASA Astrophysics Data System (ADS)
Chang, Shengjiang; Wong, Kwok-Wo; Zhang, Wenwei; Zhang, Yanxin
1999-08-01
An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.
Chopped random-basis quantum optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caneva, Tommaso; Calarco, Tommaso; Montangero, Simone
2011-08-15
In this work, we describe in detail the chopped random basis (CRAB) optimal control technique recently introduced to optimize time-dependent density matrix renormalization group simulations [P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106, 190501 (2011)]. Here, we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.
NASA Astrophysics Data System (ADS)
Kim, Euiyoung; Cho, Maenghyo
2017-11-01
In most non-linear analyses, the construction of a system matrix uses a large amount of computation time, comparable to the computation time required by the solving process. If the process for computing non-linear internal force matrices is substituted with an effective equivalent model that enables the bypass of numerical integrations and assembly processes used in matrix construction, efficiency can be greatly enhanced. A stiffness evaluation procedure (STEP) establishes non-linear internal force models using polynomial formulations of displacements. To efficiently identify an equivalent model, the method has evolved such that it is based on a reduced-order system. The reduction process, however, makes the equivalent model difficult to parameterize, which significantly affects the efficiency of the optimization process. In this paper, therefore, a new STEP, E-STEP, is proposed. Based on the element-wise nature of the finite element model, the stiffness evaluation is carried out element-by-element in the full domain. Since the unit of computation for the stiffness evaluation is restricted by element size, and since the computation is independent, the equivalent model can be constructed efficiently in parallel, even in the full domain. Due to the element-wise nature of the construction procedure, the equivalent E-STEP model is easily characterized by design parameters. Various reduced-order modeling techniques can be applied to the equivalent system in a manner similar to how they are applied in the original system. The reduced-order model based on E-STEP is successfully demonstrated for the dynamic analyses of non-linear structural finite element systems under varying design parameters.
Synthesis of Dibenzo[hi,st]ovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix.
Paternò, Giuseppe M; Chen, Qiang; Wang, Xiao-Ye; Liu, Junzhi; Motti, Silvia G; Petrozza, Annamaria; Feng, Xinliang; Lanzani, Guglielmo; Müllen, Klaus; Narita, Akimitsu; Scotognella, Francesco
2017-06-06
A large number of graphene molecules, or large polycyclic aromatic hydrocarbons (PAHs), have been synthesized and display various optoelectronic properties. Nevertheless, their potential for application in photonics has remained largely unexplored. Herein, we describe the synthesis of a highly luminescent and stable graphene molecule, namely a substituted dibenzo[hi,st]ovalene (DBO 1), with zigzag edges and elucidate its promising optical-gain properties by means of ultrafast transient absorption spectroscopy. Upon incorporation of DBO into an inert polystyrene matrix, amplified stimulated emission can be observed with a relatively low power threshold (ca. 60 μJ cm -2 ), thus highlighting its high potential for lasing applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello
2015-02-25
This work presents the synthesis and characterization of a new zinc phthalocyanine complex tetrasubstituted with 3-carboxyphenoxy in the peripheral position. The photophysical properties of the new complex are compared with those of phthalocyanines tetra substituted with 3-carboxyphenoxy or 4-carboxyphenoxy at non-peripheral positions. Three phthalocyanine complexes were encapsulated within silica matrix to form a core shell and the hybrid nanoparticles particles obtained were spherical and mono dispersed. When encapsulated within the silica shell nanoparticles, phthalocyanines showed improved triplet quantum yields and singlet oxygen quantum yields than surface grafted derivatives. The improvements observed could be attributed to the protection provided for the phthalocyanine complexes by the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
Harrell, William A; Vieira, Rebecca C; Ensel, Susan M; Montgomery, Vicki; Guernieri, Rebecca; Eccard, Vanessa S; Campbell, Yvette; Roxas-Duncan, Virginia; Cardellina, John H; Webb, Robert P; Smith, Leonard A
2017-02-01
Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC 50 values ⩽1μM and 11 effective at ⩽2μM in an ex vivo assay. Published by Elsevier Ltd.
Improved high-temperature resistant matrix resins
NASA Technical Reports Server (NTRS)
Green, H. E.; Chang, G. E.; Wright, W. F.; Ueda, K.; Orell, M. K.
1989-01-01
A study was performed with the objective of developing matrix resins that exhibit improved thermo-oxidative stability over state-of-the-art high temperature resins for use at temperatures up to 644 K (700 F) and air pressures up to 0.7 MPa (100 psia). The work was based upon a TRW discovered family of polyimides currently licensed to and marketed by Ethyl Corporation as EYMYD(R) resins. The approach investigated to provide improved thermo-oxidative properties was to use halogenated derivatives of the diamine, 2, 2-bis (4-(4-aminophenoxy)phenyl) hexafluoropropane (4-BDAF). Polyimide neat resins and Celion(R) 12,000 composites prepared from fluorine substituted 4-BDAF demonstrated unexpectedly lower glass transition temperatures (Tg) and thermo-oxidative stabilities than the baseline 4-BDAF/PMDA polymer.
NASA Astrophysics Data System (ADS)
Chaikina, M. V.; Bulina, N. V.; Ishchenko, A. V.; Prosanov, I. Yu.
2014-02-01
The mechanochemical method is used to synthesize samples of hydroxyapatite (HA) with substitution of the phosphate ion by silicate and zirconate ions, and substitution of calcium ions by copper ions. In the process of mechanochemical synthesis, carbonate ions and water molecules are incorporated into the structure of HA due to interaction of components of the reaction mixture with air. Intrusion of carbonate into the structure of HA is a competing process with modification of apatite by silicate and zirconate anions; therefore, the composition of the product during synthesis differs from the prescribed one. After annealing of the samples, the composition of the anion-modified HA can be described by the formula Са10(РО4)6- х (АО4) х (ОН)2- х , where (АО4)4- is the modifying anion. Substitution of calcium by copper ions localized at the Са1 position has been detected. Silver ions are not incorporated into the structure of HA, but are distributed in the apatite matrix in the form of nanocrystals of metallic silver.
Abelha, T F; Phillips, T W; Bannock, J H; Nightingale, A M; Dreiss, C A; Kemal, E; Urbano, L; deMello, J C; Green, M; Dailey, L A
2017-02-02
This study compares the performance of a microfluidic technique and a conventional bulk method to manufacture conjugated polymer nanoparticles (CPNs) embedded within a biodegradable poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) (PEG 5K -PLGA 55K ) matrix. The influence of PEG 5K -PLGA 55K and conjugated polymers cyano-substituted poly(p-phenylene vinylene) (CN-PPV) and poly(9,9-dioctylfluorene-2,1,3-benzothiadiazole) (F8BT) on the physicochemical properties of the CPNs was also evaluated. Both techniques enabled CPN production with high end product yields (∼70-95%). However, while the bulk technique (solvent displacement) under optimal conditions generated small nanoparticles (∼70-100 nm) with similar optical properties (quantum yields ∼35%), the microfluidic approach produced larger CPNs (140-260 nm) with significantly superior quantum yields (49-55%) and tailored emission spectra. CPNs containing CN-PPV showed smaller size distributions and tuneable emission spectra compared to F8BT systems prepared under the same conditions. The presence of PEG 5K -PLGA 55K did not affect the size or optical properties of the CPNs and provided a neutral net electric charge as is often required for biomedical applications. The microfluidics flow-based device was successfully used for the continuous preparation of CPNs over a 24 hour period. On the basis of the results presented here, it can be concluded that the microfluidic device used in this study can be used to optimize the production of bright CPNs with tailored properties with good reproducibility.
Yao, Wei; Yang, Dingfeng; Yan, Yanci; Peng, Kunling; Zhan, Heng; Liu, Anping; Lu, Xu; Wang, Guoyu; Zhou, Xiaoyuan
2017-03-29
High thermal conductivity of CoSbS-based limited its own prospect application in thermoelectric energy conversion. Solid solution is an effective approach to optimize the performance of thermoelectric materials with high lattice thermal conductivity because of the enhanced phonons scattering from disorder atoms. In this paper, we have synthesized and measured the thermoelectric properties of solid solution CoSbS 1-x Se x (x = 0, 0.05, 0.10, 0.15, 0.20, 0.30) series samples. The collaborative optimization (enhancing the power factors and reducing the thermal conductivities) to add zT values were realized via substitution of S atoms with the isoelectronic Se atoms in the matrix. Meanwhile, the lowest room temperature lattice thermal conductivity in CoSbS-based materials is obtained (4.72 W m -1 K -1 ) at present. Benefiting from the results of synergistic strategy, a zT of 0.35 was achieved at 923 K for sample CoSbS 0.85 Se 0.15 , a 59% improvement as compared with that of the pristine CoSbS. Band calculation demonstrated that CoSbS 0.85 Se 0.15 present a similar band dispersion with CoSbS. The mechanism of point defect scattering for reducing the lattice thermal conductivity at room temperature, was also analyzed by the Callaway model. The contributions to decrease the room temperature lattice thermal conductivity from the mass and the strain fluctuation in the crystal are comparable. These results can also be extended to other high-efficiency thermoelectric materials with stiff bond and smaller Gruneisen parameters.
NASA Astrophysics Data System (ADS)
Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho
2016-01-01
The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen
Mao, Shasha; Xiong, Lin; Jiao, Licheng; Feng, Tian; Yeung, Sai-Kit
2017-05-01
Riemannian optimization has been widely used to deal with the fixed low-rank matrix completion problem, and Riemannian metric is a crucial factor of obtaining the search direction in Riemannian optimization. This paper proposes a new Riemannian metric via simultaneously considering the Riemannian geometry structure and the scaling information, which is smoothly varying and invariant along the equivalence class. The proposed metric can make a tradeoff between the Riemannian geometry structure and the scaling information effectively. Essentially, it can be viewed as a generalization of some existing metrics. Based on the proposed Riemanian metric, we also design a Riemannian nonlinear conjugate gradient algorithm, which can efficiently solve the fixed low-rank matrix completion problem. By experimenting on the fixed low-rank matrix completion, collaborative filtering, and image and video recovery, it illustrates that the proposed method is superior to the state-of-the-art methods on the convergence efficiency and the numerical performance.
NASA Astrophysics Data System (ADS)
Han, Xiaobao; Li, Huacong; Jia, Qiusheng
2017-12-01
For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.
The point mutation process in proteins
NASA Technical Reports Server (NTRS)
Schwartz, R. M.; Dayhoff, M. O.
1978-01-01
An optimized scoring matrix for residue-by-residue comparisons of distantly related protein sequences has been developed. The scoring matrix is based on observed exchanges and mutabilities of amino acids in 1572 closely related sequences derived from a cross-section of protein groups. Very few superimposed or parallel mutations are included in the data. The scoring matrix is most useful for demonstrating the relatedness of proteins between 65 and 85% different.
NASA Astrophysics Data System (ADS)
Chen, Xiuguo; Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan
2018-04-01
Measurement configuration optimization (MCO) is a ubiquitous and important issue in optical scatterometry, whose aim is to probe the optimal combination of measurement conditions, such as wavelength, incidence angle, azimuthal angle, and/or polarization directions, to achieve a higher measurement precision for a given measuring instrument. In this paper, the MCO problem is investigated and formulated as a multi-objective optimization problem, which is then solved by the multi-objective genetic algorithm (MOGA). The case study on the Mueller matrix scatterometry for the measurement of a Si grating verifies the feasibility of the MOGA in handling the MCO problem in optical scatterometry by making a comparison with the Monte Carlo simulations. Experiments performed at the achieved optimal measurement configuration also show good agreement between the measured and calculated best-fit Mueller matrix spectra. The proposed MCO method based on MOGA is expected to provide a more general and practical means to solve the MCO problem in the state-of-the-art optical scatterometry.
Optimizing some 3-stage W-methods for the time integration of PDEs
NASA Astrophysics Data System (ADS)
Gonzalez-Pinto, S.; Hernandez-Abreu, D.; Perez-Rodriguez, S.
2017-07-01
The optimization of some W-methods for the time integration of time-dependent PDEs in several spatial variables is considered. In [2, Theorem 1] several three-parametric families of three-stage W-methods for the integration of IVPs in ODEs were studied. Besides, the optimization of several specific methods for PDEs when the Approximate Matrix Factorization Splitting (AMF) is used to define the approximate Jacobian matrix (W ≈ fy(yn)) was carried out. Also, some convergence and stability properties were presented [2]. The derived methods were optimized on the base that the underlying explicit Runge-Kutta method is the one having the largest Monotonicity interval among the thee-stage order three Runge-Kutta methods [1]. Here, we propose an optimization of the methods by imposing some additional order condition [7] to keep order three for parabolic PDE problems [6] but at the price of reducing substantially the length of the nonlinear Monotonicity interval of the underlying explicit Runge-Kutta method.
V, Sai Phani Kumar; Arya, Rahul; Deshpande, Parag A
2017-11-29
Geometry optimizations of anion (C and N) doped anatase TiO 2 were carried out by using DFT+U calculations. Various anion vacancy sites were examined to study the synergistic effects of anion doping accompanied with anion vacancy formation on lattice oxygen activation. Two non-identical crystal planes (0 0 1) and (1 0 0) were chosen for C and N substitutions. Energetically favoured N-vacancy pairs were identified on TiO 2 surfaces. Substitution of N along with anion vacancies at various sites was energetically more favoured than that of C-doping in bulk TiO 2 while the energies were comparable for surface substitutions. Bond length distributions due to the formation of differential bonds were determined. Net oxygen activation and accompanying reversible oxygen exchange capacities were compared for TiO 2-2x C x and TiO 2-3x N 2x . Substitution of C in the surface exposed (1 0 0) plane of TiO 2 resulted in 47.6% and 23.8% of bond elongation and compression, respectively, resulting in 23.8% of net oxygen activation which was higher when compared to N substitution in the (1 0 0) plane of TiO 2 resulting in a net oxygen activation of 17%.
Engineering applications of heuristic multilevel optimization methods
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M.
1988-01-01
Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.
Engineering applications of heuristic multilevel optimization methods
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M.
1989-01-01
Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.
The application of nonlinear programming and collocation to optimal aeroassisted orbital transfers
NASA Astrophysics Data System (ADS)
Shi, Y. Y.; Nelson, R. L.; Young, D. H.; Gill, P. E.; Murray, W.; Saunders, M. A.
1992-01-01
Sequential quadratic programming (SQP) and collocation of the differential equations of motion were applied to optimal aeroassisted orbital transfers. The Optimal Trajectory by Implicit Simulation (OTIS) computer program codes with updated nonlinear programming code (NZSOL) were used as a testbed for the SQP nonlinear programming (NLP) algorithms. The state-of-the-art sparse SQP method is considered to be effective for solving large problems with a sparse matrix. Sparse optimizers are characterized in terms of memory requirements and computational efficiency. For the OTIS problems, less than 10 percent of the Jacobian matrix elements are nonzero. The SQP method encompasses two phases: finding an initial feasible point by minimizing the sum of infeasibilities and minimizing the quadratic objective function within the feasible region. The orbital transfer problem under consideration involves the transfer from a high energy orbit to a low energy orbit.
Xu, Yingjie; Gao, Tian
2016-01-01
Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343
Effects of (LiCe) co-substitution on the structural and electrical properties of CaBi2Nb2O9 ceramics
NASA Astrophysics Data System (ADS)
Tian, Xiao-Xia; Qu, Shao-Bo; Du, Hong-Liang; Li, Ye; Xu, Zhuo
2012-03-01
The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb2O9, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly enhanced and the dielectric loss tan δ decreased. This makes poling using (LiCe) co-substitution easier. The ceramics (where □ represents A-site Ca2+ vacancies, possess a pure layered structure phase and no other phases can be found. The Ca0.88(LiCe)0.04□0.04Bi2Nb2O9 ceramics possess optimal piezoelectric properties, with piezoelectric coefficient (d33) and Curie temperature (TC) found to be 13.3 pC/N and 960 °C, respectively. The dielectric and piezoelectric properties of the (LiCe) co-substituted CBNO ceramics exhibit very stable temperature behaviours. This demonstrates that the CBNO ceramics are a promising candidate for ultrahigh temperature applications.
Lee, Kang-Ho; Kim, Byung-Ock
2010-01-01
Purpose The purpose of this study was to evaluate the effect of collagen matrix with apically positioned flap (APF) on the width of keratinized gingiva, comparing to the results of APF only and APF combined with free gingival graft (FGG) at the second implant surgery. Methods Nine patients were selected from those who had received treatments at the Department of Periodontics, Chosun University Dental Hospital, Gwangju, Korea. We performed APF, APF combined with FGG, and APF combined with collagen matrix coverage respectively. Clinical evaluation of keratinized gingival was performed by measuring the distance from the gingival crest to the mucogingival junction at the mid-buccal point, using a periodontal probe before and after the surgery. Results The ratio of an increase was 0.3, 0.6, and 0.6 for the three subjects in the APF cases, 3, 5, and 7 for the three in the APF combined with FGG case, and 1.5, 0.5, and 3 for the three in the APF combined with collagen matrix coverage case. Conclusions This study suggests that the collagen matrix when used as a soft tissue substitute with the aim of increasing the width of keratinized tissue or mucosa, was as effective and predictable as the FGG. PMID:20498767
Red light accelerates the formation of a human dermal equivalent.
Oliveira, Anna Cb; Morais, Thayz Fl; Bernal, Claudia; Martins, Virginia Ca; Plepis, Ana Mg; Menezes, Priscila Fc; Perussi, Janice R
2018-04-01
Development of biomaterials' substitutes and/or equivalents to mimic normal tissue is a current challenge in tissue engineering. Thus, three-dimensional cell culture using type I collagen as a polymeric matrix cell support designed to promote cell proliferation and differentiation was employed to create a dermal equivalent in vitro, as well to evaluate the photobiomodulation using red light. Polymeric matrix cell support was prepared from porcine serous collagen (1.1%) hydrolyzed for 96 h. The biomaterial exhibited porosity of 95%, a median pore of 44 µm and channels with an average distance between the walls of 78 ± 14 µm. The absorption of culture medium was 95%, and the sponge showed no cytotoxicity to Vero cells, a non-tumor cell line. Additionally, it was observed that irradiation with light at 630 nm (fluency 30 J cm -2 ) leads to the cellular photobiomodulation in both monolayer and human dermal equivalent (three-dimensional cell culture system). It was also verified that the cells cultured in the presence of the polymeric matrix cell support, allows differentiation and extracellular matrix secretion. Therefore, the results showed that the collagen sponge used as polymeric matrix cell support and the photobiomodulation at 630 nm are efficient for the production of a reconstructed human dermal equivalent in vitro.
Neutron Multiplicity: LANL W Covariance Matrix for Curve Fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, James G.
2016-12-08
In neutron multiplicity counting one may fit a curve by minimizing an objective function, χmore » $$2\\atop{n}$$. The objective function includes the inverse of an n by n matrix of covariances, W. The inverse of the W matrix has a closed form solution. In addition W -1 is a tri-diagonal matrix. The closed form and tridiagonal nature allows for a simpler expression of the objective function χ$$2\\atop{n}$$. Minimization of this simpler expression will provide the optimal parameters for the fitted curve.« less
Saa, Pedro A.; Nielsen, Lars K.
2016-01-01
Motivation: Computation of steady-state flux solutions in large metabolic models is routinely performed using flux balance analysis based on a simple LP (Linear Programming) formulation. A minimal requirement for thermodynamic feasibility of the flux solution is the absence of internal loops, which are enforced using ‘loopless constraints’. The resulting loopless flux problem is a substantially harder MILP (Mixed Integer Linear Programming) problem, which is computationally expensive for large metabolic models. Results: We developed a pre-processing algorithm that significantly reduces the size of the original loopless problem into an easier and equivalent MILP problem. The pre-processing step employs a fast matrix sparsification algorithm—Fast- sparse null-space pursuit (SNP)—inspired by recent results on SNP. By finding a reduced feasible ‘loop-law’ matrix subject to known directionalities, Fast-SNP considerably improves the computational efficiency in several metabolic models running different loopless optimization problems. Furthermore, analysis of the topology encoded in the reduced loop matrix enabled identification of key directional constraints for the potential permanent elimination of infeasible loops in the underlying model. Overall, Fast-SNP is an effective and simple algorithm for efficient formulation of loop-law constraints, making loopless flux optimization feasible and numerically tractable at large scale. Availability and Implementation: Source code for MATLAB including examples is freely available for download at http://www.aibn.uq.edu.au/cssb-resources under Software. Optimization uses Gurobi, CPLEX or GLPK (the latter is included with the algorithm). Contact: lars.nielsen@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27559155
Makings of a brittle bone: Unexpected lessons from a low protein diet study of a mouse OI model
Mertz, E.L.; Makareeva, E.; Mirigian, L.S.; Koon, K.Y.; Perosky, J.E.; Kozloff, K.M.; Leikin, S.
2016-01-01
Glycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain. To stimulate degradation of misfolded collagen by autophagy, we utilized a low protein diet. The diet had beneficial effects on osteoblast differentiation and bone matrix mineralization, but it also affected bone modeling and suppressed overall animal growth. Our more important observations, however, were not related to the diet. They revealed how altered osteoblast function and deficient bone formation by each cell caused by the G610C mutation combined with increased osteoblastogenesis might make the bone more brittle, all of which are common OI features. In G610C mice, increased bone formation surface compensated for reduced mineral apposition rate, resulting in normal cortical area and thickness at the cost of altering cortical modeling process, retaining woven bone, and reducing the ability of bone to absorb energy through plastic deformation. Reduced collagen and increased mineral density in extracellular matrix of lamellar bone compounded the problem, further reducing bone toughness. The latter observations might have particularly important implications for understanding OI pathophysiology and designing more effective therapeutic interventions. PMID:27039252
Merlé, Y; Mentré, F
1995-02-01
In this paper 3 criteria to design experiments for Bayesian estimation of the parameters of nonlinear models with respect to their parameters, when a prior distribution is available, are presented: the determinant of the Bayesian information matrix, the determinant of the pre-posterior covariance matrix, and the expected information provided by an experiment. A procedure to simplify the computation of these criteria is proposed in the case of continuous prior distributions and is compared with the criterion obtained from a linearization of the model about the mean of the prior distribution for the parameters. This procedure is applied to two models commonly encountered in the area of pharmacokinetics and pharmacodynamics: the one-compartment open model with bolus intravenous single-dose injection and the Emax model. They both involve two parameters. Additive as well as multiplicative gaussian measurement errors are considered with normal prior distributions. Various combinations of the variances of the prior distribution and of the measurement error are studied. Our attention is restricted to designs with limited numbers of measurements (1 or 2 measurements). This situation often occurs in practice when Bayesian estimation is performed. The optimal Bayesian designs that result vary with the variances of the parameter distribution and with the measurement error. The two-point optimal designs sometimes differ from the D-optimal designs for the mean of the prior distribution and may consist of replicating measurements. For the studied cases, the determinant of the Bayesian information matrix and its linearized form lead to the same optimal designs. In some cases, the pre-posterior covariance matrix can be far from its lower bound, namely, the inverse of the Bayesian information matrix, especially for the Emax model and a multiplicative measurement error. The expected information provided by the experiment and the determinant of the pre-posterior covariance matrix generally lead to the same designs except for the Emax model and the multiplicative measurement error. Results show that these criteria can be easily computed and that they could be incorporated in modules for designing experiments.
Quadeer, Ahmed A.; Louie, Raymond H. Y.; Shekhar, Karthik; Chakraborty, Arup K.; Hsing, I-Ming
2014-01-01
ABSTRACT Chronic hepatitis C virus (HCV) infection is one of the leading causes of liver failure and liver cancer, affecting around 3% of the world's population. The extreme sequence variability of the virus resulting from error-prone replication has thwarted the discovery of a universal prophylactic vaccine. It is known that vigorous and multispecific cellular immune responses, involving both helper CD4+ and cytotoxic CD8+ T cells, are associated with the spontaneous clearance of acute HCV infection. Escape mutations in viral epitopes can, however, abrogate protective T-cell responses, leading to viral persistence and associated pathologies. Despite the propensity of the virus to mutate, there might still exist substitutions that incur a fitness cost. In this paper, we identify groups of coevolving residues within HCV nonstructural protein 3 (NS3) by analyzing diverse sequences of this protein using ideas from random matrix theory and associated methods. Our analyses indicate that one of these groups comprises a large percentage of residues for which HCV appears to resist multiple simultaneous substitutions. Targeting multiple residues in this group through vaccine-induced immune responses should either lead to viral recognition or elicit escape substitutions that compromise viral fitness. Our predictions are supported by published clinical data, which suggested that immune genotypes associated with spontaneous clearance of HCV preferentially recognized and targeted this vulnerable group of residues. Moreover, mapping the sites of this group onto the available protein structure provided insight into its functional significance. An epitope-based immunogen is proposed as an alternative to the NS3 epitopes in the peptide-based vaccine IC41. IMPORTANCE Despite much experimental work on HCV, a thorough statistical study of the HCV sequences for the purpose of immunogen design was missing in the literature. Such a study is vital to identify epistatic couplings among residues that can provide useful insights for designing a potent vaccine. In this work, ideas from random matrix theory were applied to characterize the statistics of substitutions within the diverse publicly available sequences of the genotype 1a HCV NS3 protein, leading to a group of sites for which HCV appears to resist simultaneous substitutions possibly due to deleterious effect on viral fitness. Our analysis leads to completely novel immunogen designs for HCV. In addition, the NS3 epitopes used in the recently proposed peptide-based vaccine IC41 were analyzed in the context of our framework. Our analysis predicts that alternative NS3 epitopes may be worth exploring as they might be more efficacious. PMID:24760894
Variational optimization algorithms for uniform matrix product states
NASA Astrophysics Data System (ADS)
Zauner-Stauber, V.; Vanderstraeten, L.; Fishman, M. T.; Verstraete, F.; Haegeman, J.
2018-01-01
We combine the density matrix renormalization group (DMRG) with matrix product state tangent space concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS) with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.
Compressed sensing of hyperspectral images based on scrambled block Hadamard ensemble
NASA Astrophysics Data System (ADS)
Wang, Li; Feng, Yan
2016-11-01
A fast measurement matrix based on scrambled block Hadamard ensemble for compressed sensing (CS) of hyperspectral images (HSI) is investigated. The proposed measurement matrix offers several attractive features. First, the proposed measurement matrix possesses Gaussian behavior, which illustrates that the matrix is universal and requires a near-optimal number of samples for exact reconstruction. In addition, it could be easily implemented in the optical domain due to its integer-valued elements. More importantly, the measurement matrix only needs small memory for storage in the sampling process. Experimental results on HSIs reveal that the reconstruction performance of the proposed measurement matrix is comparable or better than Gaussian matrix and Bernoulli matrix using different reconstruction algorithms while consuming less computational time. The proposed matrix could be used in CS of HSI, which would save the storage memory on board, improve the sampling efficiency, and ameliorate the reconstruction quality.
Kasesaz, Y; Khalafi, H; Rahmani, F
2013-12-01
Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method. Copyright © 2013 Elsevier Ltd. All rights reserved.
Study of Alternate Material for Pedal Ventilator Kits.
1980-04-01
to fans with diameters of 36 inches or less, revealed that a shelter ventilation system of minimum cost would require three units with 36-inch...doorways, it was decided, with OCD approval, to develop pre-assembled one and two-operator bicycle ventilator kits utilizing a fan and ducting system of...polypropylene matrix. According to Ford Motor Company, an enthusiastic user, this material hybrid offers large potential savings in direct substitution for glass
Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J.; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I.
2015-01-01
Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro. PMID:25736020
Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I
2015-03-04
Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro.
Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)
NASA Astrophysics Data System (ADS)
Schuler, Thomas; Nastar, Maylise
2016-06-01
We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir; The Laboratory of Quantum Information Processing, Yazd University, Yazd; Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir
2014-08-01
In this paper, a new computational method based on the generalized hat basis functions is proposed for solving stochastic Itô–Volterra integral equations. In this way, a new stochastic operational matrix for generalized hat functions on the finite interval [0,T] is obtained. By using these basis functions and their stochastic operational matrix, such problems can be transformed into linear lower triangular systems of algebraic equations which can be directly solved by forward substitution. Also, the rate of convergence of the proposed method is considered and it has been shown that it is O(1/(n{sup 2}) ). Further, in order to show themore » accuracy and reliability of the proposed method, the new approach is compared with the block pulse functions method by some examples. The obtained results reveal that the proposed method is more accurate and efficient in comparison with the block pule functions method.« less
Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.
Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won
2017-01-01
Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The multifacet graphically contracted function method. I. Formulation and implementation
NASA Astrophysics Data System (ADS)
Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R.
2014-08-01
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N2n4) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.
The multifacet graphically contracted function method. I. Formulation and implementation.
Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R
2014-08-14
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N(2)n(4)) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.
Experimental and computational studies on the femoral fracture risk for advanced core decompression.
Tran, T N; Warwas, S; Haversath, M; Classen, T; Hohn, H P; Jäger, M; Kowalczyk, W; Landgraeber, S
2014-04-01
Two questions are often addressed by orthopedists relating to core decompression procedure: 1) Is the core decompression procedure associated with a considerable lack of structural support of the bone? and 2) Is there an optimal region for the surgical entrance point for which the fracture risk would be lowest? As bioresorbable bone substitutes become more and more common and core decompression has been described in combination with them, the current study takes this into account. Finite element model of a femur treated by core decompression with bone substitute was simulated and analyzed. In-vitro compression testing of femora was used to confirm finite element results. The results showed that for core decompression with standard drilling in combination with artificial bone substitute refilling, daily activities (normal walking and walking downstairs) are not risky for femoral fracture. The femoral fracture risk increased successively when the entrance point is located further distal. The critical value of the deviation of the entrance point to a more distal part is about 20mm. The study findings demonstrate that optimal entrance point should locate on the proximal subtrochanteric region in order to reduce the subtrochanteric fracture risk. Furthermore the consistent results of finite element and in-vitro testing imply that the simulations are sufficient. Copyright © 2014 Elsevier Ltd. All rights reserved.
Denham, K; Milofsky, R E
1998-10-01
A postcolumn photochemical reaction detection scheme, based on the reaction of 3-substituted pyrroles with singlet molecular oxygen ((1)O(2)), has been developed. The method is selective and sensitive for the determination of a class of organic compounds called (1)O(2)-sensitizers and is readily coupled to HPLC. Following separation by HPLC, analytes ((1)O(2)-sensitizers) are excited by a Hg pen-ray lamp. Analytes that are efficient (1)O(2)-sensitizers promote ground-state O(2) ((3)Σ(g)(-)) to an excited state ((1)Σ(g)(+) or (1)Δ(g)), which reacts rapidly with tert-butyl-3,4,5-trimethylpyrrolecarboxylate (BTMPC) or N-benzyl-3-methoxypyrrole-2-tert-carboxylate (BMPC), which is added to the mobile phase. Detection is based on the loss of pyrrole (BTMPC or BMPC). The reaction is catalytic in nature since one analyte molecule may absorb light many times, producing large amounts of (1)O(2). Detection limits for several (1)O(2)-sensitizers were improved by 1-2 orders of magnitude over optimized UV-absorbance detection. This paper discusses the optimization of the reaction conditions for this photochemical reaction detection scheme and its application to the detection of PCBs, nitrogen heterocycles, nitro and chloro aromatics, and other substituted aromatic compounds.
A game theory model for stabilizing price of chili: A case study
NASA Astrophysics Data System (ADS)
Wardayanti, Ari; Aviv, Afgan Suffan; Sutopo, Wahyudi; Hisjam, Muh.
2017-11-01
Chili is one of the important agricultural commodity in Indonesia because of its widely consumption by the Indonesian. Chili becomes one of the commodities that experience price fluctuations and important cause of yearly inflation in Indonesia. The unstable price of chili is affected by the scarcity of the commodity in some months and the difference of the harvest season. This study proposes a model to solve the problem by considering the substitution of fresh chilies with dried chili. We propose the cooperative of chili's farmer as entities that process fresh chili into dry ones. The existence of substitution products is expected to maintain the price stability chili. This research was conducted by taking a case study on chili commodity markets in Surakarta which consists of 19 traditional markets. This study aims to create a price stabilization scheme with product substitution using a game theory model. There are 4 strategies proposed in game theory model to describe the relationship between producers and consumers. In this case, the producers are the farmers and the consumers are the trade market. A mixed strategy of was chosen to determine the optimal value among 4 strategies. From the calculation results obtained optimal value when doing a mixed strategy of IDR 201,188,829,000.
MALDI-based intact spore mass spectrometry of downy and powdery mildews.
Chalupová, Jana; Sedlářová, Michaela; Helmel, Michaela; Rehulka, Pavel; Marchetti-Deschmann, Martina; Allmaier, Günter; Sebela, Marek
2012-08-01
Fast and easy identification of fungal phytopathogens is of great importance in agriculture. In this context, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool for analyzing microorganisms. This study deals with a methodology for MALDI-TOF MS-based identification of downy and powdery mildews representing obligate biotrophic parasites of crop plants. Experimental approaches for the MS analyses were optimized using Bremia lactucae, cause of lettuce downy mildew, and Oidium neolycopersici, cause of tomato powdery mildew. This involved determining a suitable concentration of spores in the sample, selection of a proper MALDI matrix, looking for the optimal solvent composition, and evaluation of different sample preparation methods. Furthermore, using different MALDI target materials and surfaces (stainless steel vs polymer-based) and applying various conditions for sample exposure to the acidic MALDI matrix system were investigated. The dried droplet method involving solvent evaporation at room temperature was found to be the most suitable for the deposition of spores and MALDI matrix on the target and the subsequent crystallization. The concentration of spore suspension was optimal between 2 and 5 × 10(9) spores per ml. The best peptide/protein profiles (in terms of signal-to-noise ratio and number of peaks) were obtained by combining ferulic and sinapinic acids as a mixed MALDI matrix. A pretreatment of the spore cell wall with hydrolases was successfully introduced prior to MS measurements to obtain more pronounced signals. Finally, a novel procedure was developed for direct mass spectra acquisition from infected plant leaves. Copyright © 2012 John Wiley & Sons, Ltd.
Pharmacodynamics of nicotine: implications for rational treatment of nicotine addiction.
Benowitz, N L
1991-05-01
Rational treatment of the pharmacologic aspects of tobacco addiction includes nicotine substitution therapy. Understanding the pharmacodynamics of nicotine and its role in the addiction process provides a basis for rational therapeutic intervention. Pharmacodynamic considerations are discussed in relation to the elements of smoking cessation therapy: setting objectives, selecting appropriate medication and dosing form, selecting the optimal doses and dosage regimens, assessing therapeutic outcome, and adjusting therapy to optimize benefits and minimize risks.
An Improved Wavefront Control Algorithm for Large Space Telescopes
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Basinger, Scott A.; Redding, David C.
2008-01-01
Wavefront sensing and control is required throughout the mission lifecycle of large space telescopes such as James Webb Space Telescope (JWST). When an optic of such a telescope is controlled with both surface-deforming and rigid-body actuators, the sensitivity-matrix obtained from the exit pupil wavefront vector divided by the corresponding actuator command value can sometimes become singular due to difference in actuator types and in actuator command values. In this paper, we propose a simple approach for preventing a sensitivity-matrix from singularity. We also introduce a new "minimum-wavefront and optimal control compensator". It uses an optimal control gain matrix obtained by feeding back the actuator commands along with the measured or estimated wavefront phase information to the estimator, thus eliminating the actuator modes that are not observable in the wavefront sensing process.
Gambarota, Giulio
2017-07-15
Magnetic resonance spectroscopy (MRS) is a well established modality for investigating tissue metabolism in vivo. In recent years, many efforts by the scientific community have been directed towards the improvement of metabolite detection and quantitation. Quantum mechanics simulations allow for investigations of the MR signal behaviour of metabolites; thus, they provide an essential tool in the optimization of metabolite detection. In this review, we will examine quantum mechanics simulations based on the density matrix formalism. The density matrix was introduced by von Neumann in 1927 to take into account statistical effects within the theory of quantum mechanics. We will discuss the main steps of the density matrix simulation of an arbitrary spin system and show some examples for the strongly coupled two spin system. Copyright © 2016 Elsevier Inc. All rights reserved.
Control design based on a linear state function observer
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1992-01-01
An approach to the design of low-order controllers for large scale systems is proposed. The method is derived from the theory of linear state function observers. First, the realization of a state feedback control law is interpreted as the observation of a linear function of the state vector. The linear state function to be reconstructed is the given control law. Then, based on the derivation for linear state function observers, the observer design is formulated as a parameter optimization problem. The optimization objective is to generate a matrix that is close to the given feedback gain matrix. Based on that matrix, the form of the observer and a new control law can be determined. A four-disk system and a lightly damped beam are presented as examples to demonstrate the applicability and efficacy of the proposed method.
Scalable Nonparametric Low-Rank Kernel Learning Using Block Coordinate Descent.
Hu, En-Liang; Kwok, James T
2015-09-01
Nonparametric kernel learning (NPKL) is a flexible approach to learn the kernel matrix directly without assuming any parametric form. It can be naturally formulated as a semidefinite program (SDP), which, however, is not very scalable. To address this problem, we propose the combined use of low-rank approximation and block coordinate descent (BCD). Low-rank approximation avoids the expensive positive semidefinite constraint in the SDP by replacing the kernel matrix variable with V(T)V, where V is a low-rank matrix. The resultant nonlinear optimization problem is then solved by BCD, which optimizes each column of V sequentially. It can be shown that the proposed algorithm has nice convergence properties and low computational complexities. Experiments on a number of real-world data sets show that the proposed algorithm outperforms state-of-the-art NPKL solvers.
Noise sensitivity of portfolio selection in constant conditional correlation GARCH models
NASA Astrophysics Data System (ADS)
Varga-Haszonits, I.; Kondor, I.
2007-11-01
This paper investigates the efficiency of minimum variance portfolio optimization for stock price movements following the Constant Conditional Correlation GARCH process proposed by Bollerslev. Simulations show that the quality of portfolio selection can be improved substantially by computing optimal portfolio weights from conditional covariances instead of unconditional ones. Measurement noise can be further reduced by applying some filtering method on the conditional correlation matrix (such as Random Matrix Theory based filtering). As an empirical support for the simulation results, the analysis is also carried out for a time series of S&P500 stock prices.
Experiences in autotuning matrix multiplication for energy minimization on GPUs
Anzt, Hartwig; Haugen, Blake; Kurzak, Jakub; ...
2015-05-20
In this study, we report extensive results and analysis of autotuning the computationally intensive graphics processing units kernel for dense matrix–matrix multiplication in double precision. In contrast to traditional autotuning and/or optimization for runtime performance only, we also take the energy efficiency into account. For kernels achieving equal performance, we show significant differences in their energy balance. We also identify the memory throughput as the most influential metric that trades off performance and energy efficiency. Finally, as a result, the performance optimal case ends up not being the most efficient kernel in overall resource use.
Development of SiC/SiC composites by PIP in combination with RS
NASA Astrophysics Data System (ADS)
Kotani, Masaki; Kohyama, Akira; Katoh, Yutai
2001-02-01
In order to improve the mechanical performances of SiC/SiC composite, process improvement and modification of polymer impregnation and pyrolysis (PIP) and reaction sintering (RS) process were investigated. The fibrous prepregs were prepared by a polymeric intra-bundle densification technique using Tyranno-SA™ fiber. For inter-bundle matrix, four kinds of process options utilizing polymer pyrolysis and reaction sintering were studied. The process conditions were systematically optimized through fabricating monoliths. Then, SiC/SiC composites were fabricated using optimized inter-bundle matrix slurries in each process for the first inspection of process requirements.
NASA Technical Reports Server (NTRS)
Saravanos, D. A.; Morel, M. R.; Chamis, C. C.
1991-01-01
A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.
Fredlake, Christopher P.; Hert, Daniel G.; Niedringhaus, Thomas P.; Lin, Jennifer S.; Barron, Annelise E.
2015-01-01
Resolution of DNA fragments separated by electrophoresis in polymer solutions (“matrices”) is determined by both the spacing between peaks and the width of the peaks. Prior research on the development of high-performance separation matrices has been focused primarily on optimizing DNA mobility and matrix selectivity, and gave less attention to peak broadening. Quantitative data are rare for peak broadening in systems in which high electric field strengths are used (> 150 V/cm), which is surprising since capillary and microchip-based systems commonly run at these field strengths. Here, we report results for a study of band broadening behavior for ssDNA fragments on a glass microfluidic chip, for electric field strengths up to 320 V/cm. We compare dispersion coefficients obtained in a poly(N,N-dimethylacrylamide) (pDMA) separation matrix that was developed for chip-based DNA sequencing with a commercially available linear polyacrylamide (LPA) matrix commonly used in capillaries. Much larger DNA dispersion coefficients were measured in the LPA matrix as compared to the pDMA matrix, and the dependences of dispersion coefficient on DNA size and electric field strength were found to differ quite starkly in the two matrices. These observations lead us to propose that DNA migration mechanisms differ substantially in our custom pDMA matrix compared to the commercially available LPA matrix. We discuss the implications of these results in terms of developing optimal matrices for specific separation (microchip or capillary) platforms. PMID:22648809
Koren, Klaus; Hutter, Lukas; Enko, Barbara; Pein, Andreas; Borisov, Sergey M.; Klimant, Ingo
2013-01-01
Ten different polystyrene-derivatives were tested with respect to their potential use as matrix materials for optical oxygen sensors in combination with the platinum(II) meso-tetra(4-fluorophenyl)tetrabenzoporphyrin as indicator dye. Either halogen atoms or bulky residues were introduced as substituents on the phenyl ring. A fine-tuning of the sensor sensitivity was achieved, without compromising solubility of the indicator in the matrix by providing a chemical environment very similar to polystyrene (PS), a standard matrix in optical oxygen sensors. To put the results into perspective, the studied materials were compared to PS regarding sensitivity of the sensor, molecular weight and glass-transition temperature. The materials promise to be viable alternatives to PS with respect to the requirements posed in various sensor application fields. Some of the polymers (e.g. poly(2,6-dichlorostyrene)) promise to be of use in applications requiring measurements from 0 to 100% oxygen due to linearity across this range. Poly(4-tert-butylstyrene) and poly(2,6-fluorostyrene), on the other hand, yield sensors with increased sensitivity. Sensor stability was evaluated as a function of the matrix, a topic which has not received a lot of interest so far. PMID:23576846
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamakawa, Koichiro, E-mail: koichiro.yamakawa@gakushuin.ac.jp; Ehara, Namika; Ozawa, Nozomi
2016-07-15
Using infrared-active solvents of CH{sub 4} and CD{sub 4} for matrix isolation, we measured infrared spectra of H{sub 2}O and D{sub 2}O clusters at 7 K. The solute-concentration dependence of the spectrum of H{sub 2}O clusters in a CH{sub 4} matrix was investigated and was used for the peak assignment. Annealing procedures were found to promote the size growth of water clusters in methane matrices for all the combinations of (H{sub 2}O, CH{sub 4}), (H{sub 2}O, CD{sub 4}), (D{sub 2}O, CH{sub 4}), and (D{sub 2}O, CD{sub 4}). We also monitored the ν{sub 3} absorption due to methane to find themore » annealing-induced structural change only of solid CH{sub 4}. The matrix effects on the vibrations of the clusters are discussed on the basis of “T{sub c} plots”, where their frequencies are plotted as a function of the square root of the matrix critical temperature, T{sub c}. The obtained plots assure the validity of the assignment of the cluster peaks.« less
Alterations in mineral properties of zebrafish skeletal bone induced by liliput dtc232 gene mutation
NASA Astrophysics Data System (ADS)
Wang, Xiu-Mei; Cui, Fu-Zhai; Ge, Jun; Ma, Chen
2003-11-01
The alterations of mineral properties of bone by gene mutation in the zebrafish, which is associated with abnormal bone mineralization and bone diseases, were reported for the first time in this paper. Transmission electron microscope (TEM), Fourier transform infrared microspectroscopy (FTIRM) and thermogravimetric analysis (TGA) were used to investigate the changes in the mineral. Significant variations of the morphologies of the minerals and the mineral/matrix ratio after liliputdtc232(lil) gene mutation have been observed. The morphologies of the minerals, examined by TEM, revealed that the mutated mineral was in bigger size and the shape was block shaped but not plate shaped. The results of FTIRM indicated that the lil mutant zebrafish skeleton exhibited a greater mineral/matrix ratio (phosphate/matrix=4.86±0.28) than that of wild-type zebrafish bone (phosphate/matrix=4.17±0.67), which was confirmed by TGA analysis. Furthermore, the mineral of lil bone became less mature and crystalline with more ion substitutions. And the selected areas electron diffraction (SAED) patterns showed that the main crystal phases of the two type fishes were both hydroxyapatite. In addition, we have discussed the relationship among the mineral properties, nanomechanical properties and biomineralization process.
An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.
Su, Wen-Yu; Chen, Ko-Hua; Chen, Yu-Chun; Lee, Yen-Hsien; Tseng, Ching-Li; Lin, Feng-Huei
2011-01-01
Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute. Koninklijke Brill NV, Leiden, 2011
NASA Astrophysics Data System (ADS)
Karolina, R.; Syahrizal; Bahri, N.
2018-02-01
The waste of coal burning has a very negative impact on the environment if the waste is not managed as well as possible. The remaining waste of coal combustion consists of fly ash and bottom ash. FA and BA can be developed into substitution materials in the process of making paving blocks. The purpose of this study was to determine the quality of paving block in accordance with SK SNI 03-0691-1996 with optimization in the use of FA and BA. This study uses a 351 paving block sample size of 20x10x6 cm. Paving blocks are divided by 4 categories, namely normal paving block, paving block with FA substitution, BA substitution and combination of FA-BA with each variation 0%, 25%, 50%, 75% and 100%. Each variation amounted to 27 samples. Paving block quality measurement is done through 4 tests: absorption, compressive strength, sodium sulphate resistance and Los Angeles tests. The result of the test shows the absorption of normal paving block is 3,229%, paving block with 25% FA is 3,889%, paving block with 50% BA is 5,560% and paving block with 25% FA-BA combination is 5,794%. Compressive strength in normal paving block is 25,50 MPa, paving block with 25% FA is 25,28 MPa, paving block with 25% BA is equal to 27,61 MPa and paving block with 25% FA-BA is 26, 00 MPa. In testing of sodium sulfate resistance, almost all test specimens are eligible except for paving block with 50% FA and 75% FA. In the test of wear resistance, no specimen is eligible according to SK SNI 03-0691-1996. The comparison of the strength of the test specimen can be seen in substitution with 25% BA which reaches maximum strength.
Organic nitrogen chemistry during low-grade metamorphism
Boudou, J.-P.; Schimmelmann, A.; Ader, M.; Mastalerz, Maria; Sebilo, M.; Gengembre, L.
2008-01-01
Most of the organic nitrogen (Norg) on Earth is disseminated in crustal sediments and rocks in the form of fossil nitrogen-containing organic matter. The chemical speciation of fossil Norg within the overall molecular structure of organic matter changes with time and heating during burial. Progressive thermal evolution of organic matter involves phases of enhanced elimination of Norg and ultimately produces graphite containing only traces of nitrogen. Long-term chemical and thermal instability makes the chemical speciation of Norg a valuable tracer to constrain the history of sub-surface metamorphism and to shed light on the subsurface biogeochemical nitrogen cycle and its participating organic and inorganic nitrogen pools. This study documents the evolutionary path of Norg speciation, transformation and elimination before and during metamorphism and advocates the use of X-ray photoelectron spectroscopy (XPS) to monitor changes in Norg speciation as a diagnostic tool for organic metamorphism. Our multidisciplinary evidence from XPS, stable isotopes, traditional quantitative coal analyses, and other analytical approaches shows that at the metamorphic onset Norg is dominantly present as pyrrolic and pyridinic nitrogen. The relative abundance of nitrogen substituting for carbon in condensed, partially aromatic systems (where N is covalently bonded to three C atoms) increases exponentially with increasing metamorphic grade, at the expense of pyridinic and pyrrolic nitrogen. At the same time, much Norg is eliminated without significant nitrogen isotope fractionation. The apparent absence of Rayleigh-type nitrogen isotopic fractionation suggests that direct thermal loss of nitrogen from an organic matrix does not serve as a major pathway for Norg elimination. Instead, we propose that hot H, O-containing fluids or some of their components gradually penetrate into the carbonaceous matrix and eliminate Norg along a progressing reaction front, without causing nitrogen isotope fractionation in the residual Norg in the unreacted core of the carbonaceous matrix. Before the reaction front can reach the core, an increasing part of core Norg chemically stabilizes in the form of nitrogen atoms substituting for carbon in condensed, partially aromatic systems forming graphite-like structural domains with delocalized ??-electron systems (nitrogen atoms substituting for "graphitic" carbon in natural metamorphic organic matter). Thus, this nitrogen species with a conservative isotopic composition is the dominant form of residual nitrogen at higher metamorphic grade. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nijegorodov, N.; Mabbs, R.
2001-06-01
The absorption and fluorescence properties of 26 specially selected aromatic and heteroaromatic compounds, from different classes, are studied quantum chemically and experimentally at room temperature (293 K). Seven of these compounds have not been studied before. The compounds are arranged in seven groups, which illustrate different cases of the internal heavy atom effect. The quantum yield of fluorescence, γ and fluorescence decay time, τf of deaerated and non-deaerated cyclohexane or ethanol solutions are measured. The oscillator strength, fe, fluorescence rate constant, kf, natural lifetime, τ0t, and intersystem crossing rate constant, kST, were calculated for each compound. The orbital nature of the lowest excited singlet state and direction of polarization of the S0→ S1 transitions are determined using the PPP-CI method for each molecule. The investigation shows that substitution of a heavy atom(s) (Cl, S, Br, I etc.) into an aromatic or heteroaromatic molecule may produce different changes in all the fluorescence parameters (sometimes dramatically) and not necessarily lead to the quenching of fluorescence. Substitution of a heavy atom(s) may increase the value of the spin-orbit operator, \\Hcirc SO, if the S0→ S1 excitation is localized to some extent on a carbon atom bonded to a heavy atom(s) or on the heavy atom itself (Ö or S). Such substitution may change the symmetry of a molecule and hence the values of the ΨS 1\\HcircsoΨT i' matrix elements would change (in molecules of higher symmetry groups not all Ti states are able to mix with the perturbing S1 state). Such substitution may change the arrangement of Ti states below the S1, state and hence, the Franck-Condon factors would change. Such substitution may also change the value of the ΨS 0M jΨS 1 matrix element and, consequently, the oscillator strength of the S0→ S1 transition would change. A combination of all these possible changes determines the value of kf and kST and, consequently, determines the value of γ and τf. It is observed that in many cases, the value of the spin-orbit operator is related to the dipole moment operator, e.g. if the introduction of a heavy atom increases kST then, as a rule, it decreases fe( 1A→ 1La).
Wang, Fang; Maeda, Yasuko; Zachar, Vladimir; Ansari, Tahera; Emmersen, Jeppe
2018-06-14
This study explored the feasibility of constructing a tissue engineered muscle layer in the oesophagus using oesophageal acellular matrix (OAM) scaffolds and human aortic smooth muscle cells (hASMCs) or human adipose-derived stem cells (hASCs). The second objective was to investigate the effect of hypoxic preconditioning of seeding cells on cell viability and migration depth. Our results demonstrated that hASMCs and hASCs could attach and adhere to the decellularized OAM scaffold and survive and proliferate for at least 7 days depending on the growth conditions. This indicates adipose-derived stem cells (ASCs) have the potential to substitute for smooth muscle cells (SMCs) in the construction of tissue engineered oesophageal muscle layers. Copyright © 2018 Elsevier Inc. All rights reserved.
Ko, Li-Jung; Yu, Fu-Hsien; Huang, Kuo-Jung; Wang, Chin-Tien
2015-01-01
Human immunodeficiency virus type 1 nucleocapsid (NC) basic residues presumably contribute to virus assembly via RNA, which serves as a scaffold for Gag-Gag interaction during particle assembly. To determine whether NC basic residues play a role in Gag cleavage (thereby impacting virus assembly), Gag processing efficiency and virus particle production were analyzed for an HIV-1 mutant NC15A, with alanine serving as a substitute for all NC basic residues. Results indicate that NC15A significantly impaired virus maturation in addition to significantly affecting Gag membrane binding and assembly. Interestingly, removal of the matrix (MA) central globular domain ameliorated the NC15A assembly and processing defects, likely through enhancement of Gag multimerization and membrane binding capacities.
Structural investigation of Y1-xNixBa2Cu3O7-δ superconductor
NASA Astrophysics Data System (ADS)
Hadi-Sichani, Behnaz; Shakeripour, Hamideh; Salamati, Hadi
2018-07-01
Y1-xNixBa2Cu3O7-δ superconducting samples with 0 ≤ x ≤ 0.02 were synthesized by standard solid-state reaction and characterized by the X-ray powder diffraction technique. The Rietveld fitted XRD refinements show that all samples are crystallized in single phase, having orthorhombic structure with Pmmm space group. We investigated the effect of adding a magnetic element on the structure of this superconductor. The c cell parameter increases by doping of Ni until to an optimal value of Ni content, x ∼ 0.004, and then starts to decrease by higher value of Ni substitution. Moreover, it is seen that Cu(2)sbnd O(2) bond length decreases with increasing Ni up to the optimal concentration of Ni, too. The CuO2 planes become more distorted and hence charge carriers may have better chances of transportation to the CuO2 planes. By further increasing of Ni content than the optimal value, the Cu(2)sbnd O(2) bond lengths start to increase, and cause CuO2 planes to be flatten. We suggest, besides affecting the magnetic characteristic of Ni impurity, the Ni substitution leads to interesting crystallographic changes.
NASA Astrophysics Data System (ADS)
Davies, Michael; Ganapathysubramanian, Baskar; Balasubramanian, Ganesh
2017-03-01
We present results from a computational framework integrating genetic algorithm and molecular dynamics simulations to systematically design isotope engineered graphene structures for reduced thermal conductivity. In addition to the effect of mass disorder, our results reveal the importance of atomic distribution on thermal conductivity for the same isotopic concentration. Distinct groups of isotope-substituted graphene sheets are identified based on the atomic composition and distribution. Our results show that in structures with equiatomic compositions, the enhanced scattering by lattice vibrations results in lower thermal conductivities due to the absence of isotopic clusters.
Substituted pyrrolidin-2-ones: Centrally acting orexin receptor antagonists promoting sleep. Part 2.
Sifferlen, Thierry; Boller, Amandine; Chardonneau, Audrey; Cottreel, Emmanuelle; Gatfield, John; Treiber, Alexander; Roch, Catherine; Jenck, Francois; Aissaoui, Hamed; Williams, Jodi T; Brotschi, Christine; Heidmann, Bibia; Siegrist, Romain; Boss, Christoph
2015-05-01
Starting from advanced pyrrolidin-2-one lead compounds, this novel series of small-molecule orexin receptor antagonists was further optimized by fine-tuning of the C-3 substitution at the γ-lactam ring. We discuss our design to align in vitro potency with metabolic stability and improved physicochemical/pharmacokinetic properties while avoiding P-glycoprotein-mediated efflux. These investigations led to the identification of the orally active 3-hydroxypyrrolidin-2-one 46, a potent and selective orexin-2 receptor antagonist, that achieved good brain exposure and promoted physiological sleep in rats. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yepes, Diego; Jacob, Anette; Dauber, Marc; Costina, Victor; Hofheinz, Ralf; Neumaier, Michael; Findeisen, Peter
2011-07-01
The progression of many solid tumors is characterized by the release of tumor-associated proteases, such as cancer procoagulant, MMP2 and MMP7. Consequently, the detection of tumor-specific proteolytic activity in serum specimens has recently been proposed as a new diagnostic tool in oncology. However, tumor-associated proteases are highly diluted in serum specimens and it is challenging to identify substrates that are specifically cleaved. In this study, we describe the systematic optimization of a synthetic peptide substrate using a positional scanning synthetic combinatorial library (PS-SCL) approach. The initial reporter peptide (RP) comprises of the cleavage site, WKPYDAAD, that is part of the coagulation factor X, the natural substrate of the tumor-associated cysteine protease cancer procoagulant (EC 3.4.22.26). Specifically, the amino acid substitution of aspartatic acid (D) in position P1' against asparagine (N) improved the processing of respective RPs in serum specimens from patients with colorectal tumors compared to healthy controls. Proteolytic fragments of RPs accumulated during prolonged incubation with serum specimens and were quantified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Finally, the optimized RP with the cleaved motif WKPYNAAD was combined with the RPs, VPLSLTMG and IPVSLRSG, that were cleaved by the tumor-associated proteases, MMP2 and MMP7, respectively. The diagnostic accuracy of MS-based protease profiling was evaluated for this triplex RP mix in a cohort of 50 serum specimens equally divided into colorectal cancer patients and healthy control individuals. Multiparametric analysis showed an AUC value of 0.90 for the receiver operating characteristic curve and was superior to the classification accuracy of the single markers. Our results demonstrate that RPs for MS-based protease profiling can systematically be optimized with a PS-SCL. Furthermore, the combination of different RPs can additionally increase the classification accuracy of functional protease profiling, and this in turn could lead to improved diagnosis, monitoring and prognosis of malignant disease.
NASA Astrophysics Data System (ADS)
Razgulin, A. V.; Sazonova, S. V.
2017-09-01
A novel statement of the Fourier filtering problem based on the use of matrix Fourier filters instead of conventional multiplier filters is considered. The basic properties of the matrix Fourier filtering for the filters in the Hilbert-Schmidt class are established. It is proved that the solutions with a finite energy to the periodic initial boundary value problem for the quasi-linear functional differential diffusion equation with the matrix Fourier filtering Lipschitz continuously depend on the filter. The problem of optimal matrix Fourier filtering is formulated, and its solvability for various classes of matrix Fourier filters is proved. It is proved that the objective functional is differentiable with respect to the matrix Fourier filter, and the convergence of a version of the gradient projection method is also proved.
Simple expression for the quantum Fisher information matrix
NASA Astrophysics Data System (ADS)
Šafránek, Dominik
2018-04-01
Quantum Fisher information matrix (QFIM) is a cornerstone of modern quantum metrology and quantum information geometry. Apart from optimal estimation, it finds applications in description of quantum speed limits, quantum criticality, quantum phase transitions, coherence, entanglement, and irreversibility. We derive a surprisingly simple formula for this quantity, which, unlike previously known general expression, does not require diagonalization of the density matrix, and is provably at least as efficient. With a minor modification, this formula can be used to compute QFIM for any finite-dimensional density matrix. Because of its simplicity, it could also shed more light on the quantum information geometry in general.
Li, Fumin; Wang, Jun; Jenkins, Rand
2016-05-01
There is an ever-increasing demand for high-throughput LC-MS/MS bioanalytical assays to support drug discovery and development. Matrix effects of sofosbuvir (protonated) and paclitaxel (sodiated) were thoroughly evaluated using high-throughput chromatography (defined as having a run time ≤1 min) under 14 elution conditions with extracts from protein precipitation, liquid-liquid extraction and solid-phase extraction. A slight separation, in terms of retention time, between underlying matrix components and sofosbuvir/paclitaxel can greatly alleviate matrix effects. High-throughput chromatography, with proper optimization, can provide rapid and effective chromatographic separation under 1 min to alleviate matrix effects and enhance assay ruggedness for regulated bioanalysis.
NASA Astrophysics Data System (ADS)
Agrawal, L.; Bhardwaj, A.; Pal, S.; Kumar, A.
2007-11-01
This article presents the results of a detailed theoretical and experimental analysis carried out on a folded Z-shaped polarization coupled, electro-optically Q-switched laser resonator with Porro prisms and waveplates. The advantages of adding waveplates in a Porro prism resonator have been explored for creating high loss condition prior to Q-switching and obtaining variable reflectivity with fixed orientation of Porro prism. Generalized expressions have been derived in terms of azimuth angles and phase shifts introduced by the polarizing elements. These expressions corroborate with known reported results under appropriate substitutions. A specific case of a crossed Porro prism diode-pumped Nd:YAG laser has been theoretically and experimentally investigated. In the feedback arm, a 0.57λ waveplate oriented at 135° completely compensates the phase shift of a fused silica Porro prism and provides better tolerances than a BK-7 prism/0.60λ waveplate combination to stop prelasing. The fused silica prism/0.57λ combination with waveplate at 112° acts like a 100% mirror and was utilized for optimization of free running performance. The effective reflectivity was determined for various orientations of the quarter waveplate in the gain arm to numerically estimate the Q-switched laser pulse parameters through rate equation analysis. Experimental results match well with the theoretical analysis.
Discrete-time Markovian-jump linear quadratic optimal control
NASA Technical Reports Server (NTRS)
Chizeck, H. J.; Willsky, A. S.; Castanon, D.
1986-01-01
This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.
Optical Data Processing for Missile Guidance.
1984-11-21
and architectures for back -substitution and the solution of triangular systems of LAEs (linear algebraic equations). Most recently, a parallel QR...Calculation of I1 is quite difficult since the o T exact Z matrix is quite ill-conditioned. The two VC choices considered in our system are E - I and E I - 0...shown in fig. 1. It These operations are most commonly referred to as shows the ship in water with a sky and shoreline back - segmentation and also
Catalytic trimerization of aromatic nitriles for synthesis of polyimide matrix resins
NASA Technical Reports Server (NTRS)
Hsu, L. C.
1974-01-01
Aromatic nitriles may be trimerized at moderate temperature and pressure with p-toluenesulfonic acid as catalyst. Studies were conducted to establish the effect of the reaction temperature, pressure, time, and catalyst concentration on yield of the trimerized product. Trimerization studies were also conducted to establish the effect of substituting electron donating or withdrawing groups on benzonitrile. Preliminary results of using the catalytic trimerization approach to prepare s-triazine cross-linked polyimide/graphite fiber composites are presented.
Zn(1-x)MnxTe diluted magnetic semiconductor nanowires grown by molecular beam epitaxy.
Zaleszczyk, Wojciech; Janik, Elzbieta; Presz, Adam; Dłuzewski, Piotr; Kret, Sławomir; Szuszkiewicz, Wojciech; Morhange, Jean-François; Dynowska, Elzbieta; Kirmse, Holm; Neumann, Wolfgang; Petroutchik, Aleksy; Baczewski, Lech T; Karczewski, Grzegorz; Wojtowicz, Tomasz
2008-11-01
It is shown that the growth of II-VI diluted magnetic semiconductor nanowires is possible by the catalytically enhanced molecular beam epitaxy (MBE). Zn(1-x)MnxTe NWs with manganese content up to x=0.60 were produced by this method. X-ray diffraction, Raman spectroscopy, and temperature dependent photoluminescence measurements confirm the incorporation of Mn(2+) ions in the cation substitutional sites of the ZnTe matrix of the NWs.
NASA Astrophysics Data System (ADS)
Sun, Ping; Song, Hua; Cui, Daxiang; Qi, Jun; Xu, Mousheng; Geng, Hongquan
2012-07-01
Matrix metalloproteases are key regulatory molecules in the breakdown of extracellular matrix and in inflammatory processes. Matrix metalloproteinase-1 (MMP-1) can significantly enhance muscle regeneration by promoting the formation of myofibers and degenerating the fibrous tissue. Herein, we prepared novel MMP-1-loaded poly(lactide-co-glycolide-co-caprolactone) (PLGA-PCL) nanoparticles (NPs) capable of sustained release of MMP-1. We established quadratic equations as mathematical models and employed rotatable central composite design and response surface methodology to optimize the preparation procedure of the NPs. Then, characterization of the optimized NPs with respect to particle size distribution, particle morphology, drug encapsulation efficiency, MMP-1 activity assay and in vitro release of MMP-1 from NPs was carried out. The results of mathematical modeling show that the optimal conditions for the preparation of MMP-1-loaded NPs were as follows: 7 min for the duration time of homogenization, 4.5 krpm for the agitation speed of homogenization and 0.4 for the volume ratio of organic solvent phase to external aqueous phase. The entrapment efficiency and the average particle size of the NPs were 38.75 ± 4.74% and 322.7 ± 18.1 nm, respectively. Further scanning electron microscopy image shows that the NPs have a smooth and spherical surface, with mean particle size around 300 nm. The MMP-1 activity assay and in vitro drug release profile of NPs indicated that the bioactivity of the enzyme can be reserved where the encapsulation allows prolonged release of MMP-1 over 60 days. Taken together, we reported here novel PLGA-PCL NPs for sustained release of MMP-1, which may provide an ideal MMP-1 delivery approach for tissue reconstruction therapy.
Mosala Nezhad, Zahra; Poncelet, Alain; de Kerchove, Laurent; Fervaille, Caroline; Banse, Xavier; Bollen, Xavier; Dehoux, Jean-Paul; El Khoury, Gebrine; Gianello, Pierre
2017-01-01
Porcine small intestinal submucosa extracellular matrix (CorMatrix; CorMatrix Cardiovascular, Rosewell, GA) is a relatively novel tissue substitute used in cardiovascular applications. We investigated the biological reaction and remodelling of CorMatrix as a tri-leaflet valved conduit in a pig model. We hypothesized that CorMatrix maintains a durable architecture as a valved conduit and remodels to resemble surrounding tissues. We fashioned the valved conduit using a 7 × 10 cm 4-ply CorMatrix sheet and placed it in the thoracic aorta of seven landrace pigs for 3, 4, 5 and 6 months. Biodegradation, replacement by native tissue, strength and durability were examined by histology, immunohistochemistry and mechanical testing. Four pigs, one per time frame, completed the study. The conduit lost its original architecture as a tri-leaflet valve due to cusp immobility, subsequent attachment to the wall segment and consequent maintenance of a thick arterial wall-like structure. Scaffold resorption was incomplete, with disorganized inconsistent spatial and temporal degradation even at 6 months. Fibrosis, scarring and calcification started at 4 months and chronic inflammation persisted. The partially remodelled scaffold did not resemble the aortic wall, suggesting impaired remodelling. Mechanical testing showed progressive weakening of the tissues over time, which were liable to breakage. CorMatrix is biodegradable; however, it failed to remodel in a structured and anatomical fashion in an arterial environment. Progressive mechanical and remodelling failure in this scenario might be explained by the complexity of the conduit design and the host's chronic inflammatory response, leading to early fibrosis and calcification. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chugunov, Nikita; Altundas, Bilgin
The submission contains a .xls files consisting of 10 excel sheets, which contain combined list of pressure, saturation, salinity, temperature profiles from the simulation of CO2 push-pull using Brady reservoir model and the corresponding effective compressional and shear velocity, bulk density, and fluid and time-lapse neutron capture cross section profiles of rock at times 0 day (baseline) through 14 days. First 9 sheets (each named after the corresponding CO2 push-pull simulation time) contains simulated pressure, saturation, temperature, salinity profiles and the corresponding effective elastic and neutron capture cross section profiles of rock matrix at the time of CO2 injection. Eachmore » sheet contains two sets of effective compressional velocity profiles of the rock, one based on Gassmann and the other based on Patchy saturation model. Effective neutron capture cross section calculations are done using a proprietary neutron cross-section simulator (SNUPAR) whereas for the thermodynamic properties of CO2 and bulk density of rock matrix filled with fluid, a standalone fluid substitution tool by Schlumberger is used. Last sheet in the file contains the bulk modulus of solid rock, which is inverted from the rock properties (porosity, sound speed etc) based on Gassmann model. Bulk modulus of solid rock in turn is used in the fluid substitution.« less
Electronic and structural properties of B i2S e3:Cu
NASA Astrophysics Data System (ADS)
Sobczak, Kamil; Strak, Pawel; Kempisty, Pawel; Wolos, Agnieszka; Hruban, Andrzej; Materna, Andrzej; Borysiuk, Jolanta
2018-04-01
Electronic and structural properties of B i2S e3 and its extension to copper doped B i2S e3:Cu were studied using combined ab initio simulations and transmission electron microscopy based techniques, including electron energy loss spectroscopy, energy filtered transmission electron microscopy, and energy dispersive x-ray spectroscopy. The stability of the mixed phases was investigated for substitutional and intercalation changes of basic B i2S e3 structure. Four systems were compared: B i2S e3 , structures obtaining by Cu intercalation of the van der Waals gap, by substitution of Bi by Cu in quintuple layers, and C u2Se . The structures were identified and their electronic properties were obtained. Transmission electron microscopy measurements of B i2S e3 and the B i2S e3:Cu system identified the first structure as uniform and the second as composite, consisting of a nonuniform lower-Cu-content matrix and randomly distributed high-Cu-concentration precipitates. Critical comparison of the ab initio and experimental data identified the matrix as having a B i2S e3 dominant part with randomly distributed Cu-intercalated regions having 1Cu-B i2S e3 structure. The precipitates were determined to have 3Cu-B i2S e3 structure.
Tissue engineering for human urethral reconstruction: systematic review of recent literature.
de Kemp, Vincent; de Graaf, Petra; Fledderus, Joost O; Ruud Bosch, J L H; de Kort, Laetitia M O
2015-01-01
Techniques to treat urethral stricture and hypospadias are restricted, as substitution of the unhealthy urethra with tissue from other origins (skin, bladder or buccal mucosa) has some limitations. Therefore, alternative sources of tissue for use in urethral reconstructions are considered, such as ex vivo engineered constructs. To review recent literature on tissue engineering for human urethral reconstruction. A search was made in the PubMed and Embase databases restricted to the last 25 years and the English language. A total of 45 articles were selected describing the use of tissue engineering in urethral reconstruction. The results are discussed in four groups: autologous cell cultures, matrices/scaffolds, cell-seeded scaffolds, and clinical results of urethral reconstructions using these materials. Different progenitor cells were used, isolated from either urine or adipose tissue, but slightly better results were obtained with in vitro expansion of urothelial cells from bladder washings, tissue biopsies from the bladder (urothelium) or the oral cavity (buccal mucosa). Compared with a synthetic scaffold, a biological scaffold has the advantage of bioactive extracellular matrix proteins on its surface. When applied clinically, a non-seeded matrix only seems suited for use as an onlay graft. When a tubularized substitution is the aim, a cell-seeded construct seems more beneficial. Considerable experience is available with tissue engineering of urethral tissue in vitro, produced with cells of different origin. Clinical and in vivo experiments show promising results.
Composition of Mineral Produced by Dental Mesenchymal Stem Cells.
Volponi, A A; Gentleman, E; Fatscher, R; Pang, Y W Y; Gentleman, M M; Sharpe, P T
2015-11-01
Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. © International & American Associations for Dental Research 2015.
Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.
Sun, Qiming; Chan, Garnet Kin-Lic
2014-09-09
Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.
On optimal current patterns for electrical impedance tomography.
Demidenko, Eugene; Hartov, Alex; Soni, Nirmal; Paulsen, Keith D
2005-02-01
We develop a statistical criterion for optimal patterns in planar circular electrical impedance tomography. These patterns minimize the total variance of the estimation for the resistance or conductance matrix. It is shown that trigonometric patterns (Isaacson, 1986), originally derived from the concept of distinguishability, are a special case of our optimal statistical patterns. New optimal random patterns are introduced. Recovering the electrical properties of the measured body is greatly simplified when optimal patterns are used. The Neumann-to-Dirichlet map and the optimal patterns are derived for a homogeneous medium with an arbitrary distribution of the electrodes on the periphery. As a special case, optimal patterns are developed for a practical EIT system with a finite number of electrodes. For a general nonhomogeneous medium, with no a priori restriction, the optimal patterns for the resistance and conductance matrix are the same. However, for a homogeneous medium, the best current pattern is the worst voltage pattern and vice versa. We study the effect of the number and the width of the electrodes on the estimate of resistivity and conductivity in a homogeneous medium. We confirm experimentally that the optimal patterns produce minimum conductivity variance in a homogeneous medium. Our statistical model is able to discriminate between a homogenous agar phantom and one with a 2 mm air hole with error probability (p-value) 1/1000.
Management of gingival recession with acellular dermal matrix graft: A clinical study
Balaji, V. R.; Ramakrishnan, T.; Manikandan, D.; Lambodharan, R.; Karthikeyan, B.; Niazi, Thanvir Mohammed; Ulaganathan, G.
2016-01-01
Aims and Objectives: Obtaining root coverage has become an important part of periodontal therapy. The aims of this studyare to evaluate the clinical efficacy of acellular dermal matrix graft in the coverage of denuded roots and also to examine the change in the width of keratinized gingiva. Materials and Methods: A total of 20 sites with more than or equal to 2 mm of recession depth were taken into the study, for treatment with acellular dermal matrix graft. The clinical parameters such as recession depth, recession width, width of keratinized gingiva, probing pocket depth (PD), and clinical attachment level (CAL) were measured at the baseline, 8th week, and at the end of the study (16th week). The defects were treated with a coronally positioned pedicle graft combined with acellular dermal matrix graft. Results: Out of 20 sites treated with acellular dermal matrix graft, seven sites showed complete root coverage (100%), and the mean root coverage obtained was 73.39%. There was a statistically significant reduction in recession depth, recession width, and probing PD. There was also a statistically significant increase in width of keratinized gingiva and also gain in CAL. The postoperative results were both clinically and statistically significant (P < 0.0001). Conclusion: The results of this study were esthetically acceptable to the patients and clinically acceptable in all cases. From this study, it may be concluded that acellular dermal matrix graft is an excellent substitute for autogenous graft in coverage of denuded roots. PMID:27829749
Antibiofilm Effect of DNase against Single and Mixed Species Biofilm
Sharma, Komal
2018-01-01
Biofilms are aggregates of microorganisms that coexist in socially coordinated micro-niche in a self-produced polymeric matrix on pre-conditioned surfaces. The biofilm matrix reduces the efficacy of antibiofilm strategies. DNase degrades the extracellular DNA (e-DNA) present in the matrix, rendering the matrix weak and susceptible to antimicrobials. In the current study, the effect of DNase I was evaluated during biofilm formation (pre-treatment), on preformed biofilms (post-treatment) and both (dual treatment). The DNase I pre-treatment was optimized for P. aeruginosa PAO1 (model biofilm organism) at 10 µg/mL and post-treatment at 10 µg/mL with 15 min of contact duration. Inclusion of Mg2+ alongside DNase I post-treatment resulted in 90% reduction in biofilm within only 5 min of contact time (irrespective of age of biofilm). On extension of these findings, DNase I was found to be less effective against mixed species biofilm than individual biofilms. DNase I can be used as potent antibiofilm agent and with further optimization can be effectively used for biofilm prevention and reduction in situ. PMID:29562719
Matrix Completion Optimization for Localization in Wireless Sensor Networks for Intelligent IoT
Nguyen, Thu L. N.; Shin, Yoan
2016-01-01
Localization in wireless sensor networks (WSNs) is one of the primary functions of the intelligent Internet of Things (IoT) that offers automatically discoverable services, while the localization accuracy is a key issue to evaluate the quality of those services. In this paper, we develop a framework to solve the Euclidean distance matrix completion problem, which is an important technical problem for distance-based localization in WSNs. The sensor network localization problem is described as a low-rank dimensional Euclidean distance completion problem with known nodes. The task is to find the sensor locations through recovery of missing entries of a squared distance matrix when the dimension of the data is small compared to the number of data points. We solve a relaxation optimization problem using a modification of Newton’s method, where the cost function depends on the squared distance matrix. The solution obtained in our scheme achieves a lower complexity and can perform better if we use it as an initial guess for an interactive local search of other higher precision localization scheme. Simulation results show the effectiveness of our approach. PMID:27213378
CLFs-based optimization control for a class of constrained visual servoing systems.
Song, Xiulan; Miaomiao, Fu
2017-03-01
In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Mandal, Uttam; Gowda, Veeran; Ghosh, Animesh; Bose, Anirbandeep; Bhaumik, Uttam; Chatterjee, Bappaditya; Pal, Tapan Kumar
2008-02-01
The aim of the present study was to apply the simultaneous optimization method incorporating Artificial Neural Network (ANN) using Multi-layer Perceptron (MLP) model to the development of a metformin HCl 500 mg sustained release matrix tablets with an optimized in vitro release profile. The amounts of HPMC K15M and PVP K30 at three levels (-1, 0, +1) for each were selected as casual factors. In vitro dissolution time profiles at four different sampling times (1 h, 2 h, 4 h and 8 h) were chosen as output variables. 13 kinds of metformin matrix tablets were prepared according to a 2(3) factorial design (central composite) with five extra center points, and their dissolution tests were performed. Commercially available STATISTICA Neural Network software (Stat Soft, Inc., Tulsa, OK, U.S.A.) was used throughout the study. The training process of MLP was completed until a satisfactory value of root square mean (RSM) for the test data was obtained using feed forward back propagation method. The root mean square value for the trained network was 0.000097, which indicated that the optimal MLP model was reached. The optimal tablet formulation based on some predetermined release criteria predicted by MLP was 336 mg of HPMC K15M and 130 mg of PVP K30. Calculated difference (f(1) 2.19) and similarity (f(2) 89.79) factors indicated that there was no difference between predicted and experimentally observed drug release profiles for the optimal formulation. This work illustrates the potential for an artificial neural network with MLP, to assist in development of sustained release dosage forms.
Optimal Magnetic Sensor Vests for Cardiac Source Imaging
Lau, Stephan; Petković, Bojana; Haueisen, Jens
2016-01-01
Magnetocardiography (MCG) non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics. PMID:27231910
Non-Rigid Structure Estimation in Trajectory Space from Monocular Vision
Wang, Yaming; Tong, Lingling; Jiang, Mingfeng; Zheng, Junbao
2015-01-01
In this paper, the problem of non-rigid structure estimation in trajectory space from monocular vision is investigated. Similar to the Point Trajectory Approach (PTA), based on characteristic points’ trajectories described by a predefined Discrete Cosine Transform (DCT) basis, the structure matrix was also calculated by using a factorization method. To further optimize the non-rigid structure estimation from monocular vision, the rank minimization problem about structure matrix is proposed to implement the non-rigid structure estimation by introducing the basic low-rank condition. Moreover, the Accelerated Proximal Gradient (APG) algorithm is proposed to solve the rank minimization problem, and the initial structure matrix calculated by the PTA method is optimized. The APG algorithm can converge to efficient solutions quickly and lessen the reconstruction error obviously. The reconstruction results of real image sequences indicate that the proposed approach runs reliably, and effectively improves the accuracy of non-rigid structure estimation from monocular vision. PMID:26473863
Maani, Bahareh; Alimi, Mazdak; Shokoohi, Shirin; Fazeli, Fatemeh
2017-06-01
Rice bran samples were treated under different conditions including hydrogen peroxide content (1, 4, and 7 wt%) and media pH (10.5, 11.5, and 12.5). Water holding capacity and color measurement results showed acceptable improvements compared with the untreated native bran confirmed by Fourier transform infrared analysis. Optimization of modification conditions upon characterization results suggested the introduction of 7% hydrogen peroxide at pH = 12.5. Accordingly, 1, 2 and 3 wt% of the rice bran treated under the optimized conditions, was used in salad dressing formulation; as for .3 wt% of modified starch in the formulation of blank sample, 1 wt% of treated rice bran dietary fiber was substituted. Biopolymer swelling and formation of a stable viscous gel network promoted by the chemical treatment of lignocellulosic rice bran restrict the mobility of oil droplets dispersed in the continuous phase which would consequently retard the emulsion instability phenomena. This effect was also confirmed by flow behavior and viscoelastic characterization results. Salad dressing samples containing 1 and 2 wt% treated rice bran showed acceptable physicochemical, rheological and organoleptic properties besides superior nutritional characteristics compared with the commercial modified starch traditionally used in salad dressing formulations. Despite recommended consumption of dietary fibers, addition of unprocessed lignocellulosic materials to food products usually raise negative effects in sensory, color, and texture quality. This study investigates the modification of rice bran, the byproduct of brown rice milling, to substitute modified starch traditionally used in salad dressing formulations to achieve optimum properties desirable for the final product. Optimization of modification conditions upon characterization of the formulated samples in this study would suggest new improved formulation for the commercial product. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Barthelat, Francois
2014-12-01
Nacre, bone and spider silk are staggered composites where inclusions of high aspect ratio reinforce a softer matrix. Such staggered composites have emerged through natural selection as the best configuration to produce stiffness, strength and toughness simultaneously. As a result, these remarkable materials are increasingly serving as model for synthetic composites with unusual and attractive performance. While several models have been developed to predict basic properties for biological and bio-inspired staggered composites, the designer is still left to struggle with finding optimum parameters. Unresolved issues include choosing optimum properties for inclusions and matrix, and resolving the contradictory effects of certain design variables. Here we overcome these difficulties with a multi-objective optimization for simultaneous high stiffness, strength and energy absorption in staggered composites. Our optimization scheme includes material properties for inclusions and matrix as design variables. This process reveals new guidelines, for example the staggered microstructure is only advantageous if the tablets are at least five times stronger than the interfaces, and only if high volume concentrations of tablets are used. We finally compile the results into a step-by-step optimization procedure which can be applied for the design of any type of high-performance staggered composite and at any length scale. The procedure produces optimum designs which are consistent with the materials and microstructure of natural nacre, confirming that this natural material is indeed optimized for mechanical performance.
Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon
2012-09-01
A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.
Shiino, Kai; Iwao, Yasunori; Miyagishima, Atsuo; Itai, Shigeru
2010-08-16
The purpose of the present study was to design and evaluate a novel wax matrix system containing various ratios of aminoalkyl methacrylate copolymer E (AMCE) and ethylcellulose (EC) as functional polymers in order to achieve the optimal acetaminophen (APAP) release rate for taste masking. A two factor, three level (3(2)) full factorial study design was used to optimize the ratios of AMCE and EC, and the release of APAP from the wax matrix was evaluated using a stationary disk in accordance with the paddle method. The disk was prepared by congealing glyceryl monostearate (GM), a wax with a low melting point, with various ratios of polymers and APAP. The criteria for release rate of APAP from the disk at pH 4.0 and pH 6.5 were calculated to be more than 0.5017 microg/(mlxmin) and less than 0.1414 microg/(mlxmin), respectively, under the assumption that the particle size of spherical matrix should be 100 microm. In multiple regression analysis, the release of APAP at pH 4.0 was found to increase markedly as the concentration of AMCE increased, whereas the release of APAP at pH 6.5 decreased as the EC concentration increased, even when a high level of AMCE was incorporated. Using principle component analysis, it was found that the viscosity of the matrix affects the pH-dependent release of APAP at pH 4.0 and pH 6.5. Furthermore, using multiple regression analysis, the optimum ratio of APAP:AMCE:EC:GM was found to be 30:7:10:53, and the release pattern of APAP from the optimum wax formulation nearly complied with the desired criteria. Therefore, the present study demonstrated that the incorporation of AMCE and EC into a wax matrix system enabled the appropriate release of APAP as a means of taste masking. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Method to optimize optical switch topology for photonic network-on-chip
NASA Astrophysics Data System (ADS)
Zhou, Ting; Jia, Hao
2018-04-01
In this paper, we propose a method to optimize the optical switch by substituting optical waveguide crossings for optical switching units and an optimizing algorithm to complete the optimization automatically. The functionality of the optical switch remains constant under optimization. With this method, we simplify the topology of optical switch, which means the insertion loss and power consumption of the whole optical switch can be effectively minimized. Simulation result shows that the number of switching units of the optical switch based on Spanke-Benes can be reduced by 16.7%, 20%, 20%, 19% and 17.9% for the scale from 4 × 4 to 8 × 8 respectively. As a proof of concept, the experimental demonstration of an optimized six-port optical switch based on Spanke-Benes structure by means of silicon photonics chip is reported.
Method and apparatus for optimized processing of sparse matrices
Taylor, Valerie E.
1993-01-01
A computer architecture for processing a sparse matrix is disclosed. The apparatus stores a value-row vector corresponding to nonzero values of a sparse matrix. Each of the nonzero values is located at a defined row and column position in the matrix. The value-row vector includes a first vector including nonzero values and delimiting characters indicating a transition from one column to another. The value-row vector also includes a second vector which defines row position values in the matrix corresponding to the nonzero values in the first vector and column position values in the matrix corresponding to the column position of the nonzero values in the first vector. The architecture also includes a circuit for detecting a special character within the value-row vector. Matrix-vector multiplication is executed on the value-row vector. This multiplication is performed by multiplying an index value of the first vector value by a column value from a second matrix to form a matrix-vector product which is added to a previous matrix-vector product.
Optimal Multicomponent Analysis Using the Generalized Standard Addition Method.
ERIC Educational Resources Information Center
Raymond, Margaret; And Others
1983-01-01
Describes an experiment on the simultaneous determination of chromium and magnesium by spectophotometry modified to include the Generalized Standard Addition Method computer program, a multivariate calibration method that provides optimal multicomponent analysis in the presence of interference and matrix effects. Provides instructions for…
Matrix-Isolation Spectroscopy of Reactive Organic Molecules of Relevance to Interstellar Space
NASA Astrophysics Data System (ADS)
Kopff, Laura A.; Nolan, Alex M.; Kreifels, Terese A.; Draxler, Thomas W.; Esselman, Brian J.; Burrmann, Nicola J.; McMahon, Robert J.
2010-11-01
Matrix isolation, the process of trapping a molecule in an inert gas at low temperature, provides a means for studying highly reactive intermediates, such as carbenes or radicals. Reactive species can be characterized by IR, UV-vis and/or EPR spectroscopy. Comparison of experimental and computed spectral data, as well as chemical reactivity, is used for structural assignment Triplet propynylidene is proposed to exist in the interstellar medium (ISM), due to the detection of a higher-energy isomers via rotational spectroscopy. Currently, we are exploring the structural and photochemical effects of varying substituents on the propynylidne system. A diazo precursor has been synthesized and photolyzed to produce dimethylpropynylidene in an argon matrix. A photochemical hydrogen shift to produce 1-penten-3-yne has been observed through infrared spectroscopy. Cyanocarbons are known to be abundant in the ISM and the atmosphere of Titan, however matrixisolation studies have not yet been carried out for a significant number of these compounds. Photolysis of 3-cyano-3-methyldiazirine should yield methylcyanocarbene, one of the simplest species in this family. Another molecule of interest is l-HC4N, which has been detected in the ISM, but has not yet been matrix-isolated and characterized. The study of arylcarbenes is vital to understanding the chemistry of carbon-rich environments, such as discharges, interstellar clouds, and circumstellar envelopes. The identification of small, sulfur containing molecules, and the identification of aromatics in the ISM make future thiophene and benzothiophene detections a real possibility. Studies on 2- and 3-diazomethyl substituted benzothiophenes are underway to assess their photochemical reactivity and potential for forming benzothiophene carbenes. Macrocylic polyynes are proposed to be involved in carbon condensation via the ring coalescence and annealing model to produce graphitic sheets or fullerenes. To simplify a complex system we are experimentally and computationally studying the series of ethynyl-substituted cyclobutadienes and their possible involvement in the build-up of larger carbon containing molecules in the ISM. The Bergman cyclization of cyclobutadiene has been explored computationally and the photochemical precursor is currently being synthesized.
A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity.
Quan, Quan; Cai, Kai-Yuan
2016-02-01
In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely, that the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. In order to avoid such a singularity, a new projection matrix is proposed based on which a feasible point method to continuous-time, equality-constrained optimization is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Second, a new projection matrix without singularity is proposed to realize the transformation. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed continuous-time dynamical system. The invariance principle is then applied to analyze the behavior of the solution. Furthermore, the proposed method is modified to address cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approach is applied to three examples to demonstrate its effectiveness.
Infrared Spectra of Substituted Polycyclic Aromatic Hydrocarbons
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Hudgins, Douglas M.; Sandford, Scott A.; Allamandola, Louis J.; Arnold, James O. (Technical Monitor)
1997-01-01
Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of 1-methylanthracene, 9-methylanthracene, 9-cyanoanthracene, 2-aminoanthracene, acridine, and their positive ions. The theoretical data are compared with matrix-isolation spectra for these species also reported in this work. The theoretical and experimental frequencies and relative intensities for the neutral species are in generally good agreement, whereas the positive ion spectra are only in qualitative agreement. Relative to anthracene, we find that substitution of amethyl or CN for a hydrogen does not significantly affect the spectrum other than to add the characteristic methyl C-H stretch and C-N stretch (near 2200/cm), respectively. However, addition of NH2 dramatically affects the spectrum of the neutral. Not only are the NH2 modes themselves strong, but this electron withdrawing group induces sufficient partial charge on the ring to give the neutral molecule characteristics of the anthracene cation spectrum. The sum of the absolute intensities is about four times larger for 2-aminoanthracene than for 9-cyanoanthracene. Substituting nitrogen in the ring at the nine position (acridine) does not greatly alter the spectrum compared with anthracene.
Properties of cement based composites modified using diatomaceous earth
NASA Astrophysics Data System (ADS)
Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Pavlík, Zbyšek
2017-07-01
Diatomite belongs among natural materials rich on amorphous silica (a-SiO2). When finely milled, it can potentially substitute part of cement binder and positively support formation of more dense composite structure. In this connection, two types of diatomaceous earth applied as a partial substitution of 5, 10, 15, and 20 mass% of Portland cement in the composition of cement paste were studied. In the tested mixtures with cement blends, the amount of batch water remained same, with water/binder ratio 0.5. For fresh paste mixtures, initial and final setting times were measured. First, hardened pastes cured 28 days in water were characterized by their physical properties such as bulk density, matrix density and open porosity. Then, their mechanical and thermophysical parameters were assessed. Obtained results gave clear evidence of setting time shortening for pastes with diatomite what brought negative effect with respect to the impaired workability of fresh mixtures. On the other hand, there was observed strength improvement for mixtures containing diatomite with higher amount of SiO2. Here, the increase in mechanical resistivity was distinct up to 15 mass% of cement replacement. Higher cement substitution by diatomite resulted in an increase in porosity and thus improvement of thermal insulation properties.
Metal matrix composite fabrication processes for high performance aerospace structures
NASA Astrophysics Data System (ADS)
Ponzi, C.
A survey is conducted of extant methods of metal matrix composite (MMC) production in order to serve as a basis for prospective MMC users' selection of a matrix/reinforcement combination, cost-effective primary fabrication methods, and secondary fabrication techniques for the achievement of desired performance levels. Attention is given to the illustrative cases of structural fittings, control-surface connecting rods, hypersonic aircraft air inlet ramps, helicopter swash plates, and turbine rotor disks. Methods for technical and cost analysis modeling useful in process optimization are noted.
2015-03-01
General covariance intersection covariance matrix Σ1 Measurement 1’s covariance matrix I(X) Fisher information matrix g Confidence region L Lower... information in this chapter will discuss the motivation and background of the geolocation algorithm with the scope of the applications for this research. The...algorithm is able to produce the best description of an object given the information from a set of measurements. Determining a position requires the use of a
Multiscale strain analysis of tissue equivalents using a custom-designed biaxial testing device.
Bell, B J; Nauman, E; Voytik-Harbin, S L
2012-03-21
Mechanical signals transferred between a cell and its extracellular matrix play an important role in regulating fundamental cell behavior. To further define the complex mechanical interactions between cells and matrix from a multiscale perspective, a biaxial testing device was designed and built. Finite element analysis was used to optimize the cruciform specimen geometry so that stresses within the central region were concentrated and homogenous while minimizing shear and grip effects. This system was used to apply an equibiaxial loading and unloading regimen to fibroblast-seeded tissue equivalents. Digital image correlation and spot tracking were used to calculate three-dimensional strains and associated strain transfer ratios at macro (construct), meso, matrix (collagen fibril), cell (mitochondria), and nuclear levels. At meso and matrix levels, strains in the 1- and 2-direction were statistically similar throughout the loading-unloading cycle. Interestingly, a significant amplification of cellular and nuclear strains was observed in the direction perpendicular to the cell axis. Findings indicate that strain transfer is dependent upon local anisotropies generated by the cell-matrix force balance. Such multiscale approaches to tissue mechanics will assist in advancement of modern biomechanical theories as well as development and optimization of preconditioning regimens for functional engineered tissue constructs. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Boskey, A L; Stiner, D; Doty, S B; Binderman, I
1991-01-01
Mesenchymal cells isolated from stage 21-24 chick limb-buds plated in a micro-mass culture differentiate to form chondrocytes and synthesize a calcifiable matrix. In the presence of inorganic phosphate (4 mM), hydroxyapatite mineral deposits around cartilage nodules. Ascorbic acid is, in general, an essential co-factor for extracellular matrix synthesis in culture, since it is required for collagen synthesis. In this study we demonstrate that in the absence of ascorbic acid supplementation in the mesenchymal cell cultures, mineral deposition (indicated by X-ray diffraction, measurement of Ca:hydroxyproline ratio, and 45Ca uptake) does not occur. Concentrations of 10-50 micrograms/ml ascorbate were compared to find the "optimal" concentration for cell mediated mineralization; 25 micrograms/ml was selected as optimal based on matrix appearance at the EM level and the rate of 45Ca uptake. High concentrations of ascorbic acid (greater than 75 micrograms/ml), while increasing the amount of hydroxyproline in the matrix synthesized, caused some cell death and hence less cell-mediated mineralization. This study demonstrates both the need for viable cells and a proper matrix for in vitro cell-mediated mineralization, and shows that varying the concentration of L-ascorbate (vitamin C) in the medium can have a marked effect on mineralization in vitro.
The multifacet graphically contracted function method. I. Formulation and implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, Ron; Brozell, Scott R.; Gidofalvi, Gergely
2014-08-14
The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that bothmore » the energy and the gradient computation scale as O(N{sup 2}n{sup 4}) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N{sub 2} dissociation, cubic H{sub 8} dissociation, the symmetric dissociation of H{sub 2}O, and the insertion of Be into H{sub 2}. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.« less
Digital transceiver design for two-way AF-MIMO relay systems with imperfect CSI
NASA Astrophysics Data System (ADS)
Hu, Chia-Chang; Chou, Yu-Fei; Chen, Kui-He
2013-09-01
In the paper, combined optimization of the terminal precoders/equalizers and single-relay precoder is proposed for an amplify-and-forward (AF) multiple-input multiple-output (MIMO) two-way single-relay system with correlated channel uncertainties. Both terminal transceivers and relay precoding matrix are designed based on the minimum mean square error (MMSE) criterion when terminals are unable to erase completely self-interference due to imperfect correlated channel state information (CSI). This robust joint optimization problem of beamforming and precoding matrices under power constraints belongs to neither concave nor convex so that a nonlinear matrix-form conjugate gradient (MCG) algorithm is applied to explore local optimal solutions. Simulation results show that the robust transceiver design is able to overcome effectively the loss of bit-error-rate (BER) due to inclusion of correlated channel uncertainties and residual self-interference.
Hess, Ulrike; Shahabi, Shakiba; Treccani, Laura; Streckbein, Philipp; Heiss, Christian; Rezwan, Kurosch
2017-08-01
Bone substitute materials with a controlled drug release ability can fill cavities caused by the resection of bone tumours and thereby combat any leftover bone cancer cells. The combined release of different cytostatics seems to enhance their toxicity. In this study, calcium phosphate beads and matrix scaffolds are combined for a long-term co-delivery of cis-diamminedichloroplatinum (cisplatin, CDDP) and doxorubicin hydrochloride (DOX) as clinical relevant model drugs. Tricalcium phosphate/alginate beads as additional drug carrier are produced by droplet extrusion with ionotropic gelation and incorporated in scaffold matrix by freeze gelation without sintering. CDDP shows a short burst release while DOX has a continuous release measurable over the entire study period of 40days. Drug release from matrix is decreased by ~30% compared to release from beads. Nevertheless, all formulations follow the Korsmeyer-Peppas release kinetic model and show Fickian diffusion. Cytotoxic activity was conducted on MG-63 osteosarcoma cells after 1, 4, and 7days with WST-1 cell viability assay. Co-loaded composites enhance activity towards MG-63 cells up to ~75% toxicity while reducing the released drug quantity. The results suggest that co-loaded beads/matrix scaffolds are highly promising for osteosarcoma therapy due to synergistic effects over a long period of more than a month. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Halima Shamaz, Bibi; Anitha, A.; Vijayamohan, Manju; Kuttappan, Shruthy; Nair, Shantikumar; Nair, Manitha B.
2015-10-01
Porous nanohydroxyapatite (nanoHA) is a promising bone substitute, but it is brittle, which limits its utility for load bearing applications. To address this issue, herein, biodegradable electrospun microfibrous sheets of poly(L-lactic acid)-(PLLA)-polyvinyl alcohol (PVA) were incorporated into a gelatin-nanoHA matrix which was investigated for its mechanical properties, the physical integration of the fibers with the matrix, cell infiltration, osteogenic differentiation and bone regeneration. The inclusion of sacrificial fibers like PVA along with PLLA and leaching resulted in improved cellular infiltration towards the center of the scaffold. Furthermore, the treatment of PLLA fibers with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide enhanced their hydrophilicity, ensuring firm anchorage between the fibers and the gelatin-HA matrix. The incorporation of PLLA microfibers within the gelatin-nanoHA matrix reduced the brittleness of the scaffolds, the effect being proportional to the number of layers of fibrous sheets in the matrix. The proliferation and osteogenic differentiation of human adipose-derived mesenchymal stem cells was augmented on the fibrous scaffolds in comparison to those scaffolds devoid of fibers. Finally, the scaffold could promote cell infiltration, together with bone regeneration, upon implantation in a rabbit femoral cortical defect within 4 weeks. The bone regeneration potential was significantly higher when compared to commercially available HA (Surgiwear™). Thus, this biomimetic, porous, 3D composite scaffold could be offered as a promising candidate for bone regeneration in orthopedics.
Management of segmental bony defects: the role of osteoconductive orthobiologics.
McKee, Michael D
2006-01-01
Our knowledge about, and the availability of, orthobiologic materials has increased exponentially in the last decade. Although previously confined to the experimental or animal-model realm, several orthobiologics have been shown to be useful in a variety of clinical situations. As surgical techniques in vascular anastomosis, soft-tissue coverage, limb salvage, and fracture stabilization have improved, the size and frequency of bony defects (commensurate with the severity of the initial injury) have increased, as well. Because all methods of managing segmental bony defects have drawbacks, a need remains for a readily available, void-filling, inexpensive bone substitute. Such a bone substitute fulfills a permissive role in allowing new bone to grow into a given defect. Such potential osteoconductive materials include ceramics, calcium sulfate or calcium phosphate compounds, hydroxyapatite, deproteinized bone, corals, and recently developed polymers. Some materials that have osteoinductive properties, such as demineralized bone matrix, also display prominent osteoconductive properties.
Fe implantation effect in the 6H-SiC semiconductor investigated by Mössbauer spectrometry
NASA Astrophysics Data System (ADS)
Diallo, M. L.; Diallo, L.; Fnidiki, A.; Lechevallier, L.; Cuvilly, F.; Blum, I.; Viret, M.; Marteau, M.; Eyidi, D.; Juraszek, J.; Declémy, A.
2017-08-01
P-doped 6H-SiC substrates were implanted with 57Fe ions at 380 °C or 550 °C to produce a diluted magnetic semiconductor with an Fe homogeneous concentration of about 100 nm thickness. The magnetic properties were studied with 57Fe Conversion Electron Mössbauer Spectrometry at room temperature (RT). Results obtained by this technique on annealed samples prove that ferromagnetism in 57Fe-implanted SiC for Fe concentrations close to 2% and 4% is mostly due to Fe atoms diluted in the matrix. In contrast, for Fe concentrations close to 6%, it also comes from Fe in magnetic phase nano-clusters. This study allows quantifying the Fe amount in the interstitial and substitutional sites and the nanoparticles and shows that the majority of the diluted Fe atoms are substituted on Si sites inducing ferromagnetism up to RT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schäfer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.
2014-12-04
We seek for a realistic implementation of multimode Gaussian entangled states that can realize the optimal encoding for quantum bosonic Gaussian channels with memory. For a Gaussian channel with classical additive Markovian correlated noise and a lossy channel with non-Markovian correlated noise, we demonstrate the usefulness using Gaussian matrix-product states (GMPS). These states can be generated sequentially, and may, in principle, approximate well any Gaussian state. We show that we can achieve up to 99.9% of the classical Gaussian capacity with GMPS requiring squeezing parameters that are reachable with current technology. This may offer a way towards an experimental realization.
Goel, Parul; Jumpertz, Thorsten; Tichá, Anežka; Ogorek, Isabella; Mikles, David C; Hubalek, Martin; Pietrzik, Claus U; Strisovsky, Kvido; Schmidt, Boris; Weggen, Sascha
2018-05-01
Rhomboids are intramembrane serine proteases with diverse physiological functions in organisms ranging from archaea to humans. Crystal structure analysis has provided a detailed understanding of the catalytic mechanism, and rhomboids have been implicated in various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has lagged behind, and previously described small molecule inhibitors displayed insufficient potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of novel scaffolds with reduced liabilities and the possibility for broad structural variations. Docking studies with the E. coli rhomboid GlpG indicated that 2-styryl substituted benzoxazinones might comprise novel rhomboid inhibitors. Protease in vitro assays confirmed activity of 2-styryl substituted benzoxazinones against GlpG but not against the soluble serine protease α-chymotrypsin. Furthermore, mass spectrometry analysis demonstrated covalent modification of the catalytic residue Ser201, corroborating the predicted mechanism of inhibition and the formation of an acyl enzyme intermediate. In conclusion, 2-styryl substituted benzoxazinones are a novel rhomboid inhibitor scaffold with ample opportunity for optimization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Doping process of p-type GaN nanowires: A first principle study
NASA Astrophysics Data System (ADS)
Xia, Sihao; Liu, Lei; Diao, Yu; Feng, Shu
2017-10-01
The process of p-type doping for GaN nanowires is investigated using calculations starting from first principles. The influence of different doping elements, sites, types, and concentrations is discussed. Results suggest that Mg is an optimal dopant when compared to Be and Zn due to its stronger stability, whereas Be atoms are more inclined to exist in the interspace of a nanowire. Interstitially-doped GaN nanowires show notable n-type conductivity, and thus, Be is not a suitable dopant, which is to be expected since systems with inner substitutional dopants are more favorable than those with surface substitutions. Both interstitial and substitutional doping affect the atomic structure near dopants and induce charge transfer between the dopants and adjacent atoms. By altering doping sites and concentrations, nanowire atomic structures remain nearly constant. Substitutional doping models show p-type conductivity, and Mg-doped nanowires with doping concentrations of 4% showing the strongest p-type conductivity. All doping configurations are direct bandgap semiconductors. This study is expected to direct the preparation of high-quality GaN nanowires.
Hays, S J; Rice, M J; Ortwine, D F; Johnson, G; Schwarz, R D; Boyd, D K; Copeland, L F; Vartanian, M G; Boxer, P A
1994-10-01
Thirty-two aryl-substituted 2-benzothiazolamines have been tested for their ability to modulate sodium flux in rat cortical slices. A QSAR analysis, applied to these derivatives, showed a trend toward increasing potency as sodium flux inhibitors with increasing lipophilicity, decreasing size, and increasing electron withdrawal of the benzo ring substituents. Additionally, 4- or 5-substitution of the benzo ring was found to decrease potency. The combination of increased lipophilicity, small size, and electron withdrawal severely limited which groups were tolerated on the benzo ring, thus suggesting that the optimal substitution patterns have been prepared within this series. Nine of these compounds were potent inhibitors of veratridine-induced sodium flux (NaFl). These nine compounds also proved to be anticonvulsant in the maximal electroshock (MES) assay. Fourteen additional 2-benzothiazolamines demonstrated activity in the MES screen, yet exhibited no activity in the NaFl assay. These derivatives may be interacting at the sodium channel in a manner not discernible by the flux paradigm, or they may be acting by an alternative mechanism in vivo.
Impact of concomitant Y and Mn substitution on superconductivity in La1 -yYyFe1 -xMnxAsO0.89F0.11
NASA Astrophysics Data System (ADS)
Kappenberger, Rhea; Hammerath, Franziska; Rousse, Pierre; Afrassa, Mesfin Asfaw; Haghighi, M. Hossein; Kamusella, Sirko; Prando, Giacomo; Lamura, Gianrico; Wolter, Anja U. B.; Moroni, Matteo; Sanna, Samuele; Carretta, Pietro; Hess, Christian; Grafe, Hans-Joachim; Klauss, Hans-Henning; Wurmehl, Sabine; Büchner, Bernd
2018-02-01
We discuss the impact of concomitant substitution of Fe by Mn and La by Y in optimally F-doped LaFeAsO0.89F0.11 . Mn has a known poisoning effect on superconductivity which is particularly strong in the La1111 system, where 0.2% of Mn were reported to completely suppress superconductivity. Through isovalent substitution of La by the much smaller Y we are able to inflict chemical pressure on the structure, which we show is stabilizing the superconducting state, resulting in a drastically larger amount of Mn needed to completely quench superconductivity. Interestingly, we find that the lattice parameter c changes significantly even for small amounts of Mn substitution within a series, which is unexpected taking only the differences between ionic radii into account. We discuss our findings in the light of electron localization caused by small amounts of paramagnetic Mn impurities in La1 -yYyFe1 -xMnxAsO0.89F0.11 also indicated by resistivity and Mößbauer measurements.
Yu, Tao; Lin, Maohua; Wu, Bo; Wang, Jintian; Tsai, Chi-Tay
2018-05-16
On the basis of the framework of cubic gauche nitrogen (cg-N), six one-eighth methanetriyl groups (>CH-) substitutes and fifteen one-fourth >CH- substitutes were optimized using the first-principle calculations based on density functional theory (DFT). Both one-eighth and one-fourth substitutes still keep the gauche structures with the simple formula CHN 7 and CHN 3 , respectively. The most thermodynamic stable gauche CHN 7 and CHN 3 are P2 1 qtg-C 2 H 2 N 14 I and P2 1 qtg-C 4 H 4 N 12 III, respectively. No probability density of C-C single bonds and high probability densities of C-N-C structures were found in the two substitutes. Although gauche CHN 7 and CHN 3 lose energy density in contrast to cg-N, they win kinetic stability and combustion temperature (T c ). Thus, they are more feasible than cg-N, and more effective than the traditional rocket fuels. Copyright © 2018 Elsevier Inc. All rights reserved.
[DNA analysis of chromosome Y in the area of the azoospermia factor (AZF) in infertile men].
Kolárová, J; Santavá, A; Vrtĕl, R
2001-09-01
Establishment of investigation of sterile male DNA in AZF region--choice of loci and primers for investigation, optimization of PCR conditions (polymerase chain reaction). For practice. Department of Medical Genetics and Foetal Medicine, Faculty of Medicine, Palacky University and Faculty Hospital Olomouc. PCR amplification of DNA isolated from blood of sterile men and consequential electrophoresis of synthesized DNA fragments to appoint microdeletions in AZF. From January to June 2000 were detected the microdeletions in AZF of 3 out of 79 sterile men (3.80%) by means of the Experteam firm kit. From July to December 2000 were tested and optimized conditions of amplification of 10 AZF loci to substitute the kit and they were used for examination of the first 20 sterile men of our collection. In our laboratory was established routine examination male sterility related to microdeletions in AZF. With our collection of loci was substituted the original Experteam firm kit and was widened spectrum of observed loci.
NASA Astrophysics Data System (ADS)
Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min
2018-01-01
When a conventional Halbach type Hollow Cylindrical Permanent Magnet Array (HCPMA) is used to generate magnetic induction over the magnitude of coercivity μ0Hc, some detrimental parasitic magnetic phenomena, such as the demagnetization, magnetization reversal, and vortexes of magnetization, can appear in the interior of the magnets. We present a self-consistent quantitative analysis of the magnetization and magnetic induction distributions inside the magnetic array by considering the anisotropic and nonlinear magnetization functions of the materials consisting of the array. These numeric simulations reveal novel magnetization structures resulted from the self-field of array. We demonstrate that both the field uniformity and magnetic flux in the pole gap can be modulated by partially substituting the magnets of high energy products with the soft irons and the superhard magnets. We also show how the optimized substitution parameters can be obtained for a HCPMA achieving the best field uniformity or the maximum magnetic flux.
Han, Zhenfu; Pinkner, Jerome S.; Ford, Bradley; Chorell, Erik; Crowley, Jan M.; Cusumano, Corinne K.; Campbell, Scott; Henderson, Jeffrey P.; Hultgren, Scott J.; Janetka, James W.
2012-01-01
Herein, we describe the X-ray structure-based design and optimization of biaryl mannoside FimH inhibitors. Diverse modifications to the biaryl ring to improve drug-like physical and pharmacokinetic properties of mannosides were assessed for FimH binding affinity based on their effects on hemagglutination and biofilm formation along with direct FimH binding assays. Substitution on the mannoside phenyl ring ortho to the glycosidic bond results in large potency enhancements of several-fold higher than corresponding unsubstituted matched pairs and can be rationalized from increased hydrophobic interactions with the FimH hydrophobic ridge (Ile13) or “tyrosine gate” (Tyr137 and Tyr48) also lined by Ile52. The lead mannosides have increased metabolic stability and oral bioavailability as determined from in vitro PAMPA predictive model of cellular permeability and in vivo pharmacokinetic studies in mice, thereby representing advanced preclinical candidates with promising potential as novel therapeutics for the clinical treatment and prevention of recurring urinary tract infections. PMID:22449031
Best Hiding Capacity Scheme for Variable Length Messages Using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Bajaj, Ruchika; Bedi, Punam; Pal, S. K.
Steganography is an art of hiding information in such a way that prevents the detection of hidden messages. Besides security of data, the quantity of data that can be hidden in a single cover medium, is also very important. We present a secure data hiding scheme with high embedding capacity for messages of variable length based on Particle Swarm Optimization. This technique gives the best pixel positions in the cover image, which can be used to hide the secret data. In the proposed scheme, k bits of the secret message are substituted into k least significant bits of the image pixel, where k varies from 1 to 4 depending on the message length. The proposed scheme is tested and results compared with simple LSB substitution, uniform 4-bit LSB hiding (with PSO) for the test images Nature, Baboon, Lena and Kitty. The experimental study confirms that the proposed method achieves high data hiding capacity and maintains imperceptibility and minimizes the distortion between the cover image and the obtained stego image.
Viscoplastic Matrix Materials for Embedded 3D Printing.
Grosskopf, Abigail K; Truby, Ryan L; Kim, Hyoungsoo; Perazzo, Antonio; Lewis, Jennifer A; Stone, Howard A
2018-03-16
Embedded three-dimensional (EMB3D) printing is an emerging technique that enables free-form fabrication of complex architectures. In this approach, a nozzle is translated omnidirectionally within a soft matrix that surrounds and supports the patterned material. To optimize print fidelity, we have investigated the effects of matrix viscoplasticity on the EMB3D printing process. Specifically, we determine how matrix composition, print path and speed, and nozzle diameter affect the yielded region within the matrix. By characterizing the velocity and strain fields and analyzing the dimensions of the yielded regions, we determine that scaling relationships based on the Oldroyd number, Od, exist between these dimensions and the rheological properties of the matrix materials and printing parameters. Finally, we use EMB3D printing to create complex architectures within an elastomeric silicone matrix. Our methods and findings will both facilitate future characterization of viscoplastic matrices and motivate the development of new materials for EMB3D printing.
Abu-Eittah, Rafie H; El-Kelany, Khaled E
2012-12-01
Azido-tetrazole equilibrium is sensitive to: substitution, solvent, temperature and phase. In this work, the effects of the type and position of substitution on the thiazole ring of azidothiazoles on its structural parameters and on the azido-tetrazole equilibrium have been theoretically investigated using the density functional procedures at the B3LYP/6-311G(∗∗) level of theory. This study includes the investigation of the equilibrium geometry, the transformation of the trans-conformer to the cis one then the ring closure to the tetrazole isomer. The transition states of the two steps were located, confirmed and the structural parameters were calculated. In all the steps of calculations, geometry optimization was considered. The results obtained indicate that substitution by: -NO(2) and -CN group shifts the equilibrium to the azide side and in some cases the tetrazole isomer is not obtained. On the other hand, substitution by: -NH(2) and -OH groups shifts the equilibrium to the tetrazole side and in some cases the azide isomer is not obtained and if formed changes spontaneously to the tetrazole isomer. The decisive parameters which determine the position of the equilibrium are: charge density on atoms N3 and N8, rearrangement of bond length and bond angles during the process of cyclization and variation of dipole moment as a result of cyclization. Results of this work indicate that substitution on C5 is more efficient than substitution on C4 of the thiazole ring. Copyright © 2012 Elsevier B.V. All rights reserved.
Application’s Method of Quadratic Programming for Optimization of Portfolio Selection
NASA Astrophysics Data System (ADS)
Kawamoto, Shigeru; Takamoto, Masanori; Kobayashi, Yasuhiro
Investors or fund-managers face with optimization of portfolio selection, which means that determine the kind and the quantity of investment among several brands. We have developed a method to obtain optimal stock’s portfolio more rapidly from twice to three times than conventional method with efficient universal optimization. The method is characterized by quadratic matrix of utility function and constrained matrices divided into several sub-matrices by focusing on structure of these matrices.
Larouche, Danielle; Cantin-Warren, Laurence; Desgagné, Maxime; Guignard, Rina; Martel, Israël; Ayoub, Akram; Lavoie, Amélie; Gauvin, Robert; Auger, François A.; Moulin, Véronique J.; Germain, Lucie
2016-01-01
Abstract There is a clinical need for skin substitutes to replace full-thickness skin loss. Our group has developed a bilayered skin substitute produced from the patient's own fibroblasts and keratinocytes referred to as Self-Assembled Skin Substitute (SASS). After cell isolation and expansion, the current time required to produce SASS is 45 days. We aimed to optimize the manufacturing process to standardize the production of SASS and to reduce production time. The new approach consisted in seeding keratinocytes on a fibroblast-derived tissue sheet before its detachment from the culture plate. Four days following keratinocyte seeding, the resulting tissue was stacked on two fibroblast-derived tissue sheets and cultured at the air–liquid interface for 10 days. The resulting total production time was 31 days. An alternative method adapted to more contractile fibroblasts was also developed. It consisted in adding a peripheral frame before seeding fibroblasts in the culture plate. SASSs produced by both new methods shared similar histology, contractile behavior in vitro and in vivo evolution after grafting onto mice when compared with SASSs produced by the 45-day standard method. In conclusion, the new approach for the production of high-quality human skin substitutes should allow an earlier autologous grafting for the treatment of severely burned patients. PMID:27872793
Extracellular Matrix Modulation: Optimizing Skin Care and Rejuvenation Procedures.
Widgerow, Alan D; Fabi, Sabrina G; Palestine, Roberta F; Rivkin, Alexander; Ortiz, Arisa; Bucay, Vivian W; Chiu, Annie; Naga, Lina; Emer, Jason; Chasan, Paul E
2016-04-01
Normal aging and photoaging of the skin are chronic processes that progress gradually. The extracellular matrix (ECM), constituting over 70% of the skin, is the central hub for repair and regeneration of the skin. As such, the ECM is the area where changes related to photodamage are most evident. Degradation of the ECM with fragmentation of proteins significantly affects cross talk and signaling between cells, the matrix, and its constituents. The accumulation of collagen fragments, amorphous elastin agglutinations, and abnormal cross-linkages between the collagen fragments impedes the ECM from its normal repair and regenerative capacity, which manifests as wrinkled, non-elastic skin. Similar to how the chronic wound healing process requires wound bed preparation before therapeutic intervention, treatment of chronic aging of the skin would likely benefit from a "skin bed preparation" to optimize the outcome of rejuvenation procedures and skin maintenance programs. This involves introducing agents that can combat stress-induced oxidation, proteasome dysfunction, and non-enzymatic cross linkages involved in glycation end products, to collectively modulate this damaged ECM, and upregulate neocollagenesis and elastin production. Agents of particular interest are matrikines, peptides originating from the fragmentation of matrix proteins that exhibit a wide range of biological activities. Peptides of this type (tripeptide and hexapeptide) are incorporated in ALASTIN™ Skin Nectar with TriHex™ technology (ALASTIN Skincare, Inc., Carlsbad, CA), which is designed to target ECM modulation with a goal of optimizing results following invasive and non-invasive dermal rejuvenating procedures.
Linear quadratic regulators with eigenvalue placement in a horizontal strip
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1987-01-01
A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.
Theoretical investigation of the electronic structure of a substituted nickel phthalocyanine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Prabhjot, E-mail: prabhphysics@gmail.com; Sachdeva, Ritika; Singh, Sukhwinder
2016-05-23
The optimized geometry and electronic structure of an organic compound nickel phthalocyanine tetrasulfonic acid tetra sodium salt have been investigated using density functional theory. We have also optimized the structure of nickel phthalocyanine tetrasulfonic acid tetra sodium salt in dimethyl sulfoxide to study effects of solvent on the electronic structure and transitions. Experimentally, the electronic transitions have been studied using UV-VIS spectroscopic technique. It is observed that the electronic transitions obtained from the theoretical studies generally agree with the experiment.
Segawa, Hiroki; T Iwata, Yuko; Yamamuro, Tadashi; Kuwayama, Kenji; Tsujikawa, Kenji; Kanamori, Tatsuyuki; Inoue, Hiroyuki
2017-03-01
Chromatographic differentiation of the ring-substituted regioisomers of amphetamine (AMP) and methamphetamine (MA) was performed by supercritical fluid chromatography (SFC). The behaviour of the retention against the changes of column temperature and co-solvent proportion was studied. The obtained information facilitated the optimization of the each regioisomer. As a result, 2-, 3-, and 4-ring-substituted analogues of AMP and MA with methyl, methoxy, fluoro, chloro, and bromo groups were separated, generally within 6 min. In addition, we found that the separation pattern of the examined regioisomers was classified into two, which depended on the electron donating/withdrawing effect of the substituent. Our results indicate that SFC could be used in forensic drug analysis for fast, reliable identification of structurally similar drugs of abuse. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Role of the local structure in superconductivity of LaO0.5F0.5BiS2-x Se x system
NASA Astrophysics Data System (ADS)
Paris, E.; Mizuguchi, Y.; Hacisalihoglu, M. Y.; Hiroi, T.; Joseph, B.; Aquilanti, G.; Miura, O.; Mizokawa, T.; Saini, N. L.
2017-04-01
We have studied the local structure of LaO0.5F0.5BiS2-x Se x by Bi L1-edge extended x-ray absorption fine structure (EXAFS). We find a significant effect of Se substitution on the local atomic correlations with a gradual elongation of average in-plane Bi-S bondlength. The associated mean square relative displacement, measuring average local distortions in the BiS2 plane, hardly shows any change for small Se substitution, but decreases significantly for x≥slant 0.6 . The Se substitution appears to suppress the local distortions within the BiS2 plane that may optimize in-plane orbital hybridization and hence the superconductivity. The results suggest that the local structure of the BiS2-layer is one of the key ingredients to control the physical properties of the BiS2-based dichalcogenides.
Robust stability of bidirectional associative memory neural networks with time delays
NASA Astrophysics Data System (ADS)
Park, Ju H.
2006-01-01
Based on the Lyapunov Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms.
ERIC Educational Resources Information Center
Brusco, Michael J.
2002-01-01
Developed a branch-and-bound algorithm that can be used to seriate a symmetric dissimilarity matrix by identifying a reordering of rows and columns of the matrix optimizing an anti-Robinson criterion. Computational results suggest that with respect to computational efficiency, the approach is generally competitive with dynamic programming. (SLD)
Genetic Algorithm Optimization of Phononic Bandgap Structures
2006-09-01
a GA with a computational finite element method for solving the acoustic wave equation, and find optimal designs for both metal-matrix composite...systems consisting of Ti/SiC, and H2O-filled porous ceramic media, by maximizing the relative acoustic bandgap for these media. The term acoustic here...stress minimization, global optimization, phonon bandgap, genetic algorithm, periodic elastic media, inhomogeneity, inclusion, porous media, acoustic
Testing Hypotheses in Linear Models with Weighted Rank Statistics.
1983-11-01
18- The resulting weight matrix is Colo -bo" 01 "-bopop (7.2) W - -boJl0 cll I .. -blpJl p - bpp -bplpl.. cI pO pO pi-pi pP where I is an n x n...F(x+a 1 ) and F3 (x) = F(x+a 1 ) . Substituting these into (7.7), differentiating and evaluating at a, 0 yields * 2dU2/dala= = 2nnbl2-n~nb0)2 dU /d
Robust location and spread measures for nonparametric probability density function estimation.
López-Rubio, Ezequiel
2009-10-01
Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.
Phenol-selective mass spectrometric analysis of jet fuel.
Zhu, Haoxuan; Janusson, Eric; Luo, Jingwei; Piers, James; Islam, Farhana; McGarvey, G Bryce; Oliver, Allen G; Granot, Ori; McIndoe, J Scott
2017-08-21
Bromobenzyl compounds react selectively with phenols via the Williamson ether synthesis. An imidazolium charge-tagged bromobenzyl compound can be used to reveal phenol impurities in jet fuel by analysis via electrospray ionization mass spectrometry. The complex matrix as revealed by Cold EI GC/MS analysis is reduced to a few simple sets of compounds in the charge-tagged ESI mass spectrum, primarily substituted phenols and thiols. Examination of jet fuels treated by different refinery methods reveals the efficacy of these approaches in removing these contaminants.
1993-04-01
re - expressed as, v .= hCSw (C3) Combining Eqns. (C2) and C3) yields, Se = - ’. S (C4...of vi( s ) or v ’( s ). Substituting eq. (B10) into eq. (25), one finds the finite element method expression for functional Ud [ v ] which is U, d [] = v , K...Measurements 1- D 2- D S ,_DL 4 Constitutive W Constitutive Laws Laws Matrix Cracking Labor Models Models Stress Redistribution Numerical Calculations
Liang, Fan; Leland, Hyuma; Jedrzejewski, Breanna; Auslander, Allyn; Maniskas, Seija; Swanson, Jordan; Urata, Mark; Hammoudeh, Jeffrey; Magee, William
2018-05-01
Alveolar cleft reconstruction has historically relied on autologous iliac crest bone grafting (ICBG), but donor site morbidity, pain, and prolonged hospitalization have prompted the search for bone graft substitutes. The authors evaluated bone graft substitutes with the highest levels of evidence, and highlight the products that show promise in alveolar cleft repair and in maxillary augmentation. This comprehensive review guides the craniofacial surgeon toward safe and informed utilization of biomaterials in the alveolar cleft.A literature search was performed to identify in vitro human studies that fulfilled the following criteria: Level I or Level II of evidence, ≥30 subjects, and a direct comparison between a autologous bone graft and a bone graft substitute. A second literature search was performed that captured all studies, regardless of level of evidence, which evaluated bone graft substitutes for alveolar cleft repair or alveolar augmentation for dental implants. Adverse events for each of these products were tabulated as well.Sixteen studies featuring 6 bone graft substitutes: hydroxyapatite, demineralized bone matrix (DBM), β-tricalcium phosphate (TCP), calcium phosphate, recombinant human bone morphogenic protein-2 (rhBMP-2), and rhBMP7 fit the inclusion criteria for the first search. Through our second search, the authors found that DBM, TCP, rhBMP-2, and rhBMP7 have been studied most extensively in the alveolar cleft literature, though frequently in studies using less rigorous methodology (Level III evidence or below). rhBMP-2 was the best studied and showed comparable efficacy to ICBG in terms of volume of bone regeneration, bone density, and capacity to accommodate tooth eruption within the graft site. Pricing for products ranged from $290 to $3110 per 5 mL.The balance between innovation and safety is a complex process requiring constant vigilance and evaluation. Here, the authors profile several bone graft substitutes that demonstrate the most promise in alveolar cleft reconstruction.
MacEwan, Matthew R; MacEwan, Sarah; Kovacs, Tamas R; Batts, Joel
2017-10-02
Wound matrix materials are used to improve the regeneration of dermal and epidermal layers in both acute and chronic wounds. Contemporary wound matrices are primarily composed of biologic materials such as processed xenogeneic and allogeneic tissues. Unfortunately, existing biologic wound matrices possess multiple limitations including poor longevity, durability, strength, and enzymatic resistance required for persistent support for new tissue formation. A fully-synthetic, resorbable electrospun material (Restrata Wound Matrix, Acera, St.Louis, Missouri ) that exhibits structural similarities to the native extracellular matrix offers a new approach to the treatment of acute and chronic wounds. This novel matrix is the first product to combine the advantages of synthetic construction (e.g. resistance to enzymatic degradation, excellent biocompatibility, strength/durability and controlled degradation) with the positive attributes of biologic materials (e.g. biomimetic architecture similar to human extracellular matrix (ECM), fibrous architecture optimized to support cellular migration and proliferation, engineered porosity to encourage tissue ingrowth and vascularization). These features allow RWM to achieve rapid and complete healing of full-thickness wounds that, in preclinical studies, is comparable to Integra Bilayer Wound Matrix (Integra LifeSciences, Plainsboro, New Jersey), a gold standard biologic material with diverse clinical indications in the wound care. Together, this review suggests that the RWM offers a unique fully-synthetic alternative to existing biologic matrices that is effective, widely available, easy to store, simple to apply and low cost.
Fast and accurate matrix completion via truncated nuclear norm regularization.
Hu, Yao; Zhang, Debing; Ye, Jieping; Li, Xuelong; He, Xiaofei
2013-09-01
Recovering a large matrix from a small subset of its entries is a challenging problem arising in many real applications, such as image inpainting and recommender systems. Many existing approaches formulate this problem as a general low-rank matrix approximation problem. Since the rank operator is nonconvex and discontinuous, most of the recent theoretical studies use the nuclear norm as a convex relaxation. One major limitation of the existing approaches based on nuclear norm minimization is that all the singular values are simultaneously minimized, and thus the rank may not be well approximated in practice. In this paper, we propose to achieve a better approximation to the rank of matrix by truncated nuclear norm, which is given by the nuclear norm subtracted by the sum of the largest few singular values. In addition, we develop a novel matrix completion algorithm by minimizing the Truncated Nuclear Norm. We further develop three efficient iterative procedures, TNNR-ADMM, TNNR-APGL, and TNNR-ADMMAP, to solve the optimization problem. TNNR-ADMM utilizes the alternating direction method of multipliers (ADMM), while TNNR-AGPL applies the accelerated proximal gradient line search method (APGL) for the final optimization. For TNNR-ADMMAP, we make use of an adaptive penalty according to a novel update rule for ADMM to achieve a faster convergence rate. Our empirical study shows encouraging results of the proposed algorithms in comparison to the state-of-the-art matrix completion algorithms on both synthetic and real visual datasets.
High-performance sparse matrix-matrix products on Intel KNL and multicore architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagasaka, Y; Matsuoka, S; Azad, A
Sparse matrix-matrix multiplication (SpGEMM) is a computational primitive that is widely used in areas ranging from traditional numerical applications to recent big data analysis and machine learning. Although many SpGEMM algorithms have been proposed, hardware specific optimizations for multi- and many-core processors are lacking and a detailed analysis of their performance under various use cases and matrices is not available. We firstly identify and mitigate multiple bottlenecks with memory management and thread scheduling on Intel Xeon Phi (Knights Landing or KNL). Specifically targeting multi- and many-core processors, we develop a hash-table-based algorithm and optimize a heap-based shared-memory SpGEMM algorithm. Wemore » examine their performance together with other publicly available codes. Different from the literature, our evaluation also includes use cases that are representative of real graph algorithms, such as multi-source breadth-first search or triangle counting. Our hash-table and heap-based algorithms are showing significant speedups from libraries in the majority of the cases while different algorithms dominate the other scenarios with different matrix size, sparsity, compression factor and operation type. We wrap up in-depth evaluation results and make a recipe to give the best SpGEMM algorithm for target scenario. A critical finding is that hash-table-based SpGEMM gets a significant performance boost if the nonzeros are not required to be sorted within each row of the output matrix.« less
Improvement of mechanical properties of polymeric composites: Experimental methods and new systems
NASA Astrophysics Data System (ADS)
Nguyen, Felix Nhanchau
Filler- (e.g., particulate or fiber) reinforced structural polymers or polymeric composites have changed the way things are made. Today, they are found, for example, in air/ground transportation vehicles, sporting goods, ballistic barrier applications and weapons, electronic packaging, musical instruments, fashion items, and more. As the demand increases, so does the desire to have not only well balanced mechanical properties, but also light weight and low cost. This leads to a constant search for novel constituents and additives, new fabrication methods and analytical techniques. To achieve new or improved composite materials requires more than the identification of the right reinforcements to be used with the right polymer matrix at the right loading. Also, an optimized adhesion between the two phases and a toughened matrix system are needed. This calls for new methods to predict, modify and assess the level of adhesion, and new developments in matrix tougheners to minimize compromises in other mechanical/thermal properties. Furthermore, structural optimization, associated with fabrication (e.g., avoidance of fiber-fiber touching or particle aggregation), and sometimes special properties, such as electrical conductivity or magnetic susceptibility are necessary. Finally, the composite system's durability, often under hostile conditions, is generally mandatory. The present study researches new predictive and experimental methods for optimizing and characterizing filler-matrix adhesion and develops a new type of epoxy tougheners. Specifically, (1) a simple thermodynamic parameter evaluated by UNIFAC is applied successfully to screen out candidate adhesion promoters, which is necessary for optimization of the physio-chemical interactions between the two phases; (2) an optical-acoustical mechanical test assisted with an acoustic emission technique is developed to de-convolute filler debonding/delamination among many other micro failure events, and (3) novel core (thermoplastic)-shell (dendrimer) nanoparticles are synthesized and incorporated in epoxy to enhance both stiffness and the polymer's fracture toughness or resistance to crack growth. This unique dendrimer has the possibility of acting both as an adhesion promoter and filler spacer, when applied to the filler surface, and as a matrix enhancer, when combined with other materials, with the unique ability to improve mechanical/thermal/electrical properties. These developments should help in the creation of the next generation of polymeric composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogen, Stéphane L.; Pan, Weidong; Gibeau, Craig R.
2016-03-10
A new subseries of substituted piperidines as p53-HDM2 inhibitors exemplified by 21 has been developed from the initial lead 1. Research focused on optimization of a crucial HDM2 Trp23–ligand interaction led to the identification of 2-(trifluoromethyl)thiophene as the preferred moiety. Further investigation of the Leu26 pocket resulted in potent, novel substituted piperidine inhibitors of the HDM2-p53 interaction that demonstrated tumor regression in several human cancer xenograft models in mice. The structure of HDM2 in complex with inhibitors 3, 10, and 21 is described.
Antagonistic and Bargaining Games in Optimal Marketing Decisions
ERIC Educational Resources Information Center
Lipovetsky, S.
2007-01-01
Game theory approaches to find optimal marketing decisions are considered. Antagonistic games with and without complete information, and non-antagonistic games techniques are applied to paired comparison, ranking, or rating data for a firm and its competitors in the market. Mix strategy, equilibrium in bi-matrix games, bargaining models with…
Simulation optimization of the cathode deposit growth in a coaxial electrolyzer-refiner
NASA Astrophysics Data System (ADS)
Smirnov, G. B.; Fokin, A. A.; Markina, S. E.; Vakhitov, A. I.
2015-08-01
The results of simulation of the cathode deposit growth in a coaxial electrolyzer-refiner are presented. The sizes of the initial cathode matrix are optimized. The data obtained by simulation and full-scale tests of the precipitation of platinum from a salt melt are compared.
Leptonic CP phase determined by an equation involving PMNS matrix elements
NASA Astrophysics Data System (ADS)
Ke, Hong-Wei; Zhou, Jia-Hui; Li, Xue-Qian
2017-04-01
Several approximate equalities among the matrix elements of the Cabibbo-Kobayashi-Maskawa (CKM) and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrices imply that hidden symmetries may exist and be common for both quark and neutrino sectors. The charge parity (CP) phase of the CKM matrix ({δ }{CKM}) is involved in these equalities and can be investigated when these equalities turn into several equations. As we substitute those experimentally measured values of the three mixing angles into the equations for quarks, it is noted that one of the equations which holds exactly has a solution {δ }{CKM}=({68.95}-1.15+1.15)^\\circ . That value accords with ({69.1}-3.85+2.02)^\\circ determined from available data. Generalizing the scenario to the lepton sector, the same equality determines the leptonic CP phase {δ }{PMNS} to be ({275.20}-1.15+1.15)^\\circ . Thus we predict the value of {δ }{PMNS} from the equation. So far there is no direct measurement on {δ }{PMNS}, but a recent analysis based on the neutrino oscillation data prefers a phase close to 270°.
NASA Astrophysics Data System (ADS)
Widyaningsih, Purnami; Retno Sari Saputro, Dewi; Nugrahani Putri, Aulia
2017-06-01
GWOLR model combines geographically weighted regression (GWR) and (ordinal logistic reression) OLR models. Its parameter estimation employs maximum likelihood estimation. Such parameter estimation, however, yields difficult-to-solve system of nonlinear equations, and therefore numerical approximation approach is required. The iterative approximation approach, in general, uses Newton-Raphson (NR) method. The NR method has a disadvantage—its Hessian matrix is always the second derivatives of each iteration so it does not always produce converging results. With regard to this matter, NR model is modified by substituting its Hessian matrix into Fisher information matrix, which is termed Fisher scoring (FS). The present research seeks to determine GWOLR model parameter estimation using Fisher scoring method and apply the estimation on data of the level of vulnerability to Dengue Hemorrhagic Fever (DHF) in Semarang. The research concludes that health facilities give the greatest contribution to the probability of the number of DHF sufferers in both villages. Based on the number of the sufferers, IR category of DHF in both villages can be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yaoyao, E-mail: xiaoqi_198863@126.com; Graduate School of Chinese Academy of Sciences, Beijing 100039; Wang, Xin
2015-04-15
Highlights: • We prepare Tm{sup 3+}-doped tellurite-zinc glasses with F{sup −} substitution. • Thermal stability becomes better with increasing F{sup −} in present glasses. • Tm{sup 3+} 1.8 μm radiative lifetime increases with F{sup −} concentration. • The origin of the increased lifetime has been discussed. - Abstract: The 1.8 μm emission properties of Tm{sup 3+}-doped zinc tellurite glasses modified by the substitution of ZnF{sub 2} are investigated in this paper. The thermal stability, Raman and phonon sideband spectra, transmission and absorption spectra, emission spectra and decay curves are discussed. It is found that substitution of fluoride ions into themore » zinc tellurite matrix produces dramatic increase in the emission lifetime of Tm{sup 3+} 1.8 μm emission. Absorption, Raman and phonon sideband spectra are used to estimate the local structure of Tm{sup 3+} ions. These analyses indicate structural change around Tm{sup 3+} ions caused by substitution of fluoride ions monitors the increased intrinsic radiative lifetimes. An increase in the measured radiative lifetimes of the Tm{sup 3+}:{sup 3}F{sub 4} → {sup 3}H{sub 6} transition is observed. The origin has been discussed and the reduction of OH{sup −} absorption, decrease of maximum phonon energy and phonon density are considered to be dominant in all of the nonradiative relaxations.« less
Kupwade-Patil, Kunal; Chin, Stephanie; Ilavsky, Jan; ...
2017-10-13
Here, this study investigates the early ages of hydration behavior when basaltic volcanic ash was used as a partial substitute to ordinary Portland cement using ultra-small-angle X-ray scattering and wide-angle X-ray scattering (WAXS). The mix design consisted of 10, 30 and 50% substitution of Portland cement with two different-sized volcanic ashes. The data showed that substitution of volcanic ash above 30% results in excess unreacted volcanic ash, rather than additional pozzolanic reactions along longer length scales. WAXS studies revealed that addition of finely ground volcanic ash facilitated calcium-silicate-hydrate related phases, whereas inclusion of coarser volcanic ash caused domination by calcium-aluminum-silicate-hydratemore » and unreacted MgO phases, suggesting some volcanic ash remained unreacted throughout the hydration process. Addition of more than 30% volcanic ash leads to coarser morphology along with decreased surface area and higher intensity of scattering at early-age hydration. This suggests an abrupt dissolution indicated by changes in surface area due to the retarding gel formation that can have implication on early-age setting influencing the mechanical properties of the resulting cementitious matrix. The findings from this work show that the concentration of volcanic ash influences the specific surface area and morphology of hydration products during the early age of hydration. Therefore, natural pozzolanic volcanic ashes can be a viable substitute to Portland cement by providing environmental benefits in terms of lower-carbon footprint along with long-term durability.« less
Elias, Joseph S; Risch, Marcel; Giordano, Livia; Mansour, Azzam N; Shao-Horn, Yang
2014-12-10
We present a simple and generalizable synthetic route toward phase-pure, monodisperse transition-metal-substituted ceria nanoparticles (M0.1Ce0.9O2-x, M = Mn, Fe, Co, Ni, Cu). The solution-based pyrolysis of a series of heterobimetallic Schiff base complexes ensures a rigorous control of the size, morphology and composition of 3 nm M0.1Ce0.9O2-x crystallites for CO oxidation catalysis and other applications. X-ray absorption spectroscopy confirms the dispersion of aliovalent (M(3+) and M(2+)) transition metal ions into the ceria matrix without the formation of any bulk transition metal oxide phases, while steady-state CO oxidation catalysis reveals an order of magnitude increase in catalytic activity with copper substitution. Density functional calculations of model slabs of these compounds confirm the stabilization of M(3+) and M(2+) in the lattice of CeO2. These results highlight the role of the host CeO2 lattice in stabilizing high oxidation states of aliovalent transition metal dopants that ordinarily would be intractable, such as Cu(3+), as well as demonstrating a rational approach to catalyst design. The current work demonstrates, for the first time, a generalizable approach for the preparation of transition-metal-substituted CeO2 for a broad range of transition metals with unparalleled synthetic control and illustrates that Cu(3+) is implicated in the mechanism for CO oxidation on CuO-CeO2 catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupwade-Patil, Kunal; Chin, Stephanie; Ilavsky, Jan
Here, this study investigates the early ages of hydration behavior when basaltic volcanic ash was used as a partial substitute to ordinary Portland cement using ultra-small-angle X-ray scattering and wide-angle X-ray scattering (WAXS). The mix design consisted of 10, 30 and 50% substitution of Portland cement with two different-sized volcanic ashes. The data showed that substitution of volcanic ash above 30% results in excess unreacted volcanic ash, rather than additional pozzolanic reactions along longer length scales. WAXS studies revealed that addition of finely ground volcanic ash facilitated calcium-silicate-hydrate related phases, whereas inclusion of coarser volcanic ash caused domination by calcium-aluminum-silicate-hydratemore » and unreacted MgO phases, suggesting some volcanic ash remained unreacted throughout the hydration process. Addition of more than 30% volcanic ash leads to coarser morphology along with decreased surface area and higher intensity of scattering at early-age hydration. This suggests an abrupt dissolution indicated by changes in surface area due to the retarding gel formation that can have implication on early-age setting influencing the mechanical properties of the resulting cementitious matrix. The findings from this work show that the concentration of volcanic ash influences the specific surface area and morphology of hydration products during the early age of hydration. Therefore, natural pozzolanic volcanic ashes can be a viable substitute to Portland cement by providing environmental benefits in terms of lower-carbon footprint along with long-term durability.« less
Effects of Vanadium Substitution on the Structure and Photocatalytic Behavior of ETS-10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shough,A.; Doren, D.; Nash, M.
2007-01-01
A combination of experimental and computational methods has been used to investigate the effects of vanadium doping in ETS-10. Near edge X-ray absorption fine structure (NEXAFS) spectra reveal octahedrally coordinated V{sup IV} and V{sup V} species within V-doped ETS-10 materials, confirming substitution for Ti{sup IV} sites only. Computational models, using hybrid density functional theory/molecular mechanics (DFT/MM) methods, have been developed that contain varying concentrations of V{sup IV} and V{sup V} within the O-M-O (M = Ti, V) chain. Geometry optimizations indicate that V{sup V} substitution leads to larger changes in the local chain geometry than V{sup IV} substitution. Substitution energeticsmore » for V{sup IV} and V{sup V} in different sites have been calculated to determine preferred locations of the two species, suggesting that long chains of V{sup V} are not stable and demonstrating the need for both V{sup V} and V{sup IV} within V-substituted materials. Wavefunctions for systems with an electron added or removed are used to identify electron and hole trapping sites associated with the V{sup V} and V{sup IV} doping centers respectively. An increase in photocatalytic activity is predicted at low [V] due to improved charge separation. However photocatalytic activity is expected to decrease at high [V] due to increased carrier recombination. These results are consistent with recent experimental data.« less
HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness
Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...
2016-05-26
Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less
HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.
Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less
In vivo and in vitro investigations of a nanostructured coating material – a preclinical study
Adam, Martin; Ganz, Cornelia; Xu, Weiguo; Sarajian, Hamid-Reza; Götz, Werner; Gerber, Thomas
2014-01-01
Immediate loading of dental implants is only possible if a firm bone-implant anchorage at early stages is developed. This implies early and high bone apposition onto the implant surface. A nanostructured coating material based on an osseoinductive bone grafting is investigated in relation to the osseointegration at early stages. The goal is to transmit the structure (silica matrix with embedded hydroxyapatite) and the properties of the bone grafting into a coating material. The bone grafting substitute offers an osseoinductive potential caused by an exchange of the silica matrix in vivo accompanied by vascularization. X-ray diffraction and transmission electron microscopy analysis show that the coating material consists of a high porous silica matrix with embedded nanocrystalline hydroxyapatite with the same morphology as human hydroxyapatite. An in vitro investigation shows the early interaction between coating and human blood. Energy-dispersive X-ray analysis showed that the silica matrix was replaced by an organic matrix within a few minutes. Uncoated and coated titanium implants were inserted into the femora of New Zealand White rabbits. The bone-to-implant contact (BIC) was measured after 2, 4, and 6 weeks. The BIC of the coated implants was increased significantly at 2 and 4 weeks. After 6 weeks, the BIC was decreased to the level of the control group. A histological analysis revealed high bone apposition on the coated implant surface after 2 and 4 weeks. Osteoblastic and osteoclastic activities on the coating material indicated that the coating participates in the bone-remodeling process. The nanostructure of the coating material led to an exchange of the silica matrix by an autologous, organic matrix without delamination of the coating. This is the key issue in understanding initial bone formation on a coated surface. PMID:24627631
Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas
2002-05-01
In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan.
Perceptual Optimization of DCT Color Quantization Matrices
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Statler, Irving C. (Technical Monitor)
1994-01-01
Many image compression schemes employ a block Discrete Cosine Transform (DCT) and uniform quantization. Acceptable rate/distortion performance depends upon proper design of the quantization matrix. In previous work, we showed how to use a model of the visibility of DCT basis functions to design quantization matrices for arbitrary display resolutions and color spaces. Subsequently, we showed how to optimize greyscale quantization matrices for individual images, for optimal rate/perceptual distortion performance. Here we describe extensions of this optimization algorithm to color images.